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Abstract

Compositional generalization that requires production and
comprehension of novel structures using observed constituent
parts has been shown to be challenging for even very powerful
neural network models of language. However, one of the
test cases that poses the greatest difficulty—generalization
of modifiers to unobserved syntactic positions—has not
been empirically attested in human learners under the same
exposure conditions assumed by these tests. In this work,
we test adult human learners on whether they generalize or
withhold the production of modification in novel syntactic
positions using artificial language learning. We find that
adult native speakers of English are biased towards producing
modifiers in unobserved positions (therefore producing novel
structures), even when they only observe modification in
a single syntactic position, and even when the knowledge
of their native language actively biases them against the
plausibility of the target structures.

Keywords: artificial language learning, inductive bias,
modification, compositional generalization, structural
generalization, modifier generalization

Motivation
Human linguistic capacity is often characterized by compo-
sitionality that enables generalization to novel complex utter-
ances through composition of their constituent parts (Mon-
tague, 1970; Partee, 1984). This ability has been at the center
of a longstanding debate surrounding connectionist models
of the mind (Fodor & McLaughlin, 1990; Fodor & Pylyshyn,
1988; Hadley, 1994; Smolensky, 1995, i.a.,), with resurg-
ing interest in the evaluation of such a capacity in light of
the rapid development of neural network models for lan-
guage (Bastings, Baroni, Weston, Cho, & Kiela, 2018; Kim
& Linzen, 2020; Lake & Baroni, 2018; Li et al., 2023). One
important observation highlighted in recent work is the large
performance gap between lexical and structural generaliza-
tion, where lexical generalization targets an unobserved com-
bination of a known lexical item and a known linguistic struc-
ture and structural generalization targets extrapolation to un-
observed structures. For example, understanding The wug
saw the cat based on prior observations of The cat saw the
dog and The dog saw the wug (where wug has not been ob-
served in the subject position) is an instance of lexical gener-
alization because the generalization target does not require
constructing a novel structure (e.g., Figure 1, (a) → (a′)).
On the other hand, generalizing to an embedded structure of

Figure 1: (a, b) Structures seen during the training phase. (a′,
b′) Generalization targets. Both targets can be constructed
from recombinations of parts of (a) and (b), respectively.
Generalization to (a′) from (a) is a case of lexical generaliza-
tion, where no new novel structures need to be constructed.
On the other hand, generalization to (b′) from (b) is a case of
structural generalization, where the structure of the target has
not been observed during training. The tree structures shown
are illustrative; they are not provided as parts of the input.

depth n+1 from prior observations of depths up to n is an in-
stance of structural generalization because the generalization
target requires constructing a novel structure. According to
Li et al. (2023), neural network models—both models trained
from scratch and models pretrained on a large amount of lan-
guage data—perform almost perfectly on lexical generaliza-
tion while failing on structural generalization.

Our work focuses on a particular type of structural gen-
eralization from Kim and Linzen (2020) (K&L henceforth).
The specific test we examine is modification of noun phrases
(NPs) in different syntactic positions (Figure 1, (b) → (b′)).
Empirically, even very powerful models struggle on this type
of generalization, and only models with augmentation in-
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volving explicit structural cues (e.g., intermediate parsing,
grammar induction) can adequately generalize (Drozdov et
al., 2023; Li et al., 2023; Qiu et al., 2022). Generalization
of modification to unobserved syntactic positions, in its gen-
eral formulation, is intuitively expected for human learners;
it is impossible to observe modification in every plausible po-
sition that an NP can occur in (e.g., subject of main verb,
direct/indirect object of main verb, subject of the first em-
bedded clause...) before concluding that modified NPs are
generally licensed where unmodified NPs are licensed.

However, modifier generalization as formulated in K&L
assumes a very extreme exposure condition, where a learner
is expected to generalize based on exposure to modification
in a single syntactic position: modification of the direct ob-
ject NP of a transitive verb that is not embedded. With only
this limited exposure, the learner is expected to generalize
to modification of subject NPs. Whether this is a fair test
has been questioned (Wu, Manning, & Potts, 2023), since the
training data does not disambiguate between whether modi-
fiers should be generalized or should be restricted to the ob-
served positions. Our view, on the other hand, is that the
existence of multiple plausible competing hypotheses given
the training data is not problematic—this is in fact exactly
the point of generalization tests that adopt the “Poverty of the
stimulus” experimental paradigm (Wilson, 2006) where the
goal is to tease apart learners’ inductive biases in the pres-
ence of ambiguous hypotheses. Rather, the issue is that there
is no attestation of the target generalization in human learners
assuming such an extreme exposure condition. While there
indeed is a naturally occurring frequency gap between sub-
ject and object modification in child-directed speech (K&L,
Appendix B), human generalization patterns in the total ab-
sence of evidence in positions elsewhere (elsewhere gener-
alization henceforth) has yet to be empirically tested.

To test the human generalization patterns, we conduct ar-
tificial language learning studies with adults (Brown, Smith,
Samara, & Wonnacott, 2022; Culbertson, Smolensky, & Leg-
endre, 2012; Martin, Ratitamkul, Abels, Adger, & Culbert-
son, 2019; Morgan, Meier, & Newport, 1987; Morgan &
Newport, 1981, i.a.,) with gaps in the distribution of modi-
fication across training and testing stimuli. Our experiments
show that human learners do indeed exhibit a bias towards ex-
trapolating modification elsewhere, producing novel linguis-
tic structures with modification in unobserved syntactic po-
sitions, even in the absence of observed modification in any
other positions than a direct object of an unembedded transi-
tive verb. Furthermore, this conclusion holds even when the
semantics of the modification is something that is impossible
to express as NP modification in English, the participants’
native language.1

1We note that the current work does not test the exact type of
modification tested in K&L which are PPs: we discuss the reason
and implications in the Limitations section.

Figure 2: Examples of the on-screen lexicon. The mappings
were shuffled randomly for different lists.

Methods
Overall design
We adopt the design of K&L proposed for testing neural net-
work models, originally inspired by the poverty of the stim-
ulus method of Wilson (2006) for testing human learning bi-
ases. Our design is the most similar to Lake, Linzen, and Ba-
roni (2019) where meanings are part of the input accessible
to participants (as opposed to acceptability judgments on sur-
face forms only, as in the related work of McCoy, Culbertson,
Smolensky, and Legendre (2021) on n+1 structural general-
ization of center embedding depth), because this setup better
echoes the original tests of K&L. The experiments consist
of two phases: we first expose participants to a set of stim-
uli containing sentences in an artificial language (the train-
ing phase), and test whether the participants produce sen-
tences with structures unobserved during training (the testing
phase). Crucially, the target sentences in the testing phase can
be constructed by recombinations of parts of the sentences
that the participants are exposed to during the training phase
(Figure 1, (b) → (b′)).

The artificial language
The lexicon of our artificial language consists of eight nonce
vocabulary items: blick, fim, vab, slov, dap, ro, zog, pam. Five
of these are nouns referring to the shapes square, circle, star,
triangle, and pentagon. The language has two verbs: one tran-
sitive verb roughly corresponding to the English verb hit, and
one intransitive verb that roughly means hop multiple times.
The one remaining word is a (postnominal) adjective, which
took on different semantics in the two experiments to be dis-
cussed in later sections. The postnominal adjective appears
hyphenated to the noun (e.g., fim-zog, if zog is the adjective
and fim is the noun). The mapping between nonce words
and the denotations were randomly determined—we used
two lists per experiment (between-subjects design), where the
form-meaning mappings were shuffled for each list. Our lan-
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guage has VSO word order with postnominal modification
to make the language substantially different from our partic-
ipants’ native language, English, to block the targeted gener-
alizations being extended from their native language.

Experiment protocol
Each example shown in the training phase consisted of a sen-
tence and a short video depicting an action involving one
or two shapes. In the two-shape scenes, one of the shapes
corresponded to the grammatical subject of a transitive verb,
and the other, the grammatical object. The lexicon provid-
ing mappings between the shape and the shape’s name in
the artificial language was always displayed on screen to re-
duce the memorization burden.2 The lexicon also included
other non-shape-denoting lexical items, paired with a ques-
tion mark (Figure 2). In the training phase, the participants
were initially asked to guess what the corresponding artificial
language sentence would be for a given scene. If their answer
was incorrect, the correct answer was shown on screen, and
the participant was asked to type the correct expression out.
They could not proceed to the next example unless they pro-
vided the exact answer. In the testing phase, the participants
were likewise shown a scene and asked to produce a corre-
sponding description in the language they learned. However,
unlike the training phase, there was no feedback during the
test phase—their responses were simply recorded. All exam-
ples within the respective phases were presented randomly.

The test examples included three different types of targets:
seen, unseen but not structurally novel, and unseen and struc-
turally novel. Seen examples were repeated scenes from the
training set—these examples were used to ensure that the par-
ticipants succeeded at the learning task. We only considered
learning as successful if perfect accuracy was achieved on
the seen examples; the decision to use perfect accuracy as the
threshold was due to the small size of of this set (n = 5). The
unseen but not structurally novel cases refer to examples with
target productions that were not shown during training but
does not require constructing novel structures. For example,
if the training set contained The cat saw the red dog, The dog
saw the red cat would be an instance of a target production
that is unseen but identical structurally to an example in the
training set. This is a case of lexical generalization (Figure 1,
(a) → (a′)). Finally, the unseen and structurally novel cases
were our main target—these are production targets with struc-
tures that are not part of training. For example, if the training
set contained The cat saw the red dog, then The red cat saw
the dog would be an unseen production target with a novel
structure (Figure 1, (b) → (b′)).

The examples in the training set were constructed using the
templates V N N-A, V N N, and V N, the first two templates
corresponding to transitive and the last template correspond-
ing to intransitive constructions. The structurally novel pro-

2The rate of participants who provided correct answers to exam-
ples already shown during training was very low in pilot experiments
that did not include the lexicon, showing that memorization is a bot-
tleneck to the success of the learning task.

Table 1: Templates for the examples in the training set and
the target productions in the test set.

Phase Type Template
Training Transitive, modified object V N N-A

Transitive, bare object V N N
Intransitive V N

Testing Seen & Unseen, not structurally novel V N N-A
V N N
V N

Unseen, structurally novel V N-A N
V N-A N-A

duction targets for the test phase had the form V N-A N or V
N-A N-A. See Table 1 for a summary of the templates.

Participant recruitment
We recruited our participants on Prolific. Adult native speak-
ers of English based in the US with a task approval rating of
97% or higher were included in the recruitment pool. The par-
ticipants were compensated at an hourly rate of $13.50 with
an estimated completion time of 20 minutes per experiment
(the actual median completion time was around 16–17 mins).
We compensated all participants who completed the experi-
ment, regardless of inclusion in the final analysis.

Experiment 1: Color Modification
Stimuli
In this experiment, the postnominal adjective was a color
modifier. We sampled 20 training examples (18 transitives
and 2 intransitives) using the templates in Table 1, ensuring
that the participants were exposed to all vocabulary items dur-
ing the training phase. The transitive constructions may or
may not have contained modification (V N N-A or V N N),
but when they did, they were always object modification. The
test set contained 14 examples: 5 seen, 5 unseen but not struc-
turally novel, and 4 unseen and structurally novel. Two of the
unseen and structurally novel test examples targeted only sub-
ject modification (V N-A N) and other two targeted both sub-
ject and object modifications (V N-A N-A). The videos cor-
responding to the transitive constructions showed one shape
moving across the screen to hit the other shape (Figure 3).
The shapes were either white or blue, and during training, the
modifier was present when a shape was blue. We created two
lists for this experiment, where each list contained different
form-meaning mappings of the nonce vocabulary (Figure 2).

Participants
We recruited 73 participants on Prolific. 5 participants’ data
were excluded either due to submission errors or incomplete
responses, yielding a total of 68 participants.

Results
The rate of successful learners—learners who produced the
correct answer for all test examples that were repeated from
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Figure 3: Example scenes from Experiment 1. The scenes
were animated for the actual experiments; the blue arrows
mark the shapes that are moving towards the other shape (the
shapes that move are the grammatical subjects of the tran-
sitive verb). The blue arrows were not part of the actual
video. In the depicted experiment, the star was never seen as
the grammatical subject during the training phase, and it was
never shown combined with a modifier. Additionally, there
were intransitive scenes with only a single shape (depicting
the shape hopping up and down) shown during both training
and testing phases not included in this figure.

training—was 38% (26/68). For these successful learners,
we analyzed the target answer production rate for the two un-
seen test sets (not structurally novel and structurally novel),
aggregating over all responses ignoring minor, unambiguous
typos (e.g., slove instead of slov). The successful learners’
target production rate was near perfect on unseen but not
structurally novel test examples (98%). For the test set with
structurally novel targets, the aggregate target answer produc-
tion rate was significantly over chance (88%, n = 104,z =
7.751, p < .001, test for one proportion assuming 50% as
chance level).3 The results are visualized in Figure 4. There
was no significant difference in the target production rates
across two lists (χ2 = 2.653,DF = 1, p = .10, n−1 χ2 test).

Furthermore, from the successful learners, an overwhelm-
ing majority (85%; 22/26) produced either the exact target an-
swers for all of the unseen, structurally novel test cases (i.e.,
100% target production rate for test cases targeting the form V
N-A N or V N-A N-A; n = 20), or answers structurally identi-
cal to target answers barring minor typos (n = 2).

Experiment 2: Modification with
Resultative Semantics

The color modification in Experiment 1 raises the question
of transfer effect from the participants’ native language, since
English also uses adjectival modification to describe the prop-

3We used 50% to represent chance level, but since the task was
free form elicitation rather than binary choice, the actual chance
level is presumably much lower. Here we took 50% as chance as-
suming a narrow set of two competing hypotheses: modification can
vs. cannot occur in unobserved positions.
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Type of unseen test examples

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 a

ns
we

r r
at

e

Figure 4: The distribution of target answer rates (# target/# to-
tal) in Experiment 1. The blue dotted line indicates the mean
target answer rate across all participants, and the red dot-
ted line indicates chance-level production of the target novel
structures, assuming a competition between two generaliza-
tion hypotheses: modification can occur in unobserved posi-
tions vs. modification cannot occur in unobserved positions.

erty of color attached to a nominal referent (e.g., the blue
star). Were the participants in Experiment 1 producing adjec-
tival modification on subjects by generalizing from modifica-
tions of objects in the artificial language, or extending subject
modification in English? Experiment 2 attempts to address
this question and show stronger evidence for bias towards
structural generalization by using semantics that cannot be
expressed as adjectival modification in English. Specifically,
the artificial language in Experiment 2 assigned resultative
semantics to the modifier, keeping the language’s syntax con-
stant. In English, a resultative construction generally cannot
be used to express the meaning that the subject is an under-
goer of change as a result of the action denoted by the pred-
icate (e.g., The man wiped the table exhausted or The man
wiped exhausted the table to mean that the man became ex-
hausted as a result of wiping the table) in transitive contexts;
resultative constructions are limited to direct objects (e.g.,
The man wiped the table clean) (Levin & Rappaport Ho-
vav, 1995).4 Therefore, in this experiment, the knowledge of
the participants’ native language actively biases them against
producing the target structure of subject modification. If we
do still find similar trends to Experiment 1 despite this adver-
sarial design, it would strongly support the subjects’ inductive
bias towards the elsewhere generalization for modification.

Stimuli
In this experiment, the postnominal adjective was a modi-
fier that expressed resultative semantics; namely, cracking (or

4Subject resultatives are not universally implausible; for exam-
ple, Korean allows for subject resultatives (Hong, 2006). Whether
resultatives should be analyzed as involving adjectival modification
is a topic of debate, but regardless of what kind of syntactic analy-
sis one adopts, the current claim that subject resultatives cannot be
expressed as adjectival modification in English holds.
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Figure 5: Example scenes from Experiment 2. The scenes
were animated for the actual experiments; the blue arrows
mark the shapes that are moving towards the other shape (the
shapes that move are the grammatical subjects of the transi-
tive verb). The blue arrows were not part of the actual video.
The cracks on the shapes appeared only after the hitting event
has happened. In the depicted experiment, the triangle was
never seen as the grammatical subject during the training
phase, and it was never shown combined with a modifier.

breaking) as a result of an event such as hitting. We selected
this particular meaning because cracking is a change of state
that can plausibly happen to both the hitter and the hittee as
a result of a hitting event. The video scenes for the transitive
event depicted one shape moving across the screen to hit the
other shape, and as a result, one of four things could happen:
the hitter cracks, the hittee cracks, neither cracks, or the hit-
ter and the hittee both crack (Figure 5). When the cracking
happened, a shattering sound was also played. The shapes
did not vary in color in this experiment. Other than this se-
mantic change of the adjective in the artificial language and
the change to the videos to reflect this semantic change, the
stimuli were kept equivalent to Experiment 1.

Participants
We recruited 122 participants on Prolific.10 participants’ data
were excluded either due to submission errors or incomplete
responses, yielding a total of 112 participants.

Results
The rate of successful learners was 49%, with 55 participants
achieving full accuracy on the seen examples during train-
ing. The target answer production rate for the unseen but not
structurally novel test set was again high, as expected (94%).
For the test set with structurally novel targets, the target an-
swer production rate, taking into account minor typos (e.g.,
sog instead of zog), was again significantly over chance (68%,
n = 220,z = 5.340, p < .001, test for one proportion assum-
ing 50% as chance level). The results are visualized in Fig-
ure 6. There was a significant difference in the target produc-
tion rates across two lists (χ2 = 6.675,DF = 1, p < .01, n−1
χ2 test), but the target answer production rate within each list
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Figure 6: The distribution of target answer rates (# target/# to-
tal) in Experiment 2. The blue dotted line indicates the mean
target answer rate across all participants, and the red dot-
ted line indicates chance-level production of the target novel
structures, assuming a competition between two generaliza-
tion hypotheses: modification can occur in unobserved posi-
tions vs. modification cannot occur in unobserved positions.

was independently over chance (list A: z = 5.758, p < .001,
list B: z = 2.156, p < .05).

We furthermore annotated the generalization patterns of
each successful learner. The most frequent pattern was full
structural generalization, with 47% (27/55) of the learners ei-
ther producing the exact target answers for all of the unseen,
structurally novel test cases (n = 24) or answers structurally
identical to the target answers, barring lexical errors (e.g.,
used a different vocabulary item for a shape; n = 3). 38%
(21/55) produced at least one target novel structure (V N-A
N and/or V N-A N-A). A smaller group (13%, 7/55) gener-
alized based on the alternative hypothesis that is compatible
with the training data: modification cannot appear in other
positions than where it was observed. Participants in this
group consistently omitted subject modification for all test
examples, never producing a novel structure. This analysis is
summarized in Figure 7.5 The rate of full structural gener-
alizers was significantly higher than the rate of the observed
structure-only generalizers (47% vs. 13%, χ2 = 15,DF =
1, p < .001), demonstrating a dominant preference towards
licensing rather than withholding generalization of modifica-
tion to unobserved positions.

Discussion
In both experiments, we observed a significant tendency
among the learners of our artificial language to generalize
modifiers to unobserved syntactic positions, producing struc-
turally novel answers. This bias towards the elsewhere gener-
alization is observed even when: (1) the exposure to modifi-

5One participant categorized as “Other” consistently used V S O
S(-A) O(-A), where the subject and object were duplicated when-
ever modification was present.
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Figure 7: Successful learners (100% accuracy on seen exam-
ples during test phase) grouped by their generalization pattern
on the structurally novel test set. The most common pattern
is full structural generalization (produced target answers for
all test cases), followed by producing at least one novel struc-
ture. Only a small group of learners consistently generalized
based on the alternative hypothesis that modification is only
restricted to the observed position.

cation was constrained to a single syntactic position, and (2)
the semantics of the artificial language was adversarial for
producing the target structures given the learners’ knowledge
of their native language. These results support the plausibility
of the generalization condition originally proposed by K&L.

What is a “fair” generalization test?
Wu et al. (2023) question the fairness of evaluating models
on the kind of generalization we tested with very restricted
training, arguing that the training data should specify unam-
biguous generalization targets for the test to be “fair”. In their
words: “It is quite reasonable for a learner to infer from this
situation that [modifications] are allowed only in this posi-
tion. [...] Thus, there is a case to be made that this split is
not strictly speaking fair in the sense of Geiger et al. (2019):
we have a generalization target in mind as analysts, but this
target is not uniquely defined by the available data in a way
that would invariably lead even an ideal learner to the desired
conclusion.”6 (text in square brackets ours). We argue oth-
erwise: since our human subjects exhibited substantial bias
towards the elsewhere generalization even under extremely
limited exposure conditions that underdetermine the general-
ization hypothesis,7 it is fair to pose this test insofar as we are
interested in human-like compositional generalization.

Then, when are we interested in human-like compositional
generalization as tests for our models? There are two main

6We focus only on the criticism of fairness regarding the con-
ceptualization of the generalization task here (i.e., is it fair to assume
such a constrained exposure condition that underdetermines the gold
target?), and not the additional criticisms raised about the specifici-
ties of logical forms affecting generalization performance, which is
irrelevant to the current discussion.

7Of course, a finite number of observations will never uniquely
determine a generalization hypothesis in the absence of constraints
about the hypothesis space. Here we used the term underdetermine
loosely to point to the fact that our training data does not disam-
biguate between licensing vs. withholding elsewhere generalization.

use cases for compositional generalization tests: (1) as an
evaluation for cognitive models, and (2) as an evaluation for
AI systems. In (1), it is clear that human generalization pat-
terns should be the modeling target. In (2), under the as-
sumption that how humans interpret certain linguistic inputs
is how models should interpret them too, models that can
match human generalization in the presence of multiple com-
patible hypotheses would be a more robust system. This is
especially the case in low-resource settings that may not pro-
vide the ideal learning condition in which the training data
clearly delineates between plausible generalization hypothe-
ses. Furthermore, benchmarks that assume more constrained
exposures can incentivize the development of models with
stronger inductive biases.

Limitations and future work
Limitations of self-reports for inferring assigned struc-
tures: Our experiments included a free-form question at the
end, where we asked what the participants thought the newly
learned (non-shape) words meant. In Experiment 1, most re-
sponded that the nonce word intended as the adjective meant
blue. The responses for Experiment 2 were trickier to inter-
pret. While some participants did provide answers explicitly
indicative of the targeted structure (e.g., “ro” is an adjec-
tive indicating the act of a shape being broken presumably
by being “zogged”), many responded with single words (e.g.,
broken, break). However, these responses cannot be taken as
indications that the modifier they learned was an exact analog
of the English word mentioned. For instance, multiple words
were often listed (e.g., broken or break, broke/break/broken),
presumably due to the lack of an exact analog. Then, these
seem to be “close enough” English words sharing the inferred
semantic features of the learned word, but not necessarily
matching in their syntactic categories. The possible mismatch
between the English word mentioned and the actual category
participants assigned to the learned word is clearly exempli-
fied by this response: some adjective meaning broke (broke is
not an adjective in the context of physical breaking). There-
fore, we cannot simply take self-reports, especially analogies
to single English words, as direct evidence for the structures
the participants assigned to the experimental stimuli.

Different types of modification: The original modifica-
tion tests used prepositional phrase (PP) modification rather
than adjectival modification that we explored in this work.
This change in setup was made because using PPs in our ex-
periments led to more non-shape lexical items that the par-
ticipants needed to learn, as well as compounding the com-
plexity of the visual scene that needed to be described. This
increased the difficulty of the training phase, only yielding
10% successful learner rate in our pilots even with all surface
forms provided as part of the on-screen lexicon. While we
believe that our current results can sufficiently speak to prior
discussions about the targeted training-test gap and task fair-
ness, we plan to develop improved protocols in future work to
reduce the difficulty of the learning task for PP modification
to test the exact generalizations discussed in prior work.
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