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Abstract

Integrated Node-Pore Sensing Techniques for Label-Free Single-Cell Measurements

by

Kristen Cotner

Doctor of Philosophy in Bioengineering

University of California, Berkeley

Professor Lydia Sohn, Chair

Microfluidic devices that can analyze single cells at high throughput are powerful tools in
biomedical research, and many such technologies have been developed in recent years. Node-
pore sensing (NPS) is one such platform, and NPS devices have been developed that measure
a variety of both physical and molecular cell properties. The NPS platform benefits from
being inherently label-free, meaning that cells do not need to be tagged with fluorescent
or magnetic labels. Additionally, as NPS relies on an entirely electronic measurement, it
is a robust system that is relatively low-cost to implement. These factors make NPS an
attractive platform for biomedical research because it is accessible and easy to use while
enabling multi-parameter single-cell measurements. This platform has already led to several
new biological discoveries, although it still has some technical limitations.

This dissertation focuses on characterizing the NPS platform and extending its technical
capabilities. First, we present a quantitative study demonstrating the user-friendliness and
reliability of our custom NPS data processing software. Second, we describe the theoretical
framework and experimental characterization of a novel method to achieve multichannel NPS
measurements for the first time. Finally, we introduce a new NPS platform with the unique
ability to combine single-cell label-free mechanical and biomolecular measurements. These
advancements pave the way toward next-generation, fully integrated NPS devices that can
provide new insight into biologically and clinically important questions.
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Chapter 1

Introduction

A core concept in the development of modern biotechnologies is the ability to capture the
full spectrum of heterogeneity present in biological samples. In both research and clinical
laboratory environments, it is often not sufficient to take a bulk measurement of millions
of cells. Not only are there dozens of cell types within the human body, but there are
often a wide variety of states possible even within the same cell type. Moreover, it is
often precisely this heterogeneity that gives rise to a biological phenomenon of interest—
for example, when just one cell develops a cancerous mutation. For these reasons, new
biotechnology platforms are most often focused on single-cell analysis, or the ability to
perform a separate measurement on every cell within a sample.

The field of microfluidics—which focuses on creating and applying fluidic devices with
micron-scale features—has enabled significant advances in single-cell measurement technolo-
gies in recent years. Microfluidic technologies enable researchers to create chips with small
microchannels, through which hundreds or thousands of cells flow one at a time. This level of
control allows very precise measurements to be accomplished at high throughput and has led
to a plethora of new single-cell analysis platforms in the past two decades. Among the many
single-cell microfluidic analysis strategies, electrical sensors are especially promising due to
their versatility, robustness, and relatively low cost. Electronically integrated microfluidic
devices have been used to screen and analyze single cells for a wide range of biomedical
and clinical applications, including rapid blood counts, HIV and parasite detection, and
point-of-care diagnostics.

In this dissertation, I focus on a particular microfluidic platform called node-pore sens-
ing (NPS). This is a single-cell analysis technology based on a simple electrical measurement
that benefits from the high throughput of microfluidics and the high accessibility of elec-
tronic sensing methods. This body of work is primarily concerned with characterizing and
expanding the NPS platform to enable new capabilities that could lead to future discoveries.

• In Chapter 2, I will provide context for this dissertation by reviewing the state of the
field in single-cell, label-free sensing technologies. I will highlight the major work in
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recent years, provide a perspective on the pros and cons of each method, and identify
promising areas for future development.

• In Chapter 3, I will focus on a core technology developed in the Sohn Lab called
mechano-node-pore sensing (mechano-NPS), which measures the mechanical properties
of cells. I will describe the motivation behind this type of measurement, known as
mechanical phenotyping, and I will discuss areas where mechano-NPS has led to new
insights in biology and cancer. I will then review the theoretical principles governing
mechano-NPS and provide general methods for mechano-NPS device fabrication, data
collection, and data analysis. Finally, I will present the results of a systematic study
demonstrating that while the data processing software for mechano-NPS requires some
user input and training, results obtained with this software are highly consistent and
reproducible between users, even for novices.

• In Chapter 4, I will describe a novel method for improved throughput and versatility of
the NPS platform that is based on, for the first time, simultaneous multichannel mea-
surements. I will discuss the motivation for introducing multichannel capabilities and
review the theory behind this novel method. I will provide a mathematical model for
how this system behaves as it simultaneously measures cells in several parallel channels,
and I will utilize computational simulation to evaluate the model’s predictions.

• Having established the theoretical framework for this new multichannel NPS technol-
ogy, I will demonstrate its experimental implementation in Chapter 5. I will present
three new multichannel device designs based on this concept and demonstrate proof-of-
concept results from each. I will describe the computational data analysis platform we
developed that teases apart the signals from the separate channels and automatically
extracts data from measured cells. Finally, I will present a quantitative study of the
tradeoff between increasing numbers of channels and system performance.

• In Chapter 6, I will describe progress toward combining mechanical phenotyping with
biomolecular screening in a new, integrated NPS platform. I will first review the
motivation for developing this technology and provide context by describing prior work.
I will then present an overview of the concepts behind our new platform and the
underlying technologies we apply. Next, I will provide methods and preliminary results
for a proof-of-concept integrated device design. Finally, I will discuss challenges and
next steps in this project.

• I will conclude in Chapter 7 by reviewing the work presented in this dissertation and
describing how we plan to apply these developments in NPS technology toward current
and future projects.
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In summary, this dissertation focuses on emerging technologies for label-free single-
cell analysis with the NPS platform. We have conducted a quantitative user study of
the mechano-NPS data processing software, we have established and characterized a novel
method that enables multichannel NPS measurements for the first time, and we have devel-
oped a new NPS platform that combines mechanical and biomolecular measurements. These
advancements will drive further technological development to extend NPS capabilities even
further, creating more powerful single-cell analysis tools for biomedical research.
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Chapter 2

Motivation & Prior Work

This chapter is adapted with permission in part from:

T. R. Carey*, K. L. Cotner*, B. Li*, and L. L. Sohn, “Developments in label-free mi-
crofluidic methods for single-cell analysis and sorting”, Wiley Interdisciplinary Reviews:
Nanomedicine and Nanobiotechnology, no. March, e1529, 2018, issn: 19390041. doi:
10.1002/wnan.1529. [Online]. Available: https://onlinelibrary.wiley.com/doi/
full/10.1002/wnan.1529, *Equal contribution. [1]

In this chapter, we review microfluidics advances in the last two decades that have resulted
in the development of many new tools for characterizing single cells. We discuss the rationale
for analyzing biological samples at the single-cell level and the advantages of label-free plat-
forms over those that require exogenous labels. We also review some of the most promising
technologies of this type, including electronic sensors (e.g., Coulter counters and electrical
impedance cytometry) and devices that perform deformation analysis (e.g., optical traps and
deformation cytometry). This chapter serves to describe the state of the field in single-cell,
label-free microfluidic analysis and establishes the foundation for the rest of the work in this
dissertation.

2.1 Introduction
Tools for cell characterization are indispensable in the life sciences and in medicine, as
they enable rapid identification of desired subpopulations and critical monitoring for clinical
diagnostics. Recently, single-cell analysis has gained much attention, as such analysis could
potentially transform personalized medicine. Knowledge of the heterogeneity of a patient’s
solid tumor at the single-cell level could, for instance, enable therapies that target multiple
cell subtypes [3], thereby improving survival rates. Identifying rare circulating tumor cells
in patient blood could determine prognosis and efficacy of treatment [4]. Current methods
for single-cell analysis include flow cytometry and magnetic-activated cell sorting. However,
both require (a) lengthy, resource-intensive sample preparation, leading to the potential loss

https://doi.org/10.1002/wnan.1529
https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.1529
https://onlinelibrary.wiley.com/doi/full/10.1002/wnan.1529
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of key cells; (b) cell labeling, for which multiplexing is limited by spectral overlap of labels;
and (c) a large population of cells. In the case of flow cytometry, dedicated technical support
is often needed for instrument operation, and the instrument itself is sufficiently expensive
to limit usage to core laboratories.

Beyond the difficulties discussed above, label-based methods for cell analysis may be
hindered by even more fundamental issues. The use of labels inherently requires knowledge
of the property or population that is being measured. It is impossible to search for new,
undefined cell populations using only labels for known biomarkers. Perhaps an even more
important consideration is that the biochemical process of a label binding a surface marker
may alter the state of the cell, activating specific pathways. As discussed by [5], label-based
tests in early drug development may be one of the contributing factors that lead to the high
rates of failure in later stages.

Label-free microfluidic techniques, which do not require exogenous or endogenous la-
bels, offer an alternative approach to single-cell analysis. These techniques—highlighted in
Fig. 2.1—usually fall under two broad areas: electrical or optical. While the throughput of
many microfluidic screening technologies is not yet competitive with that of flow cytometry,
their promise in identifying specific cells or small subpopulations of cells (i.e., circulating tu-
mor cells or stem cells) makes them highly attractive to the biomedical research and clinical
diagnostics communities. Below, we highlight just a few exciting label-free techniques and
their biomedical and clinical applications.

Figure 2.1: An overview of common microfluidic platforms for single-cell analysis developed over
the last two decades. The methods shown are broadly categorized as electrical (blue) or optical
(red). While some methods offer higher throughputs, other methods may provide more granular
information about cells. The throughput values indicated are approximate and correspond to
the first demonstration of that technology; current implementations of older technologies may
have higher throughput values than those shown here. Adapted with permission from [1].
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2.2 Electrical Analysis
Electronic sensors are an attractive choice for cell screening given the wide array of inexpen-
sive, robust off-the-shelf electronic parts that are available. The cell’s dielectric properties
reflect the biophysical parameters of the membrane and cytoplasm, and electronic sensors
are easily integrated into microfluidic systems to measure these properties. These types
of systems have been used to assess membrane morphology, ion channel status, intracellu-
lar ion flow, and nuclear size, and subsequently, to identify physiological differences, track
pathological changes, and discriminate cell subpopulations [6–8]. For example, systems that
measure cellular dielectric properties have been used to detect parasite-infected red blood
cells [8], distinguish tumor cells from mononuclear blood cells [9–11], and track the meta-
static progression of tumor cells [12]. In this section, we focus on a few general types of
impedance-based electronic sensors in development.

2.2.1 Resistive-Pulse Sensing
Resistive-pulse sensing (RPS), or the Coulter principle [13], is one of the oldest methods for
automated cell counting and analysis. RPS is still the most widely used method for particle
counting and remains the industry standard for complete blood counts (CBCs). In traditional
Coulter counters, particles pass through an aperture in the presence of a constant applied
voltage. As a particle transits the aperture, it partially blocks the current flow. This causes
a transient current drop (i.e., a current pulse) whose magnitude corresponds to the size of
the particle and whose duration indicates the transit time across the aperture. Microfluidic
implementations of RPS, in which particles transit a microchannel instead of an aperture
(Fig. 2.2A), were first successfully demonstrated in the early 2000s using not only standard
micromachining but also soft lithography [14]. These devices have been shown to be a robust
platform for counting specific subpopulations in blood—from circulating tumor cells to HIV
particles [15,16].

As recent advances have demonstrated, RPS can also be used to probe other cellular
properties beyond size. Balakrishnan et al. [17] used a novel method, node-pore sensing
(NPS), to screen for multiple cell surface markers (Fig. 2.2C). The sensing channel was
coated with antibodies, and cells expressing surface markers that could specifically interact
with these antibodies traversed the channel more slowly. To allow screening for multiple
surface markers, the main microfluidic channel was divided into segments separated by wider
regions called nodes. As the current density was greater in the segments than in the nodes,
the current pulse was modulated, facilitating measurement of the cell’s transit times through
each individual segment. Each segment was coated with a different antibody, and at least
one segment was coated with an isotype control. Balakrishnan et al. [17] demonstrated that
this NPS device could be used to screen for five surface markers simultaneously, and in turn,
identify leukemic blast subpopulations found in the bone marrow of acute myeloid leukemia
patients.
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More recently, a related technique called mechano-NPS was developed to measure the
mechanical properties of cells. Mechano-NPS introduces a contraction segment whose width
is much smaller than the diameter of a cell [20]. By analyzing the cell volume and transit
time through the contraction segment, mechano-NPS can characterize cellular deformabil-
ity, resistance to deformation, and recovery. Kim et al. showed that mechano-NPS could
discriminate between malignant and nonmalignant breast and lung epithelial cells, as well
as identify differences among pre- and postmenopausal primary human mammary epithelial
cells.

Although microfluidic RPS devices characterize important cellular information, they do
face tradeoffs in throughput, signal–noise ratio (SNR), and dynamic range. A common strat-
egy to increase throughput without sacrificing SNR is to design a multiplexed RPS device
with multiple measurement channels, as first described by Saleh [14] (Fig. 2.2B). A variety
of devices based on this concept have been developed [21–23], but they require additional
fabricated electrodes for each channel and are thus limited in scalability. Alternatively,
phase-shift keying, or encoding data using changes in channel width, may be employed to
improve performance. For example, specifically encoded channel geometries, coupled with
signal processing strategies in postprocessing, can dramatically improve SNR and dynamic
range while also allowing higher throughput by resolving coincidence events [24–26]. Opti-
mal performance may be achieved by combining multiple strategies, such as utilizing specific
NPS channel encoding [25,26] to enable coincidence detection while also incorporating code
division multiplexing for multichannel design [27].

2.2.2 Cellular Impedance Analysis
A natural extension of the Coulter principle is to apply an alternating current (AC) signal
to extract cellular capacitance. This concept was first demonstrated at the single-cell level
by Sohn et al. [28], who designed a polydimethylsiloxane (PDMS) microfluidic device that
could measure the DNA content of single cells based on total capacitance. Many specific cel-
lular properties can be extracted by varying the frequency of the excitation signal: applying
low-frequency signals (<1 MHz) yields information about cell size, while intermediate fre-
quencies (∼1–20 MHz) enable characterization of membrane properties such as capacitance,
polarization, and ion-channel activity. In the high-frequency regime (∼ GHz), subcellular
structures such as cytoplasm and vacuoles may be characterized [29,30]. Impedance analysis
can be implemented with the same standard microfabrication techniques as RPS, and its
ability to characterize a wide range of cell properties enables its use for a variety of biological
applications.

Techniques that measure the impedance response of cells at two or more frequencies may
be called electrical impedance cytometry (EIC) or electrical impedance spectroscopy (EIS).
Because papers in the literature do not use consistent terminology in the distinction between
EIC and EIS, we will treat these terms as interchangeable. EIC/EIS can be used in conjunc-
tion with cell trapping and immobilization techniques to monitor cellular changes over time.
EIC/EIS devices have been used to monitor cell viability, size, cell cycle state, membrane
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properties, nuclear division, and cytokinesis [9–11,15] at the single-cell level. Another class
of EIC/EIS techniques characterizes many cells as they flow through a microchannel. These
devices have been applied to a variety of applications, including cancer detection and moni-
toring [11,12], blood cell classification [16,31–33], stem-cell differentiation [34], and parasite
diagnosis [35,36].

Technological development continues to improve the capabilities of microfluidic EIC/EIS.
For example, the constriction channel design for in-flow impedance analysis improves the sen-
sitivity by ensuring a tight contact between the cells and electrodes (Fig. 2.2D) [11,12]. How-
ever, the throughput of this technique is still limited to ∼1 cell/s [18]. Haandbæk et al. [37]
developed a resonator-enhanced EIC/EIS microchip that characterizes cells in flow at higher
throughput (∼100 cells/s) while maintaining high sensitivity. The same group demonstrated
another device that was able to analyze cells at very high frequencies (up to 500 MHz),
which enabled the characterization of small subcellular structures such as organelles [38].
Sun et al. [39] developed the maximum length sequence (MLS) approach to EIC/EIS to
achieve quasi-real-time impedance characterization across a spectrum of frequencies simul-
taneously. In this technique, cells are exposed to a pseudorandom white noise signal, which
is composed of many frequencies mixed together. The MLS device could thus simultaneously
probe the impedance response of single cells at 512 distinct frequencies in a window of ∼1 ms.

2.2.3 Outlook: Electrical Analysis
Electrical interfaces continue to be popular in microfluidic devices because of their robustness
and ease of construction. Electrical properties of cells are tied to many important biophysical
characteristics and are easily interrogated with electronic sensors that are compatible with
microfluidic platforms. Many commercial technologies utilizing the techniques discussed in
this section are already on the market, demonstrating that electrical devices for cellular
analysis, in general, have great potential for commercialization. For example, the Millipore
Scepter is a handheld tool that employs the Coulter principle for automated cell counting
(Millipore Sigma, Burlington, MA), and Amphasys and xCELLigence both produce systems
that employ impedance analysis for cell characterization and monitoring, respectively (ACEA
Biosciences, San Diego, CA; Amphasys, Lucerne, Switzerland).

2.3 Optical Analysis of Cell Deformation
The visual observation of cells with a microscope has been advancing cell biology since van
Leeuwenhoek’s work in the 17th century. Today, imaging of single cells typically requires the
use of a fluorescent label to highlight certain features, both intracellularly and extracellularly.
Here, we discuss the use of label-free imaging for mechanical phenotyping, i.e., measuring a
cell’s response to an applied force. Mechanical phenotyping can be a powerful parameter for
diagnosing cancers where traditional biomarkers fall short. For example, in triple-negative
breast cancer, the usual prognostic biomarkers are absent, making it difficult to choose an
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effective treatment option without further extensive testing [40,41]. However, malignant
cells from breast and bladder tissue have been shown to be less stiff than their healthy
counterparts. These discoveries suggest that mechanical phenotyping might be a critical
consideration in diagnosing subtypes of cancers and guiding clinical decision-making [42,43].

Until the 2000s, the mechanical properties of cells were difficult or extremely time-
consuming to measure. Techniques such as micropipette aspiration and atomic force mi-
croscopy (AFM) were groundbreaking when they were first introduced, and although still
used as gold standards, they are rapidly losing ground to higher-throughput assays [44,45].
Today, single-cell mechanical testing takes place in microfluidic devices that apply stress to
individual cells and measure their response. In the devices discussed here, cells are imaged
before and after the application of a controlled force to estimate their deformability.

2.3.1 Deformation Using Optical Traps
The optical stretcher was one of the first devices to use optical traps for mechanical testing of
cells. Optical stretchers use two divergent laser beams pointed toward each other such that
they intersect in the middle of a microchannel (Fig. 2.3A) [43,46]. Cells flow through the
channel, perpendicular to the two beams, and are stably trapped at the midpoint between
the two laser sources, which are tuned to a wavelength of 1064 nm to minimize cell damage.
The photons colliding with the cell impart momentum to it, generating an appreciable net
force. In the 1–10 mW range, this force anchors cells against the flow [43]. As the power
increases up to 1 W, the two opposite ends of the cell are pushed away from the cell’s center
with a force around 200–500 pN, stretching the cell laterally (Fig. 2.3A) [43]. The stress
applied by the laser beams deforms the cell into an ellipsoid, and the strain is measured
by analyzing images of the cell captured with a bright-field microscope. Optical trapping
was used in early studies to show that malignant breast cancer cells were more deformable
than nonmalignant ones—an important finding that demonstrated the diagnostic potential
of mechanical phenotyping [43,46].

While optical stretchers trap cells in the middle of a microchannel, Kolb et al. [49] aligned
lasers to trap cells slightly off-center in a technique they called optofluidic rotation. Because
cells are trapped off-center, the flow (1 nL/s) continuously applies a torque to one end of the
cell, causing it to rotate at up to 15 rpm (Fig. 2.3B). By imaging cells with a bright-field or
phase contrast microscope throughout a full rotation, one can visualize the cells’ tomography
and the position of intracellular structures in three dimensions (3D). Since optical traps
can perform both optical stretching and optofluidic rotation, they have great potential for
studying the tomography and 3D structures of cells undergoing deformation in just a few
seconds. Because a cell is not a homogeneous material, and the applied forces are not
isotropic, 3D spatial information might improve the measurement of anisotropic mechanical
properties of cells. As many cells have a degree of spatial polarity, efforts to understand
cell anisotropy might help refine mechanical phenotyping by including or controlling for
differences in spatial directions.
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Figure 2.3: Examples of single-cell microfluidic devices based on optical analysis of cell defor-
mation. Reprinted with permission from [1]. (A) Schematic of a cell deformed in a dual-beam
optical trap. At low laser power (top), the cell is simply trapped. At higher laser power (bot-
tom), photons colliding with the cell provide enough momentum to physically stretch the cell.
(B) Free-body diagram describing optofluidic rotation. A dual-beam optical trap immobilizes
a cell at a position offset from the center of the microchannel. The velocity profile applies a
shear stress to one side of the cell, causing the cell to rotate around the axis of the laser beams.
(C) Schematic of a deformability cytometry stretching chamber (top) and time-lapse of a cell
in such a chamber (bottom) [47]. Cells enter an intersection of two high-speed flows from the
left and right, and they are deformed and imaged before exiting through the outlets at the top
and bottom. Adapted with permission from [47]. (D) Schematic of a real-time deformability
cytometry constriction channel (top) and time-lapse of a cell in such a channel (bottom) [48].
Cells enter the narrow channel at high speed, where the shear rate is high enough to deform the
cell into a bullet-like shape. Adapted with permission from [48].
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A similar, but notable, class of microfluidic devices relies on optical chromatography [50].
This method exploits opposing hydrodynamic and optical forces to deform cells in “optical
channels” and has been used to study erythrocyte elasticity [51], among other cellular pro-
cesses and properties [52].

2.3.2 Hydrodynamic Deformation
Not all microfluidic mechanical phenotyping is performed with optical traps. In other de-
vices, the flow itself can apply stresses to cells. In a technique known as deformability
cytometry (DC), cells are accelerated into a stretching chamber, where the high-velocity
flows (∼10–20 µL/s) from two different microchannels meet (Fig. 2.3C) [53]. The oppos-
ing fluidic flow deforms a cell into an ellipsoid before pushing it toward an outlet. Gossett
et al. demonstrated the ability of DC to differentiate among populations of normal and
stimulated peripheral blood mononuclear cells and granulocytes [53]. Traditionally, discrim-
inating between these phenotypes required immunostaining for clusters of differentiation or
enzyme-linked immunosorbent assays (ELISAs) to assay cytokine secretion. DC is able to
quickly interrogate thousands of cells and measure distinguishable differences in population
deformability.

While DC can analyze thousands of cells per second, it is difficult to capture images of
cells moving through the device, as they persist in the stretching chamber for only a few
microseconds [53]. As a result, a camera used for DC must be capable of acquiring images
at over 100,000 frames per second (FPS); such cameras are often extremely expensive and
require high-speed and high-density storage solutions to store and analyze data.

This particular drawback inspired Otto et al. [48] to improve on the designs of Gossett
et al. and develop real-time deformability cytometry (RT-DC). In RT-DC, cells are deformed
while in transit through a microchannel only slightly larger than the cell. The flow velocity is
high enough such that the shear stress near the channel walls bends the cells into the shape of
the flow velocity profile, which resembles a bullet (Fig. 2.3D) [54]. As in DC, cells in RT-DC
are imaged with a high-speed camera, but because the flow velocity is considerably slower
than in DC, a frame rate of around 1000 FPS is adequate. Cameras capable of imaging at
this speed are more readily available than those needed for DC. The lower frame rate also
means RT-DC generates much smaller datasets for comparable experiments, and as a result,
deformation data can be analyzed in real time.

Like its predecessor, RT-DC has also been used to discriminate between leukocyte popu-
lations, a critical aspect of hematology [48]. Another application of interest is the isolation of
skeletal stem cells (SSCs) from bone marrow, where the SSC marker Stro-1 lacks the speci-
ficity needed to isolate SSCs with high purity [55]. Xavier et al. used RT-DC to discriminate
between myeloid leukocytes and SSCs by demonstrating that SSCs were dramatically larger
and stiffer [48,55]. Thus, RT-DC can be used to identify and isolate different cell populations
in a single sample based on deformability. This is particularly attractive if information from
traditional biomarkers is difficult to acquire or inadequate for precise discrimination.
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2.3.3 Outlook: Optical Analysis of Cell Deformation
Methods for performing mechanical testing on single cells have existed for years; AFM, for
example, was introduced more than 30 years ago [44]. While this technique can acquire a
single force curve in a few seconds, it can take an hour to generate a force map of an entire
cell. By contrast, the microfluidics-based techniques discussed here enable much higher
throughput. Optical stretchers, the first of these techniques, are capable of performing a
whole-cell mechanical test in just a few seconds [56]. Although Lincoln et al. suggest that
optical stretchers could be incorporated into flow cytometers to allow for deformability-
based flow cytometry, modern flow cytometers operate at much faster rates, often analyzing
thousands of cells per second [43]. Hydrodynamic methods such as DC or RT-DC would be
more appropriate for incorporating deformability measurements into flow cytometry.

Although the flow velocity of RT-DC is considerably slower than that of DC, it can
still analyze hundreds of cells per second [48]. This rate overlaps with the lower end of
modern flow cytometers’ range of operating speeds. The large volume of high-speed video
generated by DC necessitates offline processing and would thus be difficult to integrate with
flow cytometry. RT-DC, however, can acquire and display deformability data on a single
consumer-grade computer in real time. For this reason, RT-DC would appear to be the best
candidate for deformability-based flow cytometry and is primed for commercialization.

Nevertheless, older technologies have been commercialized already. LumaCyte’s Radiance
takes advantage of optical chromatography to analyze and sort single cells based on their
response to a laser force (Lumacyte, Charlottesville, VA). Cytovale seeks to use DC to
diagnose sepsis at an early stage by analyzing activated neutrophils (Cytovale, San Francisco,
CA). We can expect additional commercial platforms in the future as RT-DC matures and
new techniques are invented.

2.4 Conclusions
For analyzing single cells, microfluidic devices offer numerous advantages over traditional
benchtop assays. The most obvious benefits, such as rapid prototyping and high assay
throughput, allow users to accomplish more in less time. An equally powerful advantage is
the ease of integrating microfluidic devices with other transducers and sensors, such as metal
electrodes, piezoelectric materials, and microscopes. Creative researchers have leveraged this
compatibility to develop many diverse microfluidic platforms for analyzing cells.

Single-cell, label-free microfluidic devices may soon be applied to assist clinical decision-
making. Some cancers can be difficult to characterize based solely on protein expression
because of high phenotypic heterogeneity or a complete lack of expression of traditional
biomarkers [40,57]. Label-free microfluidics reduce the preparation time, reagents needed,
and cost of conventional methods based on fluorescent or magnetic labels. Furthermore,
these devices enable analysis of cell properties (e.g., mechanical phenotype and dielectric
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parameters) that cannot be characterized with traditional labels, and which could offer
clinicians new information that will enable more precise diagnoses.

A valid criticism of the label-free, microfluidic single-cell analysis methods discussed here
is that they are largely limited to measuring physical properties such as cell size, density, or
deformability. However, each of these technologies has demonstrated some ability to correlate
physical characteristics to pathologically relevant phenotypes. Furthermore, technological
advances are enabling new applications of these techniques to evaluate other properties
such as surface markers. Because microfluidic technologies are increasing in popularity,
we are optimistic that label-free methods such as those described here might soon be as
commonplace in clinical pathology laboratories as they are today in research laboratories.

The label-free microfluidic methods discussed here have been used to screen and analyze
cells for a wide range of biomedical and clinical applications. Because of the versatility of
label-free methods, the low-cost nature of microfluidics, and the rapid prototyping capabili-
ties of modern microfabrication, we expect this class of technology to continue to be an area
of high research interest going forward. New developments in this field will contribute to the
ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic
devices, enabling new capabilities in biomedical research tools and clinical diagnostics.
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Chapter 3

Multi-Parameter Mechanical
Screening with Mechano-Node-Pore
Sensing

This chapter is adapted with permission in part from:

B. Li*, K. L. Cotner*, N. K. Liu, S. Hinz, M. A. LaBarge, and L. L. Sohn, “Evaluating
sources of technical variability in the mechano-node-pore sensing pipeline and their effect
on the reproducibility of single-cell mechanical phenotyping”, PLOS ONE, vol. 16, A.
Han, Ed., e0258982, 10 Oct. 2021, issn: 1932-6203. doi: 10.1371/JOURNAL.PONE.
0258982. [Online]. Available: https://journals.plos.org/plosone/article?id=10.
1371/journal.pone.0258982, *Equal contribution. [2]

While Chapter 2 provided an overview of the state of the field in single-cell microfluidic
analysis platforms, this chapter will focus on one particular such technology: mechano-
node-pore sensing (mechano-NPS). We will first discuss the motivation behind mechanical
phenotyping, summarize the main technologies available to measure cellular mechanics, and
describe how mechano-NPS fits within the field. We will then review the theoretical princi-
ples of mechano-NPS and describe generalized methods for device fabrication, experimental
process, and data analysis. Finally, we will present the results of a systematic experiment
evaluating the intra- and inter-user reliability of the mechano-NPS data processing software,
which we examined for both experienced and novice users.

3.1 Background & Motivation
As discussed in the previous chapter, mechanical phenotyping is the process of measuring
how a cell responds to a physical force, such as stretching or compression. The mechanical
properties of cells have been implicated in a wide range of biologically and clinically relevant
systems, especially in the development of cancer [40,41,43,58]. For example, more invasive

https://doi.org/10.1371/JOURNAL.PONE.0258982
https://doi.org/10.1371/JOURNAL.PONE.0258982
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258982
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258982
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cells are shown to be softer than their benign counterparts [42,46,59,60]. Additionally, the
viscoelastic components of cells have been implicated in the malignant progression for breast
cancer cell lines [61], and cell recovery from deformation is thought to be important in
migration and metastatic development [62].

AFM and micropipette aspiration are gold-standard methods for analyzing mechanical
properties of cells. However, the throughput of these techniques is extremely low; published
AFM studies [42,61,63] typically report ∼30 or fewer cells per condition, and micropipette
aspirations take up to 10 min per cell [64]. For many applications, it may be infeasible to
collect enough data using these techniques—for example, if a patient sample needs to be
screened for a rare abnormal cell population among a background of many normal cells, or
when capturing the full heterogeneity of an experimental condition that could then yield
new insights into previously unknown subtypes of cells. As discussed in Section 2.3.2, a
number of microfluidic methods have been developed in recent years that are capable of
mechanical phenotyping with much higher throughput, including methods based on opti-
cal stretching [43,49] and hydrodynamic deformation [48,53]. In particular, hydrodynamic
methods (also known as deformability cytometry) operate at hundreds to thousands of cells
per second. However, both optical and hydrodynamic techniques are limited to measuring
the aspect ratio of the cell as it is stretched or deformed; in other words, these methods
only probe a single parameter of the elastic component of the cell’s mechanical properties.
Additionally, these techniques rely on hardware such as microscopes and high-speed video
cameras that is high-cost, prone to failure, and not easy to scale or port to other locations.
This reduces the accessibility of these techniques to new researchers both in terms of cost
and of ease of use for a non-expert.

Mechano-NPS is a technology developed recently by Kim et al. [20] that fills a unique gap
in the mechanophenotyping space. As it is based entirely on electronic sensing, the data ac-
quisition hardware is primarily composed of relatively low-cost, easily accessible off-the-shelf
electronic parts that a non-expert could directly assemble. Additionally, the sensing modality
may be more robust than techniques that rely on high-speed microscopy imaging, as it is not
sensitive to small changes in position and has almost no moving parts. While mechano-NPS
does not have throughput as high as techniques such as deformability cytometry [48,53],
users routinely acquire whole-cell data from hundreds of cells per hour. Moreover, one of
the greatest advantages of this technique is its ability to simultaneously measure multiple
cellular properties reflecting both the elastic and viscoelastic characteristics.

Mechano-NPS is a powerful platform because it combines the robustness and accessibility
of electronic-based sensing with the ability to discern rich mechanical information about cells.
Mechano-NPS has already led to important new biological discoveries: Kim et al. identified
a major mechanical phenotype in primary human breast epithelial cells associated with
aging, and also showed that normal cells have different mechanical properties compared to
their descendants which had been progressively transformed (i.e., induced to become more
cancer-like) [20]. Li et al. used mechano-NPS to discover a mechanical biomarker that may
correspond to drug resistance in acute promyelocytic leukemia [58]. Additionally, researchers
are now developing a classification model based on machine learning with mechano-NPS data
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that can identify epithelial cells from young women carrying high-risk germline mutations
for breast cancer [65]. These discoveries relied on both the elastic and viscoelastic properties
measured by mechano-NPS, as well as its high throughput (indeed, machine learning tasks
famously require a large amount of training data). Overall, in just a few years, mechano-NPS
has demonstrated its potential as a powerful new method to learn about cellular mechanics
and their role in many biological systems.

As mechano-NPS is used by an ever-growing group of researchers across multiple labs and
different institutions, we sought to understand the different sources of variability that could
potentially lead to inconsistent results and to quantify the reliability and reproducibility of
the platform. To this end, we demonstrated in [2] that there is high repeatability across the
entire technology pipeline. We showed that device-device variability is limited to small effect
sizes that are not biologically meaningful. We also conducted a unique study in which iden-
tical mechano-NPS experiments were performed by researchers at two different institutions
using different hardware platforms, which showed that the mechanical phenotyping results
obtained at the two locations were in good agreement. This is a crucial finding that pro-
vides high confidence in mechano-NPS results, even those obtained at different laboratories,
and speaks to the platform’s high potential for adoption by new research groups or even
clinicians.

3.2 Theoretical Principles
Mechano-NPS is based on the underlying principle of RPS [13,14], which (as discussed in
Section 2.2.1) is one of the most widely used methods for cell counting and sizing in mi-
crofluidics. Cells pass through a microfluidic channel while a constant voltage is applied,
and the resulting current is measured continuously. When a cell enters the channel, it causes
a transient current drop (i.e., pulse) whose magnitude ∆I corresponds to the cell size and
whose duration ∆t indicates the transit time through the channel. The size of the cell can
be determined by [14,66,67]:

∆I

I
= D3

cell

D2
effL

(
1

1 − 0.8 (Dcell/Deff)3

)
, (3.1)

where I is the baseline current, Dcell is the cell diameter, Deff is the effective diameter
of the channel, and L is the length of the channel.

NPS [24] is an extension of the RPS concept in which the microchannel is divided into
narrow segments (i.e., pores) separated by wider nodes. When the cell passes through a
segment, a current drop is observed as in traditional RPS; however, when the cell enters a
node, the measured current returns to near-baseline level. Thus, as each cell transits the
channel, it generates a distinct current pulse that consists of subpulses corresponding to
the channel segments. The amplitude ∆I and duration ∆t of each subpulse reflect cell size
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and transit time, respectively, in the corresponding segment. The NPS channel geometry
produces a unique, spatiotemporally encoded current signal, which leads to improvements
in SNR and dynamic range over standard RPS devices [24]. Moreover, the cell size and
transit time in each segment is measured independently by ∆I and ∆t of the corresponding
subpulse.

Kim et al. took advantage of the spatiotemporal encoding in the NPS channel geometry
to develop a platform that could measure cells’ response to mechanical force [20] (Fig. 3.1).
First, the cell’s initial size and speed are measured in one or more reference segments, where
the cell is unconstrained. Then, the cell is forced through a contraction segment whose width
is narrower than that of the cell, causing the cell to deform. Finally, the cell passes through
several recovery segments, where it is allowed to return to its original size. By comparing
the contraction subpulse to the reference subpulse, the cell’s response to the compressive
force is measured, thereby gleaning information about the cell’s elastic properties. Likewise,
information about the cell’s viscoelastic properties can be obtained by comparing the recovery
subpulse to the reference subpulses. Detailed calculations for specific mechanical parameters
measured by mechano-NPS are provided below.

As the cell transits the contraction segment, it undergoes a constant compressive strain
whose magnitude ε depends on the cell’s original diameter Dcell and the contraction segment
width wc: ε = (Dcell−wc)/Dcell. The cell’s overall resistance to deformation is reflected in its
transit time ∆tc through this contraction segment. To account for the effect of Dcell on
the magnitude of the applied strain (and thus on ∆tc), the whole-cell deformability index
(wCDI) is defined as a dimensionless parameter that is inversely related to elastic modulus
and cortical tension [20]:

wCDI =
(

Lc

Uflowh

)(
Dcell

∆tc

)
, (3.2)

where Lc is the length of the contraction segment, Uflow is the cell velocity in the reference
segment, and h is the channel height.

Additionally, the magnitude ∆Ic of the current drop as the cell passes through the con-
traction segment is related to the deformed cell volume Vdeform by ∆Ic/I ∼ Vdeform/Vc, where
Vc is the volume of the contraction segment [66]. Assuming the cell undergoes isometric
deformation in two dimensions, the major radius Ldeform of the resulting oblate spheroid is
given by Vdeform = π

6 wc(Ldeform)2, where wc is the width of the contraction segment. The
transverse deformation of the cell in the contraction segment can thus be calculated as
δdeform = Ldeform/Dcell [26].

Finally, the cell size is monitored in subsequent recovery segments to assess how quickly
it returns to its original shape. Dcell,r in each recovery segment is calculated based on ∆I
in the corresponding subpulse, and the cell’s recovery speed can be quantified based on how
long Dcell,r takes to return to the original value Dcell. In the case of a device with three
recovery pores, as in [20] (Fig. 3.1B, Version #1), cells could be classified into up to four
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Figure 3.1: Overview of mechano-NPS operating principle and device design. Adapted with
permission from [2]. (A) Top-down schematic view of a mechano-NPS device (top), with
corresponding expected electric current pulse (bottom) caused by a single cell transiting the
microfluidic channel. A potential is applied across the channel, causing a drop in measured
current when a cell enters a narrow segment of the microchannel (pore). Inset: An actual
current pulse caused by a cell traversing the channel. (B) Top-down schematic views of two
different versions of mechano-NPS channel designs. Version #1 corresponds to the diagram and
current pulse shown in Fig. 3.1A. Version #2 corresponds to the design used to generate raw
test data for the experiment described in Section 3.4.
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different levels of recovery speed: if Dcell,r is already ≈ Dcell in the first recovery segment, the
cell is considered to have instant recovery; if Dcell,r does not recover until the second or third
recovery segment, the cell is considered to have transient-fast or transient-slow recovery,
respectively; and if Dcell,r is still not recovered to its original level by the last recovery
segment, it is considered to have prolonged recovery time.

Li et al. advanced mechano-NPS by including many shorter recovery segments instead of
just a few longer ones [58] (Fig. 3.1B, Version #2). This design allowed them to measure the
cell’s recovery speed with greater precision by fitting a continuous recovery time constant τ
using the Kelvin-Voigt model for viscoelastic materials. This model predicts how cell strain
will relax over time after being released from the contraction segment:

ε(t) = ε0 exp (−t/τ) + ε∞, (3.3)

where ε(t) gives the strain at time t after being released from the contraction segment,
ε0 gives the strain at the time of release, τ is the cell’s recovery time constant, and ε∞ is
the cell’s steady-state (recovered) strain. Here, “strain” indicates the cell size/shape relative
to its relaxed, unstressed shape—in other words, “strain” can be measured by the apparent
cell size as determined by ∆I in the corresponding NPS subpulse.

3.3 Methods
3.3.1 Device Fabrication
An overview of the fabrication process for most NPS and mechano-NPS devices is shown in
Fig. 3.2–3.4. Briefly, a negative master mold of NPS microchannels is fabricated from SU-8
epoxy using photolithography; PDMS channels are then created from the mold using soft
lithography (Fig. 3.2). Electrodes are patterned on a glass substrate using photolithography
and electron-gun deposition (Fig. 3.3). Finally, the PDMS channels and substrate with
prefabricated electrodes are bonded together via oxygen plasma treatment (Fig. 3.4). Each
of these processes are described in more detail below.

Microfluidic channel structures are fabricated in PDMS using soft lithography (Fig. 3.2).
First, a negative-relief master mold is fabricated by patterning SU-8 epoxy photoresist on a
polished silicon substrate through photolithography. Specific SU-8 resist, spin speed, expo-
sure energy, development time, and baking steps depend on the desired channel height. The
datasheet provided by the resist manufacturer (Kayaku Advanced Materials) provides pro-
tocols that are a starting point, but parameters should be adjusted as needed to achieve the
desired channel height. Specific protocols used for experiments in this dissertation are listed
in the corresponding methods sections. After the negative-relief master mold is created,
PDMS is mixed at a 9:1 ratio by weight of pre-polymer base to curing agent and degassed
for ∼30 min or longer. The PDMS is poured onto the master mold and cured at 85 ◦C for 2 h.
Finally, molded PDMS slabs are excised, and inlet and outlet ports are cored using a biopsy
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Figure 3.2: PDMS fabrication process for NPS and mechano-NPS devices. Left: A negative-
relief master mold is fabricated through SU-8 photolithography on a silicon substrate. Center:
PDMS is poured over the master mold and cured. PDMS slabs containing embedded channels are
then excised, and inlet and outlet ports are created. Adapted in part from “PDMS Microfluidic
Chip Fabrication” by BioRender.com (2022, retrieved from https://app.biorender.com/
biorender-templates).

punch. For extremely sensitive measurements, device-device variation may be minimized by
utilizing PDMS slabs cast from the same position on silicon substrate.

Electrodes are patterned on a glass substrate using standard photolithography (Fig. 3.3).
Shipley 1813 photoresist is spun onto a glass substrate at 3000 rpm and baked at 100 ◦C for
90 s. The resist-coated substrate is UV-exposed to a transparency mask at 320 mJ/cm2 and
immersed in MF-321 developer for ∼30 s with gentle agitation. The resist-coated substrate is
rinsed with deionized (DI) water (18 MΩ). A trilayer of metal (100 Å Ti, 250 Å Pt, 250 Å Au)
is deposited by electron-gun evaporation, and photoresist liftoff is performed by immersing
the substrate in acetone for ∼1 h, followed by further rinsing with acetone as needed. Finally,
the gold layer is removed from the section of the electrodes that crosses the microchannel
using Gold Etchant TFA, thereby exposing the platinum electrodes and preventing cellular
adhesion during experiments.

Before bonding, the PDMS slab is cleaned with scotch tape; it may also be rinsed briefly
with isopropanol and DI water. The glass substrate with prefabricated electrodes is cleaned
by rinsing with acetone, isopropanol, and methanol. The glass substrate and PDMS are
exposed to oxygen plasma (60 Pa, 30 W, 2 min), then aligned and mated (Fig. 3.4). Complete
bonding is achieved by a brief baking step (e.g., 5 min at 125 ◦C). For best practice, it is
important to wait at least several hours after bonding and before performing experiments

BioRender.com
https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates
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Figure 3.3: Electrode fabrication process for NPS and mechano-NPS devices. Electrodes
are fabricated by patterning Shipley-1813 positive photoresist onto a glass substrate through
photolithography, followed by electron-gun evaporation to create Ti/Pt/Au electrodes. Finally,
liftoff is performed to reveal the patterned electrodes. Created in part with BioRender.com.

Figure 3.4: Bonding process for NPS and mechano-NPS devices. The PDMS slab and glass
substrate with the prefabricated electrodes are exposed to oxygen plasma and are subsequently
aligned and bonded to create the final device.

BioRender.com
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to ensure that the bonding process is completed, especially when high driving pressures are
needed (e.g., for mechano-NPS experiments).

To assist with aligning the PDMS slabs to the glass substrate, ∼20 µL of a 2:1 mixture of
methanol to DI water may be deposited onto the glass substrate after plasma treatment and
before mating with the PDMS. This provides a temporary buffer between the PDMS and the
glass, allowing the alignment to be adjusted before bonding is finalized. When the alignment
is acceptable, the device should be baked on a hot plate to evaporate the methanol-water
mixture (e.g., 2 h at 85 ◦C).

3.3.2 Experimental Process
Cells should be cultured according to standard practices for the cell type. Before NPS mea-
surements are performed, cells should be passaged according to standard practices (e.g., tryp-
sinization to dissociate adherent cell lines), rinsed with 1X phosphate-buffered saline (PBS),
and diluted to a final working concentration of ∼300–500 × 103 cells/mL in a solution of 2 %
fetal bovine serum (FBS) in PBS. (The addition of FBS helps reduce cell clumping and cell
adhesion to the PDMS microchannel walls.) If desired, the cell suspension may be passed
through an appropriately-sized cell strainer (e.g., 30 µm to filter MCF-7 cells) to remove large
clumps of cells. The prepared cell solution should be kept on ice until NPS measurements
are performed.

NPS measurements are performed as described in [20,24,68]. The cell suspension is
injected into the device inlet and driven through the channel using a non-pulsatile pressure
source. The appropriate driving pressure depends on the fluidic resistance of the device and
may need to be tuned for each new device design and/or experiment type. Typical driving
pressures for mechano-NPS experiments range from 70 mbar to 210 mbar (mechano-NPS
device designs have a higher fluidic resistance than other NPS devices due to the contraction
segment). It is best practice to test each experimental condition using at least three different
NPS devices, due to possible device-device variability (as discussed by [2]).

A standard four-terminal measurement is performed to measure the electrical current
across the device while a constant voltage (usually ∼1–5 V) is applied. For experiments
described in Chapters 3–5, we use the NPS data acquisition platform previously described
[24,68]. Briefly, a custom printed circuit board (as shown in [20]) interfaces with the NPS
device and performs the four-terminal measurement. The measured current is amplified
by a current-to-voltage converter (DL Instruments) and recorded using a commercial data
acquisition device (National Instruments). Custom MATLAB data acquisition software,
which is compatible with National Instruments data acquisition devices, is publicly available
at https://github.com/sohnlab/node-pore-sensing-public [69].

Device Calibration

In order to calculate cell size via Eq. 3.1, the device’s effective diameter Deff must be
determined experimentally. As described by Kim et al. [20], this can be accomplished by

https://github.com/sohnlab/node-pore-sensing-public
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taking reference measurements with commercial polystyrene beads of known size. As the
beads should be a comparable size to the cells of interest, a “reference device” must be used
where the contraction segment is replaced with a pore of the same width as the reference pores
and the same length as the original contraction segment. Calibration should be performed
for each new negative-relief master mold that is fabricated.

Calibration data should be collected by taking NPS measurements of the commercial
polystyrene beads in the same way as cells are measured. The same experimental settings
(e.g., applied voltage and preamplifier sensitivity) should be used for calibration experiments
as cell measurements. Polystyrene beads are often more prone to clogging than cells are, so it
is common to supplement the PBS solution with a surfactant such as 1.5 % Tween to reduce
adhesion. Additionally, it may be necessary to dilute the beads to a lower concentration
than cells.

An alternative option for generating reference measurements (described in [68]) is to
measure a sample of cells using a commercial RPS cell sizing device (e.g., Millipore Sigma
Scepter 2.0 Handheld Automatic Cell Counter), and to measure a sample of cells from the
same population using NPS. Since the cells are able to squeeze through the contraction
segment, no separate “reference device” design is needed.

In either case, the reference data should be analyzed as described in Section 3.3.3 to
extract subpulse amplitude data for the measured beads or cells (specifically, subpulse am-
plitudes from the reference pores should be used). Then, using Eq. 3.1, a value for Deff

should be fitted such that the mean calculated diameter of the reference data matches the
known mean diameter (as provided by the bead manufacturer or as measured by the com-
mercial RPS device).

3.3.3 Data Analysis
Raw current data is preprocessed by low-pass filtering (e.g., by applying a moving-average
filter or by applying a cutoff in the frequency domain) to remove high-frequency noise. The
baseline drift is removed, either by linear detrending on the time scale of a single cell transit
pulse, or by a more sophisticated fitting method such as asymmetric least-squares [70]. The
baseline current must be known in order to calculate ∆I, and in turn, Dcell, wCDI, and
δdeform (as described in Section 3.2). Cell pulses are detected and subpulse information is
extracted by applying an edge detection algorithm as described by [20] (see Fig. 3.5). Briefly,
the approximate first derivative of the signal is calculated, and the subpulses are identified
by the local minima and maxima in this “derivative signal” caused by the cell entering and
exiting each pore, respectively. The amplitude ∆I and width ∆t are then calculated for each
subpulse (average value and elapsed time, respectively). Cell properties are calculated from
these values as described in Section 3.2.

The process of extracting cell pulse data as described above can be tedious and time-
consuming to perform manually, as there may be many cell pulses that must be discarded
(e.g., when cell measurements overlap). Furthermore, the peaks in the derivative signal
corresponding to the subpulses can be difficult to detect against the background noise. In
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Figure 3.5: Data processing method for mechano-NPS. Data is first preprocessed by low-pass
filtering (LPF) and baseline removal (detrend), followed by detection of cell events and subpulses
by identifying peaks in the approximate first-order derivative (derivative signal). Finally, the time
duration and average value are extracted from each subpulse, as visualized by the rectangularized
pulse.

order to address these issues, Li et al. [2] developed a MATLAB command-line interface (CLI)
program that performs initial pulse detection automatically, and then asks for user input
to check the results for each cell and adjust processing parameters as needed. This new,
semi-automatic software improves the speed of mechano-NPS data analysis roughly ten-fold
over the original software [2].

Software for this improved CLI-based data processing method is available publicly at
https://github.com/sohnlab/mechanoNPS_Li-et-al-2020 [71], and a newer version is
also available at https://github.com/sohnlab/NPS-analysis-JOVE [72]. An overview of
the pipeline for using this software is presented in Fig. 3.6, and detailed instructions are
provided in Section 3.5. Briefly, the software performs an initial scan of the data to generate
a list of potential cell pulses, and asks the user to evaluate each one. Two user inputs are
required: first, the user must decide to save the cell pulse or to discard it as invalid; then,
for saved cell pulses, the user must adjust two processing thresholds as needed to generate
the appropriate rectangularized pulse.

https://github.com/sohnlab/mechanoNPS_Li-et-al-2020
https://github.com/sohnlab/NPS-analysis-JOVE
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Figure 3.6: Overview of mechano-NPS data analysis software. The flow of user input to
the software involves two steps: First, the user must identify valid signals corresponding to
cell measurements and exclude non-valid pulses. Subsequently, the user must set processing
thresholds to the appropriate levels for each valid cell. Adapted with permission from [2].

3.4 Reproducibility of the Mechano-Node-Pore
Sensing Data Analysis Software

Understanding that user input to the custom mechano-NPS data processing software de-
scribed in Section 3.3.3 has a major impact on the data extracted from an experiment,
we sought to quantify the variability introduced through the pipeline’s semi-manual na-
ture [58,71] (Fig. 3.6). We focused on answering three questions: 1) How consistent is one
user’s results obtained with the software, upon repeated analysis of the same data? 2) How
much do results vary between different users analyzing the same data set? 3) How does
user expertise with this software package affect the ability to produce consistent results?
We conducted a systematic study to not only address these questions, but also determine
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the reliability of this data-processing method in context with device-device variability and
experimental differences due to location and hardware instrumentation [2].

3.4.1 Methods
Device Design and Fabrication

The mechano-NPS device used to collect the raw data in this study is the same design used
in [58], comprising one reference pore, one contraction segment, and ten short recovery pores
(Fig. 3.1B, Version #2). The pore width in the reference and recovery pores was 13 µm,
while the contraction segment width was 7 µm (targeting an average applied strain of 0.35).
The reference pore was 800 µm long, the contraction segment was 2000 µm long, and each
recovery pore was 290 µm long. The nodes were each 85 µm wide × 50 µm long. Devices
were fabricated as described in Section 3.3.1. The master mold was fabricated in SU-8 3010
epoxy photoresist, and the final channel height was 12.9 µm.

Raw Data Collection

Raw mechano-NPS data was collected by measuring AP-1060 cells (DSMZ ACC 593, a
gift from Dr. S. Kogan, University of California, San Francisco, CA, U.S.A.). The cells
were cultured according to standard methods (see [2]). Two cell samples were treated with
the microfilament-disrupting agent Latrunculin A (LatA) at 2 µm for 30 min, and three cell
samples were left untreated. See [2] for details on cell culture and treatment methods used
to collect the raw data.

Each cell sample was measured with mechano-NPS as described in Section 3.3.2. After
passaging the cells according to standard methods [2], the cells were washed with 1X PBS
and resuspended at 3 × 105 cells/mL in 1X PBS with 2 % FBS. The cell suspension was
injected into the mechano-NPS channel with a driving pressure of 80 mbar. A four-terminal
measurement was performed as described in Section 3.3.2 to acquire the raw current data
that we used to conduct our software reliability study.

Intra- and Inter-User Reliability study

We recruited five subjects who are microfluidics researchers with varying degrees of famil-
iarity with mechano-NPS and surveyed them about their familiarity with the mechano-NPS
data processing software. Subjects 1–2 identified as experienced users of the software, while
Subjects 3–5 identified as novice users of the software. We then provided all subjects with a
copy of the mechano-NPS data processing software from [71], along with a 30-minute train-
ing video on how to use it. All subjects were tasked with performing data processing on five
blinded mechano-NPS raw data sets using the custom software. These data sets comprised
five measurements (A–E) of AP-1060 cells (Fig. 3.7–3.8), as described above. Data sets A–C
were obtained from measuring the untreated cell samples, while data sets D–E were obtained
from measuring the cell samples treated with LatA. Additionally, each subject performed
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analysis on each data set three different times in order to test intra-user reliability. Overall,
we examined both intra- and inter-user reliability using the results from experienced and
novice users of the software.

This human subjects study was conducted under an IRB-approved protocol (UC Berkeley
Committee for Protection of Human Subjects, Protocol ID: 2020-11-13822), and all subjects
provided written informed consent prior to taking part in the study.

3.4.2 Results
As described in Section 3.3.3, the CLI-based data processing software asks for two user input
decisions for each potential cell measurement (Fig. 3.6): first, whether to save the pulse or to
discard it as invalid, and second, to confirm or adjust two thresholds that affect the recorded
cell phenotype measurements (see Section 3.5 for additional details). Since these data sets
were obtained using a device design like that of [58] (as depicted in Fig. 3.1B, Version #2),
the measurement of cell recovery from deformation is given by the continuous recovery time
constant τ . The number of cells identified by a single user from a single raw data file ranged
from 49–82.

Consistency of Saved and Discarded Pulses

We first analyzed the consistency of each user’s decisions to save or discard cell measure-
ments. We calculated percent-agreement and performed Fleiss’s kappa analysis on the deci-
sion to save or skip each cell. The intra-user agreement analysis (Fig. 3.9A) showed that all
subjects exhibited a high degree of self-consistency in their decisions to save or discard cell
measurements. The experienced software users were designated as showing “perfect agree-
ment” according to Landis & Koch’s interpretation of the Fleiss’s kappa values [73], while
the novice users demonstrated “substantial” or “moderate” agreement. For all users, the null
hypothesis was rejected in Fleiss’s kappa analysis, indicating that the observed agreement
was not accidental. The inter-user Fleiss’s kappa analysis (Fig. 3.9B) showed that the over-

Figure 3.7 (following page): Intra- and inter-user comparison of results obtained using
the mechano-NPS data processing pipeline. Processed data obtained from measurements of
AP-1060 cells. Data sets A–C were obtained from measuring untreated cells, while data sets
D–E were obtained from measuring cells treated with LatA. Plots show wCDI (A) and recovery
time constant τ (B) results, respectively. Processed data is shown from each of the five sub-
jects across three replicate data processing tasks. Data is presented as originally returned after
the data processing task was completed (i.e., before erroneous measurements were excluded).
Sample medians are represented by black dots; sample interquartile ranges are represented by
thick lines; outliers are represented by filled circles and are defined as 1.5 times the inter-quartile
range. Extreme values are represented as filled circles placed above or below the dashed lines
and are defined as >2 or <0 for both wCDI and τ . Number of cells found in each observation
ranged from 49–82. Reprinted with permission from [2].
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Figure 3.8: Repeated analysis of raw data files using the mechano-NPS data processing software
by multiple users. Five subjects analyzed raw mechano-NPS data taken from AP-1060 cells; each
subject processed the raw data files three different times using the mechano-NPS data processing
software. Heat maps show unique cell measurements as rows, and each subject’s repeated
observations using the software as columns. Heat maps were generated using MATLAB R2020a
with hierarchical clustering of rows and columns by Euclidean distance. The color scales show, for
each observation, whether the cell measurement was saved or skipped (A), the measured wCDI
value (B), and the measured recovery time constant (τ) value (C). Data is presented as originally
returned after the data processing task was completed (i.e., before erroneous measurements were
excluded). For (B) and (C), the color scale is limited to the non-extreme range of >0 and <2
for both wCDI and τ . For (B) and (C), cell measurements that were skipped in the given
observation are colored gray, and the missing values were imputed for clustering using k-nearest-
neighbors. The total number of cells measured across all observations was 398. Reprinted with
permission from [2].



CHAPTER 3. MECHANO-NODE-PORE SENSING 31

all consistency between all subjects was moderately high (∼80 % agreement above chance),
and “fair agreement” was observed. Pairwise analysis of the agreement between subjects
revealed that the experienced users and one novice user (Subject 3) had a high degree of
agreement with each other. Subjects 1–3 showed “moderate” or “substantial” agreement
with each other, while all other subjects showed “fair agreement” with each other. For all
comparisons, the null hypothesis was rejected. Importantly, Fleiss may be an overly conser-
vative measure of agreement because it considers the possibility that users may assign labels
randomly, which is unlikely in this data processing task. Moreover, this analysis cannot
account for agreement on cells that were skipped in all observations, so the probability of
encountering a cell that should be saved (and thus, the probability of agreeing to save a
cell by chance) is highly overestimated in the Fleiss calculation. For these reasons, we also
calculated the raw percent-agreement value, which directly quantifies the percentage of times
that the observations agreed on whether to save or skip a cell. For all intra- and inter-user
analyses, the raw percent-agreement was ∼85 % or higher, and the two experienced users
and Subject 3 showed >90 % raw agreement among themselves.

Consistency in Observed Phenotypes

We then analyzed the consistency of the observed quantitative cell phenotypes, which can be
affected by the thresholds set by the user. We focused on analyzing the parameters wCDI
and τ , since these were the parameters of interest in the original experiment [58]. For each of
these two mechanical phenotyping variables, we calculated the percentage of cells where an
equivalent value was found in each observation, and we also calculated the intra-class corre-
lation (ICC) to quantify the correlation in the measured values between observations. The

Figure 3.9 (following page): Intra- and inter-user reliability analysis of the mechano-NPS data
processing pipeline. Reliability analysis results obtained from the data presented in Fig. 3.7.
“(e)” and “(n)” designate experienced and novice users, respectively. Number of cells found
in each observation ranged from 49–82. Reprinted with permission from [2]. Intra- (A) and
inter-user (B) agreement analysis examines the consistency of users’ decisions to save or discard
cell measurements. “% agreement” quantifies the percentage of potential cell events in which
all observations agreed on whether to save or discard the event. Fleiss’s kappa analysis was
also performed to determine the “kappa” value as well as the “% agreement above chance.”
“Landis & Koch 1997” indicates the interpretation of the kappa value according to [73]. For all
comparisons, Fleiss’s kappa analysis rejected the null hypothesis that the observed agreement
was accidental (p < 10 × 10−10). (C) Intra- and inter-user concordance analysis examines the
consistency of the observed quantitative cell phenotypes for each of the two phenotype variables:
wCDI and recovery time constant τ . “% agreement” quantifies the percentage of cell events
in which all observations found the same phenotype value, within tolerance. We also calculated
the intra-class correlation (ICC) value, which quantifies the degree of correlation among the
observations. For all comparisons, ICC analysis rejected that the null hypothesis that ICC = 0
(p < 10 × 10−10).
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intra-user analysis (Fig. 3.9C, along the diagonals) showed that all subjects found equivalent
values for both variables a majority of the time; most of the users found equivalent values
for both variables ∼80 % of the time or more, although one of the novice users (Subject 5)
only found equivalent values for the variables ∼60–70 % of the time. However, the intra-user
correlation of values was very high for all subjects (ICC > 0.9), demonstrating a very high
degree of self-consistency in both variables. The inter-user analysis (Fig. 3.9C) was similar
to the intra-user analysis, showing that subjects found equivalent values with each other
for both wCDI and τ a majority of the time. We again found that the two experienced
users and one of the novice users (Subject 3) showed a higher degree of consistency among
themselves than with the other two novice users according to the percent-agreement analysis.
However, the ICC analysis showed a very high degree of correlation in both variables among
all users (ICC > 0.9 in all but one comparison). For all intra- and inter-user analyses, the
null hypothesis that ICC = 0 was rejected for both wCDI and τ .

Statistical Analysis

Statistical outliers, defined as more than 3 median absolute deviations from the sample me-
dian, were included in all statistical tests. Erroneous measurements were identified based
on cell velocity by first excluding statistical outliers and then setting a cutoff of ±4 median
absolute deviations from the sample median velocity in either the reference pore or contrac-
tion segment. Erroneous measurements were excluded from all statistical tests and analyses
unless otherwise stated.

Intra- and inter-user reliability analysis was performed on cell phenotype data resulting
from each data processing observation of the same five raw data files. For all analyses of a
given comparison, only cells that were saved in any observation within the comparison group
were considered. The percent-agreement was calculated according to the decision to save or
discard each observed cell, thus quantifying how often the observations agreed on whether
to save or discard a cell (erroneous measurements were not excluded from this analysis).
Fleiss’s kappa analysis was also performed according to the decision to save or discard each
cell (using an implementation by Shah, 2020 in MATLAB R2020a), with the significance
criterion of α = 0.05 referring to the threshold beyond which the agreement is statistically
significantly better than chance (erroneous measurements were not excluded from this anal-
ysis) [74,75]. Confidence intervals and p-values for Fleiss’s kappa analysis are reported in
Table 3.1. ICC analysis was performed on the data for wCDI and recovery time constant
using the irrNA implementation in RStudio version 1.2 [76,77], using a 2-way mixed-effects
model to evaluate single-rater absolute agreement, with the null hypothesis that ICC = 0
evaluated at α = 0.05. Table 3.2 reports confidence intervals and p-values for ICC analysis,
as well as the effect of excluding erroneous measurements in this analysis. Additionally,
percent-agreement was calculated on the data for wCDI and recovery time constant, cal-
culating the percent of cell events in which all observations found an equivalent value for
the measured phenotype. Measured values were considered equivalent if the difference was
within a tolerance of 1 × 10−10 multiplied by the minimum absolute value observed for the
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measured phenotype. Table 3.3 reports tolerance values used as well as the effect of excluding
erroneous measurements on this analysis.

3.4.3 Discussion
Overall, the agreement and correlation analyses demonstrate that the semi-manual mechano-
NPS data processing platform enables reproducible results. Users demonstrate consistent
results upon repeated analysis of the same data set, and different users find results that
are consistent with each other. Although experienced users do show a higher degree of
consistency than novice users, novice users of this software are still able to achieve reliable
results right away. This finding is critical for ensuring that the mechano-NPS platform, and
its associated data processing pipeline, are reproducible even when adopted by new and
inexperienced users.

3.4.4 Conclusions
Having quantified the expectation for technical variability due to device and hardware vari-
ation in [2], we also demonstrated highly reproducible results from our semi-manual data-
processing software. We also showed that novice users are able to adopt the software and
obtain reliable results immediately. Thus, we have demonstrated that mechano-NPS is a
highly reproducible mechanical phenotyping platform across the entire technology pipeline,
from device fabrication and experimental process through data analysis. As new researchers
and laboratories continue to adopt this technology, we can be confident that results obtained
by different users—even novice users—will be highly consistent and reliable.
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Table 3.1: Fleiss’s kappa analysis for the mechano-NPS data processing pipeline. Five subjects
analyzed raw mechano-NPS data taken from AP-1060 cells; each subject processed each of
the five blinded raw data files three different times using the mechano-NPS data processing
software. The resulting list of cell measurements was analyzed using Fleiss’s kappa to quantify
the inter- and intra-user agreement on whether to save or skip a given cell measurement. The
kappa value is reported along with lower and upper bounds for the 95 % confidence interval. A
p-value less than 0.05 indicates a rejection of the null hypothesis that the observed agreement
is accidental. This analysis was performed on all cell measurements, including those identified
as erroneous. Number of cells found in each observation ranged from 49–82. Reprinted with
permission from [2].



CHAPTER 3. MECHANO-NODE-PORE SENSING 36

Table 3.2: Intra-class correlation of cell phenotype values using the mechano-NPS data process-
ing pipeline. All subjects’ resulting measurements of the two cell phenotype values, wCDI and
recovery time constant τ , were analyzed to quantify the inter- and intra-user consistency of the
observed values. The intra-class correlation value (ICC) is reported along with lower and upper
bounds for the 95 % confidence interval. A p-value less than 0.05 indicates a rejection of the
null hypothesis that ICC = 0. This analysis was performed both including and excluding the
cell measurements that were identified as erroneous. Number of cells found in each observation
ranged from 49–82. Reprinted with permission from [2].
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Table 3.3: Percentage of equivalent measured cell phenotype values using the mechano-NPS
data processing pipeline. All subjects’ resulting measurements of wCDI and τ were analyzed
to quantify the percentage of cell events (“%-agreement”) in which an equivalent phenotype
value was found in all observations, within the reported tolerance. This analysis was performed
both including and excluding the cell measurements that were identified as erroneous. Number
of cells found in each observation ranged from 49–82. Reprinted with permission from [2].
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3.5 Supplemental Information
Custom MATLAB Software for Mechano-NPS Data Processing
Our semi-automatic CLI-based software for mechano-NPS data processing is available pub-
licly at https://github.com/sohnlab/mechanoNPS_Li-et-al-2020 [71], and a newer ver-
sion is also available at https://github.com/sohnlab/NPS-analysis-JOVE [72].

First, the software will perform preprocessing as described in Section 3.3.3, and an initial
scan of the raw data file will be performed to identify potential cell pulses. This initial
detection is based on applying user-supplied thresholds to the derivative signal. Two different
thresholds are used: one to identify peaks corresponding to a cell entering or exiting reference
or recovery pores, and a second (higher) threshold to identify peaks corresponding to a cell
entering or exiting the contraction segment. (The distinction between detected pore peaks
and detected contraction segment peaks is highlighted in the example shown in Fig. 3.5.) The
initial set of user-supplied thresholds should be adjusted depending on the cell type, device
design, and experimental parameters, but can be estimated by examining the derivative
signal to find the usual height of peaks corresponding to cell pulses. As an example, for
AP-1060 cells, we used thresholds of 2 × 10−4 and 1 × 10−3 for the pores and the contraction
segment, respectively (thresholds are given in terms of ∆I/I) [2].

After the initial scan, the software generates a list of potential cell pulses, and asks the
user to evaluate each one. The CLI asks for user input at two different stages for each
potential cell measurement (Fig. 3.6): First, the user must decide whether to save the cell
pulse or to discard it if it is invalid. If the user decides to save the cell, they are then asked
to confirm the two thresholds or to adjust them as needed until a valid rectangularized cell
pulse is generated. When all cell pulses have been confirmed and threshold levels finalized,
the software calculates the mechanical phenotyping parameters (Dcell, wCDI, δdeform, and
recovery time) for each cell as described in Section 3.2.

https://github.com/sohnlab/mechanoNPS_Li-et-al-2020
https://github.com/sohnlab/NPS-analysis-JOVE
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Chapter 4

Multichannel Node-Pore Sensing:
Theory & Modeling

Chapters 2 and 3 have shown that NPS is a powerful platform for single-cell label-free pheno-
typing, as it combines the robustness of electronic sensing with the ability to measure a wide
variety of cell phenotypes. However, while other RPS-based technologies have demonstrated
increased throughput and versatility through multiplexing, NPS has thus far been limited
to only single-channel measurements.

In this chapter, we describe a new method for multiplexing RPS measurements that takes
advantage of the unique channel geometries in NPS. We first discuss the general motivation
for multiplexing and review other strategies for multichannel RPS. We then describe our
strategy for NPS-based multiplexing and discuss theoretical considerations for its implemen-
tation. Finally, we derive a mathematical model for cell measurements in our multichannel
system and perform computational modeling to evaluate its validity. In Chapter 5, we will
demonstrate the experimental implementation of this new multichannel NPS platform and
characterize its performance.

4.1 Background & Motivation
Resistive-pulse sensing

As discussed in Section 2.2.1, RPS is a gold-standard method for counting and sizing cells,
bacteria, and viruses [15,16]. RPS is utilized in a wide range of settings—from the hospital
central laboratory where it is used to perform a rapid complete blood count, to the research
laboratory where it is integrated in commercial flow cytometers for cell population analysis.
RPS is particularly attractive for microfluidic cellular analysis in the research environment
because it can perform single-cell measurements with relatively high throughput, can be
implemented with off-the-shelf electronic parts, and is inherently label-free—reducing the
time and cost of sample preparation.
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As discussed in Chapters 2 and 3, in a microfluidic RPS device, cells suspended in an
electrolyte solution are driven through a narrow channel while the electrical resistance is
monitored. When a cell transits the channel, it causes a temporary increase in the measured
resistance (i.e., a resistive pulse) whose amplitude and duration indicate the cell size and
transit time, respectively. The magnitude of the resistive pulse (∆R/R) is related to the
volume ratio of the cell to the channel (Vcell/Vchannel); thus, the optimal SNR and sensitivity
are achieved when the volume of the channel is minimized.

Multichannel Resistive-Pulse Sensing

To maximize SNR, microfluidic RPS devices often utilize narrow channels; however, this
leads to high fluidic resistance, which limits throughput. Throughput may be increased
by using a higher driving pressure or a wider channel; however, the former may result in
undesirable high shear stress on the cells, while the latter reduces SNR and sensitivity.
Additionally, either method compresses the signal from each cell into a shorter window of
time, as it transits the channel faster. This may reduce the accuracy in estimating cell size
and transit time because there are fewer datapoints that can be averaged to calculate the
signal amplitude and width. Moreover, some RPS-based microfluidic platforms [17,20,78] rely
on accurate measurement of the cell’s transit time to quantify additional cell properties—in
these platforms, increased flow speed is undesirable because the cell must spend sufficient
time in the channel to measure an effect.

Because of the disadvantages that arise from increasing flow speed to achieve higher
throughput, Saleh [14] proposed multiplexing (i.e., driving cells through several channels
that are all measured simultaneously) as an alternative method to increase throughput.
His original design utilized a base electrode connected to a central reservoir, with eight
channels that were each monitored by a two-terminal RPS measurement (Fig. 2.2B). A
variety of similar multi-aperture RPS devices were subsequently developed [79,80], but in
these platforms, the number of electrode terminals increases linearly with the number of
channels to be measured. The application of signal processing techniques such as frequency
division multiplexing [21] and code-division multiplexing [81–83] has led to multichannel
RPS designs that require fewer electrode terminals, but the acquisition hardware required
for these designs is still more complex than the single resistance measurement needed for
standard RPS devices.

Our goal was to develop a fundamentally different method for multiplexing RPS. Specifi-
cally, our strategy was to utilize a single four-terminal measurement to monitor all channels
simultaneously. This would facilitate immediate multiplexing capability in any single-channel
RPS platform, without the need for hardware or software modification in the data acquisition
system. Additionally, such a method could be combined with multi-aperture RPS platforms
such as those described in [14,79,80].
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4.2 Our Approach: Multichannel Node-Pore Sensing
4.2.1 Multiplexing Through Node-Pore Channel Geometry
To measure multiple parallel channels with a single RPS measurement, a method is needed
to deconvolve the signals from the individual channels. When different cell signals overlap in
time (i.e., coincidence events), they need to be separated in order to measure the amplitude
and transit time of each. Thus, to take advantage of the higher throughput that results from
multiplexing, it is necessary to resolve these coincidence events. Additionally, in some cases
it may be important to determine which channel a given cell transited—e.g., if the cells were
sorted prior to RPS measurements, if different conditions are measured in different channels,
or if the different channels have different properties.

Here, we describe a novel multiplexing strategy that addresses these requirements by
taking advantage of the unique pulse sequences generated by NPS. Our method is inspired
by that of Kellman et al. [26], who used NPS encoding, matched-filter detection (MFD),
and successive interference cancellation (SIC) to perform automatic event detection and
deconvolution of coincidence events in a single-channel device. Specifically, we have designed
a multichannel NPS platform in which each channel is encoded with a different sequence of
nodes and pores. The MFD algorithm is expanded to simultaneously search for and detect
multiple possible sequences from the multiple encoded channels. Our method is advantageous
over other multiplexing strategies [14,21,79–83] because of the simplicity of using a single
four-terminal measurement. The number of electrodes needed does not increase with an
increasing number of parallel channels; moreover, our method can be applied to any single-
channel RPS platform without modifying the data acquisition system.

4.2.2 Platform Design
As shown in Fig. 4.1A, the specific sequence of nodes and pores encoded in an NPS channel
results in a characteristic expected resistance signal corresponding to the geometry. Kellman
et al. [26] introduced the strategy of encoding the NPS channel such that the expected signal
corresponds to specific sequences known as Barker codes [84]. Each of the nine Barker codes
exhibits optimal autocorrelation peak-to-sidelobe ratio (PSLR), making these codes ideal
candidates for use in correlation-based detection algorithms such as MFD and SIC. By
encoding single-channel NPS devices with these codes, Kellman et al. [26] achieved automatic
cell pulse detection as well as the resolution of coincidence events, or instances where multiple
cell transit events overlap in time.

Here, we apply a similar principle to create a device in which multiple NPS channels
are each encoded with a specific sequence, and a single electrical resistance measurement
is applied across all channels in parallel (Fig. 4.1B). In this case, MFD and SIC signal
processing can still resolve coincidence events from cells in the same channel—but crucially,
coincidence events from cells in separate channels can also be resolved.
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Figure 4.1: Concepts. A) Example of an NPS channel encoded with the Manchester-encoded
Barker-7 sequence, and the expected resistance pulse generated by a cell transiting the channel.
B) General device schematic (top-down). Four parallel NPS channels (blue) are encoded with
specific sequences, while a four-terminal electrical impedance measurement is applied across
all channels (electrodes in orange). Cells are suspended in an electrolyte solution and driven
through the channels with a non-pulsatile pressure source (black arrows indicate flow).

Although there are an extremely limited number of Barker codes, our proposed multi-
plexing strategy is compatible with many different families of codes commonly utilized in
digital communications (e.g., [85–87]). Using alternate code families would allow each chan-
nel within the device to be encoded with a unique sequence, as shown in Fig. 4.1B, thereby
making the cell’s channel of origin discernible based on the shape of the signal generated
when it transits the channel.

4.3 Theoretical Considerations
4.3.1 Cell Size Calculation in a Multichannel Device
In a single-channel RPS device, the cell diameter dcell can be determined from the measured
change in resistance ∆R compared to the baseline resistance R as follows [14,66,67]:

∆R

R
≈
(

dcell

LchDe
2

) 1
1 − 0.8

(
dcell

De

3)
 , (4.1)

where Lch is the channel length and De is the channel’s effective diameter. For a multichannel
RPS device with n parallel channels, we model the expected single-channel resistance of each
of the parallel channels by applying Eq. 4.1 within each channel, such that ∆R

R

∣∣∣
k

gives the
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change in the nth channel’s resistance relative to its baseline resistance Rn due to the presence
of the kth cell. We model the expected total resistance of the device Rmeasure as a parallel
combination of the total resistance in each of the parallel channels:

Rmeasure ≈
(

R1 + R1
∆R

R

∣∣∣∣∣
1

) ∥∥∥∥∥ · · ·
∥∥∥∥∥
(

Rn + Rn
∆R

R

∣∣∣∣∣
k

)
. (4.2)

In order to estimate cell sizes from Rmeasure based on this mathematical model, each
channel’s baseline resistance must be known. Since it is impossible to directly measure the
baseline resistance of each parallel channel in this single-measurement system, the device
must be designed such that all channels have the same baseline resistance. We accomplish
this by encoding all channels with bipolar sequences of equal length, which we translate into
node-pore geometries through Manchester encoding [88]. By applying Manchester encoding
to a bipolar code of length n, a unipolar code is generated comprising n ones and n zeros.
As shown in Fig. 4.1, the ones and zeros of the unipolar code correspond to pores and nodes,
respectively, in the channel. Thus, the Manchester-encoded channel’s baseline resistance will
be equal to (n Rnode) + (n Rpore). Since codes of equal length are applied to all channels, and
the same node and pore dimensions are used throughout (implying equal values for Rnode

and Rpore), all channels will have the same baseline resistance. Thus, each channel’s baseline
resistance can be calculated directly from the overall measured baseline resistance Rbaseline

according to Rn = n Rbaseline.
Given that Rn is known for all channels based on the measured resistance, Eq. 4.2 rep-

resents a “forward model” that predicts the measured resistance across a multichannel RPS
device given a set of cells with known single-channel pulse amplitudes ∆R

R

∣∣∣
k
. Thus, to cal-

culate cell size based on a multichannel measurement, we substitute this nonlinear forward
model for the simple linear forward model in the cell detection algorithm utilized by [26].
The data processing software will fit ∆R

R

∣∣∣
k

for each detected cell, and Eq. 4.1 can then be
used to calculate the cell’s diameter.

4.3.2 SNR Tradeoff with Increased Multiplexing
Because ∆R/R ∼ Vcell/Vtotal, we expect that each additional parallel channel will cause a
significant reduction in the SNR, and in turn, a reduction in the device’s sensitivity. To
quantify this tradeoff between increased throughput and reduced sensitivity, we modeled
the predicted relationship between SNR, cell size, and number of parallel channels. We
performed this analysis in the domain of electrical current (rather than resistance) because
our NPS data acquisition system applies a constant voltage across the device while measuring
the current.

SNR is defined as the ratio of squared amplitude to noise variance. In RPS, the signal
amplitude depends on the cell size, device geometry, and baseline resistance. Thus, to
model the signal amplitude, we applied Eq. 4.1 along with the approximation that ∆R/R ≈
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∆I/I [67], yielding:

∆I ≈ Ib

(
k1 dcell

3

1 − k2 dcell
3

)
, (4.3)

where ∆I is the current-pulse amplitude, Ib is the single-channel baseline current, and k1
and k2 are constants that depend on the channel dimensions. Even with multiple parallel
channels, the observed total measured current-pulse amplitude will be equal to the single-
channel current-pulse amplitude ∆I given by Eq. 4.3, since currents in parallel channels add.
Specifically, when one cell is present in a device with n parallel channels,

Imeasured = (Ib,1 − ∆I) + Ib,2 + · · · + Ib,n, (4.4)

where Imeasured is the overall measured current across all parallel channels, Ib,n is the nth
channel’s baseline current, and ∆I indicates the magnitude of the current drop within the
single channel that contains the cell (given by Eq. 4.3). Since all the parallel channels have
an equal baseline current (i.e., an equal baseline resistance, as discussed above), then Ib,n is
equal to the overall measured baseline current Ib,tot divided by n, and Eq. 4.4 simplifies to
Imeasured = Ib,tot − ∆I.

To model the noise variance, we examined past data from NPS devices of varying ge-
ometries and observed that the standard deviation of the current noise scales approximately
linearly with the total internal volume of the device (data not shown). Since all of the chan-
nels will have equal volumes due to the considerations discussed in Section 4.3.1 with regard
to baseline resistance, the total volume of the device will scale linearly with the number
of channels. Therefore, we modeled the noise as σ(I) ≈ k3 + k4 n, where k3 and k4 are
constants.

Thus, the resulting model for SNR as a function of cell diameter and number of parallel
channels reduces to:

SNR =
[

∆I
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)]2

. (4.5)

For a given device geometry, k2, k3, k4, and Ib,1 will be constant—no matter the number of
channels. Ergo, this model predicts that the SNR for a given channel geometry and cell size
scales with 1/ (1 + k n)2, where k is a constant. We will compare this model to experimental
data in Chapter 5.

4.4 Computational Modeling
Having derived a mathematical model for the relationship between cell size and measured
resistance in a multichannel RPS system, we tested its validity through computational mod-
eling. We simulated the resistance that would be measured when one or more cells of different
sizes transit through a four-channel device, and we compared the simulated results with our
theoretical predictions.
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4.4.1 Methods
Finite-element simulations were performed using Comsol Multiphysics (Version 5.3a). A
model was created with four parallel channels (Fig. 4.2A), each encoded with the Barker-7
sequence (Fig. 4.1A). Cells were modeled as spheres with electrical conductivity σ = 1 ×
10−10 S/m and relative permittivity ϵr = 2.55. PBS was defined as a liquid with σ = 1.75 S/m
and ϵr = 80. A tetrahedral mesh was generated using a minimum element size of 0.01 µm
and a maximum element size of 230 µm.

RPS measurements were simulated using the Comsol AC/DC Module. The outer elec-
trodes were modeled as constant-voltage terminals with 1 V at the first electrode and 0 V at
the last electrode. The inner electrodes were modeled as floating terminals. The voltage and
current were measured at each terminal, and the resistance across the device was calculated
using Ohm’s Law.

The device was simulated using a range of configurations with cell(s) placed in the middle
of one or more channels. Each configuration was simulated with the cell diameter(s) ranging
from 1–19 µm. The simulated resistance for a given combination of cell sizes was calculated
by averaging the simulated device resistance across each possible arrangement of the cells
within the four channels.

4.4.2 Results and Discussion
We compared the results of our simulation to our mathematical model that describes the
relationship between cell sizes present and total measured resistance (Section 4.3.1). We
first considered the case of a single cell present in just one of channels. For all single-cell
configurations, we calculated the cell size that would be extracted based on our mathematical
model (Eq. 4.1–4.2), where Rmeasure was the simulated resistance. As shown in Fig. 4.2C,
we found good agreement (R2 = 0.9996) between the predicted size and the true size of the
simulated cell.

We also evaluated the magnitude of error in the predicted resistance according to our
mathematical model compared to the simulated resistance for all single- and multi-cell con-
figurations (Fig. 4.2D). Some configurations do exhibit a high degree of relative error in the
model for ∆R when small cells are present. For example, errors >45% occur in some cases
when cell(s) <7 µm are present, and errors >10% occur in some cases when cell(s) <9 µm
are present. However, if we only consider configurations in which all cells are at least 10 µm
in diameter, the error for nearly all configurations is <5% (and the median errors are all
<2%). The correlation between smaller cell sizes and larger model error may partially be
a result of the limitations of finite-element modeling with small feature sizes, and/or to the
limitations of Eq. 4.1 when the cell is very small compared to the channel.

In practical use cases, as discussed in Section 4.1, RPS devices are usually designed to
minimize the channel volume. Thus, the pore width is chosen to be as narrow as possible
without constricting the cells. Specifically, a device with our simulated dimensions (pore
width 20 µm) would typically be used for measuring cell populations with expected diame-
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ters well above 10 µm. Therefore, for the expected use cases, our simulations exhibit good
agreement with our mathematical model and confirm its validity for estimating cell sizes in
a multichannel RPS configuration.

Figure 4.2: Finite-element simulations. A finite-element model of a four-channel device, in
which each channel was encoded with the Barker-7 sequence, was computed with configurations
ranging from 0–4 cells across a range of diameters to simulate the measured resistance. A) The
simulated four-channel device. Simulated current density is shown (in the middle plane of the
channel) when no cells are present. B) Simulated resistance when two cells are present in
different channels, across a range of cell sizes. C) Simulation data (black circles) for single-cell
configurations, showing the diameter of the modeled cell and the simulated ∆R/R. Teal curve
shows the predicted cell size based on the measured resistance according to our mathematical
model. R2 = 0.9996 for the predicted cell sizes compared to the simulation results. D) Error
magnitudes in the predicted resistance based on our mathematical model compared to the
simulation results, for all model configurations. Datapoints are grouped according to the size of
the smallest cell present in the configuration. Medians are represented by teal lines; interquartile
ranges are represented by black boxes; outliers are represented by teal circles and are defined as
1.5 times the interquartile range. Extreme values are represented as teal circles placed above
the dashed line and are defined as values greater than 45 %.
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4.5 Conclusions
In this chapter, we have described a novel method for multiplexed RPS that takes advantage
of the spatiotemporal encoding in the NPS channel geometry. This approach is unique among
other strategies for multichannel RPS in that it does not require additional electrodes to
measure more than one channel and requires no modification to the data acquisition hardware
used for standard single-channel RPS measurements. This makes our multiplexing method
widely accessible to any facility already equipped with standard RPS instrumentation.

As we have described, our platform design encodes each channel with specific geometries
that enable an algorithm based on MFD and SIC to detect multiple cell pulses and deconvolve
coincidence events. We have developed a mathematical model to relate the size of cells
present in each channel to the total measured resistance. This model can be applied in the
event detection algorithm to fit equivalent single-channel pulse amplitudes for each detected
cell, from which the cell size can be calculated. Additionally, we used our mathematical model
to derive a prediction for the tradeoff in SNR as the number of parallel channels increases
for this multichannel platform. Finally, we used finite-element simulations to evaluate the
accuracy of our mathematical model as it applies to calculating cell size based on the total
measured resistance.
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Chapter 5

Multichannel Node-Pore Sensing:
Implementation & Characterization

In Chapter 4, we established the theoretical basis for a novel method of multiplexed RPS that
is based on NPS, and we derived a mathematical model for how this system would perform. In
this chapter, we implement and validate three new device designs based on these principles,
thereby demonstrating multichannel NPS measurements for the first time. We apply the
mathematical model derived in Chapter 4 to improve our automatic cell detection algorithm
and to provide accurate calculations of cell diameters in this multichannel platform. We
also experimentally quantify the tradeoff between SNR and number of parallel channels and
compare these results to our theoretical predictions in Chapter 4.

5.1 Introduction
As discussed in Chapter 4, we developed the framework for an NPS-based platform that is
capable of performing simultaneous measurements in multiple parallel channels. As described
in Section 4.2, we took advantage of the unique pulse sequences generated by NPS devices
to encode specific sequences within each channel’s geometry. Furthermore, we described
how this encoding could enable automatic event detection and deconvolution of coincidence
events through MFD and SIC, and we proposed that differentiation between channels could
be accomplished by encoding different channels with different sequences. Our approach
is advantageous over other multiplexing strategies because it does not require additional
electrodes to measure more than one channel and can be used with any existing single-channel
RPS data acquisition platform, including the existing NPS data acquisition hardware that
has been implemented in multiple laboratories to date [2].



CHAPTER 5. MULTICHANNEL NPS: IMPLEMENTATION 49

5.2 Three Novel Designs for Multichannel
Node-Pore-Sensing

Previously, Kellman et al. [26] utilized a single-channel NPS device encoded with a Barker
sequence [84] and applied MFD and SIC signal processing to resolve coincidence events in that
channel. Here, we apply this same principle to multichannel NPS. We encode each channel
with a specific code and apply a similar computational strategy to resolve coincidence events
within the same channel (as before), but also between separate channels. Fig. 4.1A depicts
how the channel geometry corresponds to the resulting resistance signal. Fig. 5.1A shows a
schematic of the generalized device design.

The Barker sequences with which Kellman’s channels were encoded [26] are ideal for
MFD-based detection because they have ideal autocorrelation PSLR. For our multichannel
platform, however, we wanted the ability to distinguish which channel each detected cell
passed through. This requires each channel to be encoded with a different sequence, such
that the cell’s channel of origin can be determined based on the specific shape of its resistance
signal. Barker sequences would be insufficient in this case because there are only nine known
Barker sequences, and there is only one Barker sequence for a given length (for code lengths
greater than four) [84]. Thus, we initially explored the idea of encoding some channels with
a Barker sequence and other channels with its inverse (i.e., with 1’s and 0’s swapped). This
would provide some specificity about each cell’s channel of origin, but it would not allow us
to distinguish between more than two channels or groups of channels. Therefore, we also
explored encoding the channels with codes other than Barker sequences. Using larger code
families would enable us to create a device with more than two channels. Specifically, each
channel would be encoded with a unique code, thereby allowing us to determine the exact
channel a cell transited.

Based on these ideas, we designed three different devices, each with four parallel encoded
channels (Fig. 5.1). In our first design, “B7-reg”, we applied the Barker sequence of length
7 to all channels. Following the strategy used in [26], we converted the binary Barker se-
quence to a unipolar signal that could be encoded in the NPS signal through Manchester
encoding [88] (we denote the Manchester-encoded Barker-7 sequence as “MB7”). In our sec-
ond design, “B7-inv”, we applied the MB7 code to two of the four channels, and its inverse
(“MB7inv”) to the other two channels. In our final design, “four-codes”, we applied four
unique length-7 Manchester codes (“codes A–D”), which we chose through combinatorial op-
timization (described in Section 5.4.1). All codes used in these designs are listed in Fig. 5.1C.
Each unipolar code was translated into a sequence of nodes and pores by representing each
“1” as a pore of length 180 µm and width 20 µm, and each “0” as a node of length 60 µm and
width 60 µm (Fig. 4.1A). We predicted that the B7-reg design would demonstrate the most
accurate event detection performance due to the ideal properties of the Barker sequence.
On the other hand, we predicted that the increased number of encoded sequences in the
four-codes design would increase the cross-correlation between channels, thereby leading to
a higher probability of false or misclassified event detections.



CHAPTER 5. MULTICHANNEL NPS: IMPLEMENTATION 50

Figure 5.1: Multichannel device designs. A) Top: General device schematic (top-down). Four
parallel NPS channels (blue) are encoded with specific sequences, while a four-terminal electrical
impedance measurement is applied across all channels (electrodes in orange). Cells are suspended
in an electrolyte solution and driven through the channels with a non-pulsatile pressure source
(black arrows indicate flow). Bottom: Photo of a completed microfluidic chip containing two
devices side-by-side. B) Codes used in each of the channels for each device design. C) List of
codes used in NPS channels.

5.3 Experimental Methods
5.3.1 Device Fabrication
Devices were fabricated as described in Section 3.3.1. Briefly, platinum electrodes and gold
contact pads were prefabricated onto a glass substrate using standard photolithography and
electron-gun evaporation. A negative-relief master mold for the microchannel structures was
fabricated using SU-8 3010 epoxy photoresist and standard photolithography (spin speed
1200 rpm, exposure energy 280 mJ/cm2); the resulting feature height was 20.34±0.08 µm.
PDMS channel structures were then molded from the negative-relief master and bonded to
the glass substrate with the prefabricated electrodes via oxygen plasma treatment.
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5.3.2 Cell Culture
MDA-MB-231 cells (ATCC) were cultured in a 1:1 ratio of DMEM:RPMI-1640 with 10 %
FBS and 1X Penicillin-Streptomycin. Cell culture was maintained at 37 ◦C in 5 % CO2,
and cells were routinely passaged once they reached 80 % confluence. To passage, cells were
dissociated by incubation in 0.25 % trypsin/EDTA for 5 min at 37 ◦C, followed by trypsin
neutralization with culture media at a ratio of 2:1 by volume. The cells were then centrifuged
at 0.2 rcf for 5 min and re-seeded at a ratio of 1:4 or 1:2. For all experiments, cells were used
before passage 20.

5.3.3 NPS Measurements
Cells were dissociated via trypsin treatment as described above, washed with 1X PBS, and
then suspended at a concentration of 3–5 × 105 cells/mL in 1X PBS supplemented with
2 % FBS. The cell suspension was subsequently filtered using a 30 µm strainer to remove
large clumps of cells. For cell-size reference measurements, the cells were sampled using a
Scepter 2.0 Handheld Automatic Cell Counter (Millipore Sigma) with a 60 µm tip.

NPS measurements were performed as previously described [24], and as detailed in Sec-
tion 3.3.2. Briefly, the cell suspension was injected into the inlet of each channel, and a
non-pulsatile pressure of 15 mbar (Elveflow, Fluigent) was applied to drive cells through
each channel. A four-terminal measurement was performed to monitor the electrical current
across the device while a constant voltage (3–4 V) was applied. The resulting current was
amplified by a current-to-voltage converter and measured by a commercial data acquisition
device (National Instruments). The data was acquired using custom MATLAB software [69].

The effective channel diameter De for each device was estimated empirically by measuring
a sample of cells using both the NPS device and the Millipore Scepter for reference. After
processing data for this calibration sample as described below, the value of De was chosen
to match the peak value of the NPS-measured cell size distribution with the reference size
distribution.

5.4 Computational Methods
To automatically detect cell events and deconvolve the signal from parallel channels, we
designed and implemented a detection algorithm based on MFD and SIC. Although based
on the same framework as [26], our algorithm differs in two notable ways. First, we added
support for simultaneous detection of multiple encoded sequences. Second, we implemented a
parametric forward model (detailed in Section 4.3) to capture the nonlinear behavior caused
by the resistance signals from each channel combining in parallel. An overview of our data
processing pipeline is described in Sections 5.4.2–5.4.4, and the detailed algorithm is provided
in Section 5.7.2.
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5.4.1 Code Generation for Four-Codes Device Design
Because the mixture of signals from the different channels are separated using MFD, which
is a cross-correlation-based detector, one figure of merit for predicting the performance of
a code set is the maximum side-lobe, or maximum off-center cross-correlation between all
pairs of codes in the set. Previous methods such as [81] utilized Gold codes [85] for their
ability to generate large families of nearly-orthogonal codes, with low autocorrelation and
cross-correlation side-lobes. However, Gold codes, as well as other nearly-orthogonal codes
used in digital communications (e.g., Kasami codes [86]) are cyclic codes, which assume
periodic cross-correlation [87]. In our case, we desired a set of codes with good aperiodic
cross-correlations. To produce such a set, we employed a combinatorial optimization method
(detailed in Section 5.7.1). In short, we generated all possible codes of length 7, computed
the maximum zero-mean aperiodic cross-correlation between all code pairs, and identified
the optimal set of four codes.

5.4.2 Overview of Data Processing
Custom MATLAB software was used to analyze all NPS data [89] (Fig. 5.2). The acquired
resistance data was preprocessed to remove noise, fit to a baseline resistance signal, and then
partitioned into short “frames” for independent analysis. A filter bank, comprising a variety
of signal templates across a range of transit times for all encoded sequences in the device
design, was also generated. This filter bank was then applied in an algorithm based on MFD
and SIC to detect cell transit events within each data frame and to subsequently estimate
the parameters of each event. Based on these parameters, each cell’s transit time and size
were determined.

5.4.3 Data Preprocessing
The recorded current signal was first transformed into a resistance signal by applying Ohm’s
Law. Low-pass filtering was then applied to remove high-frequency noise. The time-varying
baseline resistance was estimated using a weighted least-squares method with a second-
difference smoothing penalty, adapted from [70]. Weights were determined using an envelope
estimator detailed in Section 5.7.2. The output of this window estimator also identified
sections of data as either “possible-cells” (i.e., cell transit events may be present) or as
“noise-only” (i.e., no cells are present in that section).

To increase the efficiency of the SIC-based event detection algorithm, the resistance signal
was divided into short frames that were each analyzed independently. Using the output of
the envelope estimator, the software performed this segmentation while ensuring that each
potential transit event was fully encompassed within a single frame (i.e., no frame contained
partial transit events).
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Figure 5.2: Data processing pipeline using MFD and SIC. A filter bank is generated containing
templates for each code present in the device; each template is scaled to a range of possible
transit times. Each scaled template within the filter bank is correlated with the preprocessed
data to generate a correlation map (1), and a candidate event is identified. The location of the
candidate event within the filter bank identifies the event’s code, estimated transit time, and
estimated time of occurrence. The forward model is then applied to generate a fitted model for
the candidate event (2). When the fitted model is subtracted from the original data (3), the
event detection and model fitting process can be repeated (4).

5.4.4 Event Detection and Parameter Estimation
We employed an algorithm based on MFD (Fig. 5.2) to automatically detect cell transit
events and estimate their parameters (including code identity, pulse amplitude, and transit
time). This strategy deconvolves the signals from each parallel channel and resolves coinci-
dence events within the same channel and across multiple channels. The general structure of
the pipeline follows a greedy SIC algorithm similar to that used in [26], but with significant
modifications, most notably to the data-fitting subroutine used during the SIC step. Ad-
ditionally, we added support for simultaneous detection of multiple encoded sequences and
developed a parametric forward model to handle nonlinear parallel resistance combinations.

First, a filter bank is generated containing zero-mean versions of signal templates (based
on the designed codes utilized in each channel), scaled to a range of transit times. Then, each
frame is analyzed independently using the algorithm described below to detect cell transit
events. (Event detection was not performed on frames previously identified as “noise-only.”)

As shown in Fig. 5.2, the frame’s resistance signal is passed through the pre-generated
filter bank, and a candidate cell pulse is identified based on the resulting correlations. Pa-
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rameters for all events detected so far (e.g., amplitude) are estimated by applying a forward
model and fitting it to the data as closely as possible. This fitted model is subtracted from
the resistance signal to cancel out the pulse’s contribution from any other potentially over-
lapping events. This allows the remaining residual data to be passed through the filter bank
again, and the process is repeated to find the next pulse until no more valid events are found.

In a typical SIC process, in the model-fitting step (step #2 in Fig. 5.2), only a simple
linear model is fit to estimate the pulse amplitude. This strategy speeds up computation time,
but results in poorer model fit because only a course estimate is known for the pulse’s center
time and transit time. Poor model fit during SIC results in poor signal cancellation when the
model is subtracted from the rest of data, and we observed that this mismatch often resulted
in incorrect or false event detections. Thus, we implemented a more sophisticated parametric
forward model that better reflects the NPS data, which resulted in noticeable improvements
in the performance of this event detection algorithm (as demonstrated in Fig. 5.3). The
details of our modified SIC algorithm, along with details of the pulse parameters estimated
by the forward model fit, are described in Section 5.7.2.

When the SIC process is complete and no more cell pulses remain within the data frame,
a final model fit is performed to jointly estimate the parameters of all detected pulses. This
step utilizes the same nonlinear forward model as our modified SIC process. Importantly,
this model inherently accounts for the parallel combination of the resistance signals from
each channel by applying Eq. 4.2, and the single-channel pulse amplitude ∆Rk is fitted for
each event. Thus, for each detected event, the single-channel ∆R

R

∣∣∣
k

due to the presence of
the cell is inferred, and Eq. 4.1 can be directly applied to calculate the cell’s diameter.
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Figure 5.3: Comparison of SIC pulse detection performance between a simple forward model
fit and our updated, fully parametric model. A representative frame of data taken from a four-
codes device was processed with our pulse detection and estimation algorithm, but with different
forward models. We tested the performance with 1) a simple linear model that only attempts to
fit the pulse height, and 2) our fully parametric nonlinear model, and we evaluated the results.
A) The final fitted results after pulse detection estimation with our SIC algorithm. The simple
(old) model fit is show in blue, and exhibits significantly more mismatch with the data compared
to the full (new) model, shown in pink. B) The final pulse detections from running the algorithm
with the simple (old) model. Rectangles indicate locations where a pulse was detected, and their
dimensions indicate the fitted amplitude and transit time. In this case, a false pulse (right-most
pink rectangle) was detected due to poor model fit during SIC. C) The final pulse detections
from running the algorithm with our full (new) model. The falsely-identified pulse from B) was
not detected with this updated forward model.
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5.5 Results & Discussion
5.5.1 Proof-of-Concept with Three Device Designs
Fig. 5.4B shows the distribution of measured cell diameters in each of the three device
designs, separated by the detected code. Results from all designs show good agreement
with the expected cell diameter of ∼15 µm (Table 5.1). As shown, the B7-reg and B7-inv
designs cannot identify exactly which channel the cell passed through, while the four-codes
design can identify each cell’s channel by the detected code. However, the increased number
of encoded sequences in the four-codes design does increase the cross-correlations between
channels, which could lead to a higher probability of false or misclassified cell detections.
It’s possible that this potentially higher error rate could account for the increased standard
deviation in detected cell diameters for the four-codes design compared to the other designs
(see Table 5.1), but further experiments are needed to fully investigate this result.

Figure 5.4: Proof-of-concept experiment. A) Examples of detected cell pulses from a four-
codes device. Data (black) shows measured resistance pulse amplitude, and the fitted model for
all detected events is shown in blue. Rectangles show cell events detected by the data analysis
software; width indicates cell transit time, height indicates pulse amplitude, and color indicates
the code. B) Probability density estimates of measured cell diameters in each device design. Cell
data is grouped by the detected code (i.e., which channel the cell passed through). n = 1302
for each device type.

device type mean cell diameter (µm) standard deviation (µm)
B7-reg 15.35 1.77
B7-inv 15.27 1.78
four-codes 15.34 1.89

Table 5.1: Summary of cell diameters measured in each device type.
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5.5.2 Evaluating the Tradeoff in Signal-Noise Ratio with
Increased Multiplexing

To experimentally evaluate the tradeoff in SNR with increasing numbers of channels, we
measured cells using B7-reg devices with one or more parallel channels. While cells transited
through one of the channels, a solution with no cells flowed through all other channels.
We performed data processing to detect cell transit events, and we calculated the diameter
and SNR for each detected cell, where SNR is defined as the ratio of squared amplitude to
noise variance in the preprocessed current signal. The noise variance for each cell event was
estimated using a 10 s window (excluding data points where cell events were detected).

According to the mathematical model described in Section 4.3.2 and given that all parallel
channels are identical, we modeled SNR as a function of cell diameter using the following
equation, which is obtained by simplifying Eq. 4.5:

SNR = (∆I)2

σ2(I) ≈
(

k1 dcell
3

1 − k2 dcell
3

)2

, (5.1)

where ∆I and σ2(I) are the pulse amplitude and noise variance in the preprocessed current
signal, dcell is the diameter of the cell, k1 is a constant that varies with the number of
channels, and k2 is a constant that is independent of the number of channels.

For each channel configuration tested, a nonlinear fit was performed with Eq. 5.1 to
determine k1. A single value for k2 (5.8257×10−5) was fitted empirically across all conditions.
The data and fitted curves are shown in Fig. 5.5A. As expected, the SNR for a given cell
size decreases with increasing numbers of parallel channels.

To examine the relationship between SNR and the number of channels, we compared
the k1

2 values (proportional to SNR in our model) as n increased from 1–4 (Fig. 5.5B).
Since our model predicted k1 ∼ 1/(1 + b n2), we fit a curve of this form to our results and
found fair agreement with the observed data (b = 4.606, R2 = 0.9536). The experimental
results do present a lower value of k1 for the four-channel configuration than predicted by
the curve, indicating a lower SNR than would be expected based on the other conditions.
However, a lower preamplifier sensitivity setting was required in this condition in order to
avoid data clipping, so we hypothesize that noise introduced by the preamplifier depends on
the sensitivity setting and was a confounding factor in this condition.
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Figure 5.5: SNR experiment. Cells were measured on B7-reg devices with one or more parallel
channels. A) Data (filled circles) were processed to calculate cell diameter and SNR (expressed
in dB). A nonlinear fit (black curves) was performed using Eq. 5.1 to find k1 for each device
type. k2 was fitted empirically to a single value (5.8257 × 10−5) for all conditions. n1 = 754;
n2 = 1700; n3 = 1657; n4 = 1327. B) The value of k1

2 (which is modeled as proportional to
SNR) decreases as the number of parallel channels increases. Experimental values are shown in
black. A curve modeling k1 as proportional to 1/(1 + b n2) (where b is a constant) is shown in
blue (R2 = 0.9536).

5.6 Conclusions
We have demonstrated and validated a novel method for multiplexed RPS that enables
automatic deconvolution of signals from parallel channels. Our strategy is based on encoding
NPS channels with specific sequences that enable simultaneous measurements in multiple
channels with a single measurement. We implemented this method in three novel device
designs, demonstrating four-channel NPS measurements for the first time. We also quantified
the tradeoff in SNR with increasing numbers of channels for this method.

Our approach is versatile because it requires no additional electrodes or acquisition hard-
ware, unlike other RPS multiplexing strategies, and it can be used with any existing RPS
data acquisition platform. Our B7-reg and B7-inv designs are best when it is not important
to distinguish exactly which channel each cell passed through, while our four-codes design
is best suited for applications when it is important to distinguish the cells’ channel of origin
(e.g., if the channels have different properties or if the cells were sorted beforehand). Any
of these designs can be scaled up to higher numbers of channels, as long as the SNR and
sensitivity remain sufficient for the application.

These new multichannel designs can be readily adapted to measure cell surface markers or
mechanical properties as previously demonstrated in single-channel NPS devices [17,20,90].
Adding multiplexing capability to this platform not only increases the throughput, but also
opens up the possibility of a variety of integrated device designs. For example, a mixed
sample could be sorted based on size, and then each cell type could be measured for the
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relevant surface biomarkers. In mechanical phenotyping devices, sorting cells by size before
performing the measurement would enable the channel width to be scaled to the cell size,
equalizing the strain applied to all cells in a mixed population.

Overall, this novel method of multiplexing enables any researcher to immediately increase
their RPS device’s throughput by measuring two or more channels in parallel. This method
could even be applied to platforms that already employ multiplexing through separate elec-
trical measurements, further multiplying their throughput. The flexibility of our technique,
along with the overall versatility of NPS, could enable the next generation of electrical cell
sensing platforms with a wide variety of applications.

5.7 Supplemental Information
5.7.1 Combinatorial Optimization of Four-Codes Design
The example provided here generates the optimal set of codes for a four-channel device
with code sequence length 7. However, this method is applicable to any desired number of
channels or code length.

1. For a code of length 7, generate all 27 binary codes.
2. Convert all binary codes into unipolar codes through Manchester encoding.
3. Choose two codes and compute the zero-mean aperiodic cross-correlation between

them. Record the maximum side-lobe value in a matrix (of size 27 × 27).
4. Repeat step 3 for all (27)2 = 2,097,152 code pairs to fill in the matrix.
5. For a code set of size 4, iteratively prune away the row and column containing the

largest maximum side-lobe value until only a 4×4 sub-matrix remains. The remaining
indices represent the optimal size-4 code set.

We utilized this method to generate four identical codes (“codes A–D”) that we applied
to the four-codes device design. The codes themselves are listed in Fig. 5.1C, along with the
“MB7” and “MB7inv” codes applied to the B7-reg and B7-inv designs.

5.7.2 Event Detection and Parameter Estimation Algorithm
Baseline Fitting and Envelope Estimator

The time-varying baseline resistance was estimated using a weighted least-squares method
with a second-difference smoothing penalty, adapted from [70]. Weights were determined
using an envelope estimator consisting of a sliding window max-hold filter and a sliding
window min-hold filter. Sections of data in which the difference between the max-hold and
min-hold exceeded a threshold were identified as potentially containing cell transit events
(“possible-cells”); all other sections were identified as “noise-only.” “Possible-cells” sections
were excluded from the baseline estimation by setting their weights to zero. The threshold
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for the signal envelope was automatically determined using the Kneedle algorithm [91] to find
the positive “elbow” in its quantile-quantile plot against the standard normal distribution.

Automatic, Safe Frame Partitioning

Using outputs from the envelope estimator applied during baseline fitting, the data was
dynamically partitioned to ensure that (1) all divisions between frames occurred within
“noise-only” sections, and (2) all frames containing “possible-cells” sections exceeded the
minimum duration required to perform MFD. All frames containing “possible-cells” sec-
tions were set to the minimum duration allowable according to these constraints to ensure
reasonable computation time for cell event detection.

Pulse Detection Through Modified Successive Interference Cancellation

1. The frame’s baseline-subtracted resistance data is passed through the filter bank. Both
the ordinary cross-correlation and normalized cross-correlation [92,93] values are com-
puted, which populate two cross-correlation maps: one ordinary and one normalized.
The two axes of each map represent the signal template index from the filter bank
(corresponding to code identity and transit time) and the timestamp within the frame.

2. The peak value of the ordinary cross-correlation map is selected as a candidate detec-
tion.

3. The PSLR of the candidate detection is estimated from the peak value and its sur-
rounding values and compared to a user-defined threshold. If the estimated PSLR is
below the threshold, the peak and its immediate neighbors (main lobe) are disqual-
ified as candidate detections, and the next-largest peak value is selected as the next
candidate.

4. If the PSLR threshold is exceeded, then the normalized cross-correlation value is com-
pared to a user-defined threshold. If this threshold is also exceeded, then the candidate
is marked as a detected event.

5. Following the overall SIC algorithm, the next step is to attempt to cancel the contri-
bution of the detected event(s) from the remainder of the data frame. At this point,
the approximate center time of the last detected transit event and a coarse estimate of
its transit time are known. These two parameters (plus the parameters for all previ-
ously detected events in the frame) are used as a starting point in a model-based data
fitting subroutine (described in the following section), which produces a higher-fidelity
prediction of the contribution of the detected event(s) to the data frame.

6. The prediction is subtracted from the data frame, and the residual re-enters the filter
bank. This SIC process (steps 1–5) repeats until the predicted amplitude of the latest
candidate detection falls below a user-defined threshold or the number of SIC iterations
exceeds a user-defined maximum.

7. After the iterative SIC process terminates, the model prediction undergoes a pruning
step to remove false detections. Each detected event is removed one at a time and the
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model parameters are refit. If the prediction error does not increase beyond a user-
defined limit, the detected event that has the smallest contribution to the prediction is
discarded. This process is repeated until removing any detected event would increase
the prediction error beyond the limit.

Data Fitting Subroutine and Forward Model

The data fitting subroutine utilizes a nonlinear parametric forward model. The forward
model takes a variable number of detection events, each with a code identity, a parallel
channel number, and a set of continuous-valued parameters describing its precise signal
shape. It then generates a continuous-time representation of every transit event (i.e., the
event’s contribution to the time-varying single-channel resistance) and computes the overall
device resistance from the individual resistance signals. Resistances in the same channel
are electrically in series and thus, add together. Meanwhile, the channels themselves are
electrically in parallel, so their resistances are combined using the parallel resistance equation.

When an event is detected within a frame using MFD, the location of the peak value
in the cross-correlation map represents discretized estimates of the center time and transit
time of the event. These two parameters are not adequate to make a high-fidelity prediction
of the event’s contribution to the observed data for two reasons: (1) in reality, the center
time and transit time are continuous-valued, and (2) there is significant model mismatch
between the idealized signal templates and the observed shape of a transit event in an NPS
experiment. Therefore, additional shape parameters are introduced to the forward model as
follows:

Besides code identity and channel number, each transit event has six parameters: (1) cen-
ter time (the timestamp at the middle of the event), (2) transit time (the total duration of
the event), (3) single-channel amplitude (the ∆R caused by the event within its own chan-
nel), (4) node amplitude factor (the ratio of ∆R when the cell occupies a node to ∆R when
the cell occupies a pore), (5) node duration factor (the ratio of the duration that the cell
occupies a node to the duration that the cell occupies a pore), and (6) acceleration factor
(the ratio of the cell velocity exiting the channel to the cell velocity entering the channel).

The data fitting subroutine takes the parameters of all detected events, plus their code
identities and channel locations, and inputs them into the forward model to produce a
predicted data frame. An objective function is defined to quantify the error between the
prediction and the observed data. In practice, this function is the mean absolute value of
the residual (the difference between prediction and observation), plus a penalty function
to promote non-negativity of the residual. In each instance of data fitting, the objective
function is minimized using the Matlab function lsqnonlin to determine fitted parameters
for each detected event. Upper and lower bounds on the fitted parameters are defined by
the user.
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Chapter 6

Toward Integrated Molecular &
Mechanical Screening

In previous chapters, we discussed the work to date in applying NPS to label-free single-
cell analysis. As discussed in Chapter 2, NPS has previously been applied to screen for
cell surface markers without the need for exogenous fluorescent or magnetic labels. As
described in detail in Chapter 3, mechano-NPS is another variation of NPS that measures
the biophysical, rather than biomolecular, cell properties. In this chapter, we will describe
work toward integrating the biomolecular and mechanical cell screening technologies into
one device that can perform these two separate measurements at the single-cell level, in a
uniquely label-free manner. We will discuss the motivation for developing this integrated
NPS device with an eye toward clinical applications in breast cancer screening, and we
will review the concepts and underlying technologies that enable this new platform. We
will present a proof-of-concept device design, provide detailed methods, and demonstrate
successful preliminary cell measurements. Finally, we will discuss remaining challenges and
suggest next steps for improving this platform.

6.1 Motivation
6.1.1 Breast Cancer Screening
Breast cancer (BC) will affect 1 in 8 U.S. women and is the second-leading cause of cancer-
related deaths in women [94]. Some women are at an increased risk of BC due to factors
such as family history or radiologically dense breasts, which are associated with a 2–4 fold
increase in risk [95]. Women with constitutive BRCA1/2 mutations are more likely than not
to develop BC eventually [95]. Since early diagnosis of BC results in improved outcomes [96],
these high-risk women may opt for supplemental screening methods with the goal of detecting
the cancer earlier.
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Common screening methods utilize imaging technologies such as mammography, mag-
netic resonance imaging, or ultrasound to detect an existing tumor [95]. However, another
type of supplemental screening strategy directly samples cells from the breast tissue and
assesses the cells through cytology [97–100]. Rather than scanning for a carcinoma that has
already developed, the cells are evaluated for precancerous changes that could develop into
BC in the future. If a concerning result is found, the patient may consider more frequent
screenings, chemoprevention, or prophylactic surgery. Additionally, direct tissue sampling
strategies are often used to monitor patient response to prophylactic drugs in clinical trials,
and there is hope that these methods might help predict which patients are most likely to
benefit from specific treatments [101]. As discussed by Hoffman [102], breast tissue cytology
may offer a fundamentally different type of biomarker than imaging because cells can be
tested directly for precancerous properties.

6.1.2 Random Periareolar Fine-Needle Aspiration
Random periareolar fine-needle aspiration (RPFNA) [97] is one such tissue sampling strat-
egy that is used to assess short-term risk of BC. A fine-gauge needle is used to collect cells
from several sites on each breast. The needle is able to access cells from the terminal duct
lobular units (TDLUs), where most BCs are thought to originate [101]. Cells are then fixed,
stained, and examined by a pathologist. Clusters of epithelial cells are usually examined
for the presence of hyperplasia (high growth rate) with or without atypia (abnormal mor-
phology and/or organization). In a study of almost 500 high-risk women, Fabian et al. [101]
demonstrated that women who showed hyperplasia with atypia in their RPFNA samples
were more likely to develop cancer in both the short and long term (Fig. 6.1). This study
supported the hypothesis that cellular morphological changes throughout the breast—which
are observed in RPFNA samples—could indicate the risk of developing breast cancer in the
future. As reviewed by Chai et al. [103], evidence of this “field effect” has been seen in many
cancers, and it may be explained by genetic alterations that occur in a stepwise manner as
cells progress from normal to malignant.

Today, RPFNA is used as the tissue sampling method for many Phase II trials in the
U.S. [100]. It is considered a “surrogate endpoint biomarker” because it is strongly associated
with cancer and is modulated by known prevention drugs. RPFNA has largely replaced
nipple aspiration (NA) and ductal lavage (DL) in clinical trials because it is much more likely
to yield a sufficient sample of cells (∼95 % for RPFNA vs. 30–60 % for NA/DL) [98,100,102].
Additionally, RPFNA is often preferred over repeated random core biopsy because it causes
less patient discomfort and is more likely to contain cells from the TDLUs [99,101,102].
Furthermore, RPFNA has been shown to produce highly reproducible results in a multi-
institutional trial [104].



CHAPTER 6. INTEGRATED MOLECULAR & MECHANICAL SCREENING 64

Figure 6.1: Longitudinal study of a cohort of 480 high-risk women who received RPFNA that
was evaluated by cytology. Women whose RPFNA samples exhibited hyperplasia with atypia
were five times more likely to have a later positive diagnosis of breast cancer. Adapted with
permission from Fabian et al. [101].

6.1.3 Clinical Challenge
Although RPFNA is a promising method of sampling mammary tissue, challenges remain
in improving the analysis of the collected cells. A quantitative method of evaluating the
samples is desired, especially when RPFNA is used as a surrogate biomarker to monitor or
predict the response to prophylactic drugs [102]. Masood developed a semi-quantitative scale
for evaluating cytomorphology [105], but as discussed by Ljung et al. [106], the accuracy of
pathological assessments may vary by the physician’s training. Molecular biomarkers such
as estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) have
been used to grade RPFNA specimens [101], but as Hoffman et al. discussed [102], the
key challenge in this approach is cellular heterogeneity within the sample. Furthermore,
current techniques fail to identify precancerous changes in women who go on to develop
highly aggressive triple-negative BC, in which the most common molecular biomarkers are
not present. New analysis methods are needed that can detect precancerous cellular changes
in RPFNA samples in a quantitative way that is predictive for all types of BC.

6.2 Our Approach
6.2.1 Platform Requirements
Here, we propose a microfluidic device that can perform quantitative single-cell analysis of
RPFNA samples. As discussed in Chapter 2, microfluidics provides the single-cell resolution
that is needed to capture the heterogeneity of patient samples and identify subpopulations
such as precancerous cells. Key to RPFNA analysis, our microfluidic platform must distin-
guish precancerous epithelial cells from normal ones against a background of other cell types
present in a sample. Although the number of cells in RPFNA cytology samples has not
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been explicitly determined, Fabian et al. [101] reported that most samples yielded ∼1000
epithelial cells. Therefore, our platform must be able to measure hundreds to thousands of
cells.

In addition to epithelial cells, RPFNA samples contain stromal cells (fibroblasts), immune
cells (leukocytes), and fat cells (adipocytes) [102]. Thus, our platform needs to distinguish
between these major cell types. Furthermore, since mammary epithelial cells include three
major sub-lineages (myoepithelial cells (MEPs), luminal epithelial cells (LEPs), and bipoten-
tial epithelial progenitors (MPPs)), our device must identify the sub-lineage before assessing
whether an epithelial cell is normal or pre-cancerous. Since cell types and sub-lineages are
classically defined by surface marker (SM) profiles, our proposed platform will need to per-
form SM screening to distinguish cell types.

Most importantly, our platform must be able to distinguish precancerous epithelial cells
from normal ones. As discussed in Section 3.1, mechanical properties of cells have been
implicated in the malignant progression for multiple cancers, including BC and triple-neg-
ative BC; in particular, more invasive cells are usually softer than their benign counter-
parts [42,46,59,60]. Thus, our proposed device will utilize mechanical phenotyping as an
alternate biomarker for invasive potential. In addition to stiffness (elastic modulus), vis-
coelastic and mechanical recovery properties have been implicated in cancer migration and
malignant progression [61,62]. Therefore, our platform should probe both elastic and vis-
coelastic/recovery properties.

6.2.2 Prior Work
Mechanical Phenotyping

AFM and micropipette aspiration are gold-standard methods for analyzing mechanical prop-
erties of cells. However, the throughput of these techniques is too low to be practical for
analyzing hundreds of epithelial cells found in RPFNA samples (typical AFM sample sizes
are n ∼ 30 or fewer [42,61,63], and micropipette aspirations may take 10 min/cell [64]). As
discussed in Section 2.3, recent microfluidic methods such as optical stretching [43,49] and
hydrodynamic deformation [48,53] have much higher throughput, but are limited to measur-
ing only the cell’s elastic properties. As discussed in Section 6.2.1, our platform should assess
cellular viscoelastic/recovery characteristics in addition to elastic properties; therefore, these
methods are not sufficient for our application.

Surface Marker Screening

Image-based methods to detect molecular biomarkers, including immunofluorescence (IF)
and immunohistochemistry (IHC), are not compatible with integrated mechanical pheno-
typing. When cells must be fixed as in IHC or intracellular IF, downstream mechanical
analysis cannot be performed. IF can be performed on live cells, but it relies on fluorescent
probes and antibodies (Abs) that target surface receptors, which have been shown to alter
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cell mechanics as well as a variety of signaling pathways [107–109]. Moreover, using imaging
to assess the SM profile of a cell prior to performing mechanical measurements would require
a system to identify the particular cell of interest based on the image and then transfer it
for mechanical analysis. Such a system would most likely suffer from very low throughput,
on the order of tens of cells rather than the hundreds required here.

Fluorescence-activated cell sorting (FACS) is a common high-throughput method that
screens and sorts cells based on SMs. In theory, FACS could be applied to RPFNA samples
to separate cell populations and sub-lineages, which could then be analyzed separately by
mechanical phenotyping. However, FACS has been shown to alter cell biology in several
ways, including by inducing oxidative stress, affecting metabolic pathways, and altering
gene expression [110,111]. These changes may be due to the high shear stress imposed by
FACS machines, which can affect cell signaling pathways [112,113] as well as mechanical
properties [114]. Additionally, FACS relies on fluorescent probes and thus suffers from the
same disadvantages as IF. Therefore, FACS is not ideal for our application because the
sorting process itself may induce changes that affect downstream measurements.

Fundamental Challenge

The main shortcoming in prior approaches to SM screening and mechanical phenotyping
is the difficulty in combining the two measurements. The variety of cell types and sub-
lineages in RPFNA samples calls for orthogonal measurements of SM profile and mechanical
properties, but few technologies exist that accomplish this without using FACS. Bagnall
et al. [115] reported a method for isolating specific cells based on their deformability as
measured by surface microchannel resonators [116], followed by downstream IF imaging.
However, the authors reported integrated mechanical and imaging data for <20 cells; thus,
this method does not have sufficient throughput for RPFNA analysis.

We propose a new integrated microfluidic platform that will perform SM and mechanical
measurements in series. This device is based on NPS, which has been previously applied
to both SM screening [17,90] and mechanical phenotyping [2,20,58]. NPS has sufficient
throughput for application to RPFNA, and it does not suffer from the disadvantages of
FACS that arise from fluorescent labeling and high shear rates. Furthermore, as discussed in
Section 3.1, NPS mechanical phenotyping is able to detect cellular changes associated with
the malignant progression of breast cancer cells [20], including recovery from deformation.
Thus, NPS is a promising method for RPFNA analysis, with the potential to distinguish and
identify precancerous breast cells. The advantages of an NPS-based platform, as compared
to prior work and alternate approaches, are summarized in Table 6.1.

6.2.3 Integrated Node-Pore Sensing
We present a novel microfluidic device design that can measure the SM profile as well as the
mechanical properties of each cell. This device is based on NPS, the electronic cell sensing
technology discussed in Chapters 3–5. We have designed an integrated, multi-parametric
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Table 6.1: Comparison of techniques for SM screening and mechanical phenotyping.

platform by combining principles from prior NPS work [17,20] and applying new technological
developments.

As discussed in Section 2.2.1, NPS [24] has previously been applied to create devices
that either measure mechanical or biomolecular cell properties. Mechano-NPS [2,20,58], as
discussed in Section 3.2, incorporates a contraction channel segment to enable measurements
of cell deformability and recovery from deformation. Surface-marker NPS (sm-NPS) [17]
accomplishes label-free SM screening by including channel sections patterned with Abs that
target SMs of interest. Cells expressing a particular SM transit more slowly in the segment
patterned with the corresponding Ab than in a reference segment coated with an IgG isotype
control Ab (Fig. 6.2). This is due to transient binding between the cell’s SM and the
patterned Ab.

Our new NPS device combines sm-NPS and mechano-NPS in series. This integrated
platform, called combo-NPS, enables independent label-free measurements of the SM profile
and mechanical phenotype of each cell. One challenge in implementing such a platform was
to develop an improved method of Ab surface patterning that could enable scalable and
robust functionalization of the sm-NPS segments with multiple Abs. Another challenge was
to maintain sufficient SNR despite the increased the channel length necessitated by including
both sm-NPS and mechano-NPS segments.

To address these challenges, we took advantage of two recent technological developments.
First, we applied DNA-directed patterning to perform highly multiplexed protein patterning
on a glass substrate [117]. Second, we implemented a “multi-zone” NPS platform to perform
multiple NPS measurements in series.
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Figure 6.2: Operating principle of sm-NPS [17]. A cell expressing a molecular SM (pink
triangles) traverses an NPS channel containing two segments. The first segment is patterned
with an IgG control Ab (green); the second segment is patterned with an Ab (pink) that targets
the SM. Due to transient interactions between the cell’s SMs and the anti-SM Ab present in the
second segment, the cell’s transit time ∆t is longer in the second segment than in the first.

DNA-Directed Patterning

In the original work describing sm-NPS [17], the Abs were conjugated to the glass substrate
via Sulfo-EGS cross-linker and Protein G. Temporary channels fabricated from PDMS were
aligned and clamped to the glass substrate such that each segment could be functionalized
with a different Ab. Afterward, the temporary channels were replaced by the NPS channel,
which was aligned and clamped without allowing the Ab to dry out and lose functionality.
This process was difficult and time-consuming, especially as the number of Abs increased,
and device production was difficult to scale up. Additionally, completed devices needed to
be stored in a carefully controlled environment, and the functionalization process itself was
found to lack robustness. Device leakage was also an issue, and high variability in driving
pressure led to inconsistent transit times.

To address these issues, we adopted the DNA-directed patterning (DNA-dp) technique
to pattern Abs [90,117] (Fig. 6.3). In DNA-dp, amine-terminated, single-stranded DNA
oligonucleotides (oligos) are conjugated to an aldehyde-coated glass substrate through re-
ductive amination [118]. Photolithography is used to serially pattern different oligos on each
Ab target region [117]. Each Ab is conjugated to an azide-terminated complementary oligo
using click chemistry [90,119], which hybridizes to the appropriate target region when incu-
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bated with the DNA-patterned substrate. With this method, temporary channels are not
needed, and multiple-Ab patterning can be performed immediately prior to NPS measure-
ments, thus preserving Ab functionality. Particularly attractive to point-of-care applications
such as RPFNA analysis, the oligo-patterned NPS devices have been demonstrated to have
a shelf life of at least four weeks at room temperature [90].

Figure 6.3: Multiplexed surface functionalization with Abs using DNA-dp [90,117]. An
aldehyde-coated glass slide is photopatterned such that only the target region for oligo A is
exposed (1–2), followed by reductive amination to conjugate oligo A onto the exposed target
region of the surface (3). This process is repeated to conjugate oligo G onto its target region
(4–5). Two different Abs, Ab1 (red) and Ab2 (green), are tagged with complementary oligos A’
and G’, respectively. The oligo-tagged Abs are incubated with the surface (6), and complemen-
tary hybridization ensures that each Ab binds to the region where the corresponding oligo was
patterned (7).

In addition to applying DNA-dp for Ab patterning, Kozminsky et al. [90] modified the
basic device design for sm-NPS to improve their results. Their device included flow-expansion
chambers around the Ab-patterned regions to slow cells down, thereby ensuring sufficient
Ab-antigen interaction. PDMS tapered “railings” were also included to confine cells to flow
within the Ab-patterned regions, thus minimizing velocity variations due to cells flowing
off-center within the channel. (An example of these expansion chambers and railings, as
applied to combo-NPS, is shown in Fig. 6.4.) Finally, node-pore sequences were included
before and after each Ab-patterned expansion region, such that a cell’s subpulses could be
measured before and after it entered the Ab regions. Thus, the cell’s transit time in each
Ab region was calculated by the elapsed time between the subpulses immediately before and
after the Ab region.
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Multi-Zone Node-Pore Sensing

While Kozminsky et al. were able to demonstrate screening of up to four SMs with their
device design [90], SNR continued to be a limiting factor. In combo-NPS, the addition of the
long segments required for mechano-NPS in series with the sm-NPS segments would reduce
the SNR in the Ab-adjacent node-pores even further, because the overall channel volume
would increase (see Chapter 4 for an in-depth discussion of SNR).

For this reason, we turned to multi-zone NPS (mz-NPS). In this technique, the channel
is divided into separate “zones,” which are electrically in series and are each measured
separately. Dividing the long channel into these shorter zones improves SNR because each
zone has a smaller volume than the overall device. A combo-NPS device design utilizing
mz-NPS is shown in Fig. 6.4. The electrical current (Iin = Iout) through all zones is the
same and is measured at the outer electrodes, while the voltage drop across each zone is
measured at the inner electrodes (Vn). Thus, the resistance (Rz) is monitored separately in
each zone; for example, in Fig. 6.4, Rzone3 = V4−V5/Iin.

Integrated Combo-NPS Platform Design

Our new, integrated NPS platform (combo-NPS) combines label-free SM screening with
mechanical phenotyping at the single-cell level. As shown in Fig. 6.4, this device applies
sm-NPS measurements to each cell, followed by mechano-NPS measurements. We take
advantage of the developments in DNA-dp to facilitate robust multi-Ab functionalization
for the sm-NPS segments, and we implement mz-NPS measurements to maintain good SNR
throughout the long channel.

Our initial proof-of-concept (POC) design (Fig. 6.4) utilizes two Ab-patterned expansion
regions to perform single-marker sm-NPS. One region is patterned with an Ab targeting
the epithelial cell adhesion molecule (EpCAM) (CD326), while the other is patterned with
the corresponding IgG isotype control Ab. Each expansion region is measured by its own
electrical zone, which also encompasses a single pore before the expansion region and a two-
pore/one-node sequence after the expansion region. The expansion regions also include the
aforementioned PDMS “railings” that confine cells to flow within the Ab-patterned regions,
similar to [90]. We employed computational simulation (Fig. 6.5) to confirm that the flow
in these regions, even within our integrated combo-NPS design, maintains a slow velocity
(to ensure sufficient cell exposure to patterned Abs) and uniform cross-section (to minimize
velocity variations due to cells flowing off-center).

After the sm-NPS regions, our initial device design (Fig. 6.4) also includes a mechano-NPS
sizing (reference) segment and a mechano-NPS contraction segment. Each of these seg-
ments is measured by its own electrical zone, for a total of four measurement zones. These
mechano-NPS regions enable measurement of cell size, transverse deformation (δdeform), and
whole-cell deformability index (wCDI), as described in Section 3.2. Although this design
does not include recovery segment(s), they could easily be added in future device designs.
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Figure 6.4: Combo-NPS for integrated single-cell SM screening and mechanical phenotyping.
First, sm-NPS is performed as cells flow through expansion regions patterned with Abs using
DNA-dp. Subsequently, mechano-NPS is performed as cells flow through sizing and contraction
segments. Multiple electrical zones acquire separate NPS measurements in different regions of
the channel, maintaining good SNR even in the long channel. Electrodes in orange; channels in
blue; Abs in pink and green. White “railings” in the expansion regions confine cells within the
Ab-patterned regions. Black arrow indicates flow.

Figure 6.5: Finite-element simulations of the flow profile within combo-NPS expansion regions.
Comsol Multiphysics was used to evaluate the flow profile within the Ab expansion regions of our
POC design for integrated sm-NPS and mechano-NPS (Fig. 6.4). A) The model demonstrates
that flow streamlines within the central Ab region are well-distributed and have very slow velocity
magnitude, ensuring that cells have sufficient time to interact with the patterned Abs. B) The
model demonstrates a consistent cross-sectional flow profile throughout the central Ab region,
allowing for consistent effects to be observed in the cell transit time.
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6.3 Methods
6.3.1 Device Design
We optimized our initial combo-NPS design (Fig. 6.4) for testing on well-characterized inva-
sive MCF-7 breast epithelial cells that are EpCAM-positive. Based on an expected average
cell diameter of ∼18 µm (data not shown), the width of the mechano-NPS sizing segment
was 21 µm, and its length was 930 µm. The mechano-NPS contraction segment was 10.5 µm
wide to target a strain value of ∼0.4, and its length was 3.38 mm. The channel height in the
mechano-NPS segments was 23 µm.

The geometry of the sm-NPS regions was based on a modified version of the expansion
region design used in [90]. The channel height and pore widths were 40 µm, and the pores
were 350 µm long. The nodes were 100 µm wide and 60 µm long. The widest part of the
expansion region was 2 mm wide and 3.16 mm long. PDMS railings confined cells to flow
within a central region that was 360 µm wide and 2.75 mm long. A transition region with a
10 µm height allowed fluid but not cells to flow from the node-pore sections into the outer
part of the expansion region. The Ab-patterned regions were 2.5 mm long and 1.08 mm wide,
to allow for alignment tolerance with the central part of the expansion region.

6.3.2 Cell Culture
Cells were cultured according to standard methods. Cell culture was maintained at 37 ◦C in
5 % CO2, and cells were routinely passaged once they reached 80 % confluence. MCF-7 cells
were cultured in RPMI-1640 with 10 % FBS and 1X Penicillin-Streptomycin. To passage,
cells were dissociated by incubation in 0.25 % trypsin/EDTA for 5–10 min at 37 ◦C, followed
by trypsin neutralization with culture media at a ratio of 2:1 by volume. The cells were
then centrifuged at 0.2 rcf for 5 min and re-seeded in culture media. All experiments were
performed before passage 20.

6.3.3 Device Fabrication
The combo-NPS devices were fabricated in three stages: 1) NPS microchannels were fabri-
cated in PDMS; 2) the glass substrate was patterned with electrodes and DNA oligos; and
3) the PDMS channels were bonded to the prepared substrate. This device was stored at
room temperature until use. An overview of this process is shown in Fig. 6.6; details of the
fabrication processes are provided below.

Microchannel Fabrication

PDMS microchannels were fabricated using soft lithography, generally following the pro-
cess described in Section 3.3.1. Briefly, a negative-relief master mold for the microchannel
structures was fabricated using SU-8 3010 epoxy photoresist and standard photolithogra-



CHAPTER 6. INTEGRATED MOLECULAR & MECHANICAL SCREENING 73

Figure 6.6: Fabrication process for integrated NPS. A) A negative SU-8 master mold is fabri-
cated on a silicon wafer using photolithography, and the NPS channels are created from PDMS
using soft lithography. B) Electrodes are patterned on an aldehyde-coated glass substrate using
standard photolithography and electron-gun evaporation, followed by DNA surface patterning.
C) Finally, the PDMS channels are aligned and bonded to the prepared substrate containing the
DNA patterns and electrodes.

phy. PDMS was poured over the master mold and cured; then, PDMS slabs containing the
embedded microchannel structures were excised.

To fabricate the master mold containing multiple feature heights, the SU-8 photolithog-
raphy process was performed multiple times in series. For all layers, the pre-exposure bake
was performed at 95 ◦C, the exposure energy was ∼280 mJ/cm2, and post-exposure bakes
were performed for 1 min at 65 ◦C followed by 3 min at 95 ◦C. All development steps were
performed by incubation in SU-8 developer for 4 min, plus an additional 1–2 min incubation
with agitation.

First, a 10 µm layer containing only SU-8 alignment marker features was fabricated (spin
speed 4000 rpm, pre-exposure bake 8 min), and development was performed. The resulting
feature height was 9.05 µm. For all subsequent layers, these alignment features were protected
by applying Kapton tape before adding new SU-8; this tape was removed after the pre-
exposure bake. Tape was only applied over the SU-8 alignment features, and was not applied
over areas containing microchannel structures.

A 10 µm layer was fabricated to create the transition features of the expansion regions
(spin speed 3500 rpm, pre-exposure bake 8 min). Next, a 13 µm layer was fabricated to create
the mechano-NPS regions with a total height of 23 µm (spin speed 3000 rpm, pre-exposure
bake 12 min). Finally, a 17 µm layer was fabricated to create the sm-NPS regions with a
total height of 40 µm (spin speed 2000 rpm, pre-exposure bake 15 min).
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After all layers were fabricated, a final development step was performed, followed by
a hard-bake step for 30 min at 150 ◦C. The final feature heights were 9.93±0.44 µm for
the transition layer, 23.68±0.22 µm for the mechano-NPS layer, and 41.46±1.81 µm for the
sm-NPS layer.

Electrode Fabrication & DNA Patterning

Electrodes were patterned onto an aldehyde-coated glass substrate using electron-gun evap-
oration, which is described in detail in Section 3.3.1. The only modifications to this process
for combo-NPS fabrication were that 1) the substrate was only immersed in acetone for
∼15–20 min during liftoff, and 2) the gold etch step was not performed due to concerns that
the etchant could interfere with the aldehyde groups functionalized on the substrate.

Two orthogonal DNA oligos (oligos A and G; see Section 6.3.7) were patterned on the
substrate with the prefabricated electrodes as described in [117] (Fig. 6.3). Briefly, amine-
terminated, single-stranded DNA oligos were diluted to 40 µm in a solution of 50 mm sodium
phosphate at pH 8.5. Shipley 1813 photoresist was patterned onto the aldehyde-coated glass
substrate using the same photolithography process as that described in Section 3.3.1 for
electrode fabrication. The pattern was defined such that the resist covered all areas of the
device except for the target regions for the first oligo. The prepared solution containing the
first oligo was drop-cast onto the exposed target regions, and the substrate was baked for
30 min in a 65 ◦C oven. The substrate was then immersed in a solution of 0.25 % sodium
borohydride in PBS and incubated at room temperature for 10 min with frequent agitation to
perform reductive amination [118]. Finally, the substrate was rinsed with DI water (18 MΩ),
and liftoff was performed by rinsing with acetone and again with DI water. This process was
repeated to pattern subsequent oligos in their respective target regions; the prefabricated
electrode patterns served as alignment markers.

Bonding

An overview of the bonding process is shown in Fig. 6.7. As described by [90], the oligo-
patterned regions of the glass substrate were protected with a sacrificial layer of Shipley 1813
resist, which was patterned using standard photolithography. The glass substrate (containing
the prefabricated electrodes, DNA patterns, and protective photoresist) was then rinsed
with DI water and dried with dry nitrogen gas. The PDMS slab was cleaned with adhesive
tape, rinsed briefly with isopropanol and water, and dried with dry nitrogen gas. The glass
substrate and PDMS were exposed to oxygen plasma treatment (60 Pa, 30 W, 2 min). The
glass substrate was rinsed with acetone and DI water to remove the sacrificial resist and
dried with dry nitrogen gas, and the PDMS slab was immediately mated to the substrate.
Bonding was completed by baking the device for 10 min at 100 ◦C. The devices were stored
at room temperature until use.
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Figure 6.7: Bonding process for DNA-functionalized NPS devices. Patterned oligos (red and
green) on the glass substrate are protected with a sacrificial layer of Shipley 1813 photoresist
(teal). The substrate and the PDMS channels are exposed to oxygen plasma treatment. The
photoresist is removed by rinsing with acetone and water, and the PDMS channels are immedi-
ately mated to the substrate.

6.3.4 Antibody-Oligonucleotide Conjugation
Mouse monoclonal Abs were conjugated to DNA oligos complementary to those patterned
on the device substrate. The anti-EpCAM Ab (eBioscience, 1B7) and the IgG1κ control
(eBioscience, P3.6.2.8.1) were conjugated to the G’ and A’ oligos, respectively. The con-
jugation was performed via click chemistry following the process described in [90]. Briefly,
Amicon Ultra 100 kDa centrifugal filters were used to concentrate the Ab solution into a
buffer of 200 mm sodium bicarbonate in DI water (pH 8.4). A 10 mm solution of the het-
erobifunctional cross-linker (DBCO−PEG5−NHS) was prepared and added to the Ab in
32-fold molar excess. The mixture was incubated at room temperature for 2 h on a tube
rotator. Invitrogen Centri-Spin 20 size-exclusion columns were used to remove the excess
cross-linker. The azide-terminated oligo was then added to the solution in 2-fold molar
excess and reacted at room temperature overnight on a tube rotator. Finally, Invitrogen
Centri-Spin 40 size-exclusion columns were used to remove the excess free oligos.
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6.3.5 Experimental Process
Antibody Patterning

Immediately prior to performing NPS experiments, the oligo-tagged Abs were introduced into
the channel, where they hybridized to the corresponding DNA-patterned regions (Fig. 6.3).
We implemented a streamlined process compared to prior protocols (e.g., [90]). A solution
of 2 % bovine serum albumin (BSA) in PBS was driven through the channel at 60 mbar until
the entire channel was filled. (If necessary, the outlet could be temporarily closed to drive out
any remaining air pockets.) The device was subsequently incubated with the BSA solution
at room temperature for at least 1 h (up to overnight). The oligo-tagged Abs were diluted
and mixed together to a final concentration of 0.2 µm in the 2 % BSA solution. The Ab
mixture was driven through the channel at 60 mbar for 15 min, and the device was incubated
at room temperature for 30 min. Finally, excess Abs were removed by flushing the channel
with PBS at 60 mbar for 30 min.

Node-Pore Sensing Measurements

Cells were prepared for NPS measurements by passaging according to standard culture prac-
tice and diluting in PBS to a concentration of ∼200–500 × 103 cells/mL. The cell suspension
was filtered twice with a 20 µm strainer and kept on ice until NPS measurements were per-
formed.

NPS measurements were performed in a similar method to that described in Section 3.3.2.
The cell suspension was injected into the channel inlet with a driving pressure of 50–300 mbar.
A constant voltage of 5 V was applied across the outer electrodes, and the resulting current
through the outer electrodes was monitored along with the voltage at each of the inner
electrodes. A custom printed circuit board was used to perform these measurements, along
with a commercial USB data acquisition card from Measurement Computing Corporation.
Custom MATLAB software was used to acquire and monitor the data.

6.3.6 Data Processing
The resistance across each zone was calculated according to Ohm’s law as described in
Section 6.2.3. Each zone’s resistance signal was preprocessed by applying a low-pass filter,
downsampling, and applying a moving-median filter. Each zone’s baseline resistance was
fitted using asymmetric least-squares [70].

6.3.7 Oligonucleotide Information
Oligos were purchased from Integrated DNA Technologies. Oligos A and G were 5’-amine-
terminated and were conjugated to the aldehyde-functionalized glass substrate. Oligos A’
and G’ were 5’-azide-terminated and were conjugated to the Abs. Oligos A’ and G’ were
also 3’-terminated with Cy5 and Cy3 fluorophores, respectively.
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name sequence (5’→3’)
A ACT GAC TGA CTG ACT GAC TG
G AGC CAG AGA GAG AGA GAG AG
A’ CAG TCA GTC AGT CAG TCA GT
G’ CTC TCT CTC TCT CTC TGG CT

Table 6.2: Oligonucleotide sequences.

6.4 Preliminary Results & Discussion
6.4.1 Proof-of-Concept Design
Our preliminary results, based on measuring EpCAM+ MCF-7 cells, have been very promis-
ing. As shown in Fig. 6.8A, we demonstrated successful Ab patterning within the device.
Moreover, Fig. 6.8B shows an example of a successfully measured cell pulse as it transits
each zone. Preliminary analysis indicates that MCF-7 cells spend longer in the anti-EpCAM
region than in the control region, as expected.

Although the results of these initial tests are promising, the quality of our measurements
was hindered by very slow cell velocity in the SM zones, a problem that was compounded by
relatively low SNR in these regions. While low flow velocity is desirable in the Ab-patterned
regions to allow sufficient interaction between the cell SMs and the Abs, we observed cell
transit times through the expansion zones that were an order of magnitude slower than
those observed in previous successful sm-NPS experiments (e.g., [90]). This is a result of the
fact that mechano-NPS sizing and contraction segments were in series after the expansion
regions, causing the pressure drop across the expansion regions to be dramatically reduced
compared to an SM-only device. These extremely low sm-NPS flow speeds were problematic
in multiple ways. Many cells settled and stuck to the bottom of the channel, and thus could
not be measured. Moreover, the presence of these stuck cells altered the flow profile for
subsequent cells transiting the channel. Additionally, tracking cell pulses in the data that
took upwards of 30 sec each was extremely cumbersome, and the yield of good-quality pulses
compared to the total number of cells that were measured in an experiment was very low.

We attempted to mitigate these issues by using a very high driving pressure of 300 mbar,
but we still observed cell transit times of 8–9 sec in each sm-NPS zone. Moreover, as shown
in Fig. 6.8B, this high pressure caused the measured cell subpulses in both the sm-NPS
and mechano-NPS pores to be extremely short in duration. This time-compression of the
subpulses results in less reliable cell measurements for two reasons: 1) fewer datapoints are
sampled in each subpulse, so the estimates of subpulse width and average amplitude are less
accurate; and 2) the signal for shorter-length pores (such as those used in the sm-NPS regions
and the mechano-NPS sizing zone) is moved to a higher-frequency domain that has more
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Figure 6.8: Integrated surface marker NPS and mechano-NPS. A) Electrodes (orange) define
four zones whose electrical impedance is measured. Two Ab regions (pink and green) are
patterned to perform surface marker screening, followed by sizing and contraction segments
to perform mechano-NPS. Insets: successful Ab patterning of IgG (pink, visualized by Cy5
conjugate) and anti-EpCAM (green, visualized by Cy3 conjugate) within the integrated NPS
device (scale bars = 200 µm). B) Representative electrical resistance signals in the four zones
caused by an MCF-7 cell transiting the integrated device. Signals are shown when the cell transits
(1) and (3) the single pore before each Ab region; (2) and (4) the 2-pore/1-node sequence after
each Ab region; (5) the sizing segment; and (6) the contraction segment. The cell whose data is
shown spent ∼20 % longer in the anti-EpCAM region than in the IgG control region, consistent
with the expected EpCAM+ phenotype.



CHAPTER 6. INTEGRATED MOLECULAR & MECHANICAL SCREENING 79

overlap with the baseline measurement noise. This second challenge is especially evident in
the sm-NPS zones, which have a lower SNR due to the much larger fluid volume than the
mechano-NPS zones. In the example shown in Fig. 6.8B, signals from cells traversing single-
pore expansion channel entrances (1 and 3) appear as narrow peaks of a similar frequency
to the baseline noise rather than rectangular pulses, and signals from the two-pore/one-node
expansion channel exits (2 and 4) are barely distinguishable as two peaks rather than a single
peak.

6.4.2 Next-Generation Device Design
To address these issues, we conceived of a next-generation combo-NPS design (Fig. 6.9A)
with several major changes. First, we increased the fluidic resistance of the sm-NPS regions
to compensate for the added fluidic resistance of the downstream mechano-NPS regions. We
designed much narrower expansion regions with the same channel height as the mechano-NPS
regions and without the need for PDMS railings or a transition region. Second, we added
a mechano-NPS recovery segment, which was not included in our original design. Finally,
we employed a different sensing strategy for the SM regions, whereby we only apply NPS
measurements in the regions between the expansion regions, instead of designing mz-NPS
measurement zones that each span an entire expansion region. We made this change in order
to maximize SNR even more, given that the cell does not need to be measured when it is in
the middle of an expansion region.

We utilized finite-element simulations to fine-tune the design of this new concept. First,
we validated that the flow profile was still slow and uniform in the expansion regions
(Fig. 6.9B,C). We then performed a particle tracing simulation to estimate the flow ve-
locity as a cell would transit each region (Fig. 6.9). Based on the relative velocities of the
simulated particle in each region, we adjusted the relative lengths of each region in the design
until we achieved a simulation that was well-matched with our target transit times of ∼1.0–
1.4 sec in each Ab region, ∼110 ms in the reference zone, ∼170–180 ms in the contraction
zone, and ∼5000 ms in the recovery zone. These target times were based on past successful
experiments in both sm-NPS and mechano-NPS (e.g., [58,90]).

Using this updated device design, we performed preliminary experiments with MCF-7
cells. With a driving pressure of 80 mbar, the cell velocity and resulting signals were much
improved (Fig. 6.10). The cells spent under 5 sec to transit the whole channel, and the cells
spent ∼1 sec in each Ab region. The subpulses in all zones took on the desired rectangular
pulse shape rather than a peak shape, and SNR in all zones was very good. However, we
did not observe consistently longer transit times in the anti-EpCAM region than in the IgG
region. We speculate that several factors may have been at play: 1) the cell velocity in the
Ab regions may have been too fast to allow interaction between the cell SM and the Abs,
2) the cell was not allowed to spend enough time in the Ab-patterned region to observe a
consistent effect, and/or 3) cells sticking to the bottom of the Ab regions (which we did still
observe in this design) may have disrupted the flow, making cell transit times between the
anti-EpCAM region and IgG control region not comparable.
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Figure 6.9: The next-generation integrated NPS design. A) Schematic of the device. Electrodes
are shown in orange; the PDMS channel is shown in blue; and the Ab-patterned regions are shown
in pink and green. NPS measurements are taken at the indicated zones between the electrodes.
B) Simulated flow velocity in the center plane of the design, demonstrating uniformity throughout
the Ab region. C) Simulated cross-sectional flow profile in the expansion region, demonstrating
that uniformity is maintained. D) Simulated particle velocity in each region of the design.
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Figure 6.10: Preliminary results with the next-generation integrated NPS design. Representa-
tive electrical resistance signals from each of the six zones caused by an MCF-7 cell transiting
the integrated device (with updated design as shown in Fig. 6.9).

6.5 Next Steps
One major challenge we observed is that cells often adhered to the bottom of the Ab-
patterned expansion regions in both device designs. This could be especially problematic
because the presence of stationary cells on the channel floor may disrupt the measurement
of SMs. Not only do stuck cells block other cells from reaching that portion of the Ab-
patterned substrate, but their presence also blocks part of the flow in the channel, leading
to a flow profile that differs between the test Ab region and the IgG control region. We
hypothesize that multi-cell clusters are the most likely to sink and adhere to the channel
floor, so reducing cell clumping (and/or cell-cell interactions) could help mitigate this issue.
One option would be to add EDTA or a surfactant such as Tween-20 to the cell suspension.
In either case, these additives should first be tested to confirm that they do not interfere
with the Ab-surface conjugation or with the Ab functionality. Additionally, optimization
(through simulation and/or experimentation) may be needed to find an appropriate target
cell velocity that allows for SM-Ab interaction while minimizing the chance of cells adhering
to the bottom.

Another potential issue is that the cross-linker used to label Abs with oligos may react
with free amino groups that are present in multiple locations on the Ab molecule. If any
cross-linkers are conjugated too close to the antigen-binding domain, reduced Ab activity



CHAPTER 6. INTEGRATED MOLECULAR & MECHANICAL SCREENING 82

and/or high device-device variability may be a factor. We could address this issue by using
a commercial cross-linker that selectively targets sites that are far from the antigen-binding
domain, e.g., oYo-Link DBCO [120]. Alternately, we propose a reaction scheme based on
avidin-biotin interaction as shown in Fig. 6.11. This method takes advantage of commercially
available biotinylated Abs, which place the biotin group far from the antigen-binding domain
and have verified Ab functionality. This method has the additional advantage that stocks of
oligo-tagged neutravidin could be prepared in advance and mixed with different biotinylated
Abs as needed.

Figure 6.11: Ab-oligonucleotide conjugation through click chemistry and avidin-biotin interac-
tion. First, azide-terminated oligos are conjugated to neutravidin through click chemistry (target-
ing free amine groups). Then, biotinylated Abs are mixed with the oligo-neutravidin conjugate,
and binding takes place through the avidin-biotin interaction. Created with BioRender.com.

Our updated design includes six mz-NPS measurement zones, which is the maximum that
our data acquisition system can read simultaneously. However, to screen for additional SMs
with this design would require additional zones. In future iterations, we believe the mechano-
NPS sizing and recovery segments could be measured in the same zone as the contraction
segment, since these zones have the highest SNR. Alternatively, the sizing segment could be
measured in the same zone as the final SM segment, and the mechano-NPS contraction and
recovery zones could be combined. Additionally, the number of measurement zones required
for SM screening could be reduced by one by returning to a device design where each sm-NPS
measurement zones spans an entire expansion region, as in our initial device design. We
believe that SNR in this case could be sufficient with a design more like our next-generation

BioRender.com
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combo-NPS device, which involves much lower fluid volume in the expansion region and
allows for longer cell transit times in the pores before and after the expansion.

One final issue is whether the presence of a cell in the contraction segment would interfere
with SM screening of another cell that is in an expansion region at the same time. While
a cell is being deformed in the contraction segment, the overall device fluidic resistance is
increased, and fluid velocity in the expansion regions would decrease. We believe the effect
of this phenomenon on the ability to discern cell SM phenotype by transit times in the
expansion region depends on the exact design geometry, and how long a cell spends in the
contraction segment compared to the overall transit time in the expansion region. It would
be helpful to conduct experiments and/or simulations to confirm this, because measurement
yield would be much improved if SM measurements do not have to be discarded when another
cell is present in the contraction segment.

6.6 Conclusions
Our integrated combo-NPS platform is a flexible tool that can be applied to many different
systems. This device has the potential to be immediately useful in our current research
projects on the mechanobiology of leukemia and on evaluating chondrocytes for tissue engi-
neering. In the future, our goal is to apply this platform to RPFNA sample analysis, where it
could change the paradigm for early breast cancer screening by providing a highly quantita-
tive detection method for precancerous cells. Combo-NPS could also be readily adaptable to
other cancer applications, such as detecting circulating tumor cells from blood. We plan to
implement additional engineering features to extend the platform’s capabilities, particularly
on-chip size sorting with deterministic lateral displacement [121] and multiplexing using par-
allel coded channels (Chapters 4–5). Ultimately, the ability to measure the surface marker
profile and mechanical properties of the same cell could open up many new possibilities for
answering biological questions and improving patient outcomes.
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Chapter 7

Summary & Future Work

This dissertation comprises a body of work focused on the NPS platform for label-free,
single-cell sensing. As an electronic-based platform capable of measuring multiple cellular
properties at high throughput, NPS is a flexible and powerful technology that has already led
to new discoveries in breast cancer biology and drug resistance in leukemia [20,58]. In this
work, we have characterized the NPS platform’s reproducibility and added new technological
capabilities that will further expand the platform’s potential applications.

7.1 Prior Work
In Chapter 2, we reviewed the state of the field in label-free microfluidic tools for single-cell
analysis. The disadvantages of cell measurement techniques that rely on exogenous labels
include time-consuming and costly sample preparation, limited multiplexing of fluorescent
labels, and the influence of the labels themselves on the cell’s biology—which could po-
tentially confound experimental results. There are also major advantages to performing
single-cell measurements as opposed to bulk measurements, especially when rare subpopu-
lations such as cancerous cells are of interest. For these reasons, a number of microfluidic
label-free, single-cell measurement technologies have been developed in recent years.

Electronic sensors are a popular type of label-free cellular analysis. We discussed a num-
ber of recent electronic-based platforms, including those based on both resistive-pulse sensing
and cellular impedance analysis. These technologies are popular because of the accessibility
and low cost of electronic components, and have already seen commercial adoption in several
products on the market today. Another class of label-free cellular measurements involves
deformation analysis, in which cells are deformed by applying a force while their response is
measured by optical imaging. This technique reveals information about the cells’ mechani-
cal phenotype, which is an important alternative biomarker in studying many cancers. We
reviewed several such platforms that accomplish high-throughput microfluidic mechanical
phenotyping, including devices that employ optical trapping as well as those that rely on
hydrodynamic deformation. Many of these techniques enable very high throughputs, and
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multiple companies have emerged that focus on commercializing this type of platform for
both research and clinical use.

Overall, there have been many exciting developments in microfluidic label-free tools for
single-cell measurement and analysis. NPS is a unique and powerful platform within this
space because of its demonstrated capability to measure both mechanical and molecular
properties of cells at high throughput. Furthermore, NPS benefits from the robustness and
accessibility of electronic sensing.

7.2 New Findings
In Chapter 3, we focused on the mechano-NPS platform for cellular mechanical phenotyping.
We reviewed the theory underpinning this technology and provided detailed methods for de-
vice fabrication, experimental process, and data analysis. We then conducted a systematic
study to quantify the reliability of mechano-NPS data processing using our semi-automatic
command-line interface software [71], which improves data processing efficiency ten-fold [2].
We showed that this data processing method results in very high intra- and inter-user repro-
ducibility, even for novice users. In combination with the technical variability due to device
and hardware variation quantified in [2], our results demonstrate that mechano-NPS is a
highly robust mechanical phenotyping platform. We can be confident that mechano-NPS
produces reliable measurements across different users, devices, and laboratories, which is
critical for wider adoption of this technology in both research and clinical applications.

In Chapters 4 and 5, we developed, implemented, and characterized a novel method to
enable multiplexed NPS measurements for the first time. The added capability to perform
multichannel NPS measurements, in which cells flow through multiple channels in parallel,
increases the throughput and flexibility of the NPS platform. Our method is unique among
other techniques for multichannel electronic-based measurements because it does not require
additional microfabricated electrodes nor modifications to the data acquisition hardware or
software. This is advantageous because it enables immediate implementation by any labo-
ratory with the capability to perform single-channel resistive-pulse sensing measurements,
thereby increasing the technique’s accessibility and versatility.

Our multiplexing method takes advantage of the spatiotemporal encoding in NPS, in
which the sequence of nodes and pores in the channel geometry produces a unique coded
pulse in the resulting signal. We encode each parallel channel with a specific sequence,
and then apply a single electrical resistance measurement across all channels. By applying
matched-filter detection and successive interference cancellation techniques in the data pro-
cessing stage, we can deconvolve the signals from each channel and automatically detect cell
pulses. In Chapter 4, we developed a mathematical model for calculating cell size based on
multichannel measurements with this system, and we validated this model through compu-
tational modeling. We also described the theoretical considerations for the tradeoff between
number of parallel channels and signal–noise ratio for this new multiplexing strategy. In
Chapter 5, we designed three new multichannel NPS devices using this method, and we
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demonstrated successful multiplexed NPS measurements in all three. We also developed
and implemented a new data processing pipeline that deconvolves the multichannel mea-
surements, automatically detects cells, and resolves coincidence events [89]. We applied the
mathematical model developed in Chapter 4 to enable accurate cell size calculation based
on the detected cell pulses. Additionally, we experimentally characterized the relationship
between signal–noise ratio and number of parallel channels, and we compared these results
with our theoretical predictions from Chapter 4.

In Chapter 6, we presented a new NPS platform, called combo-NPS, that combines me-
chanical and molecular single-cell measurements for the first time. We described the motiva-
tion for developing this platform as a tool for detecting precancerous cells in tissue samples
from women at high risk for breast cancer, and we reviewed previous work in both mechanical
and molecular cell phenotyping. Our new platform combines two new developments in NPS
technology: DNA-directed antibody patterning [90,117], which enables reliable fabrication
of devices with different antibodies in different regions of the channel; and multi-zone NPS,
which improves signal–noise ratio by dividing the channel into multiple regions that are each
measured separately. We applied computational modeling to test multiple device designs
and optimize the fluidic coupling between the molecular screening section and the mechani-
cal phenotyping section. We provided detailed methods for device fabrication, experimental
process, and data processing, and we also demonstrated preliminary results with two differ-
ent combo-NPS device designs using an immortalized breast epithelial cell line. Although we
encountered several challenges in implementing this novel integrated platform, we discussed
the underlying issues in-depth and provided suggestions for improvements going forward.

In summary, we have improved our understanding of the NPS platform’s reliability by
showing that the data processing software produces highly consistent results between users.
We have also added the capability to perform multichannel NPS measurements for the first
time using an entirely new method of multiplexing, which increases the platform’s through-
put and versatility. Finally, we have demonstrated preliminary work toward combining
biomolecular and mechanical cell screening with a novel, integrated NPS platform.

7.3 Future Work
NPS is a flexible platform that can be applied to many different systems. With our new
capabilities for multichannel measurements and integrated molecular and mechanical phe-
notyping, additional engineering features can be added that extend the platform’s abilities
even further. For example, on-chip size sorting could be implemented with a method such
as deterministic lateral displacement [121], and the sorted populations could be measured
with parallel NPS channels optimized for specific cell types.

Taking together the exciting developments in Chapters 4–6, we envision a multichannel,
multi-zone, fully integrated NPS platform capable of measuring multiple cell properties in
multiple channels simultaneously (Fig. 7.1). Because our novel method for multichannel
NPS does not require any modifications to the electrode configuration or data acquisition
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Figure 7.1: Concept of integrated, multichannel, multi-zone device combining mechano-NPS
with surface marker screening. Electrodes (orange) measure the electrical resistance across five
consecutive zones and are shared across two parallel channels (blue). Antibodies (Abs) (pink,
green, and purple) are patterned in expansion regions with encoded zones in between, which
allow measurement of the cell transit time (e.g., ∆TAb1 is the elapsed time between zones
1–2). Cell diameter is calculated by the pulse amplitude in Zone 4, while Zone 5 contains a
contraction segment followed by an encoded recovery section, thus measuring cell deformability
and recovery time. More zones (corresponding to more antibody regions) and more parallel
channels (to increase throughput) can easily be added to this modular platform.

hardware, it is readily integrated with the multi-zone NPS measurements utilized in combo-
NPS. As shown in Fig. 7.1, we could use our coding strategy to multiplex the platform
by encoding parallel channels with specific sequences of nodes and pores. To apply this
strategy to NPS-based molecular biomarker screening, we would encode the zones between
antibody-patterned regions with these codes and compute the elapsed time between zones
to measure the molecular phenotype. For mechano-NPS, we envision encoding the reference
and recovery sections immediately before and after the contraction segment. Then, we would
compute the elapsed time between a cell exiting the encoded reference section and entering
the encoded recovery section in order to calculate the whole-cell deformability index.

As exemplified by this next-generation design, the body of work presented in this disser-
tation unlocks future NPS applications in both the research and clinical domains.
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