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RESEARCH Open Access

DNA methylation age calculators reveal
association with diabetic neuropathy in
type 1 diabetes
Delnaz Roshandel1, Zhuo Chen2, Angelo J. Canty3, Shelley B. Bull4,5, Rama Natarajan2, Andrew D. Paterson1,5* and
DCCT/EDIC Research Group

Abstract

Background: Many CpGs become hyper or hypo-methylated with age. Multiple methods have been developed by
Horvath et al. to estimate DNA methylation (DNAm) age including Pan-tissue, Skin & Blood, PhenoAge, and
GrimAge. Pan-tissue and Skin & Blood try to estimate chronological age in the normal population whereas
PhenoAge and GrimAge use surrogate markers associated with mortality to estimate biological age and its
departure from chronological age. Here, we applied Horvath’s four methods to calculate and compare DNAm age
in 499 subjects with type 1 diabetes (T1D) from the Diabetes Control and Complications Trial/Epidemiology of
Diabetes Interventions and Complications (DCCT/EDIC) study using DNAm data measured by Illumina EPIC array in
the whole blood. Association of the four DNAm ages with development of diabetic complications including
cardiovascular diseases (CVD), nephropathy, retinopathy, and neuropathy, and their risk factors were investigated.

Results: Pan-tissue and GrimAge were higher whereas Skin & Blood and PhenoAge were lower than chronological
age (p < 0.0001). DNAm age was not associated with the risk of CVD or retinopathy over 18–20 years after DNAm
measurement. However, higher PhenoAge (β = 0.023, p = 0.007) and GrimAge (β = 0.029, p = 0.002) were
associated with higher albumin excretion rate (AER), an indicator of diabetic renal disease, measured over time.
GrimAge was also associated with development of both diabetic peripheral neuropathy (OR = 1.07, p = 9.24E−3)
and cardiovascular autonomic neuropathy (OR = 1.06, p = 0.011). Both HbA1c (β = 0.38, p = 0.026) and T1D
duration (β = 0.01, p = 0.043) were associated with higher PhenoAge. Employment (β = − 1.99, p = 0.045) and
leisure time (β = − 0.81, p = 0.022) physical activity were associated with lower Pan-tissue and Skin & Blood,
respectively. BMI (β = 0.09, p = 0.048) and current smoking (β = 7.13, p = 9.03E−50) were positively associated with
Skin & Blood and GrimAge, respectively. Blood pressure, lipid levels, pulse rate, and alcohol consumption were not
associated with DNAm age regardless of the method used.

Conclusions: Various methods of measuring DNAm age are sub-optimal in detecting people at higher risk of
developing diabetic complications although some work better than the others.
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Background
CpGs are regions of DNA where a cytosine is followed
by a guanine nucleotide. Cytosines within CpGs can be
methylated, and CpG methylation levels affect gene ex-
pression. Many CpGs become hyper or hypo-methylated
with age [1–4]. In 2013, Horvath used publicly available
DNA methylation (DNAm) data to define and evaluate a
DNAm age predictor, Pan-tissue, which is accurate
across most tissues and cell types. Chronological age
was regressed on CpG methylation levels using a penal-
ized regression model (elastic net) which selected 353
CpGs [1] (Supplementary Table 1). Pan-tissue has been
widely used and has shown that faster epigenetic aging is
associated with multiple age-related diseases and condi-
tions (e.g., Alzheimer’s, cancer, cardiovascular diseases
(CVD)) indicating that epigenetic age is an indicator of
health status. Some risk factors for type 2 diabetes
(T2D) including BMI, waist circumference, and fasting
glucose have been associated with higher Pan-tissue epi-
genetic age acceleration (EAA = epigenetic age −
chronological age) [5, 6]. On average liver Pan-tissue
EAA increased significantly by 0.33 years per BMI unit
[7].
Pan-tissue performed sub-optimally estimating fibro-

blast age in in vitro studies. Therefore, Horvath et al. de-
scribed Skin & Blood DNAm age using a similar method
to Pan-tissue which performed remarkably well across a
wide spectrum of cells that are most frequently used in
in vitro studies, including the blood (Supplementary
Table 1). Skin & Blood EAA was highly predictive of
time to all-cause mortality. It was positively correlated
with waist/hip ratio (WHR), blood insulin, glucose, tri-
glyceride, systolic blood pressure, and BMI and nega-
tively correlated with HDL and physical exercise.
However, the respective correlation coefficients were
weak (|r| < 0.11) [2].
Pan-tissue and Skin & Blood were both developed

using chronological age as a surrogate for biological age.
Therefore, they may not capture CpGs that signal de-
parture of biological age from chronological age. In a
newer method called PhenoAge, chronological age was
replaced with a surrogate measure of phenotypic age de-
veloped using clinical data. A Cox penalized regression
model was applied where the hazard of mortality was
regressed on 42 clinical markers and chronological age
to select variables for inclusion in the phenotypic age
score. Nine clinical markers and chronological age were
selected and used to estimate the 10-year mortality risk
score which was then converted into units of years. Fi-
nally, the resulting phenotypic age estimate was
regressed on CpG methylation levels using an elastic net
regression model (Supplementary Table 1). A 1-year in-
crease in PhenoAge was associated with a 4.5% increase
in the risk of all-cause mortality in independent

populations without diabetes. PhenoAge predicted mor-
tality significantly better than Pan-tissue. It was also as-
sociated with increased risk of CVD and differed
significantly between never, current, and former
smokers. It was also positively correlated with blood in-
sulin, glucose, triglyceride, and WHR and negatively cor-
related with HDL and physical exercise [8].
Most recently, Horvath et al. defined another DNAm

age calculator called GrimAge. To develop this
method, 88 plasma proteins and smoking pack-years
were individually regressed on chronological age, sex,
and the CpGs methylation levels using an elastic net
regression model. Twelve plasma proteins and pack-
years had high correlations between their DNAm esti-
mation and the corresponding measured levels. These
twelve DNAm estimated plasma proteins and smoking
pack-years as well as chronological age and sex were
regressed on the hazard of aging-related mortality
using a Cox penalized regression model. This selected
DNAm pack-years, age, sex, and the predicted DNAm
for 7 of the 12 plasma proteins. The combined esti-
mate of these factors was then transformed into
GrimAge which has the same mean and variance as
chronological age (Supplementary Table 1). GrimAge
was highly predictive of lifespan and time-to-CVD even
after adjustment for known risk factors and outper-
formed Pan-tissue and PhenoAge. It was also associ-
ated with hypertension and T2D. In addition, GrimAge
was correlated with BMI, WHR, and physical exercise;
blood insulin, glucose, HbA1c, triglyceride, and HDL;
and albuminuria (all correlations were in the expected
directions) [9].
Only a small proportion of CpGs are common among

three of the four epigenetic ages (Supplementary Figure
1), and there is only weak/moderate correlation among
them [2, 8, 9].
To our knowledge, there has been no study of DNAm

age in type 1 diabetes (T1D). However, telomere length,
another indicator of aging, has been investigated in T1D,
and it was found to be significantly shorter in T1D com-
pared to non-diabetic subjects [10]. Shorter telomere
length has also been associated with T1D duration, pulse
pressure [10], BMI [11], systolic blood pressure, all-
cause mortality [12], and diabetic nephropathy [13] in
subjects with T1D.
Here, we investigated DNAm age calculated by all four

methods in 499 subjects with T1D from the Diabetes
Control and Complications Trial/Epidemiology of Dia-
betes Interventions and Complications (DCCT/EDIC)
study and its association with diabetic complications
(CVD, nephropathy, retinopathy, and neuropathy) and
their risk factors [14–16]. We also examined DNAm age
in a smaller subset at two time points, 16–17 years apart,
to investigate changes in DNAm age over time.
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Results
Illumina whole blood EPIC data
Comparison of the four DNAm ages with chronological age
and with each other
Characteristics of the subjects with EPIC DNAm data
are summarized in Table 1. All four epigenetic ages were
highly correlated with chronological age and with each
other. However, there were significant difference among
them: GrimAge was higher than Pan-tissue, and both
were higher than chronological age whereas Skin &
Blood and PhenoAge were both lower than chrono-
logical age, and PhenoAge was lower than Skin & Blood
(GrimAge > Pan-tissue > chronological age > Skin &
Blood > PhenoAge) (all p < 0.0001) (Table 2, Fig. 1, Sup-
plementary Figure 2).

Changes in EAA by chronological age
The differences between chronological age and each of
Pan-tissue, Skin & Blood, and GrimAge decreased by
0.13, 0.07, and 0.14 years per 1-year increase in chrono-
logical age (p = 1.18E−4, 6.49E−3, and 1.03E−4, respect-
ively). The difference between chronological age and
PhenoAge did not differ significantly by chronological
age (Fig. 2, Supplementary Table 2).

Association of the four DNAm ages with development of
diabetic complications
Epigenetic ages were not significantly associated with
the development of CVD or retinopathy. Although
DNAm ages were not associated with estimated glom-
erular filtration (eGFR), both PhenoAge (β = 0.023, p =
0.007) and GrimAge (β = 0.029, p = 0.002) were posi-
tively associated with repeated measures of albumin
excretion rate (AER, natural log transformed) which
remained significant after adjustment of HbA1c levels.
The effect of GrimAge on AER increased over time
(GrimAge × EDIC year interaction β (SE) = 0.0013
(0.0005), p = 5.10E−3) whereas effect of PhenoAge was
not significantly different over time (PhenoAge × EDIC
year interaction p = 0.85) (Table 3, Supplementary Fig-
ure 3-4). Pan-tissue, Skin & Blood, and PhenoAge were
not associated with neuropathy, but GrimAge was posi-
tively associated with both diabetic peripheral neur-
opathy (DPN: OR = 1.07, p = 9.24E−3) and
cardiovascular autonomic neuropathy (CAN: OR = 1.06,
p = 0.011). These associations also remained significant
after further adjustment for time-weighted HbA1c
(Table 3).

Association of risk factors of diabetic complication with the
four DNAm ages
The univariable associations of different factors with
EAAs are shown in Supplementary Table 2. The results
regarding multivariable associations of only sex, age,

T1D duration, and time-weighted HbA1c with epigen-
etic ages (minimal model) are shown in Supplementary
Table 3. In the multivariable analysis when all factors
were included, males had on average 1.5 years higher
Pan-tissue (p = 8.00E−4) and GrimAge (p = 9.99E−5)
compared to females whereas females had on average
1.5 years higher PhenoAge compared to males (p =
0.005) (Table 4). PhenoAge increased 0.4 years per 1%
increase in time-weighted HbA1c (p = 0.026) and 0.01
years per 1-month increase in T1D duration (p = 0.043)
(Table 4). The effect of time-weighted HbA1c on Pheno-
Age was not significantly different in either conventional
(β (SD) = 0.45 (0.29), p = 0.12) or intensive (β (SD) =
0.15 (0.48), p = 0.76) therapy group (interaction p =
0.56). Skin & Blood increased 0.09 years per one-unit
increase in BMI (p = 0.048) (Table 4). Those with
strenuous physical activity at work on average had 1.99
years lower Pan-tissue compared to those with sedentary
jobs (p = 0.045), and those who achieved one to two
times the recommended level of physical activity during
leisure time on average had 0.8 years lower Skin & Blood
compared to those who did not achieve the recom-
mended level (p = 0.022) (Table 4). Current smokers
had on average 7.1 years higher GrimAge compared to
non-smokers (p = 9.03E−50). The other factors were not
significantly associated with epigenetic ages (Table 4).

Illumina 450K whole blood data
Characteristics of the subjects with 450K data are sum-
marized in Supplementary Table 4. Chronological age
and all four epigenetic ages were highly correlated. How-
ever, there were significant differences among them:
Pan-tissue > (greater than) GrimAge > Skin & Blood >
chronological age > PhenoAge (all p < 0.0001) (Supple-
mentary Table 5, Supplementary Figure 5-6). EAAs were
not significantly different in the two treatment groups
(Supplementary Table 6).
The difference between chronological age and

GrimAge decreased by 0.13 years per 1-year increase in
chronological age (p = 0.01) (Supplementary Table 6
and Figure 9).
Sex, cohort, treatment group, T1D duration, stimu-

lated C-peptide, and time-weighted HbA1c were not
significantly associated with epigenetic ages (Supplemen-
tary Table 6, Table 5).

Illumina 450K monocyte data
Chronological age and all four epigenetic ages were
highly correlated (Supplementary Table 7, Supplemen-
tary Figure 8-9). However, except for Pan-tissue and
GrimAge, there were significant differences among
them: PhenoAge > Pan-tissue ≈ GrimAge > Skin &
Blood > chronological age (p < 0.001).
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Table 1 Characteristics of the subjects with Illumina EPIC array data
Primary cohort
Conventional group
N = 124
Mean (SD)/N (%)

Primary cohort
Intensive group
N = 125
Mean (SD)/N (%)

Secondary cohort
Conventional group
N = 125
Mean (SD)/N (%)

Secondary cohort
Intensive group
N = 125
Mean (SD)/N (%)

Total
N = 499
Mean (SD)/
N (%)

Sex (male) 73 (58.9%) 60 (48.0%) 65 (52.0%) 73 (58.4%) 271 (54.3%)

Stimulated C-peptide at DCCT eligibility (pmol/ml) 0.18 (0.14) 0.17 (0.14) 0.08 (0.09) 0.06 (0.06) 0.12 (0.12)

Time-weighted HbA1c (%)* 8.93 (1.23) 6.93 (0.72) 8.73 (1.18) 7.13 (0.73) 7.92 (1.34)

Current smoker 24 (19.4%) 19 (15.2%) 25 (20.0%) 27 (21.6%) 95 (19.0%)

Alcohol consumption

None 81 (65.3%) 80 (64.0%) 83 (66.4%) 82 (65.6%) 326 (65.3%)

Occasional 11 (8.9%) 12 (9.6%) 8 (6.4%) 11 (8.8%) 42 (8.4%)

Regular 32 (25.8%) 33 (26.4%) 34 (27.2%) 32 (25.6%) 131 (26.3%)

Physical activity at job†

Sedentary 57 (46.0%) 49 (39.2%) 49 (39.2%) 55 (44.0%) 210 (42.1%)

Moderate 64 (51.6%) 69 (55.2%) 74 (59.2%) 63 (50.4%) 270 (54.1%)

Strenuous 3 (2.4%) 7 (5.6%) 2 (1.6%) 7 (5.6%) 19 (3.8%)

Leisure time physical activity‡

METs < 450 38 (30.7%) 47 (37.6%) 38 (30.4%) 52 (41.6%) 175 (35.1%)

METs 450–1500 39 (31.5%) 34 (27.2%) 41 (32.8%) 34 (27.2%) 148 (29.7%)

METs > 1500 46 (37.1%) 44 (35.2%) 46 (36.8%) 39 (31.2%) 175 (35.1%)

Missing 1 (0.8%) 0 (0%) 0 (0%) 0 (0%) 1 (0.2%)

BMI (kg/m2) 24.9 (2.8) 25.4 (3.3) 25.0 (2.8) 26.6 (4.1) 25.5 (3.4)

Systolic blood pressure (mmHg) 112.6 (10.8) 112.3 (11.4) 116.2 (11.5) 116.3 (10.6) 114.4 (11.2)

Diastolic blood pressure (mmHg) 73.9 (8.2) 72.3 (7.7) 73.8 (8.1) 74.4 (8.2) 73.6 (8.1)

HDL (mg/dl) 52.9 (13.0) 54.9 (14.7) 51.0 (11.4) 48.8 (11.4) 51.9 (12.9)

LDL (mg/dl) 107.7 (30.2) 111.5 (27.0) 114.4 (31.0) 111.1 (28.0) 111.2 (29.1)

Triglyceride (mg/dl) 75.3 (41.1) 74.2 (45.1) 88.1 (54.2) 76.7 (39.3) 78.6 (45.5)

Total cholesterol (mg/dl) 175.7 (34.4) 181.2 (31.3) 183.0 (34.6) 175.3 (30.9) 17.8 (32.9)

Pulse rate (beat/min) 71.1 (9.8) 71.2 (9.1) 72.9 (9.3) 73.5 (9.3) 72.2 (9.4)

Age at diagnosis (years) 26.5 (5.9) 26.9 (5.4) 19.8 (7.1) 19.5 (6.7) 23.2 (7.2)

Duration (months) 88.1 (28.1) 85.7 (23.9) 173.5 (51.8) 184.8 (48.5) 133.1 (61.2)

Chronological age (years) 34.6 (6.1) 34.8 (5.6) 35.0 (5.3) 35.6 (5.8) 35.0 (5.7)

Pan-tissue

DNAm age (years) 35.9 (6.8) 36.5 (6.3) 37.3 (6.5) 38.2 (6.5) 37.0 (6.5)

Epigenetic age acceleration (years) 1.3 (4.5) 1.8 (4.1) 2.4 (4.0) 2.5 (4.5) 2.0 (4.3)

Skin & Blood

DNAm age (years) 30.1 (7.5) 30.2 (6.6) 30.7 (6.5) 32.1 (6.6) 30.8 (6.9)

Epigenetic age acceleration (years) − 4.5 (3.1) − 4.5 (3.1) − 4.3 (3.2) − 3.5 (3.2) − 4.2 (3.2)

PhenoAge

DNAm age (years) 27.1 (8.1) 26.8 (7.3) 27.0 (7.8) 28.2 (8.0) 27.3 (7.8)

Epigenetic age acceleration (years) − 7.5 (5.8) − 8.0 (5.0) − 7.9 (5.0) − 7.4 (5.7) − 7.7 (5.4)

GrimAge

DNAm age (years) 40.3 (6.9) 40.3 (6.6) 40.7 (6.5) 42.2 (7.0) 40.8 (6.8)

Epigenetic age acceleration (years) 5.7 (4.7) 5.5 (4.3) 5.7 (4.8) 6.6 (5.0) 5.9 (4.7)

All factors were obtained at DNAm measurement except for stimulated C-peptide which is measured at DCCT eligibility
MET metabolic equivalent of task
*Time-weighted HbA1c since DCCT baseline
†Level of activity on the job, at school, or in home making: sedentary such as office work with occasional inter-office walking; moderate activity requires
considerable but not constant lifting, walking, bending, pulling, etc. such as homemaker with family and without domestic assistance; and strenuous activity
requires almost constant lifting, bending, pulling, scrubbing, etc. such as furniture mover
‡According to the international classification by Ainsworth used by American College of Sports Medicine (ACSM), light, moderate, hard, and very hard activity was
allocated 3, 4, 6, and 9 METs, respectively. For each participant, these allocated MET values were multiplied by the time (min) spent in that activity to obtain the
MET for that level of activity. The sum of METs from all activities was recorded as the total leisure time activity for each participant. Subjects then were
categorized into three groups based on the ACSM recommendation for METs min/week [17, 18]
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Although Pan-tissue EAA was on average 2.9 years
lower in the former DCCT intensive versus conventional
treatment group, the difference was not significant in
the multivariable analysis. The other EAAs were also not
significantly different between the two treatment groups
(Table 5, Supplementary Table 8).
The differences between chronological age and each of

Pan-tissue, Skin & Blood, and GrimAge decreased by
0.3, 0.2, and 0.2 years per 1-year increase in chrono-
logical age (p = 0.005, 0.003, and 0.004, respectively)
(Supplementary Table 8 and Figure 10).
All four EAAs were highly correlated between whole

blood and monocyte (Fig. 3).

In the multivariable analysis, Pan-tissue on average de-
creased 13.05 years per 1 pmol/ml increase in stimulated
C-peptide at DCCT eligibility (p = 0.016). Association of
C-peptide with Pan-tissue was not significantly different
in the two treatment groups (p = 0.61). Sex, cohort,
treatment group, T1D duration, and time-weighted
HbA1c were not significantly associated with epigenetic
ages (Table 5).

Discussion
We used DNAm data in whole blood measured by Illu-
mina EPIC array and four different methods to estimate
epigenetic ages in 499 subjects with T1D. Subsequently,

Table 2 Correlation and mean difference between epigenetic ages and chronological age in EPIC data

Chronological Age Pan Tissue Skin & Blood PhenoAge GrimAge

Chronological Age - 0.76 0.89 0.73 0.76

Pan Tissue 2.0 (4.3) - 0.75 0.73 0.57

Skin & Blood -4.2 (3.1) -6.2 (4.8) - 0.72 0.72

PhenoAge -7.7 (5.4) -9.7 (5.4) -3.5 (5.5) - 0.64

GrimAge 5.9 (4.7) 3.9 (6.2) 10.1 (5.3) 13.6 (6.2) -

The values above the diagonal are Spearman correlation coefficients. The values below the diagonal are mean differences (mean of the age in the row − mean of
the age in the column) and their corresponding SDs in brackets. All p values regarding the correlations and the mean differences are < 0.0001

Fig. 1 DNAm age vs. chronological age in EPIC data. Corr, Spearman correlation coefficient. The line is X = Y
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we compared estimated epigenetic ages with chrono-
logical age and investigated if the epigenetic ages were
associated with development of T1D complications
(CVD, nephropathy/decreased renal function, retinop-
athy, and neuropathy) and their risk factors.
All four epigenetic ages were correlated with chrono-

logical age and with each other, but there were significant
differences between them. Pan-tissue and Skin & Blood
were developed to predict chronological age in healthy
individuals whereas PhenoAge and GrimAge used bio-
logical biomarkers associated with time-to-death to pre-
dict differences in life expectancy of individuals. In
addition, they were developed and tested in datasets mea-
sured in different tissues by different arrays (Illumina
27K, 450K, and EPIC) and used different statistical
methods. As a result, there have been only low to moder-
ate correlations between them [2, 8, 9]. Pan-tissue and
GrimAge were significantly higher than chronological
age, but Skin & Blood and PhenoAge were significantly
lower than chronological age. T1D usually has a negative
impact on general health [19, 20]. Therefore, we expected
DNAm age to be higher than chronological age in

subjects with T1D [21]. However, DCCT subjects were a
relatively healthy group of subjects with T1D at baseline
due to the extensive inclusion/exclusion criteria applied.
Out of ~ 7000 individuals who made initial contact, only
1441 subjects aged 13–39 years with 1–15 years of T1D
and no serious long-term complications of diabetes were
included in DCCT. Subjects were excluded if they were
at risk for adverse effects (e.g., history of frequent ketoa-
cidosis, hypoglycemic coma, or seizure) had known risk
factors for vascular complications, were unlikely to com-
ply with the demands of treatment protocols, did not
demonstrate an adequate understanding of the DCCT’s
purpose, or had drug addiction, chronic alcoholism, or
major mental illness [22]. In addition, individuals with
EPIC DNAm data are not an entirely random sample of
DCCT/EDIC subjects (Supplementary Tables 9-13).
With the exception of PhenoAge, the difference be-

tween the epigenetic ages and chronological age de-
creased in older subjects. This is consistent with
previous findings where longitudinal changes in Pan-
tissue EAA were tracked using linear mixed models
(LMMs) within five different cohorts and showed that

Fig. 2 Epigenetic age acceleration vs. chronological age in EPIC data. The dash line is epigenetic age acceleration = 0. The solid line is the line
fitting linear regression model with chronological age as predictor and epigenetic age acceleration as outcome and is present when
chronological age is significantly associated with epigenetic age acceleration (p < 0.05)
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Table 3 Association of four DNAm ages with development of T1D complication

Total
N

Events
N

Model 1 Model 2

CVD

CVD events from DNAm measurement to EDIC year 20 496 58 HR (95% CI) p HR (95% CI) p

Pan-tissue 1.03 (0.96–1.10) 0.433 1.03 (0.96–1.11) 0.371

Skin & Blood 1.06 (0.97–1.16) 0.207 1.07 (0.97–1.18) 0.166

PhenoAge 1.05 (0.99–1.10) 0.086 1.05 (1.00–1.11) 0.061

GrimAge 1.04 (0.99–1.10) 0.163 1.04 (0.99–1.10) 0.085

Nephropathy and renal function

Repeated eGFR from EDIC year 0 to 18 (ml/min/1.73 m2) 498 NA Beta (SE) p Beta (SE) p

Pan-tissue − 0.17 (0.10) 0.075 − 0.18 (0.10) 0.063

Skin & Blood − 0.20 (0.13) 0.119 − 0.23 (0.13) 0.084

PhenoAge − 0.13 (0.08) 0.099 − 0.14 (0.08) 0.068

GrimAge 0.05 (0.09) 0.531 0.03 (0.09) 0.736

Sustained eGFR <60ml/min/1.73m2 during EDIC year 0-18 498 23 HR (95% CI) p HR (95% CI) p

Pan-tissue 1.11 (0.99–1.26) 0.077 1.12 (0.99–1.27) 0.075

Skin & Blood 1.08 (0.94–1.23) 0.287 1.07 (0.94–1.23) 0.318

PhenoAge 1.06 (0.98–1.15) 0.160 1.06 (0.97–1.14) 0.199

GrimAge 1.04 (0.96–1.13) 0.315 1.04 (0.95–1.13) 0.432

Repeated AER from EDIC year 0 to 18 (mg/24 h loge transformed) 499 NA Beta (SE) p Beta (SE) p

Pan-tissue 0.011 (0.010) 0.273 0.011 (0.011) 0.282

Skin & Blood 0.021 (0.014) 0.146 0.021 (0.014) 0.138

PhenoAge 0.023 (0.008) 6.78E−3 0.024 (0.009) 4.83E−3

GrimAge 0.029 (0.009) 2.13E−3 0.032 (0.009) 7.23E−4

AER ≥ 300 mg/24 h during EDIC year 0–18 484 29 HR (95% CI) p HR (95% CI) p

Pan-tissue 1.04 (0.94–1.15) 0.465 1.01 (0.91–1.12) 0.846

Skin & Blood 1.05 (0.92–1.19) 0.515 1.08 (0.94–1.24) 0.292

PhenoAge 1.05 (0.97–1.12) 0.211 1.04 (0.97–1.12) 0.277

GrimAge 1.06 (0.98–1.14) 0.152 1.04 (0.96–1.13) 0.309

Retinopathy

SNPDR during EDIC year 0–18 473 92 HR (95% CI) p HR (95% CI) p

Pan-tissue 1.02 (0.97–1.08) 0.396 1.01 (0.95–1.07) 0.765

Skin & Blood 1.06 (0.98–1.14) 0.136 1.04 (0.96–1.13) 0.343

PhenoAge 1.04 (0.99–1.08) 0.111 1.03 (0.98–1.07) 0.287

GrimAge 1.04 (0.99–1.08) 0.135 1.00 (0.95–1.05) 0.892

PDR during EDIC year 0–18 482 96 HR (95% CI) p HR (95% CI) p

Pan-tissue 1.01 (0.96–1.07) 0.584 0.99 (0.94–1.05) 0.790

Skin & Blood 1.05 (0.98–1.14) 0.180 1.03 (0.95–1.12) 0.497

PhenoAge 1.03 (0.99–1.08) 0.131 1.02 (0.98–1.07) 0.400

GrimAge 1.03 (0.98–1.07) 0.256 0.99 (0.94–1.04) 0.698

CSME during EDIC year 0–18 464 108 HR (95% CI) p HR (95% CI) p

Pan-tissue 1.04 (0.99–1.09) 0.176 1.04 (0.98–1.09) 0.179

Skin & Blood 1.00 (0.94–1.08) 0.935 0.99 (0.92–1.07) 0.827

PhenoAge 1.04 (1.00–1.08) 0.091 1.01 (0.97–1.06) 0.517

GrimAge 1.02 (0.97–1.06) 0.428 1.00 (0.95–1.04) 0.843
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epigenetic age increases at a slower rate than chrono-
logical age across the life span especially in older popula-
tions [23].
We did not find significant association between epi-

genetic ages and development of CVD. Studies have in-
vestigated the association of Pan-tissue and risk of
developing CVD in non-diabetic subjects. In 2543 Afri-
can Americans, the hazard ratio of fatal coronary heart
disease increased by 1.03 per year increase in Pan-tissue
over a ≈ 17-year follow-up period (144 events) [21].
Similarly, in a cohort of 1863 subjects aged 50–75 years
from Germany, the risk of CVD mortality increased by
1.04 per year increase in Pan-tissue over 13 years of
follow-up (194 events) [24]. However, our study had
only 22% power to detect an effect with this size, due to
the relatively small number (N = 58) of CVD events. An-
other study did not find any significant association be-
tween Pan-tissue and incidence of CVD in women from
African, Caucasian, and Hispanic ancestry [25]. This dis-
crepancy could be due to race, gender, age, etc. differ-
ences between the studied populations as well as
statistical power. Increases in PhenoAge and GrimAge
have also been reported in association with increased
risk of CVD in non-diabetic subjects (β = 1.10 and HR =
1.07, respectively) [8, 9]. However, our study was again
under-powered to detect these effects (power = 0.55 and
0.72, respectively). It is noteworthy that in all these stud-
ies including the current study, Pan-tissue was calculated
in whole blood which is not the target tissue for diabetic
complication. Although it has been shown that DNAm
profiles are quite similar in different tissues, there are
tissue-specific differentially methylated regions which
can affect DNAm calculation [26]. However, accessing

target tissues are not feasible especially in large scale
studies of living subjects.
To our knowledge, association of DNAm age with risk

of developing nephropathy, retinopathy, or neuropathy
has not been investigated before. We did not observe
any significant association between DNAm age and de-
velopment of nephropathy and retinopathy. However,
we found higher GrimAge and PhenoAge to be associ-
ated with higher levels of repeated measures of AER, an
indicator of decreasing renal function. These associa-
tions remained significant even after adjusting for time-
weighed HbA1c indicating that at least part of the effects
is independent of HbA1c levels. This result is consistent
with previous findings where GrimAge has been associ-
ated with albuminuria in non-diabetic subjects [9]. Of
the four epigenetic ages, higher GrimAge was also asso-
ciated with development of both DPN and CAN. Larger
number of events and higher statistical power along with
relatively larger effect sizes could be among the reasons
that we detected association of GrimeAge with neur-
opathy but not the rest of the complications, although
CSME has similar number of cases.
Intensive therapy and keeping HbA1c levels close to

the normal range has been associated with decreased
risk of developing diabetic complications [27]. In our
study, both time-weighted HbA1c (but not treatment
group) and T1D duration were associated with higher
PhenoAge but not with the other epigenetic ages.
Males had higher Pan-tissue and GrimAge compared

to females consistent with previous findings [9, 21, 25]
whereas PhenoAge was higher in women and sex was
not associated with Skin & Blood. All Pan-tissue and
PhenoAge CpGs are on autosomal chromosome. Only

Table 3 Association of four DNAm ages with development of T1D complication (Continued)

Total
N

Events
N

Model 1 Model 2

Neuropathy

DPN at EDIC year 13–15 431 109 OR (95% CI) p OR (95% CI) p

Pan-tissue 1.02 (0.96–1.08) 0.562 1.02 (0.96–1.09) 0.466

Skin & Blood 0.96 (0.88–1.05) 0.345 0.96 (0.88–1.05) 0.352

PhenoAge 1.02 (0.98–1.07) 0.356 1.02 (0.97–1.07) 0.448

GrimAge 1.07 (1.02–1.12) 9.24E−3 1.07 (1.01–1.12) 2.17E−2

CAN at EDIC year 13–18 446 176 OR (95% CI) p OR (95% CI) p

Pan-tissue 1.01 (0.96–1.07) 0.635 1.02 (0.97–1.07) 0.526

Skin & Blood 0.99 (0.92–1.06) 0.758 0.99 (0.92–1.07) 0.844

PhenoAge 1.01 (0.97–1.05) 0.689 1.00 (0.96–1.05) 0.971

GrimAge 1.06 (1.01–1.11) 1.07E−2 1.06 (1.01–1.11) 2.39E−2

Model 1, adjusted for batch, cell proportions, sex, age, and T1D duration at DNAm measurement; model 2, adjusted for all covariates in model 1 plus repeated
measures of HbA1c
HR hazard ratio, OR odds ratio, CI confidence interval, SE standard error, CVD cardiovascular diseases, eGFR estimated glomerular filtration rate, AER albumin
excretion rate, SNPDR sever non-proliferative diabetic retinopathy, PDR proliferative diabetic retinopathy, CSME clinically significant macular edema, DPN diabetic
peripheral neuropathy, CAN cardiovascular autonomic neuropathy
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one of Skin & Blood CpG (cg01892695) is on the X
chromosome. Therefore, sex differences in Pan-tissue
and PhenoAge are not due to CpGs being on the X
chromosome. The CpGs included in GrimAge are not
publicly available.
The majority of known risk factors for diabetic com-

plications were not associated with the four epigenetic
ages. Two studies have investigated the association of
CVD risk factors with Pan-tissue in non-diabetic sub-
jects, but they reported conflicting results [21, 25]. In
our study, individuals with physically strenuous jobs had
significantly lower Pan-tissue compared to individuals
with sedentary jobs, and those who achieved one to two
times the recommended level of physical activity during
leisure time had lower Skin & Blood compared to those
who did not achieve the recommended level. Consistent
with these findings, a twin study found that although

only a small amount of variance in Pan-tissue is ex-
plained by non-shared environmental factors in younger
individuals, leisure time physical activity can affect Pan-
tissue during adult years [28]. Higher BMI was associ-
ated with higher Skin & Blood consistent with what has
been observed in non-diabetic subjects before [2].
Current smoking had a large effect on GrimAge;
GrimAge increased on average 7 years in current
smokers compared to non-smokers. This finding was
expected since pack-years were one of the surrogate bio-
markers used to generate GrimAge [9]. Triglyceride,
HDL, BMI, and physical exercise have been correlated
with PhenoAge and/or GrimAge [8, 9]. In our study,
although some of these factors were associated with Phe-
noAge and/or GrimAge in the univariable analysis, these
associations did not remain significant in the multivari-
able analysis [22].

Table 4 Multivariable association of different factors with DNAm ages in the EPIC dataset

Pan-tissue Skin & Blood PhenoAge GrimAge

Factor Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p

Sex (male) 1.47 (0.44) 8.00E−4 − 0.42 (0.32) 0.18 − 1.50 (0.53) 4.57E−3 1.45 (0.37) 9.99E−5

Cohort (primary) − 0.27 (0.58) 0.64 − 0.14 (0.42) 0.74 0.82 (0.69) 0.24 − 0.71 (0.49) 0.15

Age (years) 0.85 (0.03) 1.16E−86 1.06 (0.02) 3.48E−160 0.94 (0.04) 2.39E−77 0.80 (0.03) 2.21E−99

T1D Duration (months) 0.009 (0.005) 0.06 0.003 (0.004) 0.43 0.01 (0.01) 4.29E−2 − 0.005 (0.004) 0.24

Stimulated C-peptide (pmol/ml) − 0.15 (1.79) 0.93 − 0.72 (1.30) 0.58 − 1.74 (2.15) 0.42 − 2.05 (1.51) 0.18

Time-weighted HbA1c (%)* 0.05 (0.14) 0.71 − 0.01 (0.10) 0.89 0.38 (0.17) 2.57E−2 0.02 (0.12) 0.86

BMI (kg/m2) 0.02 (0.06) 0.76 0.09 (0.04) 4.84E−2 0.09 (0.07) 0.20 − 0.02 (0.05) 0.72

Systolic blood pressure (mmHg) − 0.01 (0.02) 0.66 0.004 (0.017) 0.79 − 0.03 (0.03) 0.33 − 0.01 (0.02) 0.48

Diastolic blood pressure (mmHg) 0.01 (0.03) 0.75 − 0.01 (0.02) 0.53 0.005 (0.038) 0.90 0.01 (0.03) 0.83

HDL (mg/dl) 0.93 (0.65) 0.15 0.01 (0.47) 0.98 0.59 (0.78) 0.45 − 0.11 (0.55) 0.85

LDL (mg/dl) 0.91 (0.65) 0.16 0.02 (0.47) 0.96 0.60 (0.78) 0.45 − 0.09 (0.55) 0.87

Triglyceride (mg/dl) 0.18 (0.13) 0.16 0.001 (0.094) 0.99 0.11 (0.16) 0.48 − 0.02 (0.11) 0.85

Total cholesterol (mg/dl) − 0.91 (0.65) 0.16 − 0.02 (0.47) 0.97 − 0.58 (0.78) 0.46 0.10 (0.55) 0.85

Pulse rate (beat/min) − 0.01 (0.02) 0.65 0.01 (0.02) 0.38 0.01 (0.03) 0.75 0.01 (0.02) 0.67

Current smoker vs. non-smoker − 0.16 (0.50) 0.76 − 0.51 (0.36) 0.16 0.99 (0.60) 0.10 7.13 (0.42) 9.03E−50

Regular drinker vs. non-drinker − 0.37 (0.46) 0.42 0.26 (0.33) 0.43 0.38 (0.55) 0.49 0.69 (0.38) 0.07

Occasional drinker vs. non-drinker − 0.66 (0.67) 0.32 − 0.50 (0.49) 0.30 0.41 (0.81) 0.61 0.71 (0.57) 0.21

Strenuous activity vs. sedentary† − 1.99 (0.99) 4.53E−2 − 0.85 (0.72) 0.24 − 0.94 (1.20) 0.43 0.54 (0.84) 0.52

Moderate activity vs. sedentary† − 0.11 (0.39) 0.78 0.23 (0.28) 0.41 0.05 (0.47) 0.91 0.25 (0.33) 0.44

METS > 1500 vs. METs < 450‡ − 0.18 (0.47) 0.71 − 0.27 (0.34) 0.42 0.60 (0.57) 0.29 − 0.33 (0.40) 0.41

METs 450–1500 vs. METs < 450‡ − 0.56 (0.48) 0.25 − 0.81 (0.35) 2.15E−2 − 0.56 (0.58) 0.34 − 0.76 (0.41) 0.06

Cell counts (B, CD4T, CD8T, natural killer, eosinophil, and monocyte) and batch (as a categorical variable) were also included in the multivariable analysis. All
factors were obtained at DNAm measurement except for stimulated C-peptide which is measured at DCCT eligibility
MET metabolic equivalent of task
*Time-weighted HbA1c from DCCT baseline to DNAm measurement
†Level of activity on the job, at school, or in home making: sedentary such as office work with occasional inter-office walking; moderate activity requires
considerable but not constant lifting, walking, bending, pulling, etc. such as homemaker with family and without domestic assistance; and strenuous activity
requires almost constant lifting, bending, pulling, scrubbing, etc. such as furniture mover
‡According to the international classification by Ainsworth used by American College of Sports Medicine (ACSM), light, moderate, hard, and very hard activity was
allocated 3, 4, 6, and 9 METs, respectively. For each participant, these allocated MET values were multiplied by the time (min) spent in that activity to obtain the
MET for that level of activity. The sum of METs from all activities was recorded as the total leisure time activity for each participant. Subjects then were
categorized into three groups based on the ACSM recommendation for METs min/week [17, 18]
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We also investigated epigenetic age in a smaller subset
(N = 63) using Illumina 450K array in whole blood and
16–17 years later in monocytes which gave us the oppor-
tunity to investigate the difference between the two ar-
rays and the change in epigenetic age over time. In 450K
whole blood data, on average, Pan-tissue had the highest
estimated value whereas in EPIC data GrimAge was esti-
mated higher than the other epigenetic ages. In addition,
Skin & Blood, which was on average lower than chrono-
logical age in EPIC data, was on average higher than
chronological age in 450K data. Therefore, it appears
that the type of array can affect the estimated epigenetic
age. However, this could also be due to subjects being
highly selected (two extremes of HbA1c and complica-
tions risk) in 450K data. Epigenetic ages in whole blood
and monocyte measured 16–17 years apart were always
correlated indicating that DNAm age is consistent over
time and in multiple cell types. This is consistent with
previous findings showing that Pan-tissue is consistent
across life span [23], and a substantial amount (over
70%) of its changes are shared between different tissue/
cell types [29] and also PhenoAge being correlated in
different tissues and cell types [8]. In monocyte 450K
data, we found a new association which we did not ob-
serve in EPIC data: higher stimulated serum C-peptide
at DCCT eligibility was associated with lower monocyte
Pan-tissue measured decades later at EDIC year 16–17.
The association was in the expected direction since pre-
served beta cell function as measured by stimulated C-

peptide is associated with better clinical outcomes (i.e.,
better glycemic control [30] and lower risk for diabetic
complications [31–34]). The fact that this association
was not observed in EPIC data with a much larger sam-
ple size could partly be due to the fact that the two sam-
ple populations are different: the 450K sample was
selected from two extremes of HbA1c and complications
risk, whereas the EPIC sample was selected randomly
from each cohort/treatment group. In addition, probes
may perform slightly differently between the two arrays
(450K and EPIC), and as a result measured levels of
methylation can be different [35]. In addition, whole
blood is a mixture of different cells with different half-
lives which could dilute the association(s) of individual
cell types especially if they make up only a small propor-
tion (e.g., monocytes, 2–8%).
We investigated the physical distance between all

CpGs that are included in Pan-tissue, Skin & Blood, and
PhenoAge epigenetic age calculations and T1D GWAS
loci [36, 37]: all CpGs are > 25 Mb away from them.
Therefore, it is unlikely that estimated DNAm ages were
confounded by methylation levels of the CpGs associated
with T1D. However, the CpGs included in GrimAge are
not publicly available. There have been two epigenome-
wide association studies of T1D [38, 39]; however, asso-
ciated CpGs (N = 132) are available for one of them
[38]. Of these, only two CpGs are common with Pan-
tissue (cg02047577 (Chr20, 62,587,702 (HG19)) and
cg16494477 (Chr5, 170,847,251)): the later CpG and

Table 5 Multivariable association of different factors with DNAm ages in 450K dataset

Pan-tissue Skin & Blood DNAm DNAm

Factor Beta (SE) p Beta (SE) p Beta (SE) p Beta (SE) p

Whole blood

Sex (male) − 0.19 (1.22) 0.88 − 1.54 (0.88) 0.09 − 2.08 (1.66) 0.22 1.43 (0.77) 0.07

Cohort (primary) 0.93 (1.71) 0.59 0.33 (1.23) 0.79 − 0.15 (2.33) 0.95 0.04 (1.07) 0.97

Group (intensive) 1.25 (3.89) 0.75 2.67 (2.81) 0.35 1.42 (5.30) 0.79 3.40 (2.44) 0.17

Age (years) 1.08 (0.09) 4.76E−16 1.03 (0.07) 1.13E−20 1.05 (0.12) 2.96E−11 0.84 (0.06) 1.92E−19

T1D Duration (months) 0.015 (0.014) 0.29 0.009 (0.010) 0.37 0.002 (0.019) 0.9 0.006 (0.009) 0.49

Stimulated C-peptide (pmol/ml)* − 5.11 (5.97) 0.40 − 1.56 (4.31) 0.72 − 4.78 (8.12) 0.56 4.56 (3.75) 0.23

Time-weighted HbA1c (%)† 0.70 (0.98) 0.48 0.64 (0.71) 0.37 0.58 (1.34) 0.67 1.08 (0.62) 0.09

Monocyte

Sex (male) 2.61 (1) 1.18E−2 − 0.51 (0.91) 0.58 − 2.64 (1.62) 0.11 1.3 (0.81) 0.11

Cohort (primary) − 1.2 (1.49) 0.42 − 0.95 (1.36) 0.49 − 0.98 (2.42) 0.69 0.21 (1.2) 0.86

Group (intensive) − 0.45 (1.87) 0.81 1.36 (1.7) 0.43 2.58 (3.03) 0.39 0.94 (1.5) 0.53

Age (years) − 0.21 (0.08) 1.16E−2 − 0.2 (0.07) 9.46E−3 0.92 (0.13) 5.50E−09 − 0.20 (0.07) 4.18E−3

T1D Duration (months) − 0.01 (0.01) 0.32 − 0.01 (0.01) 0.29 − 0.02 (0.02) 0.31 − 0.01 (0.01) 0.49

Stimulated C-peptide (pmol/ml)* − 13.05 (5.25) 1.62E−2 − 5.59 (4.78) 0.25 − 14.48 (8.51) 0.09 1.07 (4.23) 0.80

Time-weighted HbA1c (%)† 0.55 (0.71) 0.45 0.45 (0.65) 0.49 0.59 (1.15) 0.61 0.55 (0.57) 0.34

Cell counts (B, CD4T, CD8T, natural killer, eosinophil, and monocyte) were also included in the multivariable whole blood analysis
*Stimulated C-peptide at DCCT eligibility
†Time-weighted HbA1c from DCCT baseline to monocyte DNAm measurement
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another site are in common with PhenoAge
(cg11903057 (Chr4, 40,198,776) and cg16494477 (Chr5,
170,847,251)). Therefore, it appears unlikely that they
can have major effect on DNAm age.

Conclusions
We found that although all four epigenetic ages are cor-
related with each other and with chronological age, how-
ever, there are significant differences between them in
subjects with T1D. We also found that DNAm age is
consistent over time, but type of array (450K vs. EPIC)
and cell type can affect the estimated epigenetic age.
None of the epigenetic ages were associated with CVD
or retinopathy, but PhenoAge and GrimAge were both
associated with decreasing renal function as measured
by AER. GrimAge was also associated with both DPN
and CAN. Only PhenoAge was positively associated with
HbA1c levels and T1D duration, two major risk factors
for diabetic complications. Some of the other risk factors
of diabetic complications were associated with individual
epigenetic ages. Therefore, it seems that the investigated
epigenetic ages all work sub-optimally in detecting

subjects with T1D who are at higher risk to develop
complications. However, PhenoAge and specifically
GrimAge performed better that Pan-tissue and Skin &
Blood suggesting that including biomarkers associated
with aging-related mortality improves the accuracy of
DNAm measurement. Nevertheless, only some of the
risk factors of diabetic complication which are also
among the main factors associated with aging-related
mortality in the general population were considered in
their development (serum creatinine and glucose in Phe-
noAge and smoking pack-years in GrimAge), and major
factors such as hypertension, lipid levels, BMI, and
HbA1c which is a better indicator of glycemic levels in
long-term compared to serum glucose were not consid-
ered [8, 9]. Including these factors could potentially im-
prove epigenetic age estimation in the general
population and specifically in subjects with T1D.

Methods
Subjects
The study subjects were from the DCCT/EDIC study.
Subjects with T1D aged 13–39 years were recruited into

Fig. 3 Monocyte vs. whole blood epigenetic age acceleration in 450K data. EAA, epigenetic age acceleration; Corr, Spearman correlation
coefficient. The solid line is X = Y. The dash lines are EAA = 0
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DCCT in 1983–1989 in two cohorts. The primary pre-
vention cohort included participants with 1–5 years of
diabetes and no pre-existing retinopathy or nephropathy.
The secondary cohort included participants with 1–15
years of diabetes and pre-existing mild retinopathy. Sub-
jects were randomly assigned to receive intensive or
conventional diabetes therapy [40]. The DCCT ended
in 1993, and subjects subsequently have been followed
annually through the EDIC study (Supplementary
Figure 11).

Genome-wide DNAm measurement, QC, and
normalization
Genome-wide DNAm was measured in whole blood by
Illumina Infinium Human Methylation EPIC BeadChip
array in a subset of DCCT participants (N = 499) repre-
senting about 125 randomly selected adult subjects from
each cohort-treatment group who provided informed
consent and had sufficient DNA through a 2-year time
period prior to DCCT closeout (Zhuo Chen, Feng Miao,
Barbara H Braffett, John M Lachin, Lingxiao Zhang,
XiweiWu, Delnaz Roshandel, Melanie Carless, Xuejun
Arthur Li, Joshua D Tompkins, JohnKaddis, Arthur D
Riggs, Andrew D Paterson, DCCT/EDIC Study Group,
RamaNatarajan: DNA methylation: a mediator of
HbA1c-associated complicationdevelopment in Type 1
diabetes, Submitted) . DNAm was also measured by Infi-
nium Human Methylation 450K BeadChip array in a
smaller subset from the DCCT/EDIC (N = 63, 22 over-
lap with EPIC data) in the whole blood during the same
2-year time period prior to DCCT closeout and in
monocytes at EDIC follow-up year 16–17. These in-
cluded 32 subjects from the conventional treatment
group with mean DCCT HbA1c > 9.1% (76 mmol/mol)
and significant progression of retinopathy and/or ne-
phropathy from the DCCT closeout to EDIC year 10,
and 31 subjects from the intensive treatment group with
mean DCCT HbA1c < 7.3% (56 mmol/mol) and no de-
velopment of retinopathy and nephropathy until EDIC
year 10 [41]. Three subjects had missing methylation
data for monocytes including two subjects from the con-
ventional and one subject from the intensive treatment
group.
The R package meffil (https://github.com/perishky/

meffil; accessed on December 2018) [42] was used to
perform QC and normalization. Samples were removed
if their predicted sex based on DNAm did not match
their recorded sex or had > 10% probes with detection p
value > 0.01 or > 10% probes with bead number < 3.
Samples were also excluded if their SNP genotypes did
not match with those from GWAS-array (concordance
threshold = 0.8). Illumina HumanCoreExome BeadArray
(Illumina, San Diego, CA, USA) data imputed to 1000
Genomes (phase 3, v5) was used for this comparison

[43]. One sample from EPIC and one sample from 450K
monocyte data did not pass QC. Functional
normalization (“noob” for dye-bias and background cor-
rection followed by “quantile” normalization imple-
mented in meffil) was then performed to account for
technical variation in the data [42]. Blood cell propor-
tions were estimated using the method [44] imple-
mented in meffil with “blood gse35069 complete” as
reference [42].

DNAm age calculation
Pan-tissue [1], Skin & Blood [2], PhenoAge [8], and
GrimAge [9] were calculated by uploading the data to
https://dnamage.genetics.ucla.edu/ (accessed December
2018) with the normalization option selected.

T1D complications
CVD was described as any CVD from DNA collection
date to EDIC follow-up year 20 [45].
Nephropathy was described as first occurrence of sus-

tained (2 consecutive) eGFR < 60ml/min/1.73 m2 [46,
47] or AER ≥ 300 mg/24 h [48] from DCCT closeout to
EDIC year 18. The Chronic Kidney Disease Epidemi-
ology Collaboration equation [49] was used to calculate
eGFR.
Retinopathy was defined as severe non-proliferative

diabetic retinopathy (SNPDR), proliferative diabetic ret-
inopathy (PDR), or clinically significant macular edema
(CSME) from DCCT closeout to EDIC follow-up year 18
[50].
Neuropathy was defined as DPN at EDIC year 13/14

and CAN at EDIC year 13/14 and/or EDIC year 16/17
[51].

Statistical analysis
Spearman correlation was used to test for correlation be-
tween chronological age and DNAm age and between
the four epigenetic ages. Paired sample T tests were used
to determine if epigenetic ages were significantly differ-
ent from chronological age and if the four epigenetic
ages differed significantly.
EAA was calculated by subtracting chronological age

from epigenetic age (EAA = epigenetic age − chrono-
logical age). EPIC array was performed in seven batches.
Therefore, batch was included in all multivariable ana-
lyses of EPIC data. Since whole blood is a combination
of 7 different cell types (neutrophil, B cell, CD4T, CD8T,
natural killer cell, eosinophil, and monocyte) and their
proportions affect DNAm and epigenetic ages, six pre-
dicted cell proportions were included as covariates in all
multivariable analyses of whole blood. Neutrophils were
excluded as the seven cell proportions sum to one.
Cox proportional hazard models were used to test as-

sociation of DNAm age with development of CVD,
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nephropathy, and retinopathy using EPIC data. Logistic
regression was used to test association of DNAm age
with development of neuropathy during EDIC. Subjects
who developed complications during DCCT (before
DNAm measurement) were excluded from their corre-
sponding analysis. We also investigated association of
DNAm age with repeated measures of renal function,
eGFR (annual), and AER (biannual, natural log trans-
formed) from DCCT closeout to EDIC follow-up year 18
using LMMs. Two models were fit for both Cox and
LMMs. Model 1 included sex, age, and T1D duration at
the time of DNAm measurement along with batch and
cell proportions. Model 2 included all covariates in
model 1 plus repeated cross-sectional measures of
HbA1c (Supplementary Table 12).
In univariable analysis, linear regression was used to

test the association of different factors with EAA one at
a time. In multivariable analysis, all factors plus chrono-
logical age were included in the model, and their associ-
ations were tested with DNAm age using linear
regression. These factors included sex, cohort, treatment
group, and stimulated C-peptide at DCCT eligibility as
well as T1D duration, time-weighted HbA1c, BMI, sys-
tolic and diastolic blood pressure, HDL, LDL, triglycer-
ide, total cholesterol, pulse rate, current smoking,
drinking status, physical activity during work, and leisure
time at the time of DNAm measurement (Supplemen-
tary Table 3). Since HbA1c and treatment group are
highly associated, only HbA1c was included in the multi-
variable analysis of EPIC data. Due to small sample size
and being highly selected on multiple traits, associations
of only a subset of factors (sex, age, T1D duration, stim-
ulated C-peptide, HbA1c, cohort, and treatment group)
were tested in 450K data.
All the statistical analyses were performed using SAS

9.4 (Cary, NC).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-020-00840-6.
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