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LOCAL ENERGY ESTIMATE ON KERR BLACK HOLEBACKGROUNDSDANIEL TATARU AND MIHAI TOHANEANUAbstrat. We study dispersive properties for the wave equation in the Kerr spae-time with small angular momentum. The main result of this paper is to establishuniform energy bounds and loal energy deay for suh bakgrounds. This follows asimilar result for the Shwarzshild spae-time obtained in earlier work [21℄ by theauthors and ollaborators. 1. IntrodutionThe aim of this artile is to study the deay properties of solutions to the wave equationin the Kerr spae-time, whih desribes a rotating blak hole. Until reently even theproblem of obtaining uniform bounds for suh solutions was ompletely open, and onlysome partial results were obtained in [14℄. We also refer the reader to related independentwork in [13℄. However, the tehniques used in these papers are of a di�erent �avor, asthey do not arry out suh a preise analysis of the dynamis near the trapped set.Our aim here is to establish global in time energy bounds for the wave equation in theKerr spae-time, as well as a loal energy deay estimate. These bounds apply in the fullregion outside the event horizon, as well as in a small neighborhood on the inside of theevent horizon.The starting point in our analysis is the earlier work [21℄ of the authors and ollabora-tors, whih establishes similar bounds for the wave equation in the Shwarzshild spae-time. The idea is to treat the Kerr geometry as a small perturbation of the Shwarzshildgeometry, and then adapt the methods in [21℄. Consequently in this artile we are onlyonsidering Kerr blak hole bakgrounds with small angular momentum, whih are loseto the Shwarzshild spae-time. Nevertheless, we are on�dent that our methods willarry over also to the ase of large angular momentum.Another goal of the earlier artile [21℄ was to establish Strihartz estimates in theShwarzshild spae-time. We also aim to onsider the similar problem for the Kerrspae-time. However, this requires very di�erent tehnial tools, and will be onsideredin a subsequent paper.The loal energy estimate in [21℄ is proved using the multiplier method; the deliateissue there is to show that a suitable multiplier an be found. This method is quite robustunder small perturbations of the metri, and for the most part it easily arries over to theBoth authors were supported in part by NSF grant DMS0801261.1

http://arXiv.org/abs/0810.5766v2


2 DANIEL TATARU AND MIHAI TOHANEANUKerr bakgrounds with small angular momentum. There is however one region where thisdoes not apply, preisely near the photon sphere r = 3M (whih ontains all1 the trappedperiodi geodesis in the Shwarzshild spae-time). Hene most of the new analysis hereis devoted to understanding what happens there.The paper is organized as follows. In the next setion we disuss the lassial lo-al energy deay deay estimates in the Minkowski spae-time and small perturbationthereof. Then we provide a brief overview of the loal energy estimates proved in [21℄for the Shwarzshild spae-time, along with a disussion of the relevant geometrial is-sues. Finally, the last setion ontains the desription of the Kerr spae-time and allthe new results. Our main loal energy estimate is ontained in Theorem 4.1. This isomplemented by higher order bounds in Theorem 4.4.2. Loal energy deay in the Minkowski spae-timeIn the Minkowski spae-time R
3+1, onsider the wave equation with onstant oe�-ients(2.1) 2u = f, u(0) = u0, ∂tu(0) = u1Here 2 = ∂2

t − ∆. More generally, let
2g =

1√−g
∂i(

√−ggij∂j)be the usual d'Alembertian assoiated to a Lorentzian metri g.The seminal estimate of Morawetz [19℄ asserts that for solutions to the homogeneousequation 2u = 0 we have the estimate(2.2) ∫

R

∫

R3

1

|x| |6∇u|2(t, x) dx dt +

∫

R

|u(t, 0)|2dt . ‖∇u0‖2
L2 + ‖u1‖2

L2where 6∇ denotes the angular derivative. This is obtained ombining energy estimateswith the multiplier method. The radial multiplier Qu = (∂r + 1
r
)u is used, where rdenotes the radial variable.Within dyadi spatial regions one an ontrol the full gradient ∇u, but the squaresummability wth respet to dyadi sales is lost. Preisely, we de�ne the L2 loal energynorm(2.3) ‖u‖LEM

= sup
j∈Z

2−
j
2 ‖u‖L2(R×{|x|∈[2j−1,2j ]})and its H1 ounterpart(2.4) ‖u‖LE1

M
= ‖∇x,tu‖LEM

+ ‖|x|−1u‖LEMFor the inhomogeneous term we use the dual norm(2.5) ‖f‖LE∗

M
=
∑

k∈Z

2
k
2 ‖f‖L2(R×{|x|∈[2k−1,2k]})1exept of ourse for the rays along the event horizon, whih are not relevant to this disussion



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 3Then we have the following sale invariant loal energy estimate for solutions u to theinhomogeneous equation (2.1):(2.6) ‖∇u‖L∞

t L2
x

+ ‖u‖LE1
M

. ‖∇u0‖L2 + ‖u1‖L2 + ‖f‖LE∗

M
+L1

t L2
xThis is proved using a small variation of Morawetz's method, with multipliers of the form

a(r)∂r + b(r) where a is positive, bounded and inreasing.There are many similar results obtained in the ase of perturbations of the Minkowskispae-time; see, for example, [19℄, [17℄, [16℄, [23℄,[24℄, [25℄, [2℄, [20℄. Relevant to us is thease of small long range perturbations of the Minkowski spae-time, onsidered in [22℄.The metris g in R
3+1 onsidered there satisfy(2.7) ∑

k∈Z

sup
|x|∈[2k−1,2k]

|g(t, x) − gM | + |x||∇x,tg(t, x)| + |x|2|∇2
x,tg(t, x)| ≤ ǫwhere gM stands for the Minkowski metri. Then as a speial ase of the results in [22℄we haveTheorem 2.1. [22℄ Let g be a Lorenzian metri in R

3+1 whih satis�es (2.7) with ǫ smallenough. Then the solution u to the inhomogeneous problem(2.8) 2u = f, u(0) = u0, ∂tu(0) = u1satis�es the estimate (2.7).No general suh results are known for large perturbations, where on one hand trap-ping for large frequenies and on the other hand eigenvalues and resonanes for smallfrequenies reate major di�ulties. The Shwarzshild and Kerr metris are suh largeperturbations where trapping plays a major role.3. Loal energy deay in the Shwarzshild spae-timeIn the original oordinates the Shwarzshild spae-time is given as a metri whoseline element is (for I = R × (2M,∞) × S
2)(3.1) ds2 = −

(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2 + r2dω2where dω2 is the measure on the sphere S
2 and t, r are the time, respetively the radiusof the S

2 spheres. This metri is well de�ned in two regions,
I = R × (2M,∞) × S

2, II = R × (0, 2M) × S
2Let 2S denote the assoiated d'Alembertian.The singularity at r = 0 is a true metri singularity. However, the singularity at theevent horizon r = 2M is an apparent singularity that an be removed by a di�erent hoieof oordinates. Following [15℄, let

r∗ = r + 2M log(r − 2M) − 3M − 2M log Mand let v = t + r∗. In the new oordinates (r, v, ω) the metri beomes
ds2 = −

(

1 − 2M

r

)

dv2 + 2dvdr + r2dω2



4 DANIEL TATARU AND MIHAI TOHANEANUand an be extended to a larger manifold I ∪ II. Moreover, if w = t − r∗, one anintrodue global nonsingular oordinates (all the way to r = 0) by rewriting the metriin the Kruskal-Szekeres oordinate system,
v′ = e

v
4M , w′ = −e−

w
4M .There are two plaes where trapping ours on the Shwarzshild manifold. The �rstis at the event horizon r = 2M , where the trapped geodesis are the vertial ones in the

(r, v, ω) oordinates. However, this family of trapped rays turns out to ause no di�ultyin the deay estimates sine the energy deays exponentially along it as v → ∞. Theseond family of trapped rays ours on the surfae r = 3M whih is alled the photonsphere. Null geodesis whih are initially tangent to the photon sphere will remain on thesurfae for all times. Unlike the previous ase, the energy is onserved for waves loalizedalong suh rays. However, what makes loal energy deay estimates at all possible is thefat that the trapped rays on the photon sphere are hyperboli.The (r, v, ω) oordinates are nonsingular on the event horizon, but have the disad-vantage that the level sets of v are null surfaes. This is why it is more onvenient tointrodue
ṽ = v − µ(r)where µ is a smooth funtion of r. In the (ṽ, r, ω) oordinates the metri has the form

ds2 = −
(

1 − 2M

r

)

dṽ2 + 2

(

1 −
(

1 − 2M

r

)

µ′(r)

)

dṽdr

+
(

2µ′(r) −
(

1 − 2M

r

)

(µ′(r))2
)

dr2 + r2dω2.On the funtion µ we impose the following two onditions:(i) µ(r) ≥ r∗ for r > 2M , with equality for r > 5M/2.(ii) The surfaes ṽ = const are spae-like, i.e.
µ′(r) > 0, 2 −

(

1 − 2M

r

)

µ′(r) > 0.The �rst ondition (i) insures that the (r, ṽ, ω) oordinates oinide with the (r, t, ω)oordinates in r > 5M/2. This is onvenient but not required for any of our results.What is important is that in these oordinates the metri is asymptotially �at as r → ∞aording to (2.7).Given 0 < re < 2M we onsider the wave equation(3.2) 2Su = fin the ylindrial region(3.3) MR = {ṽ ≥ 0, r ≥ re}with initial data on the spae-like surfae(3.4) Σ−
R = MR ∩ {ṽ = 0}The lateral boundary of MR,(3.5) Σ+
R = MR ∩ {r = re}



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 5is also spae-like, and an be thought of as the exit surfae for all waves whih ross theevent horizon.We de�ne the initial (inoming) energy on Σ−
R as(3.6) E[u](Σ−

R) =

∫

Σ−

R

(

|∂ru|2 + |∂ṽu|2 + |6∇u|2
)

r2drdωthe outgoing energy on Σ+
R as(3.7) E[u](Σ+
R) =

∫

Σ+

R

(

|∂ru|2 + |∂ṽu|2 + |6∇u|2
)

r2
edṽdωand the energy on an arbitrary ṽ slie as(3.8) E[u](ṽ0) =

∫

MR∩{ṽ=ṽ0}

(

|∂ru|2 + |∂ṽu|2 + |6∇u|2
)

r2drdωThe hoie of the loal energy norm LES is inspired from (2.3). However, there isa loss along the trapped geodesis on the photon sphere. Consequently, we introdue amodi�ed2 L2 loal energy spae(3.9) ‖u‖LES
=

∥

∥

∥

∥

(

1 − 3M

r

)

u

∥

∥

∥

∥

LEMand H1 loal energy spae
‖u‖LE1

S
= ‖∂ru‖LEM

+ ‖∂ṽu‖LES
+ ‖6∇u‖LES

+ ‖r−1u‖LEM(3.10)For the inhomogeneous term we use the norm(3.11) ‖f‖LE∗

S
=

∥

∥

∥

∥

∥

(

1 − 3M

r

)−1

u

∥

∥

∥

∥

∥

LEMIn the three formulas above we impliitely assume that all norms are restrited to the set
MR where we study the wave equation (3.2). Then we have the following result:Theorem 3.1. [21℄ Let u be so that 2Su = f . Then we have(3.12) E[u](Σ+

R) + sup
ṽ

E[u](ṽ) + ‖u‖2
LE1

S
. E[u](Σ−

R) + ‖f‖2
LE∗

S
.Note that, ompared to the norms LEM , LE∗

M , the weights have an additional poly-nomial singularity at r = 3M , but there are no additional losses at the event horizon ornear ∞. Furthermore, by more re�ned results in [21℄, this polynomial loss an be relaxedto a logarithmi loss, i.e. the fator 1 − 3M
r

an be improved to | ln(r − 3M)|−1 near
r = 3M . This is related to the fat that the (periodi) trapped rays on the photon sphereare hyperboli.We also remark that in the expression of LE1

S it was su�ient to measure ∂ru. Thisis due to the impliit anelation aused by the fat that the symbol of the operator ∂rvanishes on the trapped set.2notations are slightly hanged ompared to [21℄ in order to insure some uniformity aross the threemodels desribed in the present paper



6 DANIEL TATARU AND MIHAI TOHANEANUThe hoie of re ∈ (0, 2M) is unimportant sine the r-slies r = const ∈ (0, 2M)are spaelike. Hene moving from one suh r-slie to another is equivalent to solving aloal hyperboli problem, and involve no global onsiderations. Thus in the proof of thetheorem one an assume without any restrition in generality that re is lose to 2M .Loal energy estimates were �rst proved in [18℄ for radially symmetri Shrödingerequations on Shwarzshild bakgrounds. In [3, 4, 5℄, those estimates are extended toallow for general data for the wave equation. The same authors, in [6, 7℄, have providedstudies that give ertain improved estimates near the photon sphere r = 3M . Moreover,we note that variants of these bounds have played an important role in the works [8℄ and[11℄, [12℄ whih prove analogues of the Morawetz onformal estimates on Shwarzshildbakgrounds. 4. Loal energy deay in the Kerr spae-timeThe Kerr geometry in Boyer-Lindquist oordinates is given by
ds2 = gttdt2 + gtφdtdφ + grrdr2 + gφφdφ2 + gθθdθ2where t ∈ R, r > 0, (φ, θ) are the spherial oordinates on S

2 and
gtt = −∆ − a2 sin2 θ

ρ2
, gtφ = −2a

2Mr sin2 θ

ρ2
, grr =

ρ2

∆

gφφ =
(r2 + a2)2 − a2∆sin2 θ

ρ2
sin2 θ, gθθ = ρ2with

∆ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ.A straightforward omputation gives us the inverse of the metri:
gtt = − (r2 + a2)2 − a2∆sin2 θ

ρ2∆
, gtφ = −a

2Mr

ρ2∆
, grr =

∆

ρ2
,

gφφ =
∆ − a2 sin2 θ

ρ2∆sin2 θ
, gθθ =

1

ρ2
.The ase a = 0 orresponds to the Shwarzshild spae-time. We shall subsequentlyassume that a is small a ≪ M , so that the Kerr metri is a small perturbation of theShwarzshild metri. We let 2K denote the d'Alembertian assoiated to the Kerr metri.In the above oordinates the Kerr metri has singularities at r = 0 on the equator

θ = π/2 and at the roots of ∆, namely r± = M ±
√

M2 − a2. As in the ase of theShwarzshild spae, the singularity at r = r+ is just a oordinate singularity, and orre-sponds to the event horizon. The singularity at r = r− is also a oordinate singularity;for a further disussion of its nature, whih is not relevant for our results, we refer thereader to [10, 15℄. To remove the singularities at r = r± we introdue funtions r∗, v+and φ+ so that (see [15℄)
dr∗ = (r2 + a2)∆−1dr, dv+ = dt + dr∗, dφ+ = dφ + a∆−1dr.



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 7The metri then beomes
ds2 = − (1 − 2Mr

ρ2
)dv2

+ + 2drdv+ − 4aρ−2Mr sin2 θdv+dφ+ − 2a sin2 θdrdφ+ + ρ2dθ2

+ ρ−2[(r2 + a2)2 − ∆a2 sin2 θ] sin2 θdφ2
+whih is smooth and nondegenerate aross the event horizon up to but not inluding

r = 0. Just like in [21℄, we introdue the funtion
ṽ = v+ − µ(r)where µ is a smooth funtion of r. In the (ṽ, r, φ+, θ) oordinates the metri has the form

ds2 = (1 − 2Mr

ρ2
)dṽ2 + 2

(

1 − (1 − 2Mr

ρ2
)µ′(r)

)

dṽdr

− 4aρ−2Mr sin2 θdṽdφ+ +
(

2µ′(r) − (1 − 2Mr

ρ2
)(µ′(r))2

)

dr2

− 2aθ(1 + 2ρ−2Mrµ′(r)) sin2 drdφ+ + ρ2dθ2

+ ρ−2[(r2 + a2)2 − ∆a2 sin2 θ] sin2 θdφ2
+.On the funtion µ we impose the following two onditions:(i) µ(r) ≥ r∗ for r > 2M , with equality for r > 5M/2.(ii) The surfaes ṽ = const are spae-like, i.e.

µ′(r) > 0, 2 − (1 − 2Mr

ρ2
)µ′(r) > 0.As long as a is small, we an work with the same funtion µ as in the ase of theShwarzshild spae-time.For onveniene we also introdue

φ̃ = ζ(r)φ+ + (1 − ζ(r))φwhere ζ is a uto� funtion supported near the event horizon and work in the (ṽ, r, φ̃, θ)oordinates whih are idential to (t, r, φ, θ) outside of a small neighborhood of the eventhorizon.Carter [9℄ showed that the Hamiltonian �ow is ompletely integrable by �nding afourth onstant of motion K that is preserved along geodesis. If E and L are the twoonstants of motion assoiated with the Killing vetor �elds ∂t and ∂φ, the equations forthe null geodesis an be redued to the following (see, for example, [10℄ or [26℄)
ρ2ṫ = a(L − Ea sin2 θ) +

(r2 + a2)((r2 + a2)E − aL)

∆

ρ2φ̇ =
L − Ea sin2 θ

sin2 θ
+

(r2 + a2)aE − a2L

∆

ρ4θ̇2 = K − (L − Ea sin2 θ)2

sin2 θ

ρ4ṙ2 = − K∆ + ((r2 + a2)E − aL)2

(4.1)where the overdot denotes di�erentiation with respet to an a�ne parameter s. Thisparametrization of the null geodesis is nondegenerate away from the surfaes r = r±.



8 DANIEL TATARU AND MIHAI TOHANEANUNext we disuss the geometry of the trapped null geodesis. The level sets r = r0 of
r are time-like for r0 > r+, null for r = r+ and spae-like for r− < r0 < r+. The latterimplies that there are no trapped null geodesis inside the region {r− < r < r+}. On thenull surfaes r = r±, through eah point there is a unique null vetor whih is tangentand whih generates a trapped null geodesis.To �nd the trapped null geodesis in the region r > r+ it su�es to onsider thebehavior of the fourth degree polynomial

P (r) = −K∆ + ((r2 + a2)E − aL)2in the last equation in (4.1). At least one of the parameters E, K and L should benonzero, and the third equation shows that K ≥ 0 and that we annot simultaneouslyhave E = K = 0. Thus P is always nondegenerate. The key observation is that that thesimple zeroes of P orrespond to turning points in the last equation, and only the doublezeroes are steady states. There are several ases to onsider.a) If E = 0 then K > 0. Thus P has at most one positive root, where it hanges signfrom + to −. This root is a right turning point for the ode, and there are no trappednull geodesis.b) E 6= 0. Then P has degree 4 and P ≥ 0 in [r−, r+]. If P has any zero in [r−, r+]then the square expression must vanish, and this zero must be a double zero. We laimthat in (r+,∞) P has either no root or two roots (ounted with multipliity); this iseasily seen, as P must have either (at least) two omplex onjugate roots or a negativeroot (the sum of the roots equals 0) and (at least) another one smaller than r− (sine
P (r−) ≥ 0). There are three subases:b1) P has no roots larger than r+. Then r is monotone along null geodesis, and thereare no trapped null geodesis.b2) P has two distint positive roots r+ < r1 < r2. There it must hange sign from +to −, respetively from − to +. Hene r1 is a right turning point and r2 is a left turningpoint for the ode. Thus no trapped null geodesis exist.b3) P has a double positive real root r0. Then this root is a steady state, and all othersolutions onverge to the steady state at one end, and esape to 0 or in�nity at the otherend.This analysis shows that the only trapped null geodesis are those along whih r isonstant. The polynomial P has a double root if the following two relations hold,

((r2 + a2)E − aL)2 = K∆, 2rE((r2 + a2)E − aL) = K(r − M)whih we rewrite in the form
K =

r2E2∆

(r − M)2
, aL = E

(

r2 + a2 − 2r∆

r − M

)The right hand side in the θ̇ equation must be nonnegative. Substituting in the above tworelations we obtain a neessary ondition for the existene of trapped geodesis, namelythe inequality(4.2) (2r∆ − (r − M)ρ2)2 ≤ 4a2r2∆sin2 θ



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 9One an show that this ondition is also su�ient. The expression on the left has theform
2r∆ − (r − M)ρ2 = r2(r − 3M) + 2ra2 − (r − M)a2 cos2 θIf a = 0 then it has a single positive nondegenerate zero at r = 3M , whih is the photonsphere in the Shwarzshild metri. Hene if 0 < a ≪ M it will still have a single zerowhih is lose to 3M . A rough omputation leads to a bound of the form(4.3) |r − 3M | ≤ 2a, a ≪ 2MThus all trapped null geodesis lie within O(a) of the r = 3M sphere.We would like a haraterization of the aforementioned trapped geodesis in the phasespae. Let τ, ξ, Φ and Θ be the Fourier variables orresponding to t, r, φ and θ, and
p(r, φ, τ, ξ, Φ, Θ) = gttτ2 + 2gtφτΦ + gφφΦ2 + grrξ2 + gθθΘ2be the prinipal symbol of 2K . On any null geodesi one has(4.4) p(t, r, φ, θ, τ, ξ, Φ, Θ) = 0.Moreover, the Hamilton �ow equations give us(4.5) ṙ = −∂p

∂ξ
= −2∆

ρ2
ξ(4.6) ξ̇ =

∂p

∂r
= gtt

,rτ
2 + 2gtφ

,r τΦ + gφφ
,r Φ2 + grr

,r ξ2 + gθθ
,r Θ2We rewrite the latter in the form(4.7) ρ2ξ̇ = ρ2 ∂p

∂r
= −2Ra(r, τ, Φ)∆−2 + ρ2∂r(ρ

−2)p + 2(r − M)ξ2where
Ra(r, τ, Φ) = (r2 + a2)(r3 − 3Mr2 + a2r + a2M)τ2 − 2aM(r2 − a2)τΦ − a2(r − M)Φ2For geodesis with onstant r, one needs to impose the additional ondition ṙ = 0.Hene from (4.5) either r = r±, whih orrespond to the geodesis at r = 2M in theShwarzshild ase, or ξ = 0. In the latter ase from (4.7) we obtain a polynomialequation for r, namely(4.8) Ra(r, τ, Φ) = 0Furthermore, due to (4.4) we must also have the inequality

−((r2 + a2)2 − a2∆sin2 θ)τ2 − 2aMrτΦ +
∆ − a2 sin2 θ

sin2 θ
Φ2 ≤ 0If a is small and r is as in (4.3) this allows us to bound Φ in terms of τ ,(4.9) |Φ| ≤ 4M |τ |For Φ in this range and small a the polynomial τ−2Ra(r, τ, Φ) an be viewed as a smallperturbation of

τ−2R0(r, τ, Φ) = r4(r − 3M)



10 DANIEL TATARU AND MIHAI TOHANEANUwhih has a simple root at r = 3M . Hene for small a the polynomial Ra has a simpleroot lose to 3M , whih we denote by ra(τ, φ). By homogeneity onsiderations and theimpliit funtion theorem we an further express ra in the form
ra(τ, Φ) = 3Mr̃

(

a

M
,

Φ

Mτ

)

, r̃ ∈ C∞([−ǫ, ǫ]× [−4, 4])Sine r0(τ, Φ) = 3M , it follows that we an write ra(τ, Φ) in the form
ra(τ, Φ) = 3M + aF

(

a

M
,

Φ

Mτ

)

, F ∈ C∞([−ǫ, ǫ]× [−4, 4])The above analysis shows that the trapped null geodesis orresponding to frequenies
(τ, Φ) are loated at radial frequeny ξ = 0 and position r = ra(τ, ξ). One would benaively led to de�ne the loal smoothing spaes assoiated to the Kerr spae-time byreplaing the fator r − 3M in (3.9) and (3.11) with the modi�ed fator r − ra(τ, Φ).Unfortunately, this is no longer a salar funtion, but a symbol of a pseudodi�erentialoperator. In addition, this operator depends on the time Fourier variable τ , whih isinonvenient for energy estimates on time (ṽ) slabs.Consequently, we replae the r− ra(τ, Φ) weight with a polynomial in τ whih has thesame symbol on the harateristi set p = 0. More preisely, for r lose to 3M we fator

p(r, φ, τ, ξ, Φ, Θ) = gtt(τ − τ1(r, φ, ξ, Φ, Θ))(τ − τ2(r, φ, ξ, Φ, Θ))where τ1, τ2 are real distint smooth 1-homogeneous symbols. On the one τ = τi thesymbol r − ra(τ, φ) equals
ci(r, φ, ξ, Φ, Θ) = r − ra(τi, Φ) = r − 3M − aF

(

a

M
,

Φ

Mτi

)

, i = 1, 2If r is lose to 3M and |a| ≪ M then on the harateristi set of p we have |φ| < 4M |τ |,therefore the symbols ci are well de�ned, smooth and homogeneous. They are alsononzero outside an O(a) neighborhood of 3M .We use the symbols ci to de�ne assoiated miroloally weighted funtion spaes L2
ci
ina neighborhood I ×S

2 of 3M ×S
2 whih does not depend on a for small a. For funtions

u supported in I × S
2 we set

‖u‖2
L2

ci

= ‖ci(D, x)u‖2
L2 + ‖u‖2

H−1There is an ambiguity in this notation as we have not spei�ed the oordinate framein whih we view ci as a pseudodi�erential operator. However, it is easy to see thatdi�erent frames lead to equivalent norms. We note that the low frequenies in ci are alsoirrelevant, and an be removed with a suitable uto�. After removing the low frequenies,the quantization that we use for ci beomes unimportant as well. We also de�ne a dualnorm ciL
2 for funtions g supported in I × S

2, namely
‖g‖2

ciL2 = inf
ci(x,D)g1+g2=g

(‖g1‖2
L2 + ‖g2‖2

H1)Sine the symbols ci are nonzero outside an O(a) neighborhood of 3M , it follows thatboth norms L2
ci
and ciL

2 are equivalent to L2 outside a similar neighborhood.



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 11Now we an de�ne loal smoothing norms assoiated to the Kerr spae-time. Let χ(r)be a smooth uto� funtion whih is supported in the above neighborhood I of 3M andwhih equals 1 near 3M . Then we set
‖u‖LE1

K
=‖χ(Dt − τ2(D, x))χu‖L2

c1
+ ‖χ(Dt − τ1(D, x))χu‖L2

c2
+ ‖(1 − χ2)∂tu‖LEM

+ ‖(1 − χ2)6∇u‖LEM
+ ‖∂ru‖LEM

+ ‖r−1u‖LEM

(4.10)We remark that this norm is equivalent to the Minkowski norm LE1
M outside an O(a)neighborhood of 3M , but it is degenerate on the trapped set.For the nonhomogeneous term in the equation we de�ne a dual struture,

‖f‖LE∗

K
= ‖(1 − χ)f‖LE∗

M
+ ‖χf‖c1L2+c2L2To state the main result of this paper we use the notations in (3.3)-(3.8), with theparameter re hosen so that r− < re < r+:Theorem 4.1. Let u solve 2Ku = f in MR. Then(4.11) ‖u‖2

LE1
K

+ sup
ṽ

E[u](ṽ) + E[u](Σ+
R) . E[u](Σ−

R) + ‖f‖2
LE∗

K
.in the sense that the left hand side is �nite and the inequality holds whenever the righthand side is �nite.The proof of the result uses the multiplier method. Part of the di�ulty is ausedby the fat that, as shown in [1℄, there is no di�erential multiplier that provides us witha positive loal energy norm. What we do instead is �nd a suitable pseudodi�erentialoperator that does the job. This is hosen so that its symbol vanishes on trapped rays,whih leads to a loal energy norm whih is degenerate there.As in the Shwarzshild ase, the hoie of re ∈ (r−, r+) is unimportant sine the

r-slies r = const ∈ (r−, r+) are spaelike. Hene in the proof of the theorem one anassume without any restrition in generality that re is lose to r+.Proof. The theorem is proved using a modi�ation of the arguments in [21℄. Let us �rstquikly reall the key steps in the proof of Theorem 3.1 as in [21℄. We begin with theenergy-momentum tensor
Qαβ [u] = ∂αu∂βu − 1

2
gαβ∂γu∂γuIts ontration with respet to a vetor �eld X is denoted by

Pα[u, X ] = Qαβ[u]Xβand its divergene is
∇αPα[u, X ] = 2gu · Xu +

1

2
Qαβ[u]παβwhere παβ is the deformation tensor of X , given by

παβ = ∇αXβ + ∇βXαA speial role is played by the Killing vetor �eld
K = ∂ṽ



12 DANIEL TATARU AND MIHAI TOHANEANUwhose deformation tensor is zero.Integrating the above divergene relation for a suitable hoie of X does not su�e inorder to prove the loal energy estimates, as in general the deformation tensor an onlybe made positive modulo a Lagrangian term of the form q∂αu∂αu. Hene some lowerorder orretions are required. For a vetor �eld X , a salar funtion q and a 1-form mwe de�ne
Pα[u, X, q, m] = Pα[u, X ] + qu∂αu − 1

2
∂αqu2 +

1

2
mαu2.The divergene formula gives(4.12) ∇αPα[u, X, q, m] = 2gu

(

Xu + qu
)

+ Q[u, X, q, m],where
Q[u, X, q, m] =

1

2
Qαβ [u]παβ + q∂αu ∂αu + mαu ∂αu + (∇αmα − 1

2
∇α∂αq)u2.So far these omputations apply both for the Shwarzshild and the Kerr metris. Fromhere one, we will use the sub(super)sripts S, respetively K to indiate when a ompu-tation is perform with respet to one metri or another.To prove the loal energy deay in the Shwarzshild spae-time, X , q and m arehosen as in the following lemma:Lemma 4.2. There exist a smooth vetor �eld

X = b(r)(1 − 3M

r
)∂r + c(r)Kwith c supported near the event horizon and b > 0 bounded so that

|∂α
r b| ≤ cαr−αa smooth funtion q(r) with

|∂α
r q| ≤ cαr−1−αand a smooth 1-form m supported near the event horizon r = 2M so that(i) The quadrati form QS [u, X, q, m] is positive de�nite,(4.13) QS[u, X, q, m] & r−2|∂ru|2 +

(

1 − 3M

r

)2

(r−2|∂ṽu|2 + r−1|6∇u|2) + r−4u2.(ii) X(2M) points toward the blak hole, X(dr)(2M) < 0, and 〈m, dr〉(2M) > 0.The loal energy estimate is obtained by integrating the divergene relation (4.12)with X + CK instead of X , where C is a large onstant, on the domain
D = {0 < ṽ < ṽ0, r > re}with respet to the measure indued by the metri, dVS = r2drdṽdω. This yields(4.14) ∫

D

QS [u, X, q, m]dVS = −
∫

D

2Su
(

(X + CK)u + qu
)

dVS + BDRS [u]where BDRS [u] denotes the boundary terms
BDRS [u] =

∫

〈dṽ, P [u, X + CK, q, m]〉r2drdω

∣

∣

∣

∣

ṽ=ṽ0

ṽ=0

−
∫

〈dr, P [u, X + CK, q, m]〉r2
edṽdω



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 13Using the ondition (ii) in the Lemma and Hardy type inequalities, it is shown in [21℄that for large C and re lose to 2M the boundary terms have the orret sign,(4.15) BDRS [u] ≤ c1E[u](Σ−
R) − c2(E[u](ṽ0) + E[u](Σ+

R)), c1, c2 > 0Consequently, by applying the Cauhy-Shwartz inequality for the �rst term on the rightof (4.14) we obtain a slightly weaker form of the loal energy estimate (3.12), namely(4.16) E[u](Σ+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
LEW 1

S
. E[u](Σ−

R) + ‖f‖2
LEW∗

S
.where the weaker norm LEW 1

S and the stronger norm LEW ∗
S are de�ned by

‖u‖2
LEW 1

S
=

∫

MR

(

r−2|∂ru|2 +

(

1 − 3M

r

)2

(r−2|∂ṽu|2 + r−1|6∇u|2) + r−4u2

)

r2drdṽdωrespetively
‖f‖2

LEW∗

S
=

∫

MR

r2

(

1 − 3M

r

)−2

f2r2drdṽdωThese norms are equivalent with the stronger norms LE1
S , respetively LE∗

S for r in abounded set. On the other hand for large r the Shwarzshild spae an be viewed asa small perturbation of the Minkovski spae. Thus the transition from (4.16) to (3.12)is ahieved in [21℄ by utting away a bounded region and then using a perturbation ofa Minkowski spae estimate. This part of the proof translates without any hanges tothe ase of the Kerr spae-time. Our goal in what follows will be to establish the Kerrounterpart of (4.16), namely(4.17) E[u](Σ+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
LEW 1

K
. E[u](Σ−

R) + ‖f‖2
LEW∗

K
.where the norms LEW 1

K , respetively LEW ∗
K oinide with LE1

K , respetively LE∗
K forbounded r, and with LEW 1

S , respetively LEW ∗
S for large r. More preisely, if χ(r) is asmooth ompatly supported uto� funtion whih equals 1 say for r < 4M then we set

‖u‖2
LEW 1

K
= ‖χu‖2

LE1
K

+ ‖(1 − χ)u‖2
LEW 1

Srespetively
‖u‖2

LEW∗

K
= ‖χu‖2

LE∗

K
+ ‖(1 − χ)u‖2

LEW∗

SDi�erent hoies for χ lead to di�erent but equivalent norms.It is useful to �rst onsider the e�et of the same multiplier in the Kerr metri. Thetwo metris are lose when measured in the same eulidean frame x = rω with r ≥ re.Preisely, with ∂ standing for ∂t and ∂x, x = rω,(4.18) |∂α[(gK)ij − (gS)ij ]| ≤ cα

a

r2+|α|
, |∂α[(gK)ij − (gS)ij ]| ≤ cα

a

r2+|α|From this and the size and regularity properties of X , q and m it follows that(4.19) |PS
α [u, X, q, m] − PK

α [u, X, q, m]| .
a

r2
|∇u|2respetively(4.20) |QS[u, X, q, m] − QK [u, X, q, m]| . a

(

1

r2
|∇u|2 +

1

r4
|u|2
)



14 DANIEL TATARU AND MIHAI TOHANEANUHene integrating the divergene relation (4.12) in the Kerr spae-time over the samedomain D but with respet to the Kerr indued measure dVK = ρ2drdṽdω we obtain(4.21) ∫

D

QK [u, X, q, m]dVK = −
∫

D

2Ku
(

(X + CK)u + qu
)

dVK + BDRK [u]The bound (4.19) shows that for small a the boundary terms retain their positivityproperties in (4.15), namely(4.22) BDRK [u] ≤ c1E[u](Σ−
R) − c2(E[u](ṽ0) + E[u](Σ+

R)), c1, c2 > 0However, (4.20) merely shows that(4.23) QK [u, X, q, m] & r−2|∂ru|2+
[

(

1 − 3M

r

)2

− Ca

]

(r−2|∂ṽu|2+r−1|6∇u|2)+r−4u2and the right hand side is no longer positive de�nite near r = 3M . Thus we annot losethe argument as in the Shwarzshild ase. As shown in [1℄, hanging the vetor �eld Xnear r = 3M would not help.To remedy this, we need to use a pseudodi�erential modi�ation S of the vetor �eld
X . We will hoose S so that its kernel is supported in a small neighborhood of (3M, 3M);this insures that there will be no additional ontributions at r = re. Furthermore, in orderto be able to arry out the omputations near the initial and �nal surfaes ṽ = 0, ṽ0 wetake S to be a �rst order di�erential operator with respet to ṽ. Similarly, we modify theLagrangian fator q using a pseudodi�erential orretion E, whih is also a �rst orderdi�erential operator with respet to ṽ.We also need to hoose a quantization whih is onsistent with the Kerr measure. Herewe have a few hoies whih have equivalent results. For our seletion we use eulidean-like oordinates x = ωr. Given a real symbol s its eulidean Weyl quantization sw isselfadjoint with respet to the eulidean measure dV = r2drdω. However, in our ase weneed to work with the Kerr indued measure dVK = ρ2drdω. Hene we slightly abusenotations and rede�ne the Weyl quantization as

sw :=
r

ρ
sw ρ

rIf s is a real symbol, then sw (re)de�ned above is a selfadjoint operator in L2(dVK).Another issue whih does not a�et our analysis but needs to be addressed is thatwe are using pseudodi�erential operators in an exterior domain {r > re} and some aremust be given to what happens near r = re. To keep things simple, in what followsall operators we work with are ompatly supported in the sense that their kernels aresupported away from re and in�nity; even better, supported in a small neighborhood of
3M .In what follows we onsider a skewadjoint pseudodi�erential operator S and a selfad-joint pseudodi�erential operator E of the form 3

S = isw
1 + sw

0 ∂t, E = ew
0 +

1

i
e−1∂t3Sine we are away from the event horizon the variable ṽ oinides with t. We make this substitutionhere and later.



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 15where s1 ∈ S1, s0, e0 ∈ S0 and e−1 ∈ S−1 are real symbols, homogeneous outside aneighborhood of 0. Commuting and integrating by parts we obtain the ounterpart ofthe relation (4.21), namely(4.24) IQK [u, S, E] = −ℜ
∫

D

2Ku · (S + E)udVK + BDRK [u, S, E]Here BDRK [u, S, E] represents the boundary terms obtained in the integration by partswith respet to t. Its exat form is not important, as all we need to use here is the bound(4.25) |BDRK [u, S, E]| . E[u](0) + E[u](ṽ0)We note that due to the presene of the uto� funtion χ in both operators S and Ethere are no ontributions on the lateral boundary r = re.On the other hand IQK [u, S, E] represents a quadrati form in (u, Dtu) whih an bewritten in the form(4.26) IQK [u, S, E] =

∫

D

Qw
2 u · u + 2ℜQw

1 u · Dtu + Qw
0 DtuDtu dVKwhere Qw

j ∈ OPSj are selfadjoint pseudodi�erential operators so that(4.27) Qw
2 + 2Qw

1 Dt + Qw
0 D2

t =
1

2
([2K , S] + 2KE + E2K)We remark that for arbitrary operators S and E the expression above on the right isin general a third order di�erential operator in t. However, the operator S will alwaysbe hosen so that the oe�ient of D3

t vanishes. We de�ne the prinipal symbol of thequadrati form IQK [u, S, E] as
qK [S, E] = q2 + 2q1τ + q0τ

2The previous relation shows that it satis�es
qK [S, E] =

1

2i
{p, s} + pe mod S0 + τS−1 + τ2S−2We add (4.21) with a times (4.24). The boundary terms are estimated by (4.22) and(4.25). Using the duality between the spaes ciL

2 and L2
ci
we an also estimate

∣

∣

∣

∣

∫

D

f(X + CK + q + a(S + E))udVK

∣

∣

∣

∣

. ‖f‖LEW∗

K
‖u‖LEW 1

KHene in order to prove (4.17) it would su�e to show that the symbols s and e an behosen so that(4.28) ∫

D

QK [u, X, q, m]dVK + aIQK [u, S, E] & ‖u‖2
LEW 1

KHere we aim to hoose S and E uniformly with respet to small a. In e�et, our onstru-tion below yields symbols s and e whih are analyti with respet to a. We remark thatthe hoie of S and E is only important in the region where r is lose to 3M . Outside thisregion, QK [u, X, q, m] is already positive de�nite and the ontribution of aIQK [u, S, E]is negligible.We onsider �rst the expression QK [u, X, q, m]. Near r = 3M this has the form(4.29) QK [u, X, q, m] =
∑

qK,αβ∂αu∂βu + qK,0u2



16 DANIEL TATARU AND MIHAI TOHANEANUwhere its prinipal symbol qK = qK,αβηαηβ and the lower order oe�ient qK,0 are givenby the relation
qK =

1

2i
{p, X}+ qp, qK,0 = −1

2
∇α∂αqWe do not need to exatly ompute the above expression in the Kerr ase, but it is usefulto perform the omputation in the simpler ase of the Shwarzshild spae. There wehave

p = −
(

1 − 2M

r

)−1

τ2 +

(

1 − 2M

r

)

ξ2 +
1

r2
λ2, X = ib(r)

(

1 − 3M

r

)

ξwhere λ stands for the spherial Fourier variable. Hene we obtain
r2qS =

1

2i
{r2p, X} + (q − r−1b(r)(r − 3M))(r2p)

= α2
S(r)τ2 + β2

S(r)ξ2 + q̃(r)(r2p)
(4.30)where, near r = 3M ,

α2
S(r) =

rb(r)(r − 3M)2

(r − 2M)2
,

β2
S(r) =

3M

r2
b(r2 − 2Mr) +

(

1 − 3M

r

)

(b′(r2 − 2Mr) − b(r − M))respetively
q̃(r) = q − r−1b(r)(r − 3M).Here we have used the fat that b > 0 to write the �rst two oe�ients as squares.For our hoie of q and r we know that the relation (4.13) holds. This implies thatthe following two inequalities must hold:(4.31) qS & ξ2 + (r − 3M)2(τ2 + λ2), qS,0 > 0Given the form of qS , the �rst relation implies that q̃ is a multiple of (r−3M)2, and thatin addition there is a smooth funtion ν(r) so that

r3

r − 2M
q̃ = ν(r)α2

S(r), 0 < ν < 1This allows us to obtain the following sum of squares representation for qS :(4.32)
r2qS = (1 − ν(r))α2

S(r)τ2 + β2(r)ξ2 + ν1(r)α
2
S(r)(λ2 + (r2 − 2rM)ξ2), ν1 =

r − 2M

r3
νThe symbol λ2 of the spherial Laplaian a also be written as sums of squares of di�er-ential symbols,

λ2 = λ2
1 + λ2

2 + λ2
3where in Eulidean oordinates we an write

{λ1, λ2, λ3} = {xiηj − xjηi, i 6= j}(4.33) r2qS = (1 − ν(r))α2
S(r)τ2 + β2

S(r)ξ2 + ν1(r)α
2
S(r)(λ2

1 + λ2
2 + λ2

3 + (r2 − 2rM)ξ2)



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 17We return now to the question of �nding symbols s and e so that the bound (4.28)holds. Near r = 3M , the prinipal symbol of the quadrati form on the left in (4.28) is
1

2i
{p, X + as} + p(q + ae)In order to prove (4.28) at the very least we would like the above symbol to be nonneg-ative, and to satisfy the bound

1

2i
{p, X + as} + p(q + ae) & c2

2(τ − τ1)
2 + c2

1(τ − τ2)
2 + ξ2However, suh a bound would not a-priori su�e sine translating it to operator boundswould require using the Fe�erman-Phong inequality, whih does not hold in general forsystems. Hene we prove a more preise result, and show that the symbols s and e an behosen so that we have a favorable sum of squares representation for the above expression,whih extends the sum of squares (4.33) to a 6= 0.Lemma 4.3. Let a be su�iently small. Then there exist smooth homogeneous symbols

s ∈ S1
hom, e ∈ S0

hom, also depending smoothly in a, so that for r lose to 3M we havesum of squares representation(4.34) ρ2

(

1

2i
{p, X + as} + p(q + ae)

)

=
8
∑

j=1

µ2
jwhere µj ∈ S1

hom + τS0
hom satisfy the following properties:(i) The deomposition (4.34) extends the deomposition (4.33) in the sense that

(µ1, µ2, µ3, µ4, µ5, µ6) = ((1 − ν)
1
2 αSτ, βSξ, ν

1
2

1 αSλ1, ν
1
2

1 αSλ2, ν
1
2

1 αSλ3, ν
1
2

1 αSξ)mod a(S1
hom + τS0

hom)and
(µ7, µ8) ∈

√
a(S1

hom + τS0
hom)(ii) The family of symbols {µj}j=1,6 is elliptially equivalent with the family of symbols

(c2(τ − τ1), c1(τ − τ2), ξ) in the sense that we have a representation of the form
µ = Mv, v =





c2(τ − τ1)
c1(τ − τ2)

ξ



where the symbol valued matrix M ∈ M8×3(S0
hom) has maximum rank 3 everywhere.Proof. Setting q̃ = q − 2{lnρ, X} respetively ẽ = e − 2{lnρ, s} we ompute

ρ2

(

1

2i
{p, X + as} + (q + ae)p

)

=
1

2i
{ρ2p, X + as} + (q̃ + aẽ)(ρ2p)We �rst hoose the symbol s so that the Poisson braket {ρ2p, X + as} has the orretbehavior on the harateristi set p = 0. Reall that the symbol of X is ir−1b(r)(r−3M)ξ,where the vanishing oe�ient at 3M orresponds exatly to the loation of the trappedrays. Its natural ounterpart in the Kerr spae-time is the symbol

s̃(r, τ, ξ, Φ) = ir−1b(r)(r − r0(τ, Φ))ξ.



18 DANIEL TATARU AND MIHAI TOHANEANUThis oinides with X in the Shwarzshild ase a = 0, and it is well de�ned and smoothin a for r near 3M and |Φ| < 4|τ |. In partiular it is well de�ned in a neighborhood ofthe harateristi set p = 0, whih is all we use in the sequel.We use (4.7) to ompute the Poisson braket
1

i
{ρ2p, s̃} = − (ρ2p)rr

−1b(r)(r − r0(τ, Φ)) + ξ(ρ2p)ξ∂r

(

r−1b(r)(r − r0(τ, Φ))
)

= 2r−1b(r)R(r, τ, Φ)∆−2(r − r0(τ, Φ))

+
[

2∆∂r

(

r−1b(r)(r − r0(τ, Φ))
)

− 2(r − M)r−1b(r)(r − r0(τ, Φ))
]

ξ2Sine r0(τ, Φ) is the unique zero of R(r, τ, Φ) near r = 3M and is lose to 3M , it followsthat we an write(4.35) 1

2i
{ρ2p, s̃} = α2(r, τ, Φ)τ2(r − r0(τ, Φ))2 + β2(r, τ, Φ)ξ2 on {p = 0}where α, β ∈ S0

hom are positive symbols. We note that in the Shwarzshild ase thesymbols α and β are simply funtions of r, see the �rst two terms in (4.30).Unfortunately s̃ is not a polynomial in τ , whih limits its diret usefulness. To remedythat we �rst note that
s̃ − (ir−1b(r)(r − 3M)ξ) ∈ aS1

homHene by (the simplest form of) the Malgrange preparation theorem we an write
1

i
s̃ = (r − 3M)b(r)ξ + a(s1(r, ξ, θ, Θ, Φ) + s0(r, ξ, θ, Θ, Φ)τ) + aγ(τ, r, ξ, θ, Θ, Φ)pwith s1 ∈ S1

hom, s0 ∈ S0
hom and γ ∈ S−1

hom. Then we de�ne the desired symbol s by
s = s1 + s0τThe Poisson braket 1

i
{ρ2p, s} is a third degree polynomial in τ . Hene, after division by

p = −gtt(τ − τ1)(τ − τ2), taking also (4.33) into aount, we an write(4.36) 1

2i
{ρ2p, X + as} + q̃(ρ2p) = γ2 + γ1τ + [eS + a(e0 + e−1τ)](τ − τ1)(τ − τ2).where, by (4.33), the oe�ient eS orresponding to the Shwarzshild ase is given by

eS = (1 − ν(r))α2(r).It remains to show that the right hand side of (4.36) an be expressed as a sum ofsquares as in the lemma modulo an error a(S0
hom + τS−1

hom)p. Note that the symbols e0and e−1 play no role in this, as they an be inluded in the error.The oe�ients γ1 and γ2 an be omputed using the relation (4.35) and the fat that
{ρ2p, X + as} = {ρ2p, s̃} on p = 0 (i.e. when τ = τi). We denote

αi =
2|τi|

τ1 − τ2
α(r, τi, Φ)(r − r0(τi, Φ)) ∈ S0

hom, βi = β(r, τi, Φ),observing that αi an be used as substitutes for the ci's in the lemma sine they areellipti multiples of ci. Then we have
1

2i
{ρ2p, s̃}(τi) =

1

4
α2

i (τ1 − τ2)
2 + β2

i ξ2



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 19whih gives the following expressions for γ1, γ2:(4.37)
γ2 =

1

4
(τ1 − τ2)(α

2
2τ1 − α2

1τ2) +
τ1β

2
2 − τ2β

2
1

τ1 − τ2
ξ2, γ1 =

1

4
(τ1 − τ2)(α

2
1 − α2

2) +
β2

1 − β2
2

τ1 − τ2
ξ2We use the �rst omponents of γ1 and γ2 to obtain a sum of squares as follows:

(τ1 − τ2)(α
2
2τ1 − α2

1τ2) + τ(τ1 − τ2)(α
2
1 − α2

2) = ν(α1(τ − τ2) − α2(τ − τ1))
2

+ (1 − ν)(α1(τ − τ2) + α2(τ − τ1))
2

− 4eK(τ − τ1)(τ − τ2)

(4.38)where
eK =

(α1 − α2)
2

4
+ (1 − ν)α1α2We remark that in the Shwarzshild ase we have τ2 = −τ1 and also α1 = α2 = αS and

β1 = β2 = βS . In partiular this shows that
eK − eS ∈ a(S0

hom + τS−1
hom)whih aounts for the eS fator in (4.36). It remains to onsider the ξ2 terms in (4.37).This is easier sine the oe�ients β1, β2 are positive and have a small di�erene β1−β2 ∈

aS0
hom. Preisely, for a large C we an write

τ1β
2
2 − τ2β

2
1

τ1 − τ2
+ τ

β2
1 − β2

2

τ1 − τ2
=

1

2
(β2

1 + β2
2 − Ca) +

(Ca − β2
2 + β2

1)(τ − τ2)
2

2(τ1 − τ2)2

+
(Ca − β2

1 + β2
2)(τ − τ1)

2

2(τ1 − τ2)2
+ O(a)pSumming this with (4.38) we obtain the desired sums of squares representation,

1

2i
{ρ2p, X + as} + (ρ2p)q̃ ∈ ν

4
(α1(τ − τ2) − α2(τ − τ1))

2

+
1 − ν

4
(α1(τ − τ2) + α2(τ − τ1))

2 +
1

2
(β2

1 + β2
2 − Ca)ξ2

+
(Ca − β2

2 + β2
1)(τ − τ2)

2

2(τ1 − τ2)2
ξ2 +

(Ca − β2
1 + β2

2)(τ − τ1)
2

2(τ1 − τ2)2
ξ2

+ a(S0
hom + S−1

homτ)(τ − τ1)(τ − τ2)Then e is hosen so that the last term aounts for the ontribution of ẽ.Part (ii) of the lemma diretly follows. For part (i) we still need to speify whih arethe symbols µj . Preisely, we set
µ2

1 =
1 − ν

4
(α1(τ − τ2) + α2(τ − τ1))

2, µ2
2 =

1

2
(β2

1 + β2
2 − Ca)ξ2

µ2
7 =

(Ca − β2
2 + β2

1)(τ − τ2)
2

2(τ1 − τ2)2
ξ2, µ2

8 =
(Ca − β2

1 + β2
2)(τ − τ1)

2

2(τ1 − τ2)2
ξ2Finally for µ3,4,5 and µ6 we set

µ2
3,4,5 =

λ2
1,2,3

λ2 + (r2 − 2rM)ξ2

ν

4
(α1(τ − τ2) − α2(τ − τ1))

2,
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µ2

6 =
(r2 − 2rM)ξ2

λ2 + (r2 − 2rM)ξ2

ν

4
(α1(τ − τ2) − α2(τ − τ1))

2It is easy to see that for a = 0 these symbols oinide with the oresponding Shwarzshildsymbols. The proof of the lemma is onluded.
�In what follows we use the above lemma to prove the bound (4.28) and onludethe proof of the theorem. We begin with symbols s and e as in the lemma. Theseare homogeneous symbols, and we an make them smooth by trunating away the lowfrequenies. They are only de�ned near r = 3M , therefore some spatial trunation isalso neessary. Let χ be a smooth uto� funtion supported near 3M whih equals 1 ina neighborhood of 3M , hosen so that we have a smooth partition of unity in r,

1 = χ2(r) + χ2
o(r)At �rst we de�ne the trunated operators

S̃ = χswχ, Ẽ = χewχThis hoie would yield an expression QK [u, S̃, Ẽ] with a prinipal symbol
qK
princ[S̃, Ẽ] = χ2

(

1

2i
{p, s} + pe

)

+
1

i
χs{p, χ}For these hoies of S̃ and Ẽ we onsider the expression IQK [u, S̃, Ẽ] whih is givenby (4.26) with Qw

2 , Qw
1 and Qw

0 as in (4.27). We observe that in general we an only saythat the right hand side of (4.27) is of the form
1

2
([2K , S̃] + 2KẼ + Ẽ2K) = Qw

2 + 2Qw
1 Dt + Qw

0 D2
t + Qw

−1D
3
t , Qw

j ∈ OPSjHowever, its prinipal symbol qK
princ[S̃, Ẽ] is at most a seond order polynomial in τ .Hene by the Weyl alulus we an write

1

2
([2K , S̃]+2KẼ+Ẽ2K)−(qK

princ[S̃, Ẽ])w ∈ OPS0+OPS−1Dt+OPS−2D2
t +OPS−3D3

tIn partiular this shows that Qw
−1 ∈ OPS−3. To eliminate this term we slightly adjustour hoie of Ẽ to

Ẽ = χewχ − ew
auxDtwhere the operator ew

aux is hosen so that
gttew

aux + ew
auxgtt = Qw

−1This is possible sine the oe�ient gtt of τ2 in p is a salar funtion whih is nonzeronear r = 3M . Also as de�ned ew
aux ∈ OPS−3 and has kernel supported near r = 3M .Having insured that the D3

t term does not appear, we divide IQK [u, S̃, Ẽ] into twoparts,
IQK [u, S̃, Ẽ] = IQK

princ[u, S̃, Ẽ] + IQK
aux[u, S̃, Ẽ]where the main omponent is given by(4.39) IQK

princ[u, S̃, Ẽ] =

∫

D

Qw
2,pu · u + 2ℜQw

1,pu · Dtu + Qw
0,pDtuDtu dVK
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2,p, Qw

1,p and Qw
0,p de�ned by

Qw
2,p + 2Qw

1,pDt + Qw
0,pD

2
t = χ

(

1

2i
{p, s} + pe

)w

χwhile the remainder is given by a similar expression with operators Qw
2,a, Qw

1,a and Qw
0,awhose prinipal symbols are supported away from r = 3M . More preisely, we have

Qw
2,a + 2Qw

1,aDt + Qw
0,aD2

t −
(

1

i
χs{p, χ}

)w

∈ OPS0 + OPS−1Dt + OPS−2D2
tHene, using the fat that the LEW 1

K norm is nondegenerate outside an O(a) neighbor-hood of 3M we an bound in an ellipti fashion(4.40) |IQK
aux[u, S̃, Ẽ]| . ‖u‖2

LEW 1
K

+ ‖Dtu‖2
H

−1
compwhere the last term on the right represents the H−1 norm of Dt u in a ompat regionin r (preisely, a neighborhood of 3M).In order to onlude the proof of the theorem we turn our attention to the bound(4.28), whih we seek to establish with S and E replaed with S̃, respetively Ẽ. We willshow that(4.41) ∫

D

QK [u, X, q, m]dVK + aIQK
princ[u, S̃, Ẽ] & ‖u‖2

LEW 1
K
− O(a)‖Dtu‖2

H
−1
compWe deompose the left hand side of (4.41) into an outer part and an inner part,

LHS(4.41) = LHS(4.41)out + LHS(4.41)inwhere
LHS(4.41)out =

∫

D

χ2
oQ

K [u, X, q, m]dVk

LHS(4.41)in =

∫

D

χ2QK [u, X, q, m]dVk + aIQK
princ[u, S̃, Ẽ]For the �rst part we use the pointwise positivity of QK away from 3M (see (4.23)) toonlude that(4.42) LHS(4.41)out &

∫

D

χ2
o(r

−2|∇u|2 + r−4|u|2)dVKThe seond part is a quadrati form whih for onveniene we fully reall here (see (4.29)and (4.39):
LHS(4.41)in =

∫

D

χ2(qK,αβ∂αu∂βu + qK,0u2)dV K

+ a

∫

D

Qw
2,pu · u + 2ℜQw

1,pu · Dtu + Qw
0,pDtuDtu dVKwhere the oe�ients qK,αβ , qK,0 and operators Qw

j,p satisfy
qK,αβηαηβ =

1

2i
{p, X}+ qp, qK,0 > 0respetively

Qw
2,p + 2Qw

1,pDt + Qw
0,pD

2
t = χ

(

1

2i
{p, s} + pe

)w

χ



22 DANIEL TATARU AND MIHAI TOHANEANUWe arefully observe that in the two parts of the expression for LHS(4.41)in the uto�funtion χ appears in di�erent plaes. In the �rst part, it is applied before the di�eren-tiation, while in the seond part it is applied before the pseudodi�erential operator. Itdoes not make muh sense to ommute at this point. In the �rst part, we would produelower order terms whih may signi�antly alter qK,0. In the seond part, we would losethe ompat support of the kernels for the operators Qw
j,p.Sine s and e are hosen as in Lemma 4.3, it follows that the prinipal symbol for

LHS(4.41)in admits the sum of squares representation (4.34). We want to translate thisinto a sum of squares deomposition for LHS(4.41)in. However, some are is requireddue to the di�erent positions of the uto� χ, as explained above. The symbols µk = µk(a)are in general of pseudodi�erential type. However, part (i) of the Lemma guarantees thatin the Shwarzshild ase they are of di�erential type. Consequently, we write
µk(a) = µk(0) + µk(a) − µk(0)and use this deomposition to de�ne the pseudodi�erential operators

Mk = χµk(0)(x, D) + (µk(a) − µk(0))wχThen using the Weyl alulus it follows that for LHS(4.41)in we have the representation
LHS(4.41)in =

∫

D

∑

k

|Mku|2+qK,0χ2u2dVk+

∫

D

Rw
2 u·ū+2ℜRw

1 Dtu·ū+Rw
0 Dtu·DtudVKwhere the remainder terms satisfy rj ∈ aSj−2. What is important here is that theremainder is of size O(a). This follows from our hoie of the operators Mk, whihguarantees that when a = 0 the remainder is zero.Combining the last relation with (4.42) we obtain the bound

∫

D

χ2
or

−2|∇u|2 + r−4|u|2 +
∑

k

|Mku|2dVK . LHS(4.41) + a(‖u‖2
L2

comp
+ ‖Dtu‖2

H
−1
comp

)where the last two terms on the right aount for the remainder terms involving theoperators Rw
j , whih an be bounded using norms of u and Dtu in a ompat region in

r, away from r = 0 and r = ∞.It is easy to see that the above left hand side dominates ‖u‖LEW 1
K
. For r away oneuses only the �rst two terms. On the other hand for r lose to 3M we use part (iii) of theLemma, whih guarantees that the symbols c1(τ−τ2), c2(τ−τ1) and ξ an be reovered inan ellipti fashion from the prinipal symbols µk of Mk. Thus (4.41) is proved. Togetherwith (4.40) this shows that

‖u‖2
LEW 1

K
.

∫

D

QK [u, X, q, m]dVK + aIQK [u, S̃, Ẽ] + O(a)‖Dtu‖2
H−1

compThe �nal step in the proof of (4.28) is to establish that the last error term above isnegligible. We an aount for it in an ellipti manner. Preisely, for any ompatlysupported selfadjoint operator Q ∈ OPS−1 we an use Q2 in a Lagrangian term andintegrate by parts (ommute) to obtain
2ℜ
∫

D

(gtt)−1
2Ku · Q2u dVK = ‖QDtu‖2

L2 + O( ‖QDtu‖L2‖u‖2
L2

comp
+ ‖u‖2

L2
comp

+ E[u](0) + E[u](ṽ0))
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‖QDtu‖2

L2 . ‖u‖2
L2

comp
+ ‖2Ku‖2

H
−1
comp

+ E[u](0) + E[u](ṽ0)and further to
‖Dtu‖2

H
−1
comp

. ‖u‖2
L2

comp
+ ‖2Ku‖2

H
−1
comp

+ E[u](0) + E[u](ṽ0)Thus (4.28) follows, and the proof of the theorem is onluded. �Note that Theorem 4.1 tells us, in partiular, that if we start with an initial data
(u0, u1) ∈ H1 × L2 then u(ṽ) ∈ H1 is uniformly bounded for all ṽ > 0. A naturalquestion to ask is if this is also true for higher Hn norms. For n ≥ 1 we de�ne

‖u‖LE
n+1

K
=
∑

|α|≤n

‖∂αu‖LE1
Krespetively

‖f‖LEn∗

K
=
∑

|α|≤n

‖∂αf‖LE∗

KThe higher order energies are similarly de�ned,
En+1[u](Σ±

R) =
∑

|α|≤n

E[∂αu](Σ±
R), En+1[u](ṽ0) =

∑

|α|≤n

E[∂αu](ṽ0)We then have the followingTheorem 4.4. Let n be a positive integer and u satisfy 2Ku = f with initial data
(u0, u1) ∈ Hn+1 × Hn on Σ−

R and f ∈ LEn∗
K (MR). Then

En+1[u](Σ+
R) + sup

ṽ>0
En+1[u](ṽ0) + ‖u‖2

LE
n+1

K

. ‖u0‖2
Hn+1 + ‖u1‖2

Hn + ‖f‖2
LEn∗

KProof. We remark that by trae regularity results we have
∑

|α|≤n−1

‖∂αf‖L2(Σ−

R
) . ‖f‖LEn∗

KSine the initial surfae Σ−
R is spae-like, we an use the equation to derive all higher ṽderivatives of u in terms of the Cauhy data (u0, u1) and f ,

En+1[u](Σ−
R) . ‖u0‖2

Hn+1 + ‖u1‖2
Hn + ‖f‖2

LEn∗

KThus it su�es to prove that for ṽ0 > 0 we have(4.43) En+1[u](Σ+
R) + En+1[u](ṽ0) + ‖u‖2

LE
n+1

K

. En+1[u](Σ−
R) + ‖f‖2

LEn∗

KWe will prove this for n = 2, and the proof for the other ases will follow in a similarmanner by indution.Sine ∂ṽ is a Killing vetor �eld, we have 2K(∂ṽu) = ∂ṽf . Then by Theorem 4.1 weobtain(4.44) E[∂ṽu](Σ+
R) + E[∂ṽu](ṽ0) + ‖∂ṽu‖2

LE1
K

. E2[u](Σ−
R) + ‖f‖2

LE1∗
K



24 DANIEL TATARU AND MIHAI TOHANEANUIn order to ontrol the rest of the seond order derivatives we take advantage of theequation, whih takes the form(4.45) (gṽṽ∂ṽṽ + 2gṽφ̃∂ṽφ̃ + L)u = fwhere L is a spatial partial di�erential operator of order 2. This is most useful in theregion where ∂ṽ is time-like. Given ǫ > 0, this happens in the region of the form r > 2M+ǫprovided that a is su�iently small. The fat that ∂ṽ is time-like is equivalent to theelliptiity of the spatial part L of 2K . From (4.44) we obtain at ṽ = ṽ0

‖Lu‖2
L2(Σv0

) . E[u](v0) + E[∂ṽu](v0) + ‖f‖2
L2(Σv0

)The operator L on the left is ellipti in r ≥ 2M + ǫ, therefore by a standard elliptiestimate we obtain
E[∇u](Σṽ0

∩ {r > 2M + ǫ}) . E[u](v0) + E[∂ṽu](v0) + ‖f‖2
L2(Σv0

)A similar ellipti analysis leads to the orresponding loal energy bound,
‖∇u‖2

LE1
K

(MR∩{r>2M+2ǫ}) . ‖u‖2
LE1

K
(MR) + ‖∂ṽu‖2

LE1
K

(MR) + ‖f‖2
L2(MR)

+ E[∇u](Σ0 ∩ {r > 2M + ǫ}) + E[∇u](Σṽ0
∩ {r > 2M + ǫ})where the last two terms aount for the output of integrations by parts in ṽ.We are left to deal with the ase r < 2M +2ǫ, where grr is small and simply using theequation (4.45) does not su�e. Let ζ(r) be a smooth uto� funtion suh that ζ = 1 on

[re, r+ + 2ǫ] and ζ = 0 when r > r+ + 3ǫ. Then we need bounds for the funtion w = ζu,whih solves
2Kw = ζf + [2K , ζ]u := gThe ommutator above is supported in the region {2M + 2ǫ ≤ r ≤ 2M + 3ǫ} where wealready have good estimates for u. Reall that in the region {r < 2M + 3ǫ} the LE1

Kand LE∗
K norms are equivalent with the H1, respetively L2 norm. Hene it remains toprove that for all funtions w with support in {r < 2M + 3ǫ} whih solve 2Kw = g wehave(4.46) E[∇w](Σ+

R) + E[∇w](ṽ0) + ‖∇w‖2
H1(MR) . E2[u](Σ−

R) + ‖g‖2
H1(MR)This is an estimate whih is loalized near the event horizon, and we will prove it takingadvantage of the red shift e�et.Sine ∂ṽ is Killing, this bound follows diretly from Theorem 4.1 for the ∂ṽw omponentof ∇w,(4.47) E[∂ṽw](Σ+

R) + E[∂ṽw](ṽ0) + ‖∂ṽw‖2
H1(D) . E2[w](Σ−

R) + ‖g‖2
H1(D)Consider now the angular derivatives of w, ∂ωw. We know that

[2S , ∂ω] = 0sine the Shwarzshild metri is spherially symmetri. Hene by (4.18) it follows that
[2K , ∂ω] is a seond order operator whose oe�ients have size O(a). Hene by Theorem4.1 we obtain(4.48) E[∂ωw](Σ+

R)+E[∂ωw](ṽ0)+‖∂ωw‖H1(D) . E2[w](Σ−
R)+‖g‖2

H1(D)+a‖∇ωw‖2
H1(D)We still need to bound ∂rw. For that we ompute the ommutator

[2K , ∂r]w = −(∂rg
rr)∂rrw + Tw
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r terms. The key observation, whihis equivalent to the red shift e�et, is that ∂rg

rr > 0 near r = 2M . Thus for X , C and qas in Lemma 4.2 we an write the equation for ∂rw in the form
(2K − γ[(X + CK) + q])∂rw = ∂rg + Twwith T as above and most importantly, a positive oe�ient γ. Beause of this theoperator

B = 2K − γ[(X + CK) + q]satis�es the same estimate in Theorem 4.1 as 2g for funtions supported near the eventhorizon. Indeed, the same proof goes through as in Theorem 3.1. Writing the integralidentity (4.21) for w we see the ontribution of γ is negative, therefore we obtain theinequality
∫

D

QK [w, X, q, m]dVK ≤ −
∫

D

(∂rg + Tw)
(

(X + CK)w + qw
)

dVK + BDRK [w]By (4.23) the left hand side is positive de�nite for r < 2M + 3ǫ. Using Cauhy-Shwarzfor the �rst term on the right and (4.22) for the seond we obtain
E[∂rw](Σ+

R) + E[∂rw](ṽ0) + ‖∂rw‖2
H1(D) . E2[w](Σ−

R) + ‖∂rg + Tw‖2
L2(D)Sine T ontains no seond order r derivatives, this leads to(4.49)

E[∂rw](Σ+
R) + E[∂rw](ṽ0) + ‖∂rw‖2

H1(D) . E2[w](Σ−
R) + ‖g‖H1(D) + a‖∇ω,ṽw‖2

H1(D)Then the desired bound (4.46) follows by ombining (4.47), (4.48) and (4.49) with ap-propriate oe�ients.
�As an easy orollary, one obtains from Sobolev embeddings the pointwise boundednessresult,Corollary 4.5. If u satis�es 2Ku = 0 in MR with initial data (u0, u1) ∈ H2 × H1 in

Σ−
R, then

‖u‖L∞ . ‖u0‖H2 + ‖u1‖H1Referenes[1℄ Serge Alinha: Energy multipliers for perturbations of Shwarzshild metris, preprint.[2℄ Serge Alinha: On the Morawetz-Keel-Smith-Sogge inequality for the wave equation on a urvedbakground. Publ. Res. Inst. Math. Si. 42(3) (2006), 705-720[3℄ P. Blue and A. So�er: Semilinear wave equations on the Shwarzshild manifold I: Loal deayestimates. Adv. Di�erential Equations 8 (2003), 595�614.[4℄ P. Blue and A. So�er: The wave equation on the Shwarzshild metri II: Loal deay for thespin-2 Regge-Wheeler equation. J. Math. Phys. 46 (2005), 9pp.[5℄ P. Blue and A. So�er: Errata for �Global existene and satttering for the nonlinear Shrödingerequation on Shwarzshild manifolds�, �Semilinear wave equations on the Shwarzshild manifoldI: Loal deay estimates�, and �The wave equation on the Shwarzshild metri II: Loal deay forthe spin 2 Regge Wheeler equation�, preprint.[6℄ P. Blue and A. So�er: Phase spae analysis on some blak hole manifolds, preprint.[7℄ P. Blue and A. So�er: Improved deay rates with small regularity loss for the wave equation abouta Shwarzshild blak hole, preprint.
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