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A dynamic gradient architecture generates brain activity states

Jesse A. Brown*,

Alex J. Lee,

Lorenzo Pasquini,

William W. Seeley

Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, 
USA

Abstract

The human brain exhibits a diverse yet constrained range of activity states. While these states can 

be faithfully represented in a low-dimensional latent space, our understanding of the constitutive 

functional anatomy is still evolving. Here we applied dimensionality reduction to task-free and 

task fMRI data to address whether latent dimensions reflect intrinsic systems and if so, how 

these systems may interact to generate different activity states. We find that each dimension 

represents a dynamic activity gradient, including a primary unipolar sensory-association gradient 

underlying the global signal. The gradients appear stable across individuals and cognitive states, 

while recapitulating key functional connectivity properties including anticorrelation, modularity, 

and regional hubness. We then use dynamical systems modeling to show that gradients causally 

interact via state-specific coupling parameters to create distinct brain activity patterns. Together, 

these findings indicate that a set of dynamic, intrinsic spatial gradients interact to determine the 

repertoire of possible brain activity states.

Keywords

Gradients; Functional connectivity; Dynamical systems; Dimensionality reduction; Global signal

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author. jesse.brown@ucsf.edu (J.A. Brown). 

Declaration of Competing Interest
The authors have no competing interests.

Credit authorship contribution statement
Jesse A. Brown: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Visualization, Writing – 
original draft, Writing – review & editing. Alex J. Lee: Data curation, Formal analysis, Investigation, Methodology, Software, 
Writing – review & editing. Lorenzo Pasquini: Conceptualization, Methodology, Writing – review & editing. William W. Seeley: 
Conceptualization, Funding acquisition, Resources, Writing – review & editing.

Data Availability
All code and processed data are available at https://github.com/jbrown81/gradients.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2022.119526.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2022 November 01.

Published in final edited form as:
Neuroimage. 2022 November 01; 261: 119526. doi:10.1016/j.neuroimage.2022.119526.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/jbrown81/gradients


1. Introduction

The brain is capable of reaching a diverse but constrained range of activity states (Allen 

et al., 2014; Betzel et al., 2016; Vidaurre et al., 2017; Pasquini et al., 2020; Lynn et al., 

2021). Whole-brain activity undergoes relatively minor reconfigurations between task-free 

and task-engaged conditions, shaped primarily by an intrinsic network architecture (Cole et 

al., 2014; Gratton et al., 2018). This suggests that a low-dimensional set of neuroanatomical 

systems may be involved in generating the repertoire of states (Glomb et al., 2019; Saggar et 

al., 2018; Shine et al., 2019). Recent work indicates that these dimensions reflect gradients 

of continuous spatial variation in regional functional connectivity (Haak et al., 2018; 

Margulies et al., 2016; Zhang et al., 2019) and cytoarchitecture (Burt et al., 2018; Paquola et 

al., 2019; Wang, 2020). These gradients capture both the major sensorimotor-to-association 

axis of cortical organization (Sydnor et al., 2021) and finer-grained delineations between 

subregions supporting distinct cognitive processes like in the anterior temporal lobe (Faber 

et al., 2020). While gradients appear to reflect regional heterogeneity in circuit properties 

that sculpt brain activity dynamics (Kong et al., 2021), it remains unclear how spatially fixed 

functional gradients can dynamically coordinate to generate distinct brain activity states.

This study addresses two key questions about spatial gradients. First, do functional gradients 

represent distinct anatomical systems, akin to different ascending projection pathways, 

or do they instead reflect epiphenomenal anatomical features lacking causal influence? 

Second, can multiple gradients interact to generate state-specific activity patterns? We 

address these questions by using dimensionality reduction to derive an intrinsic latent 

space where dimensions represent distinct, spatially fixed gradients whose amplitudes 

dynamically fluctuate. Our analysis strategy has two major components (Fig. 1). First, 

we derive the latent space and validate that it recapitulates key functional connectomic 

properties including the brain-wide global signal (Fox et al., 2009), anticorrelation between 

large-scale networks (Fox et al., 2005), the presence of discrete functional modules and 

hub regions (Sporns and Betzel, 2016), and correspondence with spatial gene expression 

patterns (Richiardi et al., 2015). Second, we use the latent space to investigate how gradients 

dynamically interact to generate specific activity and connectivity states, either in different 

individuals in the task-free state or in specific cognitive tasks from the Human Connectome 

Project (Barch et al., 2013).

Our dimensionality reduction approach differs from the conventional method for deriving 

functional connectivity gradients (Hong et al., 2020; Vos de Wael et al., 2020). By 

performing principal component analysis (PCA) directly on BOLD timeseries data, 

rather than on the functional connectivity matrix, we find both previously described 

functional gradients and importantly, a novel principal activity gradient. This gradient 

appears to underlie the global signal of brain activity and best matches the primary 

spatial gene expression component. We show that this expanded set of dynamic activity 

gradients represent intrinsic systems that are stable across individuals and task-free or 

task-engaged scanning conditions. We then use a dynamical systems model and perform 

simulations to demonstrate how this set of gradients can transiently couple into state-specific 

configurations, suggesting a novel brain mechanism for dynamically generating diverse 

activity and functional connectivity states.
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2. Materials and methods

2.1. Subjects and data

200 unrelated subjects were selected from the Human Connectome Project (HCP) 

1200 Subjects Data Release with available resting (task-free) and task fMRI data from 

a 3T MRI scanner (https://db.humanconnectome.org/data/projects/HCP_1200). Informed 

consent was obtained for each individual by the HCP consortium. The HCP complied 

with all relevant ethical regulations. This study agreed to the Open Access Data Use 

Terms (https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-

consortium-open-access-data-use-terms) and was exempt from the UCSF IRB because 

investigators could not readily ascertain the identities of the individuals to whom the 

data belonged. Task-free state scans were 14.4 minutes long with a repetition time (TR) 

of 720 ms, resulting in 1200 fMRI volumes per scan. We divided these subjects into 

100-subject discovery and validation datasets (56 female/44 male in the discovery dataset, 

mean age=28.9 years; 50 female/50 male in the validation dataset, mean age= 28.6 years). 

For task-free state fMRI data, we used the left-right phase encoded, minimally preprocessed 

scans with motion correction and FIX-ICA denoising. More detailed scanning parameters 

and preprocessing procedures have been described in detail elsewhere (Glasser et al., 2013). 

We used FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and AFNI (https://afni.nimh.nih.gov/) 

for additional fMRI preprocessing. The first 5 volumes for each fMRI scan were dropped to 

allow scanner stabilization. Scans were spatially downsampled to 2 mm3 spatial resolution 

in MNI152 standard space based on the nonlinear 6th generation template distributed with 

FSL. Scans were bandpass filtered in the 0.008-0.15Hz frequency range and then normalized 

in each voxel across time to have zero mean and a standard deviation of one. fMRI volumes 

were temporally concatenated for all subjects in the discovery or validation datasets (119500 

volumes each).

2.2. Latent space and spatial gradient derivation

We derived a brain activity latent space by performing PCA on the data matrix of 

119500 task-free fMRI volumes by 163049 gray matter voxels from cortex, subcortex, 

and cerebellum (Fig. 2A). This data matrix required a large amount of computer memory 

(145GB RAM), limiting the sample size to 100 subjects. In this latent space, each principal 

component represented a temporally orthogonal latent dimension and the entire space 

collectively encapsulated the full range of brain activity states present in this dataset. The 

voxel-wise component loadings (eigenvectors scaled by their corresponding eigenvalues) 

represented each voxel’s weight on that component, and the spatial map for each component 

is henceforth referred to as a gradient. The PCA scores represented the slope of each 

gradient at each timepoint, which we refer to as the gradient slope timeseries (Fig. 2B and 

Video 1). Trajectory plots were used to illustrate the temporal evolution of gradient slopes 

for two latent dimensions simultaneously.

A primary aim of this study was to assess if this latent space reflected intrinsic spatial 

gradients that were consistent across individuals and task conditions. We approached this 

by projecting each of the other fMRI datasets in this study – task-free validation dataset 

scans and task discovery/validation dataset scans – into the task-free discovery latent space. 
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The only case where we instead derived independent dataset-specific latent spaces was when 

assessing gradient spatial consistency across subjects and states.

2.3. Gradient analysis and reproducibility

Gradient analyses were made more computationally tractable by spatially downsampling the 

voxel-wise gradient maps. Maps were averaged within 273 regions of interest by combining 

a parcellation of 210 cortical regions and 36 subcortical regions from the Brainnetome 

atlas (Fan et al., 2016) (http://www.brainnetome.org/) and 27 cerebellar regions from the 

SUIT atlas (Diedrichsen, 2006) (http://www.diedrichsenlab.org/imaging/suit.htm). When 

measuring the variance explained in each region by each gradient, gradients were derived 

independently by running PCA on the [119500 × 273] or [119500 × 210] region mean 

BOLD timeseries. We measured the variance explained by each principal component to 

determine the relative effect size of each gradient on the BOLD signal. The polarity of each 

gradient was calculated as the percentage of the 273 regions that had positive or negative 

mean weights.

Gradient reproducibility across individuals and conditions was assessed by comparing 

the discovery dataset spatial gradient maps to independently derived validation dataset 

gradient maps. Here, PCA was independently run on the 119500 volumes from the 100 

validation subjects. Spatial gradient maps from the discovery and validation datasets were 

downsampled to 273-region average weight vectors which were then correlated with each 

other for the first 12 components. Procrustes alignment was used to align the [273 × 12] 

validation gradient weight matrix to the discovery data, after which spatial correlation was 

recalculated (Vos de Wael et al., 2020). This same procedure was used to compare gradient 

maps derived independently from the task fMRI discovery data (116100 volumes) to the 

task-free gradients. We assessed gradient spatial reliability by comparing the spatial gradient 

patterns derived from PCA of voxel-wise or region-wise timeseries using either: 1) 273 

regions from the Brainnetome and SUIT atlases, or 2) 232 regions, combining 200 cortical 

regions from the Schaefer 17 network atlas and 32 subcortical regions from the Melbourne 

atlas at scale 2 (Schaefer et al., 2018; Tian et al., 2020).

2.4. Timeseries analysis

Regional BOLD activity at a given timepoint could be calculated by multiplying the region’s 

weight on each gradient by the slope of the corresponding gradient (see Video 1). The 

formula for regional BOLD signal in latent space is:

BOLDi, t = ∑
k = 1

d
βi, kSk

where βi,k is the current region’s weight on a given gradient (PCA loading), S is the current 

timepoint’s gradient slope (PCA score) on a given dimension, k is the dimension number 

out of d total dimensions, i is the current region, and t is the current timepoint. The value of 

decomposing a region’s BOLD signal into its piecewise contributions from each gradient is 

to determine if certain gradients play an outsize role in causing a region to have particularly 
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high or low BOLD signal. We next discuss how functional connectivity relates to regional 

gradient weights and gradient slopes. The BOLD signal functional connectivity between 

two regions is typically measured by the correlation, which is the covariance divided by the 

product of the region’s standard deviations. In the PCA-derived latent space, the covariance 

between a pair of regions is:

covij =

∑t = 1
n

S1S1 ⋯ S1Sk
⋮ ⋱ ⋮

SkS1 ⋯ SkSk
∘

βi, 1βj, 1 ⋯ βi, 1βj, k
⋮ ⋱ ⋮

βi, kβj, 1 ⋯ βi, kβj, k
n

Where Sk,t is the gradient slope for latent dimension k at timepoint t, and β is the gradient 

weight for region i or j on gradient k. This decomposition of the BOLD covariance into 

the interactions between pairs of gradients is also valuable when determining if certain 

gradients make an especially strong contribution to functional connectivity. Higher-order 

regional interactions such as edge functional connectivity (Faskowitz et al., 2020) can also 

be decomposed in this fashion. Computing the correlation from the covariance requires the 

standard deviation, which is the square root of the variance. The variance for a region with 

a demeaned timeseries is calculated by multiplying the region’s weight on each gradient by 

the slope of the corresponding gradient at each timepoint, taking the square, and dividing by 

the number of timepoints:

σi2 =
∑t = 1

n ∑k = 1
d βi, kSk

2

n

σj2 =
∑t = 1

n ∑k = 1
d βj, kSk

2

n

Finally, the correlation between region i-region j is determined by:

corrij =
covij
σiσj

2.5. Task fMRI analysis

Preprocessed task fMRI data for the four tasks from the HCP were analyzed 

(working memory, motor, language, emotion) (https://db.humanconnectome.org/data/

projects/HCP_1200). We used left-right phase encoded scans. Several postprocessing steps 

were applied to the task fMRI data, which had not undergone FIX-ICA denoising. The 

first five scans were removed. Nuisance parameters were estimated for the six motion 

parameters, temporal derivatives, squares, the white matter timeseries extracted using a mask 

of the highest probability cortical white matter according to the FSL tissue prior mask, and 

the CSF timeseries extracted using a mask in the central portion of the lateral ventricles 

(Satterthwaite et al., 2013). Scans were bandpass filtered in the 0.008-0.15Hz frequency 

range to match the task-free state data. The 26 nuisance parameters were also bandpass 
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filtered and regressed out the data. Global signal regression was not performed for the 

main dataset and was only used for a supplementary analysis. Scans were then voxel-wise 

normalized across time to a mean of zero and a standard deviation of one. These images 

were projected into the task-free PCA space from the discovery dataset.

When determining task-specific activation patterns, the following regressors were used for 

each task: for working memory, the 2-back and 0-back conditions, merging blocks from the 

faces, places, tools and body parts stimulus blocks (Barch et al., 2013); for the motor task, 

the active condition combining the right hand, left hand, right foot, left foot, and tongue 

blocks, and the fixation condition; for language, the story and math conditions; and for 

emotion, the faces and shapes conditions. Task condition block regressors were convolved 

with a hemodynamic response function using the ‘spm_get_bf’ function in SPM12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/).

2.6. Genetic spatial correlation

We compared each gradient map to Allen Human Brain spatial gene expression patterns 

using the ‘abagen’ package (https://github.com/rmarkello/abagen) (Arnatkevicĭūbtė et al., 

2019; Hawrylycz et al., 2012). We used default options including for donors (all), tolerance 

(2 mm), collapsing across probes (diff_stability), and intensity-based filtering threshold 

(0.5). Expression data was available for 261 out 273 Brainnetome and SUIT regions from 

both hemispheres for 15655 genes. All non-cortical regions were eliminated because of 

substantial differences in subcortical expression values, which would hamper brain-wide 

spatial correlation estimates, leaving 202 regions. Data-driven filtering was used to remove 

regions with outlying expression values. Using K-means clustering we identified an outlying 

cluster with 6 regions, which were removed to give the final [15655 × 196] matrix of 

expression values. For each of the first six gradients in the discovery or validation datasets, 

we calculated the spatial Pearson correlation between each 196-region gene expression 

vector and the 196-region gradient weight vector. We defined the statistical significance 

threshold based on two criteria. First, the spatial correlation had to survive a Bonferroni 

corrected threshold of p < 0.05 / 15655 genes / 6 gradients = 5.32 × 10−7 for at least 

one gradient in both the discovery and validation datasets. Second, the spatial correlation 

strength had to significantly exceed that of 5000 simulated surrogate “null” gradient maps 

with preserved spatial autocorrelation (Burt et al., 2020). These surrogate gradient maps 

were estimated using BrainSMASH (https://brainsmash.readthedocs.io/en/latest/). We used 

the Euclidean distance between the 273 regions. The surrogate p-value was determined 

by measuring the fraction of trials out of 5000 in which a surrogate gradient map had a 

stronger correlation to a given gene expression map than did the true gradient map. A false 

discovery rate-corrected p < 0.05 in both the discovery and validation datasets was required 

for determining significance. Finally, the principal component of spatial gene expression was 

derived by performing PCA on the [15655 × 196] regional expression matrix and obtaining 

the PCA scores for each of the 196 regions on the first component.

2.7. Latent space trajectory analysis

Here we attempt to demonstrate a link between the BOLD timeseries and latent space 

representations of regional BOLD activity, so that regional BOLD activity and covariance 
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can be visualized as the magnitude and direction of a latent space trajectory. We focus 

this analysis on a two-dimensional latent space but this can be extended to n dimensions. 

It can be shown that the formula for regional BOLD activity at a given timepoint is 

mathematically equivalent to a latent activity trajectory’s current position in latent space. 

Given that regional BOLD activity is equal to a region’s weight on two gradients multiplied 

by the current slopes of those gradients (Fig. 2 and Video 1), the region’s BOLD signal 

at each timepoint can be visualized for two dimensions of latent space as an “activity 

field” (Results, Gradient basis for functional modularity and hubness). A region’s BOLD 

activity at a specific timepoint is mathematically equivalent to the (x,y) position of the latent 

trajectory in the regional activity field. In this field, an optimal trajectory direction exists that 

will maximize this region’s BOLD activity relative to all other regions. We next extend this 

approach to visualize the BOLD covariance of two regions, i.e. the functional connectivity. 

When considering two regions, their covariance at a given timepoint – their instantaneous 

covariance – is simply the product of their BOLD signals at that timepoint. This can be 

represented in latent space as the element-wise product of the two regional activity fields. 

In this case, the region A-region B BOLD covariance is mathematically equivalent to the 

(x,y) position of the latent trajectory in the regional “covariation field”. Here, the optimal 

trajectory direction will maximize the covariance of these two regions relative to all other 

pairs of regions. The covariance across a scan can be measured by taking the sum of the 

trajectory locations for each timepoint on the covariation field, and dividing by the total 

number of timepoints. The correlation coefficient can be derived by dividing the covariance 

by the product of the standard deviations for each regional BOLD signal, where standard 

deviation in latent space is equivalent to the mean trajectory width along a given dimension. 

This approach was subsequently used to investigate functional modularity and regional hub 

properties.

2.8. Functional modularity and regional hubness

In the two-dimensional latent space, we computed the optimal trajectory direction for each 

region, which had angles between 0°−360°. Based on our hypothesis that the angular 

distribution of regions in this space would correspond to functional modularity, we next 

assigned regions to modules using the conventional approach (Rubinov and Sporns, 2010). 

The task-free functional connectivity matrix was derived for the discovery dataset by 1) 

reconstructing each region’s timeseries based on Gradient 2 and Gradient 3 (see Timeseries 

analysis) and 2) computing the pairwise Pearson correlations. Graph theory analyses 

were run using the Brain Connectivity Toolbox (BCT; https://sites.google.com/site/bctnet/). 

Networks were thresholded to keep the strongest 10% of edges, similar to other studies 

of functional network modularity and hub properties (Power et al., 2011; Bertolero et 

al., 2015). Modularity was determined using the Louvain algorithm (Blondel et al., 2008) 

as implemented in BCT, running 1000 iterations with the default parameters, choosing 

the partition that maximized the Q value. We examined two network properties related 

to modularity and hubness: within-module degree Z-score and participation coefficient 

(Guimerà and Nunes Amaral, 2005). Within-module Z-score is commonly used to identify 

provincial regions, which connect primarily to regions in the same module, while 

participation coefficient is used to designate connector regions that link to regions in 

multiple modules (Power et al., 2013). We defined regions in 85th percentile of participation 
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coefficient as connector regions and regions in the 85th percentile of within-module degree 

Z-score as provincial regions, similar to previous approaches (Gordon et al., 2018). 82/273 

regions were identified as provincial or connector regions and the remainder were labeled 

as ’other’. Each region’s neighbors were identified as the top 10 most highly functionally 

correlated regions.

We statistically compared the angular position of different regions using the Watson-

Williams test (Berens, 2009). This test is a circular analogue of the two-sample t-test and 

assesses whether the mean directions of two groups are identical or not. The mean angle to 

neighboring regions was compared amongst provincial regions, connector regions, and the 

remaining non-provincial/connector regions.

2.9. Differential equation modeling

We modeled the gradient temporal dynamics with differential equations describing the 

continuous influence of each activity gradient on one another, using a data-driven strategy 

to estimate the coupling parameters between gradients (Brunton et al., 2016). We first 

focused on the task-free fMRI data. For each fMRI timepoint, we used the gradient slope 

timeseries (g) to estimate the first and second temporal derivatives of the slope timeseries 

(g’, measuring the rate of the change in the gradient-associated BOLD signal, and g”). 

The derivatives were calculated using the ‘gradient’ function in MATLAB. We then used a 

linear regression model for each of the first six gradients to estimate gradient slope second 

derivative as a function of all gradients’ slopes and slope first derivatives. The parameter 

estimates (which we henceforth refer to as coupling parameters) for the 13 terms from each 

regression - the slope and slope first derivative terms for each gradient and an intercept - 

were then used to define a system of six differential equations:

G1′′ = β1, 0 + βG1, 1G1 + βG1′, 1G1′ + βG2, 1G2 + βG2′, 1G2′ + … + βG6, 1G6 + βG6′, 1G6′
G2′′ = β2, 0 + βG1, 2G1 + βG1′, 2G1′ + βG2, 2G2 + βG2′, 2G2′ + … + βG6, 2G9 + βG6′, 2G6′
…
G6′′ = β6, 0 + βG1, 6G1 + βG1′, 6G1′ + βG2, 6G2 + βG2′, 6G2′ + … + βG6, 6G6 + βG6′, 6G6′

Gradient timeseries simulations were performed using the system of differential equations 

for gradients 1-6. This system of equations was solved numerically using the ‘ode45’ 

function in MATLAB. We performed three sets of simulations: 1) task-free, using group 

level coupling parameters, 2) task-free, using individual subject coupling parameters, and 

3) task-specific, using group level task coupling parameters. To initiate the task-free group 

level simulations, we randomly selected 1000 timepoints from the task-free state scans in 

the discovery dataset. For each of these timepoints, each gradient’s slope and first derivative 

were used as the initial conditions to solve the differential equations. We then simulated 

the gradient slope timeseries for 200 future timepoints, equivalent to 2.4 minutes. The [6 × 

200] gradient timeseries were matrix multiplied by the [273 × 6] gradient weights to obtain 

[273 × 200] region timeseries, from which [273 × 273] functional connectivity matrices 

were computed. These 1000 matrices were averaged to produce the simulated functional 

connectivity (FC) matrix. For the actual data, the functional connectivity matrices were 

derived from the six gradients’ timeseries.
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To assess individual differences in task-free functional connectivity, each subject’s task-free 

coupling parameters were individually calculated from their [6 × 1195] gradient timeseries. 

Here we initialized each simulation with identical initial conditions to hold this factor 

constant across subjects, then simulated the gradient slope timeseries for 200 timepoints. 

With the simulated gradient timeseries, we derived the region timeseries and the resulting 

functional connectivity matrix. We assessed the simulation accuracy in two ways: first, 

by comparing the simulated FC matrices to each subject’s actual FC matrix, derived 

from the six-dimensional gradient timeseries, using Pearson correlation; and second, by 

comparing the simulated FC-derived modular community membership to each subject’s 

actual modularity using the Rand index (Rand, 1971).

When simulating task fMRI gradient timeseries, we first labeled volumes in each 

task as occurring during the active task condition (Working memory: 2-back; Motor: 

active; Language: story; Emotion: faces) or baseline task condition (Working memory: 

0-back; Motor: fixation; Language: math; Emotion: shapes) when the HRF-convolved task 

waveform was greater than 0.5. Group-level coupling parameters were calculated for each 

condition from the discovery dataset scans. Simulations for each of these eight conditions 

were performed using the same set of initial conditions from the 1000 randomly selected 

timepoints from the task-free scans. The simulated gradient timeseries for each condition 

were used to derive simulated regional BOLD timeseries. Simulated task activation maps 

were computed by subtracting the average region BOLD value for the active task condition 

minus the baseline task condition. FC matrices were computed for each condition. The 

resultant activation maps and functional connectivity matrices were compared to the actual 

activation maps and matrices from the validation dataset. We compared the simulated 

dynamic activity for each active task condition by subtracting the simulated task-free FC 

matrix from each simulated task FC matrix . This resulted in four FC matrices: Working 

memory 2-back vs. task-free, Motor active vs. task-free, Language story vs. task-free, 

and Emotion faces vs. task-free. Each of these contrasts was compared to the actual 

FC subtraction matrices, e.g. actual Working memory 2-back vs. actual task-free. We 

finally estimated the specificity of the simulated activity patterns by computing the partial 

correlation of the simulated and actual FC matrices for each task, controlling for the actual 

FC in the other three task conditions.

3. Results

3.1. Low-dimensional brain activity latent space

We first evaluated whether the brain activity latent space was able to explain the majority 

of the variation in BOLD activity with a small number of dimensions. When reconstructing 

each BOLD timeseries for 210 cortical brain regions, the first six components explained 

64.8% of BOLD activity variance and 59.5% when including subcortical and cerebellar 

regions (Fig. 3A). Component 1 explained 35.8% of the brain-wide BOLD signal variance, 

4.6 times more than the 7.8% variance explained by component 2. Across individual 

subjects, the first six components explained an average of 63.7% of variance in cortical 

regions (mean=63.7% ± 8.1%, range: 39.4% - 79.8%). For comparison, we derived 

functional connectivity components (gradients) from the group-level functional connectivity 
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matrix using PCA and found that they explained more variance with fewer components 

(48% with one component, 89% with six components) than the BOLD timeseries PCA 

components, similar to previous studies (Zhang et al., 2019; Hong et al., 2020). This was 

likely due to a combination of three factors: many fewer observations (273 vs. 119,500), 

static versus dynamic data, and group-averaged versus individual data. Here, our subsequent 

analysis focused on the first six BOLD activity latent dimensions and their associated 

gradient maps, based on the criterion that each of these components explained at least 3% 

of the total variance and in line with other studies of low-dimensional brain activity and 

functional connectivity (Shine et al., 2019; Margulies et al., 2016).

The polarity of regional “positive” versus “negative” weights on a gradient was arbitrary, 

signifying only whether regions were correlated or anti-correlated with each other on that 

gradient. The spatial weights for Gradient 1 were positive across 98.9% of the gray matter 

(Fig. 3B)” albeit with topographically varied weights that were highest in the primary 

somatomotor, visual, and auditory cortices. The gradient slope timeseries associated with 

this dimension had a near-perfect correlation with the global gray matter signal (r = 0.99, p < 

0.00001), a major influence on the estimated strength of functional connectivity (Fox et al., 

2009). Gradient 1 was the only “unipolar” gradient, as no other gradient had a ratio of more 

than 1.43 times as many voxels (59%) with positive versus negative weights. We ensured 

that this unipolar component was not a statistical artifact by voxel-wise demeaning BOLD 

activity across time before PCA. Crucially, Gradient 1 was not apparent when global signal 

regression was performed before BOLD timeseries PCA (Supplementary Fig. S1A).

The activity gradients demonstrated both similarities and key differences with the set of 

functional connectivity gradients described by Margulies and colleagues (referred to as 

FCG1-FCG5) (Margulies et al., 2016). The strongest spatial matches between the known 

functional connectivity gradients and the activity gradients reported here were: FCG1/

Gradient 2, r = 0.93; FCG2/Gradient 4, r = 0.83; FCG3/Gradient 3, r = 0.93; and FCG4/

Gradient 5, r = 0.79 (all p < 0.00001). Gradient 1′s strongest spatial match was to FCG1, 

though with a substantially weaker spatial correlation (r = 0.61) and without FCG1′s 

bipolar distribution of regional gradient weights. Thus, the activity gradients had strong 

correspondence with canonical functional connectivity gradients, with Gradient 1 being an 

important exception.

Gradient 2′s strong match with FCG1, the principal functional connectivity gradient 

(Margulies et al., 2016), indicated that this sensory-to-cognitive system is equally apparent 

when performing dimensionality reduction on continuous BOLD timeseries data. When 

measuring the mean weight in seven canonical functional brain networks (Yeo et al., 

2011), Gradient 2′s most positive weights were in areas of the default mode network and 

frontoparietal network, while the most negative weights were in somatomotor, visual, and 

ventral attention networks (Fig. 3B). Dimension 3 resembled a task-positive (frontoparietal) 

to task-negative (default mode) gradient. The subsequent dimensions included oppositions 

between specific sensory modalities like the visual and somatomotor networks (Gradient 4), 

differential involvement of sub-components of larger super-systems like the default mode 

network (Gradients 2, 3, and 6) (Andrews-Hanna et al., 2010), and lateralized activity 

gradients (Gradient 6, Gradient 7 and 11 in Supplementary Fig. S2).
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Gradient spatial patterns were also assessed in the cerebellum and subcortical regions. 

The cerebellar aspect of Gradient 2 and Gradient 3 (Supplementary Fig. S3) had strong 

correspondence with the two primary cerebellar functional connectivity gradients defined 

by Guell and colleagues (Guell 1/Gradient 2, r = 0.90; Guell 2/Gradient 3, r = 0.92; 

all p < 0.00001) (Guell et al., 2018). Gradient 2 spanned from cerebellar areas involved 

in transmodal (Crus II) to primary (lobule VIIIa) function, while Gradient 3 separated 

task-positive (lobule IX) and task-negative (lobule VIIb) associated cerebellar areas. The 

subcortical spatial patterns for Gradient 3 and Gradient 5 had moderate similarity to the 

subcortical functional connectivity gradient pattern used to derive the Melbourne subcortex 

atlas of the thalamus, basal ganglia, hippocampus, and amygdala (Tian et al., 2020) 

(Melbourne 1/Gradient 3, r = 0.69; Melbourne 1/Gradient 5, r = 0.72; all p < 0.00001). Thus, 

while the activity gradients explained less BOLD signal variance in subcortical/cerebellar 

regions than in cortical regions, regional gradient profiles were sufficient to demarcate 

known functional subdivisions.

We determined gradient reproducibility based on three criteria. First, maps were highly 

reproducible in the validation dataset. For the first three components from the discovery 

dataset, the spatial correlation with the corresponding gradient in the validation dataset was 

high (r = 0.996, r = 0.994, r = 0.987, all p < 0.00001). The first 12 gradient maps in the 

discovery dataset had a median spatial correlation of r = 0.99 (median p < 0.00001) to their 

best matched gradient in the validation dataset after Procrustes alignment (Fig. 4B). Second, 

we tested the evidence that the spatial gradient patterns were “intrinsic” and stable across 

cognitive states. The first 12 gradient maps in the task fMRI-derived latent space had a 

median spatial correlation of r = 0.89 (median p < 0.00001) to their best matched gradient 

in the task-free latent space after Procrustes alignment (Fig. 4C). When deriving gradient 

maps from each of the four tasks separately, the median spatial correlation was r = 0.80 

(median p < 0.00001) to the best matched task-free gradients after Procrustes alignment, 

with the best match always being the correspondingly numbered gradient (Supplementary 

Fig. S4). Third, we assessed the spatial reliability of activity gradient maps when derived 

from voxel-wise or region-wise timeseries data. Gradient spatial patterns had high reliability 

for the first four components (r = 0.999, r = 0.992, r = 0.989, r = 0.969, all p < 0.00001) and 

moderate reliability for subsequent components (Supplementary Fig. S1B). A supplementary 

analysis with an alternative regional atlas found even higher correspondence between 

gradients derived from voxel-wise or region-wise BOLD timeseries data (Supplementary 

Fig. S1C). Overall, we found that by performing dimensionality reduction on BOLD 

time-series data, we could detect a set of activity gradients including both the canonical 

functional connectivity gradients and the unipolar Gradient 1 which explained most of the 

variance in brain activity. The gradients’ spatial consistency across individuals, task-free or 

task-engaged states, and voxel or region-based timeseries suggests that they reflect intrinsic 

anatomical systems of brain functional organization.

3.2. Correspondence with spatial gene expression patterns

To assess the biological composition of each activity gradient, we compared each gradient’s 

spatial similarity with genetic expression maps using the 15,655 genes from the Allen 

Human Brain Atlas (Methods, Genetic spatial correlation). While numerous relationships 
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between structural or functional gradients and spatial gene expression patterns have been 

established (Burt et al., 2018; Fulcher et al., 2019; Vogel et al., 2020; Shafiei et al., 2020; 

Huntenburg et al., 2021), we sought to determine how strongly each of the activity gradients 

defined here corresponded to gene expression patterns. Across the first six gradients, 1263 

genes showed significant spatial correlations with at least one gradient, with correlation 

coefficients ranging between r = 0.35-0.77 (Supplementary Fig. S5A). The most striking 

correspondences were with Gradient 1, for which 1007 genes were significantly correlated. 

The most significant positive relationships between gene expression and Gradient 1 were 

SEMA7A (discovery/validation mean r = 0.73), SCN1B (r = 0.72), ASB13 (r = 0.72), ANK1 
(r = 0.71), and SCN1A (r = 0.71), while the most negative relationships were KCNG1 (r 

= −0.77), ASCL2 (r = −0.74), ANKRD6 (r = −0.71), and PYDC1 (r = −0.71). Because 

such a large number of genes exhibited strong positive or negative spatial correlations 

with Gradient 1, we tested for a potential link to the primary spatial component of 

genetic expression variability, which is known to stratify sensory and association areas 

(Burt et al., 2018). There was a significant spatial correlation between Gradient 1 and 

the principal spatial component of gene expression (r = 0.70; Supplementary Fig. S5B), 

for which each of the aforementioned individual genes were strongly loaded (all loading 

absolute Z scores > 3). This indicated that the predominant sources of variability in BOLD 

activity and spatial gene expression are strongly linked. Substantially fewer genes were 

significantly correlated with the remaining gradients. For gradients 2-6, the number of 

significantly correlated genes was: Gradient 2: 4, Gradient 3: 0, Gradient 4: 242, Gradient 

5: 0, Gradient 6: 10 (Supplementary Fig. S5A and Supplementary Data). The strongest 

gene/gradient relationships for Gradient 4 were NTNG1 (r = 0.61), VPS51 (r = 0.59), TPI1 
(r = −0.59), AKAP8 (r = −0.59), and PMPCB (r = −0.58). Among the strongest other 

gene/gradient relationships was CARTPT on Gradient 2 (r = 0.55). Top genes associated 

with activity gradients were frequently linked to functional and structural properties likely 

to influence brain-wide activity patterns including sodium and potassium channels (e.g. 

SCN1A, SCN1B, and KCNG1 on Gradient 1), excitation/inhibition balance (Brackenbury et 

al., 2013), thalamocortical connectivity (Carcea et al., 2014), and anatomical morphogenesis 

(Tsunemoto et al., 2018).

3.3. Gradient basis for functional modularity and hubness

We next characterized how interactions between multiple gradients reflect two key 

functional connectivity properties – modularity and hubness – and how individual 

differences in multi-gradient interactions give rise to different activity and connectivity 

patterns. For illustrative purposes, we focused on two example regions, the anterior cingulate 

cortex (ACC) and middle frontal gyrus (MFG), which belong to dissociable functional 

networks (Seeley et al., 2007). We focused on Gradient 2 and 3 (Fig. 5A), the first 

two bipolar gradients, to demonstrate how modularity reflects the spacing of regions 

along multiple gradients. We found that when brain activity was rendered as a latent 

space trajectory (Methods, Latent space trajectory analysis and Functional modularity 

and regional hubness), specific latent space trajectory directions maximized either MFG 

BOLD activity, ACC BOLD activity, or MFG-ACC functional connectivity (Fig. 5B). The 

ACC’s activity was maximized by a mostly downward trajectory (Fig. 5B, top), requiring 

engagement of Gradient 3, while the MFG’s activity was maximized by a down-right 
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trajectory (Fig. 5B, bottom) engaging both Gradients 2 and 3. MFG-ACC functional 

connectivity was maximized by a trajectory that bisected the angle for maximizing ACC 

or MFG activity. We confirmed that the individual subjects with the most positive or 

negative ACC-MFG functional connectivity had latent trajectories that were most aligned 

with or most orthogonal to the optimal covariation angle (Fig. 5B). This illustrates that 

specific combinations of engagement in each gradient, which are reflected by specific latent 

trajectory directions, are needed to maximize activity in a given region or the connectivity 

between two regions.

The existence of continuous spatial activity gradients may appear to be at odds with 

the presence of discrete modular brain networks, a major principle of brain functional 

organization (Sporns and Betzel, 2016). We therefore attempted to reconcile the gradient and 

modular perspectives by testing the hypothesis that non-uniform spacing of regions along a 

gradient would recapitulate modular boundaries. We determined the optimal latent trajectory 

direction in the two-dimensional latent space for maximizing BOLD activity in each brain 

region. The trajectory angles fully spanned the 360° of the latent space (Fig. 5C). Regions 

clustered with their contralateral homologues and other regions belonging to the same 

functional connectivity network, while regions that were diametrically opposed belonged to 

canonically anti-correlated networks. Based on this observation, we expected that functional 

connectivity modules derived from the functional connectome would correspond well with 

different angular ranges in latent space. We found that region module membership from 

the functional connectome corresponded exactly to the sequence of regions as grouped by 

optimal activity angle (Fig. 5C, middle). Consequently, provincial regions and connector 

regions were found to have different spacing to their neighboring regions. Provincial 

regions were significantly closer to their most strongly connected neighbors than other non-

connector regions (angle for provincial regions: mean=1.7°±1.5°; other regions: mean=3.1°

±2.8°; p < 0.00001; Fig. 5D). Other non-connector regions in turn showed smaller angles 

to their neighbors than connector regions (connector regions: mean=3.6°±2.8°; p = 2.3 × 

10−4). Thus, the presence of modularity and hub regions appears to be consistent with the 

non-uniform spacing of regions along gradients. Different latent trajectories reflect specific 

between-gradient coupling patterns which drive the differential activity of specific regions 

and modules.

3.4. Gradient coupling generates different brain activity states

Based on the observation that specific gradient engagement patterns reflect the activity and 

functional connectivity of specific regions and networks, we hypothesized that a generative 

model should be able to simulate gradient dynamic activity during different FC states. This 

motivated our use of a dynamical systems model that uses differential equations to describe 

how each gradient’s activity (i.e. slope) changes as a function of its current activity level and 

influence from other gradients’ activity levels (Fig. 6A) (Breakspear, 2017). Specifically, 

we used a coupled system of second-order differential equations to model the activity of 

gradients 1-6. Using this model, we tested whether specific gradient coupling parameters 

were sufficient to produce either task-free or task-specific FC patterns. We first estimated 

the coupling parameters – a measurement of how much influence gradients had on one 

another – in the task-free data. Each gradient’s second temporal derivative (g”) had a strong 
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negative relationship with its own slope (g, mean β=−0.06±0.006, mean t=−242.6±14.8, 

p < 0.00001), as is characteristic of an oscillating signal. In addition, all six gradients 

were significantly influenced by the slope of Gradient 1 (mean absolute t=17.4, p < 

0.00001; Fig. 6B, column 2) and the first derivative of Gradients 1-4 (g’, mean absolute 

t=19.4/18.8/17.7/23.5, p < 0.00001; Fig. 6B, columns 3/5/7/9). This demonstrated that a 

given gradient’s rate of change is dependent on both its own level of engagement and the 

rate of change in other specific gradients. Gradient 1 had the strongest collective influence 

on the ongoing activity of each gradient.

In the next step, we used these coupling parameters in our dynamical systems model 

to simulate the timeseries for gradients 1-6 (Fig. 6A). The dynamical model accuracy 

was evaluated with two analyses. First, we compared the real and simulated latent space 

trajectories from time t to t+1 for Gradient 1 and Gradient 2. We found that the simulated 

trajectories reproduced the two most salient aspects of the actual latent trajectories: 

counterclockwise flow and larger magnitude changes further from the origin (Fig. 6C). 

This captured the typical sequence of activity flow observed in the actual BOLD data: 1) 

a global signal peak, 2) activity increases in cortical association areas and decreases in 

primary cortical areas, 3) a global signal trough, and 4) activity increases in primary cortical 

areas and decreases in cortical association areas. Importantly, the success in predicting 

the magnitude of change in one gradient based on the level of engagement of another 

gradient suggests that the gradients exhibit mutual causal influence, in the statistical sense of 

causality where causes precede and help predict their effects (Seth et al., 2015).

In the second analysis, we used individual coupling parameters derived from each subject’s 

task-free scan to assess whether a simulation with those parameters was sufficient to 

“reconstruct” that subject’s actual FC pattern. As an example, we compared the simulations 

for two subjects (Fig. 7A). The different coupling parameters yielded distinctly different FC 

matrices that accurately matched the subject’s actual FC patterns. Among the modularity 

differences that the model captured was a more widespread default mode network in Subject 

2, indicating that different gradient mixtures were sufficient to produce unique network 

topographies. Overall, each subject’s actual FC was significantly more similar to their 

own simulated FC than to simulated FC from the remaining subjects (t=18.93, p = 3.12 

× 10−77; Fig. 7B), as was also the case for modularity (t=8.05, p = 1.02 × 10−15). This 

provided evidence that a dynamical model with a set of fixed spatial gradients and specific 

coupling parameters can generate diverse patterns of whole-brain functional connectivity 

and modularity.

Finally, we hypothesized that specific gradient coupling modes would be required to induce 

task-specific activation and functional connectivity patterns. We tested this by performing 

task-specific simulations of fMRI activity timeseries, using differential equations with task-

specific coupling parameters. We found that each simulated task activation contrast map 

was significantly spatially correlated with the actual task activity contrast maps derived 

with a general linear model (working memory r = 0.75; motor r = 0.67; language r = 

0.86; emotional faces r = 0.55; all p < 0.00001). The simulated functional connectivity 

matrix generated from state-matched coupling parameters was always most similar to the 

actual functional connectivity matrix from the matched task condition (partial correlations: 
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working memory, simulated vs. actual functional connectivity matrix r = 0.59; motor r = 

0.72; language r = 0.83; emotional faces r = 0.62; all p < 0.00001; Fig. 8A/B). This set 

of experiments showed that differential equations with state-specific coupling parameters 

captured the most salient aspects of state-specific brain activity including the spatial 

activation patterns and the dynamics of the task activity timeseries that result in distinct 

functional connectivity patterns.

4. Discussion

This study contributes to understanding the functional-anatomical basis of low-dimensional 

brain activity. By performing dimensionality reduction on fMRI BOLD timeseries data 

rather than a static functional connectivity matrix, we derived a set of spatial activity 

gradients that dynamically oscillate in time. This approach revealed that the primary 

dimension of brain activity represents a novel unipolar spatial gradient (“Gradient 1”) 

most strongly weighted in unimodal cortical areas. This gradient explained five times more 

variance than any other gradient, appeared to underlie the global signal, had the strongest 

correspondence with the principal spatial component of gene expression, and exerted the 

strongest influence on the dynamic activity of the other gradients. We then provided 

evidence that these activity gradients appear to be intrinsic. The same spatial gradients 

were identified in a validation dataset and in task fMRI data. Furthermore, we were able 

to generate plausible task-specific activation patterns with simulations where these intrinsic 

gradients adopted task-specific configurations. Finally, we used a dynamical systems model 

to understand how gradient interactions can generate different brain activity states. We found 

that coupling parameters determine the level of influence that gradients have on one another. 

A dynamical model with state-specific coupling parameters yielded accurate simulations of 

brain activity and functional connectivity in different individuals during the task-free state 

and during different tasks.

We performed several confirmatory analyses showing that this set of gradients are consistent 

with core functional connectomic phenomena. First, the global signal was apparent, driven 

by unipolar Gradient 1, as was strong anticorrelation between “task-positive” and “task-

negative” brain networks (Fox et al., 2005), supported by the subsequent bipolar gradients. 

Second, these activity gradients had specific correspondences with known functional 

connectivity gradients (Margulies et al., 2016). Third, regions were spaced non-uniformly 

along gradients, resulting in functional modularity and the presence of hub regions (Sporns 

and Betzel, 2016). Fourth, gradients had strong spatial correlations with spatial gene 

expression patterns (Richiardi et al., 2015). Thus, gradients and functional networks may 

be considered as alternative representations of the same underlying brain activity.

4.1. Global gradients dynamically fluctuate

The primary activity gradient had a unipolar spatial pattern and an activity timeseries 

that mirrored the global signal of brain activity. The global signal is a source of ongoing 

controversy in fMRI literature, appearing to have a neuronal basis (Turchi et al., 2018), 

relating to individual differences in vigilance (Liu et al., 2017) and behavior (Uddin, 2020), 

but also associating with respiration or head motion (Chang and Glover, 2009; Power et al., 
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2014). We used ICA-FIX denoised HCP fMRI data to minimize the impact of non-neural 

signals including respiration (Power et al., 2017; Glasser et al., 2019). We found that this 

gradient had strongest involvement of unimodal visual, somatomotor, and auditory areas, 

consistent with previous reports that the global signal has a heterogenous spatial topography 

(Liu et al., 2018b; Yang et al., 2017; Li et al., 2019; Orban et al., 2020). The unipolar 

nature of Gradient 1 is a likely reason why it has not previously been detected with 

conventional gradient discovery methods. Gradient 1 acts like a rising and falling tide, 

driving positive correlation between all areas. For this reason, only methods which derive 

latent dimensions of variability in activity will detect this gradient, unlike methods which 

identify latent dimensions of functional connectivity. Temporal dimensionality reduction 

of BOLD timeseries data has previously been applied using both PCA (Carbonell et al., 

2011; Hong et al., 2020) and ICA (Smith et al., 2012; Glasser et al., 2018), though this 

approach notably differs from how spatial gradients are typically derived from fMRI data, 

by applying dimensionality reduction on the functional connectivity matrix (Vos de Wael 

et al., 2020). PCA and related dimensionality reduction methods find components that 

account for maximal variance in the dataset across observations. When applied to timeseries 

data, PCA can detect a global unipolar spatial factor which causes all regions to have 

high or low BOLD signal at different timepoints. By contrast, in a functional connectivity 

matrix where the time dimension is collapsed, all regions would share a common pattern 

of connectivity reflecting the influence of Gradient 1. This lack of region-to-region 

variability in connectivity would render this factor invisible to the variance-maximizing 

PCA algorithm. Importantly, Gradient 1 was not detected when performing PCA on BOLD 

timeseries data after global signal regression. Thus, processing methods should be carefully 

considered when deriving gradients from either BOLD activity timeseries or functional 

connectivity data.

Gradient 1 had the strongest spatial correlation with the principal spatial component of 

cortical gene expression, supporting its biological distinctiveness. The principal genetic 

expression component is known to have a strong relationship with the cortical myelination 

pattern that demarcates the borders between sensory and association areas (Burt et al., 

2018). In the current study, the genes most positively associated with Gradient 1 included 

SEMA7A and SCN1B, which have known roles in excitation/inhibition balance and seizure 

disorders (Brackenbury et al., 2013; Carcea et al., 2014). Using the dynamical systems 

model, we found that Gradient 1′s activity level had the strongest influence on each other 

gradient’s ongoing activity. This indicates that Gradient 1 had the largest causal influence in 

a statistical sense, arguing for its primacy in sculpting brain activity dynamics. Collectively, 

the primary gradient appears to represent a system with a distinct functional, anatomical, 

and gene expression fingerprint which may modulate global neuronal excitation/inhibition 

balance (Wang, 2020).

Gradient 2 strongly resembled the principal macroscale gradient of functional connectivity 

(Margulies et al., 2016). This gradient represents a sensory-to-cognitive axis with the default 

mode network at one extreme and somatomotor and visual areas at the other. By deriving 

this gradient using BOLD timeseries dimensionality reduction, we were able to quantify its 

dynamic causal interactions with other gradients. We found that the amount and direction 

of change in Gradient 2’s slope depended on both its own current slope and Gradient 1’s 
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slope, along with additional influence from the other gradients. An important aim for future 

research is to identify circuit-level mechanisms which drive dynamic gradient fluctuations 

and their mutual interactions. Subcortical neuromodulatory ascending projection systems 

for dopamine, noradrenaline, serotonin, and acetylcholine are all well positioned to exert 

widespread influence over brain activity (van den Brink et al., 2016; Shine et al., 2018; 

Shafiei et al., 2019; Grandjean et al., 2019; Munn et al., 2021). Gradient polarity may be 

mediated by reciprocal interactions between pairs of thalamic nuclei. When thalamocortical 

neurons in a specific nucleus are activated, they can drive activity in both their cortical 

targets and neurons in the thalamic reticular nucleus (TRN) via axon collaterals. Activation 

of these GABAergic TRN cells can in turn inhibit thalamocortical neurons in a paired 

nucleus, reducing activity in associated cortical target regions (Crabtree, 2018). This motif 

may enable thalamic coordination of widespread cortical functional connectivity (Hwang et 

al., 2017; Buckner and DiNicola, 2019).

Subsequent gradients also had strong correspondence with known functional connectivity 

gradients. Gradient 3 separated task-positive versus task-negative regions while Gradient 

4 had visual and somatomotor regions at opposing poles. Previous studies have shown 

that similar gradients have variable expression by different individuals and correlate with 

specific ongoing thought patterns (Mckeown et al., 2020; Karapanagiotidis et al., 2020). 

Brain activity states with more engagement of the task-negative side of the task-negative/

task-positive gradient correlated with more thoughts about the past (Karapanagiotidis et 

al., 2020), while the visual-sensorimotor gradient had greater engagement in individuals 

reporting more thoughts about problem-solving (Mckeown et al., 2020). When viewing 

gradients from the perspective of fluctuating dynamic systems, three different processes 

may play a role in generating specific activity and connectivity patterns. First, a transient 

gradient imbalance could preferentially activate regions at one pole of a gradient, producing 

more occurrences of the resultant brain activity state. Second, greater fluctuation amplitude 

of a given gradient could produce more segregation (anticorrelation) between regions at 

opposite ends. Third, specific coupling patterns between multiple gradients could achieve 

segregation or integration of multiple different networks on demand, as needed for the type 

of task being performed (Cohen and D’Esposito, 2016). Individual differences in gradient 

imbalance, amplitude, and coupling could be trait or state-related and are an interesting topic 

for future studies.

The first 12 activity gradients were spatially consistent across individuals and task-free 

or task-engaged states, suggesting that they represent intrinsic activity systems. This is 

consistent with a previous study showing consistent spatial topography of functional 

connectivity gradients across task states and levels of vigilance (Cross et al., 2021). 

Seeking additional support for the claim that gradients reflect intrinsic systems, we showed 

that plausible task activation maps resulted when gradients derived from the task-free 

based latent space formed specific dynamic combinations during task fMRI scans. This 

task-specific coordination of intrinsic activity gradients offers a new perspective on the 

consistency of the brain’s functional architecture across rest and task (Smith et al., 2009).
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4.2. Gradient coupling patterns can generate brain activity states

Using a dynamical systems model with specific gradient coupling parameters, we were able 

to replicate the spatial sequence of brain activity flow in actual task-free fMRI data. We 

then used this gradient-based model and found that we could accurately simulate different 

activity and functional connectivity states by using state-specific coupling parameters. 

The model captured individual functional connectivity differences in the task-free state 

and specific task activation and connectivity patterns supporting working memory, motor 

movements, language comprehension, and visual processing of emotional stimuli (Barch 

et al., 2013). Our findings build on previous work showing that distinct low-dimensional 

trajectories underlie task-specific brain activity states (Shine et al., 2019; Hawco et al., 

2021). These results support the hypothesis that the shape of the low-dimensional activity 

manifold is determined by gradients interacting according to specific coupling parameters, 

which will result in different coactivation patterns (Liu et al., 2018a), state transition 

probabilities (Vidaurre et al., 2017), and sequences of activity flow (Cole et al., 2016; 

Yousefi and Keilholz, 2021; Raut et al., 2021). One noteworthy aspect of our modeling 

approach is that while the PCA-derived gradient timeseries are temporally orthogonal, 

this does not imply that gradients cannot interact with each other. Ordinary differential 

equations can accurately capture non-linear relationships between orthogonal variables in 

a low-dimensional system (Brunton et al., 2016). One implication of this is that even if 

the global signal or the Gradient 1 timeseries are regressed out of the data, Gradient 1′s 

influence on the other gradients’ timeseries is likely to remain as a residual effect. Here our 

central modeling assumption was that gradients can exert distinct influence on one another. 

Future work can test this assumption with causal interventions and investigate how gradient 

coupling may be affected by individual trait and state differences or neurological conditions.

5. Conclusion

Here we derived a brain activity latent space by applying PCA to task-free BOLD fMRI 

timeseries data from 100 typical adults in the Human Connectome Project. We found that 

each dimension in this latent space represented a spatial activity gradient that dynamically 

fluctuates in time. The gradient maps corresponded to known functional connectivity 

gradients with the key exception of Gradient 1, a unipolar sensory-association gradient 

that explained the most variance in the BOLD signal, had a near-perfect correlation with 

the global signal, showed the strongest spatial correlation with the principal component 

of gene expression, and exerted the strongest influence on the dynamic activity of the 

other gradients. This set of activity gradients appeared to be intrinsic based on their 

spatial consistency in the same subjects during task-based fMRI scans, their reproducibility 

in different individuals in a validation dataset, and their ability to produce task-specific 

activity patterns. We demonstrated the equivalency of network-based and gradient-based 

representations of functional connectivity, showing that the non-uniform spacing of regions 

along multiple gradients reflects modularity and regional hub properties. We finally used 

a dynamical systems model to show that specific gradient coupling parameters were 

sufficient to generate state-specific global activity and functional connectivity patterns, both 

in different individuals in the task-free state and in working memory, motor, language, and 

emotion tasks.
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Fig. 1. Study workflow.
The primary workflow of the study. Rectangular boxes show data and ellipses show 

functional operations applied to data.
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Fig. 2. 
Latent space derivation and spatiotemporal interpretation. A. The procedure for deriving 

the brain activity latent space with PCA on task-free fMRI timeseries data, yielding spatial 

BOLD activity gradient maps, gradient activity timeseries, and resultant individual latent 

trajectories. B. Illustration of the relationship between latent space trajectories and regional 

BOLD activity. Across three successive timepoints, latent space positions on each dimension 

reflect the current slopes of the corresponding gradients. The resultant BOLD signal in each 

region depends on the region’s weight on each gradient, shown for the anterior cingulate 

cortex (yellow), premotor cortex (cyan), and precuneus (orange).
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Fig. 3. Latent space variance explained and activity gradient maps.
A. The amount of cumulative variance explained by the PCA components derived from 

the 119500 × 273 regional timeseries. The components within the red box are expanded 

in the lower plot. B. Gradient maps for the first six latent space dimensions. Colormaps 

show gradient weights from −2 to + 2 standard deviations (σ), scaled separately for each 

gradient. Bar plots show the mean gradient weight for voxels overlapping with each of seven 

canonical cortical networks in the left or right hemisphere (Yeo et al., 2011). Units are 

PCA loadings multiplied by 1000. Vis: Visual; SM: Somatomotor; DAN: Dorsal Attention 

Network; VAN: Ventral Attention Network; Lim: Limbic; FP: Frontoparietal; DMN: Default 

Mode Network.

Brown et al. Page 27

Neuroimage. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Gradient map reproducibility across individuals and cognitive states.
A. The spatial correlation between gradient maps derived from the discovery vs. validation 

task-free datasets, before and after Procrustes alignment. Absolute values are shown. B. The 

spatial correlation between gradient maps derived from the task-free vs. task datasets, before 

and after Procrustes alignment.
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Fig. 5. The relationship between latent space trajectories, regional activity, and functional 
modularity.
A. Gradient weights of the middle frontal gyrus (MFG) and anterior cingulate cortex 

(ACC) on Gradients 2 and 3, the first two bipolar gradients. B. Latent trajectory directions 

that maximize BOLD activity for the MFG, ACC, or the functional connectivity (BOLD 

covariation) between them. Also shown are latent trajectories during task-free scans for 

the subjects with the most positive (top) or negative (bottom) ACC-MFG functional 

connectivity. C. Left: Group-average functional connectivity matrix based on Gradients 

2 and 3. The eight modules detected in this connectivity matrix are highlighted along the 

diagonal and colored on the brain surface. Middle: Latent space plot showing the optimal 

trajectory direction for maximizing activity in each region, including the MFG and ACC 

from panel B. Color represents module membership. Connector regions (large circles) and 

provincial regions (large squares) are shown. D. Box plots for provincial regions, connector 

regions, and non-provincial/connector regions, showing angle to functionally connected 

neighbors. Plots show the median, interquartile range, and minimum/maximum values.
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Fig. 6. Dynamical systems model overview, gradient coupling parameters, and simulated 
trajectories.
A. The dynamical systems modeling procedure. B. Task-free coupling parameters for the 

gradients 1-6. T-statistics for the parameter estimates are shown. C. Average latent space 

trajectory transitions from time t to t+1 for dimensions 1 and 2. The left plot shows average 

transitions in the actual task-free data and the right plot shows the average simulated 

transitions generated by the dynamical systems model. Each latent space quadrant reflects 
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either a positive or negative slope for Gradient 1 (“Global”) and Gradient 2 (“Primary” vs. 

“Assoc”).
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Fig. 7. Individual-specific simulated task-free activity and connectivity patterns.
A. Simulations for two example subjects showing their task-free gradient coupling 

parameters, the simulated gradient timeseries, the resulting regional timeseries, and the 

resulting functional connectivity matrix on the upper triangle. The actual functional 

connectivity matrix is shown on the lower triangle. The resulting differences in modularity 

for the two subjects are shown, including the default mode network (red). B. Top: Box plots 

showing simulated and actual functional connectivity matrix similarity based on using either 

the subject’s own task-free coupling parameters (self vs. self, green) or the 99 other subject’s 

coupling parameters (self vs. other, red). Plots show the median, interquartile range, and 

minimum/maximum values. Bottom: the modularity similarity from the simulated and 

actual functional connectivity matrices.
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Fig. 8. Task-specific simulated activity and connectivity patterns.
A. Gradient coupling parameters for each task. B. Simulated task activation differences for 

the active task condition versus the baseline task condition. Color represents the difference 

in units of normalized BOLD standard deviation (Z-score). C. Functional connectivity (FC) 

matrices resulting from task-specific simulations. Simulated FC for the active task condition 

minus the simulated task-free FC is shown on the upper triangle of the matrix and actual 

active task condition FC minus the actual task-free FC (from the validation dataset) is shown 

on the lower triangle. D. Partial correlations between simulated and actual FC. FC values 

represent the region pairwise correlation strengths, adjusted for the actual FC strengths (task 

- task-free) in each of the other three tasks.
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video 1. 
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