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ABSTRACT OF THE THESIS

Investigation of 3D Chromatin Modularity in Mouse Development

by

Xiaofu Wei

Master of Science in Chemistry

University of California San Diego, 2023

Professor Wei Wang, Chair

Chromatin structure plays a crucial role in various genomic processes in eukaryotic

cells, including genome replication, transcriptional silencing, and gene regulation. Extensive

studies have focused on the three-dimensional organization of the genome, revealing the presence

of topologically associating domains (TADs) and compartments, which are defined by spatial

contacts identified through techniques such as Hi-C. However, understanding the direct role of

histone modification in shaping the three-dimensional genome structure remains an ongoing

challenge.

This thesis investigates changing patterns of regulation-associated modules (RAMs) in

mouse development to understand the organization and function of RAMs and their boundaries.

xii



RAMs, proposed in previous studies using human samples, offer insights into genome organization

and regulation. However, comprehensive explanations for RAM formation, functions, and

boundary factors are lacking.

Using the ”findRAM” tool, we have identified RAM regions and boundaries from a dataset

of 72 mouse embryonic samples. Pairwise comparisons between tissues at specific time points

and between subsequent times within the same tissue have revealed changes in RAMs. Through

genome enrichment analysis of these regions, we have identified functional pathways, including

cation binding, metal ion binding, and transcription-related pathways. Additionally, consensus

RAM (cRAM) regions have been determined for each time point and tissue, highlighting regions

that exhibit consistent patterns of RAMs and boundaries. Gene enrichment analysis has provided

further support for some of the findings from pairwise comparisons, and these findings align with

the potential mechanism of RAM boundary formation proposed in previous research on RAMs.

In conclusion, this thesis investigates 3D chromatin modularity through RAM analysis in

mouse development data. We have identified pathways and genes potentially involved in RAM

boundary formation through computational prediction and discussed improvements for the RAM

identification model. These findings contribute to our understanding of the formation and func-

tions of RAMs and boundaries, which are determined by histone modification marks. Ultimately,

these findings highlight the connection between the structural and functional modularity of the

3D genome.

xiii



Chapter 1

Introduction

The organization of the genome in eukaryotes is complex and hierarchical, with the

genome packaged inside the nucleus in a non-linear manner. The three-dimensional structure

of the genome such as higher-order chromatin organization, which is linked to long-distance

gene regulation that controls development and cell fate commitment [1], plays a crucial role

in biological processes. Proper chromatin condensation and decondensation are important for

accurate chromosome segregation during mitosis and meiosis. Besides, higher-order chromatin

organization defects can cause developmental irregularities and illnesses[2]. Recent advance-

ments in technology and analytical pipelines have revealed patterns associated with chromatin

organization, including compartments[3] and topologically associated domains (TADs)[4]. TADs

are regions of the genome where DNA sequences within that region interact more frequently with

each other than with sequences outside that region, and the TAD boundaries are demarcated with

CTCF sites or actively transcribed DNA sequences[5]. Compartments are regions of the genome

with distinct patterns of chromatin accessibility and transcription activity, classified as compart-

ment A (high levels of transcription activity and open chromatin) and compartment B (lower

levels of transcriptional activity and more compact chromatin) [3]. Both findings are derived from

Hi-C contact maps, which is a high-throughput genomic and epigenomic technique to capture
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chromatin conformation [6]. Recently, some computational models have shown that histone

modification signals are predictive of enhancer-promoter interactions [7], TAD boundaries[8], and

compartments[9]. Proteins involved in transcriptional regulation, active promoters and enhancers,

and transcriptional activity tend to form clusters in the nucleus, tightly associated with histone

modifications [10][11].

Despite histone modifications reflecting chromatin activity in previous studies, the direct

inference of the spatial modularity of the genome from histone modification patterns has not

been explored. Unlike topologically associating domains (TADs) and compartments derived from

Hi-C maps, the regulation-associated module (RAM) is a novel module that utilizes frequency

profiles of H3K27ac histone modification peaks from chromatin immunoprecipitation sequencing

(ChIP-seq) data [12] to generate a more comprehensive pattern across the entire genome in cells.

H3K27ac modification involves acetylation of the lysine residue at position 27 of the histone H3

protein, and it is often considered a marker of active enhancers and promoters[13]. ChIP-seq is a

powerful method for identifying genome-wide DNA binding sites for transcription factors and

other proteins [14]. Histone modifications, such as H3K27ac and H3K4me3, play a critical role in

determining chromatin structure and regulating gene expression. Active marks such as H3K27ac

and H3K4me3 open chromatin to allow access to transcription factors (TFs) to promoters or

enhancer. In contrast, repressive marks can condense chromatin and suppress gene expression

[15]. Both active and repressive histone modifications contribute to the formation of euchromatin

and heterochromatin, which differ in their level of compactness. These findings underscore the

significance of histone modifications in shaping the three-dimensional structure of the genome at

both regional and global levels. We chose H3K27ac peak density files due to their high correlation

with other histone modification marks in previous RAM research on humans, and they can reflect

signals from active enhancers and promoters.

For identifying the RAMs, we applied the computational tool called ’findRAM’ that

was previously used for predicting RAMs for humans. This method employs sliding window
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strategies with a fixed flanking size of 500kbp and step size 250kbp to compute H3K27ac peak

densities in the linear genome [12] for the data of both human and mouse to reach the maximum

of shared boundaries across samples. In the previous study, they analyzed 93 normal samples

and 19 cancer samples of humans. They provided evidence to demonstrate that RAMs are spatial

modules, where enhancer-promoter interactions and ecDNA occur dominantly within RAMs,

and RAMs are resistant to cohesion degradation. They also suggested that the RAM boundaries

exhibit more insulating functions compared with topologically associating domains (TADs).

Furthermore, they not only showed the big differences between RAMs and other existing

3D chromatin modules but also proposed a mechanism for how the RAM forms. Based on

many other studies of multivalent cations, calcium, magnesium, and manganese can reduce the

electrostatic repulsion between the DNA chains and induce DNA condensation. These cations

may bind to specific DNA sequences[16] and affect nucleosome positioning[17]. Therefore, a

possible mechanism can be that genomic DNAs become densely packed around cations such as

Ca2+, Mg2+, and Mn2+ to form RAM boundaries. Proteins such as calcium-binding proteins that

carry many cations and their interacting partners may recognize specific DNA sequences such as

those motifs enriched in cRAM boundaries to facilitate locus-specific localization of cations.

With numerous observations of RAMs (repetitive array motifs) in human data, we become

increasingly curious about the reasons behind RAM formation, which exhibit both similar and

distinct boundaries across samples. In this case, our objective is to understand how changes in time

influence RAM alterations within the same tissue during developmental stages and how RAMs

differ between tissues at identical time points. Additionally, we have attempted to investigate the

functions of RAMs by examining the differences in gene expression levels within each changing

region. Lastly, we aim to identify the genes associated with cation binding that contribute to

the formation or undergo changes in RAM boundaries. However, the formation and patterning

of RAMs in developmental data, as well as whether these patterns are shared across different

species, remain unknown.
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Understanding the patterns of RAMs across different species during development is crucial

to comprehend the fundamental mechanisms of gene regulation. In this study, we applied the

RAM calling modal ’findRAM’[12] to 72 samples of 12 different mouse embryonic tissue bulk

ChIP-seq data of H3K27ac at eight variable time stages. By comparing results for different tissues

at various time points and different consequent times at each tissue, we analyzed the expressed

genes, differentially expressed genes, and regulatees, which are genes under the regulation of

specific transcription factors in each variable RAM region.

We then analyzed pathways of genes under those variable regions using the g: profiler [18],

a toolset widely used for finding biological categories enriched in gene lists, conversions between

gene identifiers, and mappings to their orthologs. Interestingly, we found that many pathways

shared a lot in most pairwise comparisons and are involved in various biological processes,

including cell development and differentiation, tissue remodeling, and immune responses. To

check the variability across all samples in each time point and in each tissue, we defined the

consensus RAM (cRAM) and cRAM boundary regions in each time and tissue. After putting

the cRAM boundaries at different time points and tissues together, we found that over 80% of

cRAM boundaries are conserved in most time and tissue stages. We also observed a pattern

where cRAM boundaries merged in some time or tissue stages and split into two or more in

rest, which we referred to as MS regions. We further investigated the genes in these regions that

have the function in the nucleus and identified some crucial genes for histone modification and

chromatin organization, such as GATA3, ING3, and HDAC gene family. Some of those genes are

correlated to cation and metal binding, which matched the hypothesis of the mechanism of how

RAM forms mentioned in previous studies[19]. Validating the functions of these genes in the

future with experiments may have significant implications in understanding the mechanisms of

gene regulation and their potential roles in 3D chromatin organization and eventually leading to

the improvement of disease studies.

Based on all our findings, we have realized that RAM patterns exhibit generic functions
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in the majority of comparisons within variable and MS regions. However, interesting pathways

and genes emerge when we examine differentially expressed genes (DEGs) and regulators in

variable regions. Overall, our study provides insights into the patterns of RAMs in mouse

embryonic development data and sheds light on the potential role of RAMs in gene regulation.

Our findings can serve as a valuable resource for future studies aiming to explore further the

molecular mechanisms underlying RAM formation and its potential impact on gene regulation

in development and disease. Nonetheless, there are still some improvements required for the

’findRAM’ model and additional analysis needed for the down-strain analysis. These aspects will

be discussed in Chapter 4.
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Chapter 2

Methods

2.1 Methods for variable RAM and gene identification

2.1.1 Data Source

The 72 embryonic mouse bulk samples with processed narrow peaks ChIP-seq of H3K27ac

in mm10 and the 72 embryonic mouse samples with processed gene quantification RNA-seq in

mm10 were downloaded from ENCODE portal (https://www.encodeproject.org/)[20]. All the

downloaded data met the ENCODE standards. Reference Table A.2 lists all the samples used in

this study. Gene names and TSS regions are annotated using the vM21 annotation file for mouse

downloaded from ’Gencode’[21].

2.1.2 RAM Identification in Individual Samples

After installing ’findRAM’, we identified the H3K27ac narrow-peak density using a

sliding window with a step size of 50kb, 100kb, 250kb, and 500kb, respectively, and a flanking

size of 500kb for each window in every sample. The H3K27ac narrow-peak profiles were then

smoothed using local polynomial regression fitting[22]. The RAM boundaries, identified as
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valleys in the smoothing curves, and peaks, identified as summits in the smoothing curve, were

detected using the ”findpeaks” function in the R package ”pracma” (R v4.1.2). RAM boundaries

were also determined by any density peaks smaller than 0.1 proportional to the highest density

peak in each chromosome for each sample.

2.1.3 Variable RAM Identification

For pairwise comparisons, we treated each tissue as a control group once and compared it

with the remaining tissues at each time point to perform tissue comparisons. Additionally, for

each tissue, we treated the early embryonic time point as a control group and the subsequent

embryonic time point as the sample group. For example, in the case of the forebrain tissue, we

compared embryonic day 10.5 as the control with embryonic day 11.5 as the sample, and then

we compared embryonic day 11.5 as the control with embryonic day 12.5 as the sample. We

recorded all regions that exhibited changes from boundaries in the control group to RAMs in the

sample group. We recorded only those changing regions that showed a shift of at least 2 bin sizes

between the control and sample groups. All analyses were performed using Python 3.8.

2.1.4 Expressed Genes Identification

We initially performed quantile normalization to align the two replicates in each RNA-seq

sample, using the gene quantification files. Subsequently, we applied the TPM normalization

method, taking into account the effective length and gene counts provided in the downloaded files.

We assessed the distribution of log(TPM) for each gene in each sample by creating histograms. To

mitigate the impact of noise, we set a cut-off at log(TPM) greater than 0. We then calculated the

average TPM value for the two replicates and selected genes that exhibited TPM values greater

than 1, expressing in over 60% of all samples. All analyses were performed using Python 3.8.
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2.1.5 TSS Region Identification

In our annotation file, we lacked specific information regarding the promoter loci. How-

ever, it is widely recognized that the core promoter region, known as the transition starting site

(TSS), is located in close proximity to the starting codon position, for which we possess detailed

annotation data. Hence, we extended the annotation of the start codon by 1000bp in both the 5’

and 3’ directions for each gene and employed these extended loci as the TSS region. We utilized

the same annotation file (vM21) that we employed for the gene loci. All analyses were performed

using Python 3.8.

2.1.6 Regulatees Identification Using Taiji

After installing Taiji, we proceeded to run it using narrow-peak density files of H3K27ac

ChIP-seq data and gene quantification RNA-seq data for each embryonic mouse sample. The

data was obtained directly from ENCODE, as described in Chapter 2.1.1. Since we were working

with bulk data, we utilized Taiji’s EpiTensor functionality. Our analysis began by identifying

the driver transcription factors (TFs) for each tissue and time point, employing the PageRank

score as a measure. We first selected the top 12% of TFs with average ranking scores larger than

0.002 of all TF candidates across all samples, out of a pool of 880 TFs. Then, we selected those

with a coefficient of variation (CV) value smaller than 0.3 for tissue comparisons and 0.4 for

time comparisons. Subsequently, we applied a filtering process, selecting the top 700 regulatees

under each driver TF based on the network score in each sample. Finally, we consolidated all the

regulatees from all driver TFs in each sample and focused on the top expressed 4500 regulatees.

2.1.7 DEG Identification

We first calculated the sum of gene counts across all samples and replicates for each

gene. We selected genes with a sum greater than 500 as candidates for further identification
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of differentially expressed genes (DEGs) in each comparison. For the analysis, we utilized the

’DESEQ2’ package (R v4.1.2) and selected DEGs with a logfold change value greater than 2.

2.1.8 cRAM Identification

To identify cRAMs, we analyzed the occurrence frequency of boundaries across all

samples at different thresholds (30%, 40%, and 50%) for each time point and tissue. We observed

that using a threshold of 30% resulted in a high consensus rate (over 93%) within each cRAM,

while a threshold of 50% achieved an 80% consensus for shared boundaries. Based on this, we

considered genome regions with an occurrence percentage above 50% as cRAM boundaries.

We then merged boundaries within a distance of 250kb and imposed a minimum cRAM size

requirement of 250kb. Additionally, we allowed for a one-bin size shift in the analysis. All of

these analyses were performed using Python v3.8.

2.1.9 Merging and Splitting Region Identification

We merged all boundaries in cRAM files of each time or tissue stage separately using

’bedtools Merge’. Then, we intersected all the files to obtain the shared boundaries across all

samples in each time or tissue stage using ’bedtools Intersect’. Next, we subtracted the intersecting

boundaries from the merged regions using ’bedtools Subtract’. We then removed all regions that

are smaller than 3 bin size. Finally, we removed those regions that occurred in less than 15% of

the samples as boundaries or in more than 85% of the samples as boundaries. We utilized the

gene loci in the annotation file (vM21) to generate genes located in the MS regions. All ’bedtools’

functions were performed using v2.30.0, and other analyses were conducted using Python v3.8.
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2.1.10 Gene Enrichment Analysis For Individual Genelist

Enrichment analyses were conducted using the R package ’g:profiler’. For individual

analysis, we selected the top 30 significant pathways in four categories: MF (Molecular Function),

BP (Biological Process), CC (Cellular Component), and KEGG(Kyoto Encyclopedia of Genes

and Genomes). In each category, pathways were selected based on a p-adjusted value lower than

0.01. In enrichment analyses, the significance of pathways is determined by the p-adjusted value,

where a lower value indicates higher significance.
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Chapter 3

Results

3.1 Project Overview

This thesis presents the observation of the direct inference of the spatial modularity of the

genome from histone modification patterns (H3K27ac) known as RAM (Regulation Associated

Modules). We applied 72 mouse embryonic narrow-peak files of H3K27ac mark, and all samples

are from various 12 tissue types and 8 time point. Detailed data descriptions are provided

in Chapter 2.1.1 and table A.2. RAMs and boundaries were detected using the ’findRAM’

method, and further analysis involved pairwise comparisons in both time and tissue scales.

After identifying RAM and boundary (Figure 3.2) regions in all samples, we investigated the

functionality of changing RAM regions through enrichment analysis of three categories of genes:

expressed genes, differentially expressed genes(DEGs), and regulatees. Gene quantification files

from the corresponding mouse stages, obtained from ENCODE, were used for gene expression

levels. The methods for selecting expressed genes, DEG, and regulatees are described in Chapter

2.1.4-2.1.7, and examples were shown in figure 3.3 using integrative genomics viewer(IGV) as a

presenter[23]. Overall, we conducted 60 different time comparisons and 606 tissue comparisons.

For each comparison, we performed genome pathway analysis using g:profiler [18] for both time

11



and tissue comparisons

Figure 3.1: This is the overview of the entire thesis project. We utilized both H3K27ac ChIP-seq
and RNA-seq for diverse analyses. The data for 72 mouse embryonic samples, obtained from
various tissues and at different time points, were downloaded from the ENCODE website.
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After analyzing the enriched pathways in pairwise comparisons, we proceeded to assess

the variability of the data at each time and tissue stage. Consensus RAM (cRAM) and boundary

regions were defined for each time point based on all tissues, and for each tissue based on all time

points. We then examined the pattern changes for all cRAMs in tissue and time comparisons

(Figure 3.4).Our focus was on the boundary regions that merged in some cases but split in others,

which we referred to as merging and splitting (MS) regions. Pathway analysis was performed on

these regions, and we conducted a gene search within the interesting pathways to identify genes

correlated with histone modification and chromatin organization, specifically located in the MS

regions. These genes were found to be associated with cation and metal ion binding.

3.2 RAM Identification

The identification of RAM involved using the ’findRAM’ pipeline on a dataset consisting

of 72 different samples of peak density files of H3K27ac. To initiate the analysis, we conducted

preliminary tests using various sliding window sizes, including 50kb, 100kb, 250kb, and 500kb,

with a 500kb flanking size for each window in mouse samples. We observed that increasing the

step size resulted in larger RAM sizes and a higher percentage of shared RAMs among the mouse

samples. Specifically, we determined that the 250kb step size allowed us to identify the maximum

boundaries of RAMs for mouse embryonic samples, similar to the findings observed for human

data.

Subsequently, we proceeded with the pipeline using a 250kb bin size and processed the

narrow-peak files specific to the mouse version mm10. This process yielded density peak files

and boundary loci information for each chromosome, as depicted in Figure 3.5. On average,

approximately 20% of the regions across all mouse genomes (chromosomes 1-19 and X) were

identified as boundary regions. Each sample contained an average of 609 boundaries. For a more

comprehensive overview of the specific number of boundaries, please refer to the appendix table
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A1.

Figure 3.5: This is an example of the density peak file for chromosome 1 of the mouse embryonic
facial prominence at e10.5 day. The x-axis represents the bin position, with each bin measuring
250kb in length. The y-axis indicates the proportion of the density peak counts after applying
the sliding window algorithm. In the visualization, the RAM boundaries are indicated by the
valleys or minima on the smoothing curves, represented by the red line. Similarly, the peaks or
maxima on the smoothing curve of the red line indicate the RAM peaks.

We also observed that the number of RAM boundaries in mouse developmental data

was slightly smaller compared to humans when using the same bin size in ’findRAM’. This

discrepancy could potentially be attributed to the shorter genome length in mice, which is

approximately 14% shorter than that of humans.

3.2.1 Variable RAM Identification

Following the generation of RAM boundaries, our next step involved conducting pairwise

comparisons between these boundaries. In order to perform these comparisons, we designated

each tissue as a control group once and compared it with the remaining tissues at each time

point. Additionally, for each tissue, we treated the early time point as the control group and the

subsequent time point as the sample group. During these comparisons, we recorded all regions

where boundaries in the control group transitioned to RAMs in the sample group. However,

we only considered regions that exhibited a minimum shift of 2 bin sizes between the control

and sample groups. We specifically investigated pathways that displayed a one-bin size shift

and found that they often led to problematic results in differential expression genes (DEGs),

such as strong head development in comparisons involving the liver and limbs. This occurrence
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could potentially be attributed to noise in the ChIP-sequence data, as no laboratory work or data

processing is entirely flawless. On average, approximately 5% of the genome was identified as

variable RAMs in tissue comparisons, while 4% of the genome exhibited variable RAMs in time

comparisons, as illustrated in Figure 3.8.

3.3 Expressing Genes, DEGs, and Regulatees Identification in

Variable RAM for Pairwise Comparisons

3.3.1 Expressing Genes in Variable RAMs

Before choosing the cutoff for expressed genes, we checked the quality of the processed

data from all gene quantification files provided by ENCODE. We processed 10 samples, starting

from raw data, and generated gene counts using the STAR [24] and RSEM [25] methods through

a pipeline called RNA-seq nf-core [26]. We observed that the counts generated by the nf-core

pipeline were similar to the counts provided by ENCODE. Next, we analyzed the distribution of

gene counts for all expressed genes (non-zero counts) using the TPM (transcripts per million)

normalization method. We created histograms of log(TPM) values for each sample. Across all

samples, we identified significant noise when log(TPM) values were smaller than 0, indicating

TPM values below 1. In Figure 3.6, we present an example plot of embryonic facial prominence

replicate 1 at e13.5 day, which demonstrates the observed pattern. Similar patterns were observed

in the remaining samples. Based on this analysis, we selected genes with log(TPM) values greater

than 0 in over 60% of the samples as expressed genes. In total, we identified 16,438 genes as

expressed genes.

To identify the relevant genes located within the variable RAMs, we performed an overlap

analysis between the loci of expressed genes and the variable RAMs in each pairwise comparison.

Our objective was to pinpoint the gene functions associated with the variable RAMs. During this
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Figure 3.6: This graph is an example of a histogram displaying the log(TPM) gene counts. It
represents the embryonic facial prominence replicate 1 at e13.5 day.

analysis, we also explored the differences between utilizing gene body annotation and annotated

transcription start site (TSS) loci for gene enrichment results. The TSS corresponds to the

core promoter region bound by RNA Polymerase II (RNA Pol II)[27], the primary enzyme

responsible for transcription. Notably, the annotation of TSS regions had fewer annotations

compared to gene body annotations. Specifically, we had annotations for 22k TSS regions

and 45k gene bodies. Therefore, by utilizing TSS annotation, we lost approximately 17% of

genome information concerning expressed genes. After conducting pathway analyses for the

expressed genes located within the variable RAMs, we observed minimal disparities in the

identification of significant pathways between using TSS and gene body annotations. To avoid

losing valuable genomic information, we decided to prioritize gene body annotation as the

criterion for assessing overlapping genes within the variable RAMs during pairwise comparisons,

as well as for merging and splitting cRAM regions later on. Further details regarding these

comparisons will be elaborated in Chapter 3.4.1 and Chapter 3.5.1.
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3.3.2 DEGs in Variable RAMs

To identify differentially expressed genes (DEGs), we initially filtered out genes with low

counts across all samples, resulting in 17k genes that were considered for further analysis. The

filtering details are mentioned in chapter 2.1.7. We employed the DESEQ2 method to generate

p-adjusted values and log2 fold-change values for each pairwise comparison. Since p-adjusted

values are typically used when there are more than 5 replicates, we disregarded them in our

analysis due to the limited number of replicates (only two). Instead, we focused on selecting DEGs

based on a log2 fold-change value greater than 2, which corresponds to regions transitioning

from boundaries to RAMs. In each tissue, for every time point except the last one, we treated the

preceding time point as the control group, and the subsequent time point as the sample group.

For instance, if e10.5 day was considered the control, then e11.5 would be the sample. At each

time point, every tissue would become the control, and the rest of the tissues would become

samples to determine the DEGs for tissue comparisons. We then examined the DEGs located

within the variable RAMs for both time and tissue comparisons. More detailed results can be

found in Chapter 3.3.2 and Chapter 4.3.2.

3.3.3 Regulatees in Variable RAMs

To study the regulatory network underlying 3D chromatin patterns, we employed a

pipeline called Taiji[28] to identify key genes under regulation. Here, we planned to check

whether these regulators and their regulatees are associated with variable RAM. Thus, we used

Taiji to first identify the driver TFs for each sample and eventually chose the top regulatees of each

driver TF. Taiji is a comprehensive system that utilizes various genomics information to construct

transcriptional regulatory networks by predicting regulatory interactions between transcription

factors (TFs) and genes. The PageRank score assigned to each TF within the network was used to

assess its genome-wide influence, which is reflected in gene expression patterns.
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After running Taiji, we initially obtained the PageRank scores for 887 different TFs in

each sample. To ensure the reliability of our results, we examined the correlation of these scores

across all samples. Additionally, we performed validation analyses before identifying the driving

TFs and the most important regulatees. One of the validation methods involved employing

unsupervised clustering, specifically hierarchical clustering, to distinguish different tissues and

time stages. The results revealed that nervous-system-related tissues formed a distinct cluster,

while other tissues exhibited similar clustering patterns (Figure 3.7). Furthermore, we applied

Pearson correlation analysis to assess the correlation between samples. We observed a strong

correlation across tissues at different stages, with tissues displaying stronger correlations at each

time point compared to different time points. These validation procedures provided evidence

supporting the validity and interpretability of our results for subsequent analysis.

Figure 3.7: This graph shows Taiji hierarchical clustering with 72 results for PageRank scores
of regulatees Validation.

After validating the Taiji results, we proceeded to identify the driver transcription factors

(TFs) for each tissue or time point. We initially selected TFs with average ranking scores greater

than 0.002, which corresponded to the top 12% of all TFs. Next, we retained TFs with coefficients

of variation (CV) less than 0.3 for each tissue and 0.4 for each time. The coefficient of variation

measures the relative dispersion of data points around the mean, with lower CV values indicating
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less variability and a higher likelihood of being a driver TF across different samples.

As a result, we obtained an average of 45 driver TFs for each tissue and 30 driver TFs for

each time point, as shown in Table A.3. Notably, brain-related tissues such as the forebrain (19),

midbrain (20), and hindbrain (29) exhibited a lower number of driver TFs compared to tissues

like the kidney (86) and stomach (80). This discrepancy may be attributed to the availability of

more time point data for the brain and heart tissues. Additionally, during the early stages, there

were more driver TFs compared to the later stages. At e10.5 days, there were 73 driver TFs, but

this number significantly decreased in subsequent days, with only 19 driver TFs present at p0 day.

This suggests less differentiation among all tissues in the early stages, as heart and brain-related

tissues show significant similarities in driver TF identifications. However, this trend could also

potentially be due to the limited availability of data during the early stages. Tissues such as the

stomach, intestine, and lungs did not have any data available during the early stages.

Once the driver TFs were identified for each time and tissue point, we proceeded to

identify the top 700 regulatees for each driver TF in each comparison, based on the network score

provided in the Taiji results. The network score takes into account various elements such as gene

expression level, motif binding, and peak intensity. Subsequently, we combined regulatees across

all tissues for each time point and regulatees across all time points for each tissue. Finally, we

selected the top 4500 genes based on the sum of transcripts per million (TPM) values across all

available tissues or time points.

3.4 Pairwise Comparison of Tissue Comparison

Summary We conducted an analysis of the pathways in the Gene Ontology (GO) [29] and

Kyoto Encyclopedia of Genes and Genomes (KEGG) [30] enrichment of 606 varied RAM bound-

aries between different tissues at each time point using g:profiler. GO provides a comprehensive

framework and standardized vocabulary for describing the functions of gene products across
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all organisms. Our analysis focused on all three major categories: molecular function (MF),

biological process (BP), and cellular component (CC). KEGG, on the other hand, serves as a

valuable resource for understanding the functions and interactions of biological systems, lever-

aging molecular-level information derived from genome sequencing and other high-throughput

experimental technologies.

In the subsequent sections, we compared and presented selected detailed findings derived

from the GO and KEGG analyses. Our selection criteria were designed to ensure a high level of

statistical significance, with all results in these categories being chosen based on a threshold of

a p-adjusted value below 0.01. It is important to note that a lower p-adjusted value indicates a

higher degree of statistical significance.

3.4.1 Pairwise Comparison of Expressed Genes in Different Tissues at Each

Time Point

After analyzing the results for each sample, we began by comparing the number of

expressed genes and the percentage of variable regions. We observed that the number of expressed

genes within variable RAM regions, relative to all expressed genes, was approximately the same

as the percentage of variable RAM regions across the entire genome length. This finding

suggests that expressed genes are not specifically enriched or avoided in variable regions. Next,

we examined the detailed pathways associated with each comparison. Our findings revealed

numerous generic pathways in biological processes (BP), molecular functions (MF), and cellular

components (CC). However, in the KEGG results, we did not observe any pathways that exhibited

a level of significance comparable to the other three categories.

Here, we presented two comparison samples (Figure 3.9-3.10). The analysis revealed

interesting similarities in the driver gene ontology (GO) terms between comparisons involving

different tissues and time points. Despite the differences, common driver GO terms were identified.

For example, in terms of molecular function (MF), the most important pathways were related to
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Figure 3.8: The left box plot represents the comparison of expressed genes located in variable
RAMs out of all selected 15,438 expressed genes across all tissue (606 samples) and time
(60 samples) comparisons. The right box plot illustrates the comparison of variable RAMs
region, encompassing all tissue and time comparisons, out of the total genome lengths across
Chromosome 1-19 and Chromosome X for the mouse.

Figure 3.9: This graph displays the driver Gene Ontology (GO) pathways associated with
variable RAM regions of the embryonic facial prominence, specifically compared with the
forebrain at e10.5 days. The analysis includes three categories: molecular function (MF),
biological process (BP), and cellular component (CC), with a p-adjusted value smaller than 0.01.
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Figure 3.10: This graph displays the driver Gene Ontology (GO) pathways associated with
variable RAM regions of the heart, specifically compared with the liver at e16.5 days. The
analysis includes three categories: molecular function (MF), biological process (BP), and cellular
component (CC) with a p-adjusted value smaller than 0.01.

protein binding and catalytic binding. Additionally, the driver GO term for cellular component

(CC) indicated a significant pathway associated with the cytoplasm. Furthermore, we conducted

a thorough check of all pathways listed in both the GO and the KEGG database. We found that

not only did the driver pathways share high similarity, but almost all pathways were generic

and similar, such as enzyme binding, ion binding, and hydrolytic activity in MF. Moreover, the

majority of pathways overlapped and were very generic in the context of embryonic development.

No KEGG results were obtained.

In order to investigate the potential implications of utilizing gene body loci instead

of enhancer and promoter regions for gene enrichment analysis, we conducted a comparative

analysis between the two approaches. One approach utilized gene bodies as annotated loci,

while the other approach focused on promoter loci. It is important to note that H3K27ac histone

modification is associated with both enhancer and promoter signals. However, we deliberately
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chose not to employ enhancer loci as indicators for identifying expressed genes. This decision

was motivated by the complex nature of enhancer regulation on genes and the limited availability

of comprehensive annotation for enhancers. Enhancers have the ability to regulate multiple genes,

and conversely, a single gene can be influenced by multiple enhancers through enhancer-promoter

interactions. Additionally, different enhancers may exhibit diverse modes of regulation, and

the competition between enhancers in regulating a particular gene further complicates accurate

predictions. To address these challenges, we opted to use transcription start site (TSS) loci as

indicators for promoter regions. The details of TSS identification are described in Chapter 2.1.5.

To provide a summary of the results obtained from these comparisons, we have generated

bar plots. These plots depict the differences in pathway enrichment between the two loci

annotation approaches. They serve as a comprehensive overview of the findings and provide a

reference for further analysis and interpretation.

Based on the analysis, we discovered a total of 16,438 expressed genes across all samples.

However, when considering only the genes with annotated transcription start site (TSS) regions,

the count decreased to 13,452 genes. This reduction suggests that approximately 18% of genome

information was lost when relying solely on TSS loci annotation. Additionally, we investigated

the disparity in gene identification between TSS loci and gene loci specifically within the variable

RAMs. On average, the gene list derived from TSS loci within variable RAMs was approximately

20% smaller compared to the gene list obtained from gene loci. This finding indicates a propor-

tional decrease in the number of genes when utilizing TSS loci annotation, which is consistent

with the loss of annotation information.

After conducting a thorough analysis of all comparisons using TSS and gene loci, we

have compiled a comprehensive summary of consistently identified pathways across all samples.

These pathways have been categorized into three distinct categories: molecular function (MF),

biological process (BP), and cellular component (CC). To present the results clearly and concisely,

we have created tables displaying the identified pathways. In each comparison, we focused on
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the top 30 significant pathways within each category, highlighting the most noteworthy findings

while minimizing potential noise. This selection process was necessary due to the presence of

pathways in the database with limited officially recorded genes, which could yield significant

findings based on the provided gene lists. Moreover, considering the database includes predictions

for the functions of numerous genes, it is crucial to ensure that the identified pathways genuinely

reflect the role of variable RAM regions.

Upon comparing the pathways identified using TSS loci and gene loci, it was observed

that more than 90% of the pathways were consistently identified in both categories across

all tissue comparisons. The tables presented in the molecular function (MF) (Figure 3.11),

biological process (BP) (Figure 3.12), and cellular component (CC) (Figure B.2) categories

clearly highlight the striking similarity in the enrichment analysis between TSS loci and gene

body loci in variable RAMs. Minor variations were observed in the number of significant

pathways across all samples, but the most shared pathways generally appeared in a similar

order, with only slight rearrangements of the most significant pathways. These findings provide

strong evidence of the high degree of consistency and agreement in the pathway analysis results

obtained from TSS and gene loci annotations. Consequently, these results bolster confidence in

the reliability and validity of the enrichment analysis conducted solely using gene loci.

It is noteworthy that, in the majority of pathways identified using TSS loci in variable

RAM regions, the number of samples was only slightly lower compared to gene loci. This

observation can be attributed to the close proximity of TSS regions to the genome. Consequently,

when a gene is located within a variable RAM region and its size is much smaller than the

encompassing variable region, it is highly likely that the TSS region of this expressed gene is also

situated within the same variable region. In order to minimize the loss of genome information,

the decision was made to utilize gene body loci instead of TSS loci. Fortunately, the pathways

identified using gene body loci exhibited a striking similarity to those identified using TSS loci.

This implies that the inclusion of gene body loci would not introduce a significant number of
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Figure 3.11: Here are all the pathways selected based on a p-adjusted value ¡ 0.01 and appearing
in 15% of all tissue comparisons. The left panel represents the pathways identified using
transcription start site (TSS) loci located in variable RAMs, while the right panel represents the
pathways identified using gene body loci located in variable RAMs.

Figure 3.12: Here are all the pathways that were selected based on a p-adjusted value ¡ 0.01 and
appeared in 65% of all tissue comparisons. The left panel represents the pathways identified
using transcription start site (TSS) loci located in variable RAMs, while the right panel represents
the pathways identified using gene body loci located in variable RAMs.

additional genes that could potentially disrupt the final results.

From the analysis of the MF (Molecular Function) results, it was observed that pathways

related to protein binding, binding, enzyme or catalytic binding, and ion binding consistently

ranked among the top significant pathways across all comparisons. These pathways involved a

substantial number of genes and were consistently present in the majority of comparisons. Notably,
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during the early stages of development, when samples included embryonic facial prominence,

forebrain, midbrain, hindbrain, neural tube, limb, and heart, pathways related to cation binding

and metal ion binding were particularly significant. In the comparison involving lung samples,

pathways associated with metal and cation ion binding were also observed. However, it is

important to note that in some comparisons where cation and metal binding pathways were

present, they exhibited lower significance compared to the protein and ion binding pathways.

Interestingly, pathways associated with nervous system development were not only ob-

served in variable RAMs of brain-related tissues but were also present in more than 80% of all

tissue comparisons, albeit with varying levels of significance. In the case of the neural tube, it

consistently ranked among the top 5 significant pathways compared to other tissues at any given

time point. However, it is interesting to observe that the significance of nervous system develop-

ment pathways in brain-related tissues was comparable to that of the heart, facial prominence,

and liver. Therefore, the presence of nervous system pathways in the pathway analysis cannot

solely be attributed to a specific tissue when utilizing expressed genes in variable RAMs.

3.4.2 Pairwise Comparison of Differentially Expressed Genes in Different

Tissues at Each Time Point

We discovered that the number of differentially expressed genes (DEGs) identified within

each sample was limited, posing challenges in identifying significant pathways across most

categories. To address this limitation and focus on tissue-specific comparisons, we decided to

consolidate DEGs from comparisons involving the same control and sample groups across all

time points. Subsequently, we conducted enrichment analysis using g:profiler, following the same

methodology as before. Overall, our analysis included a total of 132 comparisons. Consistent with

our observations for expressed genes, we found that DEGs were not preferentially enriched or

avoided in variable RAM regions. The number of DEGs within variable RAM regions displayed

a nearly proportional relationship to the total number of DEGs, with a ratio of approximately 1:1
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(Figure 3.13).

Figure 3.13: The left box plot represents the comparison of differentially expressed genes
(DEGs) located in variable RAMs out of all DEGs per sample across all tissue (606 samples)
and time (60 samples) comparisons. The right box plot illustrates the comparison of variable
RAMs region, encompassing all tissue and time comparisons, out of the total genome lengths
across Chromosome 1-19 and Chromosome X for the mouse.

Figure 3.14: The left bar plot illustrates the selected MF pathways, while the right bar plot
displays the selected BP pathways. These pathways were chosen based on a p-adjusted value
smaller than 0.01 and were observed in over 15% for MF and over 30% for BP across all
comparisons.

However, in contrast to the high consensus observed among expressed genes across all

samples in each Gene Ontology (GO) category, the results obtained for DEGs exhibited significant

variations across all samples. Notably, the analysis of DEGs revealed a larger number of KEGG
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Figure 3.15: The bar plot on the left showcases the selected CC pathways, while the one on the
right presents the selected KEGG pathways. These pathways were chosen based on a p-adjusted
value smaller than 0.01 and were observed in over 25% for CC and over 30% for KEGG across
all comparisons.

terms compared to the analysis of expressed genes. To provide a comprehensive overview of the

findings, we have summarized the top terms in the Molecular Function (MF), Biological Process

(BP), and Cellular Component (CC) categories in the following bar plots (Figures 3.14-3.15).

These plots serve to highlight the notable differences and variations observed in the enrichment

analysis results of DEGs.

The top significant pathway in the MF category for DEGs is protein binding, which aligns

with previous findings. However, it is observed in only 65% of the comparisons, indicating a

higher variability in DEGs located in variable RAMs across samples. The increased number of

total MF pathways shared over 25% across all comparisons suggests diverse functional roles

for DEGs in variable RAMs. Both findings indicate an increased variability of DEGs located in

variable RAMs, which is consistent with the normal features of DEGs across different tissues.

One interesting finding is the high significance of calcium binding in multiple compar-

isons. This finding aligns with previous research that suggests calcium plays diverse roles in

cellular development across various tissues. Calcium acts as an essential intracellular signaling

mediator and is involved in processes such as neurodegeneration [31]. Furthermore, studies have

demonstrated the dependence of embryonic morphological development and DNA synthesis on
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the concentration of Ca2+ in the growth medium [32].

Another reason for the focus on calcium ion binding proteins is their potential involvement

in the formation of RAM boundaries, as mentioned in a previous RAM paper. Studies have

suggested that cations such as calcium play a critical role in maintaining the structural integrity

of chromosomes, particularly during the condensation of mitotic chromosomes following nuclear

envelope breakdown (NEB) and the compaction of chromatin fibers [19]. Cation ion binding

proteins might have the ability to transport cations such as Ca2+ and Mg2+ along with partner

proteins into the nucleus, where they can bind to specific positions on DNA. This binding can

ultimately lead to chromatin condensation and the formation of RAM boundaries. Therefore, the

significance of calcium ion binding proteins in our analysis may indicate their involvement in

these processes [12].

After conducting a thorough analysis, we found that certain comparisons, such as those

involving the heart, limb, and embryonic facial prominence as samples, exhibited a particularly

strong association with calcium ion binding. Additionally, when the stomach was used as a

control group, brain-related tissues also showed significant calcium ion binding. This finding

aligns with previous research indicating the diverse importance of calcium-binding proteins,

including parvalbumin, calbindin, and calretinin, in the central nervous system. Experimental

studies involving the knockdown or overexpression of these genes in vivo and in vitro have

demonstrated their role in determining neuronal survival in different locations [33]. To further

investigate whether calcium ion binding is specifically related to DNA condensation in tissues, we

examined the cellular component (CC) categories associated with genes correlated with calcium

ion binding.

After analyzing the cellular component (CC) pathways, we observed that genes related to

calcium ion binding were not primarily located in the nucleus, where chromosomes are situated.

However, it is worth noting that some genes exhibited dual localization in both the cytoplasm and

nucleus. Unfortunately, our analysis did not reveal a substantial number of genes associated with
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histone modification functions and chromatin modification among the DEG candidates. However,

our investigation yielded significant findings related to important genes as expressed genes and

regulatees in pairwise comparisons within variable RAMs and cRAM, as discussed in Chapter

3.6.

Even when excluding the most common embryonic cell development mouse genes,

our analysis of pathways still revealed a strong signal associated with organ growth, system

development, and tissue development in biological processes. This finding suggests that these

processes play a significant role in the formation and development of tissues, extending beyond

the context of embryonic cell development.

3.4.3 Pairwise Comparison on Different Tissues for Each Time with Regu-

latees

In the analysis of regulatees in variable RAMs, we observed that they do not have as many

genes as expressed genes in each tissue comparison per time. To address this limitation, a decision

was made to merge all time points for each tissue comparison and conduct enrichment analysis.

This approach resulted in a total of 132 different comparisons, providing a more comprehensive

understanding of the enriched pathways associated with regulatees in variable RAMs.

The analysis presented in Figure 3.16 demonstrated that most pathways exhibit similarities

across all three categories. However, a notable difference was observed in the molecular function

(MF) category, where mRNA binding and transcript coregulator activity were prominently present

in the regulatees analysis, but seldom observed in the expressed genes. This observation suggests

that many highly expressed regulatees are involved in regulatory functions that affect gene

expression level.
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Figure 3.16: The bar plot on the left showcases the selected MF pathways, while the one on the
right presents the selected BP pathways. These pathways were chosen based on a p-adjusted
value smaller than 0.01 and were observed in over 15% for MF and over 90% for BP across all
comparisons.

3.5 Pairwise Comparison of Time Comparison

3.5.1 Pairwise Comparison of Subsequent Time Points for Each Tissue

with Expressed Genes

Similar to the tissue comparison, we also conducted pathway analysis between TSS and

expressed genes located in variable RAMs for subsequent time points. Consistent with our

previous findings,the differences between these two sets of data are very small (Figure 3.17).

Therefore, we proceeded with our analysis using expressed genes using their loci.

The consistent patterns observed in all GO terms between time and tissue comparisons

indicate a high degree of similarity across different comparisons. Despite the lower number of

genes in time comparisons compared to tissue comparisons, the top terms in the molecular function

(MF), biological process (BP), and cellular component (CC) categories exhibit remarkable

similarity. Processes such as protein binding, catalytic binding, ion binding, metal binding,

and cation binding are frequently observed in both types of comparisons. These processes are

fundamental to cell development and survival and predominantly occur in the cytoplasm. These

findings suggest that these essential cellular processes and molecular interactions play a crucial
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Figure 3.17: The bar plots illustrate the selected molecular function (MF) pathways that were
present in over 15% of the genes located in variable RAM regions. The left bar plot corresponds
to the results obtained using TSS loci, while the right bar plot represents the results obtained
using gene body loci.

Figure 3.18: The bar plots illustrate the selected biological process (BP) pathways that were
present in over 45% of the genes located in variable RAM regions. The left bar plot corresponds
to the results obtained using TSS loci, while the right bar plot represents the results obtained
using gene body loci.

role across various conditions and stages of development in variable RAM regions.
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3.5.2 Pairwise Comparison of Subsequent Time Points for Each Tissue

with Differentially Expressed Genes

Similar to the approach used for tissue comparisons, we consolidated all DEGs located in

variable RAMs for all time comparisons within each tissue. This resulted in a total of 12 samples

for pathway analysis in time comparisons across 12 tissues.

Figure 3.19: The bar plot on the left showcases the selected molecular function (MF) pathways,
while the one on the right presents the selected biological process (BP) pathways. These
pathways were chosen based on a p-adjusted value smaller than 0.02 and were observed in over
10% of the comparisons for MF and over 10% for BP across all comparisons.

The comparison of MF and BP pathways shared between tissue comparisons for DEGs in

time comparisons for expressed genes reveals a significant difference (Figure 3.19). The overlap

of pathways in MF and BP is remarkably low, with a maximum of only 2 shared pathways. This

finding is surprising, considering the analysis was conducted on three distinct brain regions and the

neural tube, which showed considerable similarities in previous analyses. The observed variability

in MF and BP suggests distinct changes in RAMs within the brain regions over time, emphasizing

the dynamic nature of brain development and the unique regulatory processes involved.

The absence of pathways related to protein binding, enzyme binding, and ion binding in

the Molecular Function (MF) category, as well as the significant variability in the top Cellular

Component (CC) terms, indicates distinct differences between time point comparisons and
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tissue comparisons for DEGs located in variable RAMs. Unlike the results obtained from tissue

comparisons and expressed genes in time comparisons, generic pathways such as cytoplasm,

organelle, and cytosol are not prominently featured in the time point comparisons. This disparity

can be attributed to the limited number of DEGs available for the time point comparisons, which

is a consequence of the high degree of similarity among tissues even at different developmental

stages. In the case of certain tissues, such as the heart, there is a relatively small proportion of

DEGs located in variable RAMs, potentially because their early development begins prior to the

available data [34]. Similarly, tissues like the neural tube also undergo early development stages

that precede the available online data [35], resulting in limited information on differential gene

expression at those specific time points.

Moreover, certain tissues, such as the stomach and intestine, have data available for

only four distinct time points, resulting in a smaller number of DEGs and consequently fewer

pathways available for enrichment analysis. This is in contrast to tissues like the forebrain, which

have data available for eight different time points, leading to a larger number of DEGs and

more comprehensive pathway results. Therefore, the variability and limited pathway outcomes

observed in the time point comparisons of DEGs located in variable RAMs can be attributed to

the restricted number of DEGs and the developmental disparities among tissues at specific time

points.

3.5.3 Pairwise Comparison of Subsequent Time Points for Each Tissue

with Regulatees

We also conducted time comparisons for regulatees in each tissue. Following a similar

approach as with DEGs in variable RAMs, we consolidated the regulatees from the same tissue,

resulting in 12 distinct comparisons. Our analysis of the time comparisons for regulatees revealed

a high frequency of molecular function (MF) terms related to protein binding and binding.

We observed a greater number of significant pathways in the molecular function (MF),
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Figure 3.20: The bar plots depict the top pathways in the MF and BP categories based on the
analysis of regulatees in time comparisons. The left plot represents the selected MF pathways,
while the right plot displays the selected BP pathways. These pathways were chosen based on a
p-adjusted value smaller than 0.02 and were observed in over 10% of the regulatees across all
time point comparisons.

biological process (BP), and cellular component (CC) categories when analyzing regulatees in

time point comparisons. Many of these pathways were shared across almost all tissues, indicating

common regulatory processes at different developmental stages. In the MF category, pathways

such as protein binding, ion binding, enzyme binding, and catalytic activity were consistently

identified in most samples, which aligns with the findings from the analysis of expressed genes in

time point comparisons. However, we also identified a notable pathway, ’transcription coregulator

activity’, which was present in both tissue comparisons and the regulatees analysis. This pathway

may be specifically related to the unique feature of regulatees, as many of them are under the

regulation of driver transcription factors (TFs).

3.6 cRAM Identification and Comparison Results

Summary By summarizing the results, it becomes evident that relying solely on pathway

analysis in pairwise comparisons is insufficient for comprehensively understanding the functions

of RAMs and boundaries in mouse development. However, we observed a high degree of

similarity in RAM patterns and functions across all samples, particularly for expressed genes and

regulatees. To further investigate this, we examined the consistency of RAM boundaries across
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all time points for each tissue and all tissues for each time, defining them as consensus RAM

boundaries. Surprisingly, we found that 83% of RAM boundaries were consistent and shared

across all 72 samples. This highlights the robustness and stability of RAM boundaries throughout

the developmental stages. Additionally, we identified a new pattern in cRAMs called the Merging

and Splitting (MS) region.

3.6.1 Merging and Splitting Region Identification

We first identified cRAMs for each tissue and time point by considering those that were

shared across over 50% of the samples. On average, we observed that 80% of boundaries belonged

to cRAMs. Upon visual inspection using IGVs, we found that cRAMs exhibited similarities

across different time points and tissues. We further categorized the cRAMs into three types:

Identical Regions, Specific Regions, and Merging and Splitting (MS) Regions. Identical Regions

demonstrated high consistency across all samples and remained relatively closed and less variable

compared to other regions. Specific Regions, which appeared in less than half of the cRAMs,

were not the main focus of our analysis. Our attention was primarily directed towards the MS

Regions, which exhibited significant changes in their boundaries across time points or tissues.

To define MS regions, we required them to have over 15% shared RAM region and less

than 85% RAM region coverage across all time points or tissues. Additionally, MS regions had to

be equal to or greater than 3 bin sizes (750 kb) to focus on larger changing regions (Figure 3.21).

3.6.2 cRAM Analysis for Time and Tissue Comparisons

To further explore gene enrichment, we focused on genes that were consistently identified

as expressed in the majority of samples. Similar to the findings in pairwise comparisons, we

observed generic functional roles such as protein binding, catalytic activity, and generic biological

processes in both time and tissue comparisons (Figure 3.22). However, we observed a significant
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increase in the enrichment of cation and metal ion binding pathways in both tissue and time

comparisons. This finding aligns with previous studies suggesting that cation binding proteins may

play a role in the formation of RAM boundaries [12]. Prior research has indicated that multivalent

cations contribute to reducing electrostatic repulsions between DNA chains, facilitating DNA

condensation [36]. These cations can bind to specific DNA sequences and influence nucleosome

positioning. The presence of cation binding pathways in the gene enrichment analysis suggests

their potential involvement in transporting cations into the nucleus and binding to DNA, ultimately

leading to chromatin condensation and affecting gene expression within the variable RAM regions.

Regarding the association with the nucleus and chromatin-related pathways, our analysis

revealed that the cytoplasm was still the predominant cellular component (CC) term, while the

nucleus showed less significance. However, it should be noted that many genes have functions in

both the nucleus and cytoplasm. Therefore, we focused on genes involved in cation ion binding

and located within the nucleus in both MS regions and variable regions in pairwise comparisons.

We compared the overlap between the cation and metal ion binding gene database in the MS

regions with genes associated with the nucleus, and we identified 39 genes in the time MS regions

and 52 genes in the tissue MS regions. Notably, genes such as GATA3[37], HDAC2[38], and

FOXP2[39] were among the identified genes, and they play important roles in histone modification

and chromatin formation changes. For example, GATA3 has been shown to regulate both active

and repressive histone modifications and is involved in chromatin reprogramming [37, 40].

We then identified the expressed genes that belong to cation binding and are located in the

nucleus for pairwise comparisons. By combining all pairwise comparisons, we generated a list of

400 candidates for future downstream analysis. It is important to note that for the mouse data,

the majority of genes in these lists lack experimental validation of their functions specifically

within the nucleus. However, we once again found some important genes that appeared frequently,

and some of them were also identified in the cRAM analysis, including GATA3, HDAC9[38],

HDAC2, HNF4G[41] and FOXP2. These genes exhibit high expression levels in some or all
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tissues and time points and are known to have a strong relationship with histone modification and

chromatin structure.
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Figure 3.22: Bar plots show the top pathways of MF for expressed gene of cRAM time and
tissue comparisons. The left plot represents the time comparison, while the right plot represents
the tissue comparison. These pathways were selected based on a p-adjusted value smaller than
0.05.
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Chapter 4

Discussions & Future Work

In this thesis, we focused on analyzing the peak density profiles of histone modification

H3K27ac ChIP-seq in mouse development data. Utilizing the latest modal regulation-associated

modules (RAMs), our aim was to understand how RAMs change as time points and tissues change

and whether these changes in RAMs result in significant alterations in chromatin functions and

gene expression. After thoroughly examining 72 mouse development samples, we identified

several interesting features in RAMs during the developmental stages.

Firstly, we observed that the number of RAM boundaries in mouse development data

was slightly smaller compared to those in humans when using the same bin size in ’findRAM’.

This discrepancy could potentially be attributed to the shorter genome length in mice, which is

approximately 14% shorter than that of humans.

Secondly, while over 60% of RAMs in human normal and cancer cells were identified as

consensus RAMs (cRAMs), we found a higher proportion of cRAMs (80%) in mouse development

samples, along with a higher consensus standard. This difference may be attributed to the high

similarity between samples derived from the same tissue or time point in mouse development.

However, despite these differences, we also observed some similarities between RAM

findings in human and mouse samples. Notably, RAM sizes for both humans and mice are much
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larger than topologically associated domain (TAD) sizes and exhibit consistency across the two

organisms. Additionally, the number of RAM boundaries showed proportionality to the whole

genome length, with an average of 606 boundaries per cell for mice and approximately 720

boundaries for humans.

As a preliminary exploration of RAMs in mouse development data, our study yielded

intriguing observations and proposed potential directions for future analysis and experimental

validation of chromatin structure. In our pairwise comparisons, we did not find any avoidance or

enrichment of expressed genes, differentially expressed genes (DEGs), or regulatees in variable

RAM regions. Further gene enrichment analysis revealed that most expressed genes and regulatees

in variable RAM regions were associated with generic molecular binding, biological processes,

and cellular components involved in cell development, growth, and survival across tissue and time

comparisons. For DEGs located within variable RAMs, despite their greater variability across

samples, we still observed generic functions without identifying any specific roles for these genes.

The presence of significant pathway similarities across all pairwise comparisons implies

that RAMs exhibit greater similarity in developmental stages across different tissues and times

compared to normal and cancer cells. To validate this notion, we further identified consensus

RAMs for each time and tissue stage. As expected, over 50% of the boundaries of cRAMs

were shared within each stage, and more than 80% of boundaries were confirmed as identical

cRAMs. These findings suggest that the similarities of RAMs in embryonic mouse cells are

higher compared to normal and cancer cells (60%) in humans.

In our cRAM analysis, we observed a new pattern called merging and splitting (MS)

regions. We further conducted enrichment analysis on these regions and found similarities across

all pathway categories compared to the results obtained from pairwise comparisons. However, we

observed a higher significance of both cation and metal ion binding in MS regions during cRAM

analysis.

In the previous RAM project, there were suggestions that multivalent cations might
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contribute to chromatin condensation, potentially leading to the formation of RAM boundaries[36,

12]. The increased significance of cation and metal ion binding in our analysis could serve as

another indicator of how RAMs and boundaries are formed. In light of this, we examined all

genes involved in cation binding within both cRAM and pairwise comparisons that are located in

the nucleus. Overall, we identified over 400 distinct genes that fit this criteria. Notably, some of

these genes, such as GATA3 and HDAC9, are well-known transcription factors that have been

extensively linked to histone modifications and chromatin organization.

From our research on the RAM project using mouse development data, we have recognized

several potential biases that could affect the results and conclusions. Firstly, we acknowledge that

the identification software ’findRAM’ is not yet perfect. While it can detect the most prominent

boundaries based on extremely low peak densities, it still requires higher accuracy to differentiate

RAMs and boundaries in regions with ambiguous peak density patterns that are near the cut-off

value. Moreover, for a more comprehensive understanding of the functions of changing RAMs

and their relationship to gene expression, it may be beneficial to consider the expression level of

each peak in the H3K27ac density peak files. Instead of solely focusing on the number of peaks

in each bin region, incorporating the expression levels can provide additional insights into the

dynamics of RAMs and their impact on gene regulation.

Secondly, it is important to note that the availability of data for different time points in

various tissues is still limited. For instance, the development of the heart starts at approximately

e7.5 day, and the neural tube forms around e8.5 day. However, in our study, we only had data

starting from e10.5 day. This limitation could potentially result in missing important RAM

patterns that emerge in the early stages, thereby hindering our understanding of the mechanisms

underlying RAM formation.

While RAM identification is not perfect, and data availability at different stages for

various tissues is still not ideal, the findings from our analysis of mouse development data provide

valuable insights. In this thesis, although we have not fully elucidated how RAMs form and the
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purpose they serve, the observations have inspired us to continue studying RAMs and further

explore the relationship between histone modification and chromatin structures.

Future work should involve modifying the computational pipeline ’findRAM’ to enhance

its complexity and accuracy. Additionally, additional experimental data is necessary to validate

our hypothesis regarding RAM formation, such as investigating the exact function and effects of

genes like GATA3, HDAC9, and FOXP2 located in variable RAMs and MS regions of cRAMs.

Furthermore, exploring the role of genes like SVEP1, which are predicted to have calcium ion

binding activity and chromatin binding activity, would contribute to a deeper understanding of

RAMs and their significance in chromatin structure regulation. For future RAM studies, it would

be valuable to analyze more RAM patterns in other eukaryotes such as Drosophila and plants,

spanning from embryo stages to adult stages, and from normal cells to cancer cells. This analysis

would help determine whether RAM patterns are conserved across species in different stages like

TAD or if they exhibit species-specific patterns.

This thesis, in part, is a coauthored unpublished material with Wei Wang. The thesis

author is the primary investigator and author of the material that appeared in this thesis.
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Appendix A

Supplementary Tables

Table A.1: The table below shows the number of RAM boundaries presented in each sample.
If ’-’ is indicated, it means that there is no available data on the ENCODE website for that
particular sample.

Tissue/Time e10.5 e11.5 e12.5 e13.5 e14.5 e15.5 e16.5 p0
EFP 556 556 572 600 621 605 - -
Forebrain 565 612 624 621 625 667 648 654
Midbrain 580 603 610 631 621 640 638 616
Hindbrain 551 588 613 642 662 656 617 638
NT - 590 516 649 591 625 - -
Heart 564 621 644 664 654 646 651 654
Limb 562 552 603 590 588 595 - -
Liver - 537 558 562 545 582 604 638
Lung - - - - 627 655 660 617
Kidney - - - - 590 582 642 647
Intestine - - - - 619 597 652 590
Stomach - - - - 606 611 640 588

Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR151APL ChIP-seq embryonic facial prominence e10.5

ENCSR401GRX ChIP-seq embryonic facial prominence e11.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR813SCQ ChIP-seq embryonic facial prominence e12.5

ENCSR420MUV ChIP-seq embryonic facial prominence e13.5

ENCSR481SGM ChIP-seq embryonic facial prominence e14.5

ENCSR382DRK ChIP-seq embryonic facial prominence e15.5

ENCSR825ZJV ChIP-seq forebrain e10.5

ENCSR275KPI ChIP-seq forebrain e11.5

ENCSR966AIB ChIP-seq forebrain e12.5

ENCSR311YPF ChIP-seq forebrain e13.5

ENCSR320EEW ChIP-seq forebrain e14.5

ENCSR691NQH ChIP-seq forebrain e15.5

ENCSR428OEK ChIP-seq forebrain e16.5

ENCSR094TTT ChIP-seq forebrain p0

ENCSR582SPN ChIP-seq heart e10.5

ENCSR222IHX ChIP-seq heart e11.5

ENCSR123MLY ChIP-seq heart e12.5

ENCSR699XHY ChIP-seq heart e13.5

ENCSR360ANE ChIP-seq heart e14.5

ENCSR574VME ChIP-seq heart e15.5

ENCSR846PJO ChIP-seq heart e16.5

ENCSR675HDX ChIP-seq heart p0

ENCSR594JGI ChIP-seq hindbrain e10.5

ENCSR129LAP ChIP-seq hindbrain e11.5

ENCSR784TLR ChIP-seq hindbrain e12.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR344HHI ChIP-seq hindbrain e13.5

ENCSR054JHZ ChIP-seq hindbrain e14.5

ENCSR066XFL ChIP-seq hindbrain e15.5

ENCSR797EYS ChIP-seq hindbrain e16.5

ENCSR332JYZ ChIP-seq hindbrain p0

ENCSR424END ChIP-seq intestine e14.5

ENCSR599GVS ChIP-seq intestine e15.5

ENCSR639DND ChIP-seq intestine e16.5

ENCSR642VYW ChIP-seq intestine p0

ENCSR057SHA ChIP-seq kidney e14.5

ENCSR711SVB ChIP-seq kidney e15.5

ENCSR357JII ChIP-seq kidney e16.5

ENCSR140YPL ChIP-seq kidney p0

ENCSR863VHE ChIP-seq limb e10.5

ENCSR897WBY ChIP-seq limb e11.5

ENCSR737QWV ChIP-seq limb e12.5

ENCSR905FFU ChIP-seq limb e13.5

ENCSR021ALF ChIP-seq limb e14.5

ENCSR988BRP ChIP-seq limb e15.5

ENCSR058DOA ChIP-seq liver e11.5

ENCSR136GMT ChIP-seq liver e12.5

ENCSR175KBJ ChIP-seq liver e13.5

ENCSR075SNV ChIP-seq liver e14.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR479LFP ChIP-seq liver e15.5

ENCSR802RET ChIP-seq liver e16.5

ENCSR616TJM ChIP-seq liver p0

ENCSR452WYC ChIP-seq lung e14.5

ENCSR895BMP ChIP-seq lung e15.5

ENCSR140UEX ChIP-seq lung e16.5

ENCSR884MYD ChIP-seq lung p0

ENCSR989LUY ChIP-seq midbrain e10.5

ENCSR088UKA ChIP-seq midbrain e11.5

ENCSR252ONR ChIP-seq midbrain e12.5

ENCSR671NSS ChIP-seq midbrain e13.5

ENCSR254AHA ChIP-seq midbrain e14.5

ENCSR428GHF ChIP-seq midbrain e15.5

ENCSR553IWV ChIP-seq midbrain e16.5

ENCSR672ZXY ChIP-seq midbrain p0

ENCSR531RZS ChIP-seq neural tube e11.5

ENCSR891SAW ChIP-seq neural tube e12.5

ENCSR289SWJ ChIP-seq neural tube e13.5

ENCSR265NBM ChIP-seq neural tube e14.5

ENCSR241BSK ChIP-seq neural tube e15.5

ENCSR316CNR ChIP-seq stomach e14.5

ENCSR929SEW ChIP-seq stomach e15.5

ENCSR546ANT ChIP-seq stomach e16.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR346FJG ChIP-seq stomach p0

ENCSR809VYL RNA-seq embryonic facial prominence 10.5 days

ENCSR848HOX RNA-seq embryonic facial prominence 11.5 days

ENCSR851HEC RNA-seq embryonic facial prominence 12.5 days

ENCSR538WYL RNA-seq embryonic facial prominence 13.5 days

ENCSR823VEE RNA-seq embryonic facial prominence 14.5 days

ENCSR636CWO RNA-seq embryonic facial prominence 15.5 days

ENCSR304RDL RNA-seq forebrain 10.5 days

ENCSR160IIN RNA-seq forebrain 11.5 days

ENCSR647QBV RNA-seq forebrain 12.5 days

ENCSR970EWM RNA-seq forebrain 13.5 days

ENCSR185LWM RNA-seq forebrain 14.5 days

ENCSR752RGN RNA-seq forebrain 15.5 days

ENCSR080EVZ RNA-seq forebrain 16.5 days

ENCSR094TTT RNA-seq forebrain p0 days

ENCSR049UJU RNA-seq heart 10.5 days

ENCSR691OPQ RNA-seq heart 11.5 days

ENCSR150CUE RNA-seq heart 12.5 days

ENCSR284YKY RNA-seq heart 13.5 days

ENCSR727FHP RNA-seq heart 14.5 days

ENCSR597UZW RNA-seq heart 15.5 days

ENCSR020DGG RNA-seq heart 16.5 days

ENCSR675HDX RNA-seq heart p0 days
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR943LKA RNA-seq hindbrain 10.5 days

ENCSR760TOE RNA-seq hindbrain 11.5 days

ENCSR420QTO RNA-seq hindbrain 12.5 days

ENCSR921PRX RNA-seq hindbrain 13.5 days

ENCSR559TRB RNA-seq hindbrain 14.5 days

ENCSR401BSG RNA-seq hindbrain 15.5 days

ENCSR285WZV RNA-seq hindbrain 16.5 days

ENCSR332JYZ RNA-seq hindbrain p0 days

ENCSR932TRU RNA-seq intestine 14.5 days

ENCSR370SFB RNA-seq intestine 15.5 days

ENCSR848GST RNA-seq intestine 16.5 days

ENCSR642VYW RNA-seq intestine p0 days

ENCSR504GEG RNA-seq kidney 14.5 days

ENCSR062VTB RNA-seq kidney 15.5 days

ENCSR537GNQ RNA-seq kidney 16.5 days

ENCSR140YPL RNA-seq kidney p0 days

ENCSR968QHO RNA-seq limb 10.5 days

ENCSR541XZK RNA-seq limb 11.5 days

ENCSR216NEG RNA-seq limb 14.5 days

ENCSR750YSX RNA-seq limb 12.5 days

ENCSR347SQR RNA-seq limb 13.5 days

ENCSR830IVQ RNA-seq limb 15.5 days

ENCSR284AMY RNA-seq liver 11.5 days
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR648YEP RNA-seq liver 12.5 days

ENCSR611PTP RNA-seq liver 15.5 days

ENCSR448MXQ RNA-seq liver 13.5 days

ENCSR867YNV RNA-seq liver 14.5 days

ENCSR826HIQ RNA-seq liver 16.5 days

ENCSR616TJM RNA-seq liver p0 days

ENCSR039ADS RNA-seq lung 14.5 days

ENCSR457RRW RNA-seq lung 15.5 days

ENCSR992WBR RNA-seq lung 16.5 days

ENCSR884MYD RNA-seq lung p0 days

ENCSR764OPZ RNA-seq midbrain 10.5 days

ENCSR908JWT RNA-seq midbrain 12.5 days

ENCSR307BCA RNA-seq midbrain 11.5 days

ENCSR792RJV RNA-seq midbrain 13.5 days

ENCSR343YLB RNA-seq midbrain 14.5 days

ENCSR557RMA RNA-seq midbrain 15.5 days

ENCSR367ZPZ RNA-seq midbrain 16.5 days

ENCSR672ZXY RNA-seq midbrain p0 days

ENCSR337FYI RNA-seq neural tube 11.5 days

ENCSR508GWZ RNA-seq neural tube 12.5 days

ENCSR115TWD RNA-seq neural tube 13.5 days

ENCSR928OXI RNA-seq neural tube 14.5 days

ENCSR004XCU RNA-seq neural tube 15.5 days
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age

ENCSR290RRR RNA-seq stomach 14.5 days

ENCSR906YQZ RNA-seq stomach 15.5 days

ENCSR466KZY RNA-seq stomach 16.5 days

ENCSR346FJG RNA-seq stomach p0 days
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Table A.3: Number of Driver Transcript Factors Identification

Stage/Tissue Number of Driver TFs
e10.5 73
e11.5 39
e12.5 36
e13.5 30
e14.5 15
e15.5 21
e16.5 27

p0 18
EFP 44

Forebrain 19
Midbrain 20
Hindbrain 29

NT 51
Heart 41
Limb 39
Liver 35

Kidney 86
Lung 75

Intestine 76
Stomach 80
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Appendix B

Supplementary Figures

Figure B.1: This graph displays the top 30 detailed GO terms in three different categories for
the comparison of neural tube and midbrain expressed genes at 14.5 days in variable RAM. The
x-axis represents the number of genes associated with each pathway, while the y-axis represents
the pathway names. The bars are color-coded based on the p-adjusted value.
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Figure B.2: Here are the selected pathways with a p-adjusted value smaller than 0.01 and
presented in over 20% of all tissue comparisons. The left side shows the pathways using the
TSS located in variable RAMs, while the right side shows the pathways using the expressed
genes located in variable RAMs.

Figure B.3: Here are the pathways selected based on a p-adjusted value smaller than 0.02 and
presented in over 10% for cellular component (CC) pathways and 10% for KEGG pathways of
tissue comparisons. The left side shows the CC pathways in variable RAMs, while the right side
shows the KEGG pathways in variable RAMs.
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Figure B.4: Here are the CC pathways selected based on a p-adjusted value smaller than 0.01
and presented in over 15% of all tissue comparisons. The left side displays the pathways using
the TSS located in variable RAMs, while the right side shows the pathways using the expressed
genes located in variable RAMs for time comparison.

(a) (b)

(c) (d)

Figure B.5: Here are the pathways selected based on a p-adjusted value smaller than 0.02 and
presented in over 40% for MF, 90% for BP, 83% for CC, and 10% for KEGG of 12 tissues
with merged time comparisons:(a) MF pathways in variable RAMs;(b) BP pathways in variable
RAMs;(c) CC pathways in variable RAMs;(d) KEGG pathways in variable RAMs
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Figure B.6: Here are the pathways selected based on the p-adjusted value smaller than 0.02
and presented in over 20% of CC and all KEGG tissue comparisons. The left side displays CC
pathways in variable RAMs, while the right side shows KEGG pathways in variable RAMs.

Figure B.7: This is the enrichment analysis for driver GO:term for expressed genes in cRAM
MS region for tissue comparisons.
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Figure B.8: This is the enrichment analysis for driver GO:term for expressed genes in cRAM
MS region for time comparisons.
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