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Abstract

We present a simple metncal representation and algonithm
to explain putative imagery processes underlying the empir-
ical mental model preferences found by Knauff, Rauh and
Schlieder (1995) for Allen inferences (Allen, 1983). The com-
putational theory is compared with one based on ordinal infor-
mation only (Schlieder, in preparation). Both provide good fits
with the data. They differ psychologically in background the-
ories, visualisation strategies motivated by these, and model
construction processes generating models with the properties
indicated as desirable by the strategies. They differ compu-
tationally in assumptions about knowledge strength (ordinal:
weaker) and algorithmic simplicity (metrical: simpler). Our
theory and its comparison with the ordinal theory provide the
basis for a discussion of issues pertaining to imagery in gen-
eral: Using the assumption of imagery inexactness, we develop
a sketch theory of mental images and motivate a new visual-
1sation strategy (‘regulanisation'). We demonstrate systematic
methods of modelling imagery processes and of analysing such
models. We also outline some criteria for comparison (and fu-
ture integration?) of cognitive modelling approaches.

Allen inferences, preferred mental models, and
a computational theory based on ordinal
information

Allen relations are the 13 'qualitative' relations which can
hold between two intervals, corresponding to relations be-
tween the start- and endpoints of the two intervals, between
which only the ordinal relations 'is before/smaller than', 'is
equal to', and 'is after/larger than' are distinguished, see fig.
1. They have been discussed by Allen (1983) in a logic for
reasoning about temporal events and have been used also as
a basis for spatial reasoning calculi , e.g. in (Guesgen, 1989;
Mukerjee & Joe, 1990). Qualitative relations are of inter-
est to Cognitive Science because they might be employed
in programs like Geographical Information Systems (GIS)
to model human temporal/spatial reasoning more adequately
than models based on numerical specifications. Allen infer-
ences are compositions of Allen relations answering the fol-
lowing question: If the Allen relation between intervals A and
Bis R, and that between intervals B and C'is R, then which
Allen relation(s) Rs can hold between A and C? In some
cases, there is only one possible answer (relation R3); in oth-
ers, there are several. For example, if A finishes-inverse B
and B before C, then A can only be before C. If A finishes-
inverse B and B during C, it is possible that A starts C,

489

name symbol __ diagram __point ordering|
equals A=B —— sA=sB<eB=eA
before A<B ——— mm==  sAceAc<sB<eB
meets AmB C——— "=  gAceAzsB<eB
overlaps AoB e — sA<sBeelceB
starts AsB [reE— sA=sB<eA<eB
finishes AlB PR sBesAcel=eB
during AdB smmessamia sBesA<eAceB
during-inverse AdiB “— sA<sBceBeceA
slarts-inverse AsiB — sA=sB<eB<eA
finishes-inverse AfiB —— sA<sB<eB=eA
overlaps-inverse Aol B —— sB<sA<eB<eA
meets-inverse Amip wmm——— sBceB=sA<eA
after A>B m— —— sB<eB<sA<eA

Figure 1: The 13 interval relations, adapted from (Schlieder,
in preparation). White interval = A, black interval = B,
sA, sB, eA, eB = start- and endpoints of A and B.

overlaps C, or is during C. The second example is shown in
fig. 3; the first can easily be reconstructed from this drawing.
For full details, see (Allen, 1983).

This composition can be seen as a three-term series in the
sense of Johnson-Laird (1972). But how do people reason
with Allen relations? Knauff, Rauh and Schlieder (1995)
trained subjects in the understanding of Allen relations and
then asked them to provide one answer to each of 12 x 12
Allen inference questions (they excluded the trivial compo-
sitions with equals). In cases where more than one Allen
relation is a correct answer (' non-unique cases'), a great ma-
jority of subjects chose the same solution. The authors inter-
pret these results as evidence of preferred mental models:
In the sequential process of constructing the different possi-
ble mental models (= the several possibilities of arranging A,
B and C such that different Allen relations R3 hold), a strat-
egy is employed which first leads to the construction of one
particular model, the preferred model. Empirically, preferred
models (aggregated over subjects) were never non-models;
i.e. always yielded correct solutions.

When we try to find a computational theory of a strategy
like this one, an interesting question concemns the nature of
the knowledge used (cf., for example, (Huttenlocher, 1968)
vs. (Johnson-Laird & Byme, 1991)). If one assumes imagery
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in mental models, one needs an 'image’ as model, which can
be modelled as containing metrical information. The input
relations R,, R, and the intervals A, B, C linked by them are
given a metrical interpretation, i.e. some placement in the
image. This metrical representation is then inspected to ob-
tain the required answer, the Allen relation between A and C.
This is based on ordinal relations between A's and C"s start-
and endpoints. Considering, however, that the whole concept
of Allen relations is based on ordinal information, one may
want to avoid giving a metrical interpretation to the ordinal
Allen relations and try to formulate a theory without imagery,
i.e. without metrical representations.

Schlieder (in preparation) develops a computational the-
ory which operates on ordinal information only. Devel-
opment of the theory starts out from the discussion of formal
properties of Allen inferences discussed by Ligozat (1990),
namely two kinds of symmetries of pairs of inferences. These
formal properties were not satisfied empirically: The pairs of
inferences identified by Ligozat had asymmetrical empirical
model preferences. It is not important to go into the details
of the formal argument here; it suffices to note that the obser-
vation of formal symmetry and empirical asymmetry implies
that in order to explain the data, a model must generate order
effects: a relation R is sometimes conceptualised differently
depending on whether it holds between A and B or between
B and C (or B and A or C and B), i.e. the two intervals
are placed differently with respect to each other (for an ex-
ample, see fig. 2; for full details of the formal argument, see
(Ligozat, 1990; Schlieder, in preparation)). Schlieder gener-
ates order effects by assuming a focus in the mental model,
a point which, in addition to the start- and endpoints of the
intervals already considered, is kept in the representation.
Schlieder can explain all but 6 of the 60 non-unique empir-
ical preferences he considers (see fig. 5).! He omits compo-
sitions of inverses, which are compositions of relations like
before and after, i.e. compositions whose results lie in cells
along the secondary diagonal of the composition table in fig.
5. A much simpler strategy seems to be applied there: “don't
think” — just assume inverses always lead back to the original,
i.e. to the Allen relation equals.

However, this model has the drawback of being rather
complicated: There are 6 to 14 (depending on how
one counts) ‘scanning rules’ and rather involved 'insertion
schemes' specifying different processes and orders of the in-
sertion of start- and endpoints, and the focus position has
to be remembered. These complications were our motiva-
tion to devise a strategy that requires stronger information,
namely, metrical knowledge, but is much simpler in terms of
scanning and insertion.

1By 'computational theory', we mean that for all compositions,
models are generated, i.e. comrect Allen inferences. By 'cannot ex-
plain’, we mean that the computational theory does not generate the
empirically preferred mental model for a given composition.
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;m AdiB
BdC BfC
c

resuit AdC .. coresponds lo ... AdiC

... but in fact the result is ... AolC

Figure 2: Order effects (example): If the Allen relations are
always computed in the same way, and inverse relations are
mirror images of each other, i.e. computed by inverting the
operations generating the new interval in a composition, the
preferred model of A finishes-inverse B and B during C
(AfiB and BdC) implies a preferred model for A during-
inverse B and B finishes C (AdiB and B fC). However,
empirically the first inference has the preferred model A dur-
ing C (AdC), while the second has A overlaps-inverse
C (AoiC). An easy explanation is that the transformations
linked by the curved line are different: f is not the mirror
image of fi.

A computational theory based on metrical
information

Our main psychological background assumption is that
mental images are inexact. A simple example of empiri-
cal evidence for this claim is the finding that discoveries in
mental images are common if the patterns to be rotated and
the emerging patterns resulting from this transformation are
sufficiently robust with respect to slight variations in shape
and/or noise, e.g. (Finke & Slayton, 1988). If the given pat-
terns are more complex and emergence is highly dependent
on constructing and maintaining an exact representation of
the given patterns' shape, however, mental discoveries are
not the rule (Reisberg & Chambers, 1991); for discussion,
see also (Logie, 1995). We interpret this to mean that im-
agery cannot represent and/or process fine details which are
sensitive to small metrical changes. Image elements are rep-
resented metrically, relative to a reference frame specifying
scale which is global to the whole image. However, within
this frame of reference, they may only be represented inex-
actly, with noise. Inexactness may arise during construction,
maintenance and/or inspection of the image.

For the present task, this implies one particular constraint
on what the images of the intervals should look like: They
should be regular. To understand this concept, consider the
composition of A finishes-inverse B and B during C. One
solution is A starts C. However, this result is extremely un-
stable: Any slight deviation in the lengths or placements of
the intervals created by imagery inexactness would lead to
A overlaps C or A during C (see fig. 3). As the reader
may easily verify, the last two solutions are much more ro-
bust with respect to changes in metrical parameters. We call
images involving solutions which are 'stable' in this sense



(like overlaps and during) regular, as opposed to singular
images involving 'unstable' solutions like starts. The data
can be interpreted as showing a preference for regular images:
Out of those compositions whose solution includes an unsti-
ble relation, this solution is the preferred model only in very
few cases. We therefore need a model construction process
which (a) generates correct Allen inferences, (b) generates
order effects, and (c) generates regular images. The easiest
metrical process contains

1. distance parameters specifying the length of the
separation (<,>), the overlap (o,0i), or the offset
(s, 81, f, fi, d, di) of the relations. (m and mi must be 'sep-
arated’ by a distance of 0.) We use 2 such parameters: A,
(“normal”) and A; (“large”™). They are associated with re-
lations depending on whether these are “shifts’ or 'defor-
mations' and prescribe *'movements' to construct the new
interval's start- and endpoints (see fig. 4).

A model containing only distance parameters generates cor-
rect Allen inferences, but fails because it cannot generate any
order effects (Schlieder, in preparation). We therefore choose
the second easiest, which also contains

2. a correction parameter . This is associated with re-
lations depending on how many relations have been pro-
cessed before. Using e leads to slight, progressive adjust-
ments in the movements' and/or the intervals' lengths.?

These adjustments generate order effects, because Allen
relations receive a different metrical interpretation de-
pending on when they are processed, i.e. depending on
whether they hold between A and B or between B and
C. The adjustments also guarantee regularisation, because
newly generated start- and endpoints cannot be equal to
existing start- and endpoints 'by coincidence' (of course
they must be equal when this is specified by relations
s, 51, f, fi, m, mi). As an example, consider fig. 3 again:
If A finishes-inverse B (AfiB) and B during C (Bd(C),
and we moved A's startpoint to the right to construct B and
then moved B's startpoint to the left by the same amount
when we construct C, we would obtain a singular image
with A starts C. By moving left a bit more than we have
moved right, we obtain the empirically correct A during
C.

By considering the changes made to the intervals in fig.
3 as "shrinking or stretching intervals' instead of ' moving
start- and endpoints', we can see that regularisation and
(for this composition) the same order effect are generated
when interval lengths instead of movement lengths are in-
creased.

It 1s not clear how to decide on psychological grounds
whether movements and/or intervals should be shortened
or lengthened. We shall therefore motivate the decision to

?When this affects interval length, it corresponds to scaled copy-

ing from the pattern activation subsystem into the visual buffer in
(Kosslyn, 1994),
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Figure 3: Example of an Allen inference with more than
one solution. This shows the instability of singular images
containing solutions like starts (s): Slight variations in the
lengths or placements of the intervals change the obtained
Allen relation.

lengthen them with a computational argument: lengthening
leads to an algorithm satisfying the specification given by
the data best. Computational reasoning also makes us pre-
fer movement lengthening over interval lengthening (see
below).

A,, A, and ¢ are defined relative to the standard interval
length, i.e. we assume a scale-invariant imagery process.

The following algorithm and fig. 4 summarise how the
three parameters control the construction process;>

X :=first interval
insert X into the image at the standard first position
no-of-steps = 0
repeat
no-of-steps ‘= no-of-steps + 1
R := next relation
if R marks a shift (& if R € {<,m, 0,01, m1,>}) then
A:=Ajelse A = A,
adjust and place a copy of X accordingto R and A,
using ¢ and no-of-steps
insert the obtained interval into the image as Y
Xi=Y
until no more relations are left
return the Allen relation obtained from reading
the start- and endpoints of the first and the last interval

This theory, despite its great simplicity, fares extremely
well when compared either to the data or to the fit of the ordi-
nal theory. Only 9 empirical model preferences out of 60 are
not explained when movements are lengthened (see fig. 5).
When intervals are lengthened, another 4 preferences are not
explained. As in the ordinal model, compositions of inverses
were not considered.

We performed a sensitivity analysis of the results with
respect to variations in the 3 parameters of the algorithm.
We defined errors(A,, Ay, €) to be the number of empirical

3 All LISP program code used to compute the results reported in
this paper can be obtained from the author on request.
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Figure 4: Constructing a new interval: computing start- and
endpoints from the previous interval, the Allen relation, and
the three parameters, lengthening movement. (Alternative:
to lengthen intervals, shift the boundaries of the new interval
obtained in the first step outwards by € in the second step.)
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Figure 5: Composition table for preferred models in Allen
inferences: If AR, B (R, at left end of row 1) and BR,C
(R, at top of column j), then AR3C (R3 in cell ij). Table
shows only compositions with non-unique solutions, and no
compositions of inverses (see text), Cells containing 1 Allen
relation: entry = empirical preference = preference generated
by the ordinal theory = preference generated by the metrical
theory. Cells containing 3 Allen relations: top entry = empir-
ical preference; bottom left entry = preference generated by
the ordinal theory; bottom right entry = preference generated
by the metrical theory.
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model preferences not explained by the algorithm for a given
choice of parameters. errors yields “-" if for a given choice
of parameters, non-models are produced, i.e. incorrect solu-
tions. We computed errors for the relevant ranges, plotted
the results, and described the constraints to ensure the best
results obtainable geometrically.* These geometrical con-
straints turmed out to be qualitative constraints:

£ > 0: Any value below 0 leads to a marked decrease in
fit (up to 12 errors more for movement, 2 for intervals). (A
value of exactly 0 leads to singular images, which increases
the number of errors dramatically.) In other words, computa-
tional reasons suggest that the movements/intervals get pro-
gressively 'slightly lenghtened'; it is not just any deviation
from singular results that happens.

For movement adjustments, there is one constraint to guar-
antee no non-models: A; < [1 — (3 + 10¢)e] — A,. This
could be interpreted to mean that A; + A, must not be more
than 1 (remember that ¢ is supposed to be smail). There are
3 constraints to guarantee not more than 9 errors. A, < 0.33
(plus some seemingly unsystematic variation): This could be
interpreted as an upper bound of 3 for A,. A; > 0.51 - 2
this could be interpreted as a lower bound of $ for A;. And
A > —0.05 4+ 2.5¢ + A,: Ay should really be a 'larger
movement' than A,,.

Interval length adjustments produce similar results, but are
slightly less robust and produce a worse fit with the data (at
least 13 errors). Here too, lengthening is superior to short-
ening. For reasons of space, we do not give details about
constraints and errors here.

The case for preferring movement adjustment (lengthen-
ing) over interval adjustment is quite clear on computational
grounds: The former produces a better fit.

What can this case study tell us about imagery
in general?

As we mentioned above, our psychological background the-
ory is that mental images are inexact. It is likely that peo-
ple who reason with mental images know about this inexact-
ness. We would therefore want to propose a new approach
to inspection processes, which we call the sketch theory of
mental images: Even though everything in the picture is de-
termined, the picture as a whole is treated as a skeich, 'not
to be taken literally’.® In other words, the meta-knowledge

4]t is straightforward to determine absolute upper and lower
bounds for the As to ensure that adding/subtracting them from stan-
and endpoints generates the prescribed Allen relations. £ was only
examined systematically in the range (-0.1,0.1) because first, it is
supposed to mark a 'slight adjustment’ and second, because larger
values showed no interesting change in behaviour.

The constraints should be regarded as approximations, since we
only inspected the values at a certain resolution (down to 0.001 for
the As and ¢) and did not perform regression analysis etc. How-
ever, the demarcations between levels of goodness-of-fit were quite
regular, and only the qualitative relations were of interest.

5This idea originally occurred in the context of an exploration
of the importance of sketches in interactions between architects and
their customers: A recurring problem of preliminary designs pre-



‘this is a sketch’ induces a different inspection process, which
might be: "only notice which entities are in the picture and
take this as an indication of which entities are in the repre-
sented scene', 'only notice how entities are ordered in the
picture and take this as an indication of how these entities are
ordered in the represented scene', or 'don't take metrical re-
lations to be exact’. In terms of spatial knowledge content,
this corresponds to: *extract only containment relations’, ‘ex-
tract only order relations', or 'extract metrical relations, but
at a relatively coarse level of granularity' . The third kind of
sketch interpretation is important whenever metrical distinc-
tions count. It is important in our example, and constructing
regular images aids in this process. For it is essential that
the mental images can also depict intended equalities (if A
finishes-inverse B, their endpoints are the same). So a vi-
sualisation strategy must enable the inspection process to dis-
tinguish between entities intended to be equal and entities not
intended to be equal. There are two principal ways of solv-
ing this problem: (1) A model construction strategy generat-
ing regular images safeguards against inexactness both during
model construction and during model inspection: Entities not
intended to be equal are moved far enough apart by choosing
a large enough £. So even if, in construction, placement is
inexact (i.e. may deviate from the value computed with the
help of ), the relative placement of entities not intended to be
equal will still differ enough from the relative placement of
entities intended to be equal to distinguish non-intended from
intended equality during inspection: In the image, intended
equalities are characterised by no gaps (if construction is ex-
act) or by small gaps (if construction is inexact), other rela-
tions (not intended to be equalities) are characterised by large
gaps. This can be distinguished both by exact inspection pro-
cesses (the value read is the value depicted) and by inexact in-
spection processes (the value read may deviate from the value
depicted). (2) The alternative would be to annotate intended
equalities. In the image, intended equalities are then charac-
terised by annotations, other relations by no annotations, and
gaps can be zero, small or large in both cases. Obviously, (1)
is more parsimonious and easily explainable by model con-
struction processes, as we can show in the present case study.
We would therefore assume that regularity is generally a de-
sired property of mental images. The image construction
process lakes the easiest route towards achieving this goal.
There is a preference for copying metrical prototypes from
long-term memory into the image or within the image. If
this is recognised as leading to undesired image properties,
movements are lengthened during copying and/or scaled
copying is performed; with the adjustment in length/size of
the movements and/or image elements being as small as pos-

sented as CAD graphics is that they convey the impression of being
finished, worked-out designs. Hand-drawn sketches, on the other
hand, convey the intended impression of being unfinished, of not
having the fixed details that, if the sketch were looked at as a pic-
ture, are of course fixed (Strothotte et al., 1994).

S(Hobbs, 1985); see (Habel, 1991) for an example of a computa-
tional treatment of granularity in knowledge about space.
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sible.

A second visualisation strategy employed in addition to
regularisation might be partitioning: Relevant portions of the
image are of equal size or small integer multiples. This is not
directly linked to the argument emanating from mental im-
age inexactness and will therefore be discussed in a separate
paper.

Open questions and further research

A very straightforward application and test will be the com-
parison of the theory's results with the data and the ordinal
theory predictions of Allen four-term series. These exper-
iments are currently carried out by the authors of the three-
term series paper, as are the gencrations of algorithmic pre-
dictions from both theories.

What could be a psychological explanation for con-
struction involving movement or interval lengthening?
This distinction reflects a difference either in the way in
which temporal aspects of mental model construction are re-
garded, or the question what can be inspected in an image:
image element properties or image element relations. Both
construction processes change properties of image elements.
Adjusting interval lengths is 'static' in the sense that the in-
formation needed to construct the next image element (= the
previous interval's length) is "in the picture’, is a property of
an image element. Adjusting movements is 'dynamic’ in the
sense that the information needed to construct the next image
element (= the previous movement's length) is "between the
pictures', is a property of a relation between image elements.
Only if image element relations can be inspected just like im-
age element properties can this be considered "static' in the
same sense as interval length adjustment. (Of course, both
methods also need access to the parameters A, Ay, €, which
are not usually 'in the picture’. We assume this does not cre-
ate a problem.) It would be interesting to investigate further
how possible dynamic effects in imagery could be formalised.
In our assumption that dynamic effects exist, we follow the ar-
gument of Logie (1995), who explicitly introduces a spatial
component into the visuo-spatial scratch pad of Baddeley and
Lieberman (1980). Logie regards movement as the central
feature and mechanism of spatial working memory/imagery.
It seems plausible to assume that Allen inferences are as good
an example of typical spatial tasks as is Logie's main exam-
ple, the Brooks matrix task (Brooks, 1967). However, these
thoughts do not answer the question what the psychologi-
cal reasons could be for preferring movement or interval
lengthening over shortening.

We should also address the question of what criteria could
be used to compare cognitive modelling approaches. We
show how our psychological background assumption, that
mental images are inexact, motivates our visualisation strat-
egy 'regularise’, which in turn motivates our model construc-
tion process of movement or interval lengthening. Schlieder
(in preparation) shows how his psychological background as-
sumption, that search processes in mental models should be
as simple as possible, motivates his visualisation strategy ' lin-



earise and center', which in turn motivates his model con-
struction process of scanning and insertion in a memory struc-
ture describing the ordinal positions of interval start- and end-
points and a focus. It seems necessary to relate the ordi-
nal and the metrical theories, which raises psychological
as well as computational issues. How do the psychologi-
cal arguments and their stages relate? In particular: (How)
can the theories explain each other's visualisation strategy?”
By what criteria should the computational tradeoff 'knowl-
edge strength vs. computational simplicity' be judged in the
context of cognitive modelling? These issues need further
discussion.

Can we hope to be able to generalise these methods
and results to other domains of imagery? The advantage
of the data underlying the algorithm presented here are that
they provide a yardstick that is very easy to employ: The
task (Allen inferences) is a sufficiently simple visuo-spatial
task, since the entities are abstract entities. Their abstractness
also allows us to assume that the entities are conceptualised
in 'screen-space' ® and only there. Direct extension of the re-
sults and methods could be possible in the analysis of similar
tasks. This could, for example, involve tasks with information
learned from books, from programs (screen layout), maybe
the layout of machines, control panels and other instruments
(although a large tactile component may be involved here)
and possibly also some of the tasks designed to test spatial
abilities.

Extending the results and methods to an analysis of less ab-
stract and larger spaces requires some more abstraction. This
is because the representations are probably 'contaminated' by
a lot of other information associated with the entities reasoned
about (e.g. aesthetic and functional properties of landmarks
along a route), because it is a generally open question what
representational and processing assumptions may be trans-
ferred between 'spaces’ (e.g. from 'screen-space’ to ‘large-
scale space'), and because in large-scale space at least, long-
term memory is involved. Nevertheless, some principles ap-
pear transferable: We are currently investigating the question
of how the methods presented in this paper and, more gen-
erally, the sketch theory of mental images can be used in the
analysis of distance cognition in large-scale space (Berendt,
in preparation). The results of this work will be important for
Allen inferences too, if these inferences are to be regarded not
as abstract screen tasks, as they are here, but as foundations
for entities in the world to be reasoned about, e.g. geographic
entities in GIS.
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