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LOCAL ENERGY ESTIMATE ON KERR BLACK HOLEBACKGROUNDSDANIEL TATARU AND MIHAI TOHANEANUAbstra
t. We study dispersive properties for the wave equation in the Kerr spa
e-time with small angular momentum. The main result of this paper is to establishuniform energy bounds and lo
al energy de
ay for su
h ba
kgrounds. This follows asimilar result for the S
hwarzs
hild spa
e-time obtained in earlier work [21℄ by theauthors and 
ollaborators. 1. Introdu
tionThe aim of this arti
le is to study the de
ay properties of solutions to the wave equationin the Kerr spa
e-time, whi
h des
ribes a rotating bla
k hole. Until re
ently even theproblem of obtaining uniform bounds for su
h solutions was 
ompletely open, and onlysome partial results were obtained in [14℄. We also refer the reader to related independentwork in [13℄. However, the te
hniques used in these papers are of a di�erent �avor, asthey do not 
arry out su
h a pre
ise analysis of the dynami
s near the trapped set.Our aim here is to establish global in time energy bounds for the wave equation in theKerr spa
e-time, as well as a lo
al energy de
ay estimate. These bounds apply in the fullregion outside the event horizon, as well as in a small neighborhood on the inside of theevent horizon.The starting point in our analysis is the earlier work [21℄ of the authors and 
ollabora-tors, whi
h establishes similar bounds for the wave equation in the S
hwarzs
hild spa
e-time. The idea is to treat the Kerr geometry as a small perturbation of the S
hwarzs
hildgeometry, and then adapt the methods in [21℄. Consequently in this arti
le we are only
onsidering Kerr bla
k hole ba
kgrounds with small angular momentum, whi
h are 
loseto the S
hwarzs
hild spa
e-time. Nevertheless, we are 
on�dent that our methods will
arry over also to the 
ase of large angular momentum.Another goal of the earlier arti
le [21℄ was to establish Stri
hartz estimates in theS
hwarzs
hild spa
e-time. We also aim to 
onsider the similar problem for the Kerrspa
e-time. However, this requires very di�erent te
hni
al tools, and will be 
onsideredin a subsequent paper.The lo
al energy estimate in [21℄ is proved using the multiplier method; the deli
ateissue there is to show that a suitable multiplier 
an be found. This method is quite robustunder small perturbations of the metri
, and for the most part it easily 
arries over to theBoth authors were supported in part by NSF grant DMS0801261.1

http://arXiv.org/abs/0810.5766v2


2 DANIEL TATARU AND MIHAI TOHANEANUKerr ba
kgrounds with small angular momentum. There is however one region where thisdoes not apply, pre
isely near the photon sphere r = 3M (whi
h 
ontains all1 the trappedperiodi
 geodesi
s in the S
hwarzs
hild spa
e-time). Hen
e most of the new analysis hereis devoted to understanding what happens there.The paper is organized as follows. In the next se
tion we dis
uss the 
lassi
al lo-
al energy de
ay de
ay estimates in the Minkowski spa
e-time and small perturbationthereof. Then we provide a brief overview of the lo
al energy estimates proved in [21℄for the S
hwarzs
hild spa
e-time, along with a dis
ussion of the relevant geometri
al is-sues. Finally, the last se
tion 
ontains the des
ription of the Kerr spa
e-time and allthe new results. Our main lo
al energy estimate is 
ontained in Theorem 4.1. This is
omplemented by higher order bounds in Theorem 4.4.2. Lo
al energy de
ay in the Minkowski spa
e-timeIn the Minkowski spa
e-time R
3+1, 
onsider the wave equation with 
onstant 
oe�-
ients(2.1) 2u = f, u(0) = u0, ∂tu(0) = u1Here 2 = ∂2

t − ∆. More generally, let
2g =

1√−g
∂i(

√−ggij∂j)be the usual d'Alembertian asso
iated to a Lorentzian metri
 g.The seminal estimate of Morawetz [19℄ asserts that for solutions to the homogeneousequation 2u = 0 we have the estimate(2.2) ∫

R

∫

R3

1

|x| |6∇u|2(t, x) dx dt +

∫

R

|u(t, 0)|2dt . ‖∇u0‖2
L2 + ‖u1‖2

L2where 6∇ denotes the angular derivative. This is obtained 
ombining energy estimateswith the multiplier method. The radial multiplier Qu = (∂r + 1
r
)u is used, where rdenotes the radial variable.Within dyadi
 spatial regions one 
an 
ontrol the full gradient ∇u, but the squaresummability wth respe
t to dyadi
 s
ales is lost. Pre
isely, we de�ne the L2 lo
al energynorm(2.3) ‖u‖LEM

= sup
j∈Z

2−
j
2 ‖u‖L2(R×{|x|∈[2j−1,2j ]})and its H1 
ounterpart(2.4) ‖u‖LE1

M
= ‖∇x,tu‖LEM

+ ‖|x|−1u‖LEMFor the inhomogeneous term we use the dual norm(2.5) ‖f‖LE∗

M
=
∑

k∈Z

2
k
2 ‖f‖L2(R×{|x|∈[2k−1,2k]})1ex
ept of 
ourse for the rays along the event horizon, whi
h are not relevant to this dis
ussion



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 3Then we have the following s
ale invariant lo
al energy estimate for solutions u to theinhomogeneous equation (2.1):(2.6) ‖∇u‖L∞

t L2
x

+ ‖u‖LE1
M

. ‖∇u0‖L2 + ‖u1‖L2 + ‖f‖LE∗

M
+L1

t L2
xThis is proved using a small variation of Morawetz's method, with multipliers of the form

a(r)∂r + b(r) where a is positive, bounded and in
reasing.There are many similar results obtained in the 
ase of perturbations of the Minkowskispa
e-time; see, for example, [19℄, [17℄, [16℄, [23℄,[24℄, [25℄, [2℄, [20℄. Relevant to us is the
ase of small long range perturbations of the Minkowski spa
e-time, 
onsidered in [22℄.The metri
s g in R
3+1 
onsidered there satisfy(2.7) ∑

k∈Z

sup
|x|∈[2k−1,2k]

|g(t, x) − gM | + |x||∇x,tg(t, x)| + |x|2|∇2
x,tg(t, x)| ≤ ǫwhere gM stands for the Minkowski metri
. Then as a spe
ial 
ase of the results in [22℄we haveTheorem 2.1. [22℄ Let g be a Lorenzian metri
 in R

3+1 whi
h satis�es (2.7) with ǫ smallenough. Then the solution u to the inhomogeneous problem(2.8) 2u = f, u(0) = u0, ∂tu(0) = u1satis�es the estimate (2.7).No general su
h results are known for large perturbations, where on one hand trap-ping for large frequen
ies and on the other hand eigenvalues and resonan
es for smallfrequen
ies 
reate major di�
ulties. The S
hwarzs
hild and Kerr metri
s are su
h largeperturbations where trapping plays a major role.3. Lo
al energy de
ay in the S
hwarzs
hild spa
e-timeIn the original 
oordinates the S
hwarzs
hild spa
e-time is given as a metri
 whoseline element is (for I = R × (2M,∞) × S
2)(3.1) ds2 = −

(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2 + r2dω2where dω2 is the measure on the sphere S
2 and t, r are the time, respe
tively the radiusof the S

2 spheres. This metri
 is well de�ned in two regions,
I = R × (2M,∞) × S

2, II = R × (0, 2M) × S
2Let 2S denote the asso
iated d'Alembertian.The singularity at r = 0 is a true metri
 singularity. However, the singularity at theevent horizon r = 2M is an apparent singularity that 
an be removed by a di�erent 
hoi
eof 
oordinates. Following [15℄, let

r∗ = r + 2M log(r − 2M) − 3M − 2M log Mand let v = t + r∗. In the new 
oordinates (r, v, ω) the metri
 be
omes
ds2 = −

(

1 − 2M

r

)

dv2 + 2dvdr + r2dω2



4 DANIEL TATARU AND MIHAI TOHANEANUand 
an be extended to a larger manifold I ∪ II. Moreover, if w = t − r∗, one 
anintrodu
e global nonsingular 
oordinates (all the way to r = 0) by rewriting the metri
in the Kruskal-Szekeres 
oordinate system,
v′ = e

v
4M , w′ = −e−

w
4M .There are two pla
es where trapping o

urs on the S
hwarzs
hild manifold. The �rstis at the event horizon r = 2M , where the trapped geodesi
s are the verti
al ones in the

(r, v, ω) 
oordinates. However, this family of trapped rays turns out to 
ause no di�
ultyin the de
ay estimates sin
e the energy de
ays exponentially along it as v → ∞. These
ond family of trapped rays o

urs on the surfa
e r = 3M whi
h is 
alled the photonsphere. Null geodesi
s whi
h are initially tangent to the photon sphere will remain on thesurfa
e for all times. Unlike the previous 
ase, the energy is 
onserved for waves lo
alizedalong su
h rays. However, what makes lo
al energy de
ay estimates at all possible is thefa
t that the trapped rays on the photon sphere are hyperboli
.The (r, v, ω) 
oordinates are nonsingular on the event horizon, but have the disad-vantage that the level sets of v are null surfa
es. This is why it is more 
onvenient tointrodu
e
ṽ = v − µ(r)where µ is a smooth fun
tion of r. In the (ṽ, r, ω) 
oordinates the metri
 has the form

ds2 = −
(

1 − 2M

r

)

dṽ2 + 2

(

1 −
(

1 − 2M

r

)

µ′(r)

)

dṽdr

+
(

2µ′(r) −
(

1 − 2M

r

)

(µ′(r))2
)

dr2 + r2dω2.On the fun
tion µ we impose the following two 
onditions:(i) µ(r) ≥ r∗ for r > 2M , with equality for r > 5M/2.(ii) The surfa
es ṽ = const are spa
e-like, i.e.
µ′(r) > 0, 2 −

(

1 − 2M

r

)

µ′(r) > 0.The �rst 
ondition (i) insures that the (r, ṽ, ω) 
oordinates 
oin
ide with the (r, t, ω)
oordinates in r > 5M/2. This is 
onvenient but not required for any of our results.What is important is that in these 
oordinates the metri
 is asymptoti
ally �at as r → ∞a

ording to (2.7).Given 0 < re < 2M we 
onsider the wave equation(3.2) 2Su = fin the 
ylindri
al region(3.3) MR = {ṽ ≥ 0, r ≥ re}with initial data on the spa
e-like surfa
e(3.4) Σ−
R = MR ∩ {ṽ = 0}The lateral boundary of MR,(3.5) Σ+
R = MR ∩ {r = re}



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 5is also spa
e-like, and 
an be thought of as the exit surfa
e for all waves whi
h 
ross theevent horizon.We de�ne the initial (in
oming) energy on Σ−
R as(3.6) E[u](Σ−

R) =

∫

Σ−

R

(

|∂ru|2 + |∂ṽu|2 + |6∇u|2
)

r2drdωthe outgoing energy on Σ+
R as(3.7) E[u](Σ+
R) =

∫

Σ+

R

(

|∂ru|2 + |∂ṽu|2 + |6∇u|2
)

r2
edṽdωand the energy on an arbitrary ṽ sli
e as(3.8) E[u](ṽ0) =

∫

MR∩{ṽ=ṽ0}

(

|∂ru|2 + |∂ṽu|2 + |6∇u|2
)

r2drdωThe 
hoi
e of the lo
al energy norm LES is inspired from (2.3). However, there isa loss along the trapped geodesi
s on the photon sphere. Consequently, we introdu
e amodi�ed2 L2 lo
al energy spa
e(3.9) ‖u‖LES
=

∥

∥

∥

∥

(

1 − 3M

r

)

u

∥

∥

∥

∥

LEMand H1 lo
al energy spa
e
‖u‖LE1

S
= ‖∂ru‖LEM

+ ‖∂ṽu‖LES
+ ‖6∇u‖LES

+ ‖r−1u‖LEM(3.10)For the inhomogeneous term we use the norm(3.11) ‖f‖LE∗

S
=

∥

∥

∥

∥

∥

(

1 − 3M

r

)−1

u

∥

∥

∥

∥

∥

LEMIn the three formulas above we impli
itely assume that all norms are restri
ted to the set
MR where we study the wave equation (3.2). Then we have the following result:Theorem 3.1. [21℄ Let u be so that 2Su = f . Then we have(3.12) E[u](Σ+

R) + sup
ṽ

E[u](ṽ) + ‖u‖2
LE1

S
. E[u](Σ−

R) + ‖f‖2
LE∗

S
.Note that, 
ompared to the norms LEM , LE∗

M , the weights have an additional poly-nomial singularity at r = 3M , but there are no additional losses at the event horizon ornear ∞. Furthermore, by more re�ned results in [21℄, this polynomial loss 
an be relaxedto a logarithmi
 loss, i.e. the fa
tor 1 − 3M
r


an be improved to | ln(r − 3M)|−1 near
r = 3M . This is related to the fa
t that the (periodi
) trapped rays on the photon sphereare hyperboli
.We also remark that in the expression of LE1

S it was su�
ient to measure ∂ru. Thisis due to the impli
it 
an
elation 
aused by the fa
t that the symbol of the operator ∂rvanishes on the trapped set.2notations are slightly 
hanged 
ompared to [21℄ in order to insure some uniformity a
ross the threemodels des
ribed in the present paper



6 DANIEL TATARU AND MIHAI TOHANEANUThe 
hoi
e of re ∈ (0, 2M) is unimportant sin
e the r-sli
es r = const ∈ (0, 2M)are spa
elike. Hen
e moving from one su
h r-sli
e to another is equivalent to solving alo
al hyperboli
 problem, and involve no global 
onsiderations. Thus in the proof of thetheorem one 
an assume without any restri
tion in generality that re is 
lose to 2M .Lo
al energy estimates were �rst proved in [18℄ for radially symmetri
 S
hrödingerequations on S
hwarzs
hild ba
kgrounds. In [3, 4, 5℄, those estimates are extended toallow for general data for the wave equation. The same authors, in [6, 7℄, have providedstudies that give 
ertain improved estimates near the photon sphere r = 3M . Moreover,we note that variants of these bounds have played an important role in the works [8℄ and[11℄, [12℄ whi
h prove analogues of the Morawetz 
onformal estimates on S
hwarzs
hildba
kgrounds. 4. Lo
al energy de
ay in the Kerr spa
e-timeThe Kerr geometry in Boyer-Lindquist 
oordinates is given by
ds2 = gttdt2 + gtφdtdφ + grrdr2 + gφφdφ2 + gθθdθ2where t ∈ R, r > 0, (φ, θ) are the spheri
al 
oordinates on S

2 and
gtt = −∆ − a2 sin2 θ

ρ2
, gtφ = −2a

2Mr sin2 θ

ρ2
, grr =

ρ2

∆

gφφ =
(r2 + a2)2 − a2∆sin2 θ

ρ2
sin2 θ, gθθ = ρ2with

∆ = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ.A straightforward 
omputation gives us the inverse of the metri
:
gtt = − (r2 + a2)2 − a2∆sin2 θ

ρ2∆
, gtφ = −a

2Mr

ρ2∆
, grr =

∆

ρ2
,

gφφ =
∆ − a2 sin2 θ

ρ2∆sin2 θ
, gθθ =

1

ρ2
.The 
ase a = 0 
orresponds to the S
hwarzs
hild spa
e-time. We shall subsequentlyassume that a is small a ≪ M , so that the Kerr metri
 is a small perturbation of theS
hwarzs
hild metri
. We let 2K denote the d'Alembertian asso
iated to the Kerr metri
.In the above 
oordinates the Kerr metri
 has singularities at r = 0 on the equator

θ = π/2 and at the roots of ∆, namely r± = M ±
√

M2 − a2. As in the 
ase of theS
hwarzs
hild spa
e, the singularity at r = r+ is just a 
oordinate singularity, and 
orre-sponds to the event horizon. The singularity at r = r− is also a 
oordinate singularity;for a further dis
ussion of its nature, whi
h is not relevant for our results, we refer thereader to [10, 15℄. To remove the singularities at r = r± we introdu
e fun
tions r∗, v+and φ+ so that (see [15℄)
dr∗ = (r2 + a2)∆−1dr, dv+ = dt + dr∗, dφ+ = dφ + a∆−1dr.



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 7The metri
 then be
omes
ds2 = − (1 − 2Mr

ρ2
)dv2

+ + 2drdv+ − 4aρ−2Mr sin2 θdv+dφ+ − 2a sin2 θdrdφ+ + ρ2dθ2

+ ρ−2[(r2 + a2)2 − ∆a2 sin2 θ] sin2 θdφ2
+whi
h is smooth and nondegenerate a
ross the event horizon up to but not in
luding

r = 0. Just like in [21℄, we introdu
e the fun
tion
ṽ = v+ − µ(r)where µ is a smooth fun
tion of r. In the (ṽ, r, φ+, θ) 
oordinates the metri
 has the form

ds2 = (1 − 2Mr

ρ2
)dṽ2 + 2

(

1 − (1 − 2Mr

ρ2
)µ′(r)

)

dṽdr

− 4aρ−2Mr sin2 θdṽdφ+ +
(

2µ′(r) − (1 − 2Mr

ρ2
)(µ′(r))2

)

dr2

− 2aθ(1 + 2ρ−2Mrµ′(r)) sin2 drdφ+ + ρ2dθ2

+ ρ−2[(r2 + a2)2 − ∆a2 sin2 θ] sin2 θdφ2
+.On the fun
tion µ we impose the following two 
onditions:(i) µ(r) ≥ r∗ for r > 2M , with equality for r > 5M/2.(ii) The surfa
es ṽ = const are spa
e-like, i.e.

µ′(r) > 0, 2 − (1 − 2Mr

ρ2
)µ′(r) > 0.As long as a is small, we 
an work with the same fun
tion µ as in the 
ase of theS
hwarzs
hild spa
e-time.For 
onvenien
e we also introdu
e

φ̃ = ζ(r)φ+ + (1 − ζ(r))φwhere ζ is a 
uto� fun
tion supported near the event horizon and work in the (ṽ, r, φ̃, θ)
oordinates whi
h are identi
al to (t, r, φ, θ) outside of a small neighborhood of the eventhorizon.Carter [9℄ showed that the Hamiltonian �ow is 
ompletely integrable by �nding afourth 
onstant of motion K that is preserved along geodesi
s. If E and L are the two
onstants of motion asso
iated with the Killing ve
tor �elds ∂t and ∂φ, the equations forthe null geodesi
s 
an be redu
ed to the following (see, for example, [10℄ or [26℄)
ρ2ṫ = a(L − Ea sin2 θ) +

(r2 + a2)((r2 + a2)E − aL)

∆

ρ2φ̇ =
L − Ea sin2 θ

sin2 θ
+

(r2 + a2)aE − a2L

∆

ρ4θ̇2 = K − (L − Ea sin2 θ)2

sin2 θ

ρ4ṙ2 = − K∆ + ((r2 + a2)E − aL)2

(4.1)where the overdot denotes di�erentiation with respe
t to an a�ne parameter s. Thisparametrization of the null geodesi
s is nondegenerate away from the surfa
es r = r±.



8 DANIEL TATARU AND MIHAI TOHANEANUNext we dis
uss the geometry of the trapped null geodesi
s. The level sets r = r0 of
r are time-like for r0 > r+, null for r = r+ and spa
e-like for r− < r0 < r+. The latterimplies that there are no trapped null geodesi
s inside the region {r− < r < r+}. On thenull surfa
es r = r±, through ea
h point there is a unique null ve
tor whi
h is tangentand whi
h generates a trapped null geodesi
s.To �nd the trapped null geodesi
s in the region r > r+ it su�
es to 
onsider thebehavior of the fourth degree polynomial

P (r) = −K∆ + ((r2 + a2)E − aL)2in the last equation in (4.1). At least one of the parameters E, K and L should benonzero, and the third equation shows that K ≥ 0 and that we 
annot simultaneouslyhave E = K = 0. Thus P is always nondegenerate. The key observation is that that thesimple zeroes of P 
orrespond to turning points in the last equation, and only the doublezeroes are steady states. There are several 
ases to 
onsider.a) If E = 0 then K > 0. Thus P has at most one positive root, where it 
hanges signfrom + to −. This root is a right turning point for the ode, and there are no trappednull geodesi
s.b) E 6= 0. Then P has degree 4 and P ≥ 0 in [r−, r+]. If P has any zero in [r−, r+]then the square expression must vanish, and this zero must be a double zero. We 
laimthat in (r+,∞) P has either no root or two roots (
ounted with multipli
ity); this iseasily seen, as P must have either (at least) two 
omplex 
onjugate roots or a negativeroot (the sum of the roots equals 0) and (at least) another one smaller than r− (sin
e
P (r−) ≥ 0). There are three sub
ases:b1) P has no roots larger than r+. Then r is monotone along null geodesi
s, and thereare no trapped null geodesi
s.b2) P has two distin
t positive roots r+ < r1 < r2. There it must 
hange sign from +to −, respe
tively from − to +. Hen
e r1 is a right turning point and r2 is a left turningpoint for the ode. Thus no trapped null geodesi
s exist.b3) P has a double positive real root r0. Then this root is a steady state, and all othersolutions 
onverge to the steady state at one end, and es
ape to 0 or in�nity at the otherend.This analysis shows that the only trapped null geodesi
s are those along whi
h r is
onstant. The polynomial P has a double root if the following two relations hold,

((r2 + a2)E − aL)2 = K∆, 2rE((r2 + a2)E − aL) = K(r − M)whi
h we rewrite in the form
K =

r2E2∆

(r − M)2
, aL = E

(

r2 + a2 − 2r∆

r − M

)The right hand side in the θ̇ equation must be nonnegative. Substituting in the above tworelations we obtain a ne
essary 
ondition for the existen
e of trapped geodesi
s, namelythe inequality(4.2) (2r∆ − (r − M)ρ2)2 ≤ 4a2r2∆sin2 θ
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an show that this 
ondition is also su�
ient. The expression on the left has theform
2r∆ − (r − M)ρ2 = r2(r − 3M) + 2ra2 − (r − M)a2 cos2 θIf a = 0 then it has a single positive nondegenerate zero at r = 3M , whi
h is the photonsphere in the S
hwarzs
hild metri
. Hen
e if 0 < a ≪ M it will still have a single zerowhi
h is 
lose to 3M . A rough 
omputation leads to a bound of the form(4.3) |r − 3M | ≤ 2a, a ≪ 2MThus all trapped null geodesi
s lie within O(a) of the r = 3M sphere.We would like a 
hara
terization of the aforementioned trapped geodesi
s in the phasespa
e. Let τ, ξ, Φ and Θ be the Fourier variables 
orresponding to t, r, φ and θ, and
p(r, φ, τ, ξ, Φ, Θ) = gttτ2 + 2gtφτΦ + gφφΦ2 + grrξ2 + gθθΘ2be the prin
ipal symbol of 2K . On any null geodesi
 one has(4.4) p(t, r, φ, θ, τ, ξ, Φ, Θ) = 0.Moreover, the Hamilton �ow equations give us(4.5) ṙ = −∂p

∂ξ
= −2∆

ρ2
ξ(4.6) ξ̇ =

∂p

∂r
= gtt

,rτ
2 + 2gtφ

,r τΦ + gφφ
,r Φ2 + grr

,r ξ2 + gθθ
,r Θ2We rewrite the latter in the form(4.7) ρ2ξ̇ = ρ2 ∂p

∂r
= −2Ra(r, τ, Φ)∆−2 + ρ2∂r(ρ

−2)p + 2(r − M)ξ2where
Ra(r, τ, Φ) = (r2 + a2)(r3 − 3Mr2 + a2r + a2M)τ2 − 2aM(r2 − a2)τΦ − a2(r − M)Φ2For geodesi
s with 
onstant r, one needs to impose the additional 
ondition ṙ = 0.Hen
e from (4.5) either r = r±, whi
h 
orrespond to the geodesi
s at r = 2M in theS
hwarzs
hild 
ase, or ξ = 0. In the latter 
ase from (4.7) we obtain a polynomialequation for r, namely(4.8) Ra(r, τ, Φ) = 0Furthermore, due to (4.4) we must also have the inequality

−((r2 + a2)2 − a2∆sin2 θ)τ2 − 2aMrτΦ +
∆ − a2 sin2 θ

sin2 θ
Φ2 ≤ 0If a is small and r is as in (4.3) this allows us to bound Φ in terms of τ ,(4.9) |Φ| ≤ 4M |τ |For Φ in this range and small a the polynomial τ−2Ra(r, τ, Φ) 
an be viewed as a smallperturbation of

τ−2R0(r, τ, Φ) = r4(r − 3M)
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h has a simple root at r = 3M . Hen
e for small a the polynomial Ra has a simpleroot 
lose to 3M , whi
h we denote by ra(τ, φ). By homogeneity 
onsiderations and theimpli
it fun
tion theorem we 
an further express ra in the form
ra(τ, Φ) = 3Mr̃

(

a

M
,

Φ

Mτ

)

, r̃ ∈ C∞([−ǫ, ǫ]× [−4, 4])Sin
e r0(τ, Φ) = 3M , it follows that we 
an write ra(τ, Φ) in the form
ra(τ, Φ) = 3M + aF

(

a

M
,

Φ

Mτ

)

, F ∈ C∞([−ǫ, ǫ]× [−4, 4])The above analysis shows that the trapped null geodesi
s 
orresponding to frequen
ies
(τ, Φ) are lo
ated at radial frequen
y ξ = 0 and position r = ra(τ, ξ). One would benaively led to de�ne the lo
al smoothing spa
es asso
iated to the Kerr spa
e-time byrepla
ing the fa
tor r − 3M in (3.9) and (3.11) with the modi�ed fa
tor r − ra(τ, Φ).Unfortunately, this is no longer a s
alar fun
tion, but a symbol of a pseudodi�erentialoperator. In addition, this operator depends on the time Fourier variable τ , whi
h isin
onvenient for energy estimates on time (ṽ) slabs.Consequently, we repla
e the r− ra(τ, Φ) weight with a polynomial in τ whi
h has thesame symbol on the 
hara
teristi
 set p = 0. More pre
isely, for r 
lose to 3M we fa
tor

p(r, φ, τ, ξ, Φ, Θ) = gtt(τ − τ1(r, φ, ξ, Φ, Θ))(τ − τ2(r, φ, ξ, Φ, Θ))where τ1, τ2 are real distin
t smooth 1-homogeneous symbols. On the 
one τ = τi thesymbol r − ra(τ, φ) equals
ci(r, φ, ξ, Φ, Θ) = r − ra(τi, Φ) = r − 3M − aF

(

a

M
,

Φ

Mτi

)

, i = 1, 2If r is 
lose to 3M and |a| ≪ M then on the 
hara
teristi
 set of p we have |φ| < 4M |τ |,therefore the symbols ci are well de�ned, smooth and homogeneous. They are alsononzero outside an O(a) neighborhood of 3M .We use the symbols ci to de�ne asso
iated mi
rolo
ally weighted fun
tion spa
es L2
ci
ina neighborhood I ×S

2 of 3M ×S
2 whi
h does not depend on a for small a. For fun
tions

u supported in I × S
2 we set

‖u‖2
L2

ci

= ‖ci(D, x)u‖2
L2 + ‖u‖2

H−1There is an ambiguity in this notation as we have not spe
i�ed the 
oordinate framein whi
h we view ci as a pseudodi�erential operator. However, it is easy to see thatdi�erent frames lead to equivalent norms. We note that the low frequen
ies in ci are alsoirrelevant, and 
an be removed with a suitable 
uto�. After removing the low frequen
ies,the quantization that we use for ci be
omes unimportant as well. We also de�ne a dualnorm ciL
2 for fun
tions g supported in I × S

2, namely
‖g‖2

ciL2 = inf
ci(x,D)g1+g2=g

(‖g1‖2
L2 + ‖g2‖2

H1)Sin
e the symbols ci are nonzero outside an O(a) neighborhood of 3M , it follows thatboth norms L2
ci
and ciL

2 are equivalent to L2 outside a similar neighborhood.
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an de�ne lo
al smoothing norms asso
iated to the Kerr spa
e-time. Let χ(r)be a smooth 
uto� fun
tion whi
h is supported in the above neighborhood I of 3M andwhi
h equals 1 near 3M . Then we set
‖u‖LE1

K
=‖χ(Dt − τ2(D, x))χu‖L2

c1
+ ‖χ(Dt − τ1(D, x))χu‖L2

c2
+ ‖(1 − χ2)∂tu‖LEM

+ ‖(1 − χ2)6∇u‖LEM
+ ‖∂ru‖LEM

+ ‖r−1u‖LEM

(4.10)We remark that this norm is equivalent to the Minkowski norm LE1
M outside an O(a)neighborhood of 3M , but it is degenerate on the trapped set.For the nonhomogeneous term in the equation we de�ne a dual stru
ture,

‖f‖LE∗

K
= ‖(1 − χ)f‖LE∗

M
+ ‖χf‖c1L2+c2L2To state the main result of this paper we use the notations in (3.3)-(3.8), with theparameter re 
hosen so that r− < re < r+:Theorem 4.1. Let u solve 2Ku = f in MR. Then(4.11) ‖u‖2

LE1
K

+ sup
ṽ

E[u](ṽ) + E[u](Σ+
R) . E[u](Σ−

R) + ‖f‖2
LE∗

K
.in the sense that the left hand side is �nite and the inequality holds whenever the righthand side is �nite.The proof of the result uses the multiplier method. Part of the di�
ulty is 
ausedby the fa
t that, as shown in [1℄, there is no di�erential multiplier that provides us witha positive lo
al energy norm. What we do instead is �nd a suitable pseudodi�erentialoperator that does the job. This is 
hosen so that its symbol vanishes on trapped rays,whi
h leads to a lo
al energy norm whi
h is degenerate there.As in the S
hwarzs
hild 
ase, the 
hoi
e of re ∈ (r−, r+) is unimportant sin
e the

r-sli
es r = const ∈ (r−, r+) are spa
elike. Hen
e in the proof of the theorem one 
anassume without any restri
tion in generality that re is 
lose to r+.Proof. The theorem is proved using a modi�
ation of the arguments in [21℄. Let us �rstqui
kly re
all the key steps in the proof of Theorem 3.1 as in [21℄. We begin with theenergy-momentum tensor
Qαβ [u] = ∂αu∂βu − 1

2
gαβ∂γu∂γuIts 
ontra
tion with respe
t to a ve
tor �eld X is denoted by

Pα[u, X ] = Qαβ[u]Xβand its divergen
e is
∇αPα[u, X ] = 2gu · Xu +

1

2
Qαβ[u]παβwhere παβ is the deformation tensor of X , given by

παβ = ∇αXβ + ∇βXαA spe
ial role is played by the Killing ve
tor �eld
K = ∂ṽ



12 DANIEL TATARU AND MIHAI TOHANEANUwhose deformation tensor is zero.Integrating the above divergen
e relation for a suitable 
hoi
e of X does not su�
e inorder to prove the lo
al energy estimates, as in general the deformation tensor 
an onlybe made positive modulo a Lagrangian term of the form q∂αu∂αu. Hen
e some lowerorder 
orre
tions are required. For a ve
tor �eld X , a s
alar fun
tion q and a 1-form mwe de�ne
Pα[u, X, q, m] = Pα[u, X ] + qu∂αu − 1

2
∂αqu2 +

1

2
mαu2.The divergen
e formula gives(4.12) ∇αPα[u, X, q, m] = 2gu

(

Xu + qu
)

+ Q[u, X, q, m],where
Q[u, X, q, m] =

1

2
Qαβ [u]παβ + q∂αu ∂αu + mαu ∂αu + (∇αmα − 1

2
∇α∂αq)u2.So far these 
omputations apply both for the S
hwarzs
hild and the Kerr metri
s. Fromhere one, we will use the sub(super)s
ripts S, respe
tively K to indi
ate when a 
ompu-tation is perform with respe
t to one metri
 or another.To prove the lo
al energy de
ay in the S
hwarzs
hild spa
e-time, X , q and m are
hosen as in the following lemma:Lemma 4.2. There exist a smooth ve
tor �eld

X = b(r)(1 − 3M

r
)∂r + c(r)Kwith c supported near the event horizon and b > 0 bounded so that

|∂α
r b| ≤ cαr−αa smooth fun
tion q(r) with

|∂α
r q| ≤ cαr−1−αand a smooth 1-form m supported near the event horizon r = 2M so that(i) The quadrati
 form QS [u, X, q, m] is positive de�nite,(4.13) QS[u, X, q, m] & r−2|∂ru|2 +

(

1 − 3M

r

)2

(r−2|∂ṽu|2 + r−1|6∇u|2) + r−4u2.(ii) X(2M) points toward the bla
k hole, X(dr)(2M) < 0, and 〈m, dr〉(2M) > 0.The lo
al energy estimate is obtained by integrating the divergen
e relation (4.12)with X + CK instead of X , where C is a large 
onstant, on the domain
D = {0 < ṽ < ṽ0, r > re}with respe
t to the measure indu
ed by the metri
, dVS = r2drdṽdω. This yields(4.14) ∫

D

QS [u, X, q, m]dVS = −
∫

D

2Su
(

(X + CK)u + qu
)

dVS + BDRS [u]where BDRS [u] denotes the boundary terms
BDRS [u] =

∫

〈dṽ, P [u, X + CK, q, m]〉r2drdω

∣

∣

∣

∣

ṽ=ṽ0

ṽ=0

−
∫

〈dr, P [u, X + CK, q, m]〉r2
edṽdω
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ondition (ii) in the Lemma and Hardy type inequalities, it is shown in [21℄that for large C and re 
lose to 2M the boundary terms have the 
orre
t sign,(4.15) BDRS [u] ≤ c1E[u](Σ−
R) − c2(E[u](ṽ0) + E[u](Σ+

R)), c1, c2 > 0Consequently, by applying the Cau
hy-S
hwartz inequality for the �rst term on the rightof (4.14) we obtain a slightly weaker form of the lo
al energy estimate (3.12), namely(4.16) E[u](Σ+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
LEW 1

S
. E[u](Σ−

R) + ‖f‖2
LEW∗

S
.where the weaker norm LEW 1

S and the stronger norm LEW ∗
S are de�ned by

‖u‖2
LEW 1

S
=

∫

MR

(

r−2|∂ru|2 +

(

1 − 3M

r

)2

(r−2|∂ṽu|2 + r−1|6∇u|2) + r−4u2

)

r2drdṽdωrespe
tively
‖f‖2

LEW∗

S
=

∫

MR

r2

(

1 − 3M

r

)−2

f2r2drdṽdωThese norms are equivalent with the stronger norms LE1
S , respe
tively LE∗

S for r in abounded set. On the other hand for large r the S
hwarzs
hild spa
e 
an be viewed asa small perturbation of the Minkovski spa
e. Thus the transition from (4.16) to (3.12)is a
hieved in [21℄ by 
utting away a bounded region and then using a perturbation ofa Minkowski spa
e estimate. This part of the proof translates without any 
hanges tothe 
ase of the Kerr spa
e-time. Our goal in what follows will be to establish the Kerr
ounterpart of (4.16), namely(4.17) E[u](Σ+
R) + sup

ṽ

E[u](ṽ) + ‖u‖2
LEW 1

K
. E[u](Σ−

R) + ‖f‖2
LEW∗

K
.where the norms LEW 1

K , respe
tively LEW ∗
K 
oin
ide with LE1

K , respe
tively LE∗
K forbounded r, and with LEW 1

S , respe
tively LEW ∗
S for large r. More pre
isely, if χ(r) is asmooth 
ompa
tly supported 
uto� fun
tion whi
h equals 1 say for r < 4M then we set

‖u‖2
LEW 1

K
= ‖χu‖2

LE1
K

+ ‖(1 − χ)u‖2
LEW 1

Srespe
tively
‖u‖2

LEW∗

K
= ‖χu‖2

LE∗

K
+ ‖(1 − χ)u‖2

LEW∗

SDi�erent 
hoi
es for χ lead to di�erent but equivalent norms.It is useful to �rst 
onsider the e�e
t of the same multiplier in the Kerr metri
. Thetwo metri
s are 
lose when measured in the same eu
lidean frame x = rω with r ≥ re.Pre
isely, with ∂ standing for ∂t and ∂x, x = rω,(4.18) |∂α[(gK)ij − (gS)ij ]| ≤ cα

a

r2+|α|
, |∂α[(gK)ij − (gS)ij ]| ≤ cα

a

r2+|α|From this and the size and regularity properties of X , q and m it follows that(4.19) |PS
α [u, X, q, m] − PK

α [u, X, q, m]| .
a

r2
|∇u|2respe
tively(4.20) |QS[u, X, q, m] − QK [u, X, q, m]| . a

(

1

r2
|∇u|2 +

1

r4
|u|2
)
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e integrating the divergen
e relation (4.12) in the Kerr spa
e-time over the samedomain D but with respe
t to the Kerr indu
ed measure dVK = ρ2drdṽdω we obtain(4.21) ∫

D

QK [u, X, q, m]dVK = −
∫

D

2Ku
(

(X + CK)u + qu
)

dVK + BDRK [u]The bound (4.19) shows that for small a the boundary terms retain their positivityproperties in (4.15), namely(4.22) BDRK [u] ≤ c1E[u](Σ−
R) − c2(E[u](ṽ0) + E[u](Σ+

R)), c1, c2 > 0However, (4.20) merely shows that(4.23) QK [u, X, q, m] & r−2|∂ru|2+
[

(

1 − 3M

r

)2

− Ca

]

(r−2|∂ṽu|2+r−1|6∇u|2)+r−4u2and the right hand side is no longer positive de�nite near r = 3M . Thus we 
annot 
losethe argument as in the S
hwarzs
hild 
ase. As shown in [1℄, 
hanging the ve
tor �eld Xnear r = 3M would not help.To remedy this, we need to use a pseudodi�erential modi�
ation S of the ve
tor �eld
X . We will 
hoose S so that its kernel is supported in a small neighborhood of (3M, 3M);this insures that there will be no additional 
ontributions at r = re. Furthermore, in orderto be able to 
arry out the 
omputations near the initial and �nal surfa
es ṽ = 0, ṽ0 wetake S to be a �rst order di�erential operator with respe
t to ṽ. Similarly, we modify theLagrangian fa
tor q using a pseudodi�erential 
orre
tion E, whi
h is also a �rst orderdi�erential operator with respe
t to ṽ.We also need to 
hoose a quantization whi
h is 
onsistent with the Kerr measure. Herewe have a few 
hoi
es whi
h have equivalent results. For our sele
tion we use eu
lidean-like 
oordinates x = ωr. Given a real symbol s its eu
lidean Weyl quantization sw isselfadjoint with respe
t to the eu
lidean measure dV = r2drdω. However, in our 
ase weneed to work with the Kerr indu
ed measure dVK = ρ2drdω. Hen
e we slightly abusenotations and rede�ne the Weyl quantization as

sw :=
r

ρ
sw ρ

rIf s is a real symbol, then sw (re)de�ned above is a selfadjoint operator in L2(dVK).Another issue whi
h does not a�e
t our analysis but needs to be addressed is thatwe are using pseudodi�erential operators in an exterior domain {r > re} and some 
aremust be given to what happens near r = re. To keep things simple, in what followsall operators we work with are 
ompa
tly supported in the sense that their kernels aresupported away from re and in�nity; even better, supported in a small neighborhood of
3M .In what follows we 
onsider a skewadjoint pseudodi�erential operator S and a selfad-joint pseudodi�erential operator E of the form 3

S = isw
1 + sw

0 ∂t, E = ew
0 +

1

i
e−1∂t3Sin
e we are away from the event horizon the variable ṽ 
oin
ides with t. We make this substitutionhere and later.



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 15where s1 ∈ S1, s0, e0 ∈ S0 and e−1 ∈ S−1 are real symbols, homogeneous outside aneighborhood of 0. Commuting and integrating by parts we obtain the 
ounterpart ofthe relation (4.21), namely(4.24) IQK [u, S, E] = −ℜ
∫

D

2Ku · (S + E)udVK + BDRK [u, S, E]Here BDRK [u, S, E] represents the boundary terms obtained in the integration by partswith respe
t to t. Its exa
t form is not important, as all we need to use here is the bound(4.25) |BDRK [u, S, E]| . E[u](0) + E[u](ṽ0)We note that due to the presen
e of the 
uto� fun
tion χ in both operators S and Ethere are no 
ontributions on the lateral boundary r = re.On the other hand IQK [u, S, E] represents a quadrati
 form in (u, Dtu) whi
h 
an bewritten in the form(4.26) IQK [u, S, E] =

∫

D

Qw
2 u · u + 2ℜQw

1 u · Dtu + Qw
0 DtuDtu dVKwhere Qw

j ∈ OPSj are selfadjoint pseudodi�erential operators so that(4.27) Qw
2 + 2Qw

1 Dt + Qw
0 D2

t =
1

2
([2K , S] + 2KE + E2K)We remark that for arbitrary operators S and E the expression above on the right isin general a third order di�erential operator in t. However, the operator S will alwaysbe 
hosen so that the 
oe�
ient of D3

t vanishes. We de�ne the prin
ipal symbol of thequadrati
 form IQK [u, S, E] as
qK [S, E] = q2 + 2q1τ + q0τ

2The previous relation shows that it satis�es
qK [S, E] =

1

2i
{p, s} + pe mod S0 + τS−1 + τ2S−2We add (4.21) with a times (4.24). The boundary terms are estimated by (4.22) and(4.25). Using the duality between the spa
es ciL

2 and L2
ci
we 
an also estimate

∣

∣

∣

∣

∫

D

f(X + CK + q + a(S + E))udVK

∣

∣

∣

∣

. ‖f‖LEW∗

K
‖u‖LEW 1

KHen
e in order to prove (4.17) it would su�
e to show that the symbols s and e 
an be
hosen so that(4.28) ∫

D

QK [u, X, q, m]dVK + aIQK [u, S, E] & ‖u‖2
LEW 1

KHere we aim to 
hoose S and E uniformly with respe
t to small a. In e�e
t, our 
onstru
-tion below yields symbols s and e whi
h are analyti
 with respe
t to a. We remark thatthe 
hoi
e of S and E is only important in the region where r is 
lose to 3M . Outside thisregion, QK [u, X, q, m] is already positive de�nite and the 
ontribution of aIQK [u, S, E]is negligible.We 
onsider �rst the expression QK [u, X, q, m]. Near r = 3M this has the form(4.29) QK [u, X, q, m] =
∑

qK,αβ∂αu∂βu + qK,0u2



16 DANIEL TATARU AND MIHAI TOHANEANUwhere its prin
ipal symbol qK = qK,αβηαηβ and the lower order 
oe�
ient qK,0 are givenby the relation
qK =

1

2i
{p, X}+ qp, qK,0 = −1

2
∇α∂αqWe do not need to exa
tly 
ompute the above expression in the Kerr 
ase, but it is usefulto perform the 
omputation in the simpler 
ase of the S
hwarzs
hild spa
e. There wehave

p = −
(

1 − 2M

r

)−1

τ2 +

(

1 − 2M

r

)

ξ2 +
1

r2
λ2, X = ib(r)

(

1 − 3M

r

)

ξwhere λ stands for the spheri
al Fourier variable. Hen
e we obtain
r2qS =

1

2i
{r2p, X} + (q − r−1b(r)(r − 3M))(r2p)

= α2
S(r)τ2 + β2

S(r)ξ2 + q̃(r)(r2p)
(4.30)where, near r = 3M ,

α2
S(r) =

rb(r)(r − 3M)2

(r − 2M)2
,

β2
S(r) =

3M

r2
b(r2 − 2Mr) +

(

1 − 3M

r

)

(b′(r2 − 2Mr) − b(r − M))respe
tively
q̃(r) = q − r−1b(r)(r − 3M).Here we have used the fa
t that b > 0 to write the �rst two 
oe�
ients as squares.For our 
hoi
e of q and r we know that the relation (4.13) holds. This implies thatthe following two inequalities must hold:(4.31) qS & ξ2 + (r − 3M)2(τ2 + λ2), qS,0 > 0Given the form of qS , the �rst relation implies that q̃ is a multiple of (r−3M)2, and thatin addition there is a smooth fun
tion ν(r) so that

r3

r − 2M
q̃ = ν(r)α2

S(r), 0 < ν < 1This allows us to obtain the following sum of squares representation for qS :(4.32)
r2qS = (1 − ν(r))α2

S(r)τ2 + β2(r)ξ2 + ν1(r)α
2
S(r)(λ2 + (r2 − 2rM)ξ2), ν1 =

r − 2M

r3
νThe symbol λ2 of the spheri
al Lapla
ian 
a also be written as sums of squares of di�er-ential symbols,

λ2 = λ2
1 + λ2

2 + λ2
3where in Eu
lidean 
oordinates we 
an write

{λ1, λ2, λ3} = {xiηj − xjηi, i 6= j}(4.33) r2qS = (1 − ν(r))α2
S(r)τ2 + β2

S(r)ξ2 + ν1(r)α
2
S(r)(λ2

1 + λ2
2 + λ2

3 + (r2 − 2rM)ξ2)



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 17We return now to the question of �nding symbols s and e so that the bound (4.28)holds. Near r = 3M , the prin
ipal symbol of the quadrati
 form on the left in (4.28) is
1

2i
{p, X + as} + p(q + ae)In order to prove (4.28) at the very least we would like the above symbol to be nonneg-ative, and to satisfy the bound

1

2i
{p, X + as} + p(q + ae) & c2

2(τ − τ1)
2 + c2

1(τ − τ2)
2 + ξ2However, su
h a bound would not a-priori su�
e sin
e translating it to operator boundswould require using the Fe�erman-Phong inequality, whi
h does not hold in general forsystems. Hen
e we prove a more pre
ise result, and show that the symbols s and e 
an be
hosen so that we have a favorable sum of squares representation for the above expression,whi
h extends the sum of squares (4.33) to a 6= 0.Lemma 4.3. Let a be su�
iently small. Then there exist smooth homogeneous symbols

s ∈ S1
hom, e ∈ S0

hom, also depending smoothly in a, so that for r 
lose to 3M we havesum of squares representation(4.34) ρ2

(

1

2i
{p, X + as} + p(q + ae)

)

=
8
∑

j=1

µ2
jwhere µj ∈ S1

hom + τS0
hom satisfy the following properties:(i) The de
omposition (4.34) extends the de
omposition (4.33) in the sense that

(µ1, µ2, µ3, µ4, µ5, µ6) = ((1 − ν)
1
2 αSτ, βSξ, ν

1
2

1 αSλ1, ν
1
2

1 αSλ2, ν
1
2

1 αSλ3, ν
1
2

1 αSξ)mod a(S1
hom + τS0

hom)and
(µ7, µ8) ∈

√
a(S1

hom + τS0
hom)(ii) The family of symbols {µj}j=1,6 is ellipti
ally equivalent with the family of symbols

(c2(τ − τ1), c1(τ − τ2), ξ) in the sense that we have a representation of the form
µ = Mv, v =





c2(τ − τ1)
c1(τ − τ2)

ξ



where the symbol valued matrix M ∈ M8×3(S0
hom) has maximum rank 3 everywhere.Proof. Setting q̃ = q − 2{lnρ, X} respe
tively ẽ = e − 2{lnρ, s} we 
ompute

ρ2

(

1

2i
{p, X + as} + (q + ae)p

)

=
1

2i
{ρ2p, X + as} + (q̃ + aẽ)(ρ2p)We �rst 
hoose the symbol s so that the Poisson bra
ket {ρ2p, X + as} has the 
orre
tbehavior on the 
hara
teristi
 set p = 0. Re
all that the symbol of X is ir−1b(r)(r−3M)ξ,where the vanishing 
oe�
ient at 3M 
orresponds exa
tly to the lo
ation of the trappedrays. Its natural 
ounterpart in the Kerr spa
e-time is the symbol

s̃(r, τ, ξ, Φ) = ir−1b(r)(r − r0(τ, Φ))ξ.



18 DANIEL TATARU AND MIHAI TOHANEANUThis 
oin
ides with X in the S
hwarzs
hild 
ase a = 0, and it is well de�ned and smoothin a for r near 3M and |Φ| < 4|τ |. In parti
ular it is well de�ned in a neighborhood ofthe 
hara
teristi
 set p = 0, whi
h is all we use in the sequel.We use (4.7) to 
ompute the Poisson bra
ket
1

i
{ρ2p, s̃} = − (ρ2p)rr

−1b(r)(r − r0(τ, Φ)) + ξ(ρ2p)ξ∂r

(

r−1b(r)(r − r0(τ, Φ))
)

= 2r−1b(r)R(r, τ, Φ)∆−2(r − r0(τ, Φ))

+
[

2∆∂r

(

r−1b(r)(r − r0(τ, Φ))
)

− 2(r − M)r−1b(r)(r − r0(τ, Φ))
]

ξ2Sin
e r0(τ, Φ) is the unique zero of R(r, τ, Φ) near r = 3M and is 
lose to 3M , it followsthat we 
an write(4.35) 1

2i
{ρ2p, s̃} = α2(r, τ, Φ)τ2(r − r0(τ, Φ))2 + β2(r, τ, Φ)ξ2 on {p = 0}where α, β ∈ S0

hom are positive symbols. We note that in the S
hwarzs
hild 
ase thesymbols α and β are simply fun
tions of r, see the �rst two terms in (4.30).Unfortunately s̃ is not a polynomial in τ , whi
h limits its dire
t usefulness. To remedythat we �rst note that
s̃ − (ir−1b(r)(r − 3M)ξ) ∈ aS1

homHen
e by (the simplest form of) the Malgrange preparation theorem we 
an write
1

i
s̃ = (r − 3M)b(r)ξ + a(s1(r, ξ, θ, Θ, Φ) + s0(r, ξ, θ, Θ, Φ)τ) + aγ(τ, r, ξ, θ, Θ, Φ)pwith s1 ∈ S1

hom, s0 ∈ S0
hom and γ ∈ S−1

hom. Then we de�ne the desired symbol s by
s = s1 + s0τThe Poisson bra
ket 1

i
{ρ2p, s} is a third degree polynomial in τ . Hen
e, after division by

p = −gtt(τ − τ1)(τ − τ2), taking also (4.33) into a

ount, we 
an write(4.36) 1

2i
{ρ2p, X + as} + q̃(ρ2p) = γ2 + γ1τ + [eS + a(e0 + e−1τ)](τ − τ1)(τ − τ2).where, by (4.33), the 
oe�
ient eS 
orresponding to the S
hwarzs
hild 
ase is given by

eS = (1 − ν(r))α2(r).It remains to show that the right hand side of (4.36) 
an be expressed as a sum ofsquares as in the lemma modulo an error a(S0
hom + τS−1

hom)p. Note that the symbols e0and e−1 play no role in this, as they 
an be in
luded in the error.The 
oe�
ients γ1 and γ2 
an be 
omputed using the relation (4.35) and the fa
t that
{ρ2p, X + as} = {ρ2p, s̃} on p = 0 (i.e. when τ = τi). We denote

αi =
2|τi|

τ1 − τ2
α(r, τi, Φ)(r − r0(τi, Φ)) ∈ S0

hom, βi = β(r, τi, Φ),observing that αi 
an be used as substitutes for the ci's in the lemma sin
e they areellipti
 multiples of ci. Then we have
1

2i
{ρ2p, s̃}(τi) =

1

4
α2

i (τ1 − τ2)
2 + β2

i ξ2
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h gives the following expressions for γ1, γ2:(4.37)
γ2 =

1

4
(τ1 − τ2)(α

2
2τ1 − α2

1τ2) +
τ1β

2
2 − τ2β

2
1

τ1 − τ2
ξ2, γ1 =

1

4
(τ1 − τ2)(α

2
1 − α2

2) +
β2

1 − β2
2

τ1 − τ2
ξ2We use the �rst 
omponents of γ1 and γ2 to obtain a sum of squares as follows:

(τ1 − τ2)(α
2
2τ1 − α2

1τ2) + τ(τ1 − τ2)(α
2
1 − α2

2) = ν(α1(τ − τ2) − α2(τ − τ1))
2

+ (1 − ν)(α1(τ − τ2) + α2(τ − τ1))
2

− 4eK(τ − τ1)(τ − τ2)

(4.38)where
eK =

(α1 − α2)
2

4
+ (1 − ν)α1α2We remark that in the S
hwarzs
hild 
ase we have τ2 = −τ1 and also α1 = α2 = αS and

β1 = β2 = βS . In parti
ular this shows that
eK − eS ∈ a(S0

hom + τS−1
hom)whi
h a

ounts for the eS fa
tor in (4.36). It remains to 
onsider the ξ2 terms in (4.37).This is easier sin
e the 
oe�
ients β1, β2 are positive and have a small di�eren
e β1−β2 ∈

aS0
hom. Pre
isely, for a large C we 
an write

τ1β
2
2 − τ2β

2
1

τ1 − τ2
+ τ

β2
1 − β2

2

τ1 − τ2
=

1

2
(β2

1 + β2
2 − Ca) +

(Ca − β2
2 + β2

1)(τ − τ2)
2

2(τ1 − τ2)2

+
(Ca − β2

1 + β2
2)(τ − τ1)

2

2(τ1 − τ2)2
+ O(a)pSumming this with (4.38) we obtain the desired sums of squares representation,

1

2i
{ρ2p, X + as} + (ρ2p)q̃ ∈ ν

4
(α1(τ − τ2) − α2(τ − τ1))

2

+
1 − ν

4
(α1(τ − τ2) + α2(τ − τ1))

2 +
1

2
(β2

1 + β2
2 − Ca)ξ2

+
(Ca − β2

2 + β2
1)(τ − τ2)

2

2(τ1 − τ2)2
ξ2 +

(Ca − β2
1 + β2

2)(τ − τ1)
2

2(τ1 − τ2)2
ξ2

+ a(S0
hom + S−1

homτ)(τ − τ1)(τ − τ2)Then e is 
hosen so that the last term a

ounts for the 
ontribution of ẽ.Part (ii) of the lemma dire
tly follows. For part (i) we still need to spe
ify whi
h arethe symbols µj . Pre
isely, we set
µ2

1 =
1 − ν

4
(α1(τ − τ2) + α2(τ − τ1))

2, µ2
2 =

1

2
(β2

1 + β2
2 − Ca)ξ2

µ2
7 =

(Ca − β2
2 + β2

1)(τ − τ2)
2

2(τ1 − τ2)2
ξ2, µ2

8 =
(Ca − β2

1 + β2
2)(τ − τ1)

2

2(τ1 − τ2)2
ξ2Finally for µ3,4,5 and µ6 we set

µ2
3,4,5 =

λ2
1,2,3

λ2 + (r2 − 2rM)ξ2

ν

4
(α1(τ − τ2) − α2(τ − τ1))

2,
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tively
µ2

6 =
(r2 − 2rM)ξ2

λ2 + (r2 − 2rM)ξ2

ν

4
(α1(τ − τ2) − α2(τ − τ1))

2It is easy to see that for a = 0 these symbols 
oin
ide with the 
oresponding S
hwarzs
hildsymbols. The proof of the lemma is 
on
luded.
�In what follows we use the above lemma to prove the bound (4.28) and 
on
ludethe proof of the theorem. We begin with symbols s and e as in the lemma. Theseare homogeneous symbols, and we 
an make them smooth by trun
ating away the lowfrequen
ies. They are only de�ned near r = 3M , therefore some spatial trun
ation isalso ne
essary. Let χ be a smooth 
uto� fun
tion supported near 3M whi
h equals 1 ina neighborhood of 3M , 
hosen so that we have a smooth partition of unity in r,

1 = χ2(r) + χ2
o(r)At �rst we de�ne the trun
ated operators

S̃ = χswχ, Ẽ = χewχThis 
hoi
e would yield an expression QK [u, S̃, Ẽ] with a prin
ipal symbol
qK
princ[S̃, Ẽ] = χ2

(

1

2i
{p, s} + pe

)

+
1

i
χs{p, χ}For these 
hoi
es of S̃ and Ẽ we 
onsider the expression IQK [u, S̃, Ẽ] whi
h is givenby (4.26) with Qw

2 , Qw
1 and Qw

0 as in (4.27). We observe that in general we 
an only saythat the right hand side of (4.27) is of the form
1

2
([2K , S̃] + 2KẼ + Ẽ2K) = Qw

2 + 2Qw
1 Dt + Qw

0 D2
t + Qw

−1D
3
t , Qw

j ∈ OPSjHowever, its prin
ipal symbol qK
princ[S̃, Ẽ] is at most a se
ond order polynomial in τ .Hen
e by the Weyl 
al
ulus we 
an write

1

2
([2K , S̃]+2KẼ+Ẽ2K)−(qK

princ[S̃, Ẽ])w ∈ OPS0+OPS−1Dt+OPS−2D2
t +OPS−3D3

tIn parti
ular this shows that Qw
−1 ∈ OPS−3. To eliminate this term we slightly adjustour 
hoi
e of Ẽ to

Ẽ = χewχ − ew
auxDtwhere the operator ew

aux is 
hosen so that
gttew

aux + ew
auxgtt = Qw

−1This is possible sin
e the 
oe�
ient gtt of τ2 in p is a s
alar fun
tion whi
h is nonzeronear r = 3M . Also as de�ned ew
aux ∈ OPS−3 and has kernel supported near r = 3M .Having insured that the D3

t term does not appear, we divide IQK [u, S̃, Ẽ] into twoparts,
IQK [u, S̃, Ẽ] = IQK

princ[u, S̃, Ẽ] + IQK
aux[u, S̃, Ẽ]where the main 
omponent is given by(4.39) IQK

princ[u, S̃, Ẽ] =

∫

D

Qw
2,pu · u + 2ℜQw

1,pu · Dtu + Qw
0,pDtuDtu dVK



LOCAL ENERGY ESTIMATE ON KERR BLACK HOLE BACKGROUNDS 21with operators Qw
2,p, Qw

1,p and Qw
0,p de�ned by

Qw
2,p + 2Qw

1,pDt + Qw
0,pD

2
t = χ

(

1

2i
{p, s} + pe

)w

χwhile the remainder is given by a similar expression with operators Qw
2,a, Qw

1,a and Qw
0,awhose prin
ipal symbols are supported away from r = 3M . More pre
isely, we have

Qw
2,a + 2Qw

1,aDt + Qw
0,aD2

t −
(

1

i
χs{p, χ}

)w

∈ OPS0 + OPS−1Dt + OPS−2D2
tHen
e, using the fa
t that the LEW 1

K norm is nondegenerate outside an O(a) neighbor-hood of 3M we 
an bound in an ellipti
 fashion(4.40) |IQK
aux[u, S̃, Ẽ]| . ‖u‖2

LEW 1
K

+ ‖Dtu‖2
H

−1
compwhere the last term on the right represents the H−1 norm of Dt u in a 
ompa
t regionin r (pre
isely, a neighborhood of 3M).In order to 
on
lude the proof of the theorem we turn our attention to the bound(4.28), whi
h we seek to establish with S and E repla
ed with S̃, respe
tively Ẽ. We willshow that(4.41) ∫

D

QK [u, X, q, m]dVK + aIQK
princ[u, S̃, Ẽ] & ‖u‖2

LEW 1
K
− O(a)‖Dtu‖2

H
−1
compWe de
ompose the left hand side of (4.41) into an outer part and an inner part,

LHS(4.41) = LHS(4.41)out + LHS(4.41)inwhere
LHS(4.41)out =

∫

D

χ2
oQ

K [u, X, q, m]dVk

LHS(4.41)in =

∫

D

χ2QK [u, X, q, m]dVk + aIQK
princ[u, S̃, Ẽ]For the �rst part we use the pointwise positivity of QK away from 3M (see (4.23)) to
on
lude that(4.42) LHS(4.41)out &

∫

D

χ2
o(r

−2|∇u|2 + r−4|u|2)dVKThe se
ond part is a quadrati
 form whi
h for 
onvenien
e we fully re
all here (see (4.29)and (4.39):
LHS(4.41)in =

∫

D

χ2(qK,αβ∂αu∂βu + qK,0u2)dV K

+ a

∫

D

Qw
2,pu · u + 2ℜQw

1,pu · Dtu + Qw
0,pDtuDtu dVKwhere the 
oe�
ients qK,αβ , qK,0 and operators Qw

j,p satisfy
qK,αβηαηβ =

1

2i
{p, X}+ qp, qK,0 > 0respe
tively

Qw
2,p + 2Qw

1,pDt + Qw
0,pD

2
t = χ

(

1

2i
{p, s} + pe

)w

χ
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arefully observe that in the two parts of the expression for LHS(4.41)in the 
uto�fun
tion χ appears in di�erent pla
es. In the �rst part, it is applied before the di�eren-tiation, while in the se
ond part it is applied before the pseudodi�erential operator. Itdoes not make mu
h sense to 
ommute at this point. In the �rst part, we would produ
elower order terms whi
h may signi�
antly alter qK,0. In the se
ond part, we would losethe 
ompa
t support of the kernels for the operators Qw
j,p.Sin
e s and e are 
hosen as in Lemma 4.3, it follows that the prin
ipal symbol for

LHS(4.41)in admits the sum of squares representation (4.34). We want to translate thisinto a sum of squares de
omposition for LHS(4.41)in. However, some 
are is requireddue to the di�erent positions of the 
uto� χ, as explained above. The symbols µk = µk(a)are in general of pseudodi�erential type. However, part (i) of the Lemma guarantees thatin the S
hwarzs
hild 
ase they are of di�erential type. Consequently, we write
µk(a) = µk(0) + µk(a) − µk(0)and use this de
omposition to de�ne the pseudodi�erential operators

Mk = χµk(0)(x, D) + (µk(a) − µk(0))wχThen using the Weyl 
al
ulus it follows that for LHS(4.41)in we have the representation
LHS(4.41)in =

∫

D

∑

k

|Mku|2+qK,0χ2u2dVk+

∫

D

Rw
2 u·ū+2ℜRw

1 Dtu·ū+Rw
0 Dtu·DtudVKwhere the remainder terms satisfy rj ∈ aSj−2. What is important here is that theremainder is of size O(a). This follows from our 
hoi
e of the operators Mk, whi
hguarantees that when a = 0 the remainder is zero.Combining the last relation with (4.42) we obtain the bound

∫

D

χ2
or

−2|∇u|2 + r−4|u|2 +
∑

k

|Mku|2dVK . LHS(4.41) + a(‖u‖2
L2

comp
+ ‖Dtu‖2

H
−1
comp

)where the last two terms on the right a

ount for the remainder terms involving theoperators Rw
j , whi
h 
an be bounded using norms of u and Dtu in a 
ompa
t region in

r, away from r = 0 and r = ∞.It is easy to see that the above left hand side dominates ‖u‖LEW 1
K
. For r away oneuses only the �rst two terms. On the other hand for r 
lose to 3M we use part (iii) of theLemma, whi
h guarantees that the symbols c1(τ−τ2), c2(τ−τ1) and ξ 
an be re
overed inan ellipti
 fashion from the prin
ipal symbols µk of Mk. Thus (4.41) is proved. Togetherwith (4.40) this shows that

‖u‖2
LEW 1

K
.

∫

D

QK [u, X, q, m]dVK + aIQK [u, S̃, Ẽ] + O(a)‖Dtu‖2
H−1

compThe �nal step in the proof of (4.28) is to establish that the last error term above isnegligible. We 
an a

ount for it in an ellipti
 manner. Pre
isely, for any 
ompa
tlysupported selfadjoint operator Q ∈ OPS−1 we 
an use Q2 in a Lagrangian term andintegrate by parts (
ommute) to obtain
2ℜ
∫

D

(gtt)−1
2Ku · Q2u dVK = ‖QDtu‖2

L2 + O( ‖QDtu‖L2‖u‖2
L2

comp
+ ‖u‖2

L2
comp

+ E[u](0) + E[u](ṽ0))
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h leads to the ellipti
 bound
‖QDtu‖2

L2 . ‖u‖2
L2

comp
+ ‖2Ku‖2

H
−1
comp

+ E[u](0) + E[u](ṽ0)and further to
‖Dtu‖2

H
−1
comp

. ‖u‖2
L2

comp
+ ‖2Ku‖2

H
−1
comp

+ E[u](0) + E[u](ṽ0)Thus (4.28) follows, and the proof of the theorem is 
on
luded. �Note that Theorem 4.1 tells us, in parti
ular, that if we start with an initial data
(u0, u1) ∈ H1 × L2 then u(ṽ) ∈ H1 is uniformly bounded for all ṽ > 0. A naturalquestion to ask is if this is also true for higher Hn norms. For n ≥ 1 we de�ne

‖u‖LE
n+1

K
=
∑

|α|≤n

‖∂αu‖LE1
Krespe
tively

‖f‖LEn∗

K
=
∑

|α|≤n

‖∂αf‖LE∗

KThe higher order energies are similarly de�ned,
En+1[u](Σ±

R) =
∑

|α|≤n

E[∂αu](Σ±
R), En+1[u](ṽ0) =

∑

|α|≤n

E[∂αu](ṽ0)We then have the followingTheorem 4.4. Let n be a positive integer and u satisfy 2Ku = f with initial data
(u0, u1) ∈ Hn+1 × Hn on Σ−

R and f ∈ LEn∗
K (MR). Then

En+1[u](Σ+
R) + sup

ṽ>0
En+1[u](ṽ0) + ‖u‖2

LE
n+1

K

. ‖u0‖2
Hn+1 + ‖u1‖2

Hn + ‖f‖2
LEn∗

KProof. We remark that by tra
e regularity results we have
∑

|α|≤n−1

‖∂αf‖L2(Σ−

R
) . ‖f‖LEn∗

KSin
e the initial surfa
e Σ−
R is spa
e-like, we 
an use the equation to derive all higher ṽderivatives of u in terms of the Cau
hy data (u0, u1) and f ,

En+1[u](Σ−
R) . ‖u0‖2

Hn+1 + ‖u1‖2
Hn + ‖f‖2

LEn∗

KThus it su�
es to prove that for ṽ0 > 0 we have(4.43) En+1[u](Σ+
R) + En+1[u](ṽ0) + ‖u‖2

LE
n+1

K

. En+1[u](Σ−
R) + ‖f‖2

LEn∗

KWe will prove this for n = 2, and the proof for the other 
ases will follow in a similarmanner by indu
tion.Sin
e ∂ṽ is a Killing ve
tor �eld, we have 2K(∂ṽu) = ∂ṽf . Then by Theorem 4.1 weobtain(4.44) E[∂ṽu](Σ+
R) + E[∂ṽu](ṽ0) + ‖∂ṽu‖2

LE1
K

. E2[u](Σ−
R) + ‖f‖2

LE1∗
K
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ontrol the rest of the se
ond order derivatives we take advantage of theequation, whi
h takes the form(4.45) (gṽṽ∂ṽṽ + 2gṽφ̃∂ṽφ̃ + L)u = fwhere L is a spatial partial di�erential operator of order 2. This is most useful in theregion where ∂ṽ is time-like. Given ǫ > 0, this happens in the region of the form r > 2M+ǫprovided that a is su�
iently small. The fa
t that ∂ṽ is time-like is equivalent to theellipti
ity of the spatial part L of 2K . From (4.44) we obtain at ṽ = ṽ0

‖Lu‖2
L2(Σv0

) . E[u](v0) + E[∂ṽu](v0) + ‖f‖2
L2(Σv0

)The operator L on the left is ellipti
 in r ≥ 2M + ǫ, therefore by a standard ellipti
estimate we obtain
E[∇u](Σṽ0

∩ {r > 2M + ǫ}) . E[u](v0) + E[∂ṽu](v0) + ‖f‖2
L2(Σv0

)A similar ellipti
 analysis leads to the 
orresponding lo
al energy bound,
‖∇u‖2

LE1
K

(MR∩{r>2M+2ǫ}) . ‖u‖2
LE1

K
(MR) + ‖∂ṽu‖2

LE1
K

(MR) + ‖f‖2
L2(MR)

+ E[∇u](Σ0 ∩ {r > 2M + ǫ}) + E[∇u](Σṽ0
∩ {r > 2M + ǫ})where the last two terms a

ount for the output of integrations by parts in ṽ.We are left to deal with the 
ase r < 2M +2ǫ, where grr is small and simply using theequation (4.45) does not su�
e. Let ζ(r) be a smooth 
uto� fun
tion su
h that ζ = 1 on

[re, r+ + 2ǫ] and ζ = 0 when r > r+ + 3ǫ. Then we need bounds for the fun
tion w = ζu,whi
h solves
2Kw = ζf + [2K , ζ]u := gThe 
ommutator above is supported in the region {2M + 2ǫ ≤ r ≤ 2M + 3ǫ} where wealready have good estimates for u. Re
all that in the region {r < 2M + 3ǫ} the LE1

Kand LE∗
K norms are equivalent with the H1, respe
tively L2 norm. Hen
e it remains toprove that for all fun
tions w with support in {r < 2M + 3ǫ} whi
h solve 2Kw = g wehave(4.46) E[∇w](Σ+

R) + E[∇w](ṽ0) + ‖∇w‖2
H1(MR) . E2[u](Σ−

R) + ‖g‖2
H1(MR)This is an estimate whi
h is lo
alized near the event horizon, and we will prove it takingadvantage of the red shift e�e
t.Sin
e ∂ṽ is Killing, this bound follows dire
tly from Theorem 4.1 for the ∂ṽw 
omponentof ∇w,(4.47) E[∂ṽw](Σ+

R) + E[∂ṽw](ṽ0) + ‖∂ṽw‖2
H1(D) . E2[w](Σ−

R) + ‖g‖2
H1(D)Consider now the angular derivatives of w, ∂ωw. We know that

[2S , ∂ω] = 0sin
e the S
hwarzs
hild metri
 is spheri
ally symmetri
. Hen
e by (4.18) it follows that
[2K , ∂ω] is a se
ond order operator whose 
oe�
ients have size O(a). Hen
e by Theorem4.1 we obtain(4.48) E[∂ωw](Σ+

R)+E[∂ωw](ṽ0)+‖∂ωw‖H1(D) . E2[w](Σ−
R)+‖g‖2

H1(D)+a‖∇ωw‖2
H1(D)We still need to bound ∂rw. For that we 
ompute the 
ommutator

[2K , ∂r]w = −(∂rg
rr)∂rrw + Tw
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ond order operator with no ∂2
r terms. The key observation, whi
his equivalent to the red shift e�e
t, is that ∂rg

rr > 0 near r = 2M . Thus for X , C and qas in Lemma 4.2 we 
an write the equation for ∂rw in the form
(2K − γ[(X + CK) + q])∂rw = ∂rg + Twwith T as above and most importantly, a positive 
oe�
ient γ. Be
ause of this theoperator

B = 2K − γ[(X + CK) + q]satis�es the same estimate in Theorem 4.1 as 2g for fun
tions supported near the eventhorizon. Indeed, the same proof goes through as in Theorem 3.1. Writing the integralidentity (4.21) for w we see the 
ontribution of γ is negative, therefore we obtain theinequality
∫

D

QK [w, X, q, m]dVK ≤ −
∫

D

(∂rg + Tw)
(

(X + CK)w + qw
)

dVK + BDRK [w]By (4.23) the left hand side is positive de�nite for r < 2M + 3ǫ. Using Cau
hy-S
hwarzfor the �rst term on the right and (4.22) for the se
ond we obtain
E[∂rw](Σ+

R) + E[∂rw](ṽ0) + ‖∂rw‖2
H1(D) . E2[w](Σ−

R) + ‖∂rg + Tw‖2
L2(D)Sin
e T 
ontains no se
ond order r derivatives, this leads to(4.49)

E[∂rw](Σ+
R) + E[∂rw](ṽ0) + ‖∂rw‖2

H1(D) . E2[w](Σ−
R) + ‖g‖H1(D) + a‖∇ω,ṽw‖2

H1(D)Then the desired bound (4.46) follows by 
ombining (4.47), (4.48) and (4.49) with ap-propriate 
oe�
ients.
�As an easy 
orollary, one obtains from Sobolev embeddings the pointwise boundednessresult,Corollary 4.5. If u satis�es 2Ku = 0 in MR with initial data (u0, u1) ∈ H2 × H1 in

Σ−
R, then
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