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Abstract

Emotion recognition based on electroencephalogram (EEG)
signals is a current focus in brain-computer interface research.
However, due to the individual differences, how to build a sim-
ple and effective model and quickly adapt to the target subject
are significant challenges in cross-subject emotion recognition.
In this study, we proposed an approach by combining the Dual-
Attention network and Meta-Transfer Learning (MTL) strat-
egy based on k-means clustering for meta-task sampling. The
Dual-Attention network extracts EEG features through a chan-
nel attention block and a temporal attention block. The MTL
strategy trains the model to learn both common and individ-
ual features among subjects. The meta-task sampling method
based on k-means clustering adaptively groups the source do-
main samples, sampling support and query sets for meta-tasks
from Different Groups(DG sampler). The DG sampler al-
lows the model to ”grow in diversity”, further enhancing its
generalization capabilities. Binary classification experiments
were conducted on the DEAP dataset, achieving accuracies
of 72.35% and 71.77% in the arousal and valence dimen-
sions, respectively. The results have reached the state-of-the-
art level and demonstrated significant performance enhance-
ment in cross-subject EEG-based emotion recognition.

Keywords: emotion recognition; EEG; attention mechanism;
meta-transfer learning; k-means clustering

Introduction
Emotions serve as reflections of an individual’s current phys-
iological and psychological state, significantly influencing
cognition, communication, and decision-making. A promi-
nent focus in the field of human-computer interaction is affec-
tive computing, dedicated to exploring theories and method-
ologies for identifying and interpreting human emotions (Po-
ria et al., 2017). Affective computing processes various in-
put signals, including video, audio, and physiological sig-
nals,etc. Unlike facial expressions, physiological signals like
electroencephalogram (EEG) are less susceptible to manipu-
lation and offer a more genuine reflection of an individual’s
emotional state. Therefore, emotion recognition based on
EEG signals plays an important role in areas such as clini-
cal diagnosis and treatment (Liu et al., 2011).

In the early stages, researchers manually extracted EEG
features and applied traditional machine learning methods for
EEG-based emotion recognition (Wang et al., 2014; Petran-
tonakis & Hadjileontiadis, 2010). With the development of
deep learning, how to achieve end-to-end emotion classifi-
cation using raw EEG signals is a research hotspot. Neuro-
science studies suggest the involvement of specific brain re-
gions in the generation of emotions. Davidson (1993) and

Hajcak et al. (2010) proposed the frontal lobe’s role in regu-
lating nervous system activity during emotion regulation. Ad-
ditionally, emotions trigger distinct physiological signals over
time, causing various ability of EEG signals to express emo-
tions across different time intervals (Ma et al., 2019). Based
on these neuroscience findings, Ning et al. (2021) introduced
the convolutional block attention module (CBAM) (Woo et
al., 2018) to effectively learn both channel and temporal rep-
resentations from EEG signals.

Generalizing models to subjects unseen during training is
a significant challenge in cross-subject EEG-based emotion
recognition task. Transfer learning emerges as a solution,
with many researchers employing domain adversarial net-
works to minimize the distribution gap between source and
target domains (He et al., 2022; Pei et al., 2023). The above
studies based on unsupervised learning require a substantial
number of target domain samples for effective domain adap-
tation. Meta-learning has been used for few-shot learning,
enhancing model generalization on target domain tasks by
learning from multiple source domain tasks. Model-agnostic
meta-learning (MAML) (Finn et al., 2017), a classic meta-
learning algorithm, updates model parameters through dual
gradient updates and has been employed in various cross-
domain tasks (Qian & Yu, 2019; Guo et al., 2019).

Recent studies have applied meta-transfer learning(MTL)
(Sun et al., 2019) to cross-subject EEG-based emotion recog-
nition task (Duan et al., 2021; J. Li et al., 2022). This innova-
tive approach trains models to learn to learn, enabling them
to rapidly adapt to the data distribution of new subjects by us-
ing minimal labeled samples. J. Li et al. (2022) constructed
a neural network with multiple convolution kernels to extract
intricate emotional representations from connectivity features
in EEG signals. Their use of MTL strategy enabled the model
to learn shared emotion recognition patterns among individu-
als.

Due to significant variability in emotion recognition pat-
terns based on EEG signals among different subjects, some
researchers proposed sampling meta-tasks from various sub-
jects during meta-transfer learning (J. Li et al., 2022; S. Li
et al., 2022). Recent studies in neuroscience exploring Inter-
Subject Correlation (ISC) suggest that EEG signals from in-
dividuals watching the same emotional video can reflect col-
lective arousal, valence, and more (Dmochowski et al., 2012,
2014). These investigations provide crucial neurological ev-
idence for constructing shared EEG-based emotional repre-
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sentations among individuals. Inspired by this research, Shen
et al. (2022) generated positive pairs from EEG signals of dif-
ferent subjects viewing the same video and vice versa. While
these studies leveraged differences among subjects or videos
to design data samplers, their sampling methods relied on
firm groupings, treating EEG samples from individual sub-
ject or video as identical data distribution. Therefore, these
methods are challenging to effectively enhance the general-
ization capability of the model. Qu et al. (2020) used an un-
supervised k-means algorithm to empirically stratify individ-
uals into more homogeneous subgroups by clustering on EEG
patterns. The results indicated that two subgroups identified
in each of the three clustering models are highly consistent.

To enhance the model’s generalization ability, we proposed
a model that integrates the Dual-Attention network and MTL
strategy, leveraging a grouping mechanism based k-means
clustering for meta-task sampling. Inspired by the CBAM
(Woo et al., 2018), we’ve designed a Dual-Attention network
that extracts channels and temporal segments crucial for dis-
tinguishing emotions. Compared to traditional transfer learn-
ing, meta-transfer learning diminishes the reliance on target
domain data. Therefore, our method adopts MTL to train
model parameters, enabling the model to grasp shared EEG
emotion patterns among subjects. Additionally, we proposed
an innovative meta-task sampling method rooted in k-means
clustering.The sampling method adaptively groups samples
from source domain based on k-means clustering, heighten-
ing the distributional diversity between support and query sets
within meta-tasks, thus enriching the model’s learning capa-
bilities.

Methodology
This section focuses on three key components of our ap-
proach: Dual-Attention model, MTL strategy, and the DG
sampler. The Dual-Attention model effectively captures
channel characteristics and temporal features from EEG sig-
nals using a channel attention block and a feature attention
block. The MTL strategy updates parameters to enable the
model to learn both common and individual traits among di-
verse subjects. Meanwhile, the DG sampler samples support
and query sets across different groups, intentionally increas-
ing the distribution discrepancy in meta-tasks and further en-
hancing the model’s overall ability to generalize.

Dual-Attention Model
The researchers utilized multiple channels from various brain
regions while collecting EEG datasets, yet studies indicate
that only specific brain regions are associated with emotional
responses. Additionally, emotions exhibit distinct and sta-
ble patterns during specific time intervals (T.-H. Li et al.,
2019). To extract EEG features that better differentiate be-
tween emotions, we introduced the Dual-Attention model
based on attention mechanism, as shown in Figure 1. The
model employs a dual attention mechanism for channel and
temporal features, automatically focusing on critical channels
and time segments distinguishing emotions. It assigns higher

weights to key channels and sampling points, effectively ex-
tracting EEG features while reducing model complexity.
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Figure 1: The framework of Dual-Attention model. The
Dual-Attention model comprises a feature extractor and a
classifier. The feature extractor consists of a channel attention
block and a temporal attention block, responsible for extract-
ing channel-specific and temporal features from EEG signals,
respectively.
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Figure 2: The framework of channel attention module, where
C represents the number of channels and T represents the
number of temporal features for each channel.

Channel Attention Module We calculated channel
weights based on the inter-channel relationships of features.
Figure 2 illustrates the architecture of the channel attention
module. To effectively compute channel attention weights,
we compressed the temporal feature dimension of the input
signal utilizing global average pooling. Subsequently, two
one-dimensional convolutional layers form the bottleneck
layer, followed by a final sigmoid layer to train the channel
weights. In essence, the computation within the channel
attention block can be described using the following formula:

Wc(X) = σ(Conv1D(ReLU(Conv1D(AvgPool(X))))), (1)

X
′
=Wc(X)⊗X , (2)

where σ is sigmoid function, ⊗ represents element-wise mul-
tiplication. During the multiplication process, attention val-
ues are broadcasted accordingly: the channel attention values
are broadcasted along the spatial dimension. X ∈RC×T , X

′ ∈
RC×T , Wc(X) ∈ RC, C represents the number of channels, T
represents the number of temporal features for each channel,
and Wc(X) represents the computed channel weights.
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Figure 3: The overall process of MTL. The black dashed box sequentially presents three stages of MTL: pre-train phase, meta-
train phase, and meta-test phase. The green dashed box illustrates the processing flow of the DG sampler: feature extraction,
feature dimensionality reduction, and k-means clustering are sequentially applied to obtain n way× k groups. Subsequently,
during the meta-train phase, support and query sets are sampled independently from distinct groups.

Temporal Attention Module Temporal attention block
shares a structure similar to the channel attention block, ex-
cept that the output from the channel attention block X

′
is

transposed to X
′′
, where X

′′ ∈ RT×C.

Meta-Transfer Learning (MTL)
Due to the substantial variability in EEG signals associated
with the same emotion across different subjects, we’ve em-
ployed MTL strategy to train our model for rapid adaptation
to the data distribution of target subject. MTL strategy com-
bines the advantages of transfer learning and meta-learning.
Transfer learning leverages knowledge learned by the model
from a large number of labeled source domain samples to the
target domain, while meta-learning trains the model’s learn-
ing capabilities by sampling meta-tasks, particularly useful
when the target domain has limited labeled samples. MTL
strategy consists of three main stages: pre-training, meta-
training, and meta-testing, as illustrated in Figure 3.

Pre-train Stage The pre-train stage aligns with the conven-
tional pre-train stage in classic transfer learning paradigms,
such as pre-training for object detection on large-scale image
datasets like ImageNet (Russakovsky et al., 2015). During
this phase, we trained the model using all data from the source
domain, employing gradient descent to update the randomly
initialized parameters of the model. This allows the model to
learn the overall data distribution of all subjects.

We begined by initializing a feature extractor φ (e.g. the

feature extractor in the Dual-Attention model) and a classi-
fier θ (e.g. a fully connected layer) and performed gradient
updates using the following formula:

[φ;θ] = [φ;θ]−α∇LDs([φ;θ]), (3)

LDs([φ;θ]) =
1

|Ds| ∑
(x,y)∈Ds

l( f[φ;θ](x),y), (4)

where α denotes the learning rate, and l(.) represents the loss
function, typically the cross-entropy loss.

During the pre-train stage, the model efficiently fits the data
distribution of source domain. The parameters of the feature
extractor obtained during this stage are used to initialize the
model in meta-train stage. However, since the model hasn’t
yet learned the differences between various subjects, the clas-
sifier, being the closest component to the output, is removed.

Meta-train Stage Due to significant differences in the data
distribution between source and target domains, the model
trained in the pre-train phase cannot generalize well to the
target subject. Therefore, the meta-learning concept is em-
ployed to continue updating the model in the meta-train
phase. Meta-tasks are sampled from the source domain data,
consisting of support and query sets used to update both base-
learner and meta-learner of the model. During this phase, the
model parameters are updated through a dual gradient descent
approach.
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In each episode, the model computes the loss on the sup-
port set and updates the base-learner θ several times within
an inner loop, as shown in Equation (5):

θ
′
= θ−β∇LT(s)([φ;θ]), (5)

where β denotes the base learning rate. T(s) represents sup-
port set, T(s) ∈ RN1×C×T , N1 = n way× n shot, n way is the
number of classes, n shot is the number of samples per class
in the support set.

Following this, utilizing the feature extractor retained from
previous episode and base-learner updated within the inner
loop, we computed the loss on query set. Subsequently, we
proceed to update meta-learner [φ;θ] in the outer loop, as il-
lustrated in Equation (6):

[φ;θ] = [φ;θ]− γ∇LT(q))([φ;θ
′
]), (6)

here γ denotes the meta learning rate, T(q) represents query
set, T(q) ∈ RN2×C×T , N2 = n way× n query, n query is the
number of samples per class in the query set.

In the meta-train phase, the dual gradient descent approach
enables the model to grasp the distribution differences be-
tween support and query set samples. The model’s base-
learner adeptly extracts individual-specific features, while the
meta-learner, particularly within the feature extractor compo-
nent, learns shared characteristics among all subjects.

Meta-test Stage The meta-test stage involves sampling
meta-tasks from the target domain. In this stage, the sup-
port set comprises labeled samples, while the query set lacks
labels. Initially, the base-learner is updated using the support
set, followed by the assessment of the model’s accuracy in
recognizing emotions within the query set.

The base-learner of the model, being the closest compo-
nent to the output, can effectively capture intricate features
within EEG signals, reflecting unique variations among dif-
ferent individuals. Therefore, during the meta-test stage, a
simple fine-tuning of the model’s base-learner enables adap-
tation to the specific data distribution of the target subject,
leading to enhanced performance.

Sampling from Different Groups(DG sampler)
In the meta-train stage, the original MTL method randomly
sampled meta-tasks from all samples in the source domain.
However, due to substantial variations in EEG data among
different subjects and even within various trials from the same
subject, we introduced the DG sampler to enhance adapta-
tion of the MTL strategy in cross-subject emotion recogni-
tion task. Figure 3 summarizes the workflow of DG sampler.
Initially, we extracted features from the source domain data
using a model trained in the pre-train phase. As the feature
dimension was large, we performed PCA dimensionality re-
duction on the extracted features. Finally, k-means cluster-
ing was applied to the reduced features to obtain k clusters.
For better meta-task sampling, we performed clustering on

samples with different emotional labels. The method clus-
tered the source domain samples into n way×k groups, from
which the support and query sets for meta-tasks were sampled
in different groups. The explicit augmentation of the data
distribution disparity between support and query sets within
meta-tasks aimed to enhance the model’s generalization abil-
ity.

Expriments and Results

Dataset and Data Processing

The DEAP dataset comprises physiological signals elicited
by music video stimuli, capturing recordings from 32 sub-
jects while they watched 40 one-minute music videos. These
recordings includes both the physiological responses and
the subjects’ subjective psychological assessments—Valence,
Arousal, Dominance, and Liking—rated on a 1 to 9 scale.
The physiological signals were initially sampled at 512Hz,
followed by preprocessing and downsampling to 128Hz.
Each subject’s dataset matrix is 40 × 40 × 8064 (40 experi-
mental music videos, 40 channels of physiological data, 8064
sampling points).

Utilizing 32 channels of EEG signals, the dataset was fur-
ther segmented into 1-second intervals, removing the first
3s baseline. Consequently, each subject contributed 2400
samples, each represented as a matrix of dimensions 32 ×
128. The samples were labeled based on a threshold of 5,
with scores equal to or greater than 5 assigned a high va-
lence/arousal label, and scores less than 5 assigned a low va-
lence/arousal label. Binary classification experiments were
conducted independently in both valence and arousal dimen-
sions.

Implementation Details

Based on MTL strategy, the model undergoes training with
a large number of labeled samples from the source domain,
followed by fine-tuning using a limited amount samples from
the target domain. Thus, we evaluated the proposed method’s
performance in cross-subject task using a leave-one-subject-
out cross-validation technique.

In the pre-training phase, we used the Adam optimizer to
update model parameters, iterating for 10 epochs. In the
meta-training phase, each episode involved sampling meta-
tasks from the source domain, with a batch size of 30 com-
prising 10-shot and 20-query, iterated over 100 episodes.
During this phase, we utilized an Adam optimizer with
a base-learning rate of 0.005 and a meta-learning rate of
0.0001, with 10 iterations for base-learner parameter updates.
When performing k-means clustering on the source domain
samples, the value of k was set to 25. In the meta-testing
phase, meta-tasks were sampled from the target domain for
testing. We set varying n-shot (10, 15, 20, 25) alongside a n-
query of 10. Similar to the meta-training phase, we employed
the Adam optimizer with consistent parameter settings.
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Table 1: The classification accuracies of different methods.

Methods Valence(%) Arousal(%)
AD-TCN 64.33 ± 7.06 63.25 ± 4.62
ATDD-LSTM 69.06 ± 6.37 72.90 ± 6.57
MUPS-EEG 66.50 ± 4.70 /
MTL-MSRN 71.29 ± 7.67 71.92 ± 6.79
Ours 72.35 ± 5.79 71.77 ± 5.60

Results
We compared our proposed method with the current state-
of-the-art works, as presented in Table 1. AD-TCN (He et
al., 2022) utilizes a temporal model as a feature encoder, and
integrates domain adversarial networks to mitigate distribu-
tion gaps between the source and target domains. ATDD-
LSTM (Du et al., 2020), also employing domain adversar-
ial networks for domain adaptation, constructs an LSTM-
based model to capture spatial characteristics among dis-
tinct electrode EEG signals. In comparison to AD-TCN,
ATDD-LSTM considers interrelationships among different
EEG channels, resulting in a noticeable performance en-
hancement. However, these methods rely on unsupervised
learning principles, requiring a considerable amount of unla-
beled target domain data for domain adaptation. Furthermore,
MUPS-EEG (Duan et al., 2021) and MTL-MSRN (J. Li et al.,
2022) utilize MTL strategy to train models, fine-turning them
with limited labeled target domain samples. Although MTL-
MSRN obtains close accuracy with the proposed method, our
model displays a smaller standard deviation. This suggests
that our model, employing MTL strategy with DG sampler,
offers superior generalization across different subjects, in-
cluding those with more distinctive individual characteristics.

Ablation Experiments

Table 2: The accuracies(%) comparison of different models
in the valence dimension.

Models 10-shot 15-shot 20-shot 25-shot
MLP 58.22 60.74 62.87 63.96
CNN 56.16 57.85 59.35 61.31
Transformer 59.81 61.80 64.37 65.40
Dual-Attention 64.29 67.20 69.94 72.35

Table 3: The accuracies(%) comparison of different models
in the arousal dimension.

Models 10-shot 15-shot 20-shot 25-shot
MLP 59.75 61.97 64.14 66.20
CNN 58.15 60.60 61.42 62.72
Transformer 59.62 62.36 64.22 65.99
Dual-Attention 64.23 67.49 69.70 71.77

Comparison of Models To validate the superior perfor-
mance of our proposed Dual-Attention model, we developed

three additional neural network architectures: Multilayer Per-
ceptron (MLP), Convolutional Neural Network (CNN), and
a Transformer-based network, for comparative analysis. We
adopted the MTL strategy for our proposed Dual-Attention
model and these three models, and sampled meta-tasks using
the DG sampler.

Tables 2 and 3 present the comparative results of differ-
ent models in the valence and arousal dimensions within the
DEAP dataset. Our proposed Dual-Attention model outper-
forms others in both dimensions. Transformer closely fol-
lows Dual-Attention, indicating the effectiveness of attention
mechanisms in extracting features from EEG signals. Among
these, CNN performs the poorest. Despite extracting tempo-
ral and channel features, its characteristics of local perception
and parameter sharing may overlook inter-channel correla-
tions and overall trends in temporal features. MLP performs
better than CNN but remains suboptimal. It directly flattens
the raw two-dimensional EEG signals into one-dimensional
vectors, neglecting crucial channel information. In contrast,
the Dual-Attention model compresses temporal and channel
features through global average pooling, subsequently train-
ing channel and temporal weights to focus more intuitively on
distinguishing key channels and temporal segments for emo-
tions. Hence, the Dual-Attention model achieves the highest
accuracy in both valence and arousal dimensions compared
to other models.

Comparison of Meta-task Samplers To assess the effec-
tiveness of our proposed DG sampler in improving model
generalization, we conducted ablation experiments using
three other meta-task sampling methods:

AS sampler: Randomly selecting support and query sets
from all samples of source domain.

DS sampler: Each episode, randomly choosing a pair of
subjects and sampling support set and query set from their
respective samples.

DT sampler: Selecting a subject per episode and sampling
support and query sets from various videos watched by this
subject.

Table 4: The accuracies(%) comparison of different meta-
task samplers in the valence dimension.

Samplers 0-shot 10-shot 15-shot 20-shot 25-shot
AS 53.36 61.13 64.65 66.70 68.61
DS 54.73 62.07 64.86 66.92 69.30
DT 54.82 61.98 65.37 67.33 69.26
DG 53.97 64.29 67.20 69.94 72.35

Table 5: The accuracies(%) comparison of different meta-
task samplers in the arousal dimension.

Samplers 0-shot 10-shot 15-shot 20-shot 25-shot
AS 58.45 60.74 64.19 66.66 68.37
DS 58.88 61.47 64.09 67.18 68.93
DT 57.94 62.92 65.83 67.72 69.73
DG 58.63 64.23 67.49 69.70 71.77
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Figure 4: The results in the valence dimension based on different samplers when using 32 subjects individually as the target
domain.

Tables 4 and 5 display the comparative results of four dif-
ferent meta-task samplers, with the DG sampler exhibiting
the best performance. It can be observed that the accuracy
rates at 0-shot among these samplers are close, differing by
no more than 0.5%. However, the accuracy rate reaches
only around 58%, indicating a relatively limited ability of the
model to generalize to target subject without fine-tuning. Af-
ter training the model with a small amount of labeled data, the
accuracy rates of all four samplers improved. Among them,
the DS and DT samplers show slightly higher results than
the AS sampler, indicating that these two sampling methods
allow the model to perceive the differences between differ-
ent subjects or videos, thereby enhancing the model’s learn-
ing ability amid sample variations. The DG sampler shows
significantly superior results after fine-tuning compared to
the other samplers. This is attributed to the DG sampler’s
more flexible grouping of samples based on the overall data
distribution of the source domain using the k-means cluster-
ing. Figure 4 demonstrates the comparison of results obtained
when 32 subjects are used as the target domain for different
sampling samplers. It shows improved accuracy for the ma-
jority of subjects when utilizing the DG sampler, further con-
firming that the model trained with the DG sampler combined
with MTL strategy exhibits superior generalization ability.
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Figure 5: The test accuracies increase with update steps of
the base-learner.

Comparison of Update Steps of the Base-learner in the
Meta-test Stage Meta-transfer learning aims to rapidly

adapt the model to the data distribution of the target domain
through a few update steps. Hence, we examined the impact
of the update steps of the base-learner during the meta-test
stage on the accuracies of query sets, illustrated in figure 5. It
reveals a consistent trend across the four different meta-task
samplers as update steps increase. There’s a noticeable ac-
curacy improvement up to around 50 update steps, followed
by marginal gains beyond 100 steps. This demonstrates the
fast convergence of our proposed Dual-Attention model after
a limited number of update steps. Additionally, the DG sam-
pler consistently outperforms the other three samplers across
various update steps, confirming its superior performance in
cross-subject emotion recognition task.

Conclusion

In order to address the challenge of poor model generaliza-
tion due to individual differences in EEG emotional patterns,
we proposed an approach that combines the Dual-Attention
network with MTL strategy using k-means clustering for
meta-task sampling. The method effectively extracts channel-
specific and temporal features distinguishing various emo-
tions based on attention mechanism. Through MTL strat-
egy, it learns shared emotional EEG patterns among individ-
uals, enabling the model to rapidly adapt to target subjects
via fine-tuning. Moreover, the DG sampler method based on
k-means clustering amplifies differences between the support
and query sets, further enhancing the model’s generalization
ability. Evaluating our method on the DEAP dataset yielded
accuracy rates of 72.35% and 71.77% in the arousal and va-
lence dimensions, respectively. Additionally, we conducted
ablation experiments on the Dual-Attention network and DG
sampler, validating their crucial contributions to cross-subject
EEG emotion recognition.
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