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ABSTRACT OF THE THESIS

Investigation of 3D Chromatin Modularity in Mouse Development

by

Xiaofu Wei

Master of Science in Chemistry

University of California San Diego, 2023

Professor Wei Wang, Chair

Chromatin structure plays a crucial role in various genomic processes in eukaryotic
cells, including genome replication, transcriptional silencing, and gene regulation. Extensive
studies have focused on the three-dimensional organization of the genome, revealing the presence
of topologically associating domains (TADs) and compartments, which are defined by spatial
contacts identified through techniques such as Hi-C. However, understanding the direct role of
histone modification in shaping the three-dimensional genome structure remains an ongoing
challenge.

This thesis investigates changing patterns of regulation-associated modules (RAMs) in

mouse development to understand the organization and function of RAMs and their boundaries.
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RAMs, proposed in previous studies using human samples, offer insights into genome organization
and regulation. However, comprehensive explanations for RAM formation, functions, and
boundary factors are lacking.

Using the "findRAM” tool, we have identified RAM regions and boundaries from a dataset
of 72 mouse embryonic samples. Pairwise comparisons between tissues at specific time points
and between subsequent times within the same tissue have revealed changes in RAMs. Through
genome enrichment analysis of these regions, we have identified functional pathways, including
cation binding, metal ion binding, and transcription-related pathways. Additionally, consensus
RAM (cRAM) regions have been determined for each time point and tissue, highlighting regions
that exhibit consistent patterns of RAMs and boundaries. Gene enrichment analysis has provided
further support for some of the findings from pairwise comparisons, and these findings align with
the potential mechanism of RAM boundary formation proposed in previous research on RAMs.

In conclusion, this thesis investigates 3D chromatin modularity through RAM analysis in
mouse development data. We have identified pathways and genes potentially involved in RAM
boundary formation through computational prediction and discussed improvements for the RAM
identification model. These findings contribute to our understanding of the formation and func-
tions of RAMs and boundaries, which are determined by histone modification marks. Ultimately,
these findings highlight the connection between the structural and functional modularity of the

3D genome.
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Chapter 1

Introduction

The organization of the genome in eukaryotes is complex and hierarchical, with the
genome packaged inside the nucleus in a non-linear manner. The three-dimensional structure
of the genome such as higher-order chromatin organization, which is linked to long-distance
gene regulation that controls development and cell fate commitment [1], plays a crucial role
in biological processes. Proper chromatin condensation and decondensation are important for
accurate chromosome segregation during mitosis and meiosis. Besides, higher-order chromatin
organization defects can cause developmental irregularities and illnesses[2]. Recent advance-
ments in technology and analytical pipelines have revealed patterns associated with chromatin
organization, including compartments[3] and topologically associated domains (TADs)[4]. TADs
are regions of the genome where DNA sequences within that region interact more frequently with
each other than with sequences outside that region, and the TAD boundaries are demarcated with
CTCEF sites or actively transcribed DNA sequences[5]. Compartments are regions of the genome
with distinct patterns of chromatin accessibility and transcription activity, classified as compart-
ment A (high levels of transcription activity and open chromatin) and compartment B (lower
levels of transcriptional activity and more compact chromatin) [3]. Both findings are derived from

Hi-C contact maps, which is a high-throughput genomic and epigenomic technique to capture



chromatin conformation [6]. Recently, some computational models have shown that histone
modification signals are predictive of enhancer-promoter interactions [7], TAD boundaries[8], and
compartments[9]. Proteins involved in transcriptional regulation, active promoters and enhancers,
and transcriptional activity tend to form clusters in the nucleus, tightly associated with histone
modifications [10][11].

Despite histone modifications reflecting chromatin activity in previous studies, the direct
inference of the spatial modularity of the genome from histone modification patterns has not
been explored. Unlike topologically associating domains (TADs) and compartments derived from
Hi-C maps, the regulation-associated module (RAM) is a novel module that utilizes frequency
profiles of H3K27ac histone modification peaks from chromatin immunoprecipitation sequencing
(ChIP-seq) data [12] to generate a more comprehensive pattern across the entire genome in cells.
H3K?27ac modification involves acetylation of the lysine residue at position 27 of the histone H3
protein, and it is often considered a marker of active enhancers and promoters[13]. ChIP-seq is a
powerful method for identifying genome-wide DNA binding sites for transcription factors and
other proteins [14]. Histone modifications, such as H3K27ac and H3K4me3, play a critical role in
determining chromatin structure and regulating gene expression. Active marks such as H3K27ac
and H3K4me3 open chromatin to allow access to transcription factors (TFs) to promoters or
enhancer. In contrast, repressive marks can condense chromatin and suppress gene expression
[15]. Both active and repressive histone modifications contribute to the formation of euchromatin
and heterochromatin, which differ in their level of compactness. These findings underscore the
significance of histone modifications in shaping the three-dimensional structure of the genome at
both regional and global levels. We chose H3K27ac peak density files due to their high correlation
with other histone modification marks in previous RAM research on humans, and they can reflect
signals from active enhancers and promoters.

For identifying the RAMs, we applied the computational tool called findRAM’ that

was previously used for predicting RAMs for humans. This method employs sliding window



strategies with a fixed flanking size of 500kbp and step size 250kbp to compute H3K27ac peak
densities in the linear genome [12] for the data of both human and mouse to reach the maximum
of shared boundaries across samples. In the previous study, they analyzed 93 normal samples
and 19 cancer samples of humans. They provided evidence to demonstrate that RAMs are spatial
modules, where enhancer-promoter interactions and ecDNA occur dominantly within RAMs,
and RAMs are resistant to cohesion degradation. They also suggested that the RAM boundaries
exhibit more insulating functions compared with topologically associating domains (TADs).
Furthermore, they not only showed the big differences between RAMs and other existing
3D chromatin modules but also proposed a mechanism for how the RAM forms. Based on
many other studies of multivalent cations, calcium, magnesium, and manganese can reduce the
electrostatic repulsion between the DNA chains and induce DNA condensation. These cations
may bind to specific DNA sequences[16] and affect nucleosome positioning[17]. Therefore, a
possible mechanism can be that genomic DNAs become densely packed around cations such as
Ca2+, Mg2+, and Mn2+ to form RAM boundaries. Proteins such as calcium-binding proteins that
carry many cations and their interacting partners may recognize specific DNA sequences such as
those motifs enriched in cRAM boundaries to facilitate locus-specific localization of cations.
With numerous observations of RAMs (repetitive array motifs) in human data, we become
increasingly curious about the reasons behind RAM formation, which exhibit both similar and
distinct boundaries across samples. In this case, our objective is to understand how changes in time
influence RAM alterations within the same tissue during developmental stages and how RAMs
differ between tissues at identical time points. Additionally, we have attempted to investigate the
functions of RAMs by examining the differences in gene expression levels within each changing
region. Lastly, we aim to identify the genes associated with cation binding that contribute to
the formation or undergo changes in RAM boundaries. However, the formation and patterning
of RAMs in developmental data, as well as whether these patterns are shared across different

species, remain unknown.



Understanding the patterns of RAMs across different species during development is crucial
to comprehend the fundamental mechanisms of gene regulation. In this study, we applied the
RAM calling modal "findRAM’[12] to 72 samples of 12 different mouse embryonic tissue bulk
ChIP-seq data of H3K27ac at eight variable time stages. By comparing results for different tissues
at various time points and different consequent times at each tissue, we analyzed the expressed
genes, differentially expressed genes, and regulatees, which are genes under the regulation of
specific transcription factors in each variable RAM region.

We then analyzed pathways of genes under those variable regions using the g: profiler [18],
a toolset widely used for finding biological categories enriched in gene lists, conversions between
gene identifiers, and mappings to their orthologs. Interestingly, we found that many pathways
shared a lot in most pairwise comparisons and are involved in various biological processes,
including cell development and differentiation, tissue remodeling, and immune responses. To
check the variability across all samples in each time point and in each tissue, we defined the
consensus RAM (cRAM) and cRAM boundary regions in each time and tissue. After putting
the cRAM boundaries at different time points and tissues together, we found that over 80% of
cRAM boundaries are conserved in most time and tissue stages. We also observed a pattern
where cRAM boundaries merged in some time or tissue stages and split into two or more in
rest, which we referred to as MS regions. We further investigated the genes in these regions that
have the function in the nucleus and identified some crucial genes for histone modification and
chromatin organization, such as GATA3, ING3, and HDAC gene family. Some of those genes are
correlated to cation and metal binding, which matched the hypothesis of the mechanism of how
RAM forms mentioned in previous studies[19]. Validating the functions of these genes in the
future with experiments may have significant implications in understanding the mechanisms of
gene regulation and their potential roles in 3D chromatin organization and eventually leading to
the improvement of disease studies.

Based on all our findings, we have realized that RAM patterns exhibit generic functions



in the majority of comparisons within variable and MS regions. However, interesting pathways
and genes emerge when we examine differentially expressed genes (DEGs) and regulators in
variable regions. Overall, our study provides insights into the patterns of RAMs in mouse
embryonic development data and sheds light on the potential role of RAMs in gene regulation.
Our findings can serve as a valuable resource for future studies aiming to explore further the
molecular mechanisms underlying RAM formation and its potential impact on gene regulation
in development and disease. Nonetheless, there are still some improvements required for the
"findRAM’ model and additional analysis needed for the down-strain analysis. These aspects will

be discussed in Chapter 4.



Chapter 2

Methods

2.1 Methods for variable RAM and gene identification

2.1.1 Data Source

The 72 embryonic mouse bulk samples with processed narrow peaks ChIP-seq of H3K27ac
in mm10 and the 72 embryonic mouse samples with processed gene quantification RNA-seq in
mm10 were downloaded from ENCODE portal (https://www.encodeproject.org/)[20]. All the
downloaded data met the ENCODE standards. Reference Table A.2 lists all the samples used in
this study. Gene names and TSS regions are annotated using the vM21 annotation file for mouse

downloaded from ’Gencode’[21].

2.1.2 RAM Identification in Individual Samples

After installing 'findRAM’, we identified the H3K27ac narrow-peak density using a
sliding window with a step size of 50kb, 100kb, 250kb, and 500kb, respectively, and a flanking
size of 500kb for each window in every sample. The H3K27ac narrow-peak profiles were then

smoothed using local polynomial regression fitting[22]. The RAM boundaries, identified as



valleys in the smoothing curves, and peaks, identified as summits in the smoothing curve, were
detected using the “findpeaks” function in the R package “pracma” (R v4.1.2). RAM boundaries
were also determined by any density peaks smaller than 0.1 proportional to the highest density

peak in each chromosome for each sample.

2.1.3 Variable RAM Identification

For pairwise comparisons, we treated each tissue as a control group once and compared it
with the remaining tissues at each time point to perform tissue comparisons. Additionally, for
each tissue, we treated the early embryonic time point as a control group and the subsequent
embryonic time point as the sample group. For example, in the case of the forebrain tissue, we
compared embryonic day 10.5 as the control with embryonic day 11.5 as the sample, and then
we compared embryonic day 11.5 as the control with embryonic day 12.5 as the sample. We
recorded all regions that exhibited changes from boundaries in the control group to RAMs in the
sample group. We recorded only those changing regions that showed a shift of at least 2 bin sizes

between the control and sample groups. All analyses were performed using Python 3.8.

2.1.4 Expressed Genes Identification

We initially performed quantile normalization to align the two replicates in each RNA-seq
sample, using the gene quantification files. Subsequently, we applied the TPM normalization
method, taking into account the effective length and gene counts provided in the downloaded files.
We assessed the distribution of log(TPM) for each gene in each sample by creating histograms. To
mitigate the impact of noise, we set a cut-off at log(TPM) greater than 0. We then calculated the
average TPM value for the two replicates and selected genes that exhibited TPM values greater

than 1, expressing in over 60% of all samples. All analyses were performed using Python 3.8.



2.1.5 TSS Region Identification

In our annotation file, we lacked specific information regarding the promoter loci. How-
ever, it is widely recognized that the core promoter region, known as the transition starting site
(TSS), is located in close proximity to the starting codon position, for which we possess detailed
annotation data. Hence, we extended the annotation of the start codon by 1000bp in both the 5°
and 3’ directions for each gene and employed these extended loci as the TSS region. We utilized
the same annotation file (vM21) that we employed for the gene loci. All analyses were performed

using Python 3.8.

2.1.6 Regulatees Identification Using Taiji

After installing Taiji, we proceeded to run it using narrow-peak density files of H3K27ac
ChIP-seq data and gene quantification RNA-seq data for each embryonic mouse sample. The
data was obtained directly from ENCODE, as described in Chapter 2.1.1. Since we were working
with bulk data, we utilized Taiji’s EpiTensor functionality. Our analysis began by identifying
the driver transcription factors (TFs) for each tissue and time point, employing the PageRank
score as a measure. We first selected the top 12% of TFs with average ranking scores larger than
0.002 of all TF candidates across all samples, out of a pool of 880 TFs. Then, we selected those
with a coefficient of variation (CV) value smaller than 0.3 for tissue comparisons and 0.4 for
time comparisons. Subsequently, we applied a filtering process, selecting the top 700 regulatees
under each driver TF based on the network score in each sample. Finally, we consolidated all the

regulatees from all driver TFs in each sample and focused on the top expressed 4500 regulatees.

2.1.7 DEG Identification

We first calculated the sum of gene counts across all samples and replicates for each

gene. We selected genes with a sum greater than 500 as candidates for further identification



of differentially expressed genes (DEGs) in each comparison. For the analysis, we utilized the

"DESEQ?2’ package (R v4.1.2) and selected DEGs with a logfold change value greater than 2.

2.1.8 cRAM Identification

To identify cRAMs, we analyzed the occurrence frequency of boundaries across all
samples at different thresholds (30%, 40%, and 50%) for each time point and tissue. We observed
that using a threshold of 30% resulted in a high consensus rate (over 93%) within each cRAM,
while a threshold of 50% achieved an 80% consensus for shared boundaries. Based on this, we
considered genome regions with an occurrence percentage above 50% as cRAM boundaries.
We then merged boundaries within a distance of 250kb and imposed a minimum cRAM size
requirement of 250kb. Additionally, we allowed for a one-bin size shift in the analysis. All of

these analyses were performed using Python v3.8.

2.1.9 Merging and Splitting Region Identification

We merged all boundaries in cRAM files of each time or tissue stage separately using
"bedtools Merge’. Then, we intersected all the files to obtain the shared boundaries across all
samples in each time or tissue stage using *bedtools Intersect’. Next, we subtracted the intersecting
boundaries from the merged regions using *bedtools Subtract’. We then removed all regions that
are smaller than 3 bin size. Finally, we removed those regions that occurred in less than 15% of
the samples as boundaries or in more than 85% of the samples as boundaries. We utilized the
gene loci in the annotation file (vM21) to generate genes located in the MS regions. All “bedtools’

functions were performed using v2.30.0, and other analyses were conducted using Python v3.8.



2.1.10 Gene Enrichment Analysis For Individual Genelist

Enrichment analyses were conducted using the R package ’g:profiler’. For individual
analysis, we selected the top 30 significant pathways in four categories: MF (Molecular Function),
BP (Biological Process), CC (Cellular Component), and KEGG(Kyoto Encyclopedia of Genes
and Genomes). In each category, pathways were selected based on a p-adjusted value lower than
0.01. In enrichment analyses, the significance of pathways is determined by the p-adjusted value,

where a lower value indicates higher significance.
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Chapter 3

Results

3.1 Project Overview

This thesis presents the observation of the direct inference of the spatial modularity of the
genome from histone modification patterns (H3K27ac) known as RAM (Regulation Associated
Modules). We applied 72 mouse embryonic narrow-peak files of H3K27ac mark, and all samples
are from various 12 tissue types and 8 time point. Detailed data descriptions are provided
in Chapter 2.1.1 and table A.2. RAMs and boundaries were detected using the *findRAM’
method, and further analysis involved pairwise comparisons in both time and tissue scales.
After identifying RAM and boundary (Figure 3.2) regions in all samples, we investigated the
functionality of changing RAM regions through enrichment analysis of three categories of genes:
expressed genes, differentially expressed genes(DEGs), and regulatees. Gene quantification files
from the corresponding mouse stages, obtained from ENCODE, were used for gene expression
levels. The methods for selecting expressed genes, DEG, and regulatees are described in Chapter
2.1.4-2.1.7, and examples were shown in figure 3.3 using integrative genomics viewer(IGV) as a
presenter[23]. Overall, we conducted 60 different time comparisons and 606 tissue comparisons.

For each comparison, we performed genome pathway analysis using g:profiler [18] for both time

11



and tissue comparisons

RAM Analysis Workflow

ENOCDE embryonic ENOCDE embryonic
mouse ChiP-seq mouse RNA-seq
NarrowPeak GeneQuantificaiton

RAM and

boundaries output e A,

expressed
regulatees DESEQ2

consensus RAM Pair-wise
on the same Comparisons on
time/tissue stage changing RAMs

Regulatees in : 5
Merge and Split changing RAM DEG in changing Genes in

. RAM regions i ;
regions g changing regions

Expressed

regions

GO Enrichment and
analysis on important
genes

Figure 3.1: This is the overview of the entire thesis project. We utilized both H3K27ac ChIP-seq
and RNA-seq for diverse analyses. The data for 72 mouse embryonic samples, obtained from
various tissues and at different time points, were downloaded from the ENCODE website.
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After analyzing the enriched pathways in pairwise comparisons, we proceeded to assess
the variability of the data at each time and tissue stage. Consensus RAM (cRAM) and boundary
regions were defined for each time point based on all tissues, and for each tissue based on all time
points. We then examined the pattern changes for all cRAMs in tissue and time comparisons
(Figure 3.4).0Our focus was on the boundary regions that merged in some cases but split in others,
which we referred to as merging and splitting (MS) regions. Pathway analysis was performed on
these regions, and we conducted a gene search within the interesting pathways to identify genes
correlated with histone modification and chromatin organization, specifically located in the MS

regions. These genes were found to be associated with cation and metal ion binding.

3.2 RAM Identification

The identification of RAM involved using the "findRAM’ pipeline on a dataset consisting
of 72 different samples of peak density files of H3K27ac. To initiate the analysis, we conducted
preliminary tests using various sliding window sizes, including 50kb, 100kb, 250kb, and 500kb,
with a 500kb flanking size for each window in mouse samples. We observed that increasing the
step size resulted in larger RAM sizes and a higher percentage of shared RAMs among the mouse
samples. Specifically, we determined that the 250kb step size allowed us to identify the maximum
boundaries of RAMs for mouse embryonic samples, similar to the findings observed for human
data.

Subsequently, we proceeded with the pipeline using a 250kb bin size and processed the
narrow-peak files specific to the mouse version mm10. This process yielded density peak files
and boundary loci information for each chromosome, as depicted in Figure 3.5. On average,
approximately 20% of the regions across all mouse genomes (chromosomes 1-19 and X)) were
identified as boundary regions. Each sample contained an average of 609 boundaries. For a more

comprehensive overview of the specific number of boundaries, please refer to the appendix table
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Figure 3.5: This is an example of the density peak file for chromosome 1 of the mouse embryonic
facial prominence at €10.5 day. The x-axis represents the bin position, with each bin measuring
250kb in length. The y-axis indicates the proportion of the density peak counts after applying
the sliding window algorithm. In the visualization, the RAM boundaries are indicated by the
valleys or minima on the smoothing curves, represented by the red line. Similarly, the peaks or
maxima on the smoothing curve of the red line indicate the RAM peaks.

We also observed that the number of RAM boundaries in mouse developmental data
was slightly smaller compared to humans when using the same bin size in *findRAM’. This
discrepancy could potentially be attributed to the shorter genome length in mice, which is

approximately 14% shorter than that of humans.

3.2.1 Variable RAM Identification

Following the generation of RAM boundaries, our next step involved conducting pairwise
comparisons between these boundaries. In order to perform these comparisons, we designated
each tissue as a control group once and compared it with the remaining tissues at each time
point. Additionally, for each tissue, we treated the early time point as the control group and the
subsequent time point as the sample group. During these comparisons, we recorded all regions
where boundaries in the control group transitioned to RAMs in the sample group. However,
we only considered regions that exhibited a minimum shift of 2 bin sizes between the control
and sample groups. We specifically investigated pathways that displayed a one-bin size shift
and found that they often led to problematic results in differential expression genes (DEGs),

such as strong head development in comparisons involving the liver and limbs. This occurrence
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could potentially be attributed to noise in the ChIP-sequence data, as no laboratory work or data
processing is entirely flawless. On average, approximately 5% of the genome was identified as
variable RAMs in tissue comparisons, while 4% of the genome exhibited variable RAMs in time

comparisons, as illustrated in Figure 3.8.

3.3 Expressing Genes, DEGs, and Regulatees Identification in

Variable RAM for Pairwise Comparisons

3.3.1 Expressing Genes in Variable RAMs

Before choosing the cutoff for expressed genes, we checked the quality of the processed
data from all gene quantification files provided by ENCODE. We processed 10 samples, starting
from raw data, and generated gene counts using the STAR [24] and RSEM [25] methods through
a pipeline called RNA-seq nf-core [26]. We observed that the counts generated by the nf-core
pipeline were similar to the counts provided by ENCODE. Next, we analyzed the distribution of
gene counts for all expressed genes (non-zero counts) using the TPM (transcripts per million)
normalization method. We created histograms of log(TPM) values for each sample. Across all
samples, we identified significant noise when log(TPM) values were smaller than 0, indicating
TPM values below 1. In Figure 3.6, we present an example plot of embryonic facial prominence
replicate 1 at e13.5 day, which demonstrates the observed pattern. Similar patterns were observed
in the remaining samples. Based on this analysis, we selected genes with log(TPM) values greater
than O in over 60% of the samples as expressed genes. In total, we identified 16,438 genes as
expressed genes.

To identify the relevant genes located within the variable RAMs, we performed an overlap
analysis between the loci of expressed genes and the variable RAMs in each pairwise comparison.

Our objective was to pinpoint the gene functions associated with the variable RAMs. During this
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Figure 3.6: This graph is an example of a histogram displaying the log(TPM) gene counts. It
represents the embryonic facial prominence replicate 1 at e13.5 day.

analysis, we also explored the differences between utilizing gene body annotation and annotated
transcription start site (TSS) loci for gene enrichment results. The TSS corresponds to the
core promoter region bound by RNA Polymerase II (RNA Pol I1)[27], the primary enzyme
responsible for transcription. Notably, the annotation of TSS regions had fewer annotations
compared to gene body annotations. Specifically, we had annotations for 22k TSS regions
and 45k gene bodies. Therefore, by utilizing TSS annotation, we lost approximately 17% of
genome information concerning expressed genes. After conducting pathway analyses for the
expressed genes located within the variable RAMs, we observed minimal disparities in the
identification of significant pathways between using TSS and gene body annotations. To avoid
losing valuable genomic information, we decided to prioritize gene body annotation as the
criterion for assessing overlapping genes within the variable RAMs during pairwise comparisons,
as well as for merging and splitting cRAM regions later on. Further details regarding these

comparisons will be elaborated in Chapter 3.4.1 and Chapter 3.5.1.
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3.3.2 DEGs in Variable RAMs

To identify differentially expressed genes (DEGs), we initially filtered out genes with low
counts across all samples, resulting in 17k genes that were considered for further analysis. The
filtering details are mentioned in chapter 2.1.7. We employed the DESEQ2 method to generate
p-adjusted values and log2 fold-change values for each pairwise comparison. Since p-adjusted
values are typically used when there are more than 5 replicates, we disregarded them in our
analysis due to the limited number of replicates (only two). Instead, we focused on selecting DEGs
based on a log2 fold-change value greater than 2, which corresponds to regions transitioning
from boundaries to RAMs. In each tissue, for every time point except the last one, we treated the
preceding time point as the control group, and the subsequent time point as the sample group.
For instance, if €10.5 day was considered the control, then e11.5 would be the sample. At each
time point, every tissue would become the control, and the rest of the tissues would become
samples to determine the DEGs for tissue comparisons. We then examined the DEGs located
within the variable RAMs for both time and tissue comparisons. More detailed results can be

found in Chapter 3.3.2 and Chapter 4.3.2.

3.3.3 Regulatees in Variable RAMs

To study the regulatory network underlying 3D chromatin patterns, we employed a
pipeline called Taiji[28] to identify key genes under regulation. Here, we planned to check
whether these regulators and their regulatees are associated with variable RAM. Thus, we used
Taiji to first identify the driver TFs for each sample and eventually chose the top regulatees of each
driver TF. Taiji is a comprehensive system that utilizes various genomics information to construct
transcriptional regulatory networks by predicting regulatory interactions between transcription
factors (TFs) and genes. The PageRank score assigned to each TF within the network was used to

assess its genome-wide influence, which is reflected in gene expression patterns.
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After running Taiji, we initially obtained the PageRank scores for 887 different TFs in
each sample. To ensure the reliability of our results, we examined the correlation of these scores
across all samples. Additionally, we performed validation analyses before identifying the driving
TFs and the most important regulatees. One of the validation methods involved employing
unsupervised clustering, specifically hierarchical clustering, to distinguish different tissues and
time stages. The results revealed that nervous-system-related tissues formed a distinct cluster,
while other tissues exhibited similar clustering patterns (Figure 3.7). Furthermore, we applied
Pearson correlation analysis to assess the correlation between samples. We observed a strong
correlation across tissues at different stages, with tissues displaying stronger correlations at each
time point compared to different time points. These validation procedures provided evidence

supporting the validity and interpretability of our results for subsequent analysis.

Cluster Dendrogram

0035
|

0025
|

Height

0015
1
Liver_p0
0
PO

Lung_p0
_p

~n s
CSmnn w8
02 anr o o2

Forebrain_pQ

Forebrain_e14.5

Heart_e14.5

Forebrain_e13.5

Forebrain_e155

Intestine
Kidney_e145
Kidney_p0

Kidney_e165
5
12
12
b
Limk

NI TWONO

e
e
-]

o

T

ain_e
ain

Midbrain_e14.5

NT_et1

Hindbrain_ef6.5

NT_e15.5

Liver_e14.5
EFP_e155

0.005
1
Liver 135
Liver_e165
Liver_e155
EFP e1d5
Limb~e155
Heart_e10.5
NT e145

Heart_e13.5

Hindbrain_p0
Midbrain_e15.5

Forebrain_e16.5

NT_e13.5

Hindbrain_e15.5
Midbrain_p0

Lung e14.5
Midbrain_e16.5°

Limb_e145
EFP_e135
Lung_e155

Heart_e15.5
Heart_e16 .5

Midbrain_e13 .5

Midbrain_e
Forebrai

Forebi

Midbi

Hindb
Hindbrain_e 11
Hindbrain_e13.5

Hindb
Forebl
Hindbrain_e14.5

gene_dist
hclust (*, "average")

Figure 3.7: This graph shows Taiji hierarchical clustering with 72 results for PageRank scores
of regulatees Validation.
After validating the Taiji results, we proceeded to identify the driver transcription factors
(TFs) for each tissue or time point. We initially selected TFs with average ranking scores greater
than 0.002, which corresponded to the top 12% of all TFs. Next, we retained TFs with coefficients
of variation (CV) less than 0.3 for each tissue and 0.4 for each time. The coefficient of variation

measures the relative dispersion of data points around the mean, with lower CV values indicating
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less variability and a higher likelihood of being a driver TF across different samples.

As a result, we obtained an average of 45 driver TFs for each tissue and 30 driver TFs for
each time point, as shown in Table A.3. Notably, brain-related tissues such as the forebrain (19),
midbrain (20), and hindbrain (29) exhibited a lower number of driver TFs compared to tissues
like the kidney (86) and stomach (80). This discrepancy may be attributed to the availability of
more time point data for the brain and heart tissues. Additionally, during the early stages, there
were more driver TFs compared to the later stages. At e10.5 days, there were 73 driver TFs, but
this number significantly decreased in subsequent days, with only 19 driver TFs present at pO day.
This suggests less differentiation among all tissues in the early stages, as heart and brain-related
tissues show significant similarities in driver TF identifications. However, this trend could also
potentially be due to the limited availability of data during the early stages. Tissues such as the
stomach, intestine, and lungs did not have any data available during the early stages.

Once the driver TFs were identified for each time and tissue point, we proceeded to
identify the top 700 regulatees for each driver TF in each comparison, based on the network score
provided in the Taiji results. The network score takes into account various elements such as gene
expression level, motif binding, and peak intensity. Subsequently, we combined regulatees across
all tissues for each time point and regulatees across all time points for each tissue. Finally, we
selected the top 4500 genes based on the sum of transcripts per million (TPM) values across all

available tissues or time points.

3.4 Pairwise Comparison of Tissue Comparison

Summary We conducted an analysis of the pathways in the Gene Ontology (GO) [29] and
Kyoto Encyclopedia of Genes and Genomes (KEGG) [30] enrichment of 606 varied RAM bound-
aries between different tissues at each time point using g:profiler. GO provides a comprehensive

framework and standardized vocabulary for describing the functions of gene products across
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all organisms. Our analysis focused on all three major categories: molecular function (MF),
biological process (BP), and cellular component (CC). KEGG, on the other hand, serves as a
valuable resource for understanding the functions and interactions of biological systems, lever-
aging molecular-level information derived from genome sequencing and other high-throughput
experimental technologies.

In the subsequent sections, we compared and presented selected detailed findings derived
from the GO and KEGG analyses. Our selection criteria were designed to ensure a high level of
statistical significance, with all results in these categories being chosen based on a threshold of
a p-adjusted value below 0.01. It is important to note that a lower p-adjusted value indicates a

higher degree of statistical significance.

3.4.1 Pairwise Comparison of Expressed Genes in Different Tissues at Each

Time Point

After analyzing the results for each sample, we began by comparing the number of
expressed genes and the percentage of variable regions. We observed that the number of expressed
genes within variable RAM regions, relative to all expressed genes, was approximately the same
as the percentage of variable RAM regions across the entire genome length. This finding
suggests that expressed genes are not specifically enriched or avoided in variable regions. Next,
we examined the detailed pathways associated with each comparison. Our findings revealed
numerous generic pathways in biological processes (BP), molecular functions (MF), and cellular
components (CC). However, in the KEGG results, we did not observe any pathways that exhibited
a level of significance comparable to the other three categories.

Here, we presented two comparison samples (Figure 3.9-3.10). The analysis revealed
interesting similarities in the driver gene ontology (GO) terms between comparisons involving
different tissues and time points. Despite the differences, common driver GO terms were identified.

For example, in terms of molecular function (MF), the most important pathways were related to

23



Propotial of Expressed genes in Variable RAM compared with all Expressed Gene

0.08

0.06

0.04 4

0.02

o]
o]

8

i

T
Tissue comparison

T
Time comparison

Propotial of Variable RAM across all genome length

0.16 4

0.14 4

0.12 4

0.10 4

0.08 4

0.06

0.04 4

0.02 4

e}
o

o]
Iy

A

T

T T
Tissue comparison Time comparison

Figure 3.8: The left box plot represents the comparison of expressed genes located in variable
RAMs out of all selected 15,438 expressed genes across all tissue (606 samples) and time
(60 samples) comparisons. The right box plot illustrates the comparison of variable RAMs
region, encompassing all tissue and time comparisons, out of the total genome lengths across
Chromosome 1-19 and Chromosome X for the mouse.
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GO:MF GO:0005515 protein binding
GO:MF GO:0003824 catalytic activity
GO:MF GO:0016788 hydrolase activity, acting on ester bonds
GOMF G0:0030234 enzyme regulator activity
GO:BP GO:0051641 cellular localization
GO:BP GO:1901564 organonitrogen compound metabolic process
GO:BP GO:0043087 regulation of GTPase activity
GO:BP GO:0006793 phosphorus metabolic process
GO:BP GO:0048731 system development
GoBP G0:0035556 intracellular signal transduction
GO:BP GO:0080090 regulation of primary metabolic process
GO:BP GO:0009653 anatomical structure morphogenesis
GO:BP GO:0051171 regulation of nitrogen compound metabolic proce...
GO:BP GO:0007160 cell-matrix adhesion
GOBP GO:0031032 actomyosin structure organization
GO:BP GO:0009056 catabolic process
GO:CC GO:0005737 cytoplasm 8304x1030
GO:CC GO:0005856 cytoskeleton

This graph displays the driver Gene Ontology (GO) pathways associated with

variable RAM regions of the embryonic facial prominence, specifically compared with the
forebrain at €10.5 days. The analysis includes three categories: molecular function (MF),
biological process (BP), and cellular component (CC), with a p-adjusted value smaller than 0.01.
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15 GO:CC GO:0140535 intracellular protein-containing complex

Figure 3.10: This graph displays the driver Gene Ontology (GO) pathways associated with
variable RAM regions of the heart, specifically compared with the liver at €16.5 days. The
analysis includes three categories: molecular function (MF), biological process (BP), and cellular
component (CC) with a p-adjusted value smaller than 0.01.

protein binding and catalytic binding. Additionally, the driver GO term for cellular component
(CCO) indicated a significant pathway associated with the cytoplasm. Furthermore, we conducted
a thorough check of all pathways listed in both the GO and the KEGG database. We found that
not only did the driver pathways share high similarity, but almost all pathways were generic
and similar, such as enzyme binding, ion binding, and hydrolytic activity in MF. Moreover, the
majority of pathways overlapped and were very generic in the context of embryonic development.
No KEGG results were obtained.

In order to investigate the potential implications of utilizing gene body loci instead
of enhancer and promoter regions for gene enrichment analysis, we conducted a comparative
analysis between the two approaches. One approach utilized gene bodies as annotated loci,
while the other approach focused on promoter loci. It is important to note that H3K27ac histone

modification is associated with both enhancer and promoter signals. However, we deliberately
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chose not to employ enhancer loci as indicators for identifying expressed genes. This decision
was motivated by the complex nature of enhancer regulation on genes and the limited availability
of comprehensive annotation for enhancers. Enhancers have the ability to regulate multiple genes,
and conversely, a single gene can be influenced by multiple enhancers through enhancer-promoter
interactions. Additionally, different enhancers may exhibit diverse modes of regulation, and
the competition between enhancers in regulating a particular gene further complicates accurate
predictions. To address these challenges, we opted to use transcription start site (TSS) loci as
indicators for promoter regions. The details of TSS identification are described in Chapter 2.1.5.

To provide a summary of the results obtained from these comparisons, we have generated
bar plots. These plots depict the differences in pathway enrichment between the two loci
annotation approaches. They serve as a comprehensive overview of the findings and provide a
reference for further analysis and interpretation.

Based on the analysis, we discovered a total of 16,438 expressed genes across all samples.
However, when considering only the genes with annotated transcription start site (TSS) regions,
the count decreased to 13,452 genes. This reduction suggests that approximately 18% of genome
information was lost when relying solely on TSS loci annotation. Additionally, we investigated
the disparity in gene identification between TSS loci and gene loci specifically within the variable
RAMs. On average, the gene list derived from TSS loci within variable RAMs was approximately
20% smaller compared to the gene list obtained from gene loci. This finding indicates a propor-
tional decrease in the number of genes when utilizing TSS loci annotation, which is consistent
with the loss of annotation information.

After conducting a thorough analysis of all comparisons using TSS and gene loci, we
have compiled a comprehensive summary of consistently identified pathways across all samples.
These pathways have been categorized into three distinct categories: molecular function (MF),
biological process (BP), and cellular component (CC). To present the results clearly and concisely,

we have created tables displaying the identified pathways. In each comparison, we focused on
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the top 30 significant pathways within each category, highlighting the most noteworthy findings
while minimizing potential noise. This selection process was necessary due to the presence of
pathways in the database with limited officially recorded genes, which could yield significant
findings based on the provided gene lists. Moreover, considering the database includes predictions
for the functions of numerous genes, it is crucial to ensure that the identified pathways genuinely
reflect the role of variable RAM regions.

Upon comparing the pathways identified using TSS loci and gene loci, it was observed
that more than 90% of the pathways were consistently identified in both categories across
all tissue comparisons. The tables presented in the molecular function (MF) (Figure 3.11),
biological process (BP) (Figure 3.12), and cellular component (CC) (Figure B.2) categories
clearly highlight the striking similarity in the enrichment analysis between TSS loci and gene
body loci in variable RAMs. Minor variations were observed in the number of significant
pathways across all samples, but the most shared pathways generally appeared in a similar
order, with only slight rearrangements of the most significant pathways. These findings provide
strong evidence of the high degree of consistency and agreement in the pathway analysis results
obtained from TSS and gene loci annotations. Consequently, these results bolster confidence in
the reliability and validity of the enrichment analysis conducted solely using gene loci.

It is noteworthy that, in the majority of pathways identified using TSS loci in variable
RAM regions, the number of samples was only slightly lower compared to gene loci. This
observation can be attributed to the close proximity of TSS regions to the genome. Consequently,
when a gene is located within a variable RAM region and its size is much smaller than the
encompassing variable region, it is highly likely that the TSS region of this expressed gene is also
situated within the same variable region. In order to minimize the loss of genome information,
the decision was made to utilize gene body loci instead of TSS loci. Fortunately, the pathways
identified using gene body loci exhibited a striking similarity to those identified using TSS loci.

This implies that the inclusion of gene body loci would not introduce a significant number of

27



MF Term

purin;

BP Term

Top Melecular Function of Tissue Comparison

Top Molecular Function of Tissue Comparison

protein binding - protein binding -

binding - binding -

catalytic actity - EE‘E‘Y“TE;W‘W'

e ] ion binding -
bindi

"“" qumg ] cation binding -

catian einding metalion binding -

enzyme binding -

transferase actity -

metal ion binding -
catalytic actiity, acting on a protein -

transferase activity

enzyme binding -
catalytic activity, acting on a protein - anion binding -
anion binding - adenyl nucleoiide binding -

Percent Percent
nucleotige binding - adenyl ribonucleatide binding - 10

nucleoside phosphate binding - c nucleoide binding -
identical protein binging - 08 s nucleoside phosphate binding - 08
purine nucletide binding - 06 t purine nucleotide binding - 06

5 purine ribonucleotide binding -
cytoskeletal protein binding - 04
02

04
ribonucleotide binding -
carbohydrate derivative binding -
small molecule binding -
ATP binding -
purine ribonucleoside triphosphate binding -
identical protein binding -
hydrolase activity -
protein domain specific binding -
Kinase binding -
Kinase activity -

transferase activity, transferring phosphorus-containing groups -
protein kinase binding -

adenyl nucleotide binding -
small molecule binding -
hydrolase actity -

purine ribanudlectide binding -
ribenucleotide binding -

ATP binding -

adenyl ribanucleotide binding -
carbohydrate derivative binding -
¢ ribonucleoside tiphosphate binding -
crloskeletal protein binding -
organic cyclic compound binding -
Kinase binding -

heterocyclic compound binding -

02

400
Number of Samples

400
Number of Samples

Figure 3.11: Here are all the pathways selected based on a p-adjusted value ; 0.01 and appearing
in 15% of all tissue comparisons. The left panel represents the pathways identified using
transcription start site (TSS) loci located in variable RAMs, while the right panel represents the

pathways identified using gene body loci located in variable RAMs.
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Figure 3.12: Here are all the pathways that were selected based on a p-adjusted value ; 0.01 and
appeared in 65% of all tissue comparisons. The left panel represents the pathways identified
using transcription start site (TSS) loci located in variable RAMs, while the right panel represents

the pathways identified using gene body loci located in variable RAMs.

additional genes that could potentially disrupt the final results.

From the analysis of the MF (Molecular Function) results, it was observed that pathways
related to protein binding, binding, enzyme or catalytic binding, and ion binding consistently
ranked among the top significant pathways across all comparisons. These pathways involved a

substantial number of genes and were consistently present in the majority of comparisons. Notably,
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during the early stages of development, when samples included embryonic facial prominence,
forebrain, midbrain, hindbrain, neural tube, limb, and heart, pathways related to cation binding
and metal ion binding were particularly significant. In the comparison involving lung samples,
pathways associated with metal and cation ion binding were also observed. However, it is
important to note that in some comparisons where cation and metal binding pathways were
present, they exhibited lower significance compared to the protein and ion binding pathways.
Interestingly, pathways associated with nervous system development were not only ob-
served in variable RAMs of brain-related tissues but were also present in more than 80% of all
tissue comparisons, albeit with varying levels of significance. In the case of the neural tube, it
consistently ranked among the top 5 significant pathways compared to other tissues at any given
time point. However, it is interesting to observe that the significance of nervous system develop-
ment pathways in brain-related tissues was comparable to that of the heart, facial prominence,
and liver. Therefore, the presence of nervous system pathways in the pathway analysis cannot

solely be attributed to a specific tissue when utilizing expressed genes in variable RAMs.

3.4.2 Pairwise Comparison of Differentially Expressed Genes in Different

Tissues at Each Time Point

We discovered that the number of differentially expressed genes (DEGs) identified within
each sample was limited, posing challenges in identifying significant pathways across most
categories. To address this limitation and focus on tissue-specific comparisons, we decided to
consolidate DEGs from comparisons involving the same control and sample groups across all
time points. Subsequently, we conducted enrichment analysis using g:profiler, following the same
methodology as before. Overall, our analysis included a total of 132 comparisons. Consistent with
our observations for expressed genes, we found that DEGs were not preferentially enriched or
avoided in variable RAM regions. The number of DEGs within variable RAM regions displayed

a nearly proportional relationship to the total number of DEGs, with a ratio of approximately 1:1
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(Figure 3.13).
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Figure 3.13: The left box plot represents the comparison of differentially expressed genes
(DEGS) located in variable RAMs out of all DEGs per sample across all tissue (606 samples)
and time (60 samples) comparisons. The right box plot illustrates the comparison of variable
RAMs region, encompassing all tissue and time comparisons, out of the total genome lengths
across Chromosome 1-19 and Chromosome X for the mouse.
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Figure 3.14: The left bar plot illustrates the selected MF pathways, while the right bar plot
displays the selected BP pathways. These pathways were chosen based on a p-adjusted value
smaller than 0.01 and were observed in over 15% for MF and over 30% for BP across all

comparisons.

However, in contrast to the high consensus observed among expressed genes across all
samples in each Gene Ontology (GO) category, the results obtained for DEGs exhibited significant

variations across all samples. Notably, the analysis of DEGs revealed a larger number of KEGG
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Figure 3.15: The bar plot on the left showcases the selected CC pathways, while the one on the

right presents the selected KEGG pathways. These pathways were chosen based on a p-adjusted
value smaller than 0.01 and were observed in over 25% for CC and over 30% for KEGG across

all comparisons.

terms compared to the analysis of expressed genes. To provide a comprehensive overview of the
findings, we have summarized the top terms in the Molecular Function (MF), Biological Process
(BP), and Cellular Component (CC) categories in the following bar plots (Figures 3.14-3.15).
These plots serve to highlight the notable differences and variations observed in the enrichment
analysis results of DEGs.
The top significant pathway in the MF category for DEGs is protein binding, which aligns
with previous findings. However, it is observed in only 65% of the comparisons, indicating a
higher variability in DEGs located in variable RAMs across samples. The increased number of
total MF pathways shared over 25% across all comparisons suggests diverse functional roles
for DEGs in variable RAMs. Both findings indicate an increased variability of DEGs located in
variable RAMs, which is consistent with the normal features of DEGs across different tissues.
One interesting finding is the high significance of calcium binding in multiple compar-
isons. This finding aligns with previous research that suggests calcium plays diverse roles in
cellular development across various tissues. Calcium acts as an essential intracellular signaling
mediator and is involved in processes such as neurodegeneration [31]. Furthermore, studies have

demonstrated the dependence of embryonic morphological development and DNA synthesis on
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the concentration of Ca?* in the growth medium [32].

Another reason for the focus on calcium ion binding proteins is their potential involvement
in the formation of RAM boundaries, as mentioned in a previous RAM paper. Studies have
suggested that cations such as calcium play a critical role in maintaining the structural integrity
of chromosomes, particularly during the condensation of mitotic chromosomes following nuclear
envelope breakdown (NEB) and the compaction of chromatin fibers [19]. Cation ion binding
proteins might have the ability to transport cations such as Ca>* and Mg?* along with partner
proteins into the nucleus, where they can bind to specific positions on DNA. This binding can
ultimately lead to chromatin condensation and the formation of RAM boundaries. Therefore, the
significance of calcium ion binding proteins in our analysis may indicate their involvement in
these processes [12].

After conducting a thorough analysis, we found that certain comparisons, such as those
involving the heart, limb, and embryonic facial prominence as samples, exhibited a particularly
strong association with calcium ion binding. Additionally, when the stomach was used as a
control group, brain-related tissues also showed significant calcium ion binding. This finding
aligns with previous research indicating the diverse importance of calcium-binding proteins,
including parvalbumin, calbindin, and calretinin, in the central nervous system. Experimental
studies involving the knockdown or overexpression of these genes in vivo and in vitro have
demonstrated their role in determining neuronal survival in different locations [33]. To further
investigate whether calcium ion binding is specifically related to DNA condensation in tissues, we
examined the cellular component (CC) categories associated with genes correlated with calcium
ion binding.

After analyzing the cellular component (CC) pathways, we observed that genes related to
calcium ion binding were not primarily located in the nucleus, where chromosomes are situated.
However, it is worth noting that some genes exhibited dual localization in both the cytoplasm and

nucleus. Unfortunately, our analysis did not reveal a substantial number of genes associated with
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histone modification functions and chromatin modification among the DEG candidates. However,
our investigation yielded significant findings related to important genes as expressed genes and
regulatees in pairwise comparisons within variable RAMs and cRAM, as discussed in Chapter
3.6.

Even when excluding the most common embryonic cell development mouse genes,
our analysis of pathways still revealed a strong signal associated with organ growth, system
development, and tissue development in biological processes. This finding suggests that these
processes play a significant role in the formation and development of tissues, extending beyond

the context of embryonic cell development.

3.4.3 Pairwise Comparison on Different Tissues for Each Time with Regu-

latees

In the analysis of regulatees in variable RAMs, we observed that they do not have as many
genes as expressed genes in each tissue comparison per time. To address this limitation, a decision
was made to merge all time points for each tissue comparison and conduct enrichment analysis.
This approach resulted in a total of 132 different comparisons, providing a more comprehensive
understanding of the enriched pathways associated with regulatees in variable RAMs.

The analysis presented in Figure 3.16 demonstrated that most pathways exhibit similarities
across all three categories. However, a notable difference was observed in the molecular function
(MF) category, where mRNA binding and transcript coregulator activity were prominently present
in the regulatees analysis, but seldom observed in the expressed genes. This observation suggests
that many highly expressed regulatees are involved in regulatory functions that affect gene

expression level.
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Figure 3.16: The bar plot on the left showcases the selected MF pathways, while the one on the
right presents the selected BP pathways. These pathways were chosen based on a p-adjusted
value smaller than 0.01 and were observed in over 15% for MF and over 90% for BP across all

comparisons.

3.5 Pairwise Comparison of Time Comparison

3.5.1 Pairwise Comparison of Subsequent Time Points for Each Tissue

with Expressed Genes
Similar to the tissue comparison, we also conducted pathway analysis between TSS and
expressed genes located in variable RAMs for subsequent time points. Consistent with our
previous findings,the differences between these two sets of data are very small (Figure 3.17).

Therefore, we proceeded with our analysis using expressed genes using their loci.

The consistent patterns observed in all GO terms between time and tissue comparisons
indicate a high degree of similarity across different comparisons. Despite the lower number of
genes in time comparisons compared to tissue comparisons, the top terms in the molecular function
(MF), biological process (BP), and cellular component (CC) categories exhibit remarkable
similarity. Processes such as protein binding, catalytic binding, ion binding, metal binding,

and cation binding are frequently observed in both types of comparisons. These processes are
fundamental to cell development and survival and predominantly occur in the cytoplasm. These

findings suggest that these essential cellular processes and molecular interactions play a crucial
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Figure 3.17: The bar plots illustrate the selected molecular function (MF) pathways that were
present in over 15% of the genes located in variable RAM regions. The left bar plot corresponds
to the results obtained using TSS loci, while the right bar plot represents the results obtained

using gene body loci.
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Figure 3.18: The bar plots illustrate the selected biological process (BP) pathways that were
present in over 45% of the genes located in variable RAM regions. The left bar plot corresponds
to the results obtained using TSS loci, while the right bar plot represents the results obtained

using gene body loci.

role across various conditions and stages of development in variable RAM regions.
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3.5.2 Pairwise Comparison of Subsequent Time Points for Each Tissue

with Differentially Expressed Genes

Similar to the approach used for tissue comparisons, we consolidated all DEGs located in
variable RAMs for all time comparisons within each tissue. This resulted in a total of 12 samples

for pathway analysis in time comparisons across 12 tissues.
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Figure 3.19: The bar plot on the left showcases the selected molecular function (MF) pathways,
while the one on the right presents the selected biological process (BP) pathways. These
pathways were chosen based on a p-adjusted value smaller than 0.02 and were observed in over
10% of the comparisons for MF and over 10% for BP across all comparisons.

The comparison of MF and BP pathways shared between tissue comparisons for DEGs in
time comparisons for expressed genes reveals a significant difference (Figure 3.19). The overlap
of pathways in MF and BP is remarkably low, with a maximum of only 2 shared pathways. This
finding is surprising, considering the analysis was conducted on three distinct brain regions and the
neural tube, which showed considerable similarities in previous analyses. The observed variability
in MF and BP suggests distinct changes in RAMs within the brain regions over time, emphasizing
the dynamic nature of brain development and the unique regulatory processes involved.

The absence of pathways related to protein binding, enzyme binding, and ion binding in
the Molecular Function (MF) category, as well as the significant variability in the top Cellular

Component (CC) terms, indicates distinct differences between time point comparisons and
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tissue comparisons for DEGs located in variable RAMs. Unlike the results obtained from tissue
comparisons and expressed genes in time comparisons, generic pathways such as cytoplasm,
organelle, and cytosol are not prominently featured in the time point comparisons. This disparity
can be attributed to the limited number of DEGs available for the time point comparisons, which
is a consequence of the high degree of similarity among tissues even at different developmental
stages. In the case of certain tissues, such as the heart, there is a relatively small proportion of
DEGs located in variable RAMs, potentially because their early development begins prior to the
available data [34]. Similarly, tissues like the neural tube also undergo early development stages
that precede the available online data [35], resulting in limited information on differential gene
expression at those specific time points.

Moreover, certain tissues, such as the stomach and intestine, have data available for
only four distinct time points, resulting in a smaller number of DEGs and consequently fewer
pathways available for enrichment analysis. This is in contrast to tissues like the forebrain, which
have data available for eight different time points, leading to a larger number of DEGs and
more comprehensive pathway results. Therefore, the variability and limited pathway outcomes
observed in the time point comparisons of DEGs located in variable RAMs can be attributed to
the restricted number of DEGs and the developmental disparities among tissues at specific time

points.

3.5.3 Pairwise Comparison of Subsequent Time Points for Each Tissue

with Regulatees

We also conducted time comparisons for regulatees in each tissue. Following a similar
approach as with DEGs in variable RAMs, we consolidated the regulatees from the same tissue,
resulting in 12 distinct comparisons. Our analysis of the time comparisons for regulatees revealed
a high frequency of molecular function (MF) terms related to protein binding and binding.

We observed a greater number of significant pathways in the molecular function (MF),
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Figure 3.20: The bar plots depict the top pathways in the MF and BP categories based on the
analysis of regulatees in time comparisons. The left plot represents the selected MF pathways,
while the right plot displays the selected BP pathways. These pathways were chosen based on a
p-adjusted value smaller than 0.02 and were observed in over 10% of the regulatees across all
time point comparisons.

biological process (BP), and cellular component (CC) categories when analyzing regulatees in
time point comparisons. Many of these pathways were shared across almost all tissues, indicating
common regulatory processes at different developmental stages. In the MF category, pathways
such as protein binding, ion binding, enzyme binding, and catalytic activity were consistently
identified in most samples, which aligns with the findings from the analysis of expressed genes in
time point comparisons. However, we also identified a notable pathway, ’transcription coregulator
activity’, which was present in both tissue comparisons and the regulatees analysis. This pathway
may be specifically related to the unique feature of regulatees, as many of them are under the

regulation of driver transcription factors (TFs).

3.6 cRAM Identification and Comparison Results

Summary By summarizing the results, it becomes evident that relying solely on pathway
analysis in pairwise comparisons is insufficient for comprehensively understanding the functions
of RAMs and boundaries in mouse development. However, we observed a high degree of
similarity in RAM patterns and functions across all samples, particularly for expressed genes and

regulatees. To further investigate this, we examined the consistency of RAM boundaries across
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all time points for each tissue and all tissues for each time, defining them as consensus RAM
boundaries. Surprisingly, we found that 83% of RAM boundaries were consistent and shared
across all 72 samples. This highlights the robustness and stability of RAM boundaries throughout
the developmental stages. Additionally, we identified a new pattern in cRAMs called the Merging

and Splitting (MS) region.

3.6.1 Merging and Splitting Region Identification

We first identified cRAMs for each tissue and time point by considering those that were
shared across over 50% of the samples. On average, we observed that 80% of boundaries belonged
to cRAMs. Upon visual inspection using IGVs, we found that cRAMs exhibited similarities
across different time points and tissues. We further categorized the cRAMs into three types:
Identical Regions, Specific Regions, and Merging and Splitting (MS) Regions. Identical Regions
demonstrated high consistency across all samples and remained relatively closed and less variable
compared to other regions. Specific Regions, which appeared in less than half of the cRAMs,
were not the main focus of our analysis. Our attention was primarily directed towards the MS
Regions, which exhibited significant changes in their boundaries across time points or tissues.

To define MS regions, we required them to have over 15% shared RAM region and less
than 85% RAM region coverage across all time points or tissues. Additionally, MS regions had to

be equal to or greater than 3 bin sizes (750 kb) to focus on larger changing regions (Figure 3.21).

3.6.2 cRAM Analysis for Time and Tissue Comparisons

To further explore gene enrichment, we focused on genes that were consistently identified
as expressed in the majority of samples. Similar to the findings in pairwise comparisons, we
observed generic functional roles such as protein binding, catalytic activity, and generic biological

processes in both time and tissue comparisons (Figure 3.22). However, we observed a significant
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increase in the enrichment of cation and metal ion binding pathways in both tissue and time
comparisons. This finding aligns with previous studies suggesting that cation binding proteins may
play a role in the formation of RAM boundaries [12]. Prior research has indicated that multivalent
cations contribute to reducing electrostatic repulsions between DNA chains, facilitating DNA
condensation [36]. These cations can bind to specific DNA sequences and influence nucleosome
positioning. The presence of cation binding pathways in the gene enrichment analysis suggests
their potential involvement in transporting cations into the nucleus and binding to DNA, ultimately
leading to chromatin condensation and affecting gene expression within the variable RAM regions.

Regarding the association with the nucleus and chromatin-related pathways, our analysis
revealed that the cytoplasm was still the predominant cellular component (CC) term, while the
nucleus showed less significance. However, it should be noted that many genes have functions in
both the nucleus and cytoplasm. Therefore, we focused on genes involved in cation ion binding
and located within the nucleus in both MS regions and variable regions in pairwise comparisons.
We compared the overlap between the cation and metal ion binding gene database in the MS
regions with genes associated with the nucleus, and we identified 39 genes in the time MS regions
and 52 genes in the tissue MS regions. Notably, genes such as GATA3[37], HDAC2[38], and
FOXP2[39] were among the identified genes, and they play important roles in histone modification
and chromatin formation changes. For example, GATA3 has been shown to regulate both active
and repressive histone modifications and is involved in chromatin reprogramming [37, 40].

We then identified the expressed genes that belong to cation binding and are located in the
nucleus for pairwise comparisons. By combining all pairwise comparisons, we generated a list of
400 candidates for future downstream analysis. It is important to note that for the mouse data,
the majority of genes in these lists lack experimental validation of their functions specifically
within the nucleus. However, we once again found some important genes that appeared frequently,
and some of them were also identified in the cRAM analysis, including GATA3, HDAC9[38],

HDAC?2, HNF4G[41] and FOXP2. These genes exhibit high expression levels in some or all
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tissues and time points and are known to have a strong relationship with histone modification and

chromatin structure.
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Figure 3.22: Bar plots show the top pathways of MF for expressed gene of cRAM time and
tissue comparisons. The left plot represents the time comparison, while the right plot represents
the tissue comparison. These pathways were selected based on a p-adjusted value smaller than
0.05.
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Chapter 4

Discussions & Future Work

In this thesis, we focused on analyzing the peak density profiles of histone modification
H3K27ac ChIP-seq in mouse development data. Utilizing the latest modal regulation-associated
modules (RAMs), our aim was to understand how RAMs change as time points and tissues change
and whether these changes in RAMs result in significant alterations in chromatin functions and
gene expression. After thoroughly examining 72 mouse development samples, we identified
several interesting features in RAMs during the developmental stages.

Firstly, we observed that the number of RAM boundaries in mouse development data
was slightly smaller compared to those in humans when using the same bin size in *findRAM’.
This discrepancy could potentially be attributed to the shorter genome length in mice, which is
approximately 14% shorter than that of humans.

Secondly, while over 60% of RAMs in human normal and cancer cells were identified as
consensus RAMs (cCRAMs), we found a higher proportion of cRAMs (80%) in mouse development
samples, along with a higher consensus standard. This difference may be attributed to the high
similarity between samples derived from the same tissue or time point in mouse development.

However, despite these differences, we also observed some similarities between RAM

findings in human and mouse samples. Notably, RAM sizes for both humans and mice are much
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larger than topologically associated domain (TAD) sizes and exhibit consistency across the two
organisms. Additionally, the number of RAM boundaries showed proportionality to the whole
genome length, with an average of 606 boundaries per cell for mice and approximately 720
boundaries for humans.

As a preliminary exploration of RAMs in mouse development data, our study yielded
intriguing observations and proposed potential directions for future analysis and experimental
validation of chromatin structure. In our pairwise comparisons, we did not find any avoidance or
enrichment of expressed genes, differentially expressed genes (DEGs), or regulatees in variable
RAM regions. Further gene enrichment analysis revealed that most expressed genes and regulatees
in variable RAM regions were associated with generic molecular binding, biological processes,
and cellular components involved in cell development, growth, and survival across tissue and time
comparisons. For DEGs located within variable RAMs, despite their greater variability across
samples, we still observed generic functions without identifying any specific roles for these genes.

The presence of significant pathway similarities across all pairwise comparisons implies
that RAMs exhibit greater similarity in developmental stages across different tissues and times
compared to normal and cancer cells. To validate this notion, we further identified consensus
RAMs for each time and tissue stage. As expected, over 50% of the boundaries of CRAMs
were shared within each stage, and more than 80% of boundaries were confirmed as identical
cRAMs. These findings suggest that the similarities of RAMs in embryonic mouse cells are
higher compared to normal and cancer cells (60%) in humans.

In our cRAM analysis, we observed a new pattern called merging and splitting (MS)
regions. We further conducted enrichment analysis on these regions and found similarities across
all pathway categories compared to the results obtained from pairwise comparisons. However, we
observed a higher significance of both cation and metal ion binding in MS regions during cRAM
analysis.

In the previous RAM project, there were suggestions that multivalent cations might
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contribute to chromatin condensation, potentially leading to the formation of RAM boundaries[36,
12]. The increased significance of cation and metal ion binding in our analysis could serve as
another indicator of how RAMs and boundaries are formed. In light of this, we examined all
genes involved in cation binding within both cRAM and pairwise comparisons that are located in
the nucleus. Overall, we identified over 400 distinct genes that fit this criteria. Notably, some of
these genes, such as GATA3 and HDACY, are well-known transcription factors that have been
extensively linked to histone modifications and chromatin organization.

From our research on the RAM project using mouse development data, we have recognized
several potential biases that could affect the results and conclusions. Firstly, we acknowledge that
the identification software findRAM’ is not yet perfect. While it can detect the most prominent
boundaries based on extremely low peak densities, it still requires higher accuracy to differentiate
RAMs and boundaries in regions with ambiguous peak density patterns that are near the cut-off
value. Moreover, for a more comprehensive understanding of the functions of changing RAMs
and their relationship to gene expression, it may be beneficial to consider the expression level of
each peak in the H3K27ac density peak files. Instead of solely focusing on the number of peaks
in each bin region, incorporating the expression levels can provide additional insights into the
dynamics of RAMs and their impact on gene regulation.

Secondly, it is important to note that the availability of data for different time points in
various tissues is still limited. For instance, the development of the heart starts at approximately
e7.5 day, and the neural tube forms around e8.5 day. However, in our study, we only had data
starting from e10.5 day. This limitation could potentially result in missing important RAM
patterns that emerge in the early stages, thereby hindering our understanding of the mechanisms
underlying RAM formation.

While RAM identification is not perfect, and data availability at different stages for
various tissues is still not ideal, the findings from our analysis of mouse development data provide

valuable insights. In this thesis, although we have not fully elucidated how RAMs form and the
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purpose they serve, the observations have inspired us to continue studying RAMs and further
explore the relationship between histone modification and chromatin structures.

Future work should involve modifying the computational pipeline *findRAM’ to enhance
its complexity and accuracy. Additionally, additional experimental data is necessary to validate
our hypothesis regarding RAM formation, such as investigating the exact function and effects of
genes like GATA3, HDACY, and FOXP2 located in variable RAMs and MS regions of cRAMs.
Furthermore, exploring the role of genes like SVEP1, which are predicted to have calcium ion
binding activity and chromatin binding activity, would contribute to a deeper understanding of
RAMs and their significance in chromatin structure regulation. For future RAM studies, it would
be valuable to analyze more RAM patterns in other eukaryotes such as Drosophila and plants,
spanning from embryo stages to adult stages, and from normal cells to cancer cells. This analysis
would help determine whether RAM patterns are conserved across species in different stages like
TAD or if they exhibit species-specific patterns.

This thesis, in part, is a coauthored unpublished material with Wei Wang. The thesis

author is the primary investigator and author of the material that appeared in this thesis.
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Appendix A

Supplementary Tables

Table A.1: The table below shows the number of RAM boundaries presented in each sample.
If ’-’ is indicated, it means that there is no available data on the ENCODE website for that
particular sample.

Tissue/Time | €10.5 | ell.5 | el2.5 | el13.5 | el4.5 | el5.5 | €16.5 | p0
EFP 556 | 556 | 572 | 600 | 621 605 - -

Forebrain 565 612 | 624 | 621 625 667 | 648 | 654
Midbrain 580 | 603 610 | 631 621 640 | 638 | 616
Hindbrain 551 588 613 642 | 662 | 656 | 617 | 638
NT - 590 | 516 | 649 | 591 625 - -

Heart 564 | 621 644 | 664 | 654 | 646 | 651 | 654
Limb 562 | 552 | 603 590 | 588 | 595 - -

Liver - 537 | 558 562 | 545 582 | 604 | 638
Lung - - - - 627 | 655 660 | 617
Kidney - - - - 500 | 582 | 642 | 647
Intestine - - - - 619 597 652 | 590
Stomach - - - - 606 611 640 | 588

Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSRI151APL | ChIP-seq | embryonic facial prominence el0.5
ENCSR401GRX | ChIP-seq | embryonic facial prominence ell.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR813SCQ | ChIP-seq | embryonic facial prominence el2.5
ENCSR420MUYV | ChIP-seq | embryonic facial prominence el3.5
ENCSR481SGM | ChIP-seq | embryonic facial prominence el4.5
ENCSR382DRK | ChIP-seq | embryonic facial prominence el5.5
ENCSR825ZJV | ChIP-seq forebrain el0.5
ENCSR275KPI | ChIP-seq forebrain ell.5
ENCSR966AIB | ChIP-seq forebrain el2.5
ENCSR311YPF | ChIP-seq forebrain el3.5
ENCSR320EEW | ChIP-seq forebrain eld.5
ENCSR69INQH | ChIP-seq forebrain el5.5
ENCSR4280EK | ChIP-seq forebrain el6.5
ENCSRO94TTT | ChIP-seq forebrain pO
ENCSR582SPN | ChIP-seq heart el0.5
ENCSR222IHX | ChIP-seq heart ell.5
ENCSRI123MLY | ChIP-seq heart el2.5
ENCSR699XHY | ChIP-seq heart el3.5
ENCSR360ANE | ChlP-seq heart eld.5
ENCSR574VME | ChlP-seq heart el5.5
ENCSR846PJO | ChIP-seq heart el6.5
ENCSR675HDX | ChIP-seq heart pO
ENCSR594JGI | ChIP-seq hindbrain el0.5
ENCSR129LAP | ChIP-seq hindbrain ell.5
ENCSR784TLR | ChIP-seq hindbrain el2.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR344HHI | ChIP-seq hindbrain el3.5
ENCSRO054JHZ | ChIP-seq hindbrain el4.5
ENCSRO66XFL | ChIP-seq hindbrain el5.5
ENCSR797EYS | ChIP-seq hindbrain el6.5
ENCSR332JYZ | ChIP-seq hindbrain pO
ENCSR424END | ChIP-seq intestine el4.5
ENCSR599GVS | ChIP-seq intestine el5.5

ENCSR639DND | ChIP-seq intestine el6.5
ENCSR642VYW | ChlP-seq intestine p0
ENCSRO57SHA | ChIP-seq kidney el4.5
ENCSR711SVB | ChIP-seq kidney el5.5
ENCSR357JI1 ChIP-seq kidney el6.5
ENCSR140YPL | ChIP-seq kidney p0
ENCSR863VHE | ChIP-seq limb el0.5
ENCSR897WBY | ChIP-seq limb ell.5
ENCSR737QWYV | ChIP-seq limb el2.5
ENCSRO05FFU | ChIP-seq limb el3.5
ENCSRO21ALF | ChIP-seq limb el4.5
ENCSR988BRP | ChIP-seq limb el5.5
ENCSRO58DOA | ChIP-seq liver ell.5
ENCSR136GMT | ChIP-seq liver el2.5
ENCSR175KBJ | ChIP-seq liver el3.5
ENCSRO75SNV | ChIP-seq liver el4.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR479LFP | ChIP-seq liver el5.5
ENCSR802RET | ChIP-seq liver el6.5
ENCSR616TIM | ChIP-seq liver pO

ENCSR452WYC | ChIP-seq lung eld.5
ENCSR895BMP | ChIP-seq lung el5.5
ENCSRI140UEX | ChIP-seq lung el6.5
ENCSR884MYD | ChIP-seq lung pO
ENCSR989LUY | ChIP-seq midbrain el0.5
ENCSRO88UKA | ChIP-seq midbrain ell.5
ENCSR2520NR | ChIP-seq midbrain el2.5
ENCSR67INSS | ChIP-seq midbrain el3.5
ENCSR254AHA | ChIP-seq midbrain el4.5
ENCSR428GHF | ChIP-seq midbrain el5.5
ENCSRS553IWV | ChIP-seq midbrain el6.5
ENCSR672ZXY | ChIP-seq midbrain pO
ENCSRS531RZS | ChIP-seq neural tube ell.5
ENCSR891SAW | ChIP-seq neural tube el2.5
ENCSR289SWIJ | ChIP-seq neural tube el3.5
ENCSR265NBM | ChIP-seq neural tube el4.5
ENCSR241BSK | ChIP-seq neural tube els.5
ENCSR316CNR | ChIP-seq stomach eld.5
ENCSR929SEW | ChIP-seq stomach el5.5
ENCSR546ANT | ChIP-seq stomach el6.5
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR346FJG | ChIP-seq stomach pO
ENCSR809VYL | RNA-seq | embryonic facial prominence 10.5 days
ENCSR848HOX | RNA-seq | embryonic facial prominence 11.5 days
ENCSR85THEC | RNA-seq | embryonic facial prominence 12.5 days
ENCSR538WYL | RNA-seq | embryonic facial prominence 13.5 days
ENCSR823VEE | RNA-seq | embryonic facial prominence 14.5 days
ENCSR636CWO | RNA-seq | embryonic facial prominence 15.5 days
ENCSR304RDL | RNA-seq forebrain 10.5 days
ENCSRI160IIN | RNA-seq forebrain 11.5 days
ENCSR647QBV | RNA-seq forebrain 12.5 days

ENCSR970EWM | RNA-seq forebrain 13.5 days
ENCSR185LWM | RNA-seq forebrain 14.5 days
ENCSR752RGN | RNA-seq forebrain 15.5 days
ENCSROS0OEVZ | RNA-seq forebrain 16.5 days
ENCSRO94TTT | RNA-seq forebrain p0 days

ENCSR049UJU | RNA-seq heart 10.5 days
ENCSR6910PQ | RNA-seq heart 11.5 days
ENCSRI150CUE | RNA-seq heart 12.5 days
ENCSR284YKY | RNA-seq heart 13.5 days
ENCSR727FHP | RNA-seq heart 14.5 days
ENCSR597UZW | RNA-seq heart 15.5 days
ENCSRO020DGG | RNA-seq heart 16.5 days
ENCSR675HDX | RNA-seq heart p0 days
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR943LKA | RNA-seq hindbrain 10.5 days
ENCSR760TOE | RNA-seq hindbrain 11.5 days
ENCSR420QTO | RNA-seq hindbrain 12.5 days
ENCSR921PRX | RNA-seq hindbrain 13.5 days
ENCSRS559TRB | RNA-seq hindbrain 14.5 days
ENCSR401BSG | RNA-seq hindbrain 15.5 days
ENCSR285WZV | RNA-seq hindbrain 16.5 days
ENCSR332JYZ | RNA-seq hindbrain pO days
ENCSRO932TRU | RNA-seq intestine 14.5 days
ENCSR370SFB | RNA-seq intestine 15.5 days
ENCSR848GST | RNA-seq intestine 16.5 days
ENCSR642VYW | RNA-seq intestine p0 days
ENCSR504GEG | RNA-seq kidney 14.5 days
ENCSR062VTB | RNA-seq kidney 15.5 days
ENCSRS537GNQ | RNA-seq kidney 16.5 days
ENCSR140YPL | RNA-seq kidney p0 days
ENCSR968QHO | RNA-seq limb 10.5 days
ENCSR541XZK | RNA-seq limb 11.5 days
ENCSR216NEG | RNA-seq limb 14.5 days
ENCSR750YSX | RNA-seq limb 12.5 days
ENCSR347SQR | RNA-seq limb 13.5 days
ENCSRS830IVQ | RNA-seq limb 15.5 days
ENCSR284AMY | RNA-seq liver 11.5 days
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR648YEP | RNA-seq liver 12.5 days
ENCSR611PTP | RNA-seq liver 15.5 days
ENCSR448MXQ | RNA-seq liver 13.5 days
ENCSR867YNV | RNA-seq liver 14.5 days
ENCSR826HIQ | RNA-seq liver 16.5 days
ENCSR616TIM | RNA-seq liver pO days
ENCSRO39ADS | RNA-seq lung 14.5 days
ENCSR457RRW | RNA-seq lung 15.5 days
ENCSR992WBR | RNA-seq lung 16.5 days
ENCSR884MYD | RNA-seq lung p0 days
ENCSR7640PZ | RNA-seq midbrain 10.5 days
ENCSR908JWT | RNA-seq midbrain 12.5 days
ENCSR307BCA | RNA-seq midbrain 11.5 days
ENCSR792RJV | RNA-seq midbrain 13.5 days
ENCSR343YLB | RNA-seq midbrain 14.5 days
ENCSRS557RMA | RNA-seq midbrain 15.5 days
ENCSR367ZPZ | RNA-seq midbrain 16.5 days
ENCSR672ZXY | RNA-seq midbrain p0 days
ENCSR337FYI | RNA-seq neural tube 11.5 days
ENCSR508GWZ | RNA-seq neural tube 12.5 days
ENCSRI115TWD | RNA-seq neural tube 13.5 days
ENCSR9280XI | RNA-seq neural tube 14.5 days
ENCSR004XCU | RNA-seq neural tube 15.5 days
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Table A.2: The table below lists all the ENCODE assays that were used in the analysis.

Accession assay Biosample term name Biosample age
ENCSR290RRR | RNA-seq stomach 14.5 days
ENCSR906YQZ | RNA-seq stomach 15.5 days
ENCSR466KZY | RNA-seq stomach 16.5 days
ENCSR346FJG | RNA-seq stomach p0 days
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Table A.3: Number of Driver Transcript Factors Identification

Stage/Tissue | Number of Driver TFs
el0.5 73
ell.5 39
el2.5 36
el3.5 30
eld.5 15
el5.5 21
el6.5 27

pO 18
EFP 44
Forebrain 19
Midbrain 20
Hindbrain 29
NT 51
Heart 41
Limb 39
Liver 35
Kidney 86
Lung 75
Intestine 76
Stomach 80
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Appendix B

Supplementary Figures
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Figure B.1: This graph displays the top 30 detailed GO terms in three different categories for
the comparison of neural tube and midbrain expressed genes at 14.5 days in variable RAM. The
x-axis represents the number of genes associated with each pathway, while the y-axis represents
the pathway names. The bars are color-coded based on the p-adjusted value.
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Figure B.2: Here are the selected pathways with a p-adjusted value smaller than 0.01 and
presented in over 20% of all tissue comparisons. The left side shows the pathways using the
TSS located in variable RAMs, while the right side shows the pathways using the expressed
Top Cellular Component of Time Comparison of DEGs . N
, . P P P Top KEGG of Time Comparison of DEGs
plasma membrans - I———
erraceiliar recion - ———
|l periphery- Neuroactive ligand-receptor interaction -
synaptic membranc - N
ciracslular space -
- — Retrograde endocamnabinaid signaling -
cellprocion - I——
G- m—
supramn\ecu‘fgup‘::v(rgz;: I Starch and sucrose metabolism - -
ramolecular complex - I
sma(edmusc\e(mmlsm:g: I Salivary secrefion - -
complex- Scale
postsynaptic EDEE\EHZEHUH membrane - 4
Duslsvnauﬂ:dens\wmembrane I
lymeric cytoskeletal fier - IN—— £ o
plasma membrane boundsd cell projecton - I 04 5 Panerealic secretion - 04
neuron projecton - I e
et E— s g p—— | 0
musc\emvusmmmmex- I
membrane attack complex- I 02 Morphine addieton - 02
ratin filament- I
intermediate filament cytoskeleton - I 1 Al
intermediate flament- IS niluenza
GABA receplor complex- I
GABA-A receptor complex-
oskeloton - I Glutamatergic synapse -
tractle fiver- I
dlathrin-sculpted vesicle - I
‘eoll - — GABAergic synapse -
cell junction - I
cell-cell junction- I
anchoring junction - I Garbohydrate digestion and absorption -
uncton”
0 10 0 5 10
Number of Samples Number of Samples

Figure B.3: Here are the pathways selected based on a p-adjusted value smaller than 0.02 and
presented in over 10% for cellular component (CC) pathways and 10% for KEGG pathways of
tissue comparisons. The left side shows the CC pathways in variable RAMs, while the right side
shows the KEGG pathways in variable RAMs.
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Figure B.S: Here are the pathways selected based on a p-adjusted value smaller than 0.02 and
presented in over 40% for MF, 90% for BP, 83% for CC, and 10% for KEGG of 12 tissues
with merged time comparisons:(a) MF pathways in variable RAMs;(b) BP pathways in variable
RAMs;(c) CC pathways in variable RAMs;(d) KEGG pathways in variable RAMs
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