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A B S T R A C T

Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those
nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our
ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous
sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk
matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for
such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a
whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the
individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the
matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and
the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging
analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human
biology.
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Introduction

The “Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)”
Project was designed to: 1) examine the ecology of human milk, based
on the supposition that human milk represents a complex biological
system that interacts with both the internal biology and health of the
lactating person, the human milk matrix, and the impact on the
breastfed (BF) infant and external (social, behavioral, cultural, and
physical) environments (see Text Box 1 for Core Concepts and Terms);
2) explore the functional implications of this ecology for both the
biological parent and their infant; and 3) explore ways in which this
emerging knowledge can be studied and expanded via a targeted
research agenda and translated to support the community’s efforts to
ensure safe, efficacious, equitable, and context-specific infant feeding
practices in the United States and globally. The matrix of human milk
refers to the nutrient and nonnutrient components of foods and their
molecular relationships to each other (USDA).

The overarching conceptual framework and description of the
Project is presented in the BEGIN Executive Summary, the first of 6
manuscripts of this supplement. The subsequent manuscripts in this
supplement present the findings of the individual thematic BEGIN
Working Groups (WGs) as a continuum of thought that reflects a larger
conceptual view of how we can move this important research and
public health agenda forward [1–4]. Specifically, the BEGIN Project
was accomplished by forming 5 thematic WGs charged with address-
ing the following themes: 1) parental factors affecting human milk
production and composition; 2) the components of human milk and the
interactions of those components within this complex biological sys-
tem; 3) infant factors affecting the matrix, emphasizing the bidirec-
tional relationships associated with the breastfeeding dyad; 4) the
application of existing and new technologies and methodologies to
study human milk as a complex biological system; and 5) approaches
to translation and implementation of new knowledge to support safe
and efficacious infant feeding practices. This paper represents the re-
sults of the deliberations of WG 4.

The key concept underlying the BEGIN Project is that human milk
exists as a biological system that reflects both internal (lactating parent)
and external (infant and environmental) influences [5,6]. To advance
our understanding of human milk as a biological system, the BEGIN
WGs considered interactions within and between each component of
the lactating parent–milk–infant triad [1–4]. However, no studies have
attempted to integrate datasets across the triad to determine how factors
such as genetics of the lactating parent or the physical/social/behavioral
Text Box 1
Core concepts and terms

� In the context of this paper, “ecology” is defined as a complex biological system
human milk composition and its inherent biology, and the environment consists
external environments.

� With due recognition of the need to be observant of issues of gender identity/neu
papers described herein, we will use gender neutral terminology where approp
lactate identify as female. The term “lactating parent” respects and recognizes
other gender-relevant contingencies. In situations where reporting primary data
evaluated 250 lactating mothers”). Moreover, rather than using terms such as “m
throughout the report as appropriate as they accurately reflect the biological n

� “Human milk” refers to milk produced by lactating parents and includes both: 1)
the breast or expressed by the lactating parent and then fed to the infant; and 2) d
to human milk banks or fed to infants other than their own child.

S62
environment of either the lactating parent and/or infant shape the triadic
interactions.

Many challenges exist in delineating the functional implications
of human milk as a biological system, including the inherent
complexity of human milk, the limited availability of noninvasive
techniques suitable for use in infants, and the historical lack of
application of systems biology approaches to human milk and
lactation research. Studies of human milk bioactivity have largely
focused on breastfeeding practices (e.g., longer versus shorter
duration of breastfeeding), single human milk components, or a
limited number of outcomes. These studies fail to account for the
full biological potential of the human milk matrix, as viewed within
the context of the “nourish, protect, and communicate” paradigm
outlined by WG 2 [2].

The task of BEGIN WG 4 was to identify approaches to integrate
the interactions of the lactating parent–human milk–infant triad. WG4
explored how emerging analytical technologies, bioinformatics and
systems biology approaches could be used to advance our under-
standing of this critical aspect of human biology (Text Box 2).

Section 1: Human Milk and Infant Feeding on
Outcomes of Term Infants

In this section, we summarize key findings and limitations of
available evidence linking human milk composition and feeding
practices to infant outcomes, which were selected based on the po-
tential for long-term programming by dietary intake during early
postnatal life (see Text Box 3). A common approach has been to
compare human milk–fed to formula-fed (FF) infants. Although these
studies have informed how human milk benefits infant development, it
is not known whether the differences in outcomes between BF and FF
infants result from nutritional components that are present (e.g., bovine
milk proteins) or immunologic factors impacting signaling mechanisms
(e.g., bioactive components) being present, absent, or available in
different levels in infant formula compared with human milk.

Furthermore, the forms and concentrations of nutrients and thematrix in
which they exist differ markedly between human milk and infant formula.
Three main experimental approaches have been used to study how vari-
ability of one or more components within the matrix of human milk
composition impacts infant outcomes. First, evaluating dietary in-
terventions to the lactating parent tomodify oneormore componentswithin
human milk. Second, studying triads experiencing environmental condi-
tions that could modify human milk composition. Lastly, investigating
and its interactions with its environment. In this case, the complex system is
of parental and infant inputs and the influence of their respective internal and

trality, and to improve precision, to the extent possible, for the purposes of the
riate (e.g., lactating parent/person, etc.), to reflect the reality that not all who
those who may have been born female but do not identify as such as well as
(studies/analyses), we will refer to the population as specified (e.g., “the study
aternal” or “maternal milk,” we will use the terms such as “birthing parent”

ature of the birthing parent–infant dyad.
breastmilk produced by a parent for their infant and fed directly to infants via
onor/banked human milk produced by lactating persons that is either donated



Text Box 2
BEGIN WG 4 report outline

Section 1 Human milk and infant feeding on outcomes of term infants
Section 2 Human milk components, alone or in combination on out-

comes of term infants
Section 3 Experimental framework and analytical approaches to study

human milk as a complex biological system in term infants
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genetic differences in the lactating parent or offspring, for example secretor
status and human milk oligosaccharide (HMO) content and composition.

In Section 1, we summarize the evidence regarding human milk
feeding and its impact on key functional outcomes (Text Box 3).
Growth and physical development are highlighted, as studies have been
conducted to examine differences in exposure to human milk (e.g.,
exclusivity and duration) as well as effects of nutrient supplementation
and genetics of the lactating parent on infant growth and body
composition. Other functional domains are briefly introduced in the
text with key observations, proposed mechanisms of action and limi-
tations summarized in Table 1 [7–90].

Physical growth and body composition
Several recent systematic reviews summarize the evidence linking

human milk feeding and growth [91–93]. Most studies reported out-
comes on linear or body weight gain compared with reference stan-
dards, and a few studies report longitudinal changes in body
composition [91,92,94–96]. Limitations of existing evidence on
whether or how breastfeeding and human milk affect growth outcomes
are highlighted in Text Box 4. In addition, none addressed any of the
aspects of the human milk ecology.

Exclusivity and duration of human milk exposure
Current evidence associates longer duration of exclusive or partial

breastfeeding with slower infant growth rates in term infants than in
mixed feeding or formula feeding in developed countries [93]. A
recent systematic review of predominantly prospective observational
trials concluded that there was insufficient evidence to determine if
duration of exclusive breastfeeding reduced risk for obesity [97];
however, moderate evidence supports that ever vs never breastfeed-
ing, particularly for longer than 6 mo, is associated with a reduced risk
of overweight and obesity at ages 2 y and older [91,95]. Considering
that observational studies are prone to bias due to confounding, a
separate analysis was conducted of studies that used more rigorous
study designs, including 4 US observational cohorts that included
sibling-pair analysis along with the Promotion of Breastfeeding
Intervention Trial (PROBIT) in the Republic of Belarus [97,98]. This
analysis found that the association between ever vs. never
Text Box 3
Infant functional outcomes of interest for the study of human milk

� Physical growth and body composition
� Endocrine development
� Neurocognitive development
� Intestinal development and microbiome composition
� Immune system development and tolerance
� Metabolome
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breastfeeding and risk of childhood overweight and obesity was not
significant [97]. Thus, future longitudinal studies are needed involving
siblings to assess associations and to provide heightened confidence in
causal findings.

To date, PROBIT is the sole cluster randomized study evaluating the
effects on multiple outcomes of a breastfeeding promotion program that
led to a longer duration of breastfeeding in the intervention group
compared with the control group [98]. In addition, health outcomes
through adolescence have been reported. As such, PROBIT can be
viewed as a model for future study design and expanded to include
broader aspects of the internal and external ecologies described in Sec-
tion 3. Although the PROBIT trial is commonly referenced for breast-
feeding outcomes, some limitations have been noted in which Belarus
may not be representative of other countries. These include families
having access to good basic health services, 3-year maternity leaves with
little use of daycare, 95% breastfeeding initiation rate, a well-educated
population, and that non-BF infants were excluded from the trial [99].

Analysis of data from the ongoing Canadian Healthy Infant Lon-
gitudinal Development (CHILD) birth cohort study revealed an inverse
association between breastfeeding and weight gain velocity/BMI in a
dose-dependent manner, which was diminished when human milk was
fed from a bottle and when human milk was combined with formula
supplementation [74,100]. This study investigated important aspects of
how infants are fed but has not fully addressed human milk ecology.

Body composition outcomes with breastfeeding are less well
studied [101], and only 1 meta-analysis of 11 studies demonstrated that
never being BF was associated with altered body composition in in-
fancy, with higher body fat mass in early infancy and lower body fat
mass in the second year of life [91]. Hormone content of human milk
(leptin, ghrelin, insulin-like growth factor-I [IGF-I], adiponectin, and
insulin) has been explored in relationship to infant hunger, fat depo-
sition, and adipose tissue metabolism [102]. To date, no consistent
effects were observed, which may be attributed to the reliance on gross
anthropometric measures and cross-sectional studies of short duration
that did not include early time points. Moreover, traditional
component-based studies have not recognized the potential importance
of integrating components of human milk while considering its matrix
and ecology.

Dietary interventions to the lactating parent
A meta-analysis of data from low- and middle-income countries

reported that supplementation with multiple micronutrients during
lactation did not improve infant length, stunting, or head circumference
[103]. Similarly, a Cochrane systematic review found that long-chain
polyunsaturated fatty acid (LC-PUFA) supplementation to lactating
parents in high-income countries (HIC) yielded no differences in
children’s growth [13]. The absence of associations raises questions
about the type of supplemented nutrients, their concentration, and the
dynamic human milk ecology that may have influenced human milk
volume intake [104,105]. More comprehensive study designs ac-
counting for the complexity of human milk composition and its matrix,
human milk volume intake and precise longitudinal outcomes could
enhance our understanding of the associations between maternal di-
etary intake and infant development.

Genetic differences affecting human milk composition
The most prominent example of the examination of genetic varia-

tions on human milk composition have focused on variation in genes
for encoding for secretor and Lewis phenotypes influencing HMO
content and composition [106]. Associations between HMO content



TABLE 1
Multifunctional effects of human milk on infant and child outcomes.

Functional System Findings [reference]

Neurocognitive
Development

Observations � A meta-analysis of studies involving >12,000 children reported that those breastfed (BF) for �6
mos versus >6 mos had 1.04- and 1.06-fold higher scores on intelligence tests than those never
BF, respectively [7].

� Associations between variable concentrations of LC-PUFA (8–11) and choline and lutein [12] in
human milk and IQ have been shown.

� Synergistic associations of higher levels of both choline and DHA in human milk with better
recognition memory in infants [12].

� Meta-analyses of RCT of LC-PUFA supplementation have not shown an impact of consumption
of fish oil or DHA/EPA supplements in breastfeeding females on cognitive performance of their
children [13, 14]

Proposed Mechanisms or Associations
with Human Milk Components

� Improved myelination by 2 y of age in BF children, including networks associated with a broad
array of cognitive and behavioral skills [15]

� Sialylated molecules, including gangliosides and sialoproteins, are present in the frontal cortex of
infants [16]

� In BF, but not in FF infants, ganglioside-bound sialic acid was correlated with ganglioside cer-
amide DHA and total n-3 fatty acid, suggesting potential interactions between human milk LC-
PUFA and HMOs. [16]

Limitations � Small sample size studies, short-term studies with short follow-up. lack of diversity, lack of in-
formation on maternal and child genetic polymorphisms in LC-PUFA synthesis, lack of report of
sociodemographic factors [13,14,17].

� Within human milk component interactions have not been explored (HMO to other components,
HMO-HMO interactions).

Endocrine
Development

Observations � Type 2 Diabetes: BF reduced risk by 33% [18].
� Type 1 Diabetes:
� Exclusive BF for>2 wk was associated with a 14% lower risk than in a shorter duration and/or a
lack of BF [19–21].

Proposed Mechanisms or Associations
with Human Milk Components

� Breastfeeding is associated with lower preprandial serum glucose and insulin concentrations than
in formula-feeding [22].

� Type 2 Diabetes: Postulated effects on appetite regulation, reduced weight gain during infancy,
and/or nutrients in human milk that promote energy balance, independently of child or adult BMI
[23].

� Type 1 Diabetes:
� Lower gut permeability in BF than FF infants [24]
� Immunomodulatory substances, such as lactoferrin, lysozyme, and secretory immunoglobin A
(sIgA), as well as macrophages that affect the function of T- and B cells [25]

� Other human milk components have been suggested, but mechanistic evidence in humans is
lacking: SCFA [26,27] human milk-derived opioid peptides β-casomorphins [28], HMOs [29],
fucosyltransferase-2 nonsecretor status [30], miRNA content of human milk exosomes [31]

Limitations � Type 1 Diabetes: Unknown whether human milk offers protection in high-risk populations with
genetic predisposition [32]

� Lack of well controlled studies with longitudinal outcomes and comprehensive information on
human milk ecology and composition

Intestinal Development Observations � Endoscopic biopsies from healthy infants demonstrated 30% greater crypt length in FF than BF
infants [33].

� Intestinal permeability in vivo was higher in FF than BF infants [24,34].
Proposed Mechanisms or Associations
with Human Milk Components

� Pathways regulating stem cell proliferation, differentiation, and migration, as well as barrier
function and immune response were differentially expressed in exfoliated epithelial cells of BF vs.
FF infants [35].

� Diet can affect, via gut colonization and cross talk with host epithelial cell, expression of genes
associated with the innate immune system in infants [36].

Limitations � Limited sample sizes (4-10 infants per group)
� Lack of longitudinal data on diet and infant intestinal development
� Need to delineate developmental from human milk effects (e.g., term vs. preterm)
� Need to correlate gene expression with function and developmental outcomes

Immune Development Observations Immune cells:
� CD4þ T cells: No consensus for an effect of BF [37–39]
� CD8þ T cells: Longer BF was associated with increased CD8 T cell memory, but not memory B
cell numbers, in the first 6 mo [39].

� Natural killer cells: Higher in BF than formula-fed infants at 6 mo of age [37].
� Tregs: Proportion of Tregs increased nearly two-fold between birth and 3 wk of age in BF then FF
infants [40].

� IgA and IgG secreting B cells: Higher in FF than BF infants [41].
Cytokines
� Serum proinflammatory TNF-α and IL-2 were higher, while TGF-β2 was lower, in FF than BF
infants in the first year [42].

(continued on next page)
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TABLE 1 (continued )

Functional System Findings [reference]

� BF neonates showed a specific and Treg-dependent reduction in proliferative T-cell responses to
noninherited maternal antigens, associated with a reduction in inflammatory cytokine production
[40].

IgA:
� Earlier and greater IgA production in nasal and saliva samples from BF compared with FF infants
in the first few days of life [43], but not at 7 wks [44].

� Inconsistent finding on salivary IgA, IgM, and IgG between 3 and 6 mos [45,46].
Thymic size and GALT:
� Breastfeeding increases thymic size compared with formula-feeding [47]. There are no human
studies on the effect of breastfeeding or breast milk on the development of GALT due to lack of
access to human tissues.

Proposed Mechanisms or Associations
with Human Milk Components

� Higher IgA and IgG secreting B cells in FF possibly due to higher antigenic exposure [41].
� Human milk TGFβ may induce IgA production in infants [48].
� IgA production may be induced by Bifidobacterium species (enriched in BF) [19,49].
� Human milk IL-7 content, an important factor for lymphocyte development, was correlated with
thymic size [50,51].

� Thymic size was also correlated with the number of CD8þ T cells, which are increased in BF
infants [39].

Limitations � Only observational studies.
� Small sample sizes and limitations in the detection of memory T cells.
� Unknown if mechanisms underlying higher proinflammatory cytokines in formula-fed infants are
direct effects of human milk components or are mediated through gut microbiota.

� Discrepancies in salivary IgA levels may depend on antigenic exposure and infant gut microbiome
composition.

� There are no human infant studies on the effect of BF or human milk on the development of
GALT, due to lack of access to such human tissues.

Clinical Immune
Outcomes

Observations Food Allergy:
� Protective effect of exclusive breastfeeding against cow’s milk allergy in early childhood among
high-risk infants is inconsistent [52,53].

Other Atopic Diseases:
� Moderate evidence for a protective effect of human milk consumption against asthma in
childhood, limited evidence to indicate no association between human milk consumption and
atopic dermatitis in childhood, and inconclusive evidence to suggest a relationship between human
milk consumption and atopic dermatitis from 0-24 mo of age [20].

� No association between duration of human milk consumption and allergic rhinitis in childhood
[20].

� Evidence is insufficient to suggest any relationships between human milk consumption and
asthma, atopic dermatitis, or allergic rhinitis during adolescence or adulthood, or between human
milk consumption and food allergy at any life stage [53].

Gut Inflammatory Diseases:
� Inconclusive evidence of human milk consumption on celiac disease [54].
� Limited, but consistent, case-control evidence suggests that shorter versus longer durations of any
human milk feeding are associated with higher risk of IBD [20].

Proposed Mechanisms or Associations
with Human Milk Components

� Higher concentrations of total IgA and casein-specific IgA in human milk have been associated
with protection against cow’s milk allergy [55,56].

� TGFβ is the most well-studied human milk cytokine in connection with infant atopic outcomes;
however, a meta-analysis found no association between TGFβ in human milk and allergic out-
comes [57].

� High levels of some human milk cytokines (e.g., IL-1β, IL-6, IL-10, and TGFβ) are associated with
protection against food allergic disease [58], and human milk IL-6 and IGF-I may play a role in
oral tolerance [59].

� Effects of HMO are inconsistent with regard to atopic eczema, cow’s milk allergy, asthma and
eczema [60–62].

Limitations � High heterogeneity and low-quality evidence, lack of adequate statistical power to assess the
impact of BF [53].

Serum and Fecal
Metabolomes

Observations � BF infants have higher fatty acid metabolism compared with formula-fed infants, as shown by
higher levels of free fatty acids, lysophosphatidylcholines, and long-chain acylcarnitines, as well
as increased markers of β-oxidation in serum [63].

� FF infants have higher levels of circulating amino acids and amino acid degradation products in
serum than BF [64–72].

� Higher levels of microbial degradation products of protein in feces of FF than BF infants [63,66,
70,73].

� BF infants introduced to complementary feeding before 6 mos had higher serum BCAA at 12 mo
of age than to BF infants who were exclusively BF to 6 mo of age [63,64].

Proposed Mechanisms or Associations
with Human Milk Components

� Differences in dietary composition between human milk and formula
� Nutrients in human milk are packaged differently within the human milk matrix (e.g., fats with the
MFGM)

(continued on next page)
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TABLE 1 (continued )

Functional System Findings [reference]

Limitations � Further studies on human milk composition, including the human milk matrix, and nutrient
absorption could determine if changes in human milk composition over time, or even during the
day, alter the degree to which human milk nutrients are metabolized and absorbed

� Few studies have examined the timing of the introduction of complementary feeding on
metabolism

� Limited evidence on interactions between diet, microbiome and metabolome and outcomes, such
as growth

Gut Microbiome Observations � Gut microbiota at 12 mos differed compared with those weaned from human milk before 6 mo of
age [74].

� BF infants supplemented with formula where BF was associated with higher B. breve and
B. bifidum; cessation of BF resulted in faster maturation of the gut microbiome (Firmicutes) [75].

� Richness and diversity of microbiota were highest in infants who were not BF, lower in partially
BF infants, and lowest in exclusively BF infants. Increasing exclusivity of breastfeeding was
associated with greater relative abundance of Bifidobacteriaceae and Enterobacteriaceae and
lower relative abundance of Lachnospiraceae, Veillonellaceae, and Ruminococcacae [74].

Proposed Mechanisms or Associations
with Human Milk Components

� Glycans cleaved from human milk proteins by microbial glycohydrolases [76] and peptides
produced by proteolytic digestion in vivo [77] are bifidogenic

� HMOs act as prebiotics and shape the infant microbiome [78].
� B. longum subsp. infantis, directly internalize intact HMOs by specific transporters and degrade
them intracellularly [79], which allows it to outcompete other Bifidobacterium species/strains
(B. bifidum and some B. longum strains) that use extracellular glycosidase(s)

� Bifidobacterium populations increase more rapidly and are more abundant in infants fed by
secretor mothers than those fed by nonsecretor mothers and specific Bifidobacterium strains that
can use 20FL are enriched in the stools of the infants receiving human milk of secretors vs.
nonsecretors [80,81,82].

� Fucosylated α1-2 oligosaccharides are degraded by some Bacteroides (particularly B. fragilis) and
Akkermansia (A. muciniphila MucT) [83], which are commonly present in the infant gut [75].

� Secretor status interacts with route of delivery; infants born by CS who were fed secretor human
milk had a less dysbiotic gut microbiota compared with vaginally-delivered infants than did CS
infants who received nonsecretor human milk [84].

� Human milk contains a milk microbiota, which has been implicated in seeding the infant
microbiota [85].

Limitations � Data on microbiome composition of body sites besides fecal are limited
� Most studies are limited to 16S rRNA analysis, with small sample sizes
� Data on Archaea, viruses and fungi in human milk and infant stool are limited
� HMO diversity and human milk microbiota composition and metabolic function are influenced by
milk composition environmental factors, genetics, geographical location, and other factors [86,87],
including differences based on secretor status [85,88,89], which are often not documented.

� Low biomass samples, such as human milk may yield spurious results due to environmental
contamination

� 16s rRNA signatures do not reflect viable human milk microbes [90]
� Few studies addressed microbiome function (e.g., metagenomics and metabolomics) and human
milk matrix

� Studies on BF and host-microbe interactions and long-term outcomes are limited

BF, breastfeeding; CS, Cesarean section; 20FL, 20-fucosyllactose; FF, formula-feeding; GALT, gut-associated lymphoid tissue; HMO, human milk oligosac-
charide; IBD, inflammatory bowel disease; SCFA, short-chain fatty acids; Tregs, T-regulatory cells; TGFβ, transforming growth factor-beta.
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and growth of BF infants have been inconsistent. Variations in con-
centrations of 20-fucosyllactose (20FL), difucosyllactose,
lacto-N-neotetraose (LNnT) and lacto-N-fucopentaose I have been
associated with weight velocity, height-for-age Z-scores and body
Text Box 4
Limitations of studies investigating infant feeding practices and growth
outcomes

� Heterogeneity in outcomes and definitions of infant feeding practices
(e.g., feeding at the breast vs bottle, other human milk source [donor
milk], exclusivity)

� Inconsistent reporting of nutrient composition and volume of human
milk consumed

� Inconsistent growth outcomes reported (body weight, linear growth,
body composition, z-scores, weight velocity), and

� Majority of studies are observational, which may introduce bias
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composition in some studies but not others [107,108]. Recently, sig-
nificant associations between human milk bacteria and HMO intakes
and concentrations and infant anthropometry, fat-free mass, and
adiposity were shown [109]. When data were stratified based on
maternal secretor status, some relationships were found among infants
born to secretor vs nonsecretor mothers [109]. While these studies have
examined associations with all HMOs in the human milk sample,
which is more robust than single component associations, they do not
encompass the full human milk ecology and matrix complexity and,
thus, the conflicting results should be viewed with caution.

In summary, future prospective cohort studies should incorporate
robust study design, with standardized and frequent measurements of
growth and body composition, measurement of human milk compo-
sition and intake, and documentation of pertinent parental and infant
co-variates to uncover underlying mechanisms whereby human milk
and/or breastfeeding influence infant growth. The extant data is limited
in assessing the impact of exclusivity or duration of human milk
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feeding, parental supplementation or that of genetic differences on the
human milk matrix.

Neurocognitive and functional development
Neurodevelopment is exquisitely sensitive to early life dietary and

environmental exposures and has been an active area of research [110].
Some [111,112], but not all [113,114], observational studies of human
milk–fed term infants have reported higher cognitive outcomes than in
FF term infants, without associating benefit to any particular compo-
nent of the human milk matrix (Table 1). Deoni et al [15] found that
exclusive breastfeeding for at least 3 mo was associated with improved
myelination diffusely throughout the brain by 2 y of age, which per-
sisted through early childhood. In a meta-analysis, breastfeeding
compared with formula-feeding was associated with an increased in-
telligence quotient (IQ) of ~3.5 points in childhood and adolescence
and 2.19 points after adjustment for maternal IQ [115]. In terms of
breastfeeding duration, a meta-analysis of studies involving >12 000
children showed that those BF for either �6 mo or >6 mo had higher
scores on intelligence tests than those never BF [7].

The effect of LC-PUFA supplementation in the lactating parent,
either as fish oil or as purified forms of DHA, EPA, and/or AA on infant
neurocognitive development has been investigated. Meta-analyses of
randomized control trials have not shown associations between the
consumption of fish oil or DHA/EPA supplements in breastfeeding
females and the cognitive performance of their children [13,14]. A
systematic review, conducted as part of the 2020 Dietary Guidelines,
found there was insufficient evidence to evaluate the effects of omega-3
fatty acid supplementation during pregnancy and/or lactation on other
infant developmental outcomes [116]. These reviews identified the
need for additional studies with larger and more diverse sample sizes
and inclusion of information on maternal and child genetic poly-
morphisms in LC-PUFA synthesis and sociodemographic factors.

Endocrine development
Few studies have investigated how human milk feeding affects

endocrine development, other than for risk of type 1 and type 2 dia-
betes. Updated systematic reviews and meta-analyses suggest that
breastfeeding reduces the odds for the development of type 2 diabetes
by 33% [18]. For type 1 diabetes, exclusive breastfeeding for >2 wk
reduces risk by 14%, compared with a shorter duration [19,20] and/or a
lack of breastfeeding [21]. Potential mechanisms and limitations of the
current evidence are summarized in Table 1 and include a lack of
assessment of the human milk matrix.

Intestinal development
The intestinal tract is functionally immature and immunologically

naïve at birth [116] and undergoes marked structural and functional
adaptation in response to feeding [24,117]. The trophic response to
humanmilk exceeds that of formula, suggesting a unique contribution of
human milk constituents and importantly, the human milk matrix, are
important in this response [118,119]. Most studies on the impact of
feeding have been conducted in preclinical animal models [120] or
preterm infants [121] due to the availability of tissue samples or aspi-
rates. However, measuring the transcriptome of exfoliated epithelial
cells has allowed for noninvasive interrogation of intestinal gene
expression in term infants [35], affording a noninvasive approach to
longitudinally assess the impact of diet on gut health and function in BF
infants. Observations of the effect of human milk on intestinal
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development of infants and potential mechanisms and limitations of the
current evidence, which include a lack of dissection of the human milk
matrix effect, are summarized in Table 1.

Immune development and clinical immune outcomes
The immune system is also immature at birth as evidenced by

incomplete physical and chemical barriers, poor innate effector cell
function, limited and delayed secretory immunoglobulin A (IgA)
production, underdeveloped complement cascade function, and insuf-
ficient anti-inflammatory mechanisms of the intestinal and respiratory
tracts [122]. As reviewed by Dawod et al [123], human milk contains
many immune components that are purported to facilitate the transition
of the infant to extrauterine life. Microbial colonization of the intestinal
tract in early life also plays a key role in stimulating the development of
mucosal immunity and long-term programming of the adaptive im-
mune system [49,124–126]. Surprisingly little is known of how human
milk influences the developmental ontogeny of peripheral blood im-
mune cells, cytokines or gut-associated lymphoid tissue in human in-
fants [37–47,127] (Table 1).

The impact of human milk consumption on clinical immune out-
comes (e.g., atopic diseases and GI inflammatory diseases) is sum-
marized in Table 1. To date, only PROBIT showed that increased
duration and exclusivity of breastfeeding was associated with
decreased risk of atopic eczema in the first year of life [97]; however,
follow-up at 6.5 y did not support a protective effect of prolonged or
exclusive breastfeeding on allergy or asthma [128].

Most of the available evidence describing relationships between
shorter or longer periods of exposure to human milk, or naturally
occurring low versus high levels of human milk components, and
outcomes such as IgE development, humoral immunity, and food al-
lergy is limited to observational studies in humans, which are suitable
only for suggesting association, not for determining causation. In
addition, the evidence is difficult to interpret due to application of
varying definitions of breastfeeding and allergic disease, potential for
reverse causality, insufficient power for or lack of reporting of specific
atopic disease outcomes, and the potential confounding effect of gene-
environment interactions.

Serum and fecal metabolome
Metabolomics has emerged as an important tool to investigate how

infant diet (human milk vs. infant formula with or without added
bioactive components) impacts serum, fecal and urinary metabolites
(Table 1). Human milk–fed infants have higher concentrations of fatty
acid metabolites [63] than FF infants, who have higher levels of amino
acids and products of amino acid degradation [64–71], suggesting that
the composition of human milk enhances fat-based metabolism [64,
69].

Fecal microbiome composition
There are multiple microbial ecologies that influence human health

and development. While less is known about several of these micro-
biomes (oral, epithelial, vaginal etc.), emerging evidence indicates a
significant role of infant feeding in the development and health of the gut
microbiome. The gut microbiome is established over the first 2 to 3 y of
life through sequential phases that are influenced by numerous factors,
most notably route of delivery and form of nutrition [129,130]. Micro-
bial colonization of the gastrointestinal tract is essential for program-
ming of infant immune, neurocognitive, and intestinal development [49,
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123,131]. The process can be viewed through the lens of ‘seeding,
feeding, and weeding’, in which route of delivery provides the first
exposure to environmental bacteria, which are subsequently shaped by
nutrition and antibiotic exposure, among other environmental factors,
including geographical location and household exposures [132,133].
The microbiota of infants born by Cesarean section (CS) who were
exclusively BF was more similar to vaginally-delivered infants than FF,
CS-delivered infants [134]. Thus, when assessing the impact of human
milk on the infant microbiota, it is essential to collect metadata related to
both birthing parent and infant exposures.

Large longitudinal cohort studies show that breastfeeding duration
and exclusivity influence infant gut microbiome composition and
function, with exclusive human milk feeding establishing a less diverse
and different microbiota that can be disrupted by formula feeding,
particularly in the early postpartum period [74,75]. In addition, HMOs
act as prebiotics and shape the infant microbiome [78], thus, the ge-
netics (secretor status) of the lactating parent can influence microbial
colonization of the recipient infant by modifying the composition of
human milk [80]. Observations of the effect of human milk on infant
gut microbiome development of term infants and potential mechanisms
and limitations of the current evidence are summarized in Table 1.
Conclusions
Existing clinical and epidemiological evidence support improved

health and developmental outcomes for infants fed human milk. To
date, there is limited research that has explored the full ecology of
human milk including critical aspects of the triadic relationships
highlighted by WG 1-3 [1–3], and their importance in fully under-
standing the impact of human milk on infant health and development.
Moreover, most studies have focused on a single outcome (e.g.,
growth, immune development, microbiome composition) rather than
taking a holistic view of human milk as a developmental modulator.
Although it is important that we apply a systems biology approach to
study human milk as a matrix, it is clear that we also need to consider
the systems biology within the recipient infant. For example, there is an
ever-growing appreciation of the interactions between the microbiota
and the development of other organ systems, including gut, immune,
and neurocognition. To gain a better understanding of the functionality
of human milk components, alone or in combination, the next section
will briefly review findings of randomized controlled trials (RCTs)
conducted in human infants.

Section 2. Human Milk Components, Alone or In
Combination on Outcomes of Term Infants

In addition to the types of studies reviewed in Section 1 that have
explored the impact of human milk on specific functional outcomes,
considerable effort has gone into the study of specific constituents of
humanmilk on infant health and development. While these studies have
rarely explored the intersection of the humanmilk ecology and the triad,
they have provided some potential avenues for pursuit of a deeper un-
derstanding of that intersection. The following brief review explores
some examples of milk constituents and the most common approaches
that have been used to evaluate their impact on infant health and
development.

A common approach to the exploration of the impact of milk
constituents has been the use of analogs of human milk bioactives
isolated from bovine milk or synthesized to study their physiological
functions in preclinical models and human infants. Among the most
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studied are HMO, milk fat globule membrane (MFGM), osteopontin
(OPN) and LC-PUFA [135]. Summarized in this section and in Table 2
are findings of RCTs conducted in infants that evaluated the bio-
activities of these milk components. These case studies highlight the
multifunctional activities of individual milk components. Notably these
studies explore these relationships outside of the biological matrix of
human milk, which should be considered when assessing human milk
as a biological system.

Human milk oligosaccharides
Select HMOs tested in RCTs were well-tolerated and supported

age-appropriate growth in term infants [136]. Two RCTs investigated
either 20FL alone [137, 138] or 20FL þ LNnT [139,140] (Table 2).
Compared with the control formulas, supplemental 20FL alone modu-
lated circulating and secreted cytokines [138]. Parent-reported fre-
quency of illness and antibiotic use was lower in infants fed formula
with 20FL þ LNnT [139]. A shift in the microbiome community types
was also observed in infants supplemented with 20FLþ LNnT [140]. A
more recent RCT assessed the safety and tolerability of a mixture of 5
HMOs at a total concentration of 5.75 g/L, which confirmed there were
no differences in growth or tolerance between infants fed standard
formula or formula þ 5HMO [141]. While confirming the potential
immunomodulatory and bifidogenic actions of these specific HMOs in
vivo, none of these studies recapitulate the composition or complexity
of oligosaccharide structures present in human milk.

Machine learning–based classification tools have been used to
investigate mechanistic links between fecal microbiome, metabolome,
and gut health markers of infants in the 20FL þ LNnT trial [140] who
experienced bronchitis or lower respiratory tract infection (LRTI) than
in those who did not [139]. Among the main features that discriminated
infants who did not experience any reported bronchitis or LRTI were
consumption of HMO-containing formula, higher acetate, fucosylated
glycans, and Bifidobacterium, as well as lower succinate, butyrate,
propionate, and 5-aminovalerate, and Escherichia. By univariate
analysis, infants experiencing no bronchitis or LRTI showed higher
acetate and B. longum subsp. infantis [124]. Of relevance to the
question of how to study the complex biology of human milk, this case
study illustrates the potential to apply machine learning to existing data
sets to identify predictive biomarkers of infant health outcomes in
response to human milk components.

Lactoferrin
Lactoferrin (LF), a multifunctional, iron-binding protein, comprises

approximately 15% to 20% of total protein in human milk [142], and is
considered to be an important contributor to human milk bioactivity.
Human LF stimulates immune function, cell proliferation, and differ-
entiation and has antibacterial and antiviral activities [142–144].
Bovine milk LF (bLF) shares 67% amino acid sequence homology with
human LF, has similar bioactivities [143,145], and has been tested in
several RCTs (Table 2) [144,146,147]. Some studies have shown
modest improvements in iron status and lower incidence of upper
respiratory illness [146,148] and diarrhea [148] with bLF supplemen-
tation; however, other studies have shown no effects [149,150]. In very
low birth weight infants, early studies showed that giving bLF orally
decreased necrotizing enterocolitis (NEC), sepsis and mortality [151,
152]. Recent multicenter RCTs have shown no benefit of oral bLF
[153,154]. These divergent findings may be due to different sources of
bLF, its heat treatment before administration, or contamination by other
proteins [155]. Infants fed formula with both bLF and MFGM showed
improved neurodevelopmental outcomes [156], but it is not possible to
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assess if both components contributed to the improved outcomes as
other studies have shown that MFGM alone affects cognitive devel-
opment. To date no studies have been found that have explored LF
from the perspective of the interactions of the triad either in terms of LF
composition or impact.

Milk fat globule membrane
Fats in human milk are packaged within a 3-layered membrane, or

MFGM, which contains anti-infective proteins, carbohydrates (sialic
acid), and lipids (gangliosides and cholesterol), the latter of which are
purported to be involved in neurodevelopment [157]. Readers are
referred to the WG 2 report [2] for additional information on the
composition MFGM and its potential biological roles in signaling and
cell membrane composition.

Formula contains very little or no MFGM as defatted bovine milk is
used as the starting material. RCT have investigated supplementation
of formula with bovine milk MFGM, which is not identical to human
milk MFGM, but contains similar components and at similar levels
[158,159] (Table 2). The addition of a bovine milk protein isolate
enriched in MFGM at 4% of total protein to an infant formula was
associated with significantly lower rates of infection, and in particular
otitis media, than in formula alone [159,160]. MFGM-supplemented
infants had a lower abundance of oral Moraxella catarrhalis, a
microorganism commonly linked to otitis media, providing a potential
mechanism of action [161]. There were minor effects of MFGM on
fecal microbiome composition [63]. At 4 and 6 mo of age, both the
fecal [63] and serum metabolomes [64,69] and serum and erythrocyte
cell membrane lipidomes [162] differed between infants fed formula
with MFGM vs formula alone; however, differences were no longer
present at 12 mo. Lastly, at 12 mo of age, infants fed
MFGM-containing formula had significantly higher scores in the
Bayley III cognitive domain than infants fed formula without MFGM
[159], but a follow-up study at 6.5 y of age found no differences in
neurodevelopment between children who were fed the
MFGM-containing formula compared with unsupplemented formula
[163]. Further complicating our understanding of the contribution of
MFGM to human milk bioactivity is that the composition of bovine
MFGM used in RCTs varies considerably among commercial suppliers
[157].

As with the previous components discussed in this section, while
there is evidence to suggest a functional impact of the MFGM on infant
related outcomes, no studies were found that explored the nature of the
triadic relationships on MFGM content or functional impact. Further-
more, a need exists to apply the ecological systems approach advocated
throughout the BEGINWG reports to advance our understanding of the
biology of the MFGM not just as a component of human milk, but as a
unique biological system in and of itself.

Osteopontin
OPN is abundant in human milk, but is low in cow’s milk and,

consequently, infant formula [164,165]. OPN stimulates cell prolifer-
ation and differentiation and exerts immunomodulatory functions by
binding to integrin and CD44 receptors on cell membranes [164].
Interestingly, unlike other components reviewed in this section, there is
evidence of an important role of the triadic relationship in OPN content
and function. For example, factors in the lactating parent such as BMI,
birth route, pregnancy weight gain, and energy intake during lactation
affect human milk OPN concentrations [166]. Consistent with immu-
nomodulatory activities, negative associations between human milk
OPN levels and fever-related infant hospitalizations from 0 to 3 mo of
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age and have been reported, suggesting an interaction between the
infant and OPN content within the human milk matrix [166].

An RCT studied 1- to 6-month-old infants who were fed standard
formula, formula with bovine OPN added at half the human milk level
(65 mg/L) or formula with the same level as in human milk (130 mg/L)
and compared these groups with a BF group [167]. Infants fed formula
þ OPN had significantly less morbidity (days with fever), lower
proinflammatory and higher anti-inflammatory cytokine levels in
serum [167], and differences in circulating lymphocyte subsets [168]
than infants fed standard formula. A follow-up analysis reported higher
human OPN concentrations in plasma of both formula þ OPN groups
and BF infants than in infants fed standard formula [165]. In addition,
plasma bovine OPN concentration was greater in the 130 mg/L OPN
group than the 65 mg/L group [165], suggesting that dietary bovine
OPN was absorbed and could affect endogenous OPN synthesis and
secretion [165]. A finding that OPN and LF form a strong complex that
enhances resistance against digestion and several bioactivities [169]
should be considered when evaluating the matrix of human milk.

The evidence of the important immunomodulatory role of OPN and
the potential impact of the response of both the parent and infant to
infection reveals both an intimate relationship between the triad and
OPN content, as well as the potential importance of the compound in
our response to current and emerging infectious diseases.
Long-chain polyunsaturated fatty acids
LC-PUFAs are the most studied functional human milk compo-

nents, with AA, DHA, and EPA being the most commonly studied n-6
LC-PUFAs and n-3 LC-PUFAs, respectively. Over 40 y ago, dietary
LC-PUFA intake by the lactating parent was shown to affect human
milk. LC-PUFA concentration [170] and human milk LC-PUFA was
linked to infant LC-PUFA status [171,172]. At the same time, other
investigators showed the importance of DHA for neurodevelopment
[173,174] and identified that the period between 24 wk gestation and
infancy was critical for brain DHA accumulation [175,176]. At that
time, infant formula lacked preformed AAand DHA, precipitating a
number of RCTs to study the effects of LC-PUFA supplementation to
the lactating parent (see Section 1) or added to formula fed to term or
preterm infants. These findings have been reviewed in recent system-
atic reviews and meta-analyses [177–179] and are briefly summarized
in Table 2.

The DHA intake and measurement of neural development (DIA-
MOND) study is the only dose-response RCT of DHA and AA that
investigated the addition of AA (0.64% of total fatty acids) and 4 doses
of DHA (0%, 0.32%, 0.64%, and 0.96% DHA) to infant formula,
which was fed for the first year of life [180]. In this study, improve-
ments were observed in cortical visual acuity [180] and cognitive
outcomes in all DHA groups compared with 0% DHA, some of which
persisted through 6-9 y of age (Table 2) [181–183].

However, 2 recent systematic reviews found no benefit of LC-
PUFA supplementation on longer-term cognitive outcomes [177,
184]. In the first, cognitive performance of term-born children >2.5 y
(range 3.3-16 y), assessed by the Wechsler Preschool and Primary
Scale of Intelligence-Revised, showed no effect of early LC-PUFA
supplementation. Similarly, performance of preterm-born children on
the Wechsler Abbreviated Scale of Intelligence was not affected early
LC-PUFA supplementation [177]. The same group of investigators
compared differences in academic performance of term-born or pre-
term adolescents who had participated in one of 7 RCTs of formula
supplementation as infants, 2 of which were LC-PUFA supplementa-
tion studies [184]. At 11 y of age, preterm and term participants



TABLE 2
Multifunctional bioactivities of isolated milk components supplemented to infant formula.

Milk Component and
[concentration] (ref)

Functional Outcome

Growth/Tolerance Infection Immune Function Neurocognitive Microbiome Serum Metabolites

HMOs
� 20FL [0.2 or 1.0 g/
L] þ galacto-
oligosaccharides
(GOS) to 2.4 g/L

� 4 month
intervention

� BF reference
[136,137]

Growth of 20-FL
supplemented infants
not different than SF
[136]

NR � 20FL reduced
circulating pro-
inflammatory
cytokine
concentrations and
their secretion by
isolated PBMC
stimulated with
RSV compared
with SF; levels not
different than [137]

NR NR � 20FL detected in
blood and urine of
BF infants and
those fed formula
þ 20-FL [136]

� 20FL [1.0 g/L] and
LNnT [0.5 g/L]

� 6 month
intervention

� Follow-up at 12
mos [138,139]

� HMO-supplemented
infants had softer
stool and fewer
nighttime wake-ups
at 2 mo of age [138]

� Reduced
infectious
episodes in the
HMO-
supplemented
group [138]

� Fewer parental
reports of
bronchitis
through 4, 6, and
12 mo and LRTI
through 12 mo
[138]

� Reduced parent-
reported antipy-
retics use through
4 mo and antibi-
otics use through
6 and 12 mo
[138]

� Microbial
alpha and beta
diversity of the
HMO group
was closer to
that of the BF
than control
formula [139]

� 5 HMO: LNT,
20FL, 30FL, 30SL,
60SL

� Total HMO
concentration of
5.75 g/L

� 4 month
intervention [141]

� No differences in
growth or tolerance
between infants fed
SF or formula þ 5
HMO

Lactoferrin
� Term infants fed
formula with native
bLF [102 mg/L] or
added bLF [850
mg/L] for 12 mo
[146]

� Reduction of
URTI and
wheezing (P
< 0.05)

� Higher hematocrit
levels at 9 mos
(37.1% vs 35.4%;
P < 0.05) in bLF-
supplemented
than CON

� Term infants fed
formula or added
bLF [38 mg mg/L]
for 3 mo (105)

� Lower
respiratory-
related illnesses
and occurrences
of diarrhea-
related illnesses
BF and bLF
groups than CON
(P < 0.05)

� Preterm, VLBW
infants

� Multicenter,
randomized,
double-blind, pla-
cebo-controlled trial

� Orally dosed with
bLF [100 mg/d,
LF]; LGG [6�109

CFU/d [151]

� No adverse effects or
intolerances to
treatment occurred
[151]

� Incidence of �
stage 2 NEC and
of death-and/or
� stage 2 NEC
was lower in LF
(p ¼0.055) and
LFþLGG
(p<0.001) vs.
CON

�

(continued on next page)
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TABLE 2 (continued )

Milk Component and
[concentration] (ref)

Functional Outcome

Growth/Tolerance Infection Immune Function Neurocognitive Microbiome Serum Metabolites

bLFþLGG]; or
placebo (CON)

� Birth to 30 d of life
[151, 152]

� Incidence of LOS
due to bacterial
or fungal
infection was
lower in LF
(p¼0.002) and
LFþLGG
(p<0.001) vs.
CON (109)

� Preterm, VLBW
infants <32 wk GA

� Multicenter (37
centers),
randomized,
double-blind, pla-
cebo-controlled trial

� Orally dosed with
bLF [150 mg/kg/d,
LF]; or sucrose
[CON]

� � 72 hours
postpartum to 34
wk PMA [153]

� 316 (29%) of
1093 LF infants
acquired a LOS
vs 334 (31%) of
1089 CON
infants

� Risk ratio
adjusted for
minimization
factors was 0.95
(95% CI 0.86-
1.04; p¼0⋅233).

� Preterm infants
weighing 500-2000
g

� Multicenter (3
centers),
randomized,
double-blind, pla-
cebo-controlled trial

� Orally dosed with
bLF [200 mg/kg/d,
LF]; or sucrose
[CON]

� 8 week intervention
� Follow-up at 24 mo
[154]

� Growth outcomes
and rehospitalization
rates during the 2-
year follow-up were
similar in both
groups

� LOS or sepsis-
associated death
occurred in 22 LF
infants (10.5%)
vs 30 (14.6%)
CON

� No difference
after adjusting for
hospital and birth
weight; hazard
ratio 0.73 (95%
CI, 0.42-1.26).

� At 24 mo, LF
infants had less
bronchiolitis than
CON (rate ratio,
0.34; 95% CI,
0.14-0.86).

� Mean age-adjusted
normalized Mullen
composite score at
24 mo was 83.3 �
13.6 in the LF group
vs. 82.6 � 13.1 in
CON (N.S.).

� LF (0.6 g/L
þMFGM (5 g/L)
for 1 y study

� Follow-up at 1.5 y
[156]

� No difference in
growth vs. CON

� Respiratory-
associated
adverse events
and diarrhea were
significantly
lower for the
MFGM þ LF
group through
1.5 y (p<0.05)

� Bayley II mean
cognitive (þ8.7),
language (þ12.3),
and motor (þ12.6)
scores were higher
(P< 0.001) for the
MFGM þ LF group
vs. CON at 1 y

� Differences no
longer present at 1.5
y

MFGM
� MFGM protein
fraction twice daily
added to weaning
food

� 6- to 11-month-old
infants [158]

� Global
prevalence of
diarrhea was
3.84% in MFGM
vs 4.37% in CON
(P < 0.05).

� MFGM reduced
episodes of
bloody diarrhea
by 46% (P ¼
0.025)

� Formula with or
without added

� No effect of MFGM
on growth or

� Lower incidence
of diarrhea, otitis

� At 12 mo of age,
Bayley cognitive

� Little effect on
fecal

� MFGM reduced
fecal lactate,

(continued on next page)
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TABLE 2 (continued )

Milk Component and
[concentration] (ref)

Functional Outcome

Growth/Tolerance Infection Immune Function Neurocognitive Microbiome Serum Metabolites

MFGM fed for 4
mos

� MFGM proteins
constituted 4%
(wt:wt) of the total
protein content

� ~2-6 month-old
infants

� Follow-up at 12 mo
� BF reference
[63, 64, 159–163]

tolerance vs. CON
[169]

� At 6.5 y of age, no
differences between
MFGM and CON in
weight, length, or
head or abdominal
circumference [163]

media and anti-
pyretic use vs.
CON [159, 160]

score was higher (P
¼ 0.008) in the
MFGM (105.8 �
9.2) than CON
(101.8 � 8.0), but
was not different
than BF (106.4 �
9.5; P ¼ 0.73) [159].

� At 6.5 y of age, no
differences between
MFGN and CON in
any measure of
cognitive or
adaptive functioning
[163]

microbiome
between
MFGM and
CON [63]

� MFGM fed
infants had a
lower
abundance of
oral Moraxella
catarrhalis
than CON
[161].

succinate, amino
acids and their
derivatives vs.
CON [63]

� Infants fed
MFGM had
higher levels of
fatty acid
oxidation
products in serum
than CON [64]

� Plasma lipidome
of infants fed
MFGM differed
at 4 mo (SM and
PCs) and 6 mos
(SM, PCs,
ceramides) vs.
CON [162]

� Erythrocyte SMs,
PEs and PCs
differed between
MFGM and CON
at 6 mo [162]

� At 6.5 y of age, no
differences
between MFGM
and CON plasma
concentrations of
homocysteine,
lipids, insulin, or
glucose [163]

Osteopontin
� Double-blind RCT
� Formula with
0 (CON), 65 (F65)
or 130 (F130) mg/L
bovine OPN for 6
mos

� BF reference
[165,167,168]

� Growth patterns,
formula intake, sleep
patterns and adverse
events were similar
in all formula-fed
groups [167]

� Infants fed OPN
had significantly
fewer days with
fever than CON
[167]

� Infants fed OPN
had serum TNF-α
and higher IL-10
than CON (124)

� Infants fed F130
had higher T-cell
proportions than
F0 or F65 [168]

� At 4 and 6 mo,
plasma human
OPN was higher
in BF, F65, and
F130 than CON
[165]

� Plasma bovine
OPN in F130 was
greater than F65
[165]

LC-PUFA
� Double-blind RCT
(DIAMOND
STUDY)

� Term infants,
n¼~40 per group

� Compared 4
formula containing
0.64% AA and
either 0% (CON),
0.32%, 0.64% or
0.96% DHA for 12
mo [180]

� Any level of DHA
compared with CON
(0% DHA)
improved:

� Visual acuity in
infants fed at 12 mo,
but not 3 mo [180]

� Cognitive
development
through 6 y of age
[181]

� Brain ERP
responses and
synchronization
during a task
requiring response
inhibition at 5.5 y
[182]

� Brain structure,
function and
metabolism at 9 y
[183]

(continued on next page)
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TABLE 2 (continued )

Milk Component and
[concentration] (ref)

Functional Outcome

Growth/Tolerance Infection Immune Function Neurocognitive Microbiome Serum Metabolites

� RCT
� Preterm infants<33
wk GA and 750-
1800 g)

� Compared CON
formula with
formula containing
0.26% DHA and
0.42% AA from
either fish/fungal or
egg/fish oil sources

� Body composition
measured by DXA
[185]

� No significant
differences among
the 3 groups at any
time point in weight,
length, or head
circumference or
bone mineral content
or density.

� Greater (p<0.05)
lean mass and
reduced fat mass in
infants fed formula
with LC-PUFA at 12
mo

� Subset of term
infants in the
DIAMOND
STUDY

� Measured growth
outcomes from 6 y.

� A limitation is the
small sample size at
6-year follow-up
(n¼18-24/group)
[186]

� Compared CON
formula, children
who consumed LC-
PUFA supplemented
formula had higher
length-/stature- and
weight-for-age per-
centiles, but not BMI
percentile from birth
to 6 y

� Maternal smoking
predicted lower
stature (2-6 y), higher
weight-for-length
(birth-18 mos) and
BMI percentile (2-6
y) independent of
LC-PUFA effects.

� Gender interacted
with the effect of LC-
PUFA on stature, and
the relationship be-
tween smoking and
BMI, with a larger
effect for boys.

20FL, 20-fucosyllactose; 30SL, 30-sialyllactose; 30FL, 30-fucosyllactose; 60SL, 60-sialyllactose; BF, breastfed; CON, control; GOS, galacto-oligosaccharides; GA,
gestational age; HMOs, human milk oligosaccharides; LNnT, lacto-N-neotetraose; LNT, lacto-N-tetraose; LOS, late onset sepsis; LC-PUFA, long-chain PUFA;
LRTI, lower respiratory tract infection; MFGM, milk fat globule membrane; NR, not reported; OPN, osteopontin; PC, phosphatidylcholines; PMA, postmenstrual
age; RSV, respiratory syncytial virus; SM, sphingomyelins; SF, standard formula; URTI, upper respiratory tract infection.

S.M. Donovan et al. The American Journal of Clinical Nutrition 117 (2023) S61–S86
randomized to LC-PUFA supplemented formula scored lower in En-
glish and mathematics than those not supplemented as infants. These
observations highlight not only the need for longer-term follow-up of
infant feeding studies but also for addressing heterogeneity in neuro-
cognitive assessment measures.

Differences in growth and body composition in response to LC-
PUFA supplementation have been reported in preterm and term in-
fants. Preterm infants fed formula with DHA and AA had increased
lean mass and reduced fat mass compared with infants fed formula
without LC-PUFA [185]. A follow-up of term infants enrolled in the
DIAMOND study [180] found increased length- and weight-for-age,
but not higher BMI, through 6 y in those fed LC-PUFA as infants
[186]. However, both of these studies were small and a recent Cochrane
review of 13 studies that measured physical growth of term infants
found no beneficial or harmful effects of supplementation [178].

Lastly, the influence of LC-PUFA supplementation on infant im-
mune development has received considerable attention. In some
studies, infants fed formulas with both DHA and AA, exhibited less
skin and respiratory allergic diseases in childhood compared with those
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fed formulas without LC-PUFA [180]. An analysis of infection and
allergic outcomes of >8,000 infants enrolled in the ELFE French
longitudinal birth cohort reported that consumption of
DHA/AA/EPA-enriched formula (especially those with high EPA
content) was associated with a lower risk of LRTI and lower use of
asthma medications than in infants fed nonenriched formula [187].

The value of systems approach with specific regard to these com-
pounds is that questions remain with regard to need for and value of
LC-PUFA at specific times in infant development, e.g., the value of
supplementation to preterm vs term infants. A systems approach to the
triad would shed light on not only the biology but the metabolism and
chronobiology of these compounds to determine the role of parental
supply and critical periods of need for the infant.

Conclusions
This limited review of RCTs has provided evidence that individual

human milk components, or their bovine analogs, supplemented to in-
fant formula at levels present in human milk affect specific aspects of
infant development. However as illustrated in Table 2 and Figure 1, a
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single component, such as OPN orMFGM, affects more than one infant
outcome (e.g., infection, microbiome, and cognition). These observa-
tions reinforce the need to consider interactions among components
within the human milk matrix as well as interactions within the infant as
development of one system in the infant (e.g., microbiome) can impact
infant immune, gut, or brain development (Figure 1). For example,
HMO may directly affect immune or brain development or may act
indirectly via modulation of gut microbial composition or function.

To decipher the complexity of human milk, systems biology ap-
proaches, which are based on the understanding that networks that form
the whole of living organisms are more than the sum of their parts, will
be needed.

Section 3: Experimental Framework and Analytical
Approaches to Study Human Milk as a Complex
Biological System in Term Infants

The central premise of the BEGIN project is that human milk is a
complex biological system. As discussed throughout the BEGIN re-
ports [1–5], human milk composition consists of many interacting
components, is embedded within the lactating parent–human
milk–infant triad [188] and is affected by communication between the
lactating parent and infant. As highlighted by Smilowitz et al. [2],
studying a single element of this triad, or a single component of human
milk, ignores their integrated nature and limits our ability to understand
the determinants and consequences of human milk composition and
function.

We propose that the biology of breastfeeding and human milk
should be studied as a “system-within-a-system” (Figure 2), which
has not been fully undertaken to date. The suggested approach will
require careful planning from the outset by transdisciplinary teams
of researchers to incorporate extensive biological and metadata
collection, advanced analytical approaches, and systems biology
integration (Figure 3). As will be described below, Foundations
(e.g., the Bill and Melinda Gates Foundation) have undertaken
FIGURE 1. Representative chord diagram illustrating multilevel interactions th
biomedical research to understand the larger picture of interactions within the mat
(e.g., the microbiome–gut–brain axis).
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multicountry breastfeeding interventions in recent years; however,
most have not collected data that will enable full interrogation of the
lactating parent–human milk-infant triad. The understanding of the
importance and the complexity of the triad by funding agencies will
enable resources to be directed to more comprehensive studies in the
future. The following sections provide descriptions of key elements
of this approach.
Essential components of the human milk research
infrastructure

Studies intended to expand our understanding of the complex
biology of human milk, particularly those involving large subject co-
horts, will require attention to a number of key elements of study design
and relevant technology. One approach would be the establishment of a
longitudinal cohort study specifically designed to collect, analyze, and
integrate the complexity of human milk as a biological matrix,
including an interrogation of the parental and infant factors influencing
that complexity, and the short- and long-term implications of human
milk on relevant infant and child health outcomes. In addition, a need
exists for resources to collect and annotate existing data and biological
samples and to generate guidelines for broader data capture for ongoing
or future single- or multiinvestigator studies and interventions, which
will be essential for advancing the human milk research agenda (Text
Box 5).

In particular, human milk repositories have an important role to
play in these efforts. Two examples in North America are the
Mommy’s Milk Human Milk Biorepository at the University of
California, San Diego [190] and the Manitoba Interdisciplinary
Lactation Center [191]. By using standardized protocols for sampling
and storage, collecting, and cataloging human milk from large pop-
ulations with diversity in race and ethnicity, geography, and socio-
demographic factors, repositories can serve as a central platform for
interdisciplinary human milk research. Individual samples can be
aliquoted at the time of processing and then analyzed for multiple
components, and/or accessed by multiple investigators with different
at require systems biology approaches. Systems biology is an approach in
rix of human milk, on multiple systems within the infant, which also interact



FIGURE 2. Biological effects of human milk as a system-within-a-system. Human milk is a complex biological system comprising many components within a
unique matrix that is imbedded within the lactating parent–human milk–infant triad. Human milk composition is shaped by both external and internal ecologies
unique to each lactating parent and infant dyad. Human milk influences the development and maturation of interacting systems within the infant (e.g., immune,
microbiome, intestinal, brain), which influence long-term outcomes in the infant.
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research questions. Repositories that can link human milk samples to
electronic health data for lactating parents and infants are especially
powerful, offering low-cost opportunities to perform longitudinal
studies on the association of human milk components with lactating
parent and child health. When multiple datasets are generated using
the same human milk samples, and appropriate data sharing agree-
ments are in place, repositories offer exciting synergistic
FIGURE 3. Proposed analytical framework to study human milk as a biological
should undertake a longitudinal investigation of diverse cohort of lactating paren
paired metadata and multi-omic analyses with enable deep phenotyping of partic
depth modeling of the role of human milk in the breastfeeding dyad to develop
tems level.
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opportunities to undertake multi-omic analyses on human milk
samples from well-characterized triads.
Specific study considerations
As stated by Steven Covey, “Begin with the End in Mind” [192],

which entails creating a clear vision of direction and destination to help
in attaining a goal. In this case, the five-stage nonlinear translational
system. To further our understanding, multidisciplinary teams of investigators
t–infant dyads. Frequent biological sample collection coupled with extensive
ipants. Application of systems biology provides a unique opportunity for in-
integrated models that predict and explain the role of human milk on a sys-



Text Box 5
Approaches for gathering existing and future human milk and lactation metadata and biological samples to inform systems biology approaches

1. Establishment of an online portal where researchers can upload demographic and biological data from completed and ongoing studies.
2. Creation of a biorepository of human milk samples paired with other biological samples, saliva, stool, urine, etc.
3. Development of a core list of metadata to be collected in studies of human milk, lactation, and breastfeeding practices.
4. Utilize validated surveys/questionnaires when possible or validate newly developed surveys/questionnaires

a. NIH PhenX Toolkit is a Web-based catalog of recommended protocols [189]
b. Human milk researchers should contribute protocols to this site

5. Availability of supplemental funding to support collection of additional metadata and biological sample collection on existing or future single-investigator
grants.
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framework conceptualized by WG 5 provides an excellent guide to
consider how discovery research (T1) could be designed and adapted to
inform the other 4 stages: human health implications (T2), clinical and
public health implications (T3), implementation (T4), and, ultimately,
impact (T5) [4]. The analytical framework to study human milk as a
biological system is shown in Figure 3, and the following sections
describe specific aspects to be considered in the design of integrated
studies of human milk.
TABLE 3
Recommendations for data, testing, and biospecimens to study human milk as a s

Type of Data External Ecologies Internal Ecologies

Lactating Parent

Environmental and biological
sample collections

Environmental samples
� Water,
� Soil
� House dust
� etc.

� Human milk
� Blood
� Saliva
� Oral and nasal sw
� Skin swabs, inclu
� Hair
� Feces
� Urine
� Vaginal swabs

Physiological measurements or
testing or observations

� Height
� Weight
� Body composition
� Milk production
� Brain structure an
� Endocrine, immun
Table 4)

� Biopsychosocial i
child, particularly

Medical records, questionnaires,
and surveys

� Social determinants of
health*

� Geography
� Religion
� Culture
� Employment type
� Sanitation
� Stress
� Xenobiotic exposure
- environmental
contaminants,

- therapeutic or
recreational drugs,

- cigarette smoke
- other toxins

� Race and ethnicity
� Sex
� Health history and
� Medications and s
� Breastfeeding dur
� Sleep patterns
� Weight status: pre
gain, recent weigh

� Parity
� Pregnancy compli
� Breast surgery (re
� Lactation history
� Timing of initiatio
� Executive functio
� Physical activity

MRI, magnetic resonance imaging.
* Social determinants of health are conditions in the places where people live, lear

outcomes (https://www.cdc.gov/socialdeterminants/index.htm).
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Consideration of participant selection
Although some global initiatives are underway [191,193–195], the

vast majority of human milk research has been conducted in ethni-
cally homogeneous, relatively Western populations. As discussed in
more detail by WG 5, with expansion of the human milk and lactation
research enterprise to large comprehensive studies to profile human
milk, it will be important to ensure that diversity and representation
are considered when recruiting research participants. In addition, due
ystem-within-a-system.

Infant or Child

abs
ding nipple and areola

� Blood
� Saliva
� Oral and nasal swabs
� Skin swabs
� Hair
� Feces
� Urine

d functional MRI
e, and intestinal function (see

nteractions between parent and
during feeding

� Length or height
� Weight
� Body composition
� Milk intake and mode of feeding
� Brain structure and functional MRI
� Cognitive function (tested)
� Endocrine, immune, and intestinal function
(see Table 4)

� Biopsychosocial interactions between parent
and child, particularly during feeding

current status
upplements
ation and exclusivity

pregnancy, gestational weight
t gain or weight loss

cations
duction or augmentation)

n of lactation
n

� Race and ethnicity
� Sex
� Health history and current status
� Medications and supplements
� Breastfeeding duration and exclusivity
� Sleep patterns
� Gestational age
� Singleton or multiple birth
� Infant formula use and type
� Dietary intake (human milk, infant formula,
complementary feedings)

� Cognitive function (parent reported)

n, work, and play that affect a wide range of health and quality-of life-risks and

https://www.cdc.gov/socialdeterminants/index.htm


TABLE 4
Proposed sample analyses to study human milk as a biological system and
interactions within the lactating triad.

Sample Type Human Milk
(Colostrum,
Transitional and
Mature)

Lactating Parent Infant or
Child

Genome: Single
nucleotide
polymorphisms

Cells from
lactating parent

Blood Blood or
salivaSaliva

Epigenome: DNA
methylation

Cells from
lactating parent

Blood Blood
Oral or nasal
swabs

Oral or
nasal
swabs

Saliva Saliva
miRNA/exosomes Human milk Blood Blood
Nutrients: Proteins,
lipids, HMO,
vitamins, minerals,
trace elements

Human milk Blood Blood
Urine Urine

HMO Human milk Blood Blood
Feces Feces
Urine Urine

Microbiome and
metagenome:
Bacteria, fungi,
Archaea, viruses

Human milk Feces Feces
Saliva
Swabs:
Oral,
nasal,
skin

Saliva
Swabs: Oral,
nasal, vaginal,
skin (including
nipple and areola)

Metabolome and
proteome

Human milk Blood
Feces
Urine

Blood
Feces
Urine

Lipidome Human milk Blood Blood
Immune cells and
proteins

Human milk Blood Blood

Hormones and
growth factors

Human milk Blood Blood

HMO, human milk oligosaccharide.
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to the lack of evidence for long-term outcomes of early life nutrition
interventions (e.g., from RCTs of specific bioactive components of
human milk as discussed previously) it will be critical that the cohort
be followed for a minimum of 10 y. Moreover, longitudinal cohorts
will need to be adequately powered to account for attrition and par-
ticipants should provide consent for future analyses. As single
nucleotide polymorphisms in the lactating parent or the infant can
influence human milk composition or utilization by the infant, studies
should apply Mendelian randomization for common single nucleotide
polymorphisms when applicable [196,197]. Lactahub, a partnership
project of The Global Health Network at the University of Oxford and
the Family Larsson-Rosenquist Foundation, recently published a
useful framework to guide ethical breastfeeding research and in-
terventions [198].

As we consider conducting research across the globe, decolonizing
research is a complex problem that requires a multipronged approach to
affect change. Currently a power imbalance exists between HIC and
low- or middle-income income countries (LMIC), which creates and
perpetuates imbalance for field sites. Shifting this imbalance must be a
priority in the design of future human milk studies. Specifically greater
attention, understanding, and funding need to be allocated for utilities
such as electricity to facilitate long-term sample storage at LMIC field
sites, clinics, and hospitals, as well as infrastructure to support data
capture and development of local bioinformatics cores. Intellectual
property must be shared with LMIC collaborators in addition to equal
acknowledgment for their contributions. Compensation for researchers
and staff in LMIC environs is generally budgeted lower than that of
HIC counterparts; this perpetuates the misconception that there is a gap
in research capacity. Highly skilled researchers are present in LMIC
settings, it is a matter of HIC collaborators recognizing that the capacity
exists and budgeting appropriately to retain this expertise. Travel for
field site visits and conference presentations is often budgeted for HIC
research teams; however, LMIC counterparts rarely receive funding in
these areas. Trainee exchange programs must be encouraged, as well as
financial support for field site investigators and research teams to
present findings in their own right rather than the HIC PI presenting on
their behalf.

The value of collaborative team science
The challenge of studying the complexity of human milk and its

ecology will require cross-disciplinary teams of investigators repre-
senting multiple disciplines (e.g., cultural and physical anthropology,
evolution, immune function, mammary gland biology and lactation
physiology, medicine, neurobiology, nutrition, and public health)
working together in an integrated approach [199]. While scientific
research is increasingly conducted by small teams and larger groups
rather than individual investigators, the challenges of managing these
collaborations can slow these teams’ progress in achieving their sci-
entific goals. Thus, best practices for enhancing the effectiveness of
research teams should be employed [200].

Biospecimens and data
In addition to the collection of human milk itself (see [201] for a

detailed guide to human milk collection and storage), the study of
human milk as a “system-within-a-system” will require additional
biological specimens from the lactating parent and infant. Depending
on the research question, it may be important to collect blood, urine,
infant saliva (a source of human milk microbes and other ‘communi-
cation signals’), serum (to monitor nutritional status or hormones),
skin, stool, and nasal swabs (to analyze the gut, dermal, and airway
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microbiomes, respectively). Blood, saliva, urine, feces, and vaginal and
skin swabs from the lactating parent may also be relevant.

To assess the impact of lactating parent [1] and infant [3] inputs on
human milk composition, it will be necessary to capture information on
such factors as dietary intake, feeding practices (frequency, pumping,
complementary feeding, etc.), lactating parent and infant health con-
ditions, sociodemographics, as well as the physical and social envi-
ronment. Tables 3 and 4 summarize the recommendations for sample
and data collection and analyses, respectively, to support systems
biology analyses. Although logistically challenging, capturing milk
volume (produced by the lactating parent and/or consumed by the in-
fant) provides extremely useful information and would be necessary to
determine lactating parent inputs and infant exposure. Researchers are
also encouraged to use relatively noninvasive approaches for repeated
measures of cognitive development (e.g., magnetic resonance imaging
[MRI]) [202,203], body composition (air displacement plethysmog-
raphy, quantitative nuclear magnetic resonance or dual X-ray absorp-
tiometry) [204–206], or intestinal gene expression using exfoliated
epithelial cells [35].

Timing and procedure of sample collection
As described by WG 1-3 [1–3], a unique chronobiology exists for

human milk composition involving both parental and infant inputs.
Temporal changes in human milk composition occur over the course of
a feeding, a day and throughout the period of lactation. Timing is thus
an important consideration when designing human milk studies.
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Ideally, the time of day and time postpartum should be standardized
across participants, or at least clearly documented so that these pa-
rameters can be accounted for during data analysis. Depending on the
research question, it may be especially relevant to collect colostrum,
transitional, and/or mature milk. Longitudinal sampling can offer
important insights about compositional changes over time and can link
human milk composition to short- and long-term health outcomes.

In addition, how the human milk sample was collected is a crucial
design component as numerous factors can influence accuracy of milk
composition. These factors are described in detail elsewhere [201,207,
208]. Although many methodological factors (e.g., human milk sam-
pling, handling, and analytics) are known to impact human milk
composition, few studies have investigated those as primary outcomes
or variables, making it an important area of future research in human
milk [207]. Examples of factors to consider are shown in Text Box 6.

Human milk analysis
In addition to the coverage of human milk components offered by

WG 2, readers are referred to the recent book summarizing milk
sampling and nutrient and macromolecule analysis [209]. It is impor-
tant to consider at the study design phase which analytes will be
analyzed (or might be in the future), as this will inform sample
collection, analysis, storage, and requisite resources needed. For
example, some components are highly sensitive to light and/or
freeze-thaw cycles, whereas others are unaffected [201,207]. It is also
important to ensure that assays have been validated for human milk. As
for any large study, appropriate controls and standards should be
included to address and adjust for potential batch effects.

Integration: computational systems biology
The previous sections illustrate the myriad of internal and external

ecologies that may affect human milk composition and its impact on
the lactating parent–infant dyad. Due to this complexity, outcome-
based studies on a population level often only cover very specific as-
pects of human milk ecology. At the same time, recent advances in
high-throughput technologies have provided access to multidomain
and multi-omic data, enabling unprecedented insights into complex
biological systems from multiple viewpoints such as the microbiome,
proteome or metabolome, as well as a wide range of other omics [210].
Such technologies will require systems biology approaches to study
human milk as a complex biological system [6], unraveling the un-
derlying processes that influence human milk composition, and its
effects on infant development and clinical/functional outcomes in both
infant and lactating parent.
Text Box 6
Factors to consider for standardizing human milk sampling

� Time of day and if coincident with routine feeding times?
� Time postpartum.
� If or how the breast was cleaned prior to sample collection.
� Was the milk collected by manual expression or breast pump? If a
pump, what type?

� Does the milk sample represent an aliquot of a full breast expression or
milk sampled early, mid or late during a feeding?

� Were both breasts sampled or, if only one, left or right?
� How was the sample stored after expression, for how long and in what
type of container (bag, plastic bottle, glass bottle, etc.), was a preser-
vative added? [207]
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In contrast to population level approaches, multi-omic studies
typically exhibit different data characteristics and challenges (Text Box
7). High-through put multi-omics data poses unique challenges and
requires sophisticated computational tools to analyze. For this, a wide
variety of methods for multi-omics integration are currently being
developed at the intersection of bioinformatics and machine learning
[211–214]. This includes methods based on specific fields like
Bayesian modeling [215,216], network analysis [213,214] as well as
deep learning [217,218], and considerations on sample size re-
quirements and estimation [219,220]. In addition, there are
community-driven efforts to maintain an overview of relevant work
and software packages [221].

While integrating multiple omic datasets is challenging, it has been
demonstrated to improve the capacities of models for biological pro-
cesses in the context of the lactating parent–infant dyad, particularly as
they relate to pregnancy outcomes. For example, several studies illustrate
that combining the information from a wide variety of omics—including
transcriptome, or proteome, and more—can be used to model gestational
age [222], as well as improve the performance of predictive models for
adverse pregnancy outcomes like preterm birth [223], preeclampsia
[224], or gestational diabetes [225]. Additionally, these models help to
elucidate complex biological systems, as exemplified by a recent study
mapping the underlying processes of onset of labor [226].

Applying and adjusting these methods to studying human milk
holds great potential to uncover the complex processes involved in the
triad from a systems biology viewpoint. A particular challenge in this
context is to integrate population level studies with multi-omics ap-
proaches due to the demanding collection process of synchronized
omic measurements as well as the technical aspects of integrating
omics with nonomics records, such as clinical meta data [227,228].
However, multimodal models have been previously applied in bio-
logical data integration [229] and are particularly relevant for
multi-omics analysis and integration [147,214] with the potential to
combine modalities across regular tabular data, time series, images, as
well as text into a joint holistic model for a multitude of predictive
settings [230,231].

Human milk and feeding within the breastfeeding dyad influence
infant development as well as various clinical/functional outcomes.
These effects are highly interrelated and may point toward intertwined
underlying processes. This interrelatedness can be studied and can be
exploited by using novel concepts from machine learning in the field of
multitask learning [232]. Multitask learning takes advantage of infor-
mation contained in related outcomes to make models more robust by
preferring solutions that share common (e.g., biological) structures
across these outcomes [233]. Here, deep learning has recently contrib-
uted significantly to advancing the field of multitask learning [234,235].

In summary, recent advances in machine learning, including
multimodal learning, multi-view representation learning [230,236] and
multitask learning [233,235] provide a unique opportunity for in-depth
modeling of the role of human milk in the breastfeeding dyad. These
areas of research aim to combine datasets from various modalities and
across different tasks (e.g., prediction of outcomes) to develop inte-
grated models that predict and explain the role of human milk on a
systems level and can apply techniques currently used in other areas,
such as microbial community ecology [237]. The combination of
multimodal learning with multitask approaches [238] allows for
condensed representations of the inputs and the modeled phenotypes
(outcomes), which may lead to a novel holistic understanding of the
underlying processes associated with human milk and its influence on
infant development as well as clinical/functional outcomes.



Text Box 7
Analytic challenges of multi-omic studies

� Large numbers of measurements across several omics technologies per sample, while the number of samples is small (commonly machine learning models are
trained and optimized on datasets with many more samples than measurements)

� Different omics techniques are highly heterogeneous in individual characteristics and number of features (e.g., sparse microbiome data vs. targeted prote-
omics assays). In particular, sparse data with many undefined values require different processing and model imperatives than data with dense input, and

� Omics data of high dimensionality, but with low information content, may preclude information from smaller, more dense omics to be included in a model.
Stack generalization has previously been utilized successfully to address this challenge

� Omics data from various study sites may be impacted by a combination of genetic, environmental, and technical factors. Careful use of machine learning
algorithms can enable the development of generalizable models despite these variations
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Case study 1—interactions of human milk components
and cow milk allergy

Recently, hierarchial cluster analyses have been used to assess
correlations between immune factors in human milk showing that those
factors (IL-6, IL1β, IL-10, thymic stromal lymphopoietin, TGF-β1)
that were correlated with infant cow’s milk allergy as an outcome were
actually independent of maternal atopy [58]. A follow-up study in a
farming lifestyle cohort utilized systems level network analysis to
identify communities of multiple human milk factors [239]. Path-based
analysis of HMO showed lower activity in the path involving lacto-
neohexaose in the farming lifestyle mothers as well as higher levels of
LNnT and 2 long-chain fatty acids (stearic acid and tricosanoic acid)
compared with urban lifestyle mothers. Human milk from both groups
formed 5 different clusters, e.g., butyrate production was associated
with Prevotellaceae, Veillonellaceae, and Micrococcaceae cluster.
Development of atopic disease in early childhood was more common in
urban lifestyle and associated with lower levels of total IgA and IgA2 to
dust mite, as well as of thymic stromal lymphopoietin. Thus, external
ecologies (traditional, agrarian lifestyle, and antibiotic use) were shown
to be strong regulators of immune and metabolic factors derived from
the lactating parent, which may have downstream implications for
postnatal developmental programming of infant’s gut microbiome and
immune system [239].
Case study 2—lactating parent–human milk-infant
interacting microbiomes

In the BEGIN Project Executive Summary [5], lactating parent–hu-
man milk-infant interacting microbiomes were highlighted as a Case
Study for the need to apply an ecological systems biology approach. A
consortium of microbes, viruses, archaea and fungi and protozoa are
present in human milk and are proposed to play a role in early infant
colonization [240]. The large number of host, microbial, and medical
factors that can influence the human milk microbiota complicate our
understanding of the factors driving heterogeneity in the human milk
microbiome [195]. Furthermore, the relationships between the human
milk microbiome and infant microbial colonization are poorly under-
stood, with 2 studies reporting that 25% [241] or >70% [242] of the
infant fecal genera originate from human milk; however, neither study
reported strain level analysis. Expression of human milk via pumping
also affects the human milk microbiome [243] and is often not reported
in studies of the human milk microbiome.

In the CHILD cohort, co-occurrence of specific bacteria in human
milk and infant feces (including Streptococcus spp. and Veillonella
dispar) were observed within mother–infant dyads, which was reduced
when infants received pumped human milk in a bottle [244]. The
commonly shared human milk bacteria were associated with the
3-month-old infant gut microbiota, explaining 1.0% of the variation
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(R2
adj). While this is a low percentage, it was greater than that

explained by breastfeeding exclusivity (0.76%), birth mode (0.87%),
intrapartum antibiotics (0.72%), or older siblings (0.58%) [244].
Multivariate analyses were applied to investigate the contribution of
bacterial communities across the lactating parent–infant dyad (maternal
and infant saliva, human milk, maternal and infant feces) on human
milk and infant fecal bacterial composition [85]. As might be expected,
the human milk microbiome was more similar to the infant oral
microbiome than the infant fecal microbiome. Canonical correlation
analysis suggested strong associations between the human milk genera
and all other sample types, although sources of >87% of the infant
fecal genera were unknown based on SourceTracker2. However, this
might be a limitation of the program and the depth of sequencing
because species or strain level resolution was not reported [85].
Furthermore, only 52% of infants were exclusively BF at 3 mo of age
and use of breast pumps was not reported [85]. Another study also
utilizing SourceTracker identified infant gut microbiome composition
more similar to sibling stool samples than human milk [245]. Taken
together, these data demonstrate potential relationships between human
milk and infant fecal microbiota; however, more comprehensive data
collection and human milk sample analyses are required to delineate
other ecological factors within the lactating parent–human milk-infant
triad that are accounting for infant microbiome composition.

Overall Conclusions
While there are notable challenges in the study of human milk as a

complex biological system, emerging scientific and analytical advances
are uncovering unprecedented opportunities to study the biology of
human milk and uncover the internal and external ecologies that drive
outcomes observed in the breastfeeding triad over time and across a
myriad of conditions. Considerations for the design of human studies
of these complex relationships, including the integration of new ap-
proaches in multi-omic data collection, computational systems biology
and approaches to the use of large complex datasets, will be important
to advance the field of human milk and lactation research. Unprece-
dented opportunities await the field to uncover new mechanistic in-
teractions between the triad of the human milk biological system. The
challenges remain great, but the return will be greater.
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