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Background: Alterations in the hedonic component of ingestive behaviors have been implicated as a possible risk
factor in thepathophysiology of overweight and obese individuals. Neuroimaging evidence from individualswith
increasing body mass index suggests structural, functional, and neurochemical alterations in the extended
reward network and associated networks.
Aim: To apply amultivariate pattern analysis to distinguish normalweight and overweight subjects based on gray
and white-matter measurements.
Methods: Structural images (N = 120, overweight N = 63) and diffusion tensor images (DTI) (N = 60, over-
weight N = 30) were obtained from healthy control subjects. For the total sample the mean age for the over-
weight group (females = 32, males = 31) was 28.77 years (SD = 9.76) and for the normal weight group

(females = 32, males = 25) was 27.13 years (SD = 9.62). Regional segmentation and parcellation of the brain
images was performed using Freesurfer. Deterministic tractography was performed to measure the normalized
fiber density between regions. A multivariate pattern analysis approach was used to examine whether brain
measures can distinguish overweight from normal weight individuals.
Results: 1. White-matter classification: The classification algorithm, based on 2 signatures with 17 regional
connections, achieved 97% accuracy in discriminating overweight individuals from normal weight individ-
uals. For both brain signatures, greater connectivity as indexed by increased fiber density was observed in
overweight compared to normal weight between the reward network regions and regions of the executive
control, emotional arousal, and somatosensory networks. In contrast, the opposite pattern (decreased fiber
density) was found between ventromedial prefrontal cortex and the anterior insula, and between thala-
mus and executive control network regions. 2. Gray-matter classification: The classification algorithm,
based on 2 signatures with 42 morphological features, achieved 69% accuracy in discriminating overweight
from normal weight. In both brain signatures regions of the reward, salience, executive control and
emotional arousal networks were associated with lower morphological values in overweight individuals
compared to normal weight individuals, while the opposite pattern was seen for regions of the somatosen-
sory network.
Conclusions: 1. An increased BMI (i.e., overweight subjects) is associated with distinct changes in gray-
matter and fiber density of the brain. 2. Classification algorithms based on white-matter connectivity
ex;HAD, hospital anxiety andDepression Scale; TR, repetition time;TE, echo time;FA,flipangle;GLM,general linearmodel;DWI,
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sciences; ANOVA,analysisof variance; FDR, false-discovery rate; sPLS-DA, sparse partial least squares for discriminationAnalysis;
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Fig. 1.Regions of the reward network and associated netw
substantia nigra,midbrain regions (caudate, pallidum, hipp
cortex (aMCC). 3. Executive control network: posterior pa
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involving regions of the reward and associated networks can identify specific targets for mechanistic stud-
ies and future drug development aimed at abnormal ingestive behavior and in overweight/obesity.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1.0. Introduction

The World Health Organization estimates that almost half a billion
adults are obese and more than twice as many adults are overweight,
contributing to the increase in diseases such as diabetes, cardiovascular
disease, and cancer, and leading to the death of at least 2.8 million in-
dividuals every year (World Health Organization (WHO), 2014). In
America alone, up to 34.9% adults are obese and twice as many adults
(65%) are either overweight or obese (Center for Disease Control
(CDC), 2014). The economic and health burden of being overweight
and obese continues to raise health care costs to as high as $78.5 billion
(Finkelstein et al., 2009), and billions of dollars continue to be spent
on ineffective treatments and interventions (Loveman et al., 2011;
Terranova et al., 2012). Despite various efforts directed towards identi-
fying the underlying pathophysiology of overweight and obesity, the
current understanding remains insufficient.

Both environmental and genetic factors play a role in the develop-
ment of humans being overweight and obese (Calton and Vaisse,
2009; Choquet andMeyre, 2011; Dubois et al., 2012; El-SayedMoustafa
and Froguel, 2013). Recent neuroimaging studies have shown that
higher bodymass index (BMI) is associatedwith alterations in function-
al (task and resting state) (Connolly et al., 2013; Garcia-Garcia et al.,
2013; Kilpatrick et al., 2014; Kullmann et al., 2012), gray-matter mor-
phometry (Kurth et al., 2013; Raji et al., 2010), and white-matter prop-
erties (Shott et al., 2014; Stanek et al., 2011), suggesting a possible role
of the brain in the pathophysiology of overweight and obesity (Das,
orks. 1. Reward network: hypothalam
ocampus). 2. Salience network: anteri
rietal cortex (PPC), dorsal lateral pre
terior mid cingulate cortex (aMCC), a
2010). These studies largely implicate regions of the reward network
(Kenny, 2011; Volkow et al., 2004; Volkow et al., 2008; Volkow et al.,
2011), and three closely linked networks related to salience (Garcia-
Garcia et al., 2013; Morrow et al., 2011; Seeley et al., 2007a), executive
control (Seeley et al., 2007b), and emotional arousal (Menon and
Uddin, 2010; Zald, 2003) (Fig. 1).

The current study aimed to test the general hypothesis that interac-
tions between regions of these networks differ between overweight in-
dividuals compared to normalweight individuals, andwe applied large-
scale state-of-the-art neuroimaging data processing, visualization and
multivariate pattern analysis to test this hypothesis. The availability of
more efficient and computationally intensive data processing pipelines
and statistical algorithms allows for a more broad morphological and
anatomical characterization of the brain in individuals with elevated
BMIs compared to individuals with normal weight. Multivariate pattern
classification analysis provides the means to examine the distributed
pattern of regions that discriminate overweight compared to normal
weight individuals.

In this study, a supervised learning algorithm is applied to measures
of regional brain morphometry and white-matter fiber density (a mea-
sure of connectivity between specific brain regions) to test the hypoth-
esis that overweight status is associated with distinct patterns or brain
signatures comprising regions of the reward, salience, executive control,
and emotional arousal networks. Results suggest that regional connec-
tivity, and less so brain morphometrics, can be used to discriminate
overweight compared to normalweight individuals. The results provide
us, orbitofrontal cortex (OFC), nucleus accumbens, putamen, ventral tegmental area (VTA),
or insula, dorsal pregenual anterior cingulate cortex (dorsal pgACC), anteriormid cingulate
frontal cortex (dlPFC). 4. Emotional arousal network: pregenual anterior cingulate cortex
mygdala.
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a predictive algorithm based on multimodal brain imaging and identify
specific targets for further mechanistic investigations.

2.0. Methods

2.1. Participants

The total sample was composed of 120 right-handed healthy control
(HC) volunteers enrolled in neuroimaging studies at the Center for
Neurobiology of Stress between 2010 and 2014. Subjects were recruited
through advertisements posted in the UCLA and Los Angeles communi-
ty. All procedures complied with the principles of the Declaration of
Helsinki and were approved by the Institutional Review Board at UCLA
(approval numbers 11-000069 and 12-001802). All subjects provided
written informed consent. All subjects were classified as healthy after
a clinical assessment that included a modified Mini-International Neu-
ropsychiatric InterviewPlus 5.0 (Sheehan et al., 1998). Exclusion criteria
included substance abuse, pregnancy, tobacco dependence, abdominal
surgery, vascular risk factors, weight loss surgery, excessive exercise
(more than 1 h every day and marathon runners) or psychiatric illness.
Even though often associated with increased BMI, subjects with hyper-
tension, diabetes or metabolic syndrome were excluded to reduce het-
erogeneity of the population. Also, subjects with eating disorders,
including digestive or eating disorders such as anorexia or bulimia
nervosa were excluded for the same reason. Even though a BMI =
25–29.9 is considered overweight, in our study it was identified as the
high BMI group. Normal weight subjects were recruited at a BMI b 25,
and in our study was identified as the normal BMI group. No subjects
exceeded 400 lb due to MRI scanning weight limits.

2.2. Sample characteristics

Validated questionnaires were completed before scanning and were
used to measure current anxiety and depression symptoms (Hospital
Anxiety and Depression Scale (HAD)) (Zigmond and Snaith, 1983).
The HAD scale is a self-assessment 14-item scale that assesses current
anxiety and depression symptoms in subjects at baseline (Zigmond
and Snaith, 1983). In addition, the subjects had previously undergone
a structured psychiatric interview (Mini International Neuropsychiatric
Interview,MINI) tomeasure past or current psychiatric illness (Sheehan
et al., 1998).

2.3. fMRI acquisition

2.3.1. Structural (gray-matter) MRI
Subjects (N = 120, high BMI N = 63) were scanned on a 3.0 Tesla

Siemens TRIO after a sagittal scout was used to position the head. Struc-
tural scanswere obtained from4 different acquisition sequences using a
high-resolution 3-dimensional T1-weighted, sagittal magnetization-
prepared rapid gradient echo (MP-RAGE) protocol and scanning details
are: 1. Repetition time (TR) = 2200 ms, echo time (TE) = 3.26 ms, flip
angle (FA)= 9, 1mm3 voxel size. 2. TR= 2200ms, TE= 3.26ms, FA=
20, 1 mm3 voxel size. 3. TR= 20 ms, TE= 3 ms, FA= 25, 1 mm3 voxel
size. 4. TR=2300ms, TE=2.85ms, FA=9, 1mm3 voxel size. Influence
of acquisition protocol on differences in total gray matter volume
(TGMV) was assessed. Specifically the general linear model (GLM)
was applied to determine protocol influences on TGMV controlling for
age. Results indicated that all protocols were not similar to each other
(F(3) = 6.333, p = .053).

2.3.2. Anatomical connectivity (white-matter) MRI
A subset of the original sample (N = 60, high BMI N = 30)

underwent diffusion-weightedMRIs (DWIs) according to two compara-
ble acquisition protocols. Specifically, DWIs were acquired in either 61
or 64 noncollinear directions with b = 1000 s/mm2, with 8 or 1 b =
0 s/mm2 images, respectively. Both protocols had a TR = 9400 ms,
TE = 83 ms, and field of view (FOV) = 256 mm with an acquisition
matrix of 128 × 128, and a slice thickness of 2 mm to produce
2 × 2 × 2 mm3 isotropic voxels.

2.4. fMRI processing

2.4.1. Structural (gray-matter) segmentation and parcellation
T1-image segmentation and regional parcellation were conducted

using FreeSurfer (Dale et al., 1999; Fischl et al., 1999, 2002) following
the nomenclature described in Destrieux et al. (2010). For each cerebral
hemisphere, a set of 74 bilateral cortical structureswere labeled in addi-
tion to 7 subcortical structures and the cerebellum. Segmentation re-
sults from a sample subject are shown in Fig. 2A. One additional
midline structure (the brain stem which includes parts of the midbrain
such as the ventral tegmental area [VTA] and the substantia nigra) was
also included, for a complete set of 165 parcellations for the entire brain.
Four representative morphological measures were computed for each
cortical parcellation: gray matter volume (GMV), surface area (SA),
cortical thickness (CT), and mean curvature (MC). Data processing
workflowswere designed and implemented at the Laboratory of Neuro-
imaging (LONI) Pipeline (http://pipeline.loni.usc.edu).

2.4.2. Anatomical connectivity (white-matter)
Diffusion weighted images (DWI) were corrected for motion and

used to compute diffusion tensors that were rotationally re-oriented
at each voxel. The diffusion tensor images were realigned based on tri-
linear interpolation of log-transformed tensors as described in Chiang
et al. (Chiang et al., 2011) and resampled to an isotropic voxel resolution
(2 × 2 × 2 mm3). Data processing workflows were created using the
LONI pipeline.

White matter connectivity for each subject was estimated between
the 165 brain regions identified on structural images (Fig. 2B) using
DTI fiber tractography. Tractography was performed via the Fiber As-
signment by Continuous Tracking (FACT) algorithm (Mori et al., 1999)
using TrackVis (http://trackvis.org) (Irimia et al., 2012). The final esti-
mate of white matter connectivity between each of the brain regions
was determined based on the number of fiber tracts intersecting each
region, normalized by the total number of fiber tracts within the entire
brain. This information was then used for subsequent classification.

2.5. Sparse partial least squares — discriminate analysis (sPLS-DA)

In order to determine whether brain markers can be used to predict
high BMI status (overweight vs. normal weight) we employed sPLS-DA.
sPLS-DA is a form of sparse PLS regression but the response variable is
categorical, indicating group membership (Lê Cao, 2008a; Lê Cao et al.,
2009b, 2011). sPLS-DA has been shown to be particularly effective
with a large number of predictors, small sample size, and high co-
linearity among predictors (Lê Cao, 2008a; Lê Cao et al., 2009b, 2011).
sPLS maximizes the sample covariance between the brain measures
and a group difference contrast. sPLS simultaneously performs variable
selection and classification using lasso penalization (Lê Cao et al.,
2009a). sPLS-DA operates using a supervised framework forming linear
combinations of the predictors based on class membership. sPLS-DA re-
duces the dimensionality of the data by finding a set of orthogonal com-
ponents each comprised by a selected set of features or variables. The
components are referred to as brain signatures. Each variable compris-
ing a brain signature has an associated “loading”, which is a measure
of the relative importance of the variables for the discrimination into
the two groups (Lê Cao et al., 2008b). In addition, Variable Importance
in Projection (VIP) scores were calculated in order to estimate the im-
portance of each variable used in the PLS model. The VIP score is a
weighted sum of the loadings, which takes into account the explained
variance of each signature. The averaged of the squared VIP scores is
equal to 1. Predictors with VIP coefficients greater than one are consid-
ered particularly important for the classification (Lê Cao et al., 2008b).

http://pipeline.loni.usc.edu
http://trackvis.org


Fig. 2. A. Structural segmentation and parcellation results and B. white-matter fiber results associated with structural parcellations from a sample subject. A: Structural segmentation.
B: White-matter segmentation.
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2.5.1. Development of the predictive model
The number of brain signatures for each analysis was fixed at two

(Lê Cao et al., 2008b). A stability analysiswas used in order to determine
the optimal number of brain regions for each brain signature (Lê Cao
et al., 2011). First, sPLS-DA is applied across a range of variables,
5–200, to be selected for each of the two brain signatures. For each spec-
ification of the number of variables to select, 10-fold cross-validation re-
peated 100 times is performed. This cross-validation procedure divides
the training data into 10 folds or subsamples of data (n=12 test sets). A
single subsample is set aside as test data and the remaining subsamples
are used to train the model. Stability of the variables is determined by
calculating the number of times a specific variable is selected across
all cross-validation runs. Only brain variables with a stability of greater
than 80% were used to develop the final model.
Table 1
Sample characteristics.

Overweight Normal weight Overweight vs.
normal weight

Female Male Female Male

N 32 31 32 25

Mean SD Mean SD F Sig

Age (years) 28.77 9.76 27.13 9.62 4.067 .056
BMI 29.60 1.13 22.05 1.52 178.541 1.65−6**
HAD anxiety 3.27 2.27 2.38 2.72 .642 .425
HAD depression 1.23 1.48 1.13 1.36 .001 .980

Questionnaires: BMI, body mass index; hospital anxiety and depression (HAD anxiety),
Hospital anxiety and depression (HAD depression). Subject number (N), Standard devia-
tion (SD). Sig = p b 0.05*, p b 0.005**.
2.6. Statistical analyses

2.6.1. Sparse partial least squares — discriminate analysis (sPLS-DA)
sPLS-DA was performed using the R package mixOmics (http://

www.R-project.org). We examined the predictive power of brain mor-
phometry and DTI anatomical connectivity separately. In addition to re-
gional brainmorphometry or regional anatomical connectivity, age, and
total GMVwere included as possible predictors. For morphological data
obtained, measures of GMV, SA, CT, and MC were entered into the
model. For DTI anatomical connectivity data obtained, subject-specific
matrices indexing relative fiber density between the 165 regions were
transformed to 1 dimensional matrices containing 13,530 unique con-
nectivities (upper triangle from the initial matrix). These matrices
were then concatenated across subjects and entered into the sPLS-DA.
As an initial data reduction step, near zero variance predictors were
dropped and this resulted in 369 remaining connections. The brain
signatures were summarized using variable loadings on the individual
dimensions and VIP coefficients. We also use graphical displays to illus-
trate the discriminative abilities of the algorithms (Lê Cao et al., 2011).
The predictive ability of the final models was assessed using leave one
out cross-validation. We also calculated binary classification measures:
sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (NPV). Here, the sensitivity indexes the ability of the
classification algorithm to correctly identify overweight individuals.
Specificity reflects the ability of the classification algorithm to correctly
identify normal weight individuals. PPV reflects the proportion of the
sample showing the specific overweight brain signature from the classi-
fication algorithm and who are actually overweight (true positive). On
the other hand NPV is the probability that if the test result is negative,
i.e., the participant does not have the overweight-specific brain signa-
ture (true negative).

2.6.2. Sample characteristics
Statistical analyses were performed using Statistical Package for the

Social Sciences (SPSS) software (version 19). Group differences in be-
havioral measure scores were evaluated by applying analysis of vari-
ance (ANOVA). Significance was considered at p b .05 uncorrected.

3.0. Results

3.1. Sample characteristics

The total sample (N=120) included 63 overweight individuals (fe-
males = 32, males = 31), mean age = 28.77 years, SD = 9.76, and 57
normal weight individuals (females = 32, males = 25), mean age =
27.13 years, SD = 9.62. Although the overweight group tended to
have higher levels of anxiety and depression, there were no significant
group differences (F= .642, p= .425; F= .001, p= .980). Clinical char-
acteristics of the sample are summarized in Table 1.

3.2. Multivariate pattern analyses using sPLS-DA

3.2.1. Anatomical connectivity (white-matter) based classification
We examined whether brain anatomical connectivity white-matter

could be used to discriminate overweight individuals from normal
weight individuals. Fig. 3A depicts the individuals from the sample
represented in relationship to the two brain signatures and depicts the
discriminative abilities of the white matter classifier. Binary

http://www.r-project.org
http://www.r-project.org


Fig. 3.A. Classifier based onfiber density (white-matter). B. Classifier based ongray-mattermorphology. A:Depicts thediscriminative abilities of thefiber density (white-matter) classifier.
B: Depicts the discriminative abilities of the gray-matter classifier.
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classification measures were calculated and indicated a sensitivity of
97%, specificity of 87%, PPV of 88%, and NPV of 96%. Table 2 contains
the list of the stable white-matter connections comprising each discrim-
inatory brain signature along with variable loadings and VIP coefficients.

3.2.2. Anatomical connectivity based brain signature 1
The first brain signature accounts for 63% of the variance. As indicat-

ed by the VIP coefficients, the variables in the solution explaining the
most variance included 1) connections between regions of the reward
network (putamen, pallidum, brainstem [including midbrain regions
such as the VTA and substantia nigra]) with regions of the executive
control (precuneus which is part of the posterior parietal cortex), sa-
lience (anterior insula), emotional arousal (ventromedial prefrontal
cortex) and somatosensory (postcentral gyrus) networks; 2) regions
of the emotional arousal network (anteriormidcingulate cortex, ventro-
medial prefrontal cortex) with regions of the salience (anterior insula)
and somatosensory (paracentral lobule including supplementary
motor cortex) networks; and 3) thalamus with the middle occipital
gyrus and thalamus with an executive control network region (dorsal
lateral prefrontal cortex).

Compared to the normal weight group, the overweight group
showed greater connectivity from regions of the reward network (puta-
men, pallidum, brainstem) to the executive control network (posterior
parietal cortex), and fromputamen to an inhibitory part of the emotion-
al arousal network (ventromedial prefrontal cortex) and to regions of
the somatosensory network (postcentral gyrus and posterior insula).
Lower connectivity was observed in the overweight group in regions
from the emotional arousal network (ventromedial prefrontal cortex)
to the salience network (anterior insula), but greater connectivity in
the overweight group from regions from the emotional arousal network
(ventromedial prefrontal cortex) to the somatosensory network (poste-
rior insula). Lower connectivity was also observed in the overweight
group in the connections from the somatosensory (paracentral lobule)
to the anterior midcingulate cortex but higher connectivity from the
paracentral lobule to the subparietal sulcus (part of the somatosensory
network). Looking at thalamic connections, lower connectivity was
observed from the thalamus to the dorsal lateral prefrontal cortex (ex-
ecutive control network) and to the middle occipital gyrus in over-
weight individuals compared to normal weight individuals.

3.2.3. Anatomical connectivity based brain signature 2
The second anatomical brain signature identified accounted for an

additional 12% of the variance in the data. The variables contributing
the most variance to the group discrimination as indicated by the VIP
coefficient included connections in regions of the reward (putamen, or-
bital sulci which is part of the orbital frontal gyrus, and brainstem) and
emotional arousal (gyrus rectus which is the medial part of the ventro-
medial prefrontal cortex) networks.

In overweight individuals compared to normal weight in-
dividuals, greater connectivity was observed between the reward
network regions (brainstem and putamen) to both the executive
control (dorsal lateral prefrontal cortex) and inhibitory part of
the emotional arousal (ventromedial prefrontal cortex). However,
connectivity between the occipital the orbital frontal gyrus (re-
ward network) was lower in overweight individuals compared to
normal weight individuals.

3.2.4. Morphometric gray-matter based classification
We examined whether brain morphometry (gray matter volume,

surface area, cortical thickness, and mean curvature) could be used to
discriminate overweight individuals from normal weight individuals.
Fig. 3B depicts the individuals from the sample represented in relation-
ship to the two brain signatures and depicts the discriminative abilities
of the morphometric classifier. Binary classification measures were cal-
culated and indicated a sensitivity of 69%, specificity of 63%, PPV of 66%,
and NPV of 66%. Table 3 contains the list of morphometric measures
comprising each discriminative along with variable loadings and VIP
coefficients.

3.2.5. Morphological based brain signature 1
The first brain signature explained 23% of the variability in the mor-

phometric phenotype data. As seen by the VIP coefficients, variables
contributing the most variance to the signature included regions of
the reward (subregions of the orbital frontal gyrus), salience (anterior
insula), executive control (dorsal lateral prefrontal cortex), emotional
arousal (ventromedial prefrontal cortex) and somatosensory (precentral
sulcus, supramarginal gyrus, subcentral sulcus, superior frontal sulcus)
networks. High VIP coefficients were also observed for the superior fron-
tal gyrus and sulcus, superior temporal gyrus, transverse frontopolar
gyri, and anterior transverse temporal gyrus. Regions of the reward,
salience, executive control and emotional arousal networks were associ-
ated with lower values in overweight individuals compared to normal
weight individuals. Also, overweight individuals compared to normal
weight individuals had greater values in regions of the somatosensory
network. Morphometry of frontal and temporal regions (superior tem-
poral gyrus, and anterior transverse temporal gyrus) were also associat-
ed with lower values in overweight individuals compared to normal
weight individuals.

3.2.6. Morphological based brain signature 2
The secondmorphological brain signature explained 32% of the var-

iance. Variables with the highest VIP coefficients were similar to the VIP



Table 2
List of anatomical connections comprising each discriminative brain signature.

Region A Region B
LOADINGS

Comp 1
LOADINGS

Comp 2

VIP
Comp

1

VIP
Comp

2

Brain signature 1

R Putamen R Precuneus (part of PPC) –0.35 1.42 1.25

R Pallidum R Precuneus (part of PPC) –0.29 1.20 1.06

L Superior parietal lobule –0.23 0.97 0.85

L Putamen –0.16 0.67 0.59

R Putamen R Postcentral gyrus –0.28 1.14 1.00

0.25 1.03 0.90

–0.20 0.83 0.73

L Paracentral lobule 0.18 0.74 0.65

L Paracentral lobule R Subparietal sulcus –0.18 0.75 0.66

R Thalamus 0.25 1.03 0.91

R Thalamus R Middle occipital gyrus 0.39 1.63 1.43

R Cuneus R Parieto–occipital sulcus –0.33 1.37 1.20

R Occipital pole R Middle occipital sulcus 0.29 1.20 1.06

Brain signature 2

L Angular gyrus (part of PPC) –0.30 0.59

R Putamen L Gyrus rectus (part of vmPFC) –0.74 1.45

0.61 1.20

Reward network

Salience network

Executive control network

Emotional arousal

Somatosensory network

Thalamus

Other (Regions not part of the reward,
salience, executive control, emotional
arousal, or somatosensory networks)

Brain–stem (contains parts of the
midbrain)

Brain–stem (contains parts of the
midbrain)

L Orbital part of the inferior frontal gyrus
(part of vmPFC)

L Inferior frontal gyrus (part of vmPFC) L Anterior segment of the insula (anterior insula)

R Inferior frontal gyrus (part of vmPFC) R Posterior ramus (lateral sulcus) (posterior insula)

L Middle–anterior part of the cingulate gyrus
(aMCC)

R Middle frontal gyrus (part of dlPFC)

R Middle occipital gyrus R Orbital sulci (part of OFG)

L Putamen L Long insular gyrus (posterior insula) –0.24 0.98 0.86

Abbreviations: Hemisphere: L, left, R, right; Comp1: component 1; Comp2: component 2. Regions: PPC, posterior parietal cortex; vmPFC, ventromedial prefrontal cortex; dlPFC, dorsa
lateral prefrontal cortex; aMCC, anterior mid cingulate cortex; OFG, orbital frontal gyrus.
Connections are bidirectional from Region A to Region B.
The components are referred to as brain signatures.
Loading is the measure of relative importance of the variables for the discrimination into the two groups for each brain signature.
Negative loadings for each component are associated with greater connectivity in the overweight group compared to the normal weight group.
Positive loadings for each component are associated with lower connectivity in the overweight group compared to the normal weight group.
Variable importance in projection (VIP) is a weighted sum of the loadings, which takes into account the explained variance of each brain signature.
aReward network.
bSalience network.
cExecutive control network.
dEmotional arousal.
eSomatosensory network.
fThalamus.
gOther (regions not part of the reward, salience, executive control, emotional arousal, or somatosensory networks).
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Table 3
Regional morphometry comprising each brain signature.

Brain Region Hemisphere
Morphometry

Metric 
LOADINGS

Comp 1
LOADINGS

Comp 2

VIP
Comp

1

VIP
Comp

2

Brain Signature 1

Orbital gyri (part of OFG) L V 0.36 2.33 1.69

Frontopolar gyri (part of OFG) L CT 0.22 1.44 1.01

Orbital sulci (part of OFG) R V 0.15 1.01 0.96

R V 0.34 2.24 1.52

R V 0.26 1.71 1.11

Gyrus rectus (part of vmPFC) L V 0.19 1.22 0.93

Inferior precentral sulcus R SA –0.21 1.38 1.05

Supramarginal gyrus R CT –0.20 1.29 0.91

Superior frontal sulcus R SA –0.17 1.13 0.68

Subcentral gyrus L CT –0.15 0.96 0.41

Supramarginal gyrus L SA –0.14 0.93 0.39

Inferior precentral sulcus R V –0.14 0.93 0.38

Sulcus intermedius primus L V –0.15 1.02 0.67

Superior frontal gyrus R CT –0.18 1.15 0.72

R CT –0.23 1.53 0.73

L SA –0.29 1.91 0.79

R SA –0.27 1.80 0.94

Superior temporal gyrus L CT –0.14 0.90 0.47

Cerebellum L V –0.14 0.93 0.77

Brain signature 2

Caudate R V 0.09 0.47

L V 0.25 1.26

L MC 0.16 0.81

L V 0.14 0.72

L SA 0.12 0.62

Precuneus (part of PPC) L V 0.35 1.77

Precuneus (part of PPC) R V 0.17 0.84

Anterior segment of the lateral sulcus
(anterior insula)

Transverse frontopolar gyri (part of
frontal pole)

Superior temporal gyrus

Anterior transverse temporal gyrus

Anterior segment of the lateral sulcus of
the insula (anterior insula)

Anterior segment of the lateral sulcus
(anterior insula)

Anterior segment of the lateral sulcus
(anterior insula)

Horizontal ramus of anterior segment of
the lateral sulcus (anterior insula)

Middle frontal gyrus (part of dlPFC)

Middle frontal gyrus (Part of dlPFC) R SA 0.25 1.66 0.98

Inferior frontal gyrus (part of vmPFC) L V 0.19 1.26 0.92

Short insular gyri (anterior insula) R MC 0.14 0.72

Short insular gyri (anterior insula) L V 0.04 0.20
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Parahippocampal gyrus R SA 0.27 1.34

Parahippocampal gyrus R V 0.14 0.72

Pericallosal sulcus R V 0.11 0.55

Paracentral lobule R V –0.16 0.79

R SA –0.09 0.45

Superior occipital gyrus L V –0.08 0.38

Temporal pole R MC –0.08 0.42

Total gray matter L/R V 0.06 0.28

Reward network

Salience network

Executive control network

Emotional arousal

Somatosensory network

Thalamus

Other (Regions not part of the reward,
salience, executive control, emotional
arousal, or somatosensory networks)

Superior segment of the insula 
(posterior insula)

Subcallosal area (part of sgACC) L CT 0.33 1.67

Anterior cingulate gyrus (ACC) R V 0.21 1.03

Long insular gyrus (posterior insula) R V –0.49 2.45

Long insular gyrus (posterior insula) L V –0.25 1.25

Abbreviations: Hemisphere: L, left, R, right. Morphometry metric: V, volume; SA, surface area; CT, cortical thickness; MC, mean curvature; Comp1: component 1; Comp2: component 2.
Regions: OFG, orbital frontal gyrus; dlPFC, dorsal lateral prefrontal cortex; vmPFC, ventromedial prefrontal cortex; PCC, posterior parietal cortex; sgACC, subgenual anterior cingulate
cortex; ACC, anterior cingulate cortex.
The components are referred to as brain signatures.
Loading is the measure of relative importance of the variables for the discrimination into the two groups for each brain signature.
Negative loadings for each component are associated with higher morphometric values in the overweight group compared to the normal weight group.
Positive loadings for each component are associated with lower morphometric values in the overweight group compared to the normal weight group.
Variable importance inprojection (VIP) is aweighted sumof the loadings,which takes into account the explainedvarianceof eachbrain signature. The averaged of the squaredVIP scores is
equal to 1.
aReward network.
bSalience network.
cExecutive control network.
dEmotional arousal.
eSomatosensory network.
fThalamus.
gOther (regions not part of the reward, salience, executive control, emotional arousal, or somatosensory networks).

Table 3 (continued)
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coefficients observed in brain signature 1 in that they included re-
gions of the reward (caudate), salience (anterior insula), executive
control (parts of the posterior parietal cortex), emotional arousal
(parahippocampal gyrus, subgenual anterior cingulate cortex, and
anterior cingulate cortex) and somatosensory (posterior insula and
paracentral lobule) networks. However, brain signature 2 compared
to brain signature 1 had only one connection from the reward net-
work and more connections from regions of the salience and emo-
tional arousal networks.

In overweight individuals compared to normal weight individuals,
lower values formorphometry in the reward, salience, executive control
and emotional arousal networks, but higher values in the somatosenso-
ry network were indicated.
4.0. Discussion

The aim of this study was to determine if morphological and ana-
tomical patterns of brain connectivity (based on fiber density between
specific brain regions) can discriminate overweight individuals from
normal weight individuals. The main findings are: 1. Anatomical con-
nectivity (relative density of white-matter tracts between regions)
was able to discriminate between subjects with different BMI with
high sensitivity (97%) and specificity (87%). 2. In contrast, morpho-
logical changes in gray-matter had a less than optimal classification
accuracy. 3. Many of the brain regions comprising the discriminato-
ry brain signatures belonged to the extended reward, salience,
central executive, and emotional arousal networks suggesting that
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functional impairments observed were due to abnormal organiza-
tion between these networks.
4.1. Anatomical-connectivity based brain signatures associated with BMI

In this study, a classification algorithm consisting of two brain sig-
natures reflecting distinct patterns of region connectivity showed a
marked ability to discriminate between overweight individuals and
normal weight individuals. Most DTI studies in high BMI individuals
(Shott et al., 2014; Stanek et al., 2011; Xu et al., 2013; Yau et al., 2010,
2014) have focused on examining differences in white matter diffusion
characteristics including fractional anisotropy and mean diffusivity
(which measures integrity of white-matter tracts), or apparent dif-
fusion coefficients (which measures water diffusion in the tracks and
reflects cell damage). All these measures can provide information re-
garding localized changes in white-matter microstructure. In the cur-
rent study we have focused on DTI measures of fiber tract density as a
measure of estimating the relative connectivity between brain regions
and networks. So, while other studies have localized changes within
the white-matter microstructure, they have not identified the implica-
tions of these changes in terms of connectivity.
4.1.1. Anatomical connectivity based brain signature 1
The first brain signaturewas largely comprised by connectionswith-

in and between reward, salience, executive control, emotional arousal,
and sensory networks. There were also thalamic connections to regions
of the executive control network and to the occipital region. Corre-
sponding to our finding of decreased connections from the ventromedi-
al prefrontal cortex to the anterior insula observed in the overweight
group compared to the normal weight group, reduced integrity of
white-matter tracts (reduced fractional anisotropy) in the external cap-
sule (which contains fibers that connect cortical areas to other cortical
areas via short association fibers) have been reported in obese com-
pared to controls (Shott et al., 2014). Additionally, in obese compared
to controls the apparent diffusion coefficient (water diffusion reflecting
cell damage) was greater in the sagittal stratum (which is known for
transmitting information from the parietal, occipital, cingulate and tem-
poral regions to the thalamus), andmay be consistentwith our observa-
tions of lower connectivity between the right thalamus and the right
middle occipital gyrus for overweight individuals compared to nor-
mal weight individuals (Shott et al., 2014). Shott and colleagues
(Shott et al., 2014) also identified greater apparent diffusion coeffi-
cients (reflecting possible cell damage) in the obese group in the co-
rona radiata, which appears to compliment our findings of lower
relative fiber density between deep gray-matter structures (such
as the thalamus) and cortical areas (dorsal lateral prefrontal cortex)
in overweight individuals compared to normal weight individuals.
Altered thalamic connectivity may interfere with the thalamus3
role in facilitating the relay of peripheral sensory information to
the cortex (Jang et al., 2014).

A separate study comparing uncomplicated adolescent obese to nor-
mal weight individuals also found reduced fractional anisotropy in
obese adolescents in regions such as the external capsule, internal cap-
sule (which mostly carries ascending and descending corticospinal
tracts), as well as some temporal fibers and optic radiation (Yau et al.,
2014). A recent study also observed loss of nerve fibers connections
with DTI between the brainstem and hypothalamus in an individual
with a brainstem cavernoma who, after undergoing surgical drain-
age, had a dramatic increase in weight, which may suggest that
these nerve fibers are involved in the regulation of both food intake
and weight (Purnell et al., 2014). However, we did not identify con-
nectivity differences with the hypothalamus, which may in part be
due to parcellation limitations based on the particular atlases used
in the current study.
4.1.2. Anatomical connectivity based brain signature 2
A second orthogonal signature was comprised by only three

anatomical connections within the reward and emotional arousal
networks. The identification of altered connections within regions
comprising the reward network and with regions in the networks
it interacts with in the current study have not been previously re-
ported. However, these alterations might be anticipated based on
recent morphological studies that have observed gray matter alter-
ations within regions of the extended reward network (Kenny,
2011; Kurth et al., 2013; Raji et al., 2010; Volkow et al., 2008). To-
gether, our findings appear to show wide-spread alterations in
white-matter connectivity for regions that comprise the reward net-
work and its associated networks.

While other studies have found reduced fiber integrity as measured
by reduced fractional anisotropy in regions of the corpus callosum and
fornix (which are part of the cingulate and carry information from the
hippocampus to the hypothalamus) with increasing BMI (Stanek et al.,
2011; Xu et al., 2013); the current study did not identify significant al-
terations in interhemispheric connectivity within the two anatomical-
connectivity brain signatures. The exception was that there was a con-
nection between the left paracentral lobule and the right subparietal
sulcus in brain signature 1, and a connection between the right putamen
and the left gyrus rectus in brain signature 2. We hypothesize that the
effect observed in these previous studies may be due to systemic
white matter degradation instead of changes in connections between
specific brain regions, similar to changes that occur during normal
aging (Sullivan et al., 2010).While the authors of these previous studies
hypothesized that differences in fractional anisotropy in the external
capsule of subjects with high BMImay be correlated with connections
from the hippocampus and amygdala, we did not observe significant
changes in the connectivity within these structures. A more detailed
analysis and finer parcellation of these brain regions are required to con-
firm these observations.

4.2. Morphometric gray-matter brain signatures associated with BMI

Gray matter morphometric analysis using two distinct profiles was
able to correctly identify overweight from normal weight individuals
with a sensitivity of 69% and a specificity of 63%. These findings are
consistent with previous reports of global, and regional reductions in
gray-matter volume in specific brain regionswithin the reward network
and associated networks (Debette et al., 2010; Kenny, 2011; Kurth et al.,
2013; Pannacciulli et al., 2006; Raji et al., 2010). In contrast to the DTI
based classification, these findings suggest a moderate ability to dis-
criminate between the two BMI groups.

4.2.1. Morphological based brain signature 1
In our study, the first brain signature displayed lower values of

various morphometric measures (including subregions of the orbital
frontal gyrus, anterior insula) in regions of the reward, salience, and ex-
ecutive control networks in the overweight group compared to the nor-
malweight group. Additionally lower valuesmorphometric valueswere
observed for the inhibitory regions (dorsal lateral and ventromedial pre-
frontal cortex) related to the emotional arousal network, but highermor-
phometry for somatosensory network (precentral sulcus, supramarginal
gyrus, subcentral sulcus, and superior frontal sulcus) including the tem-
poral regions in overweight individuals compared to normalweight indi-
viduals. In this study we found significant reductions in morphological
measurements (graymatter volume and cortical thickness) of the orbital
frontal gyrus. The orbital frontal gyrus is an important region within the
reward network which plays a role in evaluative processing and in the
guidance of future behavior and decisions based on encoding anticipa-
tion related to reward (Kahnt et al., 2010). A recent study analyzing
gray and white-matter structure found that obese individuals had
reduced values for various regionswithin the reward network, including
the orbital frontal gyrus (Shott et al., 2014).
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4.2.2. Morphological based brain signature 2
Compared to brain signature 1, morphological measurements

observed in regions of the salience and emotional arousal networks
explained a majority of the variance, while the reward network regions
were not influential. Reduced gray matter measurements were ob-
served in regions of the salience, executive control and emotional arous-
al network. These regions (anterior insula, parietal posterior cortex,
parahippocampal gyrus, subregions of the anterior cingulate cortex)
are frequently associated with increased evoked brain activity during
exposure to food cues (Brooks et al., 2013; Greenberg et al., 2006;
Rothemund et al., 2007; Shott et al., 2014; Stoeckel et al., 2008), and de-
gree of personal salience of stimuli (Critchley et al., 2011; Seeley et al.,
2007a). In the current study, gray matter reductions were also seen in
key regions of the somatosensory network (posterior insula, paracentral
lobule). Even though the exact role of this network in overweight and
obesity is not known, it has been shown to be involved in awareness
of body sensations, and a recent study suggested that elevated somato-
sensory network activity in response to food cues in obese individuals
could lead to overeating (Stice et al., 2011). This study specifically
focused on morphological measurements and anatomical connections
between brain regions in the extended reward network and somatosen-
sory network, and suggests that these brain structuralmetricsmay influ-
ence neural processing associated with the outcomes from functional
studies found in the literature. Correlationswith behavioral and environ-
mental factors also offer further insight into the relationship between
structural and functional findings, which will have to be tested in future
studies.

4.3. The use of multivariate pattern analyses using sPLS-DA to discriminate
between overweight and normal weight individuals

The findings about BMI related changes in fiber density between
different brain networks within the extended reward network, support
the hypothesis that increasing BMI results in disrupted anatomical
connectivity between specific regions in the brain. These anatomical al-
terations may imply ineffective or inefficient communication between
key regions of the reward network and related networks. Similar to sev-
eral recent reports that have found overweight and obesity related
changes in gray-matter volume (Debette et al., 2010; Kurth et al.,
2013; Pannacciulli et al., 2006; Raji et al., 2010), we were also able to
find similar morphological differences in overweight compared to nor-
mal weight individuals. In the current study, we extended these obser-
vations in order to investigate the association between overweight
status and anatomical connectivity of the brain, and applied sPLS-DA
to brain morphometric data to discriminate between overweight and
normal weight subjects. A recent cross-sectional study using binary
logistic regression suggests that the combination of structural changes
in the lateral orbital frontal gyrus, as measured by gray-matter volume,
and blood levels of an inflammatory marker (fibrinogen) was able to
predict obesity in a small sample of 19 normal weight subjects and 44
overweight/obese subjects; with a high sensitivity (95.5%), but low
specificity (31.6%) (Cazettes et al., 2011). Our study differs from this
report in several aspects, including larger sample size; the use of a
cross-validation approach to avoid a sample specific solution, exclusion
of subjects with hypertension/diabetes mellitus to remove a possible
confounder, and inclusion of both gray matter volume and fiber tract
density to predict overweight status.

4.4. Limitations

Even though we found significant differences between individuals
with normal weight and overweight in fiber density, we cannot extrap-
olate from these anatomic findings to differences in functional (resting
state) connectivity. Such functional connectivity findings would offer
the ability to detect differences in the synchronization of brain activity
in areas that are not directly connected bywhite-matter tracts. Although
we replicated previously reported findings about anatomical con-
nectivity and morphological differences between overweight/obese
and normal BMI (Kurth et al., 2013; Raji et al., 2010), we failed to observe
alterations in important subcortical regions hypothalamus, amygdala,
and hippocampus. It is possible that this failure may have been due to
the limits of the automatic parcellation algorithms used in this study or
due the analyses limited to overweight individuals versus obese individ-
uals. Future studies would need larger samples in order to compare
obese, overweight, and normal weight individuals, and to be able to con-
duct subgroup analyses based on sex and race. Due to our relatively small
sample we employed a rigorous internal validation procedure, however,
it remains necessary to test the predictive accuracy of this classifier in an
independent data set (Bray et al., 2009). Future studies should address
the association of these neuroimaging differences with specific eating
behaviors, eating preferences, and diet information in order to interpret
the context and significance of these findings. Since obesity and over-
weight status are often associatedwith comorbidities such hypertension,
diabetes andmetabolic syndrome, future analyses should investigate the
moderating and correlation effects of these factors on the classification
algorithm.

4.5. Summary and conclusions

In summary, our results support the hypothesis that being over-
weight is associated with altered connectivity (in the form of fiber den-
sity) between specific regions in the brain, whichmay imply ineffective
or inefficient communication between these regions. In particular, the
reduced connectivity of prefrontal inhibitory brain regions with the
reward circuitry is consistent with a predominance of hedonic mecha-
nisms in the regulation of food intake (Gunstad et al., 2006, 2007,
2008, 2010). The mechanisms underlying these structural changes are
poorly understood, but may involve neuroinflammatory and neuro-
plastic processes (Cazettes et al., 2011) related to the low grade inflam-
matory state reported in overweight and obese individuals (Cazettes
et al., 2011; Cox et al., 2014; Das, 2010; Gregor and Hotamisligil, 2011;
Griffin, 2006). Data driven approaches to identify gray and white-
matter alterations in overweight/obesity are promising tools to identify
the central correlates of increasing BMI and have the potential to iden-
tify neurobiological biomarkers for this disorder.
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