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ABSTRACT OF THE DISSERTATION 

 

Computational Methods for Integrative Annotation of the  

Human Regulatory Genome 

by 

Tevfik Umut Dincer 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2023 

Professor Jason Ernst, Chair 

 

Deciphering the complex regulatory programs controlling gene expression is key to gaining insight 

into countless biological processes. However, a comprehensive characterization of the regulatory 

elements controlling expression across diverse cell types remains elusive. Analysis of DNA 

sequence provides insights into potential regulatory regions but cannot provide functional 

evidence of regulation on its own. Biochemical assays like ChIP-seq and ATAC-seq map 

epigenetic marks and regions of open chromatin associated with regulatory activity in a wide 

variety of cell and tissue types across the genome, but do not directly measure regulatory activity. 

Functional characterization assays like massively parallel reporter assays or CRISPR interference 

screens offer more direct evidence of regulatory activity but may have limited genomic coverage 

and cell type availability. Computational methods integrating these diverse data types can enable 

the prediction and interpretation of regulatory elements across the genome.  
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Here, I present integrative modeling approaches that combine epigenomic, functional, and DNA 

sequence data for the comprehensive annotation of the human regulatory genome. First, we 

introduce ChromActivity, a computational method for annotating the regulatory genome across 

hundreds of cell and tissue types. ChromActivity integrates epigenomic data across over a 

hundred human cell and tissue types with a diverse set of functional characterization datasets to 

generate genomewide annotations of regulatory activity. ChromActivity provides annotations 

featuring discrete states reflecting combinatorial activity patterns and also continuous activity 

scores reflecting predicted regulatory element activities. Next, we present SHARPR-seq, a 

computational method for integrating DNA sequence information to extend the Sharpr-MPRA 

high-resolution regulatory activity mapping framework. SHARPR-seq improves upon the 

SHARPR method in multiple evaluation metrics, enabling improved functional dissection of 

regulatory elements controlling gene expression. These integrative modeling approaches 

demonstrate the utility of combining complementary data types to provide a more comprehensive 

understanding of the human regulatory landscape.  
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Chapter 1. Introduction 

Gene expression is central to countless biological processes and is tightly controlled by regulatory 

elements distributed across the genome [1, 2]. These regulatory elements modulate the 

transcription of genes with complex, intricately coordinated programs that orchestrate cellular 

development, differentiation, and responses to internal and external stimuli [3–6]. Notably, trait-

associated variants for many common diseases [7], including cancers [8–12], autoimmune 

disorders [13–15], neurodegenerative diseases [16–18], and metabolic disorders [19–21], are 

highly enriched in non-coding regulatory regions. In contrast to coding regions, whose functional 

roles are relatively well-understood (i.e., transcription and eventual translation into proteins), 

characterizing the location and activity of regulatory elements in the genome remains a significant 

challenge [22–24]. 

Biochemical assays offer an experimental approach to studying gene regulation genomewide. 

Assays like ChIP-seq [25] and ATAC-seq [26] provide genomewide maps of epigenetic marks 

[22, 27, 28], chromatin accessibility [29–31], and transcription factor binding [32]. Specific 

biochemical signatures in certain cell types are associated with regulatory activity and can help 

decode the regulatory state of the genome [24, 33, 33]. Genomewide maps of these biochemical 

marks have enabled the annotation of candidate regulatory elements across hundreds of cell 

types [22, 24, 34, 35]. Complementing these biochemical annotations are functional 

characterization assays, which can test the regulatory activity of thousands of genomic loci more 

directly by enabling experimental manipulations. They include reporter assays like Massively 

Parallel Reporter Assays (MPRAs) [36, 36–38] and Self-Transcribing Active Regulatory Region 

Sequencing (STARR-seq) [39–42] that test candidate regulatory elements by measuring the 

expression of reporter genes on plasmids containing candidate regulatory elements. They also 

include CRISPR interference (CRISPRi) screens [43–45], where candidate elements are 

epigenetically silenced or activated to measure the impact on nearby endogenous gene 
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expression within a native chromatin context. Together, these assays systematically screen 

candidate regulatory elements to validate and characterize regulatory activity. However, these 

assays have limitations compared to biochemical annotations. For instance, while biochemical 

annotations readily scale across many cell types, achieving efficient delivery or genomic 

integration of constructs in functional assays can be challenging for some cell types [46, 47]. They 

may also have more limited genomic coverage, whereas biochemical annotations can be mapped 

genomewide.  

In addition to experimental assays, computational methods provide a way to leverage different 

types of data to model transcriptional regulation. They include both supervised and unsupervised 

learning approaches. Unsupervised learning methods like ChromHMM [33, 48, 49] can find 

combinatorial patterns in unlabeled epigenomic data to segment the genome into different 

chromatin states, where each state annotates regulatory regions with unique characteristics. 

Supervised learning methods leverage labels like gene expression or transcription factor binding 

to train predictive models. Examples include approaches that use DNA sequence or 

experimentally measured epigenomic features to predict gene expression or transcription factor 

binding potential [50–64]. However, computational models relying on primarily one data type can 

have limitations. For instance, it may be difficult for models based on only DNA sequence to 

generalize across cell types they were not trained on and capture cell type-specific activity 

patterns as DNA sequence is constant across cell types of the same organism [63, 64]. Similarly, 

models relying solely on epigenomic data may have false positives as they lack direct functional 

validation that the predicted regions drive or repress gene expression in different contexts (e.g., 

endogenous or plasmid context) [2, 65–67].  

Here, I present supervised integrative modeling approaches that combine complementary data 

types like epigenomic, functional, and sequence data to create annotations of the regulatory 

genome. Epigenome data offers genomewide coverage and is available in many cell and tissue 
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types, functional data directly validates regulatory activity, and sequence data provides 

information on potential transcription factor binding sites and evolutionary conservation. By jointly 

modeling multiple data types, these integrative methods can leverage each data type's strengths 

to provide a more comprehensive picture of gene regulation. 

Chapter 2 presents ChromActivity, a computational method integrating epigenomic data with 

functional characterization datasets like MPRAs and CRISPRi screens. ChromActivity uses a 

supervised learning approach to make genomewide predictions of regulatory activity across 

diverse cell types. It aggregates these predictions into 1) Discrete regulatory state annotations 

reflecting combinatorial patterns of predictions from models trained on individual functional 

screens (ChromScoreHMM) and 2) Continuous quantitative score tracks of overall predicted 

regulatory activity (ChromScore). We apply ChromActivity to annotate regulatory activity across 

over 100 human cell and tissue types by integrating 12 epigenetic marks with 11 large functional 

characterization datasets covering thousands of genomic regions.  

Chapter 3 presents SHARPR-seq, a computational method integrating DNA sequence 

information into the Sharpr-MPRA framework for high-resolution regulatory activity mapping from 

densely tiled MPRA constructs. SHARPR-seq combines the experimental activity measurements 

from tiled MPRA constructs with predicted activity based on the underlying DNA sequence of 

each construct tile. It uses multi-task regression to generate two complementary predictions per 

tile: one based on observed MPRA data, and one based solely on DNA sequence. By jointly 

training on both data types, SHARPR-seq improves on SHARPR across multiple metrics, 

including recovering regulatory motifs in higher resolution, and displays increased overlap with 

other genomic annotations associated with regulation, such as ERV1 repeats, conserved genomic 

elements, and predicted transcription factor binding sites.  
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Chapter 2. Integrative epigenomic and functional characterization 

assay based annotation of regulatory activity across diverse human 

cell types 

Introduction 

Transcriptional regulation of gene expression is controlled by a large set of regulatory elements 

distributed across the genome [1, 2, 68]. Identifying and predicting regulatory elements is 

important to advancing our understanding of cellular processes and gaining insight into the 

genetic basis of common diseases [1, 69, 70]. 

Epigenomic data, such as maps of histone modifications, histone variants and chromatin 

accessibility, have been powerful resources for the identification of candidate regulatory elements 

within the genome [22, 24, 28, 31, 69]. Such data is now available across hundreds of different 

cell or tissue types based on the efforts of large consortium projects [22, 24, 35] as well as 

contributions from individual labs [28, 71]. Maps of chromatin marks enabled the prediction of 

regulatory elements in hundreds of cell types, often through unsupervised approaches such as 

calling peaks on single marks [72] or the identification of combinatorial and spatial patterns of 

multiple marks using chromatin state models [73–76].  

However, despite its extensive utility, unsupervised integration of chromatin marks does not take 

advantage of information from functional characterization assays to potentially better predict 

regulatory regions. Functional characterization assays complement chromatin marks by enabling 

direct testing of genomic regions for regulatory activity in high-throughput [77–80] by either 

incorporating sequences of candidate regulatory elements into cells via plasmids or by 

manipulating or interfering with the genome itself using lentiviral integrases or CRISPR-based 

technologies [2]. Plasmid-based assays [36], such as barcoded Massively Parallel Reporter 

Assays (“MPRAs”) [38, 47] or Self-Transcribing Active Regulatory Region Sequencing (STARR-
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seq) assays [39], typically measure the expression of a reporter gene on a plasmid containing the 

candidate regulatory element, serving as an indicator of the expression level that it is likely to 

induce in the cell. In contrast, genomically integrated assays target the genome directly in its 

native environment, for example by altering the epigenetic landscape near a candidate regulatory 

element (e.g. CRISPR interference screens that use dCas9 with an attached KRAB repressor 

domain [81]). Notably, only a subset of regulatory element predictions based on epigenomic data 

typically validate in functional characterization assays [2].  

While functional characterization assays provide a more direct assessment of regulatory activity, 

they can also have some limitations. One limitation is their more limited availability across cell 

types compared to chromatin mark datasets. This is due, in part, to cost and resource constraints 

associated with these highly specialized assays, as well as technical challenges such as 

achieving sufficient plasmid transfection efficiency in specific cell types for plasmid-based assays 

[82]. Another drawback for some assays is limited genomic coverage: functional characterization 

assays often provide readouts for a limited subset of genomic regions, whereas chromatin mark 

data can be mapped genomewide. Integrative approaches that combine the broad availability of 

chromatin marks with direct testing of functional assays have the potential to computationally 

extend the cell type coverage of functional testing assays.  

Several existing methods have used data from high-throughput functional characterization assays 

as training data for supervised methods that predict regulatory activity [58, 83] or predict effects 

of individual sequence mutations based on features including sequence [51, 84–86]. However, 

these methods generally focus on scoring sites or bases within the same cell type for which 

training data is available. As many sequence and transcription factor binding features are cell type 

specific, a method optimized to make predictions within a cell type it is trained in might be less 

effective at making predictions that generalize well across cell types. Additionally, the reliance on 

a single functional characterization assay or dataset, as commonly seen in existing methods, 
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could introduce biases to the predictions, given that technical differences even within the same 

assay type has been shown to impact the readouts [79]. 

To address the challenges of predicting regulatory activity genomewide across a range of cell and 

tissue types, we propose ChromActivity, a computational framework that integrates chromatin 

marks with a variety of functional characterization datasets. ChromActivity employs a supervised 

learning approach to generate genomewide regulatory activity predictions and annotations across 

multiple cell types. ChromActivity is designed to effectively generalize across both cell types and 

genomic loci and to produce annotations that reflect differences between functional 

characterization assays. We apply ChromActivity in over one hundred human cell and tissue types 

to generate a set of genomewide regulatory activity prediction tracks, where each track is based 

on a model that is specifically trained on one of 11 functional characterization datasets. 

ChromActivity generates ChromScoreHMM genome annotations, which correspond to 

combinatorial and spatial patterns in the prediction tracks. ChromActivity also generates 

ChromScore, a composite genomewide regulatory activity prediction track on a per-cell or tissue 

type basis that reflects the mean predicted regulatory activity based on the different functional 

characterization datasets. The ChromActivity framework and associated annotations provides a 

resource for analyzing gene regulatory activity across a broad range of human cell and tissue 

types. 

Results 

Overview of the ChromActivity framework 

We developed ChromActivity to provide annotations and scores of predicted regulatory activity 

across human cell and tissue types by leveraging information from both epigenomic data and a 

variety of functional characterization datasets. ChromActivity does this by first predicting 

separately for each functional characterization dataset the relative likelihood of each 25-bp 

genomic interval showing activity based on chromatin mark features across the entire human 
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genome. These individual prediction scores are then integrated to produce ChromScoreHMM 

annotations, which are unsupervised genome annotations built on top of ChromHMM [69, 73, 74]. 

The scores are also integrated into a single combined score, ChromScore (Figure 2.1A, 

Supplementary Figure S2.1). 

ChromActivity makes predictions for any cell type with chromatin mark data available (For ease 

of presentation we use the term “cell type” to refer to cell types, tissue types and reference 

epigenomes collectively). Notably, ChromActivity operates without assuming any functional 

characterization data is available in the cell types for which it predicts. This is important as 

currently there are a large number of cell types that have extensive chromatin mark data available, 

but do not have data from functional characterization assays available. ChromActivity’s approach 

is based on the observation that the same chromatin mark patterns generally mark regulatory 

regions in different cell types, though the location of those patterns can vary between cell types 

[24, 69]. This contrasts with specific DNA sequence or transcription factor binding patterns which 

can mark regulatory regions only in specific cell types, and thus we do not use them as features 

in ChromActivity.  

Initially, ChromActivity trains a separate bagging ensemble of regularized logistic regression 

models for each input functional characterization dataset. These models are trained with labels 

derived from the readouts for the genomic regions tested by the functional characterization 

datasets, which include both plasmid-based (MPRAs, STARR-seq screens) [41, 62, 87–89] and 

genome-integrated assays (CRISPR-dCas9 screens) [81, 90] from multiple different conditions 

and cell types (Methods). ChromActivity uses features derived from signal and peak calls of 

individual chromatin marks, as well as chromatin state annotations [73, 74]. In addition to using 

the signal directly at the tested loci, ChromActivity incorporates spatial information from the signal 

track by extracting the signal at 25 bp resolution within 2 kb windows centered around the tested 

loci and then uses principal component analysis (PCA) to reduce the number of these additional 
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signal features per mark from 81 to 3 (Methods). ChromActivity trains each logistic regression 

ensemble on a single functional characterization dataset, which we term ChromActivity ‘experts’. 

ChromActivity then applies these experts to make predictions across the entire genome in a large 

number of cell types, only one of which each expert would have seen training data from. 

As individual expert predictions can in some cases disagree on predictions of regulatory activity, 

ChromActivity uses the individual expert predictions to generate genome annotations 

corresponding to combinatorial and spatial patterns of top predicted positions of regulatory activity 

from the different experts within a cell type. To do this, ChromActivity applies ChromHMM [73, 74] 

with input based on the different expert predictions to generate what we term ChromScoreHMM 

genome annotations (Methods). Relative to ChromHMM annotations, which are defined directly 

based on chromatin marks, these states are intended to more directly correspond to regions which 

have chromatin mark annotations predictive of regulatory activity in all or specific subsets of 

functional characterization datasets.  

In addition, ChromActivity averages predictions from different experts to generate ChromScore, 

a single genomewide regulatory activity potential score for each cell type. ChromScore provides 

a numeric score between 0 and 1 of predicted regulatory activity potential for any 25 bp segment 

of the genome.  

Training and evaluation of ChromActivity experts 

We applied ChromActivity to imputed signal tracks and peak calls for ten histone modifications: 

H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, 

H3K9me3, H4K20me1, histone variant H2A.Z and the DNase-I hypersensitivity (DNase) signal 

for 127 cell types from the Roadmap Epigenomics compendium [24, 91]. We used imputed data 

as it enabled us to apply our method with more marks across more cell types in a uniform manner 

than with observed data. We also included features based on a one-hot encoding of the 25-state 
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ChromHMM chromatin state annotation that was previously trained on the same 12 imputed 

marks as our features. 

We generated binary “activating” and “neutral” labels (Methods) for each genomic locus in 11 

functional characterization datasets (Table 2.1). Five different cell types (A549 lung carcinoma, 

GM12878 lymphoblastoid, HeLa-S3 cervical carcinoma, HepG2 liver carcinoma and K562 

myelogenous leukemia cell types) were represented in the functional characterization datasets. 

Among the 11 datasets, two were CRISPR-dCas9-based assays (Fulco/K562 [90], 

Gasperini/K562 [81]). Additionally there were nine plasmid-based assays (Methods), which we 

further classified into four MPRAs (Ernst/HepG2, Ernst/K562 [88], Kheradpour/HepG2, 

Kheradpour/K562 [87] five STARR-seq-derived assays (Muerdter/HeLaS3 [41], Wang/GM12878 

[62], White/A549 [22], White/HepG2, and White/K562 [89]). 

The total number of genomic loci used in training each individual expert ranged from 816 to 38,452 

(Supplementary Figure S2.3C). On average, 8.98% of genomic loci in a given dataset was within 

100 bp of any locus in any other dataset. Across dataset pairs this overlap varied from 0.01% to 

complete overlap in the cases of Ernst/HepG2 with Ernst/K562 and Kheradpour/HepG2 with 

Kheradpour/K562. The fraction of DNase-I hypersensitive sites (Supplementary Figure S2.3B) 

and the chromatin state distributions of the loci (Supplementary Figure S2.3C) also varied across 

the datasets, which was expected as the datasets employed diverse strategies for selecting loci 

for testing. 

While our main focus is cell type generalization, to establish reference points for the prediction 

difficulty for each dataset, we first evaluated predictive performance of the experts at 

distinguishing activating vs. neutral labeled loci in unseen partitions of the same dataset in which 

they were trained (Supplementary Figure S2.4A). We found median out-of-sample prediction 

AUROCs ranged from 0.65 (Kheradpour/K562) to 0.93 (White/HepG2), with mean AUROC across 

all experts of 0.80. Expert predictive performance generally increased with the number of loci 
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used in training (Spearman correlation: 0.75, Supplementary Figure S2.4B). The expert models 

trained on the STARR-seq datasets Muerdter/HeLaS3, Wang/GM12878, White/A549, 

White/K562, White/HepG2 all had relatively high median AUROCs (0.80, 0.83, 0.89, 0.91 and 

0.93 respectively) compared to experts trained on other assay types (average AUROCs of 0.75 

for MPRAs, 0.72 for CRISPR-based screens). In addition to the larger size of their training data, 

another possible contribution to the higher predictive performance of STARR-seq based experts 

could be explained both by the larger training data sizes and differences in the distribution of loci 

tested, which in the STARR-seq data include a broader and more diverse set of loci (Methods).  

Genomewide expert predictions 

For each of the 127 cell types, ChromActivity computed a score track for each expert predictor 

reflecting its genomewide regulatory activity predictions (Figure 2.1B). We quantified the 

agreement among the individual expert regulatory activity scores based on the mean of pairwise 

Pearson correlations computed across the genome (Figure 2.2A, Methods). The different expert 

predictions exhibited moderate agreement with an average pairwise Pearson correlation of 0.37 

across all pairs of 11 score tracks and cell types. The pairwise correlations of experts ranged from 

-0.14 to 0.90, with the extremes corresponding to experts trained on the pair Gasperini/K562 

(CRISPR-based) and Wang/GM12878 (STARR-seq) and the pair White/A549 (STARR-seq) and 

White/HepG2 (STARR-seq), respectively. We observed higher correlations within predictions 

from experts trained on plasmid-based (mean correlation 0.51) and CRISPR-based (correlation 

0.52) functional characterization datasets than the correlations between plasmid-based and 

CRISPR-based experts (mean correlation 0.09).  

Correspondingly, clustering the experts based on pairwise correlations of genomewide 

predictions revealed two main clusters (Figure 2.2A). The first cluster included predictions from 

the two CRISPR-based experts, Fulco/K562 and Gasperini/K562. The second cluster included 

predictions from all but two plasmid experts (average pairwise Pearson correlation 0.67) and itself 
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contained two subclusters. One subcluster included predictions from the three White lab experts 

and Muerdter/HeLaS3 (average correlation 0.86) and the other contained the Ernst/K562, 

Ernst/HepG2, and Wang/GM12878 experts (average correlation 0.67). Outside of the two main 

clusters, there were two experts, Kheradpour/K562 and Kheradpour/HepG2, which had low 

correlations with each other (0.22) and with predictions from other experts (average correlations 

0.28 and 0.19).  

We observed considerable variability in the chromatin states prioritized by different experts 

(Supplementary Figure S2.5), notably between plasmid-based and CRISPR-based experts. For 

instance, regions overlapping the heterochromatin-associated 21_Het state had substantially 

greater normalized predicted activity based on the plasmid-based experts compared to CRISPR-

based experts (Figure 2.2B). This is consistent with DNA sequences that are active in the plasmid 

context but are repressed by H3K9me3 marked heterochromatin in the native chromatin context.  

ChromScoreHMM genome annotations 

To better understand the relationships between ChromActivity’s expert model predictions and to 

generate an integrated genome annotation based on them, we developed ChromScoreHMM. 

ChromScoreHMM identifies combinatorial and spatial patterns within the expert predictions and 

annotates the genome at 25-bp resolution based on them. ChromScoreHMM starts by binarizing 

the expert model predictions based on a top 2% threshold computed separately for each expert 

in each cell type (Methods). ChromScoreHMM then uses the binarized predictions across the cell 

types as input to ChromHMM [69, 73, 74] to learn a multivariate hidden Markov model. 

ChromScoreHMM learns a model across cell types using the ‘concatenated’ approach, leading to 

a shared set of states across cell types but cell type specific assignments. The states capture 

distinct combinatorial and spatial patterns of expert predictions, and the resulting genome 

annotation is termed the ChromScoreHMM annotations.  
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We focused our analysis on a ChromScoreHMM model with 15 states (Methods). We numbered 

the states in decreasing order of mean emission parameter values (Figure 2.3A) and divided the 

states into three subgroups consisting of what we characterized as multi-expert states (States 1-

10), single expert states (States 11-14), and the no expert state (State 15) (Supplementary Figure 

S2.2). The multi-expert states all had at least two experts with emission probabilities ≥0.20. The 

single expert states all had a single expert with an emission probability of ≥0.90 and no other 

experts with emission probability ≥0.10. In the no expert state, all experts had <0.001 emission 

probability. The multi-expert and single expert states covered in total 5.2% and 3.9% of the 

genome respectively, while the no expert state was by far the most common state covering 90.8% 

of the genome. 

Among the multi-expert states, State 1 was the only state that had emission probabilities >0.10 

for all 11 experts. It had relatively high emission probabilities (>0.50) for eight of the experts based 

on MPRA and STARR-seq datasets, and moderate emission probability (0.10-0.50) for the two 

experts based on CRISPR-dCas9 datasets and one MPRA dataset. State 2 had high emission 

probabilities for the Fulco/K562 (CRISPR-based) expert and all but one STARR-seq based 

expert. State 3 had moderate or high emission probabilities for all the STARR-seq based experts 

and two of the MPRA experts. State 4 had moderate or high emission probabilities for all experts 

with the exception of White/HepG2. In contrast, State 5 was dominated by two CRISPR-based 

experts, with emission probabilities >0.98 for both, while highest non-CRISPR expert emission 

probability was 0.10. States 6-9 had one expert that had a very high emission probability (≥0.95) 

and moderate emissions for one or two other experts. For instance, State 7 had very high (0.98) 

and moderate (0.37) emission probabilities for the Ernst/K562 and Ernst/HepG2 experts, 

respectively, while State 8 had high (0.94) and moderate (0.22) emission probabilities to the 

Ernst/HepG2 and Muerdter/HeLaS3 experts, respectively. State 10 was uniquely associated with 

the three White lab STARR-seq datasets, with each associated expert having a moderate 
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emission probability and other experts having low emission probability (<0.05), suggesting that 

this state may be capturing aspects of this particular STARR-seq protocol or other types of batch 

effects.  

The four single expert states (States 11-14) were each associated with one expert. States 11 and 

13 were associated with the CRISPR-based experts Fulco/K562 and Gasperini/K562 

respectively, while States 12 and 14 were associated with the experts for Kheradpour HepG2 and 

K562 datasets, respectively. The experts associated with the single expert states had below 

average pairwise score correlations with other experts (0.21 and 0.04 for Fulco/K562 and 

Gasperini/K562, respectively, and 0.19 and 0.28 for Kheradpour/K562 and Kheradpour/HepG2, 

respectively, compared to average pairwise correlation over all pairs of 0.37, Figure 2.2A). These 

results suggest that these single expert states might be capturing dataset-specific signals or 

biases.  

Enrichment analysis of ChromScoreHMM states 

To better understand genomic properties of individual ChromScoreHMM states, we computed 

state enrichments for various genomic annotations. Some of the annotations used for the 

enrichments were also used as input to ChromActivity, such as ChromHMM chromatin states 

(Figure 2.3) and chromatin mark peak calls (Supplementary Figure S2.8C). Other annotations 

were independent of ChromActivity’s predictions, including CpG islands, CCCTC-binding factor 

(CTCF) motifs, transcription start sites, exons, gene bodies, various repeat elements, and 

evolutionarily conserved elements (Figure 2.3). We also computed the proportion and fold 

enrichments of the ChromScoreHMM states in the genomic neighborhood of TSSs 

(Supplementary Figure S2.10). Additionally, we computed the normalized average prediction 

score for individual experts in each state (Supplementary Figure S2.7C). 

Seven of the ChromScoreHMM states showed strong (>10 fold) enrichments for at least one of 

the active enhancer or flanking chromatin states 13_EnhA1, 14_EnhA2 or 15_EnhAF (Figure 2.3), 
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including 6 multi-expert (States 1, 2, 3, 5, 8, 9) and one single expert state (State 11, 

corresponding to the Fulco/K562 expert). State 2 (most associated with Fulco/K562, 

Muerdter/HeLaS3 and the White STARR-seq experts) had the strongest enrichments for the 

active enhancer states 13_EnhA1 and 14_EnhA2 among all the ChromScoreHMM states, with 

median fold enrichments of 104.0 and 58.5 fold respectively, while State 9 had the highest 

enrichment for the active enhancer flanking state, 15_EnhAF (46.4 fold). 

Among all the states, State 1 (associated with broad expert activity) was most strongly enriched 

for both the TSS associated chromatin state 1_TssA (42.3 fold) and annotated TSSs themselves 

(39.8 fold), with a sharp peak in fold enrichment just around the TSS that levels off to 

approximately 1.7 fold 2 kb upstream and downstream of the TSS (Supplementary Figure 

S2.10C). State 1 was also highly enriched for CpG islands (18.6 fold) and CTCF motifs (19.8 fold).  

Of the eight states that did not show strong enrichment for any of the active enhancer or flanking 

states, three of them still showed moderate enrichment for conserved bases (1.3 - 3.0 fold) 

including two multi-expert states (States 7, 10) and one single expert state (State 12). State 4 

(associated with moderate to high enrichment in many experts) was also notable in that it was 

strongly enriched for CpG islands (18.7 fold) and for the chromatin states associated with poised 

promoters (22_PromP, 44.9 fold) and ZNF genes and repeats (20_ZNF/Rpts, 110.8 fold). State 

7 (most associated with Ernst/K562 and Ernst/HepG2) was notable in that it showed the strongest 

enrichment for the bivalent promoter state (23_PromBiv, 31.6 fold) and also showed strong 

enrichment (>10 fold) for two transcribed enhancer states (6_Tx and 11_TxEnh3’). State 10, 

which was associated with a subset of the STARR-seq-based experts (White/A549, 

White/HepG2, White/K562), showed strong enrichment for a DNase specific chromatin state 

(19_DNase, enrichment 38.8 fold). The presence of DNase without histone modifications is often 

associated with CTCF binding and candidate insulator regions [92]. Consistent with that, State 10 

had a 10.2 fold enrichment for CTCF motifs.  
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Interestingly, some ChromScoreHMM states showed enrichment for both chromatin states 

associated with repression and activation. For instance, State 12 (the single expert 

Kheradpour/HepG2 state) was strongly enriched for the polycomb repressed chromatin state 

(24_ReprPC, 13.0 fold), the repressive heterochromatin associated chromatin state (21_Het, 43.0 

fold) and the poised promoter state (22_PromP, 14.7 fold), but also the active TSS state (1_TssA, 

16.5 fold). Similarly, State 3 was enriched for the repressive 21_Het state (23.4 fold) while also 

being enriched for moderately active states like 15_EnhAF (13.3 fold) and 16_EnhW1 (14.5 fold). 

Three states (States 6, 14 and 15) were predominantly associated with repressive or quiescent 

genomic chromatin states. State 6 (most associated with Wang/GM12878, Kheradpour/HepG2 

and Kheradpour/K562), had the strongest enrichment of any state for the 21_Het chromatin state 

(46.0 fold) and also for LTRs (2.9 fold) while having the strongest depletion of conserved bases 

(0.71 fold). State 14 (the single expert state for Kheradpour/K562) was enriched for the repressive 

poised promoter (22_PromP), bivalent promoter (23_PromBiv) and repressed polycomb 

(24_ReprPC) states (6.9, 6.3 and 7.3 fold respectively). Additionally, State 14 showed the 

weakest depletion for the Quiescent chromatin state (25_Quies) among single or multi-expert 

states (0.96 fold) with the Quiescent chromatin state comprising 75% of the state. State 15 (the 

no expert state) was the only ChromScoreHMM state to show enrichment for the Quiescent 

chromatin state (1.1 fold). 

Notably, all ChromScoreHMM states with high emission parameter values for CRISPR-based 

experts (States 2, 5, 11, 13) were depleted for the 21_Het heterochromatin chromatin state 

(Figure 2.3), which was not the case in general for states with high emission parameter values for 

plasmid-based experts. This is consistent with our analysis of individual CRISPR-based and 

plasmid-based experts (Figure 2.2B), which showed 21_Het was being assigned higher scores 

by the plasmid-based experts compared to the CRISPR-based experts, likely marking regulatory 

sequences that are repressed in their native chromatin context.  
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ChromScoreHMM annotations displayed substantial variation in mean gene expression between 

states and specific positions relative to the TSS (Supplementary Figure S2.11). Most 

ChromScoreHMM states were more enriched at TSSs of high expression genes than low 

expression genes (Supplementary Figure S2.12). States 14 and 15, which were among the states 

associated with repressive or quiescent genomic regions, were exceptions to this. State 6, which 

was also predominantly associated with repressive or quiescent chromatin states, was more 

enriched for low expression genes upstream and downstream of the TSS, but was more enriched 

for high expression genes at the TSS (Supplementary Figure S2.12B). Meanwhile, States 5 and 

13, which are mainly associated with CRISPR-based experts, were more enriched downstream 

of the TSSs of high expression genes compared to low expression genes.  

ChromScore regulatory activity predictions 

ChromActivity also averages the outputs of its individual expert predictions to generate a cell type 

specific regulatory activity score, termed ChromScore (Figure 2.4A, Methods). ChromScore 

provides a single continuous score track for each cell type, where higher scores correspond to 

higher average predicted regulatory activity potential (Figure 2.4A).  

We investigated if ChromScore, which was trained based on functional characterization assay 

data in a limited number of cell types, would generalize to new cell types without functional 

characterization data. To evaluate the cell type generalization performance of ChromScore to 

predict regulatory activity in unseen cell types, first we generated modified versions of our 

ensemble models in which functional characterization datasets of each cell type were removed 

from the training data. Next, we generated and evaluated ChromScore tracks for the held out cell 

types using the modified models at loci not seen in training (Figure 2.4B, Supplementary Figure 

S2.13).  

We compared the ChromScore predictions to a set of baselines and existing score tracks from 

other methods for predicting activating vs. neutral labels of loci tested with functional 
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characterization assays. The baselines included those based on individual chromatin marks and 

one based on chromatin state assignments (Methods). The existing score tracks included several 

scores that provided cell type specific regulatory activity estimates integrating multiple epigenomic 

datasets (GenoNet, GenoNet-U [58], FunLDA [60], Genoskyline Plus [93]). In addition, we 

compared to two scores that also integrate epigenomic annotations, but do so in a non-cell type 

specific manner and also consider a diverse set of other annotations, CADD [94] and LINSIGHT 

[95] (Methods). 

ChromScore predictions had a substantially higher mean AUROC score (0.76) relative to all the 

baselines (AUROC range 0.67-0.70) except relative to DNase signal in which it was marginally 

better (0.75) (Figure 2.4B). Among the existing scores we evaluated, AUROCs ranged from 0.59 

(CADD) to 0.74 (Genonet and FunLDA). Comparing ChromScore's predictive performance to its 

underlying experts indicated that ChromScore performed similar to or better than the highest 

scoring experts in the majority of evaluations (Supplementary Figure S2.14). ChromScore 

performed better in plasmid-based dataset evaluations (mean AUROC 0.79) compared to 

CRISPR-based dataset evaluations (mean AUROC 0.59, Supplementary Figure S2.15), possibly 

because it was trained on more plasmid-based datasets. Notably, while ChromScore and DNase 

signal showed similar cell type generalization performances, they were only moderately correlated 

across cell types (median Spearman correlation 0.26, Supplementary Figure S2.16), and the 

chromatin state distributions of top ChromScore regions differed considerably from top DNase 

regions (Supplementary Figure S2.17). 

The median ChromScore across the genome and all 127 cell types was 0.10 (Figure 2.4C), with 

top-scoring genomic regions (highest 2% genomewide) having an average ChromScore > 0.35. 

A number of the chromatin states with high mean ChromScores (Figure 2.5C) and high fold 

enrichments within top-scoring genomic regions (Supplementary Figure S2.17A) across cell types 

included states typically associated with regulatory activity, such as 13_EnhA1 (mean score 0.41, 



 18 

fold enrichment 29.40 fold), 14_EnhA2 (mean score 0.35, fold enrichment 23.43) and 1_TssA 

(mean score 0.32, fold enrichment 17.46). Interestingly, other chromatin states such as 

20_ZNF/Rpts (mean score 0.41, 18.01 fold) and 21_Het (mean score 0.32, 14.34 fold) also 

displayed high mean scores and top-scoring region enrichments. The high mean scores and top-

scoring region enrichments of 20_ZNF/Rpts and 21_Het appeared to be mainly driven by plasmid-

based experts which, as previously shown, were more likely to assign higher scores on average 

to 20_ZNF/Rpts and 21_Het-annotated genomic regions (Supplementary Figure S2.5, S2.6).  

Analyzing ChromScore across many cell types enabled us to identify some genomic loci that were 

predicted to show near-universal activity across a diverse range of cell types. Approximately 

0.19% of loci across the genome were predicted to be highly active (top 2% ChromScore) in over 

90% of all cell types. We also observed that cell types that were more biologically similar had 

greater correlation in their ChromScore (Figure 2.5A, B). In particular, cell types within the same 

Roadmap Epigenomics tissue group [24] had an average Pearson correlation of 0.80 compared 

to a correlation of 0.62 for predictions crossing different tissue groups, reflecting ChromScore’s 

ability to capture cell and tissue-specific behavior. 

We analyzed fold enrichments for genomic repeat elements in top-scoring ChromScore regions 

(top 2%, Supplementary Figure S2.18A,E), and observed enrichments for long terminal repeats 

(LTRs, fold enrichment 1.71), particularly the endogenous retroviral sequence 1 (ERV1) subclass 

(fold enrichment 2.04), and depletions for long interspersed nuclear elements (LINEs, fold 

enrichment 0.56) and short interspersed nuclear elements (SINEs, fold enrichment 0.41). The 

enrichment for LTRs is consistent with previous reports showing LTRs association with activating 

gene expression [88, 96–98]. Top DNase regions by signal, in comparison, were depleted for 

LTRs, LINEs and SINEs (Supplementary Figure S2.18D,H). Plasmid-based experts and CRISPR-

based experts prioritized different repeat classes, with LTRs being enriched in bases prioritized 

by plasmid-based experts but depleted in CRISPR-based experts and SINEs including the 
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subclass of Alu elements showing the opposite trend (Supplementary Figure S2.18B,C,F,G). This 

could suggest LTRs being repressed in the genome but drive expression in a plasmid context. 

The enrichment of Alus in bases prioritized by CRISPR-based experts is consistent with the 

enrichment of both for transcribed regions [99] (Supplementary Figure S2.5).  

ChromScore moderately correlated with in-vivo gene expression at the TSS (Pearson correlation 

0.41, Supplementary Figure S2.19A, Methods). However, some chromatin marks showed 

stronger correlations, such as H3K9ac (Pearson correlation 0.59 at TSS+500 bp). We note that 

correlations for ChromScore were not necessarily expected to surpass that of all chromatin marks 

with expression, since ChromScore heavily relies on plasmid-based experts, which while 

providing an assessment of the inherent regulatory activity of a DNA sequence, do not reflect the 

full in-vivo chromatin context. Correlation patterns varied across functional characterization assay 

types and individual experts (Supplementary Figure S2.19B), with CRISPR-based experts 

showing higher correlations upstream and downstream of the TSS (Supplementary Figure 

S2.19C) but lower correlations at the TSS compared to plasmid-based experts (Mean Pearson 

correlations 0.32 for plasmid-based experts, 0.23 for CRISPR-based experts, Supplementary 

Figure S2.19D). This observation is consistent with the lower CRISPR expert scores observed in 

the 1_TssA chromatin state, which is primarily associated with active TSSs, compared to those 

of plasmid-based experts, as well as the higher scores noted in upstream promoter (2_PromU) 

and downstream promoter (3_PromD1, 4_PromD2) chromatin states (Supplementary Figure 

S2.5). These findings highlight the distinct patterns among ChromScore expert tracks in predicting 

gene expression around the TSS.  

Discussion 

We introduced ChromActivity, a computational framework that predicts gene regulatory element 

activity across diverse cell types by integrating information from chromatin marks and multiple 

functional characterization datasets. ChromActivity first trains a set of ‘experts’ with each expert 
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trained using a different individual functional characterization dataset. It then applies these trained 

predictors to make predictions for each cell type. Using these predictions, ChromActivity produces 

two complementary integrative outputs for each cell type. One of them is ChromScoreHMM, which 

annotates the genome into states representing combinatorial and spatial patterns in the expert’s 

regulatory activity track predictions. The other is ChromScore, which is a cell type-specific 

continuous numerical score of predicted regulatory activity potential across the genome based on 

combining the individual expert predictions. We applied ChromActivity using chromatin mark data 

from 127 cell types in the Roadmap Epigenomics compendium and data from 11 functional 

characterization datasets.  

We observed that different experts prioritized different subsets of the genome, in some cases 

corresponding to the assay or experimental protocol of the functional characterization dataset it 

was trained on. For example, plasmid-based experts on average assigned higher regulatory 

activity prediction scores to H3K9me3 heterochromatin-associated genomic regions compared to 

CRISPR-based experts, which was expected as the plasmid based experts tested loci outside of 

their native chromatin context (Figure 2.2B). These differences allowed us to distinguish genomic 

regions with likely H3K9me3-associated repressive activity from inactive regions. We also 

observed differences between CRISPR-based and plasmid-based experts in terms of their 

correlations with gene expression at and around the TSS and their predictions of regulatory 

activity for different classes of repeat elements. Given these differences, specific applications may 

benefit from utilizing either plasmid-based or CRISPR-based expert predictions, or different 

ChromScoreHMM states. For example, plasmid-based expert tracks and associated 

ChromScoreHMM states could be preferred for applications focused on predicted regulatory 

activity inherent in genomic sequences, independent of any regulatory effect of chromatin marks, 

while the CRISPR-based expert tracks and associated ChromScoreHMM states could be 

preferred for applications focused on predicted regulatory activity in the native genomic context. 
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Some of the ChromScoreHMM states corresponded to genomic regions with predicted regulatory 

activity in different types of functional characterization assays, while others were more specific to 

a specific assay or likely associated with dataset-specific signals or biases. We showed that 

ChromScoreHMM states corresponded to substantial enrichment differences for various 

annotations, including gene annotations, repeat elements, chromatin states and chromatin mark 

peaks. Further, the spatial distribution of ChromScoreHMM states relative to the TSSs of nearby 

genes varied depending on the expression of the genes. As expected, most states were more 

enriched at or around the TSSs of high expression genes compared to low expression genes, 

except for the few states associated with repressive or quiescent genomic regions.  

ChromScoreHMM, while building on the ChromHMM method, provides a distinct genome 

annotation that complements ChromHMM annotations. In particular, ChromScoreHMM 

annotations are defined based on combinatorial and spatial patterns in supervised predictions of 

regulatory activity corresponding to different functional characterization datasets, while 

ChromHMM annotations are defined directly based on the combinatorial and spatial patterns of 

chromatin marks. ChromScoreHMM annotations thus more directly correspond to different 

classes of predicted regulatory activity, while ChromHMM annotations can capture chromatin 

mark patterns not expected to correspond to differences in regulatory activity reflected in 

functional characterization assays. In particular, high emission parameters for a state in a 

ChromScoreHMM model can be directly interpreted to be associated with high predicted 

regulatory activity based on one or more functional characterization datasets, which is not the 

case for ChromHMM models.  

ChromScore is based on an ensemble of predictors trained on a variety of functional 

characterization datasets thus avoiding an overreliance on the biases associated with any one 

dataset. We showed the generalizability of ChromScore predictions across cell types through 

evaluations of predictive performance in unseen cell types. Top ChromScore regions were highly 
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enriched for enhancer chromatin states as well as classes of repeat elements previously shown 

to be associated with regulatory activation [88, 98]. We also showed that the predictions across 

127 cell types exhibited cell type-restricted activity corresponding to known biological groupings 

of cell types.  

There are several potential avenues for future work building on the current ChromActivity 

framework. One avenue would be to expand the set of functional characterization datasets used 

as input to ChromActivity, including adding additional recent CRISPR-based ones and datasets 

from additional cell types. A challenge to incorporating many additional functional characterization 

datasets in addition to availability has been the lack of uniform processing. However, this is 

changing with additional uniformly processed datasets beginning to accumulate in repositories 

(Luo et al., 2020), facilitating their inclusion in future models. A second avenue for future work 

would be to develop an improved way to combine expert predictions into a score other than the 

current strategy of averaging of predictions. This could potentially involve an approach that 

assigns different weights to different experts globally, for instance based on an estimated level of 

the noise for the labels on which it was trained, or in a locus specific manner based on how similar 

the locus is to those for which the expert was trained. Another avenue of future work would be to 

extend ChromActivity to directly predict loci that are repressed. We designed ChromActivity to 

focus on predicting activation as the information in the functional characterization datasets that 

we considered for repression was more limited and inconsistent. However some functional 

characterization datasets are informative of repression [87, 88] and thus could be used in an 

extended framework that directly considers repression. Future work could investigate applying 

ChromActivity to additional cell types in human as well as to non-human species. However, we 

expect ChromActivity to already be a resource for analyzing and interpreting the human regulatory 

genome across diverse cell types.  
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Methods 

Dataset selection and label extraction 

We derived labeled training data from 11 functional characterization datasets for ChromActivity 

(Table 2.1). All datasets were of experiments in cell types for which there was matched uniformly 

processed chromatin mark data available from the Roadmap Epigenomics consortium. The 

chromatin mark data for these cell types were all originally generated by the ENCODE project 

consortium [22].  

The individual datasets we used in abbreviated notation are: Ernst/HepG2, Ernst/K562 [88], 

Kheradpour/HepG2, Kheradpour/K562 [87], Muerdter/HeLaS3 [41], Wang/GM12878 [62], 

White/A549 [22], White/HepG2, White/K562 [89], Fulco/K562 [90], and Gasperini/K562 [81]. The 

cell types covered by the individual datasets are: A549 lung carcinoma (epigenome identifier 

E114), GM12878 lymphoblastoid (epigenome identifier E116), HeLa-S3 cervical carcinoma 

(epigenome identifier E117), HepG2 liver carcinoma (epigenome identifier E118) and K562 

myelogenous leukemia (epigenome identifier E123).  

ChromActivity treats predicting regulatory activity as captured by functional characterization 

assays as a binary classification task and specifically focuses on differentiating activating regions 

from assumed neutral regions. For input into ChromActivity, we defined binary “activating” vs. 

“neutral” labels for each genomic region in each functional characterization dataset using dataset 

specific procedures described below. We note that for datasets that had a reported set of 

repressive sequences (Ernst/HepG2, Ernst/K562, Kheradpour/HepG2, Kheradpour/K562) we 

decided to exclude them from training the corresponding expert, while for other datasets the 

neutral sequences may include some repressive sequences. We also provided ChromActivity a 

“reference nucleotide” within each region used for training, which we selected as the base we 

considered most likely representative of the regulatory activity. The specific procedure for 
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selecting the base (e.g., center of construct, nucleotide with the highest signal) depended on the 

functional characterization dataset and are described below. 

The Ernst/HepG2 and Ernst/K562 datasets [88] used a dense tiling of MPRA constructs combined 

with the SHARPR computational method to assign continuous regulatory activity scores to 5 bp 

intervals within the tiled regions. For each individual tiled region, we identified the position with 

absolute maximum value and defined Sabsmax of the region to be the value at that position if non-

negative and otherwise the negative of it. We assigned activating labels to tiled regions with 

Sabsmax values exceeding 1, and neutral labels to regions with Sabsmax values between -1 and 1. 

We filtered any regions with scores under -1 to exclude likely repressive regulatory regions from 

the training dataset. This procedure yielded 2405 activating and 10,894 neutral regions for 

Ernst/HepG2 and 2519 activating and 10,162 neutral regions for Ernst/K562. The reference 

nucleotide for each region was the center base of the 5 bp interval with the highest absolute 

maximum SHARPR score.  

For the MPRA datasets Kheradpour/HepG2 and Kheradpour/K562 [87], we used the 

precomputed p-values associated with regulatory activity for each construct against scrambled 

controls. The constructs with regulatory activity under the expressed p-value threshold of 0.05 

were labeled activating and the rest were labeled neutral. This yielded 541 activating and 1548 

neutral regions for Kheradpour/HepG2 and 347 activating and 1742 neutral regions for 

Kheradpour/K562. The reference nucleotide for each region was the center nucleotide of the 

sequence motif originally used in the experimental design, which also was the center nucleotide 

of the construct. We excluded any synthetic sequences not represented in the genome from the 

dataset. 

For the STARR-seq based datasets White/A549, White/HepG2, White/K562, we obtained 

STARRPeaker 1.0 [89] peak calls with ENCODE accessions ENCFF646OQS, ENCFF047LDJ 

and ENCFF045TVA respectively. We assigned activating labels to the top 10% of the peak calls 



 25 

by the normalized signal output/input fold change value. For the neutral regions, we randomly 

selected bases from the genome, excluding any that overlapped the ENCODE list of excluded 

regions [100]. For each activating region, we picked three neutral regions from the genome. This 

procedure yielded 6929 activating and 20,787 neutral regions for White/A549, 5199 activating 

and 15,597 neutral regions for White/HepG2 and 3571 activating and 10,713 neutral regions for 

White/K562. The reference nucleotide for each region was the center nucleotide of the peak, 

which corresponded to the base with the highest normalized signal output/input fold change value.  

For Muerdter/HeLaS3 [41], which was also a STARR-seq dataset, we obtained peak calls from 

https://data.starklab.org/publications/muerdter_boryn_2017/peaks_inhibitor_correctedEnrichme

nt4_supp.table3.tsv, which corresponded to STARR-seq peaks with corrected fold-enrichment 

values above 4, the same threshold used for peak calling in [41]. We applied the same random 

regions selection procedure as above to generate three neutral regions for each activating region. 

This yielded 9613 activating and 28,839 neutral regions for Muerdter/HeLaS3. The reference 

nucleotide was the center of the peak for each region.  

The Wang/GM12878 dataset [62] is based on a combined experimental and computational 

functional characterization method called High-resolution Dissection of Regulatory Activity 

(HiDRA). The experimental part of the method is based on a variant of STARR-seq called ATAC-

STARR-seq, which first applies a selection step based on ATAC-seq to identify regions of open 

chromatin and then applies STARR-seq to these selected regions instead of the whole genome. 

For Wang/GM12878, we first obtained peak calls for “HiDRA driver elements” identified by the 

HiDRA-SHARPR2 pipeline and the HiDRA RNA/DNA ratio score track (GEO accession 

GSE104001). We then assigned activating labels to the driver elements with RNA/DNA ratios 

above 1. To generate the neutral regions, we randomly selected nucleotides from “HiDRA tiled 

regions” that were not also in “HiDRA active regions”, maintaining a label ratio of three neutral 
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regions for each activating region. This yielded 2409 activating and 7227 neutral regions for 

Wang/GM12878. The reference nucleotide was the center of the peak for each region.  

For Gasperini/K562, a CRISPR-dCas9 dataset [81], we obtained the data for the scaled up 

experiment from GEO (accession GSE120861), which included genomic regions targeting 

DNase-I hypersensitive sites with various combinations of H3K27ac, p300, GATA1 and RNA Pol 

II binding. We filtered gRNA readouts to only include predefined target regions that resulted in a 

decrease in a candidate gene’s expression (regression coefficient “beta” column < 0) and 

excluded loci that were flagged in the “outlier_gene” column. We followed the methodology 

provided in the paper [81] to aggregate gRNA readouts to gRNA groups targeting the same locus. 

Target loci with adjusted empirical p-values below 0.05 for any of the measured target genes was 

labeled activating. Regions that failed to reach that threshold for any genes were labeled neutral. 

This procedure yielded 432 activating and 5122 neutral regions for Gasperini/K562. The reference 

nucleotide was the midpoint of a target region.  

For Fulco/K562, also a CRISPR-dCas9 dataset, we obtained the published adjusted p-values 

associated for tested candidate regulatory element-gene pairs (E-G pairs) in K562 [90]. This 

dataset contains aggregated data from 10 CRISPR-based functional characterization studies [43–

45, 101–107], with the [43–45, 95, 101–105, 107, 108] vast majority of data points (>99%) 

generated by perturbation with the CRISPRi-FlowFISH screen, which makes use of CRISPR-

dCas9 with an attached KRAB domain, targeting DNase-I hypersensitive sites within 450 kb of 30 

selected genes. We used the same procedure as the [90] to exclude any E-G pairs that (i) had 

less than 80% power to a detect 25% effect on gene expression, or (ii) had a fraction change in 

gene expression that was positive after CRISPR interference, since it suggests repression. We 

used a p-value threshold of 0.05 to assign the activating and neutral labels E-G pairs. Candidate 

regulatory elements that were in at least one E-G pair were assigned to the activating label, while 
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all other elements were assigned the neutral label. This yielded 69 activating and 747 neutral 

regions for Fulco/K562. The reference nucleotide was the center nucleotide of the element.  

All training, testing and analysis was done in the hg19 human genome assembly. Genomic 

coordinates not in hg19 were converted to hg19 using the liftOver utility from the UCSC genome 

browser [109], specifically from hg18 for Kheradpour HepG2/K562 datasets and from hg38 for 

White A549/HepG2/K562 datasets. For all datasets, loci not in chromosomes 1 through 22 or 

chromosome X were filtered out. 

Feature extraction and preprocessing 

ChromActivity uses three classes of features in the models: chromatin mark signals, chromatin 

mark peak calls and ChromHMM chromatin states. For the chromatin signal and peak call 

features, we used imputed signal tracks and narrow peak calls on imputed signal tracks, 

respectively, for the following 12 chromatin marks: DNase, H2A.Z, H3K27ac, H3K27me3, 

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, H4K20me1 [24]. 

For the chromatin state features, we used chromatin state annotations based on the 25-state 

ChromHMM model based on imputed data [73, 91]. All of these features were available across 

127 cell types.  

For each region considered, ChromActivity extracts the signal features within a 2 kb window at 

25 base intervals centered around a reference nucleotide associated with the region, yielding 81 

features per mark. In our application here, this resulted in 972 intermediate signal features for the 

12 marks. For each mark, ChromActivity then applies principal component analysis (PCA) to its 

81 signal features and selects the top three principal components. In our application here, the first 

three principal components explained on average 97% of the variance across training regions. 

ChromActivity retains the original signal value at the reference nucleotide thus reducing the 

number of signal features from 81 to 4 per mark. In evaluations and analyses that involved dividing 



 28 

the dataset into training and test partitions, PC component weights were learned from training 

partitions in each dataset and then applied to the test partitions.  

For each chromatin mark peak, ChromActivity includes a binary indicator variable for the presence 

of the peak at the reference nucleotide. It also includes features corresponding to a one-hot 

encoding of the 25-chromatin state annotation at the reference nucleotides. Altogether, this 

procedure yields 85 features used for classification: 36 PCA signal features, 12 original signal 

value features, 12 chromatin mark peak features and 25 one-hot encoded chromatin state 

annotations features. All features are standardized (based on the training partition for evaluations 

involving train and test sets) to have mean zero and a variance of one before training. 

Training, evaluation, and genomewide prediction track generation of the expert models 

ChromActivity uses a bagging ensemble of logistic regression classifiers to generate the individual 

experts, which has the advantages of being robust and providing well-calibrated probability 

estimates that reflect the class membership of the training data. For each functional 

characterization dataset, ChromActivity trained an ensemble of classifiers based on the extracted 

labels and features as described above. Each ensemble contained 100 binary logistic regression 

classifiers with a L2-norm penalty trained on a random drawing of training data points. The data 

points were drawn with replacement to obtain the same number of data points as the initial training 

set, i.e., a bagging ensemble. The regularization strength C of the logistic regression classifiers 

was set to the default value of 1 and assigned label weights of w(y=activating) = nneutral and 

w(y=neutral) = 3nactivating to the label classes, where w(y=y’) indicates label class weight for y’, and 

ny’ indicates number of data points of label y’. The label weights correspond to an effective label 

ratio of 0.25 (activating/neutral) across different datasets (Supplementary Figure S2.3A) instead 

of a balanced ratio so the resulting score better highlights genomic regions with high regulatory 

activity potential.  
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To evaluate the predictive performance of ChromActivity’s expert models on the functional 

characterization datasets they were trained on, we randomly generated 20 train/test partitions per 

dataset with a 4:1 train:test ratio, stratified by label to ensure consistent label ratios across the 

partitions. The models were trained as described above and applied to each test set to obtain 

AUROC metrics in Supplementary Figure S2.4.  

To produce the genomewide expert score tracks, ChromActivity applied the experts (trained on 

the entire training data) at 25 bp intervals across the genome to predict the activating class label 

probability at the center nucleotide in the interval (i.e., 13th nucleotide). ChromActivity produced 

ChromScore by taking the mean value of the individual expert predictions for each 25 bp interval.  

We computed a normalized version of the expert scores for analyses in which the distributions of 

the expert model scores are directly compared on the same sets of genomic loci (Figure 2.2B, 

2.2C, Supplementary Figures S2.5-7). The normalization procedure we implemented was based 

on quantile normalization. Specifically, to establish the reference distribution, we first computed 

expert model scores for 10 million randomly selected genomic locations, removing regions in the 

ENCODE excluded list [100]. We sorted the expert scores and computed the median expert score 

for each ranked entry. We then computed 1,000 quantile bins of each expert score distribution 

and generated mappings from the quantile bins to the corresponding median expert scores. Score 

values from experts are mapped to normalized score values using these mappings. We computed 

the mean normalized expert score values over all experts to generate the normalized ChromScore 

track used in Supplementary Figure S2.7. 

ChromScoreHMM annotations 

To generate the ChromScoreHMM annotations, ChromActivity first converts the continuous score 

tracks associated with expert models into binarized input for ChromHMM (version 1.23). These 

annotations are generated at 25 bp resolution, corresponding to the resolution of the predictions, 

instead of the default ChromHMM resolution of 200bp. For the main analysis, the binarization 
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thresholds per score track were set such that the 25 bp bins within the top 2% of model scores 

were assigned to 1 and the rest were assigned to 0.  

We used ChromHMM’s LearnModel subcommand with the following command line flags: -b 25 -

n 128 -p 4 -d -1 -lowmem. This configuration corresponds to a score bin size of 25 bases, using 

128 randomly selected cell type and chromosome combinations per Baum-Welch training 

iteration, 4 threads running the standard Baum-Welch algorithm, with the change in estimated 

log-likelihood stopping criterion disabled and reduced memory usage mode. The number of 

chromatin states for the main analysis was set to 15. Emission and transmission parameters of 

the model are shown in Supplementary Figure S2.9.  

To determine the number of states and the binarization threshold we ran models with the number 

of chromatin states set to 10, 15, 25 and binarization thresholds of top 1%, 2%, 5% and 10%. We 

focused on a 15-state model as it provided a good balance between model expressivity and 

interpretability for multiple values of the binarization threshold. The binarization threshold 

presented a tradeoff: a higher binarization threshold risks missing a larger number of true 

regulatory sites or evidence that a regulatory site is supported by multiple expert’s top predictions, 

while a lower binarization threshold could overassign the genome into regulatory states 

(Supplementary Figure S2.20). We opted to use a binarization threshold of 2%, which provided a 

reasonable tradeoff with approximately 9.3% of the genome in a cell type on average in 

ChromScoreHMM states associated with at least one expert (Figure 2.3) and 5.0% of the 25 bp 

intervals in the genome were above the binarization threshold in two or more experts 

(Supplementary Figure S2.20).  

ChromScoreHMM overlap fold enrichments 

We computed overlap fold enrichments using ChromHMM’s OverlapEnrichment command with 

command line flag -b 25. CpG island coordinates and RefSeq gene coordinates [110] were the 

ones included with ChromHMM (version 1.23), originally downloaded from the UCSC genome 
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browser. RefSeq annotations were the version available on July 26, 2015. RepeatMasker [111] 

repeat element coordinates and PhastCons 100-way conserved element annotations [112] were 

obtained from the UCSC Genome Browser [113, 114]. CTCF motif instances were obtained from 

HOMER known motifs (version 191020) [115]. GERP++ conserved element annotations were 

obtained from http://mendel.stanford.edu/SidowLab/downloads/gerp [116].  

Analysis of expert score and ChromScore distributions 

Pairwise expert score correlations 

We computed pairwise Pearson correlations between pairs of expert scores at 500,000 randomly 

selected bases of the genome, excluding any region on the ENCODE excluded regions list v2 for 

hg19 [100].  

Chromatin state score distributions 

To determine chromatin state score distributions for the 25-state ChromHMM annotations [73, 

91], we sampled 2.5 million loci from the genome excluding those in ENCODE excluded regions 

v2 as above and extracted their chromatin states and associated scores. 

Cluster heatmap of ChromScores across cell types and tissue group correlations 

To generate a cluster heatmap of scores across cell types, we randomly selected 20,000 bases 

from the genome among those for which ChromScore showed a difference of at least 0.25 

between at least one of the 127 cell types. We filtered for score differences to highlight genomic 

loci with different regulatory activity potential across cell types. Roadmap Epigenomics tissue 

groupings were obtained from the metadata section of the Roadmap Epigenomics data portal 

[24]. Loci were clustered using the euclidean average linkage metric implemented in 

scipy.cluster.hierarchy.linkage in the SciPy package [117]. We excluded the “ENCODE2012” and 

“Other” tissue groupings when computing the mean ChromScore correlations within and across 

tissue groups. 
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Evaluating ChromScore cell type generalization performance 

To estimate the generalization performance of ChromScore in unseen cell types, we trained five 

modified versions of the model, one for each cell type with characterization data available. Each 

version was constructed such that it did not have access to training data in one particular cell type 

(i.e., one of A549, GM12878, HeLaS3, HepG2 or K562). To evaluate predictive performance for 

a dataset of a particular cell type, we used the version of the model with that cell type removed. 

In addition to holding out cell types, we also spatially partitioned the genome into 5 kb chunks and 

assigned each chunk to the training or testing partition with probability 0.25 (i.e., 3:1 train:test 

ratio). We repeated this process 20 times per dataset. 

We compared the performance of ChromScore to a set of baselines and existing scores. The 

baselines included the individual imputed chromatin mark signals (DNase, H2A.Z, H3K27ac, 

H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, and 

H4K20me1) in the matched cell types obtained from the Roadmap Epigenomics compendium. In 

addition, they included a simple chromatin state baseline model, which generated a single score 

track for each cell type by mapping a chromatin state annotation at a specific position to the 

average fraction of positive labels within the training partition for each dataset. 

We also compared ChromScore to various cell type-specific and non-cell type-specific external 

scores that integrate different epigenomic datasets and in some cases with other annotations, 

specifically FunLDA [60], GenoSkyline Plus [93], LINSIGHT [95], CADD [94, 118] and 

GenoNet/GenoNet-U [58]. Precomputed FunLDA scores were downloaded from 

http://www.funlda.com/download. GenoSkyline Plus annotations were obtained from 

http://zhaocenter.org/GenoSkyline. LINSIGHT annotation was downloaded from 

http://compgen.cshl.edu/LINSIGHT. CADD v1.4 scores were obtained from 

https://cadd.gs.washington.edu. We used the browser track (hg19) version of the CADD scores, 
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which are based on the highest scoring single nucleotide variant for each genomic position as 

described in https://github.com/kircherlab/CADD-browserTracks.  

GenoNet used two distinct models, a supervised version (“GenoNet”) which was trained on MPRA 

data [87, 119] and was only applied to the three cell types K562, HepG2, GM12878 and an 

unsupervised version (“GenoNet-U”) which did not use any functional characterization data and 

was applied to the remaining 124 Roadmap Epigenome cell types. Precomputed GenoNet scores 

for K562, HepG2 and GM12878 and precomputed Genonet-U scores for the remaining Roadmap 

Epigenomics cell type were obtained from https://zenodo.org/record/3336208 [58, 120]. 

Precomputed GenoNet-U scores in K562, HepG2, GM12878 were not available, and instead we 

computed using a custom script based on the description of the method. The output of our 

implementation was confirmed to produce nearly identical predictions (Pearson correlation > 0.99) 

to the GenoNet-U scores in all 124 of Roadmap epigenome cell types for which it was available.  

Expression analyses around TSSs 

We downloaded the RPKM expression matrix for protein coding genes for 56 Roadmap 

Epigenomes from the Roadmap Epigenomics data portal 

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz), 

along with the corresponding Ensembl gene annotations (Ensembl v65, hg19) [121]. For each 

cell type, we categorized the genes into high expression (defined as log2(RPKM+1) > 1) and low 

expression (defined as log2(RPKM+1) < 0.01) genes. Across the 56 cell types, 62% of genes were 

categorized as high expression and 15% of genes were categorized as low expression on 

average. 

To investigate expression of nearby genes for ChromScoreHMM states, we identified the 

ChromScoreHMM states within 24 kb windows centered around the TSSs of the genes, sampled 

at 200 base intervals. For genes on the negative strand, we flipped the position indices so that 

positive offset values always corresponded to the direction of the gene body. We computed 
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log2(RPKM+1) values for each gene based on the Roadmap Epigenomics RPKM expression 

matrix for protein coding genes. For each ChromScoreHMM state and position offset, we then 

computed the mean log2(RPKM+1) value across genes and cell types.  

For the ChromScore expression correlations analysis, we first computed ChromScore and 

individual expert model scores within a 24 kb window centered around TSSs in all cell types with 

expression data available. We also extracted chromatin mark signal values for the same windows 

for comparison. We mirrored the score windows for the genes on the negative strand around the 

TSS to align the upstream segments and the gene bodies. We then computed Pearson 

correlations between scores or signal values and log expression with pseudocount 

(log2(RPKM+1)) for each 25 bp interval centered around the TSS and averaged them over the 

cell types.  

ChromScore repeat element enrichments 

We downloaded RepeatMasker (Smit, Hubley and Green, 2013) repeat elements from the UCSC 

Genome Browser (Karolchik et al., 2004; Navarro Gonzalez et al., 2021), using the repClass 

column to identify the LINE, SINE and LTR elements and the repFamily column to identify the 

ERV elements. We randomly selected 1 million nucleotides from hg19 on chromosomes 1 through 

22 and chromosome X, determined if they overlapped a repeat element with the bedtools intersect 

command, and computed ChromScore and expert prediction scores for each plasmid-based and 

CRISPR-based expert. Mean plasmid and CRISPR scores were obtained by taking the mean 

score of the respective experts at each nucleotide. We grouped the scores within 200 quantiles 

(i.e., each quantile representing 0.5% of the nucleotides) and computed fold enrichments for each 

quantile for each repeat type compared to the genome background.  
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Availability of data and materials 

The ChromActivity software and links to the ChromScoreHMM and ChromScore annotations 

(hg19 and hg38 liftOver) for the 127 Roadmap cell types are available on 

https://github.com/ernstlab/ChromActivity. Signal and score tracks were processed using 

pyBigWig v0.3.18 [122] and UCSC utilities v369 [109, 123]. Genomic coordinates were mapped 

across genome assemblies using liftOver v369 [109, 123]. Analyses involving genome intervals 

used BedTools v2.30.0 [124], pyBedTools v0.9.0 [125], bedops v2.4.41 [126] packages. 

Hierarchical clustering used in heatmap visualizations is implemented in SciPy [117]. scikit-learn 

v1.1.2 [127] was used for data preprocessing, model training, inference and evaluations. 

ChromScoreHMM annotations were generated using ChromHMM v.1.23 [73, 74], downloaded 

from https://ernstlab.biolchem.ucla.edu/ChromHMM. We used matplotlib [128] and Seaborn [129] 

for plotting and visualization. All other packages were obtained from the conda-forge and 

bioconda [130] repositories.  
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Figures 

 

Figure 2.1: Overview of the ChromActivity framework. 

(A) Flowchart of the ChromActivity framework. ChromActivity takes as input regulatory activity 

labels from targeted genomic regions from k different functional characterization datasets 
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(stacked white blocks, upper left). Using features based on chromatin mark signals, peak calls, 

and chromatin state annotations for the targeted regions (red block, lower left), it trains a separate 

classifier (“expert”) for each functional characterization dataset. Each expert provides a predicted 

genomewide regulatory activity score track specific to a functional characterization dataset 

(stacked blue blocks). ChromActivity then uses the score tracks to generate two complementary 

outputs reflecting predictions of regulatory activity for each cell type (yellow blocks, right): (i) 

ChromScoreHMM annotations, which are annotations of the genome into states generated by 

integrating combinatorial and spatial patterns in the expert prediction score tracks using 

ChromHMM and (ii) ChromScore tracks, which are continuous genomewide regulatory activity 

score tracks based on the mean individual expert scores at each 25-bp interval. See 

Supplementary Figure S2.1 for a detailed schematic. (B) Visualization of regulatory activity score 

tracks for each expert, ChromHMM chromatin state annotations (25-state imputed model), the 

ChromScore track and ChromScoreHMM annotations in HepG2 for genomic interval 

chr1:6,000,000-6,100,000 (hg19). ChromScoreHMM and ChromHMM color legends are shown 

in Supplementary Figure S2.2. 
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Figure 2.2: Correlation of individual expert scores and comparison of plasmid-based and 

CRISPR-based experts. 

(A) Heatmap of mean genomewide Pearson correlations between expert model tracks clustered 

with hierarchical clustering, averaged over cell types. (B) Box plots of mean normalized score 
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differences across cell types between experts trained on 9 plasmid-based and 2 CRISPR-based 

functional characterization datasets in different ChromHMM chromatin states [73, 91]. The boxes 

represent quartiles and whiskers indicate maximum and minimum score differences between 

plasmid-based and CRISPR-based experts. Individual mean scores averaged across cell types, 

for each expert separately, is shown in Supplementary Figure S2.5. The corresponding box plot 

distributions of means across cell types for each expert and each state is shown in Supplementary 

Figure S2.6. (C) Scatter plot of mean normalized expert scores for plasmid-based vs. CRISPR-

based functional characterization datasets per chromatin state, averaged over cell types. Error 

bars indicate standard deviation of score means across cell types. 
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Figure 2.3: ChromScoreHMM emission parameters and enrichments. 

(A) Emission parameters of a ChromScoreHMM model learned based on combinatorial and 

spatial patterns of top scoring predictions of each expert (top 2% of predictions, Methods). Each 

row of the heatmap corresponds to a ChromScoreHMM state (states 1-15, color legend on left 

margin) and each column a different input expert model. Emission parameter values correspond 

to the probability in that state of observing a top scoring prediction for that expert model. (B) 

Overlap fold enrichments for (1) sequence and gene annotations: CpG islands [113], exons, gene 

bodies and transcription start sites from RefSeq [110], CTCF motifs from HOMER [115], (2) 

evolutionary conservation related annotations: GERP++ [116], PhastCons 100 vertebrates 

conservation [112], (3) ERV1, LINE and LTR repeat elements from RepeatMasker [111], (4) 

ChromHMM annotations, 25-state model [73, 91]. Top row: Percentage of the genome occupied 

by the annotation. (C) Percentage of the genome assigned to each ChromScoreHMM state. See 

Supplementary Figures S7 and S8 for additional enrichments. Red shading: emission parameters, 

blue shading: fold enrichments, black shading: genome percentages. Enrichments and 

percentages are medians across cell types. 
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Figure 2.4: ChromScore tracks, cell type generalization performance evaluations and score 

distributions. 

(A) Visualization of ChromScore tracks in eight cell types shown above ChromScoreHMM and 

ChromHMM annotations in the same cell types for genomic interval chr1:6,000,000-6,100,000 

(hg19). The cell types shown represent examples of both those with and without functional 

characterization training data (cell types with training data: GM12878, A549, HepG2, and K562; 
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cell types without training data: CD14 primary monocytes, brain hippocampus cells, NHLF lung 

fibroblast primary cells, and osteoblast primary cells). (B) A comparison of cell type generalization 

performance of ChromScore to existing scores, single marks, and a chromatin state baseline. The 

bars correspond to the mean area under receiver operator characteristic (AUROC) across 11 

functional characterization datasets. The first bar shows the performance of ChromScore. For 

ChromScore evaluations, expert models trained on the same cell type as the evaluation dataset 

were not used. The next six bars show the performance of existing scores [58, 60, 93–95, 118], 

which are followed by bars for the imputed signal tracks for DNase I hypersensitivity, H3K4me3, 

H3K27ac, H3K9ac, and H3K4me1. The last bar shows the mean ensemble of the chromatin state 

baseline models for all datasets (CS baseline, Methods). Error bars indicate standard error across 

evaluations. (C) Genomewide distribution of ChromScore values, averaged over cell types. Inset: 

log scaled. (D) Cumulative chromatin state fraction for top ChromScore percentiles. Each bin 

corresponds to an additional top 1% of scores. See Supplementary Figure S2.2 for chromatin 

state color legend.  
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Figure 2.5: ChromScore across cell types. 

(A) Heatmap showing ChromScores at 20,000 randomly selected bases across the genome 

(columns) that had a score difference of >0.25 between at least two cell types for 127 Roadmap 

Epigenomics cell types (rows) (Methods). Columns are hierarchically clustered and rows are 

sorted based on Roadmap Epigenomics tissue groups [24]. The tissue groups of the rows are 

indicated on the left and their color legend is displayed at the bottom. (B) Heatmap of ChromScore 

Pearson correlations across all pairs of 127 cell types, which are ordered and colored as in A. (C) 

Distribution of mean ChromScores per chromatin state per cell type.  
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Name Cell type 
Assay 
technology 

Unit of 
observation Citation 

Number 
of 
activatin
g loci 

Number 
of neutral 
loci 

Total 
number 
of data 
points 

Fulco/K562 K562 
CRISPR-
dCas9 

Center 
nucleotide of 
target site [90] 69 747 816 

Gasperini/K562 K562 
CRISPR-
dCas9 

Center 
nucleotide of 
target site [81] 432 5122 5554 

Kheradpour/HepG2 HepG2 MPRA 
Individual 
construct [87] 541 1548 2089 

Kheradpour/K562 K562 MPRA 
Individual 
construct [87] 347 1742 2089 

Ernst/HepG2 HepG2 MPRA 

Nucleotide 
with absolute 
maximum 
score in tiled 
region [88] 2405 10,894 13,299 

Ernst/K562 K562 MPRA 

Nucleotide 
with absolute 
maximum 
score in tiled 
region [88] 2519 10,162 12,681 

Wang/GM12878 
GM1287
8 STARR-seq 

Center of 
driver 
elements [62] 2409 7227 9636 

Muerdter/HeLaS3 HeLa-S3 STARR-seq 
Center of peak 
call [41] 9613 28,839 38,452 

White/A549 A549 STARR-seq 
Center of peak 
call 

https://doi.org/d
oi:10.17989%2F
ENCSR895FDL 6929 20,787 27,716 

White/HepG2 HepG2 STARR-seq 
Center of peak 
call [89] 5199 15,597 20,796 

White/K562 K562 STARR-seq 
Center of peak 
call [89] 3571 10,713 14,284 

Table 2.1: Overview of the functional characterization datasets. 
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Figure S2.1: Detailed schematic of the ChromActivity framework. 

As summarized in Figure 2.1A, ChromActivity takes as input regulatory activity labels (white 

blocks, upper left) for tested genomic regions from multiple functional characterization datasets. 

ChromActivity also takes as input features based on chromatin mark signals, peak calls, and 

chromatin state assignments for the input regions (red block, lower left) which it preprocesses 

(purple block, lower left) and uses along with the labels to train a separate classifier (“expert”) for 

each functional characterization dataset (“expert models”, gray blocks). Each expert model 

provides a predicted genomewide regulatory activity score track specific to a functional 

characterization dataset (blue blocks). ChromActivity then uses these score tracks to generate 

two complementary outputs (yellow blocks, right): (i) ChromScoreHMM annotations, which are 

annotations of the genome into states based on combinatorial and spatial patterns in the predicted 

regulatory activity tracks and (ii) ChromScore, which is a composite regulatory activity score track 

based on the mean of individual expert model score tracks.   
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Figure S2.2: Color legends for ChromScoreHMM states and the ChromHMM imputed 25-

state model. 

(A) The color legend shows the ChromScoreHMM states grouped into seven color groups for 

visualization purposes. The groups and their associated states are as follows: General regulatory 

(States 1, 2, 3 and 4), which are broadly associated with regulatory activity across the majority of 

experts; CRISPR-specific (State 5), which is associated with CRISPR-based experts; 

Heterochromatin-associated (State 6), which is highly enriched for a heterochromatin chromatin 

state; Multi-expert restricted (States 7, 8 and 9), which are associated with two or three experts; 

STARR-seq specific (State 10), which is associated with a subset of STARR-seq-based experts; 

Single expert associated (States 11, 12, 13 and 14), which are emission parameters dominated 

by a single expert; Quiescent/no expert (State 15), which is associated with minimal predicted 
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regulatory activity in all experts. (B) Color legend for the ChromHMM imputed 25-state model [73, 

91].  



 48 

 

Figure S2.3: Genomic coverage of functional characterization datasets. 

(A) Activating label %: Fraction of dataset loci labeled “activating”. Weighted activating %: 

Effective activating label fraction after label class weighting (Methods). Weighting was not 

necessary for STARR-seq datasets as neutral loci were selected with a 3-to-1 neutral to activating 

label ratio (Methods). (B) DHS %: Fraction of dataset loci overlapping peaks of DNase in 

corresponding cell type. Peak calls were based on imputed data obtained from Roadmap 

Epigenomics [24]. (C) Total number of dataset loci in each chromatin state. (D) Number of dataset 

loci labeled “activating” (top) or “neutral” (bottom) in each chromatin state. Heatmap color 

indicates label ratio as indicated by the color legend on the left.  
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Figure S2.4: Predictive performance of ChromScore expert models in held-out loci of the 

same functional characterization dataset. 

(A) Area under receiver operator characteristic curve (AUROC) distribution across 20 random 

permutation cross-validations for each expert model at predicting held-out loci in the same 

functional characterization dataset (Methods). The box represents quartiles and whiskers indicate 
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maximum and minimum AUROCs across the train/test shuffles. (B) Median AUROCs for each 

expert across the train/test shuffles vs. number of genomic loci used in training (Spearman 

correlation 0.75). 

 

  



 51 

 

Figure S2.5: Mean normalized expert scores per chromatin state. 
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Rows correspond to chromatin states in the 25-state ChromHMM model based on imputed marks 

[73, 74, 91]. First 11 columns correspond to individual expert models. Values correspond to the 

mean normalized expert score averaged over the 127 cell types. The rightmost three columns 

correspond to the mean of the normalized scores across CRISPR-based experts, plasmid-based 

experts, and all experts. See Methods for a description of the normalization procedure. 
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Figure S2.6: Boxplots of mean normalized expert scores for each chromatin state, 

distributions across cell types. 

Each subplot corresponds to a chromatin state in a 25-state ChromHMM model. Each boxplot 

within a subplot indicates the distribution of mean normalized expert scores across cell types for 

the indicated expert and chromatin state (Methods). Horizontal line in the middle of the box 

indicates median, the box indicates upper and lower quartiles. Dashed line indicates average 

normalized score across chromatin states.  
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Figure S2.7: ChromScoreHMM emission parameters and mean model scores for the 15-

state model. 

(A) Emission parameters of ChromScoreHMM model (see Figure 2.3 for details). (B) Percentage 

of the genome assigned to each ChromScoreHMM state. (C) Mean normalized scores (Methods) 

for each expert model in each ChromScoreHMM state. (D) Mean normalized scores across 

ChromScoreHMM states (Methods). Normalized ChromScore refers to the mean normalized 

expert score track (Methods). Mean CRISPR, MPRA and STARR-seq scores refer to scores 

generated by taking the ensemble averages of normalized score tracks for expert models trained 

on CRISPR, MPRA and STARR-seq datasets respectively (Methods). Scores and percentages 

shown are medians across cell types.  
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Figure S2.8: ChromScoreHMM emission parameters and chromatin mark peak 

enrichments for the 15-state model. 

(A) Emission parameters of the ChromScoreHMM model (see Figure 2.3 for details). (B) 

Percentage of the genome assigned to each ChromScoreHMM state. (C) Fold enrichments for 

peak calls for individual chromatin marks based on imputed data from Roadmap Epigenomics. 

Top row indicates the percentage of the genome occupied by the peak call annotation. 

Enrichments and percentages are medians across cell types. 
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Figure S2.9: ChromScoreHMM emission and transition parameters for the 15-state model. 

(A) Emission parameters of the model (see Figure 2.3 for details). (B) Percentage of the genome 

assigned to each ChromScoreHMM state. (C) Transition parameters of the model. Each value 

corresponds to the probability when in the state of the row of transitioning to the state of the 

column.  
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Figure S2.10: ChromScoreHMM state proportions around transcription start sites. 

(A) Proportion of ChromScoreHMM state assignments represented by each ChromScoreHMM 

state as a function of genomic position centered around TSSs, averaged over cell types. See B 

for color legend. Negative offset values are upstream of the transcription start site and positive 
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offset values are downstream. Offset zero refers to the TSS. (B) Individual plots of 

ChromScoreHMM state proportions and color legend. State 15 color changed from white to black 

for legibility. Bottom limits for the y-axes are 0 (omitted for clarity), upper limits as indicated on the 

plot. (C) Fold enrichments of ChromScoreHMM states as a function of genomic position, similar 

to (A). (D) Individual plots of ChromScoreHMM fold enrichments, similar to (B).  

 

  



 59 

 

Figure S2.11: ChromScoreHMM gene expression patterns around transcription start sites. 

Mean expression of nearby genes for positions within a +/-12 kb window around the TSSs 

(dashed red line) occupied by each ChromScoreHMM state. Each row corresponds to a 

ChromScoreHMM state and each column a position relative to a TSS. Expression values for each 

offset position and ChromScoreHMM state are the average log2(RPKM+1) values across both 

genes and cell types. RPKM: reads per kilobase of exon per million mapped reads.  
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Figure S2.12: ChromScoreHMM overlap enrichments around TSSs of high expression and 

low expression genes. 

(A) Each subplot corresponds to a ChromScoreHMM state and shows the fold enrichments 

relative to the TSS for both a set of high expression and low expression genes as indicated by 

the color legend in each plot. High expression color corresponds to ChromScoreHMM state colors 

(Supplementary Figure S2.2). Negative offset values are upstream of the transcription start site 

and positive offset values are downstream. Offset zero refers to the TSS. Gene expression 

thresholds for high and low expression genes are log2(RPKM+1) > 1 and log2(RPKM+1) < 0.01, 

respectively. (B) Ratio of enrichments for high expression relative to low expression genes for 

each ChromScoreHMM state restricted to positions upstream of the TSS, at the TSS, or 

downstream of the TSS. The enrichment ratios correspond to the number of bases covered by a 

ChromScoreHMM state within an interval around high expression genes over the number of 

bases covered within the equivalent interval around low expression genes, each normalized by 

the total number of bases in the corresponding high expression and low expression gene intervals 

before computing the ratios. Upstream and downstream ratios computed over the 0.5-10 kb 

interval centered around the TSS. TSS ratio computed over the interval -200 to 200 bp. 
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Figure S2.13: Predictive performance of ChromScore, external models and baselines. 

Each panel corresponds to a functional characterization dataset used for evaluating regulatory 

activity predictions. ChromScore excludes all training data from evaluation cell types or from the 

same genomic position. Error bars indicate standard error across test partitions. AUROC: Area 

under receiver operator characteristic curve. Red bar: ChromScore, blue bars: external scores 

(Genonet, GenonetU, FunLDA, GenoSkylinePlus, LINSIGHT, CADD), dark gray bars: individual 

chromatin mark signals, light gray bar: chromatin state baseline model.  
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Figure S2.14: Predictive performance of ChromScore and individual experts. 

Each panel corresponds to a functional characterization dataset used for evaluating regulatory 

activity predictions. Expert models trained on a given dataset were not evaluated on the same 

dataset and were marked “N/A”. See Supplementary Figure S2.4 for performance of expert 

models on the same dataset under cross-validation. In evaluating ChromScore, we excluded 

ChromScore all training data from evaluation cell types or from the same genomic position (Figure 
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2.4B, Methods). Error bar indicates standard error across ChromScore test partitions. AUROC: 

Area under receiver operator characteristic curve. Red bar: ChromScore, light red bar: mean 

AUROC of individual experts for the given evaluation, blue bars: individual experts.  
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Figure S2.15: Predictive performance of ChromScore, external models and baselines in 

CRISPR and plasmid-based functional characterization datasets. 

(A) Mean score performance evaluated in CRISPR-based datasets. (B) Mean score performance 

evaluated in plasmid-based datasets. Error bars indicate standard error across evaluations. 

AUROC: Area under receiver operator characteristic curve. Red bar: ChromScore, blue bars: 

external scores (Genonet, GenonetU, FunLDA, GenoSkylinePlus, LINSIGHT, CADD), dark gray 

bars: individual chromatin mark signals, light gray bar: chromatin state baseline model.  
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Figure S2.16: Spearman correlations between ChromScore and chromatin mark signal 

tracks. 

Each point indicates correlation between the indicated mark and ChromScore in one cell type. 
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Figure S2.17: Chromatin state fold enrichments of top ChromScore and DNase-I 

hypersensitive regions. 

Chromatin state fold enrichments for genomic regions assigned the top 2% of (A) ChromScore, 

(B) DNase-I hypersensitivity signal, geometric mean over cell types. Dashed red line indicates 

fold enrichment 1. Chromatin state composition average percentages within the top 2% of regions 

shown in parentheses. States are ordered as in A by ChromScore enrichment.  
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Figure S2.18: Repeat element fold enrichments for ChromScore, mean plasmid-based 

expert score, mean CRISPR-based expert score and DNase signal quantiles. 

Fold enrichments for long interspersed nuclear elements (LINEs), all short interspersed nuclear 

elements (SINEs), the Alu subclass of SINEs, all long terminal repeats (LTRs) and the 
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endogenous retroviral sequence 1 (ERV1) subclass of LTRs, computed for (A) ChromScore, (B) 

mean plasmid-based expert score, (C) mean CRISPR-based expert score, (D) DNase signal, (E-

H) same as (A-D) except for cumulative fold enrichments. Lines indicate mean enrichments 

across 127 cell types, shaded areas indicate standard deviations across cell types. Fold 

enrichments are computed relative to the genome background. Red vertical dashed line denotes 

the top 2% of scores. Gray horizontal line indicates fold enrichment of 1.  
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Figure S2.19: Cell type averages of Pearson correlations between gene expression and 

ChromScore, individual chromatin mark signals, expert scores. 
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Correlation of gene expression (log2(RPKM+1)) with ChromScore and (A) individual chromatin 

mark signals, (B) individual expert tracks, (C) and average of plasmid-based expert tracks and 

CRISPR-based expert tracks as a function of position relative to the TSS within a 24 kb window. 

(D) Bar graph reporting correlation with gene expression of A-C specifically at the TSS.  
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Figure S2.20: Percentage of genome above the binarization threshold by one or more 

experts. 

The columns correspond to the binarization thresholds of top 1%, 2%, 5%, and 10% of the expert 

prediction scores. Each row corresponds to a number of experts. Values correspond to the 

percentage of 25 bp intervals in the genome for which exactly the number of experts of the row 

had scored it above the binarization threshold of the column.  
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Chapter 3. Augmenting Sharpr-MPRA with DNA sequence for 

enhanced dissection of cis-regulatory activity 

Introduction 

The human genome contains thousands of protein-coding genes and hundreds of thousands of 

non-coding regions that modulate their expression in cis [1, 2]. These non-coding genomic 

regions play a critical role in the regulation of gene expression and contain the vast majority of 

variants associated with common diseases [69, 70]. Identifying the location of these regulatory 

regions in the genome with high spatial precision is critical to advancing our understanding of 

both basic biology and human disease [22]. 

One approach for localizing genomic regions with regulatory activity is via reporter assay 

experiments, including massively parallel reporter assays (MPRAs) [38, 131] and self-

transcribing active regulatory region sequencing (STARR-seq) assays [39]. Both techniques 

measure the expression induced by reporter constructs containing candidate regulatory 

elements (readouts) and provide a proxy for activation or repression in regulatory regions. 

Depending on the experimental protocol, assays may target pre-selected genomic regions using 

synthetic reporter constructs in the case of MPRAs [87, 88] or a distribution of sequences 

across the genome via genome fragmentation in the case of STARR-seq [132].  

The synthetic nature of MPRA reporter constructs enables various approaches for interrogating 

genomic regions, such as saturation mutagenesis [133], which systematically mutates bases to 

determine their contribution to regulatory activity. This method, however, is inefficient in terms of 

the number of constructs used per region for localizing a regulatory region [2, 133]. An 

alternative approach involves construct designs in which constructs are selected to densely 

cover a genomic region, forming a tiled pattern of observations. Sharpr-MPRA [88] is such a 

tiling-based combined experimental and computational approach for the high-resolution 
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mapping of regulatory activity within selected genomic regions. By leveraging overlaps across 

the tiles, the SHARPR computational method dissects regulatory regions and maps regulatory 

activity estimations to individual nucleotides, using only construct readout data.  

Another category of computational approaches for predicting regulatory activity is sequence 

models, which only use DNA sequences as input [51, 55, 57, 64, 134, 135]. The DragoNN 

sequence model, for instance, was specifically trained on the Sharpr-MPRA datasets to predict 

construct-level activity readouts [51]. This approach, by design, does not consider the tiling-

based design of the constructs and treats each sequence as an independent observation.  

We hypothesized that augmenting the SHARPR model with DNA sequence information, in 

addition to construct readout data, could improve Sharpr-MPRA’s accuracy and reliability. Here, 

we propose SHARPR-seq, an extension and modification of the SHARPR computational 

method that incorporates DNA sequence information in the tiled regions and the observed 

readouts. We show that SHARPR-seq improves upon SHARPR in several key evaluations, 

including prediction of conserved and TF-binding bases, overlap with repeat elements with 

known regulatory activity, and mean model scores associated with regulatory motifs. We also 

discuss additional features of the SHARPR-seq model, such as its ability to tune the contribution 

of sequence and tiling data to the final high-resolution scores.  

 

Results 

Overview of the SHARPR-seq method 

SHARPR-seq accepts two types of input: observed tiled reporter construct readouts and 

predictions of tile readouts generated by a sequence model. The observed readouts provide 

experimental measurements of regulatory activity, and the sequence model provides 
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complementary predictions of regulatory activity based solely on the underlying DNA sequence 

of each tile. SHARPR-seq aims to improve regulatory activity prediction by jointly modeling both 

data types, specifically by training a multitask regression model on the sequence-based and 

observed tile readouts.  

Multitask learning is an approach in machine learning where a model is trained to solve multiple 

tasks simultaneously, allowing knowledge to be shared and transferred across related tasks 

[136]. This approach is well-suited for integrating the tiling data and sequence predictions, as 

both provide complementary insights on the same DNA segment and allow the model to exploit 

the common structure of the problem.  

SHARPR-seq jointly trains a multitask regression model [137] with ridge penalty on the 

observed (Mobs) and sequence-based (Mseq) tile readouts (Figure 3.1A, Methods). As in Sharpr-

MPRA [88], the observed reporter construct readouts (Mobs) are quantified as the ratio of RNA 

counts to DNA counts for each tile (Methods). The position of each tile construct along the 

assayed region is encoded via a tile index (j), preserving spatial relationship information 

between tiles (Methods). The sequence model predictions (Mseq) provide regulatory activity 

estimates based solely on the underlying DNA sequence. We used the DragoNN sequence 

model predictions in this application of SHARPR-seq. The model's design matrix (D) encodes 

spatial relationships between the tiles and is shared across the tasks (Figure 3.1B). The latent 

activity matrix (A) contains predictions based on measured tiling data (Aobs) and predictions 

based on the DNA sequence model (Aseq). The model is trained to minimize a joint loss function 

integrating both data types (Figure 3.1A, B). 

To generate the final SHARPR-seq regulatory scores, the predictions Aobs and Aseq are 

combined through a weighted sum (Figure 3.2). The relative contribution is controlled by the 

tunable 𝛾seq parameter, with larger values placing more weight on the sequence-based 



 76 

predictions and smaller values emphasizing the observed tiles. We trained and evaluated the 

SHARPR-seq model on the Sharpr-MPRA scale-up experimental datasets, which assay 

approximately 31 tiled reporter expression measurements in 15,720 genomic regions for each 

combination of HepG2 and K562 cells with both minimal (minP) and SV40 promoters. 

SHARPR-seq predicts conserved regions and predicted TF binding 

As an initial benchmark, we compared the accuracy of SHARPR-seq and SHARPR in predicting 

evolutionarily conserved genomic regions [138] and transcription factor binding sites annotated 

by CENTIPEDE [139] (Figure 3.3A), where CENTIPEDE is a genome annotation that integrates 

multiple data types to predict locations of transcription factor binding sites in the human genome 

[139]. We used the area under the cumulative fraction overlap curves (AUC) as the evaluation 

metric (Methods).  

Across all cell types and promoters, SHARPR-seq showed improved AUC over SHARPR for a 

range of 𝛾seq values (Figure 3.3B). The extent of improvement varied across cell types and 

promoters, ranging from 0.01 to 0.05 (Figure 3.3B). The most substantial gains were seen in the 

K562 (SV40P) dataset, which had AUC increases of 0.03 and 0.05 for evolutionary conservation 

and CENTIPEDE binding sites compared to SHARPR, respectively. But in all cases, optimal 

performance was achieved using an intermediate value of 𝛾seq. Across the datasets, SHARPR-

seq (𝛾seq=0.4) increased AUC by 0.01 for predicting conserved bases and by 0.02 for predicting 

CENTIPEDE binding sites compared to SHARPR on average. Versions relying solely on tiling 

(𝛾seq=0), or sequence (𝛾seq=1) performed strictly worse than SHARPR-seq (𝛾seq=0.4), 

demonstrating the benefits of combining tiling and sequence data. Based on these results, we 

selected 𝛾seq=0.4 for subsequence analyses, as it yielded consistent AUC improvement over 

SHARPR across all cell types and promoters. 
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Top SHARPR-seq bases enrich for ERV1 repeat elements 

ERV1 (endogenous retroviral sequence 1) is an endogenous retroviral repeat element 

previously shown to be associated with driving gene expression, indicative of regulatory 

activation [88]. Prior analyses for SHARPR demonstrated enrichments of ERV1 elements 

amongst nucleotides with high activation scores [88]. Performing an equivalent analysis of 

ERV1 enrichment amongst top SHARPR-seq and SHARPR scores revealed that SHARPR-seq 

identified even higher ERV1 overlaps, with a 39% vs. 30% fraction at the highest binning of 

scores (quantile normalized bin corresponding to >6.5 for SHARPR scores and >3.8 for 

SHARPR-seq scores), respectively (Figure 3.4). This result provides further validation of the 

sensitivity of SHARPR-seq in pinpointing known activating repeat elements with known 

regulatory roles. 

SHARPR-seq assigns higher scores to sequence motifs compared to SHARPR 

Regulatory motifs represent sequence patterns in the genome driving context-specific gene 

regulation [68]. We compared scores assigned by SHARPR-seq and SHARPR using motif 

instances identified by the ENCODE regulatory motif set containing known and discovered 

motifs [140] (Methods). Examining quantile normalized mean scores aggregated across motifs, 

69.5% of ENCODE motifs received higher scores from SHARPR-seq than SHARPR (Figure 

3.5). This enrichment towards higher motif scores for SHARPR-seq compared to SHARPR is 

not surprising, as SHARPR-seq explicitly incorporates sequence information, and motifs directly 

represent DNA sequence patterns. 

 

Discussion 

We presented SHARPR-seq, an extension of the SHARPR approach for integrating DNA 

sequence predictions with high-resolution tiled reporter data to better map regulatory activity in 
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potential cis-regulatory regions. SHARPR-seq demonstrated improved performance over 

SHARPR across several evaluations. We showed SHARPR-seq provides (1) higher prediction 

accuracy for conserved regions and CENTIPEDE motifs, (2) greater enrichments for the ERV1 

repeat element amongst top activating scores, and (3) overall higher normalized regulatory 

scores for the majority of motifs in the ENCODE catalog. SHARPR-seq also allows tuning the 

relative contribution of sequence and tiling data through the 𝛾seq parameter. This enables 

studying their individual and joint contributions and provides a flexible framework for 

incorporating DNA sequence information into tiling-based MPRA assay designs.  

In its present formulation, SHARPR-seq only uses tiled reporter construct data (i.e., assay 

readouts and DNA sequences of the constructs) to provide its high-resolution predictions. This 

has the advantage of not depending on any external datasets or annotations, which may 

incorporate their own biases. However, only using DNA sequences contained within the 

constructs severely limits the context size of the sequence models that can be applied. Many of 

the most advanced sequence models for predicting gene regulation have context lengths 

exceeding the largest construct sizes currently available, such as the ENFORMER model [50] 

with its 200 kb receptive field. Since any biases in the sequence model predictions will 

propagate to SHARPR-seq, it is important for the model to be upgradable to the best sequence 

model available. Future work could involve leveraging larger sequence models trained on 

external sources, even if it means moving away from the simplicity of solely using reporter tiling 

data.  

This application of SHARPR-seq was limited to MPRA datasets with predefined tiled region 

designs, but SHARPR-seq’s model structure is compatible with any functional characterization 

assay that features a tiling-based design. This feature could become increasingly valuable as 

additional functional characterization assay technologies become available, such as the higher-

throughput STARR-seq [62] and assays that modify the genome directly, like CRISPR-based 
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functional characterization [2]. For instance, irregularly spaced tiles from STARR-seq 

experiments are compatible with SHARPR-seq when paired with a suitable sequence model 

that can accommodate diverse sequence lengths and is a possible avenue for future 

applications.  

Finally, in its current implementation, 𝛾seq is a hyperparameter that is set by maximizing an AUC 

heuristic for conservation and CENTIPEDE annotations. This heuristic may not be optimal for all 

datasets; for instance, some functional characterization datasets may be noisier, in which case 

relying on a stronger sequence “prior” could be beneficial. Future improvements could have 𝛾seq 

learned from data directly using alternative metrics, or with a hierarchical probabilistic model 

which estimates noise characteristics for each dataset to set 𝛾seq.  

In the context of other efforts to expand upon the Sharpr-MPRA approach, such as work by 

Wang et al., which has adapted Sharpr-MPRA to ATAC-STARR-seq assays [62], SHARPR-seq 

contributes to the state of the art by incorporating orthogonal data (specifically, DNA sequence) 

to Sharpr-MPRA through a novel multitask learning approach. While future work is needed to 

address current limitations and expand its applicability, SHARPR-seq provides a flexible 

modeling framework for integrating tiled functional assays with complementary genomic data 

sources. As new technologies emerge for interrogating the regulatory genome, we expect 

SHARPR-seq and related extensions to become increasingly important for localizing and 

interpreting genomic regions involved in the regulation of gene expression.  

Methods 

Sharpr-MPRA datasets 

We obtained the Sharpr-MPRA scale-up dataset containing raw counts and experimental design 

files from https://ernstlab.biolchem.ucla.edu/SHARPR/Scaleup_counts_sequences.zip. Details 

of experimental protocols and genomic site selection procedure of the Sharpr-MPRA dataset 
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are available at [88]. This dataset includes transfection and barcode sequencing experiments for 

HepG2 with minimal promoter (HepG2/minP), K562 with minimal promoter (K562/minP), HepG2 

with SV40 promoter (HepG2/SV40P) and K562 with SV40 promoter (K562/SV40P). Constructs 

with DNA counts < 5 were discarded. The observed experimental readouts Mobs were generated 

by taking the mean of log ratios across replicates 1 and 2. 

Sequence model tile predictions 

We used the DragoNN-MPRA DeepFactorizedModel [51] to generate the sequence-based tile 

predictions (Mseq). The pre-trained model was downloaded from kipoi [141]: 

https://kipoi.org/models/MPRA-DragoNN/DeepFactorizedModel. The known DNA sequence of 

each tile construct was provided as input to the pre-trained DragoNN model to generate 

sequence-based predictions of regulatory activity for that tile. Any sequences containing 

masked nucleotides (“N”) were excluded from analysis and treated as missing data.  

The SHARPR-seq model 

SHARPR-seq uses a multitask ridge regression model (Figure 3.1B) with the following objective 

function: 

 

where: 

● M is the 31×2 measurement matrix containing Mobs and Mseq column vectors, the 

observed and sequence predicted measurements. 

● D is the 31×59 design matrix, encapsulating the tiling design for each region and relating 

latent activity values to Mobs and Mseq. 
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● A is the 59×2 latent activity matrix, containing Aobs and Aseq column vectors representing 

the individual components of the SHARPR-seq scores. 

● 𝛌 is the regularization parameter. 

● || ⋅ ||F denotes the Frobenius norm. 

 

The regularization parameter 𝛌 was set to 100. The loss is minimized using coordinate descent. 

The trained model produces predictions based on measured tiling data Aobs and predictions 

based on the DNA sequence model Aseq. We compute a weighted mean of Aseq and Aobs 

controlled by the 𝛾seq parameter to get SHARPR-seq high-resolution activity predictions: 

 

Area under cumulative fraction overlap curve evaluations 

For consistency, we elected to do the same set of evaluations as the SHARPR paper [88]. We 

obtained SiPhy-Pi genome conservation annotations and CENTIPEDE elements for HepG2 and 

K562 from the SHARPR package, originally published at [138] and [139], respectively. To 

generate the cumulative overlap curves, we used the location of the absolute maximum position 

in each region and checked if it overlapped the annotations. We ranked each region by absolute 

maximum scores and computed a running average of annotation overlap fractions. The area 

under these curves (AUCs) was the evaluation metric for this analysis.  

ERV1 repeat element enrichments 

We obtained ERV1 repeat element enrichments from RepeatMasker [111]. For consistency with 

the SHARPR analysis, we computed corresponding values of SHARPR and SHARPR-seq 
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scores by quantile normalization. Using the same set of score bin thresholds in the SHARPR 

paper, for both SHARPR and SHARPR-seq, we computed the fraction of scores in a given 

score bin overlapping ERV1 repeat elements using the bedtools intersect command.  

Computing normalized mean motif scores 

We obtained the known and discovered ENCODE regulatory motif set from 

http://compbio.mit.edu/encode-motifs/matches.txt.gz [140]. We quantile normalized SHARPR-

seq and SHARPR scores across all regions per dataset to make them comparable. 

Normalization was done separately per each cell type/promoter combination. For ENCODE 

motif instances that overlapped with the tiled regions, we used SHARPR-seq and SHARPR 

normalized score values at the middle base on each motif. We then computed the mean 

normalized score for each motif by taking the mean of the normalized scores for each motif 

instance. 

Availability of data and materials 

SHARPR [88] was obtained from https://ernstlab.biolchem.ucla.edu/SHARPR. Overlaps are 

computed with bedtools [124] and pybedtools [125]. Machine learning pipelines implemented 

using scikit-learn [137]. DragoNN models [51] were downloaded and inferred using the kipoi 

package [141]. RepeatMasker [111] was obtained from the UCSC genome browser [114, 123]. 

We used seaborn [142]  and matplotlib [143] packages for plotting.  
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Figures 

 

Figure 3.1: Overview of the SHARPR-seq high-resolution activity prediction model. 

(A) Structure of the model. For each tiled region, we use the observed tiling data and sequence 

model tile predictions to train a multitask ridge regression model with two tasks, each focusing 
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on generating high-resolution activity predictions based on either the observed tiling data or the 

predictions based on the sequence model. The predictions based on the measured tiling data 

and the sequence model are then combined in a weighted sum to obtain the SHARPR-seq high-

resolution activity predictions. (B) Overview of key terms. The latent activity values are related 

to the observations through the design matrix D, which represents the tiling design for each 

region. We solve for Aobs and Aseq to get the individual components of the SHARPR-seq scores 

used in the weighted sum.  
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Figure 3.2: High-resolution regulatory activity predictions. 

High-resolution regulatory activity predictions in three representative tiled regions for SHARPR, 

SHARPR-seq with 𝛾seq=0.4, the observed component Aobs corresponding to 𝛾seq=0, and the 

sequence component Aseq corresponding to 𝛾seq=1. Tiled regions from the HepG2 (minP) 

dataset are shown. 
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Figure 3.3: SHARPR-seq fraction overlap curves and AUC evaluations. 

(A) Cumulative fraction overlap curves for SHARPR-seq (blue shaded lines) and SHARPR 

(black line) for the HepG2 SV40P dataset (Methods). Left panel: conserved element 

annotations. Right panel: CENTIPEDE motif annotations. (B) Performance of SHARPR-seq and 

SHARPR in predicting conserved and CENTIPEDE annotated bases at the base position with 

the absolute maximum score (absMax position) as a function of 𝛾seq. AUC refers to the area 

under the cumulative fraction overlap curve (Methods). Red line: SHARPR-seq performance as 

a function of 𝛾seq, black horizontal line: SHARPR performance.   
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Figure 3.4: Comparison of fraction of ERV1 repeat element instances. 

Comparison of fraction of ERV1 repeat element instances overlapping bases with given 

SHARPR (left axis) and corresponding SHARPR-seq (𝛾seq=0.4, right axis) scores. Scores from 

the HepG2 (minP) dataset are shown. 
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Figure 3.5: Comparison of mean normalized scores of sequence motifs within tiled 

regions. 

Comparison of mean normalized scores of sequence motifs within the tiled regions for SHARPR 

and SHARPR-seq (𝛾seq=0.4). Each point on the plot corresponds to a motif, with quantile 

normalized scores averaged over all motif instances. Percentage of motifs with mean 

normalized SHARPR-seq scores above mean normalized SHARPR scores, and vice versa, are 

annotated on the plot (69.5% and 30.5%, respectively). 
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Chapter 4. Concluding remarks 

Regulation of gene expression serves multiple essential roles in the functioning of every cell, 

including cellular development, differentiation, and homeostasis. As such, dysregulation of this 

complex system manifests as various human diseases, in line with the fact that the majority of 

disease-associated variants reside in the regulatory genome. However, characterization and 

interpretation of the regulatory elements that make up the regulatory genome remains a 

significant challenge.  

There is no single experimental assay or approach that can reveal all aspects of gene 

regulation. Biochemical data provides valuable cell-type-specific information but cannot causally 

link genomic regions to regulatory activity. DNA sequence can demarcate precise regions of 

transcription factor binding but, by itself, lacks biochemical context or cell type specificity. 

Experimental designs like tiled massively parallel reporter assays (MPRAs) enable regulatory 

dissection at higher resolution, but genomic coverage and cell type diversity remain limited. 

Only by combining complementary strengths of each data type can integrative methods 

assemble a more comprehensive landscape of the regulatory genome.  

With this aim, Chapter 2 presents ChromActivity, a computational framework integrating 

epigenomic data from over 100 cell types with functional characterization assays interrogating 

thousands of distinct genomic regions. By training individual models for each functional 

characterization assay and combining their predictions, ChromActivity generates genomewide 

annotations of discrete regulatory activity patterns (ChromScoreHMM) and continuous score 

tracks quantifying predicted regulatory activity (ChromScore). These annotations combine the 

genomic and cell type coverage of epigenome data with validation from functional 

characterization assays.  
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While Chapter 2 focuses on annotating broad sections of the genome in many cell types in 

relatively low resolution, Chapter 3 focuses on high-resolution dissection of candidate regulatory 

regions. To this end, Chapter 3 introduces SHARPR-seq, extending the SHARPR approach by 

integrating DNA sequence predictions with high-resolution tiled reporter data to map regulatory 

activity in potential cis-regulatory regions. Using a unique multitask learning approach, 

SHARPR-seq improved regulatory element localization by jointly training on dense tiling data 

and sequence-based predictions from a model trained on the same data.  

Each method provides multiple avenues for future work. For ChromActivity, expanding the set of 

functional screens used for training can improve the method's accuracy and generalizability 

across cell types. Additional datasets could also enable predicting repression, such as with 

CRISPR interference screens with attached activating domains. Another avenue is exploring 

dynamic weighting of experts, upweighting or downweighting experts based on their specialized 

genomic domains. For SHARPR-seq, future directions could include incorporating more 

advanced sequence models, expanding tiling datasets beyond MPRAs (such as STARR-seq or 

dense CRISPR interference screens), and extension into a hierarchical probabilistic model that 

automatically selects hyperparameter values based on noise characteristics of each dataset. 

There are also opportunities for integrating the methods themselves, like combining 

ChromActivity’s ChromScore tracks with SHARPR-seq’s high-resolution dissections. 

While we focused on the human regulatory genome, the application of these methods across 

diverse organisms could provide a productive avenue for future work. Additionally, besides 

biochemical assays, functional characterization assays, and DNA sequence, there are other 

emerging technologies for interrogating the regulatory genome. They include 3D conformation 

mapping assays, functional assays that combine multiple protocols (such as ATAC-STARR-

seq), and single-cell variants of many of the experimental approaches we have discussed. 

Extension of our methods to incorporate these emerging assay technologies could improve the 
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accuracy and resolution of our annotations. More broadly, this work emphasizes the continued 

need for integrative approaches for modeling gene regulation. In the absence of a single 

technology that can capture all aspects of gene regulation, integrative approaches that combine 

complementary data types will remain relevant for deciphering the complex regulatory programs 

orchestrating gene expression. 
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