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Abstract

Query Optimization using Sketches in Relational Database Systems

by

Yesdaulet Izenov

Doctor of Philosophy

in

Electrical Engineering and Computer Science

University of California Merced, 2023

Professor Florin Rusu, Chair

Query optimization remains a crucial element of relational database systems. With rapidly

expanding data volumes and an increasing trend of machine-generated queries, the signifi-

cance of query optimization is only increasing and requires continuous advancements. The

objective of the query optimizer is to identify an optimal query execution plan from a vast

number of semantically equivalent query plans. The success of this search process depends

on the optimal operation of the internal inter-connected components of the query optimizer.

In this dissertation, we introduce COMPASS, a novel query optimization paradigm for

in-memory databases based on a single type of statistics – Fast-AGMS sketches. While

maintaining high accuracy, the highly parallelizable nature of Fast-AGMS empowers the

query optimizer to accommodate more complex queries. Subsequently, we redefine the

objective of the query optimizer to find a spanning tree with a low cost. Capitalizing on the

polynomial time complexity of spanning tree algorithms, we present ESTE, an ensemble

spanning tree-based enumeration strategy. ESTE systematically enumerates different parts

of the search space, thereby enhancing the robustness of the query optimizer. We believe

this perspective enables the application of well-studied spanning-tree algorithms to the field

of query optimization. Finally, we address the impact of cardinality estimation errors on

query optimizers. Given their inevitability, these errors can cause a domino effect, leading

to additional mistakes in the subsequent components of the optimizer. We propose L1-error,

a new indicator designed to identify sub-optimal plans. L1-error accounts for the fact that

certain estimation errors may have more impact on selecting an optimal plan than others.
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Chapter 1

Introduction

Despite years of research and development in both academia and industry, cost-based query

optimization continues to be a vital aspect of relational database systems. The effective-

ness of a database system is closely tied to the performance of its query optimizer. Given

the growth of data volumes at a tremendously fast speed and the rising prevalence of

machine-generated queries, the role of query optimization becomes ever more critical, need-

ing continuous enhancements and innovations.

The query optimizer is a complex assemblage of inter-connected components, including

cardinality estimator, cost function, plan search space, and plan enumeration. The objective

of the query optimizer is to identify an optimal query execution plan that is expected to

result in a fast runtime. During the search for an optimal query plan, the query optimizer

compares a vast number of semantically equivalent query plans by assigning a cost to each,

utilizing an analytical cost function.

The optimal operation of the query optimizer components is key to identifying an optimal

query plan. Determining the cost of a query plan requires knowledge about the cardinalities

of base and intermediate tables. Obtaining exact cardinalities is only possible by executing

subqueries for every base and intermediate table. However, this contradicts the essence of

query optimization, which aims to identify an optimal query plan without actually execut-

ing the subqueries. Thus, query optimizers estimate the cardinalities by utilizing a broad

spectrum of statistical synopses, such as attribute-level histograms and table-level samples.

1



As the complexity of selection predicates and the number of join predicates amplify, three

challenges emerge. Firstly, the statistics cannot be incrementally composed to effectively

estimate the cost of higher-level join cardinalities needed in the search while maintaining

estimation accuracy. Secondly, exhaustively enumerating a large set of query plans be-

comes a substantial computational bottleneck. Thirdly, cardinality estimation errors are

exponentially propagated through join operators, potentially leading to suboptimal plans.

1.1 Challenges

To evaluate a query plan, query optimizers utilize a wide array of statistical synopses. His-

tograms, most frequent values, and the number of distinct values are used in estimating

the selectivity of selection predicates on base tables. Estimating join cardinality requires

correlated statistics on the join attributes. Although such statistics, such as correlated

samples [49, 120, 64] are available, they require the creation of indexes for every possible

combination of join attributes. This requirement considerably constrains their applicability

in multi-way joins, leading to a reduced exploration of plan search space. Consequently,

even advanced query optimizers often resort to data assumptions such as uniform distri-

bution, inclusion, and independence [69]. However, these assumptions are often rare in

practice and thus can lead to the selection of highly suboptimal query plans [63]. Given

that the development and maintenance of a range of statistics entail substantial effort, it is

predominantly the more established database systems that incorporate them.

Traditional query optimizer architectures employ either exhaustive or heuristic strategies

to enumerate query plans. An exhaustive strategy enumerates every possible query plan to

ensure plan optimality. However, an exhaustive enumeration becomes computationally ex-

pensive for queries with a large number of joins. Conversely, heuristic strategies are designed

to enumerate a single query plan that is, ideally, near the optimal one. However, while more

efficient in the plan search, heuristic strategies can result in significantly suboptimal query

plans. In the case of large queries, shifting from an exhaustive to a heuristic strategy can

result in a notable decline in the quality of query plans. An even worse scenario is to reim-

plement the optimizer to a different plan enumeration strategy causing significant expenses

in terms of development. The suboptimality of the query plan can be so severe that the

time saved during the plan search becomes negligible when compared to its large execution

2



time. In other words, the saved time during the search by avoiding exhaustive enumera-

tion is outweighed, due to the inefficiencies of executing the query with a suboptimal plan.

This exhibits a critical trade-off in query optimization, where the choice of strategy can

have significant implications on overall query performance. A strategy that incorporates

elements of randomness to enumerate multiple query plans can be an intermediate strat-

egy [104, 43, 106, 88, 107, 44]. This approach, while still more computationally efficient

than exhaustive enumeration, diversifies the set of considered plans and thereby reduces

the gap between plan optimality and optimization time. Randomized heuristics provide

better chances to find superior query plans, compared to the plans selected by heuristics,

by allocating additional time to plan enumeration. Thus, while randomized heuristic strate-

gies require an extended optimization time, their practicality is more feasible in real-world

applications. However, the random nature of plan search space exploration introduces an

element of unpredictability and reduced interpretability in optimizer performance.

The most important data in query optimizer is cardinality estimations. The errors made

in estimating cardinalities can drastically affect the effectiveness of the other components

and hence compromise the robustness of the query optimizer. Despite several decades of

advancement in cardinality estimation techniques, disastrously suboptimal plans, particu-

larly for large queries, are still frequently selected, leading to substantial delays in executing

queries. Q-error [81], the standard metric for quantifying the error of individual cardinality

estimates, has been widely adopted as a surrogate for query plan optimality in recent work

on synopses-based and learning-based cardinality estimation [111, 52, 16, 54, 26]. However,

the only result connecting Q-error with plan optimality is an upper-bound on the cost of the

worst possible plan computed from a set of cardinality estimates. There is no connection

between Q-error and the real query plans generated by standard query optimizers. Thus,

while Q-error is commonly used to evaluate individual cardinality estimates, it falls short

as an indicator of suboptimal plans [32, 84]. Q-error, as an indicator, is solely based on

estimation errors without taking into account their implications on the cost function and

plan enumeration, which plays a crucial role in bridging the gap between the estimation

error and the selection of an optimal plan.
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1.2 Primary Contributions

In this section, we summarize the primary contributions of this dissertation as follows:

Online Sketch-based Query Optimization. We introduce COMPASS, a novel query

optimization paradigm for in-memory databases based on a single type of statistics – Fast-

AGMS sketches [19]. In COMPASS, query optimization and execution are intertwined.

Selection predicates and sketch updates are pushed-down and evaluated online during query

optimization. This allows Fast-AGMS sketches to be computed only over the relevant

tuples – which enhances cardinality estimation accuracy. Fast-AGMS sketches, necessary

for a given join cardinality estimation, are merged on demand, by addressing scalability

by incrementally creating multi-way sketches from two-way sketches. Plan enumeration is

performed over the query join graph by incrementally composing attribute-level sketches –

not by building a separate sketch for every subplan. We prototype COMPASS in MapD [2]

– an open-source parallel database – and perform extensive experiments over the complete

JOB [65] benchmark. The results prove that COMPASS generates better execution plans

– both in terms of cardinality and runtime – compared to four other database systems.

Overall, COMPASS achieves a speedup ranging from 1.35X to 11.28X in cumulative query

execution time over the considered competitors. We present this work in Chapter 3.

Spanning Tree-based Query Plan Enumeration. We propose a spanning tree-based

plan enumeration strategy. This is an intermediate strategy between exhaustive and heuris-

tic query plan enumerations, approaching the query optimization problem from a different

perspective. We define the problem of finding an optimal query plan as finding spanning

trees with low costs. This approach empowers the utilization of a series of spanning tree

algorithms, thereby enabling systematic exploration of the plan search space over the join

graph. Capitalizing on the polynomial time complexity of spanning tree algorithms, we

present Ensemble Spanning Tree Enumeration (ESTE). This strategy utilizes two conven-

tional spanning tree algorithms, Prim’s and Kruskal’s, together to enhance the robustness

of the query optimizer. In ESTE, multiple query plans are enumerated exploring differ-

ent areas of the search space. We show that ESTE is more robust in identifying efficient

query execution plans for large queries. In the case of data and workload demand increase,

we believe our approach can be a cheaper alternative to maintain optimizer robustness by

integrating additional spanning tree algorithms – rather than completely changing and de-
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veloping the optimizer to another plan enumeration algorithm. Experimental evaluations

show relative effectiveness compared to exhaustive strategy in optimization time as well as

demonstrate a notable improvement over one of the top-performing heuristics algorithms

in terms of plan optimality. We present this approach in more detail in Chapter 4.

Sub-optimal Join Order Identification. In order to identify suboptimal query plans,

we propose a learning-based method having as its main feature a novel measure called L1-

error. Similar to Q-error [81], L1-error requires complete knowledge of true cardinalities and

estimates for all the subplans of a query plan. Unlike Q-error, which considers the estimates

independently, L1-error is designed as a permutation distance between true cardinalities and

estimates for all the subplans having the same number of joins. This accounts for the fact

that certain estimation errors may have more impact on the selection of an optimal plan

than others, reflecting the reality that the plan search algorithms are more tolerant towards

some estimation inaccuracies. Moreover, L1-error takes into account errors relative to the

magnitude of their cardinalities and gives larger weight to small multi-way joins. This takes

into account the reality that the accuracy of early-stage multi-way joins is more critical,

and they are often more accurate than those joins at later stages. Our experimental results

confirm that, when L1-error is integrated into a standard decision tree classifier, it leads to

the accurate identification of suboptimal plans across four different benchmarks. This accu-

racy can be further improved by combining L1-error with Q-error into a composite feature

that can be computed without overhead from the same data. L1-error is evaluated using

cardinality estimations from one well-known and one recently proposed query optimizer.

The technical details are presented in Chapter 5.

1.3 Outline

Chapter 2 describes the entire search procedure of the classical cost-based query optimiza-

tion in relational database systems. Chapter 3 introduces COMPASS, a novel query opti-

mization paradigm for in-memory databases based on a single type of statistics. Chapter 4

describes ESTE, an ensemble, spanning tree-based plan enumeration strategy. Chapter 5

introduces L1-error, a new indicator tailored to accurately identify suboptimal plans. Chap-

ter 6 concludes the dissertation with a discussion of future work.
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Chapter 2

Query Optimization

In this chapter, we describe the entire search procedure of the classical cost-based query

optimization in relational database systems. Query optimizer consists of four elements,

namely cost model, cardinality estimation, plan search space, and plan enumeration – which

are depicted in Figure 2.1.

                                              QUERY
      
          MIN(mi_idx.info), MIN(t.title)
       
          info_type AS it,
          movie_info_idx AS mi_idx, 
          movie_keyword AS mk, 
          keyword AS k, 
          title AS t
       
         it.info = 'rating' 
         mi_idx.info = '5.0' 
         k.keyword LIKE '%sequel%' 
         t.production_year > 2005  

         t.id = mi_idx.movie_id  
         t.id = mk.movie_id  
         k.id = mk.keyword_id  
         mi_idx.movie_id = mk.movie_id AND 
         it.id = mi_idx.info_type_id

Optimal plan

4

QUERY OPTIMIZER

2

1

Cost Model
3

Initial plan
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Figure 2.1: Cost-based query optimization architecture in relational database systems.

The goal of query optimization [69, 65, 63, 17] is to find an optimal query execution plan.

Note that there can be more than one query plan with the minimum cost. The selected
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optimal query plan is expected to exhibit the fastest runtime for a given query. Search

space is a set of all query plans – combinations of relational algebra operators – which

are semantically equivalent. Plan enumeration is the procedure to enumerate the query

plans in a given search space. The number of query plans is factorial in the number of

relations. Thus, evaluating all of the query plans is not practical for a large number of

relations. The execution time of a query plan cannot be determined without running the

query thus alternative cost functions are defined. A common cost function is the sum

of the intermediate results (cardinality) produced by the physical operators in the query

execution plan. The function captures the correlation between the amount of accessed data

and execution time – which is true in general. Estimating the cardinality of a relational

algebra operator is itself a difficult problem. This knowledge is captured by incomplete

statistics – or synopses – about the data [20]. For example, attribute histograms and the

number of distinct values are optimal for selection predicates, while correlated samples

are better for join predicates. With statistics, the cardinality can only be estimated –

it is not exact. While accurate for simple predicates over a small number of attributes,

cardinality estimation becomes harder for correlated predicates and multi-way joins. This

is not necessarily a problem if all the plans are equally impacted. However, estimation errors

vary widely across sub-plans and this can potentially lead to a highly sub-optimal plan. In

the following sections, we describe each of these components in greater detail, which serves

as essential background knowledge for this dissertation.

2.1 Query Join Graph and Query Plan

2.1.1 Join Graph

In Figure 2.2, the SQL statement has 4 selection predicates – point, subset, and range – σ

on tables it, mi idx, k and t, and 5 join predicates connecting 5 tables. Further, the query

can be illustrated as an undirected join graph G(V,E) in which every table is represented as

a node v ∈ V connected by edges e ∈ E for every join predicate. Vertices V are connected

as a single component with a list of weighted edges E ⊆ {(v1, v2, w) | v1, v2 ∈ V,w ∈ R+}.
For example, the join predicate it.id = mi idx.info type id is the edge e1 which connects

the vertices it and mi idx in the join graph. The edges e2, e3, and e4 form the cycle

between mk, t, and mi idx. In the case of no cycles in the join graph, the number of edges
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is |E| = |V | − 1. This is also the minimum number of edges required to have a connected

graph without cross-joins – non-existent edges e /∈ E in the join graph. The topology of a

join graph can be classified as either a chain, cycle, star, or clique. The number of edges

increases from |V | − 1 for chain and star to (|V | · |V − 1|)/2 for clique while the cyclic join

graph falls between these two extremes.

    MIN(mi_idx.info), MIN(t.title)
 

    info_type AS ,
    movie_info_idx AS , 
    movie_keyword AS , 
    keyword AS , 
    title AS 

 
    //  
    it.info = 'rating' 
    mi_idx.info = '5.0' 
    k.keyword LIKE '%sequel%'  
    t.production_year > 2005   

    //  
    t.id = mi_idx.movie_id 
    t.id = mk.movie_id  
    k.id = mk.keyword_id  
    mi_idx.movie_id = mk.movie_id  
    it.id = mi_idx.info_type_id

movie_keyword
mk

id

keyword_id
e5

id

movie_id
e3

movie_id
movie_ide4

title 
t

keyword
k

info_type 
it

movie_info_idx 
mi_idx

id

movie_id
e2

id

info_type_id
e1

Figure 2.2: SQL statement and corresponding join graph.

2.1.2 Query Plan

A query plan P of a join graph G is an ordered sequence of |V | − 1 edges that cover all V

vertices – tables to be joined, forming a single connected component. Four query plans are

displayed in Figure 2.3 which are derived from the join graph in Figure 2.2. A plan tree is a

connected, acyclic subgraph of the original graph that is built on existing edges e ∈ E of the

join graph. It also dictates the physical operators, such as join or scan, that will be deployed

during the query execution. The order of edges in the plan tree corresponds to a path which

is the join order of the tables in the query plan. For instance, in Figure 2.2, the edge sequence

(e1, e2, e3, e5) corresponds to the plan tree P = {(it−mi idx), (mi idx−t), (t−mk), (mk−k)}
which results into the join order (it ⋊⋉ mi idx ⋊⋉ t ⋊⋉ mk ⋊⋉ k). While the plan tree does not

include cycles, this does not mean that the joins corresponding to the edges not included

in the plan tree are dropped from the query plan – edge e4. Instead, these join predicates
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are kept and treated as filters. However, in the case of transitive join predicates, these joins

can be completely eliminated from the query plan. Concretely, the example tree P does

not include the edge e4 which is the join between (mi idx −mk) corresponding to the join

predicate mi idx.movie id = mk.movie id. This predicate can be evaluated together with

the join (t−mk) since mi idx and mk are both part of the plan tree. However, this is not

necessary for this query because the join cycle is based on transitive predicates – which

already implies the ignored join condition. This simplification is not applicable to general

cyclic queries such as those considered by worst-case optimal join algorithms [87].

2.1.2.1 Query Sub-Plan

A query subplan is defined as a query plan over a subgraph of the join graph. For instance,

Pit⋊⋉mi idx⋊⋉t = {(it−mi idx), (mi idx− t)} corresponds to the query subplan over tables it,

mi idx, and t, and its associated subgraph. We refer to join order when we speak of the

query plan and use the terms query plan and join order interchangeably.

2.1.2.2 Left-deep and Right-deep Query Plan

The sequence, in which edges are chosen, directly influences the resulting shape of the

plan tree formed from the join graph. Given that an edge inherently involves a connection

between two vertices, the shape of the corresponding plan tree invariably adheres to a binary

shape. The left-deep tree, depicted in Figure 2.3 (a), – sets the right child to be a base

table as a leaf node at every join. Right-deep tree, shown in Figure 2.3 (b), is the same tree

shape but differs in the execution of internal by setting the left child to be a base table.

The zig-zag tree establishes a balance by alternating the roles of the left and right children

at each join level. In all cases, the invariant is to keep a single acyclic connected component

and incrementally add adjacent edges until all the vertices are covered.

2.1.2.3 Bushy Query Plan

Bushy trees exhibit a distinctive structure that sets them apart from strictly left-deep or

right-deep trees. A defining attribute of bushy trees is the possibility for an internal node

to have both of its children as internal nodes. The bushy tree depicted in Figure 2.3 (c)
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Figure 2.3: Plan tree structures.

has the root node which has two subtrees, Pit⋊⋉mi idx = {(it − mi idx)} and Pk⋊⋉mk⋊⋉t =

{(k−mk), (t−mk)}, as its child nodes forming two separate acyclic connected components.

Unlike their left or right-deep counterparts, bushy trees do not follow a strictly linear pattern

in their order. Therefore, the bushy plan can be effectively capitalized on opportunities for

parallelism and flexible execution ordering to optimize query performance.

2.2 Search Space

The search space is the set of all possible query plans in which all tables are joined [65].

Two query plans with the same shape but with different join orders are two different query

plans. We first define the search space in terms of the number of binary trees using nodes

V of the join graph. Further, we define the search space in terms of the number of spanning

trees based on edges E of the join graph. We show that operating on edges incorporates

connectivity information inherent in the join graph which naturally avoids query plans

involving cross-joins.

2.2.1 Search Space in terms of Graph Nodes

In terms of the join graph nodes, the search space tb(V ) is the set of distinct binary tree

shapes that can be defined with |V | nodes, where each node can be any of the V tables

and hence, are permutable. The number of distinct binary tree shapes – denoted as b(V )

– extracted from the join graph G is calculated by the Catalan numbers [18]. Since each

node can be any of the query tables, there are V ! ways to assign the tables to the nodes for

each tree shape. Thus, the total size of the search space is:
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tb(V ) =
(2× |V |)!
(|V |+ 1)!

(2.1)

The number of binary tree shapes growths exponentially [18] with V including cross-joins –

which is Ω
(
(4|V |)/|V |3/2

)
. Figure 2.4 shows the search space coverage by different enumera-

tion strategies. The x-axis presents enumeration strategies from heuristical strategy (faster

search time) to exhaustive strategy (preserved plan optimality). The y-axis describes the

search space coverage. We use the area of rectangles of different sizes to describe the cor-

relation between the two axes. The largest solid rectangle covers all possible binary trees

including cross-joins. The second solid rectangle covers bushy, left-deep, right-deep, and

zig-zag trees.

2.2.2 Search Space in terms of Graph Edges

While the standard approach is defined over tables, we define the search space over joins –

edges in the join graph – which directly excludes cross-joins. The size of the search space

is given by the number of spanning trees that can be extracted from the join graph G –

denoted as ts(V,E) – which is upper bounded by the number of ordered edge arrangements

of size (|V | − 1) selected from E:

ts(V,E) ≤ |E|!
(|E| − |V |+ 1)!

(2.2)

The reason for having ordered arrangements instead of only combinations [10] is because

the order in which edges are selected matters and different edge orders result in different

join orders, thus, different query plans. This results in a considerable reduction in the

number of all possible binary trees with |V | nodes – illustrated in Figure 2.4. In the case

of a query without cycles – a tree join graph with (|V | − 1) edges – the bound is tight since

|E| = |V |− 1 and the number of spanning trees is ts(V,E) = (|V |− 1)! where 0! to be equal

to 1. The value of the bound increases with the number of joins, reaching its maximum

value for a clique query with |E| = |V | × (|V | − 1)/2 edges.

The number of spanning trees ts(V,E) increases at a slower rate than the bound because of

the redundancy incurred by cycles. In this case, many arrangements result in invalid query
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Figure 2.4: Plan search space.

plans that cover only a subset of the tables and include cycles. In Figure 2.2, an example of

such arrangement is {(it−mi idx), (mi idx− t), (t−mk), (mi idx−mk)}. The exact value of
ts(V,E) depends heavily on the topology of the join graph. For our example query, ts(V,E)

is 72 while the bound is 5! = 120. The rest is the number of invalid query plans – 48 invalid

spanning trees. Thus, ts(V,E) is only 60% of the bound. Although this may seem small, as

the number of tables in a query increases, so does ts(V,E), resulting in a huge search space

that becomes even larger when taking into account the availability of indexes and the types

of join algorithms. Thus, given the factorial size of both search spaces, finding an optimal

query plan remains NP-hard [39].

2.2.2.1 Cross-join Search Space

Cross-join (Cartesian product) is to join two tables over a non-existent edge e /∈ E or join

two components that do not share a connecting edge (join predicate) in the join graph. For

example, in Figure 2.2, the join order (it ⋊⋉ mi idx ⋊⋉ k ⋊⋉ mk ⋊⋉ t) includes the cross-

join between subplan (it ⋊⋉ mi idx) and table k. Since this type of join does not require

any condition to match data between the two tables, it combines every row of one table

with every row of the other table. This is a costly join operation that results in a large

number of rows in the outcome table. Thus query plans including cross-joins are highly

resource-intensive due to the significant increase in the number of rows within the resulting
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intermediate tables. The binary trees that involve cross-joins can be considered a separate

subspace – the largest rectangle in Figure 2.4. Despite the possibility that a plan involving

a cross-join could potentially lead to an optimal plan, cross-joins are typically avoided due

to their high costs. Nonetheless, even the resulting search subspace that excludes binary

trees involving cross-joins still presents a computational challenge due to its vastness.

2.2.2.2 Left-deep Search Space

A standard approach for reducing the size of the search space is to constrain the shape of the

query plans [80, 78]. This means only considering plan trees with a certain shape. Bushy

trees and left-deep trees are two principal shapes of binary trees. Focusing on specific types

of binary trees helps to streamline the enumeration process and manage the complexity

of the search space, thereby simplifying the discovery of an optimal query plan. However,

this reduction in search space may inadvertently omit optimal query plans. This balances

the computational feasibility against the query plan optimality. The objective, therefore,

is to find a query plan – optimal plan or near the globally optimal query plan – within the

reduced search space. In order to limit the search space for the left-deep trees, a single

connected component – a single subtree – without cycles must be maintained. Thus every

node and edge has to be recursively considered at any step of the join order and ordered

edge sequence, respectively. An edge that both nodes are not a member of the current single

connected component is not considered. We repeat this procedure until we cover all the

nodes, making sure that we always maintain a single connected component without cycles.

The number of the spanning trees generated from the example query is 72 including 36

left-deep and 36 bushy query plans. Although the number of query plans considered in the

left-deep search can be smaller, it does not mean the optimal plan cannot be selected. In

the case of an optimal plan having a left-deep tree shape, reducing the initial search space

to the left-deep search space does not affect the result but can improve the search time.

2.3 Cost Function

In order to evaluate and compare the valid query plan trees derived from the join graph, the

query optimizer assigns a quantifiable cost to each candidate plan tree using a predefined

analytical cost function. The optimal query plan is the plan tree with the minimum cost,
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as it is anticipated to have the fastest execution time. However, formulating a cost function

that can accurately reflect execution time is challenging. While disk-based cost functions

remain crucial, main memory cost functions can provide an accurate representation of the

actual query runtime in modern database systems. Virtually all main memory cost functions

are defined in terms of the number of tuples processed by the operators in the query plan,

while disk-based cost functions consider block reads instead of tuples. In main memory

setup, several cost functions have been employed in previous studies [83, 32, 112, 65, 31].

A simple cost model Cout defined in Equation 2.3 evaluates a query plan P based on the

cumulative size, i.e., cardinality, of all intermediate results and it does not include the

cardinality of the base tables:

Cout(P) =

0 if P = R

|P|+ Cout(P1) + Cout(P2) if P = P1 ⋊⋉ P2
(2.3)

This cost function is solely determined by the join order, making it independent of the

physical operators. In the left-deep search space, since the cardinality of the join at the

root of the query tree is identical across all the query plans, the cost can be simplified to

include only the cardinality of the intermediate joins. The order in which the tables are

joined is pivotal as it can significantly influence the execution time. Inefficient ordering of

table joins could result in unnecessary data movement, leading to notable resource wastage.

The costs of join orders Popt and Ppg are displayed in Figures 2.5 and 2.6 – second columns

in the tables. They are obtained by summing up the exact cardinalities Y of the three

intermediate and one final join. For example, in Figure 2.5a, in the case of the optimal plan

Popt, the cost Cout(Popt, Y ) = 2, 017+10, 168+32+32 = 12, 249 is the sum of the cardinalities

of subplans corresponding to the 2-way join Pt⋊⋉mi idx, the 3-way join Pt⋊⋉mi idx⋊⋉mk, the 4-

way join Pt⋊⋉mi idx⋊⋉mk⋊⋉k, and the 5-way join Pt⋊⋉mi idx⋊⋉mk⋊⋉k⋊⋉it, respectively. It is important

to notice that the cardinality of Pt⋊⋉mi idx⋊⋉mk is not the cardinality sum of Pt⋊⋉mi idx and

Pmk⋊⋉t – edges (mi idx− t) and (t−mk) from the join graph – which are 2, 017 and 1.2M ,

respectively. This is because only the tuples in the 2-way join t ⋊⋉ mi idx are subsequently

joined with mk – not all the tuples in t.
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C(P) =



τ × |R| if P = R ∨ P = σ(R)

|P|+ |P1| + if P = P1 ⋊⋉HJ P2

C(P1) + C(P2)

C(P1) + λ× |P1| if P = P1 ⋊⋉INL P2 ∧

×max( |P1⋊⋉R|
|P1| , 1) (P2 = R ∨ P2 = σ(R))

(2.4)

Leis et al. [65, 63] proposed another main memory cost function that incorporates physical

operators shown in Equation 2.4. This cost function C recursively sums the cost of all the

nodes in the query plan starting from the leaves – corresponding to scan operators – and

following through the joins. In the leaf nodes, the size of a base table R is multiplied by a

parameter τ = 0.2 to differentiate between sequential and index scans. Notice a base table

with selection predicates σ still requires a full table scan. For the intermediate join nodes,

the cost function considers two different join operator implementations – hash join ⋊⋉HJ and

index nested-loop join ⋊⋉INL. The hash table is built on the child with the smallest cost

– as in zig-zag trees. To differentiate between hash lookup and index lookup, parameter

λ = 2 is used under the assumption that indexes are available on all the join attributes –

otherwise, the hash join is utilized. Even though the cost function considers different phys-

ical operators, cardinality remains the main factor. This is in line with standard disk-based

cost functions, which replace tuple cardinality with block cardinality. However, both types

of cost functions may be significantly impacted by underlying poor cardinality estimates.

This, in turn, can lead the query optimizer to choose suboptimal query plans.

2.4 Cardinality Estimation

The cost model is defined in terms of the cardinality Y of the join operators. In Equa-

tions 2.3 and 2.4, the cost function considers P, P1, and R as input relations to compute

the cardinality of the join operators. However, exact cardinality Y – the number of tuples

that are expected to be produced – of P, P1, and R can be computed exactly only by

executing the join. This is a paradoxical situation in the process of query optimization.

The query optimization is supposed to determine the optimal plan in which to perform

the joins without actually performing them. This is where cardinality estimation comes
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into the picture. The role of cardinality estimation is to “guess” the exact cardinality Y

without executing the join. In PostgreSQL [88], cardinality estimates are computed based

on histograms, most frequent values, and distinct element statistics on the base tables. Any

join estimate is computed by combining these statistics into simple arithmetic formulas that

make general assumptions on uniformity, inclusion, and independence [69]. Consequently,

these estimations Ŷ are fed into the cost function in lieu of exact cardinalities, allowing the

query optimizer to compute the cost of a plan. Henceforth, two plans can be ranked ac-

cording to their estimated cost – instead of the exact cost. As long as the ranks of the plans

based on the exact and estimated cost are identical, estimates can be a direct replacement

for the exact cardinalities.

it

mi_idx

mk k

t
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10,168

32
32

Plan

12,249 4,766

(a) Optimal plan

it mi_idx

mk k

t

7,256

2,017

10,168
32

Plan

19,473 81

(b) PostgreSQL plan

Figure 2.5: Plans selected by exhaustive plan enumeration.

From a statistical perspective, the goal of cardinality estimation is to minimize the difference

between Y and Ŷ . However, from the cost model perspective, this is not necessary. Instead,

what is required is that the costs of two different query plans, Cout(Popt, Y ) and Cout(Ppg, Ŷ ),

satisfy the same query plan when computed based on estimates Ŷ and when using the exact

cardinalities Y . While accurate estimates imply the optimal query plan, accurate estimates

are not required as long as they have similar errors. For example, estimates that are 100×
larger than the exact value are extremely inaccurate. However, the cost model treats them

identically and results in two costs that have the same query plan. Thus, estimation does

not impact the cost model negatively. Obtaining accurate estimates is a challenging task.

Despite a rich number of cardinality estimation techniques [64, 82, 46, 16, 42, 91, 52, 70, 68,

54, 55, 113, 89], cardinality estimation error is inevitable triggering a chain of more errors
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in subsequent optimizer components. These challenges underline the importance of ongoing

research into improving the accuracy of cardinality estimates to enhance the efficiency of

query optimization.
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Figure 2.6: Plans selected by greedy plan enumeration.

The estimated costs for the plans Popt and Ppg are depicted in Figures 2.5 and 2.6 – third

columns in the tables. The estimated costs are computed using the Postgres join cardinality

estimates [88]. In Figure 2.5a, the estimated cost of the optimal plan Popt is Cout(Popt, Ŷ ) =

1, 708 + 3, 056 + 1 + 1 = 4, 766. It is obtained by adding the estimates for the same 2-

way join Pt⋊⋉mi idx, 3-way join Pt⋊⋉mi idx⋊⋉mk, 4-way join Pt⋊⋉mi idx⋊⋉mk⋊⋉k, and 5-way join

Pt⋊⋉mi idx⋊⋉mk⋊⋉k⋊⋉it. The estimated cost is smaller than the exact cost by a factor of 2.6X –

due to the underestimation of every join cardinality in the query plan. For the Ppg plan, the
estimated cost is 81, compared to the exact cost of 19, 473. This is a factor of more than

240X smaller which is due to severe underestimations of every join cardinality. In this case,

the relative order between Popt and Ppg is not the same based on the exact and estimated

cost. The reason is the inconsistency of the cardinality estimates.

2.5 Plan Enumeration

Within the scope of a given search space, the process of plan enumeration involves generat-

ing and evaluating a vast number of binary trees described in Section 2.2. Plan enumeration

generates and evaluates various query plans, each is semantically equivalent but with varying

costs. The challenge is finding an optimal plan, which entails the minimum cost, by ex-
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haustively enumerating a massive number of candidate query plans. However, exhaustively

enumerating all possible binary trees becomes infeasible for queries with a large number

of tables. On one side, excluding cross-jons and limiting the search space to left-deep tree

shapes reduces the total number of plan trees, thus expanding the feasibility limits of the

exhaustive enumeration strategy for queries with a relatively broader range of complex-

ity. On the other side, various heuristical strategies are used to partially explore a given

search space. It further reduces the number of query plans to be generated and evaluated.

Although both optimizations, space reduction and partial enumeration, reduce the search

time, the plan enumeration process may potentially overlook optimal query plans since the

optimal plans may be excluded from the radar of the plan enumeration in the resulting

limited search space.

2.5.1 Exhaustive Enumeration

To exhaustively enumerate a given search space, each individual plan tree is produced and

its associated cost is calculated. However, exhaustively enumerating all possible spanning

trees becomes infeasible for complex queries with a large number of tables and joins. On

one side, excluding cross-jons and limiting the search space to left-deep tree shapes reduces

the total number of spanning trees, thus expanding the feasibility limits of the exhaustive

enumeration strategy for queries with a relatively broader range of complexity. Figure 2.5

depicts the optimal plan Popt and Postgres plan Ppg selected by exhaustive enumeration.

The optimal plan Popt = (t ⋊⋉ mi idx ⋊⋉ mk ⋊⋉ k ⋊⋉ it) is computed based on the exact

cardinalities Y while the Postgres plan Ppg = (it ⋊⋉ mi idx ⋊⋉ t ⋊⋉ mk ⋊⋉ k) is computed

based on the Postgres estimated cardinalities Ŷ . These plans are shown along with their

exact intermediate costs. The reason they are different is that the Postgres estimates are

inaccurate, thus resulting in the selection of a different join order. The cost of a plan with n

joins is defined as the sum between the cardinality of the n-way join and the cost of the con-

tained subplan with n−1 joins having minimum cost. For instance, as shown in Figure 2.5a,

the cost of the 3-way join plan Pt⋊⋉mi idx⋊⋉mk based on the exact cardinalities Y adds the

cardinality of the join to the minimum cost of the three contained 2-way join sub-plans

Pt⋊⋉mi idx, Pmi idx⋊⋉mk and Pt⋊⋉mk to obtain 10, 168 + min{2, 017; 47K; 1.2M} = 12, 185.

As the complexity of a query increases, exhaustive enumeration faces significant computa-

tional challenges and is mitigated through optimizations such as dynamic programming and
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cost-based pruning [100, 79, 21]. Although these optimization techniques can reduce the

number of plans evaluated, they ensure the discovery of the plan tree with minimum cost.

2.5.2 Heuristical Enumeration

The exhaustive enumeration can be simplified by heuristical strategies by partially exploring

the given search space. Thus it further reduces the number of query plans to be generated

and evaluated. For example, greedy algorithms [106, 104, 27, 15, 85, 56] directly compute a

single plan. Even though the decision at every step is locally optimal, there is no guarantee

that the final plan has the minimum cost among all the plans. This is due to conditioning

the available choices at a step on previous decisions. Consequently, greedily selected query

plans tend to be less optimal compared to their exhaustive counterparts. Figures 2.5 and 2.6

exhibit this issue for the optimal plan Popt and the Postgres plan Ppg. The cost of the optimal

plan Cout(Popt, Y ) = 14, 234 selected by a greedy algorithm is larger than the optimal plan

Cout(Popt, Y ) = 12, 249 that is found exhaustively. In the case of Postgres, the greedy plan

Cout(Ppg, Ŷ ) = 81 has the same cost as the exhaustive plan Cout(Ppg, Ŷ ) = 81. The lesser

optimality of greedy query plans is expected given the smaller number of subplans considered

by the greedy algorithm. At the same time, considering fewer subplans and building a plan

bottom-up to find the optimal query plan means relying on estimates of smaller join size,

which are – in principle – more accurate [65]. Thus, while exhaustive enumeration requires

consistent estimation across all join sizes, the greedy algorithm is more sensitive to simpler

estimates. Therefore, the reduction in the search space can be compensated by consistent

estimation of small joins.
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Chapter 3

Online Sketch-based Query

Optimization

Consider query 6a from the JOB benchmark [65]:

SELECT MIN(k.keyword), MIN(n.name), MIN(t.title)

FROM cast info ci, keyword k, movie keyword mk, name n, title t

WHERE

▷ selection predicates

k.keyword = ’marvel-cinematic-universe’ AND

n.name LIKE ’%Downey%Robert%’ AND t.production year > 2010 AND

▷ join predicates

k.id = mk.keyword id AND t.id = mk.movie id AND t.id = ci.movie id AND

ci.movie id = mk.movie id AND n.id = ci.person id

The query has 3 selection predicates – point, subset, and range – and joins 5 tables with

5 join predicates – there is a triangle sub-query between tables t, mk, and ci. The corre-

sponding join graph is depicted in Figure 3.1. For each join, the graph contains a named

edge e1–e5 that connects the tables involved in the join predicate. For example, edge e1

represents the join predicate k.id = mk.keyword id.

Figure 3.1 also includes the execution plans together with their cost – the total cardinality
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Figure 3.1: Join graph and corresponding execution plans for query JOB 6a. The numbers
represent cardinality.

of the intermediate results defined in Equation 2.3 – for COMPASS and the four other

databases considered in the work. Although all the plans are left-deep trees, their cost

ranges from 1, 249 to 215 million tuples. This is entirely due to the statistics used for cardi-

nality estimation. MapD [2] does not use any statistics, thus its cost is orders of magnitude

higher. The plan is determined by sorting the tables in decreasing order of their size –

the number of tuples. MonetDB [3] has a rule-based optimizer with minimum support for

statistics [41] which generates a better plan. The reason why both of these systems have

primitive optimizers is because they are relatively “young” and are targeted at modern

architectures. They try to compensate for bad plans with highly optimized execution en-

gines that make use of extensive in-memory processing supported by massive multithread

parallelism and vectorized instructions. However, this approach is clearly limited.

PostgreSQL [88] and the industrial-grade DBMS A – name anonymized for legal reasons –

are “mature” databases with advanced query optimizers. In order to find a much better plan,

they use a large variety of statistics. Histograms, most frequent values, and number of dis-

tinct values are used to estimate the selectivity of the point predicate on attribute k.keyword

and of the range predicate on t.production year. The subset LIKE predicate on n.name is

estimated with table-level samples. Estimating join cardinality requires correlated statistics

on the join attributes. While such statistics exist, e.g., correlated samples [49, 120, 64], they

require the existence of indexes on every join attribute combination, which severely limits

their applicability in the case of multi-way joins. As a result, even advanced optimizers rely

on crude formulas that assume uniformity, inclusion, and independence – which are likely

to produce highly sub-optimal execution plans [63]. Since implementing and maintaining

these many statistics requires considerable effort, it is completely understandable that only

mature systems implement them.
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Problem. We investigate how to design a lightweight – yet effective – query optimizer for

modern in-memory databases. We have two design principles. First, we aim to capitalize

on the highly parallel execution engine in the query optimization process. Since query exe-

cution is already fast, it is challenging to minimize the overhead incurred by the additional

optimization. Second, the type and number of synopses included in the optimizer have to

be minimal. Our goal is to employ a single type of synopsis built exclusively for single

attributes and without the requirement of additional data structures such as indexes. The

challenge is to design a composable – and consistent – synopsis that provides incremental

cardinality estimates for the sub-plans generated in plan enumeration.

COMPASS Query Optimizer. We introduce the online sketch-based COMPASS query

optimizer. Fast-AGMS sketches are the only statistics present in COMPASS [19]. These

sketches are a type of correlated synopses for join cardinality estimation [97, 98] that use

small space, can be computed efficiently in a single scan over the data, are linearly com-

posable, and – more importantly – have statistically high accuracy. These properties allow

for Fast-AGMS sketches to be computed online in COMPASS by leveraging the optimized

parallel execution engine in modern databases. This is realized by decomposing query pro-

cessing into two stages performed before and after the optimization. In the first stage,

selection predicates are pushed-down and Fast-AGMS sketches are built concurrently only

over the relevant tuples. Sketches are built for each two-way join independently – not for ev-

ery combination of tables. In the query optimization stage, plan enumeration is performed

over the join graph by incrementally composing the corresponding two-way join sketches

in order to estimate the cardinality of multi-way joins. The optimal join ordering is finally

passed to the execution engine to finalize the query. As shown in Figure 3.1, COMPASS

identifies a plan as good as PostgreSQL and DBMS A, while relying exclusively on a single

synopsis – Fast-AGMS sketches. In addition to the novel query optimization paradigm, we

make the following technical contributions:

• We present a systematic approach of using sketches for join cardinality estimation in a

query optimizer. This includes two-way and multi-way joins. We do this for two types of

sketches – AGMS [8] and Fast-AGMS [19].

• We introduce two novel strategies to extend Fast-AGMS sketches to multi-way join car-

dinality estimation. The first strategy – sketch partitioning – is a theoretically sound
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estimator for a given multi-way join. Since it does not support composition, sketch parti-

tioning is not scalable for join order enumeration. The second strategy – sketch merging –

addresses scalability by incrementally creating multi-way sketches from two-way sketches.

Although this is done heuristically for a certain multi-way join taken separately, all the

multi-way joins with a given size are equally impacted. This property guarantees estima-

tion consistency in plan enumeration.

• We prototype COMPASS in MapD and perform extensive experiments over the complete

JOB benchmark – 113 queries. The results prove the reduced overhead COMPASS incurs

– below 500 milliseconds – while generating similar or better execution plans compared

to the four database systems included in Figure 3.1. COMPASS outperforms the other

databases both in terms of the number of queries it obtains the best result on, as well as

on the cumulative workload execution time.

3.1 Preliminaries

3.1.1 Parallel In-Memory Databases

Database systems for modern computing architectures rely on extensive in-memory pro-

cessing supported by massive multithread parallelism and vectorized instructions. GPUs

represent the pinnacle of such architectures, harboring thousands of SMT threads that ex-

ecute tens of vectorized SIMD instructions simultaneously. MapD, Ocelot [4], CoGaDB [5],

Kinetica [6], and Brytlyt [7] are a few examples of modern in-memory databases with

GPU support. They provide relational algebra operators and pipelines for GPU architec-

tures [34, 14, 29] that optimize memory access and bandwidth. This results in considerable

performance improvement for certain classes of queries. However, these databases provide

only primitive rule-based query optimization – if at all. This limits drastically their appli-

cability to general workloads. In COMPASS, we leverage the optimized execution engine of

MapD to build a lightweight – yet accurate and general – query optimizer based on a single

type of synopsis.
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3.1.2 Sketches

Sketch synopses [20] summarize the tuples of a relation as a set of random values. This

is accomplished by projecting the domain of the relation on a significantly smaller domain

using random functions or seeds. In the case of join attributes, the correlation between

attributes is maintained by using the same random function. While sketches compute only

approximate results with probabilistic guarantees, they satisfy several major requirements

of a query optimizer for in-memory databases – single-pass computation, small space, fast

update and query time, and linearity:

• A sketch is built by streaming over the input data and considers each tuple at most once.

• A basic sketch is composed of a single counter and one or more random seeds – a few

bytes. In order to improve accuracy, a standard method is to use multiple independent

basic sketch instances. The number of instances is derived from the desired accuracy and

confidence levels. In practice, very good accuracy can be achieved with sketches having

size in kilobytes.

• The update of a sketch with a new tuple consists of generating one or more random

numbers and adding them to the sketch counter. The answer to a query involves simple

arithmetic operations on the sketch. In the case of multiple sketches, both the update

and query are applied to all the instances. Overall, update and query time are linearly

proportional to the sketch size.

• A sketch can be computed by partitioning the input relation into multiple parts, building

a sketch for every part, and then merging the partial sketches. This mergeable property

makes sketches amenable for parallel processing on modern hardware and can result in

linear speedups in update and query time [93, 105].

While previous work addresses how to apply sketches to certain cardinality estimation

problems that occur in query optimization, COMPASS is a complete query optimizer based

exclusively on sketches. In addition to cardinality estimation, we show how to integrate

the sketch estimations in plan enumeration. We are not aware of any work that integrates

sketches effectively with plan enumeration. This is the main reason why sketches have not

been integrated into a query optimizer before. COMPASS solves this problem.
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3.2 Related Work

3.2.1 Cardinality Estimation

While exhaustive surveys on query optimization [17, 69] argue that each component is im-

portant in finding the optimal plan, Leis et al. [63, 65] show experimentally that cardinality

estimation is the most dominant component in query optimization. However, consistency

in estimations is more important than high accuracy only for a limited number of instances.

There are four mainstream cardinality estimation approaches in the literature – histograms,

sampling techniques, sketches, and, more recently, machine learning models. While his-

tograms can provide accurate selectivity estimation for a single attribute in a relation [42],

it is difficult for them to capture correlations between cross-join attributes [91], thus reduc-

ing their applicability to joins. Unlike histograms, sampling techniques [64, 82] can detect

arbitrary correlations for common values. However, samples are sensitive to skewed and

sparse data when few tuples are selected by a query [114]. As the query optimizer esti-

mates a large number of joins, the cardinality drops quickly, causing wrong estimates for

intermediate results. Estimating the cardinality of multi-way joins with AGMS sketches is

introduced in [24, 25], while statistical analysis of two-way join sketch-based techniques is

performed by Rusu and Dobra [97, 98]. Their results show that Fast-AGMS sketches are

clearly superior to other sketches. In this work, we extend Fast-AGMS sketches to capture

all the join attributes involved in a given query within a single sketch and efficiently estimate

multi-way joins. Vengerov et al. [110] present an extension to AGMS sketches that captures

selection predicates, while Cai et al. [16] introduce bound sketches that provide theoretical

upper bounds for cardinality estimation. The problem with these approaches is that the on-

line sketch-building process is not scalable. Hertzschuch et al. [37] maintain the pessimistic

property for cardinality estimation, while replacing sketches with a simple formula based on

statistics already available to the PostgreSQL query optimizer. This eliminates the sketch

overhead while preserving the quality of the pessimistic plans – as long as the optimizer

statistics estimate predicate selectivity accurately. Kernel density models for cardinality

estimation (KDE) are introduced in [35, 52]. They are built on samples extracted either

from the base tables or the join. While their accuracy is shown to be superior to any other

method on JOB queries over at most five tables – the simplest in the benchmark – it is not

clear how to generalize and fully integrate KDE models in plan enumeration. Specifically,
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the KDE implementation [51] builds a separate estimator for every query. No details are

provided on how to apply the estimator to query sub-plans derived from the main query,

which is the centerpiece of plan enumeration.

3.2.2 Query Re-Optimization

In order to overcome the inherent mis-estimations in the query optimizer, Adaptive Query

Processing [22] allows the query processor to modify the optimal query plan computed by

the optimizer in case of large deviations from the true cardinality values detected at run-

time. The Mid-Query Re-Optimizer [48], ROX [49], and SkinnerDB [108] re-run the query

optimizer at runtime in the case of large differences between estimations and the true car-

dinalities. Wu et al. [115] apply online sampling to correct the errors in the plans generated

by the query optimizer. These approaches use the output of the query executor and sam-

pling techniques to re-estimate the cardinalities based on already computed intermediate

join outputs and change the query plan whenever the estimated values deviate significantly.

In the self-adaptable LEO optimizer [74], the query engine monitors and uses the feedback

from the execution engine in order to adjust the histogram-based synopses for better per-

formance in subsequent queries. Eddies [11] process batches of tuples by following dynamic

routing policies during query execution. Unlike these systems, COMPASS performs query

optimization as a single stage, while query execution is partitioned into two phases – before

and after the optimization. As in query re-optimization, COMPASS uses the intermediates

– sketches – produced by the first phase of execution. However, this process is performed

only once, thus its overhead is smaller compared to continuous re-optimization.

3.2.3 Machine Learning for Query Optimization

Using machine learning techniques and deep neural networks is a recent trend in query opti-

mization. Join order enumeration [72, 59, 71], cardinality estimation [70, 68, 54, 55, 113, 89],

selectivity estimation [119, 33, 26], and index structures [57] have been active research di-

rections. Regarding the cardinality estimation problem, Malik et al. [70] propose to train

neural network models based on cardinality distributions for a separate class of similar

queries and estimate overall query cardinalities. Yang et al. [116] utilize neural networks

to learn a function to estimate cardinalities of queries with range selection predicates. Kipf
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et al. [54] use multi-set convolutional neural networks in order to model join and selection

predicates, and capture join correlations. Woltmann et al. [113] propose to train neural

network models to estimate cardinalities in equi-joins. Marcus et al. [72] use reinforcement

learning in order to efficiently explore the search space and find optimal join order plans.

Different from these approaches, COMPASS uses traditional randomized algorithms to es-

timate cardinality. Moreover, COMPASS is fully integrated into a database engine, which

is often not the case for these machine-learning solutions.

3.2.4 Plan Enumeration

In plan enumeration, multiple semantically equivalent plans are explored in order to identify

the optimal execution plan. Different exhaustive [109, 79] and heuristic-based [104] algo-

rithms have been proposed. They consider different tree shapes – such as left-deep and bushy

trees – in the search space. Leis et al. [63, 65] evaluate the influence of several plan enumer-

ation algorithms and the impact of considering bushy trees. Several recent approaches have

been proposed to optimize the plan enumeration phase by using GPUs [75, 76] and deep

reinforcement learning models [72, 73]. In this work, we propose an adaptive graph traversal

algorithm that efficiently explores the search space. This algorithm can be configured to

cover plan enumeration from greedy to exhaustive search.

3.3 COMPASS: Online Sketch-based Query Optimization

In this section, we provide a high-level description of the COMPASS query optimization

paradigm, while the technical details of cardinality estimation, join ordering, and plan

enumeration are presented in Section 3.4, 3.5, and 3.6, respectively.

3.3.1 Workflow

The workflow performed by the COMPASS query optimizer is depicted in Figure 3.2. It

consists of a two-step process that requires interaction with the query processor. First, the

optimizer extracts the selection predicates and join attributes for every table. A sketch is

built for every join attribute while performing the selection query on the base table, and

only over the tuples that satisfy the predicate. Figure 3.2 shows the procedure for table title
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which has a range predicate and two join conditions – although both join predicates involve

the same attribute t.id, two independent sketches have to be built. COMPASS leverages

the high parallelism of in-memory databases and the mergeable property of sketches to

execute this process with minimal overhead. Two additional optimizations can be applied

to further reduce the overhead. Sketches for join attributes from tables without selection

predicates can be built offline and plugged in directly. Sketches can be built only over

a sample [99], which, however, incurs a decrease in accuracy. In the second step of the

workflow, plan enumeration is performed by estimating the cardinality of all the sub-plans

using the sketches built in the first step. This is possible only because the attribute-level

sketches we design are incrementally composable. Otherwise, separate sketches have to be

built for every enumerated sub-plan. In our example, there are two sketches on attribute

t.id, one for join e2 and one for join e3 in the join graph (Figure 3.1). The sketch for e2 is

included in all the sub-plans that contain this join attribute – similar for e3. In a sub-plan

that includes both e2 and e3, these two sketches are first merged and then used in estimation

as before. This process is performed incrementally during plan enumeration. Finally, the

optimal plan is submitted for execution together with any materialized intermediates from

step one.

SELECT COUNT(*)
FROM title AS t
WHERE t.production_year > 2010

𝐏𝐮𝐬𝐡-𝐃𝐨𝐰𝐧 𝐒𝐞𝐥𝐞𝐜𝐭𝐢𝐨𝐧

      
          MIN(k.keyword), MIN(n.name), MIN(t.title)
      
          cast_info AS ,
          keyword AS ,
          movie_keyword AS ,
          name AS ,
          title AS 
      
         k.keyword = 'marvel-cinematic-universe' 
         n.name LIKE '%Downey%Robert%' 
         t.production_year > 2010  
         k.id = mk.keyword_id 
         t.id = mk.movie_id 
         t.id = ci.movie_id 
         ci.movie_id = mk.movie_id 
         n.id = ci.person_id
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Figure 3.2: COMPASS workflow: online sketch-based query optimization for in-memory
databases.

3.3.2 Partitioned Query Execution

As shown in Figure 3.2, COMPASS intertwines query optimization and evaluation by par-

titioning execution into push-down selection (step 1) and join computation (step 3). Query

optimization, i.e., join ordering plan enumeration, is performed in between these two stages.
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Since plan enumeration and join computation are standard, we focus on push-down selec-

tion, where online sketch building is performed. Push-down selection computes the exact

selectivity cardinalities for all the base tables that have selections. This is similar to the

ESC approach introduced in [101]. However, in addition to predicate evaluation, COM-

PASS also builds sketches for every join attribute in the table by piggybacking on the same

traversal – sketch building is performed during the selection. Notice that this works both

for sequential and index scans. It is important to emphasize that only the tuples that sat-

isfy the predicate are included in the sketch, which increases their accuracy significantly.

Moreover, the sketch update overhead is kept to the minimum necessary. While the ex-

act cardinalities and sketches are always materialized due to their reduced size and role in

optimization, the decision to materialize the selection output – the intermediate result –

depends on its size. COMPASS follows the same approach as in [101]. If the intermediate

size is smaller than a threshold, it is materialized. Otherwise, it is not, since the space

reduction does not compensate for the access time reduction. Notice, though, that, even

when intermediates are not materialized, sketches still contain only the relevant tuples for

join cardinality estimation.

While the idea of partitioned query execution for XML processing is introduced in ROX [49],

the COMPASS approach is different in several aspects. First, similar to adaptive query

processing [22], COMPASS works for relational data and operators. However, COMPASS

does not change the plan while the query is executing. This is not necessary because the

sketch-based optimization strategy finds better plans in the first place. ROX can decompose

a join graph into an arbitrary number of stages, each of which requires materialization.

COMPASS, on the other hand, splits execution in exactly two stages and intermediate

result materialization is only optional. The reason ROX requires materialization is that

it uses chain sampling to estimate cardinalities. In order to provide acceptable accuracy,

samples have to be extracted from the most recent intermediate results – not the base tables.

Moreover, ROX chain sampling requires indexes on all the join attributes to guarantee a

minimum sample size. This is a stringent constraint hardly satisfied in most real-world

databases. Sketches, on the other hand, do not impose any constraints. Lastly, due to

its incremental greedy exploration of the join order space, ROX considers only a limited

number of plans – possibly sub-optimal. In COMPASS, plan enumeration is performed at

once after push-down selection and can cover any portion of the join space. This can be
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achieved with the base table sketches which can be composed without the risk of becoming

empty – the case for chain sampling.

3.3.3 Plan Enumeration

The join attribute-level sketches computed during push-down selection can be composed

to estimate the cardinality of any valid join order – excluding cross products – generated

during plan enumeration. In most cases, cross products are ignored by join enumeration

algorithms anyway [64]. As shown in Section 3.5, sketch composition consists of two stages.

First, the sketches of all the relevant join attributes in a table are merged together. An

attribute is relevant for a partial join order if its join is part of the order. Second, the

sketches across tables are combined to estimate the cardinality of the join order. Since

the overall composition consists only of arithmetic operations, sketches can be integrated

into any enumeration algorithm – exhaustive, bushy, or left-deep. Essentially, sketches can

readily replace the standard join cardinality estimation formula based on table and join

attribute distinct cardinality [30]. However, since sketches capture the correlation between

join attributes and do not make the independence and containment assumptions, their

accuracy is expected to be better.

3.3.4 Sketches vs. other Synopses

The decision to exclusively use sketches in COMPASS may seem questionable given that

sketches are designed for specific stream processing tasks, while traditional databases sup-

port generic batch-oriented execution. To put it differently, there is a specific sketch for

every streaming query, while synopses are for the entire database. To achieve generality,

COMPASS has to build a set of sketches for every query – except base tables without pred-

icates. However, this is done concurrently with push-down selection and is highly parallel,

resulting in low overhead (Section 3.7). As a result, sketches do not require any main-

tenance under modification operations since they are built on the current data. This is

not possible for any of the other database synopses. The benefit of having query-specific

synopses is also exploited in [64], where index-based join sampling – a variation of ROX

chain sampling [49] – is introduced. Index-based join sampling is performed during the plan

enumeration of every query under the corresponding selection predicates. Since the sample
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size – both minimum and maximum – is carefully controlled, index-based join sampling

has improved memory usage and accuracy because it avoids empty results. Compared to

sketches, though, this sampling strategy has two serious shortcomings. First, it requires the

existence of an index and complete frequency distribution on every join attribute. Sketches

require nothing beyond the data. Second, the estimation of every join cardinality requires

separate sampling from each of the involved tables. Since this process is time-consuming,

plan enumeration is performed bottom-up – or breadth-first – in a limited time budget.

Sketches can be composed incrementally in any order, without the need to access the data.

⊕

(𝑡. 𝑖𝑑 = 70)⊙𝜉𝑒2
1,2

(𝑡. 𝑖𝑑 = 70)⊙𝜉𝑒3
1,2

(𝑡. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑦𝑒𝑎𝑟 > 2010)𝜉
𝑝3

1,2

e1 e2

e4

e3 e5

(𝑘. 𝑖𝑑 = 95)⊙𝜉𝑒1
2,1

(𝑘. 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 𝐦𝐜 )𝜉
𝑝1

2,1
′

𝐮
′

⊕

 LIKE 
(𝑛. 𝑖𝑑 = 27)⊙𝜉𝑒5

2,𝑏

(𝑛. 𝑛𝑎𝑚𝑒𝜉
𝑝2

2,𝑏
%𝐃%𝐑 )′ %′

⊕

(𝑚𝑘. 𝑘𝑒𝑦𝑤𝑜𝑟𝑑_𝑖𝑑 = 20)⊙𝜉𝑒1
𝑟,2

(𝑚𝑘. 𝑚𝑜𝑣𝑖𝑒_𝑖𝑑 = 7)⊙𝜉𝑒2
𝑟,2

(𝑚𝑘. 𝑚𝑜𝑣𝑖𝑒_𝑖𝑑 = 7)𝜉𝑒4
𝑟,2

(𝑐𝑖. 𝑚𝑜𝑣𝑖𝑒_𝑖𝑑 = 20)⊙𝜉𝑒3
𝑟,1

(𝑐𝑖. 𝑚𝑜𝑣𝑖𝑒_𝑖𝑑 = 20)⊙𝜉𝑒5
𝑟,1

(𝑐𝑖. 𝑝𝑒𝑟𝑠𝑜𝑛_𝑖𝑑 = 22)𝜉𝑒4
𝑟,1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

𝑠𝑘1,1

𝐬𝐤2,1

⋮

𝑠𝑘𝑟,1

𝑠𝑘1,2

𝑠𝑘2,2

⋮

𝑠𝑘𝑟,2

⋯

⋯

⋱

⋯

𝑠𝑘1,𝑏

𝑠𝑘2,𝑏

⋮

𝑠𝑘𝑟,𝑏

⎞

⎠

⎟
⎟
⎟
⎟
⎟

𝑟×𝑏

𝐬𝐤
𝐤

⎛

⎝

⎜
⎜
⎜
⎜
⎜

𝑠𝑘1,1

𝑠𝑘2,1

⋮

𝑠𝑘𝑟,1

𝐬𝐤1,2

𝑠𝑘2,2

⋮

𝑠𝑘𝑟,2

⋯

⋯

⋱

⋯

𝑠𝑘1,𝑏

𝑠𝑘2,𝑏

⋮

𝑠𝑘𝑟,𝑏

⎞

⎠

⎟
⎟
⎟
⎟
⎟

𝑟×𝑏

𝐬𝐤
𝐭

⎛

⎝

⎜
⎜
⎜
⎜
⎜

𝑠𝑘1,1

𝑠𝑘2,1

⋮

𝑠𝑘𝑟,1

𝑠𝑘1,2

𝑠𝑘2,2

⋮

𝑠𝑘𝑟,2

⋯

⋯

⋱

⋯

𝑠𝑘1,𝑏

𝐬𝐤2,𝐛

⋮

𝑠𝑘𝑟,𝑏

⎞

⎠

⎟
⎟
⎟
⎟
⎟

𝑟×𝑏

𝐬𝐤
𝐧

⎛

⎝

⎜
⎜
⎜
⎜
⎜

𝑠𝑘1,1

𝑠𝑘2,1

⋮

𝑠𝑘𝑟,1

𝑠𝑘1,2

𝑠𝑘2,2

⋮

𝐬𝐤𝐫,2

⋯

⋯

⋱

⋯

𝑠𝑘1,𝑏

𝑠𝑘2,𝑏

⋮

𝑠𝑘𝑟,𝑏

⎞

⎠

⎟
⎟
⎟
⎟
⎟

𝑟×𝑏

𝐬𝐤
𝐦𝐤

⎛

⎝

⎜
⎜
⎜
⎜
⎜

𝑠𝑘1,1

𝑠𝑘2,1

⋮

𝐬𝐤𝐫,1

𝑠𝑘1,2

𝑠𝑘2,2

⋮

𝑠𝑘𝑟,2

⋯

⋯

⋱

⋯

𝑠𝑘1,𝑏

𝑠𝑘2,𝑏

⋮

𝑠𝑘𝑟,𝑏

⎞

⎠

⎟
⎟
⎟
⎟
⎟

𝑟×𝑏

𝐬𝐤
𝐜𝐢

⎛

⎝

⎜
⎜
⎜
⎜
⎜

Avg{𝑠 ⋅ 𝑠 ⋅ 𝑠 ⋅ 𝑠 ⋅ 𝑠𝑘𝑘
1,𝑖

𝑘𝑡
1,𝑖

𝑘𝑛
1,𝑖

𝑘𝑚𝑘
1,𝑖

𝑘𝑐𝑖
1,𝑖

}𝑏
𝑖=1

Avg{𝑠 ⋅ 𝑠 ⋅ 𝑠 ⋅ 𝑠 ⋅ 𝑠𝑘𝑘
2,𝑖

𝑘𝑡
2,𝑖

𝑘𝑛
2,𝑖

𝑘𝑚𝑘
2,𝑖

𝑘𝑐𝑖
2,𝑖

}𝑏
𝑖=1

⋮

Avg{𝑠 ⋅ 𝑠 ⋅ 𝑠 ⋅ 𝑠 ⋅ 𝑠𝑘𝑘
𝑟,𝑖 𝑘𝑡

𝑟,𝑖 𝑘𝑛
𝑟,𝑖 𝑘𝑚𝑘

𝑟,𝑖 𝑘𝑐𝑖
𝑟,𝑖}

𝑏
𝑖=1

⎞

⎠

⎟
⎟
⎟
⎟
⎟

𝑟×1

Median

⊕⊕

Figure 3.3: Cardinality estimation for query JOB 6a with AGMS sketches.

The other types of synopses – histograms and distinct cardinality – are not query-specific.

Thus, they do not incur any creation overhead during optimization. To estimate join car-

dinality, the attribute-level instances of these synopses are composed of simple arithmetic

operations [100, 30]. However, due to the strong assumptions – uniformity, independence,

inclusion, and ad-hoc constants – made by these operations, the estimates can be highly in-

accurate. Sketches do not make any of these assumptions because they capture correlations

by design.
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3.4 Sketch Cardinality Estimation

In this section, we present how the class of AGMS sketches is applied for estimating the

cardinality of complex queries involving selection predicates and multi-way joins. We orga-

nize the presentation around the original AGMS sketches [8] which have known solutions

to these problems. However, AGMS sketches are too inefficient to be accurate and cannot

be integrated into query plan enumeration. This leads us to the Fast-AGMS sketches [19]

which are asymptotically more efficient and have been shown to be statistically more accu-

rate [97, 98]. However, Fast-AGMS sketches are limited to estimating two-way join cardi-

nality. Our main contributions are to extend Fast-AGMS sketches to multi-way joins and

to effectively integrate them in query plan enumeration.

3.4.1 AGMS Sketches

The basic AGMS sketch of an attribute from a relation consists of a single random value sk

that summarizes the values of the attribute across all the tuples in the relation. For example,

all the values of attribute id from table keyword can be summarized by a sketch sk(k.id)

computed as sk(k.id) =
∑

t∈k ξ (t.id), where ξ is a family of {+1,−1} random variables that

are 4-wise independent. Essentially, a random value of either +1 or −1 is associated with

each point in the domain of attribute k.id. Then, the corresponding random value is added

to the sketch sk(k.id) – initialized to 0 – for each tuple t in table keyword. Intuitively, the

more frequent a value is, the more is “pulling” the sketch to its frequency. Since all the

tuples are combined in the same sketch sk(k.id), they are conflicting and the output can

be far away from the frequency of each single tuple. This is where the 4-wise independence

property of ξ is important. It guarantees that for any group of at most 4 different values of

attribute k.id, the product of their corresponding ξ values is 0 on expectation – they cancel

out. This, in turn, allows for each individual attribute value frequency to be unbiasedly

estimated by multiplying the sketch with the corresponding ξ random value. For example,

the frequency of k.id = 5 is estimated by the product sk(k.id) · ξ(5).

3.4.1.1 Two-Way Join Cardinality Estimation

Consider the join e1 between tables keyword and movie keyword with predicate k.id =

mk.keyword id (Figure 3.1). The cardinality of this join operator can be estimated with
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two AGMS sketches sk(k.id) and sk(mk.keyword id) built on the join attributes. The

requirement is that these sketches share the same family ξ of random variables – ξe1 is

associated with edge e1. ξe1 guarantees that join keys with the same value are assigned

the same {+1,−1} random value – they are correlated. The basic AGMS estimator is the

product of sk(k.id) and sk(mk.keyword id):

Est (|e1|) = sk(k.id) · sk(mk.keyword id) =
∑
x∈k

∑
y∈mk

ξe1 (x.id) · ξe1 (y.keyword id) (3.1)

Due to the 4-wise independence property of ξe1, this estimator is unbiased – its expectation

equals the true |e1| cardinality. However, its variance is high – it has poor accuracy. This

is expected since a full table with any number of tuples is summarized as a single number.

The standard technique to improve accuracy is to build multiple independent basic sketch

estimators. This is achieved by using independent families of random variables ξe1. It is

theoretically proven that, in order to obtain an estimator with relative error at most ϵ with

confidence δ, O
(
1/ϵ2 log (1/δ)

)
basic sketches are necessary. As shown in Figure 3.3, they

are grouped into a matrix of r rows and b columns. Then, the final AGMS estimator is

obtained by averaging the b instances in each row and taking the median over the resulting

r averages. In summary, an AGMS sketch has Ω(r · b) update and query time, and its space

usage is also Ω(r · b). This assumes that the random number generators ξ have small seeds

and produce their values fast – aspects that require careful implementation.

3.4.1.2 Multi-Way Join Cardinality Estimation

We show how to extend AGMS sketches to multi-way join cardinality estimation. For this,

we add the join e2 betweenmovie keyword and title to e1 and aim to estimate the cardinality

of this 3-table query. Following the approach for two-way joins, a family of sketches is built

for edge e2 on attributes mk.movie id and t.id, respectively. These sketches share their own

family ξe2 of random variables. Since two attributes from mk – keyword id and movie id –

participate in join operators with other tables, we have to preserve their tuple connection.

This is achieved by creating a single composed sketch sk(mk.k id,mk.m id) instead of

separate sketches for each attribute [25]. The value of sk(mk.k id,mk.m id) is computed

as:
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sk(mk.k id,mk.m id) =
∑
t∈mk

ξe1 (t.k id) · ξe2 (t.m id) (3.2)

where the product of the two random variables is added to the sketch. The cardinality

estimator is defined as the product of three sketches in this case:

Est (|e1 ∪ e2|) = sk(k.id) · sk(mk.k id,mk.m id) · sk(t.id)

=
∑
x∈k

∑
y∈mk

∑
z∈t

ξe1 (x.id) · ξe1 (y.k id) · ξe2 (y.m id) · ξe2 (z.id) (3.3)

As long as the families ξe1 and ξe2 are independent, this estimator is unbiased. However, its

variance can be exponentially worse than that of the two-way join estimator – which makes

sense, given the additional degree of randomness. Thus, to achieve the same accuracy, a

considerably larger number of basic sketches are required.

This strategy can be generalized to complex queries involving any number of tables and

join predicates. A sketch is built for every table. Independent random families ξ are used

for every join predicate. The sketch corresponding to a table is updated with the product

of all the ξ families incident to it, applied to the corresponding join attribute. In the case

of our example query JOB 6a with 5 tables and 5 join predicates (Figure 3.3), there are

5 sketches and 5 families ξ. The sketch skmk for table mk is updated with the product

ξe1 (k id) · ξe2 (m id) · ξe4 (m id) which includes a factor for each of the three join predicates.

The unbiased cardinality estimator is the product of the 5 sketches skk · skmk · skt · skci · skn.
For the same number of basic sketches r · b as in the case of the |e1| join, the accuracy of

the |e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5| join can be exponentially worse.

3.4.1.3 Selection Cardinality Estimation

Query JOB 6a contains 3 selection predicates – point on k, subset on n, and range on t. These

have to be accounted for when estimating the overall query cardinality. AGMS sketches

can handle selection predicates as long as the domain of the attribute is discrete – which

is the case for the fixed-size data types in databases. The idea is to express the selection

as a join predicate between the table and the domain of the selection attribute [95, 96].

Following the two-way join approach, a sketch is built on the selection attribute over all
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the tuples in the table. The sketch over the domain – which shares the same random

family ξ – summarizes the values in the domain which satisfy the predicate by adding an

entry for each of them to the sketch – for a point predicate, the sketch includes only the

ξ value corresponding to the constant in the predicate; for a range, the ξ values for all

points in the range; for a subset, the ξ values for the points in the subset. As long as

the number of points is small, these sketches can be computed fast. Moreover, even for

ranges, there is a specific fast range-summable random family ξ for which the sketch can

be computed in constant time, independent of the range size [95, 96]. In the JOB 6a query

depicted in Figure 3.3, the sketch update procedure for tables with predicates includes an

additional factor corresponding to the selection attribute. For example, the sketch skk for

table keyword is updated with the product ξe1 (id) · ξp1 (keyword). Overall, 8 families ξ and

8 sketches are required – the sketches over the domain of the selection attributes are not

included in Figure 3.3. The final estimator is the product of these 8 sketches. Since this

estimator is a multi-way join with a larger number of sketches, its accuracy becomes worse

than that of the join sketches only.

3.4.1.4 Why AGMS Sketches Are Not Practical for Query Optimization?

As shown, AGMS sketches can be theoretically used to estimate the cardinality of arbitrarily

complex queries with join and selection predicates. While all the sketches for a table

can be built in a single scan, since the update time per AGMS sketch is linear in the

sketch size, updating an exponential number of sketches becomes dominant. Moreover, the

space requirement for all the sketches is also a problem. These scalability issues hinder

the application of AGMS sketches to join order enumeration. However, AGMS sketches

suffer from a more serious problem in query optimization – they cannot be incrementally

composed. What this means is that a sketch used to estimate a two-way join between two

relations cannot be used to estimate a three-way join that includes another relation. The

addition of join e2 to e1 in our example illustrates this well. It is not possible to compute

the sketch sk(mk.k id,mk.m id) from sketch sk(mk.keyword id). It is not even possible to

compute sk(mk.k id,mk.m id) from sk(mk.keyword id) and sk(mk.movie id). The reason

is the order of multiplication and addition. The other direction – use sk(mk.k id,mk.m id)

instead of sk(mk.keyword id) or sk(mk.movie id) – is also not possible. Thus, in order

to support plan enumeration, a separate sketch has to be built for every combination of
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the join attributes – which is an exponential number. For example, 7 sketches have to be

built for both tables mk and ci which participate in 3 join predicates. If we include the

attributes that can appear in selection predicates, the number of sketches that have to be

built for a table can become exponential in the number of attributes in the table. While

workload information can be used to reduce this number, there is little that can be done

for tables that join with several other tables on different attributes. Practically, AGMS

sketches cannot achieve the goal of having synopses only for single attributes.
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Figure 3.4: Cardinality estimation for query JOB 6a with Fast-AGMS sketches.

3.4.2 Fast-AGMS Sketches

Fast-AGMS sketches preserve the (r × b) matrix structure of AGMS sketches. However,

they define a complete row of b counters as a basic sketch element (Figure 3.4). Only one

of these counters is updated for every tuple, thus, a factor b reduction in update time is

obtained. The updated counter is chosen by a random hash function h associated with the

row. The purpose of h is to spread tuples with different values as evenly as possible – tuples

with the same key still end up in the same bucket. On average, a factor b fewer tuples

collide on the same counter, which preserves the frequency of each of them better. Since a

full row is a sketch element, a single ξ family of random variables is associated with every
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row. Thus, a Fast-AGMS sketch with r rows requires only r hash and ξ random functions.

The value of a counter j is sk(k.id)j =
∑

t∈k,h(t.id)=j ξ (t.id).

3.4.2.1 Two-Way Join Cardinality Estimation

In order to estimate join cardinality, the same principle applies – Fast-AGMS sketches are

built over the join attributes using the same random functions h and ξ. The hash function h

lands identical keys to the same bucket, while ξ gives the same sign. The unbiased estimator

for a basic sketch sums up the product of the corresponding buckets:

Est (|e1|) =
b∑

j=1

sk(k.id)j · sk(mk.keyword id)j (3.4)

Summation is necessary because h partitions the tuples. As for AGMS sketches, the final

estimate is obtained by taking the median of the r independent basic sketches. Although the

accuracy of Fast-AGMS sketches is asymptotically equal to that of AGMS sketches [19] in

the worst case, it has been shown statistically that Fast-AGMS sketches have considerably

better accuracy than any other sketching technique on average [97]. The combined accuracy

and fast update time make Fast-AGMS sketches suitable for query optimization.

3.4.2.2 Why Fast-AGMS Sketches Are Not Applicable to Query Optimization?

As far as we know, there is no work that extends Fast-AGMS sketches to multi-way join

estimation. The main problem is the requirement to have independent hash functions he1

and he2 for the two join attributes. These functions allocate the attributes to different buck-

ets, which means that the tuple is added to the sketch twice. Moreover, the relationship

between attributes is lost. Since sketch-based selectivity estimation is also reduced to a

join between the selection attribute and its domain, this implies that Fast-AGMS sketches

cannot be used to estimate the cardinality of two-way joins with predicates. In fact, com-

puting optimally the Fast-AGMS sketch of the domain of a range predicate does not have a

solution. This is because there is no order relationship between the hash values of adjacent

points in the domain. Due to these limitations, Fast-AGMS sketches have not been used

in query optimization before. COMPASS introduces Fast-AGMS extensions for multi-way
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joins and solves the selectivity issue by pushing-down predicates during query optimization,

and adding only the relevant tuples to the sketch.

3.5 Fast-AGMS Sketch Multi-way Join Estimation

We present two strategies to extend Fast-AGMS sketches to multi-way join cardinality

estimation. The first strategy – sketch partitioning – is a theoretically sound estimator for

a given multi-way join. Its limitation is that it cannot be composed/decomposed, thus, it

is not scalable for plan enumeration. The second strategy – sketch merging – addresses

the scalability issue by incrementally creating multi-way sketches from two-way sketches.

Although this is done heuristically for a certain multi-way join taken separately, all the

multi-way joins with a given size are equally impacted. We show empirically that this

property is a good surrogate for accuracy – which is much harder to consistently achieve –

in join order enumeration.
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Figure 3.5: Fast-AGMS sketches for multi-way join cardinality estimation on query JOB
6a.

3.5.1 Sketch Partitioning

The idea of sketch partitioning is to reorganize the b buckets of the elementary sketch

into a (b1 × b2) 2-D matrix – as done in [16] for frequency sketches. he1 hashes a tuple

mk(k id,m id) to one of the b1 rows, while he2 hashes to one of the b2 columns. Then,

only the counter at indices
[
he1(k id), he2(m id)

]
is updated with the product ξe1(k id) ·
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ξe2(m id). This process is depicted in Figure 3.5. For example, tuple (6,3) in mk adds 1

to the counter [2,1]. he1 guarantees that all the tuples with k id = 6 are hashed to row 2,

while he2 sends tuples with m id = 3 to column 1. Conflicts happen only when the output

of both hash functions is identical. Given the quadratic number of buckets compared to

the sketch for a single attribute – while the number of tuples is the same – conflicts are less

frequent. The cardinality estimate for the 3-table join k ▷◁ mk ▷◁ t is obtained by summing

up all the entries in the matrix resulting after the scalar multiplication between sk(k.id)

and every row in skpart(mk), followed by the scalar multiplication between the transpose

of sk(t.id) and every column in skpart(mk). This can be written as:

Est (|e1 ∪ e2|) =
∑

0≤i<b1

∑
0≤j<b2

skk[i] · skpart(mk)[i, j] · skt[j] (3.5)

It can be shown theoretically that this estimator is unbiased following the same proof as for

AGMS sketches in [25]. Moreover, given the larger size of sketch skpart(mk), its accuracy is

expected to be better. This procedure can be generalized to any number of join attributes

by partitioning – or replicating – b into the corresponding number of dimensions. For

example, a table with 3 joins has a 3-D tensor as its sketch, with one dimension for every

join attribute. Thus, there is a polynomial factor increase in the size of the sketch and

the estimate computation. This has to be carefully accounted for in the overall memory

budget since the likelihood of conflicts varies with the dimensionality of the sketch tensor.

The constraint to have the same number of buckets for a join predicate, e.g., sk(k.id) has

as many buckets as the number of rows in skpart(mk), makes memory allocation among

sketches more complicated than for the 1-D AGMS sketch vectors.

Partitioned Fast-AGMS sketches are not scalable for join order enumeration. This is because

separate sketches are required for every join. For example, in Figure 3.5, the 2-D sketch

skpart(mk) is used for the 3-way join k ▷◁ mk ▷◁ t, while the 1-D sketches skmk1 and skmk2

are used for the 2-way joins k ▷◁ mk and t ▷◁ mk, respectively. Building and storing

these many sketches is impractical in query optimization. One alternative is to build only

the sketches for up to k-way joins and use other methods to estimate higher-order join

cardinality. This strategy is applied for run-time join samples in [64]. The drawback is

that other statistics are required for the higher-order joins and the interaction between
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the estimates produced by these statistics and the sketch estimates has to be carefully

controlled.

Our goal is to exclusively use sketches. Intuitively, we want to be able to either generate

the 2-D sketch from the 1-D sketches or extract the 1-D sketches from the 2-D sketch.

Unfortunately, none of these have a clear solution for Fast-AGMS sketches. The composition

of skmk1 and skmk2 requires determining how to combine all the pairs of buckets in the 1-D

sketches in order to compute the quadratic number of entries in the 2-D sketch. Since the

identity of tuples is lost when they are inserted in the 1-D sketch, it is not possible to

recreate the tuple and determine its corresponding 2-D bucket. Moreover, due to conflicts

in the ξ random functions, we do not even know how many tuples belong to a 1-D bucket.

For example, bucket 1 in skmk1 is 2 even though 4 tuples are hashed to it. The extraction of

a 1-D sketch from the 2-D sketch also does not work because of the ξ variables. Specifically,

the update by the product ξe1 · ξe2 makes it impossible to retrieve the value of a 1-D bucket

by summing up the corresponding 2-D buckets. For example, the value of bucket 0 in skmk1

is not the sum of the buckets in row 0 of sketch skpart(mk). This property is true only for

hash-based sketches [16].

3.5.2 Sketch Merging

We introduce the sketch merging heuristic as a lightweight method to compose two-way join

Fast-AGMS sketches in order to estimate the cardinality of multi-way joins. The procedure

works as follows. We build sketches for every two-way join predicate independently, as shown

in Figure 3.5. The number of sketches corresponding to a table is equal to the number of

joins it participates in. For example, tables k and t have one sketch, while mk has two

sketches. We estimate any join combination generated during plan enumeration using only

these sketches. The two-way joins k ▷◁ mk and t ▷◁ mk are estimated optimally with

the sketch pairs (skk, skmk1) and (skt, skmk2), respectively. These are the most accurate

sketch estimates we can get. For the 3-way join k ▷◁ mk ▷◁ t, we create a merged sketch

skmerge(mk) = skmk1 ⊕ skmk2 from the two 2-way join sketches on demand during plan

enumeration. This merged sketch approximates the partitioned sketch skpart(mk) computed

with the same random functions, without accessing the tuples. A bucket [i, j] in skmerge is

set to the value having the minimum absolute magnitude among the corresponding [i] and
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[j] buckets in the two basic sketches:

skmerge[i, j] =

 skmk1[i], if |skmk1[i]| ≤ |skmk2[j]|
skmk2[j], if |skmk1[i]| > |skmk2[j]|

(3.6)

For the example in Figure 3.5, bucket [0, 0] is set to −2 because |3| > |−2|, while bucket [0, 2]
to 0 because |0| < |3|. The reason for this merge procedure is multi-folded. The interaction

between the random functions ξ is considered – albeit not through a direct multiplication –

by preserving the sign of the value in the basic sketch. The absolute magnitude corresponds

to the maximum number of tuples with a given join key that is hashed to the bucket –

assuming no conflicts. These tuples are partitioned across the buckets of the other join

key. The minimum is chosen because this is the maximum number of tuples that can

have identical values for both join keys when considered together. However, this is an

overestimate because the exact tuple pairing is lost. This can be seen when comparing the

magnitude of the values in the two 2-D sketches in Figure 3.5. In fact, sketch merging is

likely to always overestimate join cardinality. The only caveat is the interaction between

the ξ functions.

Sketch merging can be generalized to any number of joins by applying the procedure it-

eratively. Moreover, (n+1)-D sketches can be derived incrementally from n-D sketches in

a single step – without the need to start from the basic sketches. This property can be

exploited to speed up the computation and reduce memory usage in bottom-up plan enu-

meration since only the highest dimensional sketches have to be maintained. An even more

important property of sketch merging is that it is consistent in how it handles the multi-

way joins with the same number of predicates. Specifically, all these joins rely on the same

basic sketches and the same assumptions for merging. Thus, it is likely that these estimates

exhibit similar accuracy behavior – the same type of errors for equal join size.

In order to verify this claim, we depict the accuracy of sketch merging for the JOB queries

in Figure 3.6. We use two measures to quantify accuracy. The first is the ratio between the

sketch estimate and the true cardinality for all the enumerated sub-plans having at most

ten joins (Figure 3.6a). We observe that the median ratio is within a factor of 10 for up to

six joins, which is better than any previous practical results [64]. For a larger number of
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Figure 3.6: Accuracy ratio (a) and L1-distance between the estimated sketch permutation
and the correct join order (b).

joins, sketch merging generates underestimates systematically. In the previous results [65],

this behavior occurs starting from 3-way joins.

2-join mk ▷◁ k ci ▷◁ n mk ▷◁ t ci ▷◁ t mk ▷◁ ci

True cardinality 14 486 0.3M 6M 215M

Sketch merging 3K 7.5K 6.4M 14M 397M

3-join mk ▷◁ k ▷◁ t t ▷◁ ci ▷◁ n mk ▷◁ ci ▷◁ k mk ▷◁ ci ▷◁ n mk ▷◁ ci ▷◁ t

True cardinality 11 61 1242 10K 17M

Sketch merging 6.7K 35K 0.7M 1.5M 8.7B

4-join mk ▷◁ ci ▷◁ n ▷◁ k mk ▷◁ ci ▷◁ n ▷◁ t mk ▷◁ ci ▷◁ k ▷◁ t

True cardinality 6 1194 1224

Sketch merging 198 18M 6.5M

Table 3.1: 2-, 3-, and 4-way join L1 permutation distance for JOB 6a.

The second measure is the normalized L1 distance [103] between the permutation generated

by sketch merging and the correct join order. Given n sub-plans of the same size, the correct

order C is obtained by sorting them in increasing order of their cardinality. The permutation

corresponding to sketch merging S is obtained by sorting the sub-plans based on the sketch

estimates. The L1 distance is defined as
∑n

i=1 |Si − Ci|, the sum of the differences between
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the position in the permutation and the correct order. For example, the L1 distance for the

4-way joins in query JOB 6a (Table 3.1) is 0 + 1+ 1 = 2. The normalized L1 distance – we

divide the distance by the number of sub-plans in the query – is depicted in Figure 3.6b.

The closer the distance is to zero, the more similar is the permutation to the correct order.

For reference, we plot the line corresponding to the maximum L1 distance. The join orders

generated by sketch merging have an L1 distance that is significantly below the maximum.

In particular, for 2-way join sub-plans, the distance is almost zero, while for sub-plans with

more joins, the distance is constantly below 10. This confirms that sketch merging selects

orders that are close to optimal most of the time.

3.6 Fast-AGMS Sketch Join Order Enumeration

In this section, we present how merged Fast-AGMS sketches are integrated into a novel

plan enumeration algorithm we introduce in this work. It is important to emphasize that

– due to the proposed generalization to multi-way joins – Fast-AGMS sketches can be

embedded into any enumeration algorithm. According to the investigation of different join

order enumeration algorithms performed in [65, 63], plan enumeration is not the most

critical component of a query optimizer – it has a relatively small impact on plan quality

compared to cardinality estimation accuracy. This confirms the approach taken by many

query optimizers [88, 3] that consider only a plan subset – left- or right-deep plans, which are

a permutation of the query tables. We follow a similar approach and introduce a heuristic

plan enumeration algorithm that allows us to explore the overall impact of merged Fast-

AGMS sketches. Although this algorithm borrows ideas from previous work [104], we argue

that it is original in the presented form.

COMPASS uses the join graph (Figure 3.1) in plan enumeration. This guarantees that only

valid join order plans are considered and cross products are ignored. Plan enumeration be-

comes a graph traversal problem. We design a depth-first search (DFS) traversal algorithm

(Algorithm 1) that enumerates left-deep plans following the edges in the join graph. This

is achieved by considering all the vertices as the source of DFS and backtracking whenever

a complete plan is reached (line 26). The number of plans explored from a source vertex

is controlled by a user-defined parameter max plans (line 25) that plays a similar role to

the timeout used to confine the plan search space in [64]. However, our algorithm does not
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require bottom-up plan enumeration since sketches can be merged and combined in any

order. The max plans parameter also allows the plan search to restart from other sources

in the presence of high-degree vertices and cycles – instead of getting locked on the initial

selections. On a continuum spectrum that has left-deep greedy search at one extreme and

exhaustive enumeration at the other [30], the proposed algorithm can be configured any-

where in-between by controlling the value of parameter max plans. When a single plan is

enumerated from every vertex, we obtain left-deep ordering. This is achieved by selecting

the vertex v that has the smallest cardinality when appended to the current plan in line

35. When all the plans are enumerated from every vertex – set max plans = ∞ – we ob-

tain exhaustive enumeration. The tradeoff between these two alternatives is evident – the

number of explored plans vs. enumeration overhead. Since sketch merging and estimation

are fast operations amenable to parallelization, the overhead is small – see the experiments

in Section 3.7. Thus, max plans values larger than 1 are amenable – max plans is set by

default to 10. This allows for a more comprehensive exploration of the join order space

compared to alternative synopses that incur higher overhead [49, 64].

We design two heuristics that control the order in which the plan space is explored and the

depth of exploring sub-optimal plans. First, we sort the vertices according to a normalized

cost function f(v) that combines vertex cardinality and the number of join predicates the

vertex participates in (line 7). The configurable weights α and β control the relative impor-

tance of these factors. They are set by default to 0.5, which assigns equal weight to each

factor. DFS Traversal is invoked from the source vertices in increasing order of cost f(v).

The intuition is to generate sub-plans with small cardinalities and limited orders as early as

possible in the enumeration – get the left-deep plan corresponding to max plans = 1 first.

The second heuristic is the early pruning of sub-optimal plans (line 17). Whenever the cost

of a sub-plan exceeds the minimum cost of a complete plan, the algorithm backtracks to a

shorter sub-plan that can still become optimal.

Fast-AGMS sketch cardinality estimation is invoked for every enumerated sub-plan (line

14) and to decide the order in which vertices are explored (line 31) – while the call on line

14 can be eliminated, we keep it for clarity. The Fast-AGMS Estimate function performs

sketch merging and estimation only for the joins included in the sub-plan. In order to avoid

recomputation, the estimates are cached. Alternatively, the merged sketches corresponding
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Algorithm 1 Fast-AGMS Sketch Join Order Enumeration

1: Let G = (V,E) be the join graph
2: Let C be the join order set, initially ∅
3: Let p be the number of complete plans,

initially 0
4: Let min cost be the minimum cost, ini-

tially ∞
5: Let max plans be the maximum thresh-

old of plans enumerated from a source
vertex

6: procedure Plan Enumeration(G)
7: Let S be the set of vertices V

sorted in increasing order of func-
tion f that combines table cardi-
nality with the degree of v in G:
f(v) = α · cardinality(v)

max{cardinality(u),∀u∈V } + β ·
deg(v)

max{deg(u),∀u∈V } , where α and β are user-
defined constants

8: for each vertex v ∈ S do
9: p← 0

10: DFS Traversal(G, {v}, 0)
11: end procedure
12: procedure DFS Traversal(G, C,

cost)
13: curr est ← Fast-AGMS Esti-

mate(C)

14: cost← cost+ curr est
15: ▷ Early pruning
16: if cost > min cost then return
17: ▷ Evaluate complete plan
18: if |C| = |V | then
19: if cost < min cost then
20: min cost← cost
21: opt path← C

22: p← p+ 1
23: if p = max plans then abort
24: return
25: ▷ Recursive enumeration in increas-

ing order of the join cardinality estimates
26: Let L be the set of vertices v /∈ C

that are adjacent to a vertex u ∈ C
27: for each vertex v ∈ L do
28: e[v] ← Fast-AGMS Esti-

mate(C ∪ {v})
29: Let L′ be set L sorted in increasing

order of e[v]
30: for each vertex v ∈ L′ do
31: DFS Traversal(G, C ∪ {v},

cost)

32: end procedure

45



to join subsets a table is involved in and the product of the basic sketches corresponding to

a sub-plan can also be cached. They provide different levels of reuse and computation to

generate the estimate. Caching the estimate provides the least reuse while caching merged

sketches and products allows for incremental estimate evaluation. In our implementation,

we settle for a combined solution in which all the estimates, and merged sketches and

products of up to three sketches are cached. This ensures that the estimate corresponding

to any sub-plan is computed only once and allows for incremental extension of the core

sub-plans. It is important to emphasize that the input to Fast-AGMS Estimate is always

represented only by the sketches corresponding to the two-way joins.

We illustrate how the plan enumeration algorithm works for query JOB 6a based on the

join graph in Figure 3.1 and the join cardinality estimates in Table 3.1. The five vertices are

sorted in the order n−k− t−mk−ci based on function f(v) applied on the tables resulting

after selection push-down. mk and ci are the last two because they have the largest degree

and cardinality – and have no selection predicates. k and n come before t because they have

a smaller degree. Although n has an order of magnitude more tuples than k, the predicate

on n is very selective and outputs a smaller cardinality. The degree being the same, n is

first in the order. Thus, DFS Traversal is performed with n as the first source. The first

enumerated plan is n− ci− t−mk− k and its estimated cost is ≈ 18M . While a left-deep

plan search finishes the enumeration at this point, our algorithm backtracks and explores

alternative plans – we set max plans = 2 in this case. The other plan enumerated from n

is n − ci −mk − k − t which has an estimated cost of ≈ 1.5M . This is the optimal plan

from n. Since the number p of explored plans from n reaches the value of max plans, in

the next step, DFS Traversal is performed from k. The first plan enumerated from k is

k −mk − t− ci which is pruned early because its partial cost of ≈ 6.5M is larger than the

complete minimum cost of ≈ 1.5M . The next plan k−mk−ci−n− t has an estimated cost

of only ≈ 0.7M and becomes the optimal plan up to this point – in fact, it is the optimal

plan identified by COMPASS (Figure 3.1). The third – and final – plan considered from k is

k−mk− ci− t. This plan is pruned early. Notice that the enumeration terminates without

reaching the maximum number of allowed plans. The enumeration starting from t does not

proceed beyond its immediate neighbors because of the large cardinality estimates. The

only complete plan enumerated from mk is mk− k− ci− n− t which has the same cost as

the minimal cost plan – they are equivalent. All the plans starting from ci are pruned early.
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The left-deep plan identified by PostgreSQL and DBMS A is k−mk−t−ci−n (Figure 3.1).

Although this plan has a slightly lower cost, it is not enumerated by our algorithm. The

reason is the large sketch estimate for the join k ▷◁ mk ▷◁ t ▷◁ ci which stops the enumeration

early. While this estimate is inaccurate, the more thorough plan space exploration allows

our algorithm to identify an alternative plan with a cost almost identical. We point out

that if we apply the same greedy strategy as in the left-deep plan search using the sketch

estimates in Table 3.1, we would get the same optimal plan as PostgreSQL and DBMS A.

This is because, once we reach the sub-plan k−mk− t, the only alternative is to choose ci

– there is no backtracking. Thus, left-deep search identifies the plan k−mk− t− ci− n by

chance rather than by considering estimates for four-way joins – known to be unreliable for

any type of synopses, not only sketches.

3.7 Empirical Evaluation

We perform an extensive experimental study over the complete JOB benchmark [65] in

order to evaluate the performance of COMPASS and compare it against four other database

query optimizers (Figure 3.1). While our main goal is to determine whether COMPASS is

a complete optimizer – which requires effective integration of cardinality estimation in plan

enumeration – we also perform a detailed comparison between Fast-AGMS sketches and

several state-of-the-art methods for multi-way join cardinality estimation. Moreover, we

assess the impact of the proposed plan enumeration algorithm. To this end, our evaluation

investigates the following questions:

• What is the quality of the query execution plans generated by COMPASS? We measure

plan quality as the total cardinality of the intermediate results since this is independent

of specific execution engine optimizations. Moreover, logical optimizers use cardinality

information as the main criterion to rank plans.

• What is the execution time – or runtime – for the COMPASS plans? Since this is highly

dependent on the underlying query processing engine, we execute the plans in MapD,

PostgreSQL and DBMS A. This allows us to identify the correlation – if there is one –

between plan quality and execution time.

• What is the overall JOB workload runtime? While individual queries allow for localized

analysis, the workload execution time measures the reliability of COMPASS. However,
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due to the high variance in JOB query complexity, this measure alone is not an absolute

indicator of the quality of an optimizer.

• How does COMPASS compare against the pessimistic optimizers that minimize upper

bound cardinality, i.e., over-estimates? Since the highly-optimized pessimistic plans are

shown to be considerably faster than the default PostgreSQL plans [16, 37], we are inter-

ested in where COMPASS stands on this scale.

• What is the optimization overhead incurred by sketch merging in plan enumeration?

While significantly improving upon sketch partitioning, it is not clear if online sketch

merging during push-down selection is fast enough to be practical. We deem COMPASS

to be a practical optimizer if it manages to consistently outperform the other databases

and also incurs a reduced overhead.

• How does the accuracy of Fast-AGMS sketch merging compare against state-of-the-art

methods for multi-way join cardinality estimation? Previous studies [110, 52] include

only AGMS sketches, which are known to be considerably worse than Fast-AGMS for

two-way join estimation [97, 98].

• How does the plan enumeration algorithm driven by sketch merging compare against

standard algorithms? Does the larger search space improve the plan quality compared to

the greedy left-deep enumeration? Alternatively, how close (far) is the proposed algorithm

to exhaustive enumeration?

3.7.1 Experimental Setup

3.7.1.1 Implementation

We implement COMPASS in MapD (version 3.6.1) [2]. The source code is publicly avail-

able in Github [45]. MapD has a highly parallel GPU-accelerated query execution engine.

Relational operators are compiled into CUDA kernels that are executed concurrently across

the SIMD GPU architecture. In order to reduce data movement, MapD coalesces multiple

relational operators into a single CUDA kernel. For joins, this corresponds to a worst-case

optimal join algorithm [87]. The MapD query optimizer, however, is not as sophisticated

as its execution engine. It relies on the Calcite SQL compiler [1] to get a lexicographic – in

the order in which the query is written – query execution plan. The join order is computed

based on a primitive heuristic that sorts the tables in decreasing order of their cardinality.
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Moreover, selection predicates are not considered in the optimization. COMPASS brings a

principled cost-based optimization procedure to the MapD query optimizer.

The COMPASS implementation consists of two modules – a scan operator that integrates

Fast-AGMS sketch construction with push-down selection and a lightweight join order enu-

meration algorithm. For sketch construction, we adapt a publicly available two-way join

Fast-AGMS sketch implementation [94] to the MapD CUDA kernel API. This requires par-

allelizing both the update and the estimation functions. The scan operator filters only

the relevant tuples to be passed to the sketch update. Since separate sketch instances are

created for every GPU block warp, this requires an additional merge stage – currently per-

formed on the CPU. The sketches used throughout the experiments have 11 rows of 1023

buckets, for a total of roughly ≈ 11K integers. Assuming 4-byte integers, the memory us-

age of a sketch is ≈ 45KB. The largest query has 28 joins. With two sketches per join,

the maximum memory usage for a query is ≈ 2.5MB (2 · 28 · 45), which is quite small.

Depending on the parallelization approach, there can be a sketch instance on every GPU

block warp. In our case, the NVIDIA Tesla K80 has 26 block warps, resulting in a total of

≈ 65MB memory usage for the most complex JOB query. The COMPASS plan enumera-

tion algorithm depicted in Algorithm 1 replaces the primitive sorting heuristic from MapD.

It determines the optimal plan based on the sketches computed by the scan operator and

the configurable enumeration logic. Greedy join enumeration is the default algorithm used

throughout experiments.

3.7.1.2 Database Systems & Hardware

The other three databases we use in addition to MapD are PostgreSQL (v.11.5), MonetDB

(v.11.33.11), and the commercial DBMS A. PostgreSQL and DBMS A are used as the

common ground in all the experiments because of their extensibility. Both of them allow

us to inject and execute the join orders computed by the other databases – the CROSS JOIN

statement in PostgreSQL and the hints in DBMS A, respectively. We configure PostgreSQL

with 2GB memory per operator, 32GB buffer cache size, and we force the optimizer to use

dynamic programming in plan enumeration for queries with no more than 18 join predicates.

These settings follow prior art [65]. We use an optimized docker image publicly available

for DBMS A, while for MonetDB we keep the default configuration. All the systems run
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on a Ubuntu 16.04 LTS machine with 56 CPU cores (Intel Xeon E5-2660), 256GB RAM,

HDD storage, and an NVIDIA Tesla K80 GPU.

3.7.1.3 Dataset and Query Workload

We perform the experiments on the IMDB dataset [12] which has been used extensively

to evaluate query optimizers [63] and has become a de-facto standard. The JOB bench-

mark [92] defines 113 queries – grouped into 33 families – over the IMDB dataset. These

queries vary significantly in their complexity, with the simplest one having 4 joins and the

most complex one having 28 joins. This variability manifests itself in execution times that

are highly different. To compensate for this, we split the queries into three groups and

examined each group separately. These groups are based on the number of joins in the

query: group1 contains queries with 4-9 joins; group2, 10-19 joins; and group3, 20-28 joins.

We organize the results according to these groups.

3.7.1.4 Methodology

To quantitatively assess the quality of a join order plan, we use two metrics – intermediate

result cardinality and query execution time. The total cardinality of the intermediate

results quantifies how many tuples are produced by all the joins in the plan – defined in

Equation 2.3. The lower this number is, the better the plan. This is the primary metric used

in logical query optimization to estimate the cost of a plan. However, the actual execution

time depends on specific query processing optimizations. Thus, the execution time is not

entirely correlated with the cardinality.

In order to fairly evaluate the join orders produced by every database, we use both Post-

greSQL and DBMS A as common ground. First, we run the queries in each database and

collect their join plans. Then, we inject these plans into PostgreSQL and DBMS A, respec-

tively, and measure their runtime. Moreover, we execute all the subqueries in the plans

to compute the intermediate cardinality. Notice that every system generates its plan inde-

pendently based on its own algorithm and statistics. PostgreSQL and DBMS A serve as

common execution engines for all the plans. This procedure allows for a holistic comparison

of the query optimizers – independent of the execution engine.
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3.7.2 Results

We present the results of our extensive experimental evaluation, organized based on the

investigation questions defined at the beginning of this section. The answers to the questions

are summarized after the presentation of the results.
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Figure 3.7: Cardinality (in PostgreSQL) as a normalized ratio to COMPASS.
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3.7.2.1 Query-level Analysis

In this experiment, we compare COMPASS against every other system for each query in

the JOB benchmark. We measure both the intermediate result cardinality, as well as the

execution time – taken as the median value over 9 runs. The execution plans are obtained

by performing the query in each system. These are subsequently injected in PostgreSQL

and DBMS A, and executed on the same execution engine. The cardinalities are generated

by executing all the subqueries in the plan in the corresponding order – which is done in

PostgreSQL. This information is extracted from the individual plans. Figure 3.7 and 3.8

depict the results normalized to COMPASS. All the values are divided by the COMPASS

results – represented as a horizontal dotted line at position 1 on the y-axis. A point below

this line means that the other system has a better result, otherwise, COMPASS performs

better. The results are grouped by the number of joins in the JOB queries (x-axis) and

separated by two dotted vertical lines.

MapD. MapD consistently produces execution plans that have cardinality two orders of

magnitude or larger than COMPASS. With a few exceptions, all MapD plans are worse.

There is one such query – the discontinuity going to zero in the figure – that indeed has

cardinality zero and MapD correctly detects it. However, this is only a matter of chance

because the first join in the plan – between the largest tables in the query – does not produce

any results. The reason for this poor plan quality is the lack of statistics in the MapD query

optimizer. Decisions are taken solely based on the full table cardinality – the number of

tuples before any selection predicate. Therefore, the resulting plans are highly sub-optimal.

While runtime follows cardinality – with many results 100X slower than COMPASS – the

correlation between the two is not complete. There are several queries for which the MapD

cardinality is considerably worse, while the execution time is similar to or better than

COMPASS. This is the case for some of the complex queries with 20 or more joins executed

in PostgreSQL. In this situation, MapD chooses a large well-connected table early in the

plan. This allows it to check many join predicates at the beginning and prune a large

number of tuples. On the other hand, COMPASS – and the other systems – start from

small tables on the periphery of the join graph and make their way to the highly connected

tables in the center. This strategy produces many staged intermediate results that increase

the runtime. While the runtime trend across PgSQL and DBMS A is similar, we observe

52



that queries with 20 or more joins are handled better by DBMS A, while queries with less

than 20 joins are faster in PgSQL. This is an indication that DBMS A is better optimized

for complex queries.
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Figure 3.8: Runtime (in PostgreSQL and DBMS A) as a normalized ratio to COMPASS.

MonetDB. The trend of the cardinality results in MonetDB follows the one in MapD.

While the majority of the results are worse than COMPASS, the ratio is smaller than for

MapD. This improvement is due to the more advanced rule-based MonetDB query optimizer
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with limited statistics support. However, compared to the full sketch-based COMPASS,

the MonetDB cardinalities are considerably worse – many times an order of magnitude or

more. Interestingly enough, though, the corresponding query runtimes fare much better

than predicted by the cardinality. With few exceptions, they are always within a factor of

10 – more often less – off of COMPASS. Moreover, they are independent of query complexity

and do not exhibit spikes. Overall, the MonetDB runtimes are the most consistent with

COMPASS across both PgSQL and DBMS A. This is because the MonetDB query optimizer

finds plans that are executed similarly to COMPASS – albeit they have higher cardinality.

PostgreSQL. The cardinality results for PostgreSQL – PgSQL in the figure – are the

closest to COMPASS among all the systems. This is entirely due to the advanced statis-

tics the PostgreSQL optimizer employs. While mildly better than COMPASS for several

queries, PostgreSQL still exhibits spikes that go beyond a factor of 1000X. The reason is

the failure to detect correlations between join attributes. Since the plans are optimized

for the PostgreSQL execution engine in this case, we expect the runtimes to be optimal.

This is indeed the case for queries with less than 20 joins. However, for 20 or more joins,

the PostgreSQL runtime is considerably worse compared to COMPASS. This is where the

PostgreSQL optimizer drops dynamic programming in plan search. With a few exceptions

where there are dramatic spikes that go beyond 100X, the PgSQL plans executed in DBMS

A perform as well as or better than in PostgreSQL itself. This is especially true for com-

plex queries having 20 or more joins. Overall, COMPASS generates more stable plans than

PostgreSQL. Although not specifically optimized for it, PostgreSQL executes them as fast

– or faster – than its own plans.

DBMS A. The commercial DBMS A produces plans that have consistently higher car-

dinality than COMPASS across all the JOB queries. This clearly shows that the employed

statistics do a poor job of estimating the join cardinality. However, when executed in

PostgreSQL, these plans have unexpectedly good runtimes – except for queries with more

than 20 joins. This is likely due to the more complex cost function that considers other

parameters beyond cardinality in determining the optimal plan such as in Equation 2.4.

Interestingly enough, when executing its own plans, DBMS A does not fare better than

PostgreSQL, except for the complex queries with more than 20 joins. In fact, DBMS A has
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a worse runtime for queries with 10 to 20 joins. The runtimes of DBMS A and COMPASS

are close to each other and always within a factor of 10X. This confirms that the COMPASS

plans are also optimal for DBMS A.
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Figure 3.9: Distribution of winning queries across the databases in terms of intermediate
cardinality. The databases with the lowest cardinality are the winners. The total (149) is
larger than 113 – the number of queries in JOB – because there are multiple queries for
which more than one database is the winner.

3.7.2.2 Aggregated Workload Statistics

We aggregate the query-level results (Figure 3.7 and 3.8) in order to obtain an overall view

of the relative performance of the compared systems. These aggregated results are depicted

in Figure 3.9 and 3.10, respectively. They give the total number of queries for which a

database performs the best, as well as the distribution as a function of the number of joins

in the query. In the case of cardinality, a database is counted if it achieves the minimum

cardinality among all the databases. For runtime, a database is counted if it comes within

10% of the fastest runtime – computed as the median of 9 runs. This bound compensates

for variations in the environment.

Based on Figure 3.9a, COMPASS achieves the plan with the minimum cardinality for 63 out

of the 113 JOB queries. This represents approximately 56% of the workload. PostgreSQL

(PgSQL) comes in second place with 39 queries. The other three databases obtain the best

cardinality in less than 20% of the queries each, with MapD winning only 7 queries. The

careful reader notices that the sum of the winning queries is larger than 113. This is because

there are queries for which two or more systems achieve the same best cardinality – case

in which we count each of them. The distribution of the winning queries in terms of the
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Figure 3.10: Distribution of winning queries across the databases in terms of execution
time when the optimal plans are plugged-in and executed in PostgreSQL and DBMS A.
We obtain the optimal plan for every database from its query optimizer and execute it in
PostgreSQL and DBMS A. All the databases within 10% of the fastest execution time are
considered winners. Thus, the total (250) is larger than 113 – the number of queries in
JOB.

number of joins is depicted in Figure 3.9b. While for the simpler queries with less than 10

joins all the systems perform similarly, COMPASS clearly dominates the others when the

complexity increases. PostgreSQL is the only other database that performs sufficiently well,

however, only for queries with a moderate number of joins. These results prove the benefit

of using statistics in query optimization, especially for complicated queries. While the

PostgreSQL statistics perform well for simple to moderate queries, COMPASS sketches are

less sensitive to the number of joins in the query – they provide more consistent estimates.

Moreover, COMPASS is not heavily impacted by the greedy join enumeration algorithm.

When PostgreSQL switches from dynamic programming – more than 18 joins – it fails to

find any best plan.

The aggregated runtime results in PgSQL and DBMS A are depicted in Figure 3.10a

and 3.10b. They follow closely the corresponding cardinality results – with one exception.

The runtime for the commercial DBMS A is much better than its cardinalities anticipate

– DBMS A has the best runtime for 63 and 74 queries, while its cardinality is best only

for 21 queries. The reasons are outlined when the individual query results are discussed.

Additionally, DBMS A benefits from the bound on runtime since it often comes within

the fastest system. Overall, COMPASS achieves the fastest runtime for 82 (PgSQL) and

81 (DBMS A) out of the 113 JOB queries – 72% of the workload – which is more than
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any other database. This proves the superiority of the identified plans and confirms the

correlation between cardinality and runtime. The correlation manifests more clearly for

queries with a larger number of joins because of the higher runtime, which makes ties more

unlikely. Moreover, the correlation is stronger for PgSQL than for DBMS A since the num-

ber of winning queries is higher in DBMS A for all systems except COMPASS. A careful

reader observes that the runtime results are higher than the cardinality results for all the

systems – and larger than 113 when summed up. This is because it is more common to

have close-enough runtimes than it is to have the same cardinality – multiple counting is

more frequent. Based on these results, we conclude that COMPASS is the optimizer with

the most consistent and resilient plans on the JOB benchmark.

3.7.2.3 Total Workload Runtime

The runtimes for the complete JOB workload execution in PostgreSQL and DBMS A using

the plans generated by each database are included in Table 3.2. Given the high variance

among queries, these numbers have to be taken with a grain of salt since they may be

dominated by a few complex queries with a large number of joins. Nonetheless, we follow

prior art [16, 108] and include them together with the aggregated workload statistics. As

expected, COMPASS has the overall fastest runtime. Somewhat unexpectedly, MonetDB

comes in second for the PgSQL execution with a runtime that is almost twice as large as

that of COMPASS. The reason is that MonetDB does not fail dramatically for any of the

JOB queries. While it performs consistently slower, it never derails on heavily sub-optimal

plans. The runtime for PgSQL and DBMS A in PgSQL is dominated by the long-running

queries with 20 or more joins, which pull the total time to more than 8X and 5X that of

COMPASS. These outliers are sufficient to skew the overall runtime. In the case of MapD,

there are 30 queries that do not finish execution even after a timeout of 20 minutes per

query. Thus, the very large runtime. When the workload is executed in DBMS A, all

systems except DBMS A incur an increase in runtime. The increase is most significant for

COMPASS as it stands at 50% more than in PgSQL. On the other hand, DBMS A has a

reduction of more than 50% of its PgSQL runtime. Nonetheless, COMPASS still has the

overall fastest runtime, which is 35% faster than DBMS A.
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Database
Runtime (minutes) Ratio to COMPASS
PgSQL DBMS A PgSQL DBMS A

MapD >300 >300 >23 >13
MonetDB 27.52 35.71 2.19 1.65
PgSQL 103.00 244.31 8.20 11.28
DBMS A 70.72 29.22 5.63 1.35
COMPASS 12.56 21.66 1.00 1.00

Table 3.2: JOB benchmark runtime in PgSQL and DBMS A.

3.7.2.4 Comparison with Pessimistic Plans

We compare the plans produced by COMPASS against the pessimistic plans generated

in [37]. The pessimistic plans are determined by minimizing the worst-case cardinality

estimates. Thus, they always produce overestimates of the true cardinality. This is in

contrast to COMPASS, which generates both over- and under-estimates. The pessimistic

plans for all the JOB queries in PostgreSQL are available at [36]. They are generated by

rewriting the SQL statements such that selection predicates and one-to-many – key/foreign-

key – joins are evaluated before the many-to-many joins. Moreover, ordering is performed

separately for one-to-many and many-to-many joins. This partitioning of the search space

results in a massive reduction of the number of considered join orders. A similar idea is

employed in [16], where only at most 2-D partitioned sketches are built.
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Figure 3.11: Runtime of pessimistic plans (in PostgreSQL) as a normalized ratio to COM-
PASS.

The comparison between the runtime of the COMPASS plans and that of the pessimistic

plans executed in PostgreSQL is depicted in Figure 3.11. The results are normalized to
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the runtime of the COMPASS plans. We observe that the difference between these plans

is smaller than for the other systems – an indication that the plans have closer runtime.

There are queries for which COMPASS generates faster plans and queries for which the

pessimistic plans are better. Overall, there is a slight advantage for COMPASS since the

curve is above the horizontal 1-axis more often. Moreover, the gap is higher for COMPASS,

reaching a factor of almost 10X for certain queries. In terms of number of joins, the best

plans are almost evenly distributed among the two methods. Table 3.3 summarizes the

individual query results from Figure 3.11. The timing results are higher than previously

published [37] because no indexes are defined over the key attributes. COMPASS achieves

a slightly better performance both in the number of queries won – 88 vs. 83 – as well as

in the cumulative runtime – COMPASS is faster by approximately 25 seconds. The main

reason for the better performance of pessimistic plans – compared to other systems – is

the separate optimization of the joins. The partition of the join graph based on the many-

to-many joins and their independent ordering reduces the multi-way join estimation error

significantly. The separate evaluation of the one-to-many joins in every partition reduces

the error further. Moreover, the estimation for these simpler joins is more accurate. While

partitioning the join order space reduces estimation complexity, it also ignores orderings

that can result in better plans. For example, the cardinality of a many-to-many join can be

smaller than that of a one-to-many join. Pessimistic plans ignore these interleaved orders.

Given the holistic approach that considers the complete join graph, the COMPASS results

are quite impressive given the size of the multi-way joins. This is possible because of the

good accuracy – and consistency – of the merged Fast-AGMS sketches. We conjecture that

COMPASS can be improved by adopting a similar tiered approach to join ordering.

Query plans Queries won Runtime (seconds) Ratio to COMPASS

Pessimistic 83 777.10 1.03
COMPASS 88 753.86 1.00

Table 3.3: JOB benchmark execution for pessimistic [16, 37] and COMPASS plans in Post-
greSQL.

3.7.2.5 Runtime in MapD

In this experiment, we evaluate the impact COMPASS has on the MapD database. For

this, we replace the default MapD query optimizer with COMPASS and execute the JOB
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Figure 3.12: Query runtime in MapD with the COMPASS query optimizer.

benchmark in both scenarios. We measure the end-to-end query runtime, as well as only the

query execution time without optimization – these are the same in MapD. We report the

median over 9 runs. Figure 3.12 depicts the results for every query. We observe that MapD

outperforms COMPASS for simple and some moderate queries. However, the differences

are not significant, as opposed to the difference for more complex queries. This may be

surprising given the primitive MapD query optimizer. However, its execution engine is

quite different from PostgreSQL. It is highly optimized for parallel in-memory processing.

This alleviates the need for careful optimization of simple queries. For more complicated

queries, though, sketch-based optimization pays off as COMPASS finds considerably better

plans. In fact, MapD fails on 8 queries and times out after 30 minutes on 8 other queries.

COMPASS finishes all the queries and is faster than MapD for 74 of them, which represents

65% of the workload. The total runtime for the 97 queries MapD successfully runs is included

in Table 3.4. COMPASS has a runtime of 6.21 minutes to MapD’s 47.64 – which is a net

speedup of 7.67X. This proves both that sketches can be effectively computed at runtime,

as well as their benefit to generate better query plans, which result in faster execution. The

last point is clear when we compare only the execution time, without optimization overhead

– less than ten COMPASS plans have execution times larger than MapD.

3.7.2.6 COMPASS Overhead

We measure the optimization overhead of building Fast-AGMS sketches, as well as that of

sketch-based plan enumeration, for the COMPASS MapD implementation. Sketch building

can be performed either on GPU or CPU while merging and plan enumeration are performed
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(b) Optimization overhead on GPU as a percentage from the total runtime.
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(c) Optimization overhead on GPU and CPU.

Figure 3.13: The overhead of the COMPASS optimizer implemented in MapD.
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on CPU. The results are depicted in Figure 3.13. Figure 3.13a and 3.13b show the absolute

and relative overhead, respectively, for the GPU execution. The overhead in queries with

up to 9 joins is at most 15% – or at most 420 ms. At first glance, the overhead may seem

significant. However, this time is not spent in vain since the plans selected by COMPASS are

quite fast even with the overhead included. For these simpler queries, there is no significant

difference between plans. Thus, a primitive optimizer as in MapD is sufficient. The overhead

for the rest of the workload is at most 17% – or 500 ms. This overhead becomes negligible

in the overall execution time. As a result, COMPASS largely outperforms the other four

databases. Figure 3.13c shows that – as expected – sketch building is more efficient on

GPU than on CPU due to the higher degree of parallelism. In both cases, the optimization

overhead increases with the number of joins in the query. For GPU, the overhead is in

the order of hundreds of milliseconds (ms), with a maximum of around 500 ms for certain

complex queries. For the CPU, the overhead is always below 5 seconds, which is relatively

small for queries that take minutes to run. Given that this is only a prototype, we believe

that the sketch overhead can be further reduced with more optimized code.

Database Queries won Runtime (minutes) Ratio to COMPASS

MapD 42 47.64 7.67
COMPASS 74 6.21 1.00

Table 3.4: JOB benchmark execution in MapD.

3.7.2.7 Comparison with State-of-the-art Synopses for Join Cardinality Esti-

mation

We compare COMPASS against seven methods for join cardinality estimation following the

study presented in [52]. These methods are PostgreSQL, AGMS sketches [9, 8], random

table samples (TS), correlated samples [110], join samples (JS), KDE with table samples

(TS+KDE), and KDE with join samples (JS+KDE) [52]. We perform all the experiments

for join cardinality estimation on three types of JOB queries over at most five tables –

the simplest in the benchmark – as presented in [52]. We use the publicly available code,

workload, and data from [51]. The results are depicted in Figure 3.14. We observe that the

COMPASS accuracy matches that of the best estimators closely for all the queries. The only

two estimators that always outperform COMPASS are based on join samples (Join Sample
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and JS+KDE). These types of estimators require indexes on all possible join attribute com-

binations, thus, they have a high set-up and maintenance cost. Moreover, the KDE models

are trained on query samples with the same set of selection and join predicates, i.e., the

same type of training queries with different constant values. In addition, JS+KDE requires

training for every join size. Thus, it is not clear what the behavior of the KDE estimators

on different types of queries – the sub-queries enumerated by the optimizer, in particu-

lar. Notice that the results also include sketches (AGMS). However, these are the AGMS

sketches, not the Fast-AGMS sketches on which COMPASS is built. Given the detailed

sketch comparison in [97, 98], the difference between the two is expected. Since we perform

a thorough query plan evaluation with PostgreSQL (Postgres), the comparison in terms of

accuracy is interesting. While COMPASS and Postgres have very similar accuracy – with

an advantage for COMPASS – our holistic results prove that COMPASS generates better

query plans both in terms of quality and execution time. This proves that other factors

beyond single query accuracy – such as sub-plan enumeration and estimator composition

– have to be considered by the optimizer. Overall, the comparison in terms of accuracy is

limited to a series of relatively simple hand-picked queries with at most four joins – nothing

close to the full JOB benchmark. While useful, it fails to confirm the practicality of the

considered approaches in a complete query optimizer, which COMPASS does.

3.7.2.8 Plan Enumeration Analysis

We assess the performance of the join order enumeration algorithm by varying the search

space. We set four different dimensions in the left-deep search space–greedy, full-greedy,

limit-10, and exhaustive. The greedy solution traverses the join graph from a single source

and greedily adds nodes relying on the sketch estimations. The source node is chosen as

the smallest table from the two-way join that has the smallest cardinality estimation. full-

greedy executes the greedy traversal from every node in the join graph. The join order with

the smallest overall estimation is selected. limit-10 enhances full-greedy with backtracking.

Rather than stopping after the first greedy plan is generated, limit-10 traverses additional

paths in the join graph until the first 10 join orders are generated, i.e., max plans is set to 10

in Algorithm 1. Lastly, exhaustive traverses the entire search space to find the optimal plan,

i.e., max plans is set to ∞ in Algorithm 1. Sketch merging and estimation are arithmetic

operations amenable to parallelization. Thus, the traversal algorithm quickly explores even
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the large spaces enumerated by exhaustive. To further speed up the enumeration phase,

two practical heuristics are applied in Algorithm 1 (see Section 3.6).
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Figure 3.14: Comparison with state-of-the-art techniques for cardinality estimation.

We collect the join order corresponding to every approach for all the JOB queries and

compare their intermediate cardinality and runtime. The results are depicted in Figure 3.15.

Intuitively, we expect that the larger the search space is, the higher the odds of finding a

better join order plan. However, as discussed in [65, 63], the plan enumeration algorithm

has a relatively small impact on plan quality. Our results confirm this hypothesis. We

observe that no particular approach is significantly better for the proposed sketch-driven

traversal algorithm. In larger search spaces, sub-optimal plans are pruned by the early

stopping criteria since the overall cardinality estimates exceed the current minimum cost.

The plan search space is not only limited by the join graph. The search space may shrink

because of the early stopping criteria that compare the overall cardinality estimates for the

sub-queries. For example, it is possible the execution plans for greedy and full-greedy are

the same, although full-greedy searches from each node separately. The reason is that all

the other execution plans selected by full-greedy may have a larger overall cost. In fact, even
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the sub-queries may have already a larger cost than the plan selected by greedy solution –

thus the enumeration algorithm backtracks. As a result, there is no particular preference

for the search space size since the cardinality differences are not significant in Figure 3.15

(upper part of the figure). Although there are some outliers – spikes in the figure – they

are mostly selected by full-greedy, limit-10, and exhaustive. This behavior is caused by the

over- and under-estimates. Also, there is no particular trend when comparing the runtime

corresponding to the different plans – except for a few outliers in exhaustive. Moreover,

there is no correlation between cardinality and runtime results for the outliers. We believe

the plan differences chosen by these four different solutions are not significantly different in

order to notice changes in terms of the runtime. The results confirm that the plan chosen

by greedy is not necessarily slow and, thus, we conclude that COMPASSS is not heavily

impacted by the join enumeration algorithm. In fact, COMPASS outperforms the other

systems, especially for complex queries with a large number of joins.
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Figure 3.15: The effect of plan enumeration algorithms on the cardinality and runtime of
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plan determined by the greedy algorithm. Values above the “1” horizontal line are worse
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3.7.3 Summary

Based on the presented results, we can answer the questions raised at the beginning of the

experimental section:

• COMPASS generates query plans with the lowest cardinality among all the considered

systems for 56% of the queries in the workload. This percentage increases to 65% for

complicated queries with 10 or more joins.

• The better plans identified by COMPASS translate into faster query runtimes in Post-

greSQL, DBMS A, and MapD. Out of the 113 JOB queries, COMPASS achieves the

fastest runtime for more than 80 in PostgreSQL and DBMS A, and 74 in MapD. This

confirms the correlation between cardinality and runtime. DBMS A is the only database

that does not satisfy this correlation, which can be problematic for a user.

• COMPASS and MonetDB are the only databases that perform all the JOB queries with-

out serious hiccups both in PostgreSQL and DBMS A. The other systems have several

queries for which the runtime “explodes”. This results in a significantly higher workload

runtime. On the PostgreSQL engine, COMPASS outperforms MonetDB by a factor of

2.19X, while on DBMS A by 1.65X. DBMS A optimizes queries specifically for its en-

gine, resulting in a significant reduction in runtime compared to PostgreSQL. However,

COMPASS is faster by a factor of 1.35X. Moreover, COMPASS is at least 7.67X faster

than MapD.

• Even though COMPASS treats the complete join graph in order – which results in a

much larger search space – it manages to outperform the pessimistic optimizers – which

perform join ordering in a tiered approach. While only a 3% reduction in the workload

runtime, this improvement is significant because COMPASS achieves a faster runtime

and higher speedup for more queries.

• The overhead incurred by the COMPASS optimizer in MapD is less than 500 milliseconds

on GPU and less than 5 seconds on CPU. While this may be too large for simple queries,

it results in faster execution for more than 91% of the queries.

• The accuracy achieved by COMPASS matches – and often surpasses – that of most of

the state-of-the-art methods for join cardinality estimation. The only methods that have

better accuracy are based on join samples, which have never been fully integrated into a

query optimizer because of their complexity. If we consider only methods implemented

in existent query optimizers, COMPASS has better overall accuracy.
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• The COMPASS plan enumeration algorithm can be customized to perform the search for

the optimal join order from a limited greedy to an exhaustive left-deep tree. However,

the difference between these alternatives is not significant enough to compensate for their

gap in overhead. Thus, the fast greedy join order enumeration is sufficient to achieve the

optimal COMPASS plans.

3.8 Conclusions

We introduce the online sketch-based COMPASS query optimizer, which uses exclusively

Fast-AGMS sketches for cardinality estimation and plan enumeration. Fast-AGMS sketches

are computed online by leveraging the optimized parallel execution engine in modern

databases. Selection predicates and sketch updates are pushed-down and evaluated on-

line during query optimization. Plan enumeration is performed over the query join graph

by incrementally composing the corresponding sketches. We prototype COMPASS in MapD

and perform extensive experiments over the complete JOB benchmark. The results prove

the reduced overhead COMPASS incurs while generating better execution plans than four

other database systems – COMPASS outperforms four other databases on all the considered

metrics over the JOB benchmark.
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Chapter 4

Spanning Tree-based Query Plan

Enumeration

Plan enumeration is a critical component of query optimization. To find an optimal query

plan, conventional query optimizer architectures employ either exhaustive or heuristic plan

enumeration strategies. In the case of large queries, some architectures offer flexibility by

switching from exhaustive to heuristic strategy [88, 86]. This implies a trade-off between

plan optimality and optimization time. Exhaustive strategy requires enumerating every

possible query plan to ensure the selection of the optimal one, yet this thoroughness results

in considerable optimization time. On the other hand, heuristic strategies enumerate a

single plan which may not be optimal but offers faster optimization time. Particularly,

deterministic heuristic strategies, such as greedy algorithms, tend to get trapped in local

optima – consistently yielding suboptimal plans. Shifting between these two extremes,

exhaustive and heuristic strategies, can lead to a significant change – increase or decrease in

optimizer performance. As an intermediate strategy, plan enumeration can enumerate more

than a single query plan by introducing randomness in selecting query plans to diversify the

set of query plans [104, 43, 106, 88, 107, 44]. This increases the chances to locate superior

query plans thus reducing the gap between plan optimality and optimization time. While

randomized heuristic strategy requires an additional optimization time, by maintaining a

polynomial time complexity, this strategy ensures its feasibility for practical use. However,

the optimizer performance becomes less predictable and interpretable due to the random

68



behavior of the search space exploration.

In this work, we define query optimization as the problem of finding spanning trees with

low costs. The entire search for optimal query plans is defined in terms of join graph edges,

thus naturally avoiding cross-joins. Our objective is to identify an ordered sequence of edges

that span all vertices in the join graph while minimizing the total sum of edge weights. This

formulation leverages the extensive application of spanning tree algorithms in query opti-

mization. Building on this foundation, we introduce Ensemble Spanning Tree Enumeration

(ESTE) as a novel, intermediate strategy for plan enumeration. ESTE leverages a set of

fast, spanning tree-based algorithms to enumerate multiple spanning trees with low costs,

each exploring different areas of the search space. Within ESTE, we implement two classic

spanning tree algorithms, Prim’s and Kruskal’s, to enhance the robustness of the query

optimizer. ESTE enables a systematic and extensive exploration of distinct areas within

the search space, thereby improving the quality of query plan generation. Furthermore, the

flexibility of ESTE allows for the incorporation of additional spanning tree algorithms in

response to changes in data and workload, thus maintaining robustness and even enhancing

the performance of the query optimizer. We believe that our approach offers a more cost-

effective way to sustain optimizer robustness, favoring the integration of new algorithms

over a complete change and redevelopment of the optimizer for different plan enumeration

strategies. We outline the key technical contributions of our work and highlight how it

diverges from and builds upon prior work as follows:

• We present a novel perspective on query optimization by framing it as a problem of

finding spanning trees with low costs. Unlike in the MVP and GreedyJoinOrdering-

3 [62, 77], unnecessary joins and cross-joins are naturally avoided by representing tables

as vertices and operating over existing edges in the join graph. Unlike in directed plan

graph representations [83, 31], the search space does not increase due to the simplicity of

the join graph representation.

• In this work, we adapt both Prim’s and Kruskal’s algorithms to account for changes in

edge weights as spanning trees are built. Unlike in IK-KBZ and GreedyJoinOrdering-

3 [58, 77], the resulting spanning tree is not restricted to left-deep trees.

• Unlike in previous work [58, 27, 77], we utilize a cost function that considers physical

operators such as multiple join algorithms and scan operators [65, 63]. Thereby the
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resulting spanning tree is a physical plan rather than a logical plan.

• We introduce the Ensemble Spanning Tree Enumeration (ESTE) strategy, a novel ap-

proach that systematically harnesses the unique plan search space exploration methods

inherent to Prim’s and Kruskal’s algorithms. Unlike in the GOO [27], multiple query

plans are enumerated. Unlike in the GreedyJoinOrdering-3 [77], multiple enumeration

algorithms pass over the join graph. ESTE explores the search space by employing a

stack of spanning tree algorithms to provide robustness to query optimization.

• We evaluate query plans produced by the ESTE strategy and compare to an exhaustive

enumeration and GOO [27], which is recognized as one of the top-performing heuristic

methods in recent research [65, 63, 86, 31].

• We examine the performance behavior of ESTE in the presence of cardinality estimation

errors. As expected, we observe a decline in efficiency across all enumeration methods,

including exhaustive enumeration. The results exhibit a high performance of ESTE,

comparable to those achieved through exhaustive enumeration, while also maintaining a

low optimization time.

4.1 Enumeration Strategies

In this section, we outline existing common strategies and describe the trade-off between

discovering the optimal plan and preserving computational efficacy [61, 104]. These strate-

gies are discussed in terms of their plan search space coverage, the quality of the selected

plan, and computational overhead. Figure 4.1 shows the search space coverage by different

enumeration strategies. The x-axis presents enumeration strategies starting from heuristi-

cal strategy (faster search time) to exhaustive strategy (preserved plan optimality). The

y-axis describes the search space coverage. We use the area of rectangles of different sizes

to describe the correlation between the two axes. Note that there is no position difference

on the y-axis for the enumeration algorithms within the same rectangle. The largest solid

rectangle covers all possible query plans including the plans containing cross-joins. The sec-

ond solid rectangle covers the rest of the tree shapes including bushy, left-deep, right-deep,

and zig-zag trees.
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Figure 4.1: Enumeration strategies and their ability to cover the plan search space.

4.1.1 Query Plan Optimality

A straightforward and most expensive approach in plan enumeration is to generate all pos-

sible edge arrangements and evaluate them based on a cost model. This strategy is shown

as the largest rectangle in Figure 4.1. This approach guarantees the optimality of the se-

lected plan. However, due to the combinatorial explosion of possible query plans, this naive

enumeration approach becomes computationally prohibitive for queries involving a large

number of relations. A solution to apply dynamic programming is initially put forth in the

context of plan enumeration in [100, 109]. Dynamic programming offers enumerating of

possible trees in a bottom-up fashion – from smaller trees to larger trees. At each step, it

evaluates the cost of the different plans using a cost model and stores the least costly plan

for each subquery. Selinger et al. [100] proposed a solution that restricts the search space to

left-deep trees. Vance and Maier [109] presented an algorithm to cover bushy trees as well

as cross-join search space. These optimizations target the largest rectangle in Figure 4.1.

However, these solutions do not fully utilize the information available in the join graph.

The issue of not fully utilizing the information contained in the join graph is addressed

by introducing graph-based dynamic programming [79, 80]. Alternatively, top-down vari-

ations are proposed while maintaining similar efficiency and proposing cost-based pruning
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mechanisms [21, 28]. Illustrated within the second largest rectangle in Figure 4.1, these

enumeration methods, based on graph-based dynamic programming, provide optimizations

to circumvent unnecessary enumeration of subplans which are deemed suboptimal, thus

further ensuring effectiveness. While these methods enhance the search overhead and guar-

antee polynomial-time performance on chain queries, their efficacy may be constrained when

applied to queries with a large number of relations.

4.1.2 Optimization Time

Deterministic heuristics. In large queries, even with integrated graph-based dynamic

programming and pruning optimizations, exhaustive enumeration can still be computation-

ally demanding. Therefore, enumeration strategies based on deterministic heuristics, such

as greedy and rule-based, are employed. These strategies utilize general principles to poten-

tially select optimal plans, though they do not assure query plan optimality [106, 104, 27,

15, 85, 56]. In exchange for sacrificing the certainty of achieving an optimal solution, de-

terministic heuristics provide predictability, simplicity, and fast optimization time. These

strategies are depicted in the smallest rectangle in Figure 4.1. Deterministic heuristics

invariably generate a single plan for a given query.

SELECT COUNT(*) 
FROM keyword k, movie_keyword mk, title t, 
     company_name cn, movie_companies mc
WHERE k.keyword = 'character-name-in-title' AND cn.country_code = '[de]' 
    AND mk.keyword_id = k.id AND t.id = mk.movie_id AND t.id = mc.movie_id 
    AND mk.movie_id = mc.movie_id AND mc.company_id = cn.id

movie_keyword 
mk

movie_companies
mc 

title 
t

company_name
cn

keyword 
k

join graph

e1 e2 e3

e4

e5

Figure 4.2: SQL statement for JOB query 2a and its join graph. The SQL statement has
2 point selection predicates and 5 join predicates connecting 5 tables. Further, the query
is illustrated as an undirected join graph G(V,E) in which every table is represented as a
vertex v connected by edges e for every join predicate.

The greedy plan enumeration strategy operates by progressively constructing a binary tree.

This method selects the next joining relation with the minimum cost at each join level

with the hope that these locally optimal decisions can lead to the global optimal plan. In
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Figure 4.3, the middle and rightmost trees are built greedily for query 2a illustrated in

Figure 4.2. For example, in the case of the rightmost tree, the edge that results in the

subplan with the minimum cost is selected at each join. We start with the 2-way join

Pmc⋊⋉cn having the minimum cost C(Pmc⋊⋉cn, Y ) = 1M out of all 2-way joins. Next, we

select the 3-way join Pmc⋊⋉cn⋊⋉t having the minimum cost C(Pmc⋊⋉cn⋊⋉t, Y ) = 0.3M out of all

3-way joins that can be constructed from Pmc⋊⋉cn. We repeat this procedure until we cover

all the vertices in the join graph, making sure that we always maintain a single connected

component without cycles. The pursuit of global optimality is compromised as decisions

are made based on local conditions – choosing the next join operation solely based on its

standalone cost, thus disregarding past decisions. Conditioning the available relations at

each join level is based on prior decisions thus further diminishing the probability of finding

an optimal query plan. Figure 4.3 illustrates this issue. The exhaustive search finds the

optimal plan Popt based on reaching all distinct 14 subplans, computing all distinct 32 join

costs and comparing all possible 72 query plans – excluding the cross-joins. However, for

the plans Pkru and Ppri, 3-way joins Pmk⋊⋉k⋊⋉mc, Pmk⋊⋉k⋊⋉t, Pmk⋊⋉t⋊⋉mc are never considered.

In 4-way joins, Pmk⋊⋉k⋊⋉mc⋊⋉t and Pmk⋊⋉k⋊⋉mc⋊⋉cn are also never reached. The former 4-way join

has significantly less cost and intermediate table cardinality. As a result, the greedy query

plans are suboptimal compared to their exhaustive counterparts. Their overall plan costs

are C(Popt, Y ) = 1.6M , C(Pkru, Y ) = 2.4M and C(Ppri, Y ) = 4.6M , respectively. These

cost differences are expected given the smaller number of subplans, join costs and full plans

considered by the greedy algorithms – 9, 10 and 2, respectively.
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Figure 4.3: Three query plans (Popt, Pkru and Ppri) for query 2a selected using 3 different
query plan enumeration algorithms (Exhaustive, Kruskal, and Prim) along with their costs
C computed using true cardinalities Y .

Randomized heuristics. Deterministic behavior of the heuristics can be trapped in local

optima and may not always find the optimal query plan. Randomized heuristics, on the
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other hand, introduce an element of randomness into the decision-making process [104,

43, 106, 88, 107, 44]. Randomized heuristics such as genetic algorithms [88], simulated

annealing [44], iterative improvement [107] and learning-based methods [72, 108, 121], offer

ability to randomly explore different areas of a given search space thus increasing the chances

to find better query plans. By initiating from diverse starting points or considering a larger

number of plans, these methods strive to identify the optimal plan. Although this might

necessitate a longer search time, the process remains within polynomial time complexity,

thereby ensuring its feasibility in practical applications. It is important to note that while

randomized heuristics may seem attractive due to their potential for finding better query

plans through a broad search space exploration, their effectiveness in optimization time may

be undermined if suboptimal query plans are selected. Therefore, the impact of suboptimal

choices could offset the benefits of the diversified exploration of the search space.

Aside from providing faster search time, greedy algorithms inherently prioritize early-stage

joins and consider fewer subplans of large join size. This property becomes important when

using estimated cardinalities. In principle, cardinality estimates for smaller joins are more

accurate due to the reduced correlation between tables. Hence, by focusing on smaller joins,

the likelihood of substantial estimation errors that could potentially lead to suboptimal plan

selection is diminished [65, 63]. Furthermore, as joins occurring later in the query plan often

process fewer data, owing to a higher number of applied predicates, suboptimal decisions

made at a later stage are likely to have a less pronounced effect on the overall execution

performance. Therefore, while exhaustive enumeration strategies demand consistent and

accurate cardinality estimations across all join sizes, the reduced dependency on such es-

timates intrinsic to greedy algorithms can mitigate suboptimal query plans, enhancing the

robustness of the selected query plans [42].

4.2 Spanning Tree-based Enumeration Strategies

A Minimum Spanning Tree (MST) is a subgraph of a graph that encompasses all the

vertices while ensuring that the cumulative cost of its edges is the lowest possible. This

problem is a fundamental topic in graph theory and is applied in various fields, including

network design, clustering, and query optimization in databases. To find MST, traditional

minimum spanning tree algorithms, such as Prim’s and Kruskal’s [18], operate under the
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assumption that edge weights are fixed – otherwise, optimality is not guaranteed. These

algorithms maintain an invariant which ensures that the partial MST being constructed at

any given time is always a subset of a full MST, upholding the integrity and optimality of

the solution throughout the MST construction. In the context of query optimization, the

problem statement is:

Optimal query plan is the minimum spanning tree, where the objective is to identify a set of

edges spanning all vertices in the join graph while minimizing the total edge costs that are

pre-defined and static during the spanning tree construction.

It is important to note that there can be multiple optimal query plans – several minimum

spanning trees – within a specified search space. This case occurs in graphs that contain

cycles or edges with the same weights.

Krishnamurthy et al. [58, 40] propose to utilize a minimum spanning tree algorithm to

transform a cyclic graph into a tree. The join graph is formed of nodes and edges with pre-

computed selectivities as weights. The cost of a spanning tree is computed as the product of

its edge weights as opposed to the common approach which is the sum of the edge weights.

Consequently, the selected minimum spanning tree is used in the IK-KBZ algorithm to

generate a left-deep join order. Note that the optimality of the IK-KBZ algorithm is not

guaranteed in the case of cyclic queries and is restricted to left-deep trees. Fegaras [27]

proposed the GOO algorithm to find a query plan that uses Kruskal’s algorithm on a join

graph, assigning weights to the nodes as the size of the tables, and the edges as selectivities

between two tables. As tables are joined, the corresponding nodes are merged, and the

weight of the merged node corresponds to the size of the intermediate table. If the two

nodes share a common edge, the new weight is adjusted as the product of the weights of the

two edges. Notice that both approaches avoid cross-joins – the second largest rectangle in

Figure 4.1. However, they do not ensure an optimal query plan due to their greedy decisions

in constructing a spanning tree over a cyclic join graph.

A solution to assign static weights within the join graph fails to encapsulate the dynamic

effects of prior subplan joins – multi-table correlation – thereby potentially leading to less

optimal query plans. For example, in Figure 4.3, the edge (mk − k) appears in all three

spanning trees. Its weight is 1.1M in Popt and Pkru, and 0.2K in Ppri. This is due to the
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different edge subsequences that precede (mk− k) in the spanning trees. Consequently, the

weight of an edge is derived from the edge subsequence – or query subplan – it is appended

to. We cannot assign a static weight to an edge in the join graph and then sum up the

weights for all the edges in the spanning tree to obtain an accurate cost of the query plan.

This precludes the direct application of well-known spanning tree algorithms such as Prim

and Kruskal to identify the query plan with minimum cost as they fall short in their capacity

to efficiently accommodate dynamic changes in edge weights. Therefore, given the crucial

roles of both the sequence in which edges are arranged and the variable characteristics of

edge costs, we refine the problem statement as:

Optimal query plan is a spanning tree, where the objective is to identify an “ordered se-

quence” of edges spanning all vertices in the join graph while minimizing the total edge

costs that are “dynamically changing as tables are successively joined”.

In Section 4.2.1, we initially demonstrate how a single plan can be derived from a sequence

of edges. In Section 4.2.2, we detail the exhaustive enumeration of the entire spanning tree

search space which identifies an optimal query plan. Section 4.2.3 presents two classical

spanning tree algorithms, Prim’s and Kruskal’s each adapted to cater to dynamic edge

weight changes and enumerating a single query plan. Finally, in Section 4.2.4, we introduce

the Ensemble Spanning Tree Enumeration (ESTE) strategy designed to amplify the perfor-

mance of Prim’s and Kruskal’s by capturing a broader search space and enumerating more

than a single query plan.

4.2.1 Spanning Tree-based Plan Generation

In Figure 4.3, we illustrate three spanning trees Popt, Pkru and Ppri. At the leaf nodes,

we show the size of the base tables. For each internal node, we compute join cost C as

in Equaiton 2.4 computed based on true cardinalities Y of base and intermediate tables.

For the join operator selection, we compute the cost of hash join HJ , and index nested-

loop join INL if one of the child nodes is a base table and assume the presence of indexes

on leaf nodes. The join operator with the minimum cost is selected at each intermediate

node. Lastly, we compute the total cost C of all three spanning trees. Each spanning

tree is generated from bottom to top following the ordered edge sequence from left to right:

Popt = {(mk−k), (mk−mc), (mc−cn), (t−mk)}, Pkru = {(mc−cn), (t−mc), (mk−k), (t−mk)}
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and Ppri = {(mc− cn), (t−mc), (mk−mc), (mk− k)}. To illustrate generation and the cost

computation of a spanning tree, we take Popt as an example. The shape of the Popt is a left-

deep tree. The subplan Pmk⋊⋉k = {(mk−k)} is a 2-way join having two children as base tables

k and mk. The cost of hash and index nested-loop joins are 1.1M and 10M , respectively.

Thus, the hash join is selected as the join operator type for Pmk⋊⋉k. The size of the output

table for Pmk⋊⋉k is 42K. The next larger subplan Pmk⋊⋉k⋊⋉mc = {(mk − k), (mk − mc)} is

a 3-way join having two children as subtree Pmk⋊⋉k and base table mc. The index nested-

loop join is selected with the cost of 0.3M while the cost of hash join is 0.7M . It is

important to note the cost of the 3-way join plan Pmk⋊⋉k⋊⋉mc takes into account the edge

subsequence – the cardinality of the contained 2-way join subplan Pmk⋊⋉k. The 4-way join

Pmk⋊⋉k⋊⋉mc⋊⋉cn = {(mk − k), (mk − mc), (mc − cn)} has two children as subtree Pmk⋊⋉k⋊⋉mc

and base table cn. Their HJ and INL join costs are 0.2M and 0.3M , respectively. The

hash join is selected and the edge on the join graph is changed accordingly. Lastly, the final

5-way join Pmk⋊⋉k⋊⋉mc⋊⋉cn⋊⋉t = {(mk− k), (mk−mc), (mc− cn), (t−mk)} has two children as

subtree Pmk⋊⋉k⋊⋉mc⋊⋉cn and base table t. The indexed nested-loop join is selected as the final

join operator – the costs are HJ = 0.5M and INL = 16K, respectively. The remaining

edge (t − mc) creates a cycle. Thus the corresponding join predicate t.id = mc.movie id

can be evaluated with the join (t−mk) – join predicate t.id = mk.movie id.

4.2.2 Exhaustive Spanning Tree-based Enumeration

Due to the dynamic alteration of edge weights resulting from ongoing joins, standard min-

imum spanning tree algorithms are not guaranteed to yield optimal query plans. Hence, to

uncover an optimal query plan, it becomes imperative to enumerate all possible spanning

trees over the join graph and select the one with the minimum cost. Unlike enumerat-

ing over nodes, adopting an edge-centric enumeration method results in query plans that

do not include cross-joins. This is because the edge enumeration leverages the inherent

structure of the preset connections within the pre-defined join graph, thereby naturally

excluding the possibility of cross-joins – the second largest rectangle in Figure 4.1. Edges

that would generate a cycle within spanning trees are instead incorporated as supplemen-

tary filter predicates in the query plan. This approach ensures that the acyclic property of

spanning trees is maintained throughout the process. Rather than employing an exhaus-

tive arrangement-based enumeration strategy with subsequent cost assessments, it is more
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beneficial to use a recursive algorithm that leverages backtracking. This approach allows

for more efficient exploration techniques of the search space, such as cost-based pruning

and graph-based dynamic programming, reducing the computational burden and improv-

ing practical feasibility. Every feasible edge has to be recursively considered at any step of

the traversal and if the cost of the current subplan surpasses the current minimal cost, it

allows for a backtrack. This process aids in circumventing parts of the search space that

are not necessary to explore, thus enhancing efficiency by preventing wasteful computa-

tions. Employing graph-based dynamic programming systematically builds upon subplans

to avoid redundant computations and adapt to the dynamic weight changes in edge costs.

Even though these may reduce the number of plans considered, it is guaranteed that the

spanning tree with minimum cost is found.

4.2.3 Heuristic Spanning Tree-based Enumeration

The intrinsic ability of edge-based enumeration to preclude cross-joins in the search space

of the spanning tree presents a substantial advantage. However, even with the above op-

timizations in place, exhaustive edge enumeration can still be computationally prohibitive,

especially when dealing with large queries. Hence, the natural step forward is to mod-

ify the traditional minimum spanning tree algorithms, such as Prim’s and Kruskal’s, to

accommodate the unique characteristics of a join graph, particularly the dynamic nature

of edge weight changes. In addition to their computational efficiency due to polynomial

time complexity, these greedy algorithms provide tangible advantages when dealing with

cardinality estimates. Their bottom-up approach in building the query plan, which em-

phasizes smaller join size estimates, is an immensely beneficial feature. Given that later

stages of query processing involve fewer data, and during query optimization, large join size

estimates are generally far less accurate than the smaller joins [65]. These aspects make a

greedy approach pragmatic, balancing the need for accuracy and practical efficiency. We

show Prim’s and Kruskal’s algorithms that take into account the order of the edge sequence

and the dynamic change of edge costs. While they may not provide the optimal query plan

due to their inherent greedy nature, these algorithms deliver spanning trees with low costs

and have the advantage of fast search times.
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Figure 4.4: Step-by-step illustration of Prim’s plan enumeration algorithm on the join graph
of query 2a.

4.2.3.1 Prim’s Plan Enumeration

Within the search space of spanning trees, where cross-joins are naturally eliminated, Prim’s

algorithm functions within the left-deep subspace which further reduces the search space.

Even further, due to its greedy decision-making nature, its exploration of this space is only

partial, resulting in the enumeration of just one complete query plan in the form of a left-

deep tree. At each iteration, Prim’s algorithm maintains a single main component, which

progressively builds up the final query plan. In Figure 4.4, we demonstrate an adaptation

of Prim’s algorithm that takes into account changes in edge weights to select an ordered

sequence of edges and subsequently generate the query plan. First, an edge of a 2-way join

with the minimum cost is selected from the list of all edges corresponding to 2-way joins

shown in the table in step 1. The list of edges is not necessarily sorted as the composition

of this list is heavily reliant on previous join selection and their weights are updated at

each iteration. For each join, the optimal join operator is selected as a hash join HJ

or indexed nested-loop INL based on the cost computed as in Equation 2.4. Edge e5,

subplan Pmc⋊⋉cn = {(mc − cn)}, is selected as 2-way hash join with the minimum cost

C(Pmc⋊⋉cn, Y ) = 1M . The nodes mc and cn form a combined component {mc, cn} shown

in step 2. The weights of the edges adjacent to nodes mc and cn are updated – edges e3

and e4. Next, an edge of a 3-way join with the minimum cost is selected from the list of

all edges corresponding 3-way joins and adjacent to the main component {mc, cn}. Edge
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e3, subplan Pmc⋊⋉cn⋊⋉t = {(mc− cn), (t−mc)}, is selected as 3-way indexed nested-loop join

with the minimum cost C(Pmc⋊⋉cn⋊⋉t, Y ) = 0.3M . The component {mc, cn} and node t form

a combined component {mc, cn, t} shown at step 3. In step 3, the weights of the edges e2

and e4 adjacent to {mc, cn, t} are updated. Notice that both edges of a 4-way join have

the same cost of 3.2M as a hash join, and either of the edges becomes a cyclic edge. Thus,

we randomly select an edge, e2 or e4, and transform the other one into a filter predicate.

After building the subplan Pmc⋊⋉cn⋊⋉t⋊⋉mk = {(mc− cn), (t−mc), (mk−mc)}, the cost of the

remaining edge e1 adjacent to the main component {mc, cn, t,mk} is updated and selected

as a 5-way hash join. The resulting plan Pmc⋊⋉cn⋊⋉t⋊⋉mk⋊⋉k = {(mc − cn), (t − mc), (mk −
mc), (mk − k)} spans all the nodes in the original join graph. In Figure 4.3, the rightmost

tree Ppri represents the spanning tree generated based on Prim’s plan enumeration.

Algorithm 2 Prim’s Algorithm for Plan Enumeration

Input: Spri ← ∅ // main component
S ← {v | v ∈ V } // complement component
E ← {e : C(Pe) | e ∈ E} // subplans and costs

Output: Ppri ← [] // query plan

1: while E ̸= ∅ do
2: // find a join with the minimum cost
3: find e | C(Pe) < C(Pe∗), ∀e∗ ∈ E
4: E ← E / e
5: add e to Ppri
6: // either of v1e and v2e is a base table
7: Spri ← Spri ∪ {v1e, v2e : |ve| = 1}
8: S ← S / {v1e, v2e : |ve| = 1}
9: for each e′ ∈ E do

10: if v1e′ /∈ Spri ∧ v2e′ /∈ Spri then
11: // remove edges nonadjacent to Spri
12: E ← E / e′
13: else if v1e′ ∈ Spri ∧ v2e′ ∈ Spri then // cyclic edge
14: add e′ to Ppri as a filter predicate
15: else // update edges adjacent to Spri and costs
16: E ← e′ ∪ Spri : C(Pe′∪Spri

)

The pseudo-code of Prim’s plan enumeration algorithm is given in Algorithm 2. It starts

with an empty set Spri and its complement S of size |V | containing all the nodes. The

list of 2-way join edges along with their pre-computed costs are given in E . Until the set

E becomes an empty set, at each iteration (lines 1-18), an edge e of the current join size

is selected that is adjacent to the main component Spri and has the minimum cost (lines
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2-5). Initially, all 2-way join edges are considered as adjacent to Spri. It is not necessary

to build a min-heap data structure since the list of edges must be adjacent to Spri and

their weights are updated at each iteration. In lines 7-9, the components Spri and S are

updated with respect to the selected edge e. In lines 11-18, it prepares the edges adjacent

to Spri with updated costs (lines 17-18) for the next iteration. In the case of cyclic edge, it

transforms the edge to a filter predicate (lines 15-16). In lines 12-14, the edges that are no

longer adjacent to Spri are dropped. The algorithm executes in polynomial time running

in O
(
|E|2

)
and allocating O (|V |+ |E|) memory. Notice that lines 2-5 can be moved into

lines 11-18. For demonstration purposes, we split them into two separate code blocks.
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e4

e5

1 2

3 4

Join Cost

{mk} {t, mc, cn}

{k}

e1
e2, e4

Join Cost

{t, mc, cn}{mk, k} e2, e4

Join Cost

{mk} {mc, cn}

{t} {k}

e1 e2 e3
e4

Figure 4.5: Step-by-step illustration of Kruskal’s plan enumeration algorithm on the join
graph of query 2a.

4.2.3.2 Kruskal’s Plan Enumeration

Kruskal’s algorithm is an enhancement of Prim’s approach, operating over the bushy and

left-deep subspaces. Due to its inherently greedy character, this method also only partially

explores the subspace, resulting in the enumeration of a single plan. This plan may exhibit

either a bushy or left-deep tree structure. During each iteration, Kruskal’s algorithm com-

bines two components – each of potentially differing sizes – in a bottom-up fashion. The

merging of two subcomponents each larger than one is indicative of a bushy tree structure.

The inclusion of bushy tree shapes in the consideration set extends the opportunity to iden-

tify query plans that potentially exhibit a lower cost or even optimal plans. In Figure 4.5, we

show the updated variation of Kruskal’s algorithm that takes into account changes in edge
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weights to select an ordered sequence of edges and subsequently generate the query plan. As

in Prim’s, first, an edge of a 2-way join with the minimum cost is selected from the list of all

edges corresponding to 2-way joins shown in the table at step 1. Each node is a separate com-

ponent, and for each join, the optimal join operator is selected as a hash join HJ or indexed

nested-loop INL based on the cost computed as in Equation 2.4. The list of edges is sorted

based on their costs. The first edge, e5 corresponding to subplan Pmc⋊⋉cn = {(mc− cn)}, is
selected as 2-way hash join with the minimum cost C(Pmc⋊⋉cn, Y ) = 1M . The node compo-

nents {mc} and {cn} form a combined component {mc, cn} shown at step 2. As in Prim’s,

the weights of the edges e3 and e4 adjacent to {mc} and {cn} are updated. Additionally, we
keep the edges e1 and e2 that are not adjacent to {mc} and {cn} with the same costs. The

selection of these edges leads to bushy trees. In the table at step 2, we list all four edges that

potentially can be selected in the next join. Next, an edge of a 3-way or 2-way join with the

minimum cost is selected from the list of all edges corresponding 3-way joins and adjacent

to the component {mc, cn}, as well as nonadjacent edges corresponding 2-way joins. Edge

e3, subplan Pmc⋊⋉cn⋊⋉t = {(mc− cn), (t−mc)}, is selected as 3-way indexed nested-loop join

with the minimum cost C(Pmc⋊⋉cn⋊⋉t, Y ) = 0.3M . The components {mc, cn} and {t} form a

combined component {mc, cn, t} shown at step 3. In step 3, the weights of the edges e2 and

e4 adjacent to {mc, cn, t} are updated. As in Prim’s, both edges of a 4-way join have the

same cost of 3.2M as a hash join, and either of the edges becomes a cyclic edge. The 2-way

join Pt⋊⋉mk is dropped from the list since it became adjacent to the component {mc, cn, t}
and cannot form a separate subtree. However, the edge e1 is still kept as it can be selected

to form a bushy structure. Since the e1 has a smaller cost of 1.1M than edge e2 and e4 with

the cost of 3.2M , it is selected as a 2-way hash join forming a separate subtree – subplan

Pmk⋊⋉k = {(mk − k)}. The node components {mk} and {k} form a combined component

{mk, k} shown at step 4. Lastly, the cost of the remaining edges e2 and e4 adjacent to

both components {mc, cn, t,mk} and {mk, k} are updated. Both edges have the same cost

of 50K as a hash join, and either of the edges becomes a cyclic edge. We randomly select

an edge, e2 or e4, and transform the other one into a filter predicate. The selected 5-way

hash join is a subplan Pmc⋊⋉cn⋊⋉t⋊⋉mk⋊⋉k = {(mc − cn), (t − mc), (mk − mk), (t − mk)} which
has a bushy structure. The resulting plan spans all the nodes in the original join graph. In

Figure 4.3, the middle tree Pkru represents the spanning tree generated based on Kruskal’s

enumeration algorithm.
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The pseudo-code of Kruskal’s plan enumeration algorithm is given in Algorithm 3. It starts

with the set S of size |V | containing all the nodes as separate components. The list of

2-way join edges as values along with their pre-computed costs as keys stored in a min-heap

data structure E . Until the set E becomes an empty set, at each iteration (lines 1-24),

the edge e which has the minimum cost is selected – the first element extracted from the

min-heap (lines 2-3). In Kruskal’s algorithm, it is efficient to keep a sorted list of edges

since some of the joins of lower size are kept which can be selected to build a separate

subtree. Hence, we maintain the min-heap data structure to keep edges sorted by cost. In

lines 5-7, the components to which the two nodes v1 and v2 of the current edge e belong are

found. Every edge extracted from the min-heap either forms a cycle (lines 9-10) or merges

two components (lines 11-24). In the case of cyclic edge, it transforms the edge to a filter

predicate. Otherwise, the two components are merged (lines 12-14). In lines 16-24, the min-

heap is updated with respect to the selected edge e. For demonstration purposes, in lines

17-18, we show the case where the edges that potentially can create a separate subtree are

kept with the same costs. Otherwise, an edge that no longer can form a separate subtree is

dropped (lines 20-22). In the case of adjacent and valid join, the costs of the corresponding

joins are updated (lines 23-24). The algorithm also executes in polynomial time running in

O
(
|E|2 × log(|E|)

)
and allocating O (|V |+ |E|) memory.

4.2.4 Ensemble Spanning Tree-based Enumeration

A significant drawback of greedy algorithms lies in their enumeration of a single full plan,

which may result in being stuck in local optima and missing globally optimal plans. This

characteristic can be observed in Figure 4.6. In Figure 4.6, we plot all spanning trees

generated from the join graph, sorted by their cost excluding the cross-joins. Two optimal

plans are marked in red triangles located in the bottom left corner. The left-deep and bushy

spanning trees are indicated as blue square and green diamond, respectively. The lowest

rectangle shows near-optimal plans which have cost differences of at most 1.31. In the top

right corner, the worst query plans are shown inside the upper rectangle – cost differences of

at least 27.9. Notice these three clusters of spanning trees are characterized by their highest

join costs. In the figure, both the plans generated by Prim’s and Kruskal’s algorithms are

situated in their respective clusters of spanning trees. Each of these clusters is defined

by its highest join cost, signifying their confinement to local optima. From the figure, we
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Algorithm 3 Kruskal’s Algorithm for Plan Enumeration

Input: S ← {{v} | v ∈ V } // V components
E ← {C(Pe) : e | e ∈ E} // min-heap

Output: Pkru ← [] // query plan

1: while E ̸= ∅ do
2: // extract the first join from the min-heap
3: extract e from E
4: // find components in S
5: le ← component(v1e)
6: re ← component(v2e)
7: if le = re then // cyclic edge
8: add e to Pkru as a filter predicate
9: else// new component joining le and re

10: S ← S ∪ {le ∪ re}
11: S ← S / {le, re}
12: add e to Pkru
13: for each e′ ∈ E do
14: if v1e′ /∈ {le ∪ re} ∧ v2e′ /∈ {le ∪ re} then
15: // keep nonadjacent edges with the same costs
16: else
17: if invalid edge then
18: // edges that cannot form a subtree
19: extract e′ from E // remove adjacent edges
20: else // update adjacent edges and costs
21: E ← C(P{e′∪le∪re}) : e′
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can see limiting the enumeration to a single full query plan is not effective when exploring

the search space, as it bears the risk of getting trapped in local optima. Hence, given

the limitations of enumerating a single plan and the prohibitive computational expense of

exhaustive enumeration, the logical approach is to enumerate more than one query plan.

This intermediate strategy can help balance the search for optimality with computational

efficiency. Enumerating more than one query plan increases the robustness of the search

process and uncovers more parts of the search space.
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Figure 4.6: Query plans of query 2a sorted by cost and colored by tree shape. Query plans
selected by Prim’s and Kruskal’s algorithms are shown in orange circles and pink triangles
pointed up, respectively.

A direct method to facilitate the exploration of more query plans is to employ randomized

approaches[104, 43, 106, 88, 107, 44]. In these approaches, the enumeration could randomly

begin from a particular edge in the join graph. This kind of stochastic approach could

increase the diversity of the examined query plans and help escape local optima. However,

the optimizer performance becomes less predictable and interpretable due to the random

behavior of the search space exploration. In this work, we take advantage of minimum

spanning tree algorithms which also offer polynomial time complexity. Rather than starting

from random edges, each spanning tree algorithm is initiated from every edge in the join

graph [58, 77]. Not only would this approach preserve the interpretability of the process, but

it would also enhance the robustness of the search, ensuring a more comprehensive coverage

of the search space. Unlike prior work [58, 77], we take one step further, we propose
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the Ensemble Spanning Tree Enumeration (ESTE) strategy – the incorporation of a wider

variety of spanning tree algorithms to further diversify the set of query plans generated.

This strategy maintains polynomial-time complexity while enhancing the robustness of the

plan enumeration.

The complexity of the Prim’s and Kruskal’s discussed in Section 4.2.3 becomes O
(
|E|3

)
and O

(
|E|3 × log(|E|)

)
, respectively. This intermediate enumeration strategy creates an

ensemble of spanning trees broadening the search coverage without escalating the compu-

tational costs. In terms of space coverage based on our example query 2a, together Prim’s

and Kruskal’s single plan enumerations reach 10 or 71.4% out of all 14 distinct subplans,

computed 9 or 28.1% out of all 32 distinct join costs, and 2 or 2.8% different plans enu-

merated out of all possible 72 query plans excluding the cross joins. In ESTE, 14 or 100%

subplans, 26 or 81.2% join costs, and 8 or 11.1% different plans are covered. By making

minor trade-offs in execution time, ESTE is able to explore larger portions of the search

space. In our experimental results, we demonstrate that this approach yields benefits in

terms of discovering more efficient query plans thus reducing the plan costs.

4.3 Empirical Evaluatiion

We perform the experimental study over the comprehensive JOB benchmark [65, 63] to

evaluate the performance of the spanning tree-based enumeration algorithms. We set the

spanning tree-based enumeration algorithms against one of the most outstanding, if not the

best, heuristic enumeration algorithms – GOO [27]. Our decision is based on previous eval-

uations which have consistently demonstrated GOO’s superior performance across various

configurations, graph topologies, and benchmarks among other proposed heuristic enumer-

ation algorithms [65, 63, 86, 31]. Employing GOO as a comparative baseline is expected to

provide a solid starting point for our performance assessment. Throughout the section, we

provided in-depth micro analysis over the example query 2a. In Section 4.3.2, we perform

a macro analysis over all JOB queries and summarize the overall workload performance in

Section 4.3.3. Our evaluation addresses the following questions:

• Assess the performance (plan cost, optimization and execution times) of the spanning

tree-based strategy, and compare it against exhaustive and heuristic strategies.
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• Assess whether the ESTE strategy enhances the performance by devoting additional time

to the examination of a broader portion of the search space.

• Assess the response of the spanning tree-based enumeration algorithms to the errors in

cardinality estimates. This will help us understand how these algorithms adapt to and

perform in the presence of cardinality estimation errors.

4.3.1 Experimental Setup

4.3.1.1 Dataset & Query Workload

We perform the experiments on the IMDB dataset [12], which has been used extensively

to evaluate query optimizers [63, 65, 86, 16, 90, 31] and has become a de-facto standard.

The JOB benchmark [92] defines 113 queries – grouped into 33 families – over the IMDB

dataset. These queries vary significantly in their complexity. The simplest queries have

4 join predicates with the largest join size of 4, while the most complex queries have 28

join predicates with the largest join size of 17. The workload encompasses a diverse range

of graph topologies which are incorporated within individual join graphs. This variability

manifests itself in execution times that are highly different. To compensate for this, we

split the queries into three complexity groups and examine each group separately. These

complexity groups are based on the number of join predicates: simple queries with 4-9 joins,

moderate queries with 10-19 joins, and complex queries with 20-28 joins, respectively.

4.3.1.2 Database System & Hardware

For cardinality estimations, we chose a well-known database system PostgreSQL (version

15.1) [88]. PostgreSQL uses a large variety of statistics on base tables. Any join estimate

is computed by combining the statistics into simple arithmetic formulas that make general

assumptions on uniformity, inclusion, and independence. We run the subplans of the JOB

queries in PostgreSQL to collect their join cardinality estimations as well as the true cardi-

nalities. We run PostgreSQL with default configurations, and set operator and buffer size

to 16GB and 64GB, respectively. For measuring execution times, we utilize pg hint to force

the cost function from Equation 2.4 along with physical operators and force the join order.

All the experiments run on an Ubuntu 22.04 LTS machine with 56 CPU cores (Intel Xeon

E5-2660), 256GB RAM, and an NVIDIA Tesla K80 GPU.
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4.3.1.3 Scope, Methodology & Implementation

To quantitatively assess the quality of a query plan, we use the cost function C from Equa-

tion 2.4 in all the algorithms evaluated in this section including GOO. This cost function

is designed to suit an in-memory setting, and it has been demonstrated that it effectively

correlates with query runtime [63, 65]. Despite this, the cost function can be extended

to cater to a disk-based setting, and to account for other types of join algorithms such as

merge-join.

In this study, we did not include heuristics with a randomized flavor, as the ESTE initiates

from every edge, potentially resulting in superior query plans while still preserving inter-

pretability. While randomized algorithms might potentially achieve faster runtime, if they

locate better query plans among query plans collected in O
(
|E|3 × log(|E|)

)
, maintaining

interpretability and unpredictable performance may become challenging.
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Figure 4.7: Cost ratio of selected JOB query plans against the optimal query plan costs
using true join costs.

4.3.2 Macro Evaluation

4.3.2.1 Evaluation based on True Cardinality

In Figures 4.7a and 4.7b, we evaluate plan quality, in terms of their costs, selected by

four heuristic enumeration algorithms – Prim’s, Kruskal’s, ESTE and GOO – compared

against the exhaustive enumeration. The y-axis shows the cost ratio of the heuristic plan

and the optimal plan selected by the exhaustive enumeration. The x-axis shows the 113

workload queries grouped – by dotted vertical lines – according to their join complexity as
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described in Section 4.3.1. The enumeration algorithms are shown as colored solid lines:

exhaustive as red, Kruskal’s as green, Prim’s as yellow, ESTE as blue, and GOO as light

purple. In Figure 4.7a, we compare the costs of the query plans selected by these enu-

meration algorithms computed using true cardinalities. From the figure, we observe GOO

selects relatively worse query plans. Interestingly, in GOO, we observe that the join cardi-

nality costs can reach saturation rapidly leading to zero tuples which makes it difficult to

compare different query plans. Prim’s is the worst among spanning tree-based enumeration

algorithms due to the search in the limited left-deep search space. However, in certain

instances, the algorithm chooses superior plans compared to Kruskal’s. Prim’s unique path

of search space exploration contributes to enhancing the performance of ESTE. Regardless,

ESTE, in certain cases, chooses other plans that have higher costs due to join options with

equal costs. On the other hand, Kruskal’s tends to perform noticeably better and ESTE

enhances the performance of both Prim’s and Kruskal’s chosen query plans. As anticipated,

all the enumeration algorithms begin to experience a drop in efficiency as the complexity of

the queries increases. In Section 4.3.3, we show their absolute performance numbers based

on the entire workload.
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Figure 4.8: Optimization time (ms) of enumeration algorithms for all JOB query plans.

In Figures 4.8a and 4.8b, we evaluate the optimization times of all five enumeration al-

gorithms. In Figure 4.8a, the optimization time of the exhaustive enumeration becomes

significantly high as the query complexity increases. Because of this, we were not able

to get query plans for family 29 in JOB and further applying exhaustive enumeration for

complex queries is not suitable. This confirms, once again, that exhaustive enumeration is

not an option in dealing with complex queries. ESTE pays minimal extra time – maximum

0.54ms – in optimization for more robust behavior in selecting high-quality query plans. It
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is considered GOO to be one of the fastest heuristic enumeration algorithms. Interestingly,

Prim’s and Kruskal’s exhibit very close optimization time to GOO – all three show opti-

mization time around 0.2ms. All spanning tree-based and GOO enumerations maintain a

stable optimization time across different query complexities.
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Figure 4.9: Execution time (sec) of all JOB query plans.

Figures 4.9a and 4.9b present the execution times for all five enumeration algorithms.

In Figure 4.9a, it is clear that GOO’s suboptimal plans indeed result in longer execution

time. Expectedly, the optimal plans selected by the exhaustive enumeration exhibit the best

performance except for a small number of exceptions. This is due to inaccuracies in the

cost function. Upon examining these cases, we observe that indexed-loop join operators are

favored along with large tables because of their presence of indexes. This, in turn, generates

a large size intermediate table causing large latencies in the later stages of execution. In

contrast, Prim’s and Kurskal’s plans perform significantly better compared to GOO’s plans,

delivering efficient execution times. In addition, ESTE brings more consistency and better

performance by paying minimal extra time in optimization time.

4.3.2.2 Evaluation based on Estimated Cardinality

In Figure 4.7b, we compare the costs of the plans computed using PostgreSQL estimated

cardinalities, across different enumeration algorithms. Expectedly, the enumeration algo-

rithms perform relatively worse in the presence of cardinality estimation errors. Although

their cost ratio decreased (lower ratio on the y-axis), these small ratios indicate the selection

of more similar plans which all can be potentially suboptimal. As the join size increases,

the error propagates to the larger join size estimations resulting in less reliable estimates for
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larger joins. This can lead to unpredictable behavior, particularly because of the existence

of severe cardinality underestimations of suboptimal plans or overestimations in optimal

plans misguide enumeration algorithms. This figure exhibits such behavior. We observe

the cost ratios that are below one which indicate plans that are better than the estimated

optimal plan selected by the exhaustive enumeration. Another noteworthy observation is

that these estimation errors can cause cardinalities to reach saturation resulting in similar

plan costs. This complicates the comparison between different plans and increases the risk

of selecting suboptimal join order and physical operators. As with true cardinalities, GOO

tends to select plans that have comparatively higher costs, especially in complex queries.

In contrast, Prim’s and Kruskal’s algorithms reaffirm their dominance over GOO, even in

the face of cardinality estimation errors. Meanwhile, ESTE enhances the performance by

utilizing Prim’s and Kruskal’s, demonstrating more consistency in query plan quality.

In Figure 4.8b, we compare the optimization time of the enumeration algorithms when

estimated cardinalities are utilized. The behavior of all algorithms remains similar to true

cardinalities except for exhaustive enumeration. As previously mentioned, estimation errors

can cause cardinalities to reach saturation resulting in similar plan costs, thus the benefit

of the cost-based pruning technique within the exhaustive search diminishes. Consequently,

the algorithm is forced to explore a significantly larger part of the search space, which

results in a significant increase in optimization time.

Figure 4.9b presents the execution times of query plans selected by the enumeration algo-

rithms when using estimated cardinalities. We first observe all four enumeration algorithms

demonstrate a decline in performance compared to the plans selected using true cardinalities

– larger scale on the y-axis. Just as with true cardinalities, GOO’s inaccurate decisions lead

to high execution time. All three spanning tree-based plans exhibit execution times close

to the exhaustive enumeration. In several cases, ESTE chooses a different plan than Prim’s

and Kruskal’s due to multiple join options with the same costs, leading to slightly slower

execution times. To summarize, these results highlight the potential benefits of leveraging a

combination of fast, spanning tree-based heuristics to find the balance between plan quality

and computational constraints, especially in complex queries.
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Query
Complexity

Enumeration Strategy
Exhaustive Kruskal Prim ESTE GOO

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

Simple 1 7.91 61 1.44 7.58 86 2.09 7.47 103 1.36 15.75 75 2.33 7.65 150

Moderate 1 83.19 46 1.16 8.63 70 1.45 8.89 71 1.05 20.83 44 6.86 8.94 848

Complex 1 4,171 4 1.62 1.94 11 2.48 1.92 22 1.09 5.28 5 5.66 2.0 29

TOTAL 1 4,262 111 1.34 18.15 167 1.86 18.28 196 1.24 41.85 124 4.1 18.59 1,026

Table 4.1: Overall cost ratio of true query plan costs, optimization (ms) and execution (ms)
times on JOB.

4.3.3 Overall Evaluation

Tables 4.1 and 4.2 represent the overall performance of all five enumeration algorithms.

The queries, grouped by complexity as described in Section 4.3.1, are shown in the rows

while the performance of each enumeration algorithm is represented in columns. The last

row provides the total workload performance for each enumeration algorithm, including

its overall cost ratio, and optimization and execution times. Table 4.1, based on true

cardinalities, GOO shows relatively worse results across all levels of query complexity. While

Prim’s and Kruskal’s are significantly better at finding more efficient query plans, ESTE

enhances this performance even more by probing a larger portion of the search space. While

the optimization time of exhaustive enumeration is significantly high, ESTE spends at most

2.5X extra optimization time than Prim’s, Kruskal’s and GOO. As shown in Figures 4.7

and 4.9, this consistent extra time investment trades off for consistently better plans, thus

paying off during the query execution. Consequently, in this table, we observe the execution

time of ESTE is superior to Prim’s and Kruskal’s, and considerably better than GOO’s.

Interestingly, across all query complexities, the overall execution time of ESTE is noticeably

close to the execution time of optimal plans obtained by the exhaustive enumeration.

Query
Complexity

Enumeration Strategy
Exhaustive Kruskal Prim ESTE GOO

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

cost
ratio

opt
(ms)

exec
(sec)

Simple 1 7.41 102 1.38 7.38 178 1.72 7.55 195 1.38 15.99 177 1.91 7.45 152

Moderate 1 185 107 1.05 8.88 114 1.04 8.71 102 1.05 19.95 115 4.25 8.55 805

Complex 1 24,327 13 1.02 1.97 15 1.16 1.96 12 1.02 4.72 14 14.06 1.95 110

TOTAL 1 24,520 222 1.24 18.24 307 1.44 18.21 309 1.24 40.65 306 3.21 17.95 1,067

Table 4.2: Overall cost ratio of estimated query plan costs, optimization (ms) and execution
(ms) times on JOB.

In Table 4.2, we compare the overall workload performances of the enumeration algorithms

when operated using PostgreSQL estimated cardinalities. As depicted in Figures 4.7 and 4.9,
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the effects of cardinality estimation errors on plan costs and execution time are detrimen-

tal. In all enumeration algorithms, including the exhaustive, we observe a 2 − 2.5X times

increase in runtime, while GOO’s execution time remains high, similar to the results with

true cardinalities shown in Table 4.1. Although cost ratios seem to decrease compared to

true cardinalities, meaning more similarity to the plans obtained by the exhaustive enu-

meration, their absolute values significantly increased, leading to longer execution times.

In optimization time, we observe a prohibitively large increase in the case of exhaustive

enumeration due to the closeness of query plan costs affected by estimation errors – thus

the cost-based pruning technique becomes less effective, forcing the enumeration algorithm

to explore a much larger plan space. However, similar to true cardinalities, the optimiza-

tion time of spanning tree-based and GOO algorithms exhibit consistent behavior across all

query complexities. To summarize, spanning tree-based enumeration algorithms offer a su-

perior strategy for finding efficient plans, outperforming GOO, one of the existing efficient

heuristic enumeration algorithms. By spending minimal extra optimization time, ESTE

further improves the performance over Prim’s and Kruskal’s enumeration algorithms. This

indicates that despite the challenges brought by cardinality estimation errors, it is still

possible to achieve comparatively efficient query plans.

4.4 Related Work

A simple and common way to represent a query is through an undirected join graph. Once

constructing the join graph, the objective is to evaluate different join orders, each can

be illustrated by a join tree. It is straightforward to see that a join order is a spanning

tree connecting all the vertices. To our knowledge, the concept of finding a join order by

finding a spanning tree was first introduced in [40, 58]. The IK-KBZ algorithm, proposed

by Krishnamurthy et al. [58], is designed to find an optimal left-deep tree in an acyclic

graph. The algorithm is well-suited for star queries, without resorting to cross-joins. As

a heuristic extension to handle cyclic queries, the authors suggest finding a spanning tree

with the minimum cost, where the cost is calculated as the multiplication of pre-defined

selectivities of the edges. Then, the spanning tree is used as an input tree for the IK-

KBZ algorithm [58]. Fegaras introduces the Greedy Operator Ordering (GOO) algorithm

to greedily enumerate a single plan, which can either be a bushy or left-deep tree, on a

93



join graph [27]. In the join graph, the weights on vertices and edges are cardinalities and

selectivities, respectively. At each step, GOO joins two vertices with the minimum cost

into a new vertex with updated cardinality weight. The cost is the cardinalities of both

vertices multiplied by their selectivity without considering the cost of physical operators.

Additionally, if the two vertices share a common adjacent vertex, both edges are merged

into one and the weight is updated as the multiplication of both selectivities. The selectivity

weights on the other edges remain the same.

The concept of initiating the plan search from each vertex in the join graph, as mentioned

in [58, 77], assesses more than a single join order, leading to potentially more efficient query

plans. Moerkotte proposes the GreedyJoinOrdering-3 to greedily select the next relation to

join, while considering cross-joins [77]. The cost of joining tables is calculated with respect

to the sequence of already joined tables thus maintaining a sorted list of weights does not

offer an advantage. This is because the cost of a join operation is dynamic and depends on

the previously formed joins, making static weights less relevant.

There are other ways of representing queries. Lee et al. [62] defined the join graph where each

vertex is a join operator and an edge is present between two vertices if both join operators

share a common base relation. The authors propose the Maximum Value Precedence (MVP)

algorithm to find a directed spanning tree. However, a notable aspect of their join graph

definition is that it increases the search space due to the inclusion of spanning trees that

feature extra, unnecessary joins. These are referred to as ineffective spanning trees. Finding

the shortest path on a directed plan graph was introduced in [83, 31]. The plan graph is a

directed acyclic graph where a vertex represents a set of tables (subgraph) and an edge is

established if one vertex is a subgraph of another. Due to different combinations of table

sets, a plan graph typically has a larger number of vertices and edges compared to a join

graph.

4.5 Conclusions

In this work, we frame query optimization as finding spanning trees with low costs. We

calibrated our objective to find an ordered sequence of edges that spans all nodes in the

join graph while minimizing total edge costs that dynamically change as tables are joined.
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We adapted Prim’s and Kruskal’s algorithms to this new objective and leveraged them in

ESTE. Owing to its polynomial-time complexity, ESTE can systematically explore wider

and distinct areas of the search space. This rapid and comprehensive exploration of the

search space results in superior query plan quality. While ESTE operates significantly faster

than exhaustive strategy, it pushes the boundaries of heuristic strategy by significantly

surpassing one of the most accomplished heuristic algorithms.
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Chapter 5

Sub-optimal Join Order

Identification with L1-error

Q-error is the standard metric for quantifying the error of individual cardinality esti-

mates [81]. It is defined formally as the maximum quotient between the estimated and

true cardinalities, thereby equally penalizing both overestimations and underestimations.

Q-error is widely adopted in recent work on learning-based cardinality estimation methods

[111, 52, 16, 54, 26] as a surrogate for the quality of query execution plans, which is mea-

sured by P-error –the ratio between the cost of the selected and optimal query plans [32].

However, the only theoretical result connecting the two is a worst-case upper-bound [81]

stating that the cost of a query plan computed with estimates having a maximum Q-error

of Q is at most Q4 times larger than the cost of the plan computed with true cardinalities

– which is assumed to be optimal. Given only estimated and true cardinalities, the bound

provides a rough idea of how bad the worst possible query plan could be. Then, it is obvious

that for small values of the Q-error, the gap between the worst and optimal plan is relatively

small.

Since real query optimizers aim to identify the optimal plan – not the worst – we investi-

gate how useful is the Q-error in assessing the optimality of a query plan based solely on

cardinality estimates. For this, we compute the optimal plan using true cardinalities while

the database plan is derived using PostgreSQL estimates. These two sets of values are fed
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into an exhaustive plan enumeration algorithm over a search space consisting of plans with

arbitrary structure – including left-deep and bushy. The cost of a plan is computed using

the cost function defined in Equation 2.4, which is introduced in [63]. This cost function

considers both hash and index nested loop joins.
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Figure 5.1: P-error and Q-error are computed for all 113 JOB queries. Queries are grouped
by complexity: 45 Simple with 4-9 join predicates, 53 Moderate with 10-19 join predicates,
and 15 Complex with 20-28 join predicates.

As shown in Figure 5.1, which displays P-error as a function of the Q-error for the queries

in the JOB benchmark [65], there is no observable relationship between the two beyond the

worst-case upper bound. First, a large number of simple and moderate queries have optimal

plans – P-error close to 1 – even though they exhibit large variation on the Q-error – more

than six orders of magnitude (1). No matter if the Q-error is 10 or 107, an optimal plan

can be selected using the same cardinality estimates. Second, we intuitively expect that

Q-error is somewhat correlated with P-error – as the Q-error increases, so does the P-error.

This happens only for a limited number of complex queries (2). These cases imply the

selection of sub-optimal plans with different join orders. Third, the results include queries

for which the relationship between Q-error and P-error is reversed (3). The P-error of a

query is larger than the P-error of another query even though its Q-error is smaller. This

type of inversion shows that the relationship between the two errors is not even monotonic.

Finally, since the plans selected by the optimizer are far away from the worst-case, we argue

that Q-error falls short as an indicator for the sub-optimality of query plans. Therefore,
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we need to consider alternative metrics that focus on the real query plans generated by an

optimizer rather than the worst-case plan.

Problem. Given a query plan generated by an optimizer based on a set of cardinality

estimates, our goal is to determine if it is sub-optimal. Even though we consider general

cost functions that include physical operator details, our understanding of sub-optimality is

mostly with respect to the join order. We define sub-optimality in terms of P-error: a plan

with a cost at least c times larger than the cost of the plan computed with true cardinalities,

where c is a user-defined parameter, is considered sub-optimal. Therefore, we make the

implicit assumption that true cardinalities generate the optimal plan. Identical to Q-error

computation, sub-optimal plans are identified outside of the runtime query optimization

process and they require complete knowledge of true cardinalities and estimates.

High-level approach. We propose a learning-based method for the sub-optimal plan

identification problem. We treat identification as binary classification, where plans with a

cost at least c times larger than the optimal are considered sub-optimal – the other plans

are optimal. The focus of our work is on finding the best features for the classifier – not on

designing a new classifier. To this end, we employ standard decision trees. The classifier is

trained on a workload of query plans correctly labeled and is expected to accurately predict

sub-optimal plans from a testing dataset.

L1-error. The main contribution of this work is the design of the L1-error feature for

sub-optimal plan classification. Similar to Q-error, L1-error requires complete knowledge

of true cardinalities and estimates for all the sub-plans of a query plan. Unlike Q-error,

which considers the estimates independently, L1-error is defined as the distance between the

permutations – orders – corresponding to true cardinalities and estimates for all the sub-

plans having the same size, i.e., the number of joins. Intuitively, the more different the two

permutations are, the higher the chance the plan computed using estimates is significantly

different than the optimal plan, thus, likely sub-optimal. The same observation is made

in [81], where a plan is known to be optimal if the two permutations are identical. We

move beyond this limited case and define a quantitative measure for the difference between

permutations. Moreover, L1-error takes into account errors relative to the magnitude of

cardinalities since larger cardinalities have a greater influence on plan optimality and, hence,

their errors should incur higher penalties. L1-error also considers that small multi-way joins
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are more critical, with their cardinality estimates likely to be more accurate than larger

joins [65, 90].

We summarize our main technical contributions as follows:

• We conduct an in-depth data-driven analysis of the impact of Q-error on cardinality

estimation and query plan optimality. We study how Q-errors are distributed across

different join sizes and what their impact on finding optimal query plans is. Moreover,

we identify practical limitations of Q-error as a feature for sub-optimal plan classification.

• We introduce the L1-error feature for identifying sub-optimal query plans. L1-error is

specifically tailored to assess how cardinality estimation errors impact plan enumeration

algorithms. It is designed to bridge the cardinality estimation errors and enumeration

algorithms, ultimately enhancing the interpretability of query optimizer performance.

• We apply L1-error as the single feature of a standard decision tree classifier and evaluate

its accuracy in identifying sub-optimal query execution plans over four different bench-

marks, including JOB [65, 63], JOB-light [54], JCCH [13], and DSB [23] benchmarks.

Our experimental results confirm that L1-error is an accurate feature for identifying sub-

optimal plans. This accuracy can be further improved by combining L1-error with Q-error

into a composite feature that can be computed without overhead from the same data.

5.1 Q-Error

Query optimizers often fail to find an optimal plan because of errors and sub-optimal deci-

sions made during the stages of cardinality estimation, cost function, and plan enumeration.

In the cost function, inaccuracies in measuring the exact cost of each physical operator in

the plan can lead the query optimizer to select a sub-optimal plan. Similarly, attempts

to counter computational constraints in plan enumeration through heuristic enumeration

and pruning the search space can mislead the query optimizer by excluding optimal plans

from its scope of consideration. However, even under ideal conditions for the cost function

and plan enumeration, unavoidable errors in cardinality estimations can jeopardize these

stages [63, 65]. In this section, we delve into the widely used Q-error metric [81] that quan-

tifies the errors in cardinality estimation. We discuss how this metric can be employed to

evaluate the sub-optimality of a plan by providing a greater understanding of the extent of
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the estimation errors and their impacts on selecting the optimal plan.

5.1.1 Q-error for Cardinality Estimation

The Q-error metric was proposed as a means to quantify the degree of error in individual

cardinality estimations [81]. It has since become a preferred choice for quantifying the accu-

racy of synopses [16, 90] and learning-based models [52, 54]. Furthermore, it is extensively

employed in empirical studies to understand and improve the accuracy of these estimations,

thus playing a significant role in query optimization [65, 111, 61].

The Q-error of an individual cardinality estimation is defined as:

qi = max

(
Ŷi
Yi

,
Yi

Ŷi

)
(5.1)

where Yi and Ŷi are true and estimated cardinality of a single sub-plan. The Q-error value

is in the range of [1,+∞). In the case of zero values in the denominator, the zeroes can

be replaced by a small number – in this work, we use 10−4 for this purpose. The Q-error

quantifies the deviation of the estimated cardinality Ŷi from the true cardinality Yi treating

under- and over-estimation equally.

SELECT COUNT(*) 
FROM company_name cn, keyword k, movie_keyword mk, movie_companies mc, title t
WHERE k.keyword = 'character-name-in-title' and cn.country_code = '[sm]'  
    and mc.movie_id = mk.movie_id and cn.id = mc.company_id and k.id = mk.keyword_id and t.id = mk.movie_id and t.id = mc.movie_id 

movie_companies
mc 

title 
t

company_name
cn

keyword 
k

movie_keyword 
mk join graph k

mk

t(41.8K)

(41.8K)

(148.6K)

(4)

mc

 = 232.2K
(pg plan)

cnk

cn

mc

t(388)

(388)

(1,588)

(4)

mk

 = 2,364 
(optimal plan)

Figure 5.2: SQL statement for JOB query 2c, its corresponding join graph, and the query
plans selected using true cardinalities Y (for the optimal plan Popt) and cardinality esti-
mations Ŷ (for the PostgreSQL plan Ppg). The join sizes shown in parentheses are exact –
not estimates – while the plan costs C(Popt, Y ) and C(Ppg, Y ) are also computed using true
cardinalities.
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Consider query 2c from the JOB benchmark, which is depicted in Figure 5.2. This query

joins five tables with five join predicates – including a triangle cycle among tables t, mk,

and mc – and has two point selection predicates σ on tables cn and k. The figure also

includes the join graph G(V,E), in which every table is represented as a vertex v connected

by edges e for the corresponding join predicates. For example, the join predicate cn.id =

mc.company id is represented as the edge between the cn and mc vertices of the join graph.

Plan Join Order

1,980 9,713

190.4K 125

2-way joins (COST + CARDINALITY)
index 1 2 3 4 5
sub-plan
true 388 41.8K 2.6M 4.5M 34.9M

est. 973 20 1.5M 2.7M 13.8M
Q-error 2.51 2,092 1.70 1.70 2.53

3-way joins (COST + CARDINALITY)
index 1 2 3 4 5

sub-plan

true 388+388 388+1,588 41.8K+41.8K 41.8K+148.6K 2.6M+34.9M

est. 973+973 973+8,739 20+20 20+104 1.5M+2.7M
Q-error 2.51 5.50 2,092 1,428.38 12.69

4-way joins (COST + CARDINALITY)
index 1 2 3

sub-plan

true 1,976+4 776+1,588 83.7K+148.6K

est. 124+1 1,946+8,739 40+104
Q-error 4 5.50 1,428.38

5-way joins (COST + CARDINALITY)
index 1

sub-plan

true 1,980+4

est. 125+1
Q-error 4

(a) Exhaustive plan search

Plan Join order

2,364 10.7K

232.2K 144

2-way joins (CARDINALITY only)
index 1 2 3 4 5
sub-plan
true 388 41.8K 2.6M 4.5M 34.9M

est. 973 20 1.5M 2.7M 13.8M
Q-error 2.51 2,092 1.70 1.70 2.53

3-way joins (CARDINALITY only)
index 1 2 3 4 5

sub-plan

true 388 1,588 41.8K 148.6K 34.9M

est. 973 8,739 20 104 2.7M
Q-error 2.51 5.50 2,092 1,428.38 12.69

4-way joins (CARDINALITY only)
index 1 2 3

sub-plan

true 4 1,588 148.6K

est. 1 8,739 104
Q-error 4 5.50 1,428.38

5-way joins (CARDINALITY only)
index 1

sub-plan

true 4

est. 1
Q-error 4

(b) Greedy plan search

Figure 5.3: Query plans over the left-deep tree search space corresponding to JOB query
2c.

In the last row of every table from Figure 5.3, we show the individual Q-error for the corre-

sponding sub-plan. Q-errors for sub-plans in both exhaustive and greedy plan enumeration

are the same. This is because Q-error solely measures the error between true and estimated

join cardinalities and does not take into account the sub-plan costs. In the figure, across

all join sizes, the Q-error of Pmc⋊⋉t and Pmk⋊⋉t are the smallest – both equal to 1.70 – which

are underestimates of the true cardinalities in this case. The least accurate estimations are

for the 2-way join Pk⋊⋉mk and the 3-way join Pk⋊⋉mk⋊⋉t. These Q-errors are equal to 2, 092,

which also underestimates the true cardinalities. Alternatively, the cardinality of Pcn⋊⋉mc⋊⋉t

is overestimated when the Q-error is 2.51.

In Figure 5.4a, at each join level, we depict the Q-error measured for the 70, 407 sub-plans
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generated from all 113 queries in the JOB benchmark – excluding cross-joins [63, 65]. The

sub-plans are grouped by the number of joins – ranging from 2 to 17 – shown on the x-axis.

At each join size, Q-errors are shown via boxplots including 95, 75, 50, 25, and 5 percentiles.

Additionally, Figure 5.4b provides a breakdown of the number of estimates grouped by join

size, which illustrates the effect of estimation errors. By examining these estimates, we

can gain a clearer understanding of how estimation errors are distributed across different

join sizes and how these errors can impact the overall performance of finding optimal query

plans. The results show that cardinality estimations for 2-way joins based on 1, 336 esti-

mations – which are 1.9% of all sub-plans – are the most accurate. Estimation accuracy

from 3-way to 6-way joins starts decreasing – median Q-errors are between 101 and 103

based on 21, 690 estimations, which are 30.8% of all the sub-plans. Starting from 7-way

to 13-way joins, median Q-error significantly increases – over 103 – which includes 46, 544

estimations, or 66.1% of all sub-plans. The rest of the queries form 1.2% of all sub-plans,

which is 837 queries. Interestingly, although the number of sub-plans is small, we observe

relatively smaller errors starting from 14-way to 17-way joins. These observations indicate

that errors increase exponentially with the increase in join size [42]. Inaccuracies in cardi-

nality estimation can have a cumulative detrimental effect on finding optimal query plans.

Specifically, significant errors in cardinality estimations at higher-level joins can outweigh

and misdirect the query optimizer, causing it to essentially select a query plan at random.

Such errors reduce the likelihood of finding the optimal join order and selecting efficient

physical operators, thus compromising the overall effectiveness of the query optimizer.

In Figure 5.5, we illustrate the effect of errors in cardinality estimation on plan enumeration.

This figure provides a visual understanding of how inaccuracies in cardinality estimation

can influence the performance of different plan enumeration algorithms, highlighting the

importance of accurate estimations in finding an optimal query plan. For every JOB query

– shown on the x-axis grouped by join size – we compute the cost C of four different plans

(shown on the y-axis) selected by exhaustive and greedy enumeration when utilizing both

true cardinalities Y and the PostgreSQL estimations Ŷ . These costs are plotted relative

to the cost of the exhaustive plan with true cardinalities C(Popt, Y ) – the horizontal solid

red line at 1. The plans C(Popt, Y ) are optimal within the search space. As expected,

the costs of these optimal plans are lower than the costs of the other plans – equal to or

above the red horizontal line. We also observe that several plans selected by the greedy
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enumeration based on true cardinalities have a higher cost than the greedy plans computed

with estimates – green spikes above the blue line. These cases occur when misestimated

cardinalities Ŷ accidentally lead the greedy enumeration to more efficient plans than those

selected based on true cardinalities Y .

The figure also demonstrates the growing need for accurate estimations as the query com-

plexity increases – the gaps among the red, black, and blue lines around the second red

vertical line. This behavior is expected as we begin to observe significant misestimations

starting from 7-way joins and beyond – as shown in Figure 5.4a, the Q-error exceeds 103

in these cases. Moreover, these significant misestimations adversely impact the exhaustive

plan enumeration, as the cumulative effect of estimation errors misguides the cost and enu-

meration components. For moderate and complex queries, plans selected by exhaustive

enumeration have higher costs than plans greedily selected based on estimations – black

spikes above the blue line. This means the greedy search algorithm appears to make better

decisions based on relatively accurate early-stage join estimations while the exhaustive enu-

meration is misguided by large misestimations of larger joins. Consequently, the supposedly

optimal plans are underestimated compared to the actual optimal plans. Hence, they are

selected by the exhaustive enumeration algorithm. These observations suggest that the

advantage of exhaustive search diminishes when operating on significant misestimations of

large joins. Such errors hinder the enumeration algorithm from finding the optimal query

plan.

5.1.2 Q-error for Plan Optimality

In addition to measuring the error of an individual estimate, Moerkotte et al. [81] introduce

a theoretical upper-bound on the ratio of the cost of the selected Ppg and optimal Popt query
plans using Q-error:

C(Ppg, Y )

C(Popt, Y )
≤ q4 (5.2)

where q = maxi⊆X {qi} and X is the set of all sub-plans. The cost ratio between the

selected and optimal plan has recently been named P-error [83, 66, 32]. In Figure 5.3, for

query 2c, the maximum Q-error is q = 2, 092. The bound states that, given the estimated
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Figure 5.4: The distribution of the Q-error and the number of sub-plans as a function of
the number of joins for all the 70,407 sub-plans generated from the 113 JOB queries.
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Figure 5.5: Impact of cardinality estimation on plan enumeration. The costs are normalized
to the cost of the optimal plan obtained by exhaustive enumeration using true cardinalities.

and true cardinalities of a query, we can determine whether the selected plan is equivalent

to the optimal plan without having to enumerate and select expected and optimal query

plans to compute P-error. In other words, if the P-error of the selected and optimal plan

is at most q4, then the selected plan is identical – or close – to the optimal plan. This

approach provides a theoretical method to evaluate the optimality of a query plan based

on cardinality estimates, reducing the computational burden associated with exhaustive

enumeration.

To evaluate the Q-error bound on a larger and more complex workload operating on real-

world data, we compute both the Q-error and P-error for the entire JOB benchmark consist-

ing of 113 queries [63, 65]. The results are presented in Figure 5.1 from the Introduction 5.

We categorize the queries based on the number of joins: 45 simple queries with 4-9 join

predicates, 53 moderate queries with 10-19 join predicates, and 15 complex queries with

20-28 join predicates, respectively. To compute the P-error for a query, the join orders Popt
and Ppg are determined by the exhaustive enumeration algorithm with both true and Post-

greSQL estimated cardinalities. The figure also includes the upper-bound from Equation 5.2

as an exponential function – represented by the red line.

The results show a large number of simple and moderate queries with optimal plans – P-

error equal to 1 – despite having a high Q-error. The P-error for these queries indeed falls
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within the bound, hence their plans are optimal. However, many other queries that comply

with the bound exhibit significantly larger P-error and even higher Q-error. These queries

are primarily moderate or complex queries having plans that are not optimal, thus, resulting

in different join orders despite satisfying the bound. For query 2c from Figure 5.3a, the

optimal plan Popt is (cn ⋊⋉ mc ⋊⋉ mk ⋊⋉ k ⋊⋉ t), which has the true cost C(Popt, Y ) = 1, 980.

The PostgreSQL selected plan Ppg is (k ⋊⋉ mk ⋊⋉ mc ⋊⋉ cn ⋊⋉ t), which has the true cost

C(Ppg, Y ) = 190.4K. This results in a P-error of 96 and a Q-error of q = 2, 092. According

to the bound [32], 96 ≤ 2, 0924 ≈ 2E+13 is correct. However, the gap between the two

values is immense – more than 10 orders of magnitude. For moderate and complex queries,

we observe larger cost deviations and extremely high Q-error values. This indicates that

the selected and optimal query plans are very different despite satisfying the Q-error bound.

Therefore, we argue that Q-error is too loose as a bound and, as an indicator, fails to identify

sub-optimal query plans. Intuitively, we expect a small P-error to correspond with a small

Q-error and a large P-error with a large Q-error. However, our observations show that

queries with a large P-error can have a small Q-error and vice versa. Consequently, these

observations show that the maximum Q-error bound falls short in accurately determining

the optimality of query plans [32, 84].

5.2 L1-error

Finding an optimal join order highly depends on the accuracy of cardinality estimations

and how the misestimation errors “impact” the plan enumeration algorithm. In Figure 5.3,

we show the sub-plans enumerated by exhaustive and greedy plan search algorithms sorted

by the true cardinality Y . The sorted sub-plans are shown for every join size k of query

2c. For 2-way joins, if the sub-plans are sorted by the estimated cardinality Ŷ , then the

relative order becomes different from the order of the sub-plans sorted by true cardinality

Y . The difference occurs because of the impact of cardinality misestimation errors of sub-

plans cn ⋊⋉ mc and k ⋊⋉ mk. However, this difference is minimal in this case – only on one

position – henceforth, the plan enumeration algorithm is likely to make accurate decisions

in choosing optimal sub-plans. In this section, we introduce the L1-error to quantify the

permutation distance between the order of the true cardinalities and that of the estimates

for a given sub-plan size. While the importance of the relative ordering of the estimates has
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been pointed out in previous work [81], L1-error is the first measure to analytically quantify

and employ it in determining if a particular join order is optimal.

5.2.1 Relative Sub-Plan Arrangement

By sorting the sub-plans for each join size k by true and estimated cardinality, we have two

sub-plan arrangements – position vectors of the same length. For instance, in 2-way joins,

the two position vectors are defined as ρ = (1, 2, 3, 4, 5) sorted by Y and ρ̂ = (2, 1, 3, 4, 5)

sorted by Ŷ , respectively. To differentiate between ρ and ρ̂, we name ρ as the identity

permutation in the rest of the work. Similarly, for each join size k, both position vectors

are denoted as ρ and ρ̂ ∈ Nd by (1, 2, . . . , d) where d is the number of sub-plans of size

k. There is an extensive range of metrics available, such as Spearman’s footrule [102] and

Kendall’s tau [50], to measure the distance between two arrangements (or ranked lists) [67].

This field has been extensively researched and is a well-studied area. Among the various

metrics available, we find Spearman’s footrule distance (also known as L1 distance) is

particularly effective in quantifying the impact of cardinality estimation errors on plan

search algorithms. It provides a strong measure of the distance between two sub-plan

arrangements. While it is certainly possible to substitute Spearman’s footrule distance with

other metrics to compare precision performances, we show, through our observations, that

Spearman’s footrule distance intuitively fits our problem well and delivers accurate results.

In the remainder of this work, for the sake of convenience, we refer to Spearman’s footrule

distance as L1-error. L1-error measures the element-wise absolute differences between two

position vectors ρ and ρ̂:

L1k (ρ, ρ̂) =
d∑
i

|ρ(i)− ρ̂(i)| (5.3)

where k is join size, and ρ(i) and ρ̂(i) are the positions of i-th sub-plan in the position

vectors ρ and ρ̂. In the case of identical sub-plan arrangements, L1k(ρ, ρ̂) = 0. In the

case of discrepancies, L1-error captures the cardinality estimation errors that affect the

relative arrangement of sub-plans. In Figure 5.6, we demonstrate the position vectors ρ

and ρ̂ for each join size in query 2c – first two rows of the tables located on the left side

of the white vertical bars. The position vectors are generated based on the cardinalities
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shown in Figure 5.3b. L1-error measures, L1k(ρ, ρ̂), for 2, 3 and 4-way joins are 2, 8 and 2,

respectively.

5.2.2 Weighted Relative Sub-Plan Arrangement

From Equation 5.3, we observe that the L1-error does not take into account the following

criteria which are important to capture for plan search algorithms:

• Significantly over and underestimating cardinality should be associated with greater

penalties. Conversely, mispositioning sub-plans with similar cardinalities in the position

vectors should carry fewer and relatively similar penalties.

• Cardinality misestimations that occur early in the position vector should attract greater

penalties. This is particularly beneficial for plan search algorithms, which are more likely

to choose a sub-plan from the first half of the position vector.

Given the limitations identified in the original L1-error, we propose an enhanced L1-error.

This new design seeks to improve upon the original by more effectively capturing the impacts

of cardinality misestimations on plan search algorithms in query optimization. Kumar

et al. [60] propose a method for measuring the distance between two ranked lists, with

extensions to factor in the weights of elements and positions, as well as similarities between

elements. In our study, we adapt and employ variations of these proposed extensions that

align intuitively with our problem context.

5.2.2.1 Sub-plan Impact Weights

First, we define a misestimation impact of sub-plans within a weight symmetric matrix W

for each join size k. Each i-th row of length d in this matrix represents a sub-plan, and

misestimation impact weights are defined as:

W k
i,j = max

(
Yj
Yi

,
Yi
Yj

)
(5.4)

where Wi,j ≥ 1, and Yj and Yi are true cardinality values. In the case of zero cardinality,

denominators can be replaced with a small number. The weight scales are comparable across

different query complexities becauseWi,j only captures the relative differences in cardinality.

108



Impact weight, W (2-way join)
1 2 3 4 5

1 1.0 107.84 6,724.56 11,659.6189,854.74
2 1.0 62.36 108.12 833.26
3 1.0 1.73 13.36
4 1.0 7.71
5 1.0

2-way join (CARDINALITY only)
1 2 3 4 5
2 1 3 4 5

Swap cost 1.0 107.84 62.36 1.73 7.71
Monotonic weight 1.0 108.84 171.2 172.93 180.64

3-way join (CARDINALITY only)
1 2 3 4 5
3 4 1 2 5

Swap cost 1.0 4.09 26.35 3.55 234.69
Monotonic weight 1.0 5.09 31.44 34.99 269.68

4-way join (CARDINALITY only)
1 2 3
1 3 2

Swap cost 1.0 397.0 93.55
Monotonic weight 1.0 398.0 491.55

Impact weight, W (3-way join)
1 2 3 4 5

1 1.0 4.09 107.84 382.87 89,854.74
2 1.0 26.35 93.55 21,954.43
3 1.0 3.55 833.26
4 1.0 234.69
5 1.0

Impact weight, W (4-way join)
1 2 3

1 1.0 397.0 37,138.0
2 1.0 93.55
3 1.0

Figure 5.6: Sub-plan weights used by the plan enumeration algorithms for JOB query 2c.

Thus, the specific scales of cardinality in simple and complex queries, and join sizes are not

consequential. In Figure 5.6, for each join size k, we illustrate the computed weight matrix

as a separate table on the right side of the white vertical bars. Row and column indexes in

each weight matrix represent sub-plan positions in the identity position vector ρ. The weight

matrix signifies the relative differences in cardinality between any two sub-plans of the same

join size. A larger weight implies a greater disparity between the two sub-plans in terms of

their cardinalities. For example, in Figure 5.3b, the cardinality of 2-way sub-plan Pcn⋊⋉mc is

388 and it is significantly less than the cardinalities of the other four 2-way sub-plans with

cardinalities of 41.8K, 2.6M , 4.5M , and 34.9M . Therefore, in row 1 of the weight matrix

for k = 2, we observe much larger weights. The same weight matrix also exhibits sub-plan

weights of similar cardinality, a scenario frequently encountered when estimating sub-plan

cardinalities. Cardinalities of sub-plans Pmc⋊⋉t and Pmk⋊⋉t of join size 2 are relatively close –

2.6M and 4.5M , respectively. Hence, the impact of mispositioning these two sub-plans has

less penalty – weight value is 1.73. We define the L1-error that assigns impact penalties for

sub-plan misestimations proportionate to their cardinality magnitudes:
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L1kW =
d∑
i

∑
j:ρ(j)<ρ(i)
∧ ρ̂(j)>ρ̂(i)

W k
i,j +

∑
j:ρ(j)>ρ(i)
∧ ρ̂(j)<ρ̂(i)

W k
i,j (5.5)

To measure the difference between ρ and ρ̂ with sub-plan misestimation impacts, the outer

term sums weights for each sub-plan i when it is mispositioned with other sub-plans. The

left inner term aggregates the weights of sub-plans when their true cardinalities are overes-

timated more than the estimated cardinality of the sub-plan i in ρ̂, despite those sub-plans

having true cardinalities smaller than the true cardinality of sub-plan i in ρ. Similarly, the

right inner term sums the weights of sub-plans with underestimated true cardinality that is

more than the estimated cardinality of the sub-plan i in ρ̂, despite those sub-plans having

larger true cardinalities than the true cardinality of sub-plan i in ρ.

For example, in Figure 5.6, sub-plan Pk⋊⋉mk⋊⋉t of join size 3 is located at position 3 in ρ. Its

true cardinality of 41.8K is underestimated as 20 which is less than the estimated cardi-

nalities 973 and 8, 739 for sub-plans Pcn⋊⋉mc⋊⋉t and Pcn⋊⋉mc⋊⋉mk which have true cardinalities

as 388 and 1, 588, respectively. Hence, in the weight matrix W 3, the left inner term sums

the penalty weights W3,1 = 107.84 and W3,2 = 26.35 of Pk⋊⋉mk⋊⋉t for being misplaced in

ρ̂ to the left of sub-plans Pcn⋊⋉mc⋊⋉t and Pcn⋊⋉mc⋊⋉mk. Similarly, the right term sums the

penalty weights for being misplaced to the right side of sub-plans locations in ρ̂ despite

their larger true cardinality and higher locations in ρ. However, sub-plan Pk⋊⋉mk⋊⋉t is not

overestimated than sub-plans Pk⋊⋉mk⋊⋉mc and Pmc⋊⋉t⋊⋉mk. Sub-plan Pk⋊⋉mk⋊⋉t has true car-

dinality of 41.8K and estimate as 20, while sub-plans Pk⋊⋉mk⋊⋉mc and Pmc⋊⋉t⋊⋉mk have true

cardinality of 148.6K and 34.9M , and estimates as 104 and 2.7M , respectively. Thus, the

right term is equal to 0 and the overall misposition penalty weight for sub-plan Pk⋊⋉mk⋊⋉t is

107.84+ 26.35+ 0 = 134.19. For sub-plans of join size k = 3, total misestimation impact is

L13W = 1, 221.22.

5.2.2.2 Sub-plan Position Weights

Intuitively, imposing larger penalties for the misestimation of smaller cardinalities is desir-

able. This is because plan search algorithms are more likely to select sub-plans with smaller

cardinalities. The position vectors represent the locations of sub-plans sorted by their true

cardinality, thus sub-plans with smaller cardinalities are expected to be positioned early or
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left half in ρ. In Figure 5.3, search algorithms, when guided by true cardinality, tend to se-

lect sub-plans from the left half of sub-plan lists on every join step. Consequently, preserving

the relative order of sub-plans with smaller cardinalities is generally of significant impor-

tance. In other words, we impose a higher penalty for the early position differences between

position vectors ρ and ρ̂ than the differences at the tail. To achieve desired position-based

penalty weights, we need monotonically increasing weights similar to in [60]. We define the

cost of a swap between two adjacent sub-plans i and i − 1 in the position vectors as the

ratio between their true cardinalities Yi/Yi−1 ≥ 1. In Figure 5.6, we show the swap costs in

the third row named as Swap cost in each join table. Then, the monotonically increasing

swap weights are defined as:

µi = µi−1 +
Yi
Yi−1

(5.6)

where µ1 = 1, and µi < µj < µk such that i < j and j < k. In Figure 5.6, we show the

monotonically increasing weights in the fourth row named as Monotonic weight in each join

table. This monotonic property offers weights by considering both the distance in position

and the closeness in cardinality values of the sub-plans. For example, in Figure 5.6, sub-

plan Pk⋊⋉mk⋊⋉t of join size 3 is at distance 1 from sub-plan Pk⋊⋉mk⋊⋉mc while Pcn⋊⋉mc⋊⋉t is away

from Pk⋊⋉mk⋊⋉mc for 3 positions. Similarly, true cardinality 388 of Pcn⋊⋉mc⋊⋉t is much less

than true cardinality 148.6K of Pk⋊⋉mk⋊⋉mc while sub-plan Pk⋊⋉mk⋊⋉t has true cardinality of

41.8K. Hence, the respective monotonic weights for these three sub-plans are 1.0, 31.44, and

34.99. Integrating position-based monotonic weights µ into L1kW assigns greater penalties

to the misestimation of smaller true cardinalities that are positioned early in the position

vector ρ. By assigning these estimations more weight, L1-error more accurately reflects the

significance of their errors, improving its ability to predict sub-optimal query plans:

L1k =

d∑
i

µ−1
i ×

 ∑
j:ρ(j)<ρ(i)
∧ ρ̂(j)>ρ̂(i)

W k
i,j +

∑
j:ρ(j)>ρ(i)
∧ ρ̂(j)<ρ̂(i)

W k
i,j

 (5.7)

In Figure 5.6, in 3-way joins, penalty weights assigned to the five sub-plans are 490.71, 23.55,

4.27, 13.62, and 0, respectively. L1-error assigns a higher penalty to sub-plans Pcn⋊⋉mc⋊⋉t
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and Pcn⋊⋉mc⋊⋉mk, which are 490.71 and 23.55 respectively, because of their earlier positions

in ρ. Despite being placed at the fourth position, sub-plan Pk⋊⋉mk⋊⋉mc has a higher penalty

weight of 13.62 than Pk⋊⋉mk⋊⋉t with 4.27 penalty weight at the third position. This is because

Pk⋊⋉mk⋊⋉mc has a larger cardinality, making it riskier to misplace. Consequently, overall L1-

error for 3-way join is L13 = 532.15. This illustration exemplifies how L1-error effectively

penalizes misestimations based on their impact on plan search algorithms.

5.3 L1-error for Plan Optimality

In this section, we explore the potential of the L1 error as a complement or perhaps even

an alternative metric to Q-error to evaluate query plans. In addition, we examine how the

L1 error, as an independent feature, can be utilized in classifying sub-optimal query plans,

thereby demonstrating its efficacy as a reliable indicator.
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Figure 5.7: Importance of small joins at the beginning and decreasing impact of large joins
at the end of query plan enumeration algorithms.

5.3.1 Query-level L1-error

In Section 5.2, we show how L1k can independently assess cardinality estimation errors at

each join size k. It is essential to note that the number of sub-plans d at each join size k may

vary depending on the complexity of the query – different lengths of the position vectors ρ
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and ρ̂. By aggregating individual L1-error at each join size into L1k, we can form a feature

vector of size K, starting from 2-way joins k = 2. Given that queries can have different join

sizes, the dimensions of these feature vectors can also vary. We define a query-level L1-error

as:

L1Q =
K∑
k=2

L1k (5.8)

The magnitude of this query-level L1 error can be influenced by the complexity of the

query – various numbers of join sizes involved. Consequently, the aggregation approach,

which sums up all join-level L1 errors, can be particularly sensitive to the complexity of

the query. This implies that more complex queries with a larger number of join sizes

may naturally result in higher aggregated L1 errors, emphasizing the influence of query

complexity on the overall L1-error calculation. To alleviate this issue, we can take into

account our insights from Figure 5.4a. Cardinality estimations for higher-level joins tend to

be severely inaccurate. There is a visible decline in accuracy following 3-way joins, and a

considerable drop after 6-way joins. Given this, it is evident that higher-level join cardinality

estimations are unreliable and should, therefore, be excluded from consideration or given

less weight in comparison to lower-level join cardinality estimations [112]. This approach

would counterbalance the tendency for larger errors in complex queries. To further support

this decision, we present Figure 5.7 that illustrates how intermediate data decreases as

the join size grows. For each query complexity, we group all JOB sub-plans – including

PK + FK and FK + FK joins – by join size and plot the median cardinality value. The

results show a consistent trend across all query complexity groups: as join size increases

and more filter predicates come into play, intermediate data reduces. Therefore, selecting

optimal sub-plans in the early stages of join sizes is crucial to prevent the propagation of

large intermediate data. Decisions made at later stages, influenced by inaccuracies, are less

impactful due to the smaller volume of intermediate data processed at higher-level joins. In

the figure, we observe a notable drop in data after 6-way join sizes in simple queries, 10-way

join in moderate queries, and 15-way join in complex queries. Interestingly, the volume of

intermediate data for complex queries between 6 to 13 joins remains stable. This implies

the importance of choosing optimal sub-plans up to 13-way joins. While these results are

primarily derived from the analysis of JOB sub-plans, we believe this observed trend applies
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to a wide range of workloads. Taking into account the discussed facts and observed trends,

we assign weights to already computed join-level L1-errors L1k at each join size using an

inverse logistic function. For notational purposes, let

wk =
e−t×k

1 + e−t×k
(5.9)

where t represents the logistic growth rate or the steepness of the curve. With this in mind,

we can define the weighted query-level L1-error as follows:

L1Q =

K∑
k=2

wk × L1k = wT × L1 (5.10)

L1-errors across different join sizes are aggregated into a unified L1-error while assigning

lower weights to L1-errors at high-level joins. The logistic growth rate t can be tuned

based on the performance of the cardinality estimator in use. For example, we set t = 1.5,

thus w 7 = 0.000028, based on the Q-error values generated by PostgreSQL, depicted in

Figure 5.4a. It begins to reduce the impact of join-level L1-errors starting from 7-way joins

as we observe significant estimation errors at higher-level joins.

5.3.1.1 Algorithm Overview

Algorithm 4 shows an overview of computing L1-error for a given query Q. The inputs

are the maximum join size K and all sub-plans S along with their true Y and estimated Ŷ

cardinalities. Algorithm 4 consists of two functions Query-L1-error (lines 1-4) and Join-

L1-error (lines 5-14). For the sake of clarity, we separate these two functions, although

these two functions can be combined. At the query level, in function Query-L1-error,

join weights w for each join size k are generated as in Equation 5.9 (line 2). The impact

of joins decreases as their sizes increase following the ‘S’-shaped sigmoid curve. Join-level

L1 ∈ RK are aggregated into the final query-level L1Q (line 4). Join-L1-error computes

join-level L1k for each join size k. For the sub-plans Sk of size k, two position vectors ρ and ρ̂

are created and sorted in increasing order based on the true Y and estimated Ŷ cardinalities,

respectively (lines 7-9). Simultaneously, impact weight matrix W k and position weights δk

are generated from Equations 5.4 and 5.6, respectively (lines 10-12). Lastly, a join-level L1k
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for join size k is computed from Equation 5.7 (line 13). We repeat the process for each join

size (lines 6-13) yielding a feature vector, L1 of length K, of join-level L1k (line 14).

Algorithm 4 L1-error

Input: largest join size K of input query Q, set of query sub-plans S, true Y and
estimated Ŷ cardinalities
Output: L1Q weighted query-level L1-error

1: function Query-L1-error(K, S, Y , Ŷ )
2: w ∈ RK−1 ← join size weights from Equation 5.9
3: L1← Join-L1-error(K,S, Y, Ŷ )
4: return L1Q = wT × L1
5: end function
6: function Join-L1-error(K, S, Y , Ŷ )
7: for each join size k ∈ {2 . . .K} do
8: Sk ⊂ S ← subset of sub-plans of size k in S
9: ρ← positions of Sk increasingly sorted by Y

10: ρ̂← positions of Sk increasingly sorted by Ŷ
11: // compute weights from Equations 5.4 and 5.6
12: W k ← impact weights of sub-plans in Sk

13: δk ← position weights of sub-plans in Sk

14: L1k ← L1-error for join size k from Equation 5.7

15: return L1← join-level L1 feature vector of size K − 1
16: end function

5.3.2 Applications of L1-error

While minimizing individual Q-errors can enhance the overall efficiency of a query optimizer,

the metric often falls short of accurately indicating query plan optimality [32, 111]. Q-

error is conventionally used to assess cardinality estimation techniques and synopses, as a

separate sub-task that influences the likelihood of finding an optimal query plan [65, 52]. In

recent years, Q-error has been widely adopted in learning-based approaches [111], where it is

utilized in the post-training evaluation phase [38, 118, 117, 122] and during training [54, 83].

In Section 5.1, we observe that being solely an error measurement, cannot reliably identify

sub-optimal query plans. This limitation arises from the fact that other crucial factors,

such as cost function and plan enumeration, that bridge the gap between estimation error

and the selection of an optimal plan, are not taken into account by Q-error.

In this work, we present L1-error as a metric to characterize plan sub-optimality, taking

as an input only cardinalities and without requiring plan enumeration to compute P-error.
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Contrary to Q-error which primarily concentrates on estimation precision, L1-error priori-

tizes the relative order of sub-plans – a critical aspect for cost function and plan enumeration

algorithms. It accounts for the impact weights of sub-plans and their relative displacement

in the presence of estimation errors. Therefore, unlike Q-error, L1-error is capable of accu-

rately identifying queries with sub-optimal plans. This suggests that L1-error can serve as

a complementary metric to Q-error to evaluate query plans and can be employed in future

research to evaluate the sub-optimality of query plans produced by synopses and learning-

based models. In the current work, we evaluate L1-error as a standalone measure. For this

purpose, we frame the identification of queries with sub-optimal query plans as a binary

classification task.

5.4 Empirical Evaluation

In the current study, we assess L1-error as a separate measure and frame the identification

of queries with sub-optimal query plans as a binary classification task. This allows us to

evaluate the standalone efficacy of L1-error. Our evaluation of L1-error spans three different

facets – varying sources of cardinality estimates, plan search algorithms, and workloads and

data.

5.4.1 Experimental Setup

5.4.1.1 Dataset & Query Workloads

We perform the experiments on the JOB benchmark [92] over IMDB dataset [12], which

has seen extensive use in evaluating query optimizers and has thereby established itself as

a standard benchmark [63, 65]. The JOB benchmark defines 113 queries grouped into 33

families. These queries vary significantly in their complexity, with the simplest having 4

join predicates and the largest join size of 4, and the most complex having 28 join predicates

with the largest join size of 17. This variability manifests itself in execution times that are

highly different. To compensate for this, we split the queries into three complexity groups

– simple (4-9 join predicates), moderate (10-19 join predicates), and complex (20-28 join

predicates) – and examine each group separately. We also perform experiments using the

JOB-light benchmark [53], a simpler version of the JOB benchmark that includes 67 simple
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queries that can be represented with a star join graph and feature 2 to 4 join predicates.

To show how L1-error generalizes to different workloads and data, we evaluate L1-error on

JCCH [13] and DSB [23] benchmarks. We use scale factors of 1 and 10 and generate 511

and 1440 queries, respectively.

5.4.1.2 Methodology & Implementation

For cardinality estimations, we select two distinct cardinality estimators – PostgreSQL

15.1 [88], a widely recognized database system, and COMPASS [46, 47], a more recent

system. We run the sub-plans of the four workloads in PostgreSQL to collect their estimated

and true join cardinalities. Additionally, we collect estimated join cardinalities for the

sub-plans of JOB and JOB-light produced by COMPASS. We compute the P-Error for

each query and use it as a true label in our binary classification task. We acquire query

plans utilizing exhaustive and greedy plan search algorithms based on estimated and true

cardinalities. The cost of the query plans is calculated using the cost function C defined in

Equation 2.4.

We show the performance of the L1-error-based binary classifier via confusion matrices

depicted in Tables 5.1 and 5.2. We label queries with sub-optimal plans as ‘positive’ (P)

and ‘negative’ (N) otherwise. These classifications are shown in the fifth to eighth columns

of the confusion tables. In the tables, we report four measures: ‘true positive’ (TP), ‘true

negative’ (TN), ‘false positive’ (FP), and ‘false negative’ (FN) shown on the ninth to twelfth

columns. In addition, we report overall accuracies on test data of the classifiers based on

L1-error, Q-error and both in Figures 5.9 and 5.10. In the binary classification task, we

use a CART decision tree model of a tree depth of 5 from the Scikit-learn library (version

1.1.2). For the logistic growth rate in Equation 5.9, we set t = 1.5, which begins weighting

4-way joins at ≈ 0.002. We partition the queries into training and testing, using a 70%

to 30% split, respectively, to have a large enough test data for the classification task. In

JCCH and DSB, we split the data into 80% to 20%. The resulting data sizes are shown in

the third and fourth columns in Tables 5.1 and 5.2.
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Figure 5.8: Distribution of JOB queries based on P-error. Plans are selected using true and
PostgreSQL estimated cardinalities.
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Benchmark Enumerator
Train
queries

Test
queries

Actual Predicted
TP TN FP FNSub-optimal

(Positive)
Optimal
(Negative)

Sub-optimal
(Positive)

Optimal
(Negative)

JOB
113 queries

Exhaustive

79 34

87
61 train
26 test

26
18 train
8 test

94
67 train
27 test

19
12 train
7 test

85
60 train
25 test

17
11 train
6 test

9
7 train
2 test

2
1 train
1 test

Greedy
46

32 train
14 test

67
47 train
20 test

51
34 train
17 test

62
45 train
17 test

33
24 train
9 test

49
37 train
12 test

18
10 train
8 test

13
8 train
5 test

JOB-light
67 queries

Exhaustive

40 27

9
5 train
4 test

58
35 train
23 test

3
2 train
1 test

64
39 train
25 test

1
1 train
0 test

56
35 train
21 test

2
0 train
2 test

8
4 train
4 test

Greedy
2

1 train
1 test

65
39 train
26 test

0
0 train
0 test

67
40 train
27 test

0
0 train
0 test

65
39 train
26 test

0
0 train
0 test

2
1 train
1 test

JCCH
511 queries

Exhaustive

408 103

150
120 train
30 test

361
288 train
73 test

127
99 train
28 test

384
309 train
75 test

127
99 train
28 test

361
288 train
73 test

0
0 train
0 test

23
21 train
2 test

Greedy
120

96 train
24 test

391
312 train
79 test

59
45 train
14 test

452
363 train
89 test

59
45 train
14 test

391
312 train
79 test

0
0 train
0 test

61
51 train
10 test

DSB
1440 queries

Exhaustive

1152 288

727
582 train
145 test

713
570 train
143 test

668
529 train
139 test

772
623 train
149 test

586
462 train
124 test

631
503 train
128 test

82
67 train
15 test

141
120 train
21 test

Greedy
668

534 train
134 test

772
618 train
154 test

626
503 train
123 test

814
649 train
165 test

529
424 train
105 test

675
539 train
136 test

97
79 train
18 test

139
110 train
29 test

Table 5.1: Evaluation of L1-error on query plans selected using PostgreSQL cardinality
estimates.

5.4.2 Results

5.4.2.1 L1-error Performance on PostgreSQL.

In this section, we first examine L1-error performance identifying the sub-optimality of query

plans selected based on PostgreSQL’s cardinality estimation. Subsequently, we analyze L1-

error performance on different sets of cardinality estimates collected from the COMPASS

estimator used to select query plans. We start the evaluation with the JOB workload,

composed of a mix of 113 simple, moderate and complex queries. Out of the four workloads,

JOB is the most challenging due to its relatively complex graph topology and large number

of joins. Figure 5.8 displays the distribution of JOB queries, grouped by their P-error shown

on the x-axis. In Figure 5.8a, when employing exhaustive enumeration, we observe that

23.9% of the selected plans are equivalent to optimal plans (P-error = 1), while 35.4% of 113

queries are near-optimal (P-error < 1.5), thus may be considered successful. The remaining

40.7% of the overall number of queries exhibits larger cost differences, some of which are

severely sub-optimal. In the case of greedy enumeration, Figure 5.8b, we observe that 25.7%

and 24.8% of the selected plans are equivalent to optimal plans (P-error = 1) and near-

optimal (P-error < 1.5), respectively. Interestingly, 17.7% of the queries have even better

plans than the plans selected using true cardinalities (P-error < 1). This is due to greedy
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decisions made during the enumeration. The remaining 31.8% of the plans demonstrate

higher P-errors, and some are severely sub-optimal. These sub-optimal plans mainly include

moderate and complex queries, and their sub-optimal plans should be accurately identified.

Exhaustive Greedy
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20

40

60
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100
Q-error L1-error L1+Q-errors

a
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u
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(a) JOB workload

Exhaustive Greedy

(b) JOB-light workload

Exhaustive Greedy

(c) JCCH workload

Exhaustive Greedy

(d) DSB workload

Figure 5.9: L1-error classifier accuracy on test data. Query plans are selected using Post-
greSQL cardinality estimates.

The objective is to directly classify sub-optimal query plans using only L1-error, not by

P-error. The first two rows in Table 5.1 depict the performance of L1-error evaluated on

JOB. In the case of exhaustive enumeration, the number of positive queries (sub-optimal)

is higher than negative queries (optimal) – columns 5 and 6. Based on the results, we

observe a similar trend but now query plans are classified by L1-error as an indicator

of queries with sub-optimal plans – columns 7 and 8. The difference between predicted

positive and negative queries is also high. Out of 87 true sub-optimal plans (Positive),

85 sub-optimal query plans are correctly classified (TP), resulting in 2 FN. On the other

hand, the number of misclassifying optimal plans as sub-optimal (FP) is higher which is

not as critical as FN. In the case of greedy enumeration, we observe an opposite trend – the

number of positive queries (sub-optimal) is lower than negative queries (optimal). While

the classifier results in 18 FP and 13 FN, the predicted Positive and Negative results follow

the pattern of the actual Positive and Negative results. Analyzing the misclassified optimal
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plans, in both enumerations, we observe that the classifier primarily misclassifies queries

with P-error < 1.5.

We now evaluate L1-error on simple queries in JOB-light – third and fourth rows in Ta-

ble 5.1. Unlike in JOB, this particular workload presents a relatively high unbalanced class

ratio for the classification task. From the results, we notice a significant difference between

the number of true sub-optimal plans (Positive of 9 and 2) and true optimal plans (Neg-

ative of 58 and 65) in exhaustive and greedy enumerations, respectively. This is expected

because, in simple queries, the join sizes are smaller, thus cardinality estimations are rela-

tively accurate. Therefore, this results in a high number of queries with optimal plans in

both search algorithms. The results exhibit a similar trend but now queries are classified

by L1-error as an indicator. The difference between predicted positive and negative queries

is also high. Even though a large P-error may have less impact on the execution time of

simple queries, the classifier is still efficient in identifying plan sub-optimality. As in JOB,

the misclassified query plans show P-error < 1.5.

To conduct a comprehensive assessment of L1-error across a more expansive dataset and

query spectrum, we present evaluations performed on JCCH (rows 5 and 6) and DSB (rows

7 and 8) workloads. Unlike the previous two workloads, JCCH and DSB show a relatively

more balanced class ratio, albeit with the predomination of optimal plans. This is due

to the workload complexity standing between JOB and JOB-light. Based on the results,

the predicted Positive and Negative results are in a similar trend as in actual Positive and

Negative results. The predicted class ratio also follows a similar trend. Interestingly, the

classifier avoids misclassifying optimal plans as sub-optimal, with 0 FN in both enumeration

algorithms. Looking into the misclassified queries reveals query plans exhibiting P-error

values centered around 1.78.

Figure 5.9 illustrates the accuracy of the classifier on the test data. We compare the

classifier based on L1-error and the classifier based on Q-error as well as the classifier that

utilizes both L1-error and Q-error to identify sub-optimal query plans. Overall, we observe

an improvement over the Q-error classifier except in exhaustive enumeration on JOB-light

attributed to the small number of test data. The results above suggest L1-error is a viable

indicator for identifying sub-optimal query plans and can be used in tandem with Q-error

to assess query optimizers to identify query sub-optimality. The classifier based on both
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Benchmark Enumerator
Train
queries

Test
queries

Actual Predicted
TP TN FP FNSub-optimal

(Positive)
Optimal
(Negative)

Sub-optimal
(Positive)

Optimal
(Negative)

JOB
113 queries

Exhaustive

79 34

78
55 train
23 test

35
24 train
11 test

100
68 train
32 test

13
11 train
2 test

76
54 train
22 test

11
10 train
1 test

24
14 train
10 test

2
1 train
1 test

Greedy
57

40 train
17 test

56
39 train
17 test

80
55 train
25 test

33
24 train
9 test

55
40 train
15 test

31
24 train
7 test

25
15 train
10 test

2
0 train
2 test

JOB-light
67 queries

Exhaustive

40 27

14
8 train
6 test

53
32 train
21 test

10
4 train
6 test

57
36 train
21 test

7
4 train
3 test

50
32 train
18 test

3
0 train
3 test

7
4 train
3 test

Greedy
3

2 train
1 test

64
38 train
26 test

4
2 train
2 test

63
38 train
25 test

3
2 train
1 test

63
38 train
25 test

1
0 train
1 test

0
0 train
0 test

Table 5.2: Evaluation of L1-error on query plans selected using COMPASS cardinality
estimates.

L1-error and Q-error exhibits overall improvement in identifying sub-optimal plans. The

combined approach can provide a more comprehensive evaluation, considering both the

absolute accuracy of individual estimates and their impact on query plan optimality.

Exhaustive Greedy
0

20

40

60

80

100
Q-error L1-error L1+Q-errors

a
cc
u
ra
cy

(a) JOB workload.

Exhaustive Greedy

(b) JOB-light workload.

Figure 5.10: L1-error classifier accuracy on test data. Query plans are selected using COM-
PASS cardinality estimates.

5.4.2.2 L1-error Performance on COMPASS.

In order to evaluate L1-error on a different dimension, we collect true and estimated cardi-

nalities from the COMPASS estimation for JOB and JOB-light workloads. In Table 5.2, we

present the classifier performance identifying sub-optimal query plans selected by exhaus-

tive and greedy enumeration algorithms using COMPASS cardinality estimates. As with

PostgreSQL estimates, we observe similar class ratios – actual Positives and Negatives on

columns 5 and 6 – in JOB and JOB-light. The predicted Positives and Negatives once again

follow a similar pattern except for greedy enumeration in JOB. The number of estimated

Positives is noticeably higher than the actual Positives. Thus, the classifier results in a
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higher FP while still maintaining a low FN. A closer scrutiny of the misclassified queries

reveals a central tendency of query plans exhibiting P-error values around 1.0. In Fig-

ure 5.10, we compare the classifiers using L1-error, Q-error, and both performed, on JOB

and JOB-light. As in PostgreSQL estimates, we observe a positive trend over Q-error. The

combined classifier on L1-error and Q-error shows improved accuracy on the test data.

5.4.3 Summary

The experimental results can be summarized as follows:

• L1-error correctly classifies the optimality of query plans by following the trend and ratio

between true sub-optimal and optimal query plans. The results contain only a small

number of false negatives – the case when true sub-optimal plans are misclassified.

• The classifier based exclusively on L1-error identifies sub-optimal plans more accurately

than the classifier that has Q-error as a feature. When having a combined feature consist-

ing of both L1-error and Q-error, the best accuracy is achieved. These results prove that

L1-error acts as an important feature both alone as well as in conjunction with Q-error.

• L1-error maintains its accuracy across multiple sets of cardinality estimates and work-

loads. This proves its generality both for different cardinality estimation synopses as well

as across various datasets and queries.

5.5 Related Work

5.5.1 Cardinality Estimation Errors

The importance of each component within a query optimizer is widely acknowledged in com-

prehensive studies on query optimization [17, 69]. However, Leis et al. empirically prove

that cardinality estimates hold paramount importance [63, 65]. They observe instances

where cardinality miscalculations do not inevitably lead to sub-optimal query plans. This

is because, provided the errors in misestimation are evenly distributed across a large por-

tion of the estimates, sub-optimal query plans can be avoided. Consequently, estimation

consistency can be more important than high accuracy, since consistency does not disrupt

the ranking of query plans. Perron et al. [90] also confirm the importance of cardinal-

ity estimations as well as the importance of cardinality estimation of smaller joins than
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higher-level joins. Based on the JOB benchmark, their findings reveal that obtaining the

true cardinalities up to four-way joins suffices to achieve near-optimal runtime performance.

This highlights the need for accurate and consistent cardinality estimations, particularly for

lower-level joins, in optimizing query performance.

5.5.2 Indicators of Sub-optimal Plans

Moerkotte et al. [81] introduce Q-error as a measure of individual join cardinality mises-

timation. At the query level, the authors propose leveraging the maximum Q-error across

all sub-query cardinality estimates as a theoretical upper-bound to identify sub-optimal

query plans. This serves as the upper-bound for P-error, which is the cost ratio between

the selected and optimal plans, to denote the optimality of query plans. However, Han et

al. highlight the limitations of the Q-error bound as an indicator of query plan optimal-

ity [32]. They observe that Q-error treats all cardinalities with equal weights, which is not

always reflective of the realities of query optimizers. As a result, even in the presence of

significantly large Q-error values, a query optimizer can still choose an optimal plan, and,

conversely, a low Q-error is not always an indicator of an optimal plan.

5.6 Conclusions

We introduce L1-error, a novel indicator designed to identify sub-optimal join orders. L1-

error emphasizes cardinality estimation errors that influence plan search algorithms, specifi-

cally those errors that disrupt the cardinality-based sorted order of sub-plans. Importantly,

L1-error disregards estimation errors that do not bear any impact on the plan search algo-

rithms. L1-error also takes into account that the cardinality estimates of earlier multi-way

joins tend to be more accurate and critical than those of later joins. Our empirical results,

across four different benchmarks, prove that as a standalone metric, L1-error can efficiently

identify sub-optimal join orders in both moderate and complex queries.
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Chapter 6

Conclusions and Future Work

In this chapter, we conclude the dissertation by reflecting on query optimization in relational

database systems, and opportunities for future work on query optimization.

Online Sketch-based Query Optimization. We present COMPASS, an online sketch-

based query optimizer that utilizes a single type of statistics, Fast-AGMS sketches, for both

cardinality estimation and plan enumeration. The Fast-AGMS sketches are built per join

attribute, pushing down the selection predicates and capitalizing on the advanced parallel

execution engine inherent to modern database systems. This approach facilitates the build-

ing of sketches tailored to each specific query, while simultaneously capturing the current

state of the data. During the query optimization phase, the Fast-AGMS sketches are incre-

mentally composed on demand in the plan enumeration. We implement a prototype within

the MapD database and conduct comprehensive experiments utilizing the JOB benchmark.

The experiments demonstrate superior execution plan generation by COMPASS with re-

duced overhead. Specifically, COMPASS shows improved performance, surpassing the other

four well-known databases across all the considered metrics within the JOB benchmark.

In this work, we show an efficient way of composing Fast-AGMS sketches to support multi-

way joins. An interesting research direction can be to investigate alternative merging strate-

gies for Fast-AGMS sketches. Another research direction is to explore SIMD-optimized

sketch algorithms – for CPU and GPU – to gain lower overhead.
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Spanning Tree-based Query Plan Enumeration. We approach query optimization

through the lens of spanning trees, adjusting our aim towards identifying an ordered set

of edges that encompasses all nodes within the join graph. We have tailored Prim’s and

Kruskal’s spanning tree algorithms to our objective, incorporating them into ESTE. Capi-

talizing on the polynomial-time complexity of spanning tree algorithms, ESTE is proficient

at systematically evaluating extensive and diverse segments of the search space. The ex-

periments show that the advantage of ESTE translates into a significant enhancement in

the quality of query plans. ESTE outperforms one of the most efficient heuristic algorithms

currently available in terms of plan optimality while posing low overhead.

Randomized algorithms also have the potential to identify efficient plans out of query plans

enumerated in the same amount of time required for ESTE. However, preserving the robust-

ness and interpretability of the query optimizer becomes challenging. Nevertheless, analysis

of plan quality by randomized and ESTE can be interesting to study. A research direction

can be applying other spanning tree algorithms which enable exploring even more distinct

areas of the search space. We believe this direction can leverage the application of spanning

tree algorithms in the domain of query optimization.

Sub-optimal Join Order Identification with L1-error. We introduce L1-error, an

indicator tailored to identify suboptimal join orders in query optimization. L1-error priori-

tizes cardinality estimation errors that affect plan search algorithms, particularly those that

change the cardinality-based sorted order of subplans. L1-error ignores estimation errors

that do not have any consequential impact on the plan enumeration algorithms. Moreover,

L1-error utilizes the fact that the cardinality estimates of earlier multi-way joins are typ-

ically more precise and vital than those of later joins. Our empirical evaluation, utilizing

four widely used benchmarks, has conclusively shown that L1-error operates effectively in

identifying suboptimal join orders across a spectrum of query complexities.

Our findings indicate that L1-error is an efficient indicator for classifying suboptimal join

order and can be employed in conjunction with Q-error. Utilizing both L1-error and Q-error

in the post-evaluation of query optimizers, including learning-based optimizers to assess the

efficacy of their trained models can be an interesting research direction.
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