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Introduction: Executive functions (EFs) are linked to positive outcomes across the

lifespan. Yet, methodological challenges have prevented precise understanding of

the developmental trajectory of their organization.

Methods: We introduce novel methods to address challenges for both measuring

and modeling EFs using an accelerated longitudinal design with a large, diverse

sample of students in middle childhood (N = 1,286; ages 8 to 14). We

used eight adaptive assessments hypothesized to measure three EFs, working

memory, context monitoring, and interference resolution. We deployed adaptive

assessments to equate EF challenge across ages and a data-driven, network

analytic approach to reveal the evolving diversity of EFs while simultaneously

accounting for their unity.

Results and discussion: Using this methodological paradigm shift brought new

precision and clarity to the development of these EFs, showing these eight

tasks are organized into three stable components by age 10, but refinement of

composition of these components continues through at least age 14.

KEYWORDS

executive function, in-school assessment, network modeling, middle childhood, digital
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1. Introduction

Executive functions (EFs) comprise a variety of cognitive
abilities that enable agency over one’s attention (for review see e.g.,
Diamond, 2013; Zelazo et al., 2016). EFs are a critical set of skills
as they consistently predict positive outcomes in school and across
the lifespan (Moffitt et al., 2011; Schlam et al., 2013; Pascual et al.,
2019; Spiegel et al., 2021). Thus, understanding how EFs emerge
and change across development is critical to understanding how
we might support their growth during periods of vulnerability and
opportunity (from early childhood through and into adulthood).
Like most complex cognitive processes, defining and measuring
EFs has been complicated, and has not yielded a consistent
taxonomy of EFs (see e.g., Morra et al., 2018). While a dominant
conception of how EF is organized at least in adults (Miyake
et al., 2000b) proposes that EFs comprise at least three components
such as holding and working with information in mind (“working
memory”), the flexibility to switch between multiple tasks, goals,
or rules (“cognitive flexibility”), and the attentional or inhibitory
control that allows one to focus on goal-relevant information while
filtering out goal-irrelevant information (“attentional control”),
even in their seminal 2000 paper, Miyake and colleagues suggested
these were not the only EFs. To date though, the number of
EFs remains undetermined; a review of the literature found as
many as 18 EFs (Packwood et al., 2011). Yet, neural data suggest
EF components are more alike than different, relying on similar
networks, rather than operating as distinct, independent processes
(see Niendam et al., 2012 for review). Indeed, the neuroimaging
field has developed sophisticated methods for interrogating the
complex, dynamic relationships between components of neural
systems, yet, methods for measuring and modeling such dynamic
interactions using behavioral input have lagged behind. Much of the
developmental literature, for example, has examined components
as separate constructs. We propose that to close this gap between
models of neural and behavioral data, we must build on our
methodological toolkit to enable the measurement and modeling
of how cognitive processes, including EFs, function in concert
to achieve a specific goal (Doebel, 2020). Here we introduce
two novel methods, one for measurement and one for modeling,
to understand how EFs manifest over development with data
we collected in a large, accelerated longitudinal study with a
diverse sample of students over two years. First, we show how a
novel, adaptive EF assessment battery solves previous challenges
to measuring EFs consistently. We then model these data using
network analytic techniques to account for what is common across
EFs to reveal a clear timeline of EF development during middle
childhood, a particularly understudied period.

A fundamental question yet to be fully addressed by the
field is how the various components of EFs are organized
across development. In other words, are the three components
described above the most accurate way to parse EF in both
children and adults? Second, does this taxonomy of EFs change
over development, and if so, when and in what way? A
key developmental theory posits that EFs begin as a unitary
construct in early childhood, and the differentiation of specialized
components over time is initiated by experience, to become
the multi-dimensional construct observed by young adulthood
(Shing et al., 2010; Mungas et al., 2013). This differentiation

hypothesis aligns with neural developmental evidence showing
increased specialization of the neural systems supporting EFs
(Johnson, 2011). Findings from developmental studies using
latent factor analyses have been roughly consistent with the
idea of increasing differentiation of EF components from
preschool through adolescence (see Lee et al., 2013 for review).
During middle childhood (approximately ages 7–13), reports of
the number of factors of EF have varied between one (e.g.,
(Shing et al., 2010; Xu et al., 2013) and four (e.g., Agostino et al.,
2010). However, to date the precise understanding of when
individual components begin to differentiate remains unclear.
Behavioral tests of this hypothesis to-date have largely almost all
taken a latent variable approach, modeling EF components as
related but distinct processes and failing to adequately account for
the commonalities between components. Thus, despite decades of
studies, there is not yet a clearly established pattern regarding the
number of distinguishable components at each age. The lack of
established developmental trajectories of EFs hinders progress in
understanding how specific EFs might support various health and
academic outcomes, and therefore how development of these skills
might be supported and when in order to benefit student outcomes.
The inconsistencies in the extant literature call for a paradigm
shift in approach to both the measurement and modeling of EF
performance to move beyond fragmented views of EF and toward
treating them as a dynamic interconnected network of skills. Next,
we outline the critical factors that could comprise such an approach
and offer evidence in support of the promise of such an approach.

1.1. Measuring EFs

To reveal the developmental trajectory of EFs, we first need to
measure EFs with assessments that are robust across developmental
stages and assessment sessions. Much of the prior cross-sectional
and longitudinal work has been confounded by (a) use of the same
tasks across age ranges, which results in floor or ceiling effects in
performance if the challenge level is not adjusted appropriately,
or (b) use of different tasks with different age groups which
prevents comparisons between groups (as reviewed in e.g., Best and
Miller, 2010). Not only must tasks be comparable across age and
ability, but EF assessments also need to be repeatable over multiple
timepoints so developmental progress can be measured within
subjects without practice or ceiling effects. Adaptive methods that
use tasks that dynamically adjust to an individual’s appropriate
challenge level on a trial-by-trial basis, presents a compelling and
simple solution to this pernicious problem (Anguera et al., 2016b;
Draheim et al., 2020). Indeed, prior work with pediatric populations
suggests that highly engaging assessments with adapting challenge
algorithms can reveal phenotypic differences between clinical and
neurotypical populations, even when group characteristics are
highly variable (Anguera et al., 2016a).

We further need multidimensional assessments to disentangle
what EFs have in common from what they uniquely contribute
to performance, to ensure each component is measured validly
and reliably. Any single task used to assess a component of
EF will necessarily involve processes not related to EFs (e.g.,
visual processing, motor response), or may be related to multiple
EF components, both of which will result in measurement
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impurity (Miyake et al., 2000a; Diamond, 2013). To address
this impurity, researchers can collect multiple measures of each
hypothesized component of EF, leveraging the commonalities
across tasks to extract information about EF skills, and reducing
the contribution of idiosyncratic skill related to any individual
task. Thus, methods that use multiple indicators to measure each
hypothesized component of EF are critical for a robust and reliable
understanding of how EFs develop over time.

Lastly, to understand how EFs are expressed in real-world
contexts such as school or home, recent work suggests EFs
should be assessed in real-world contexts (e.g., Anderson, 2002).
Indeed, one study showed that while in-school EF assessments
administered in group vs. individual contexts were highly
correlated, only scores from group administered assessments
uniquely predicted academic achievement (Obradović et al., 2018).
A related study revealed that an individual’s growth in EF
skills over the course of the school year can be influenced by
classmates’ performance (Finch et al., 2019). Thus, examining EFs
in real-world educational settings (in-school, group administered
contexts) provides a more ecologically valid context and is thus a
necessary strategy for understanding the veridical relation between
EFs and academic achievement (as reviewed in McCoy, 2019).

Here we introduce a novel assessment tool—Adaptive
Cognitive Evaluation Classroom (ACE-C)—that addresses these
robust measurement needs. ACE-C is based on the original ACE
battery described in Anguera et al. (2016b), modified for use with
children and amenable to administration in large group settings.
ACE-C is a battery of assessments that taps multiple EFs through
several different tasks. Importantly, each task incorporates adaptive
algorithms, allowing the repeated measurement of EFs across
multiple timepoints, using the same tasks in different age groups
without running into floor or ceiling limitations. The incorporation
of adaptive algorithms across several different tasks represents
a significant advancement in assessment capabilities in two
significant ways. First, this work complements prior development
of EF batteries that have been used across ages (e.g., NIH Toolbox;
Zelazo and Bauer, 2013; Minnesota Executive Function Scale
(MEFS); Carlson and Zelazo, 2014) by bringing additional
dimensionality to the assessments, allowing for examination of
individual EF components across individuals. Second, building off
of methods that adjust task parameters at the population-level (e.g.,
Davidson et al., 2006), the adaptive algorithms in ACE-C operate
at an individual level. As such, no assumptions are made about the
individual before interacting with ACE-C, which ensures that even
individuals who perform above or below what might be expected
based on demographic variables (e.g., age or grade) receive the
same experience as individuals on more typical developmental
trajectories. Further, this individualized adjustment is done
automatically, without additional input from the experimenter,
which facilitates large-group assessment even across diverse groups
of individuals.

1.2. Modeling EFs

Understanding the complexity of EF developmental trajectories
requires not only solving measurement challenges, but also solving
concomitant modeling challenges. Historically, latent variable

analysis has been the most common approach to evaluating
the changing organization of EFs over development (Karr
et al., 2018). With latent variable analysis, we have come to
understand that across the lifespan, while EFs diversify over
development, they do not become completely distinct. Indeed, both
behavioral and neural examinations of EFs have demonstrated the
existence of a unifying umbrella construct termed “Common EF”
through adulthood (Friedman et al., 2008; Reineberg et al., 2015;
Friedman and Miyake, 2017; Smolker et al., 2018). Notably, cross-
sectional examinations of middle childhood and adolescence
using latent variable models also support the inclusion of a
Common EF component (Engelhardt et al., 2015; Hatoum et al.,
2020) as well. However, including such a factor to test the
differentiation hypothesis and assess the dynamic development of
EFs longitudinally poses severe methodological challenges.

While Common EF can be modeled from the confirmatory
approach by incorporating it as a higher-order umbrella
component capturing what is common among all lower-order
components, such an approach is not amenable to testing the
differentiation hypothesis. Models with a higher-order component
would require at least three lower-order components of EF to be
properly identified (Kline, 2011) and provide meaningful insight
into the patterns of the behaviors being modeled. Thus a model
with only one or two components differentiated from Common EF
is not identified, and the earliest stages of differentiation cannot
be examined. An alternative modeling approach is to incorporate
Common EF not in a hierarchical fashion, but as an additional
lower-order latent variable. In such a model, each observed
variable measures two latent variables, Common EF and another
differentiated component (a “bifactor” model). While these models
can be easier to identify in some instances, it can be difficult to get
such complex models to converge given the historically low power
and task reliability observed in extant examinations of EF (Karr
et al., 2018).

Further, confirmatory latent analyses provide limited
information as to how the cognitive mechanisms supporting
EF task performance may evolve over development (e.g.,
whether a task may index different EF components at different
developmental stages). While model fit statistics can indicate
whether a hypothesized organization fits the observed data well,
they provide limited information on how to improve that model.
For example, while one hypothesized organization might fit the
data well, there could be other organizations that fit the data better
that simply go untested. Additionally, methods for statistically
comparing alternate hypotheses regarding which component a task
measures are not straightforward. As such, alternative hypotheses
around the EFs involved in different tasks are unlikely to be
developed from the results of confirmatory latent analyses.

To advance our understanding of how EFs evolve over
development, we need a method that (a) allows for task
performance to reflect different EFs at different developmental
stages, and (b) accounts for the high degree of association common
to all EF tasks. Exploratory latent variable models like exploratory
factor analysis (EFA) meet the first requirement but fail to account
for Common EF. Conversely, confirmatory approaches such as
confirmatory factor analysis (CFA) and bifactor modeling can
account for commonalities among EF tasks but do not allow
for task reorganization in a data-driven way. Indeed, recent
evidence has suggested latent variable analysis may not be an
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appropriate representation of EFs (Camerota et al., 2020). To
build on the insights gained from latent variable modeling, we
suggest leveraging a powerful family of techniques that provides
a data-driven method for identifying unique and communal
cognitive mechanisms: network analysis. Network analysis is
an approach gaining traction in the psychometric field for
understanding cognitive constructs comprising complex inter-
related components such as intelligence, psychopathology, and
personality (Borsboom and Cramer, 2013; Costantini et al., 2015;
Kan et al., 2019). In network analysis, relationships between
variables can be determined after accounting for what is common
among all variables by examining partial correlations. Thus,
through network analysis, we can understand how EF behaviors
are related after what is common among all variables, including
what can be attributed to Common EF, is accounted for. Further,
in contrast to latent variable analysis, in which observed variables
are related through the modeled unobserved latent variables,
the relationships between observed variables is direct. As such,
performance on one task can affect performance on any other, not
just those tasks theorized to measure the same construct. Finally,
after determining how each variable is related to another, we can
assess which variables likely reflect the same cognitive construct
by applying community detection algorithms. This data-driven
approach groups together variables that are more strongly related
to each other than other variables in the network, allowing us
to establish a theory-agnostic organization of EFs. In this way,
network analysis allows us to examine the structure of EF from
a holistic perspective and arrive at the organization that best
reflects the data without testing and comparing multiple competing
models.

1.3. Current study

Here, we capitalize on the improved interpretability of
longitudinal and cross-sectional comparisons afforded by using
the same tasks across all participants (Best and Miller, 2010) with
our ACE-C battery to shine light on the relatively understudied
period of middle childhood (∼7–12 years old), the developmental
stage in which EFs may undergo the most rapid organizational
development (Romine and Reynolds, 2005; Best et al., 2011). We
demonstrate how network analysis can advance our understanding
of the organization of three hypothesized EFs across development
by first testing the differentiation hypothesis with the latent variable
analysis approach and then highlighting the additional insights
gained by using a network analysis approach. Specifically, we use
each method to determine not only when the investigated EFs
become distinct from one another but, critically, when they become
distinct from the unifying Common EF component. Finally, we
leverage information generated from network analyses to gain
insights into the stability of the organization of these EFs across
time. We show that during middle childhood, organization of
these EFs begins to stabilize, yet continues to develop in a manner
suggesting EFs need continued support throughout their protracted
development as children transition to adolescence. Developmental
insights revealed by network analyses extend those from latent
variable analyses and, in line with work by Camerota et al. (2020),
show how differing modeling methods can result in different
conclusions regarding the number of components identified across

development to date. The novel findings from network analysis lay
the groundwork for new avenues of investigation to understand
how to best support EFs across the lifespan.

2. Materials and methods

Participants in this study were recruited through their schools
as part of Project iLEAD (in-school longitudinal executive function
and academic achievement database), a two-year accelerated
longitudinal study of EF development in students grades 3–8. Full
details of Project iLEAD are reported in Younger et al. (2022).

The study was approved by the University of California
San Francisco Institutional Review Board and conducted in
accordance with the relevant guidelines and regulations. Written
parental or guardian consent was obtained from all participants at
the beginning of the study, and verbal assent from all participants
was obtained before all in-class data collection sessions. At the end
of the study, all students in participating classrooms received snacks
and stickers, regardless of participation.

2.1. Participants

Nine schools (seven public, one independent, and one
parochial) from northern California opted to participate in this
longitudinal study, which included assessments at the Fall and
Spring of two academic years for a total of four assessment periods.
Two of the five public elementary schools and one of the two
public middle schools were Title I schools. In total, 1,280 students
participated over the course of two years. At the beginning of
each school year, teachers distributed consent forms to students
to take home for parental or guardian review and signature. This
first round of recruitment resulted in a total of 1,088 participating
students in Year 1: 284 3rd graders (M = 8.07 years old, SD = 0.35),
260 5th graders (M = 9.98 years old, SD = 0.41), and 544 7th
graders (M = 11.9 years old, SD = 0.47). In the fall of Year 2,
we re-opened enrollment for participating classrooms to allow
new students to participate in the study, which resulted in an
additional 195 students joining the study (44 4th, 147 6th, and
4 8th grade students). The Year 2 sample thus included 1,106
students: 288 4th graders (M = 9.03 years old, SD = 0.33), 336
6th graders (M = 10.9 years old, SD = 0.39), and 482 8th graders
(M = 12.9 years old, SD = 0.44). For patterns of missing data
across timepoints, see Supplementary Figure 1. Our sample was
demographically diverse. Ethnically, our sample was 34% Asian,
26% Hispanic/Latinx, and 16% White. Further, 10% of the sample
received Special Education services, 32% qualified as low income,
and 14% were currently enrolled in English Language classes, with
another 29% having previously been enrolled in English Language
classes, but now considered fluent in English. See Table 1 for
additional demographics of participating students.

2.2. Procedures

We administered a series of mobile assessments of EF, math,
and reading skills that took the form of digital “games”, during
school hours, at the beginning and end of each academic year
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TABLE 1 Student demographics.

Timepoint 1 Timepoint 2 Timepoint 3 Timepoint 4

n % n % n % n %

Gender Male 519 50.9 514 51.8 541 51.3 510 51.2

Female 500 49.1 478 48.2 513 48.7 487 48.8

Ethnicity American Indian or
Native Alaskan

5 0.5 6 0.6 6 0.6 5 0.5

Asian 339 33.3 332 33.5 369 35.0 350 35.1

Black or
African American

20 2.0 18 1.8 18 1.7 17 1.7

Filipino 55 5.4 56 5.7 60 5.7 56 5.6

Hispanic or Latinx 267 26.2 253 25.5 280 26.6 269 27.0

Pacific Islander 7 0.7 6 0.6 5 0.5 6 0.6

Two or more ethnicities 43 4.2 45 4.5 44 4.2 44 4.4

White 170 16.7 165 16.6 185 17.6 169 17.0

Unknown 113 11.1 111 11.2 87 8.26 81 8.1

Special education status No 806 79.1 771 77.7 855 81.1 807 80.9

Yes 101 9.9 111 11.2 113 10.7 111 11.1

Unknown 112 11.0 110 11.1 86 8.2 79 7.9

Low income qualification No 583 57.2 570 57.5 616 58.4 587 58.9

Yes 324 31.8 312 31.5 352 33.4 331 33.2

Unknown 112 11.0 110 11.1 86 8.2 79 7.9

English language fluency English monolingual 396 38.9 391 39.4 434 41.2 413 41.4

English multilingual, never enrolled in
English classes

56 5.5 58 5.9 67 6.4 63 6.3

English multilingual, previously
enrolled in English classes

308 38.9 289 29.1 324 30.7 311 31.2

Current English Language Learner 147 14.4 144 14.5 143 13.6 131 13.1

Unknown 112 11.0 110 11.1 86 8.2 79 7.9

(fall and spring) over two school years. At each of the four
timepoints, EF assessments were administered during one class
period (approximately 50 min), with the research team returning
a little over a month later to administer the math and reading
assessments (M = 5.7 weeks, SD = 2.4, min. = 1.9, max. = 10). At
the end of each academic year, academic performance and other
relevant data were provided by the district for students whose
parents consented to share district data.

2.2.1. Adaptive cognitive evaluation classroom
(ACE-C)

This study used a novel mobile assessment battery, ACE-
C, to assess EF skills. The original ACE battery was developed
from cognitive assessments commonly used in lab-based settings
and modified for real-world settings by including adaptive,
psychometric staircase algorithms, highly motivating trial-wise
and end-of-task feedback (Anguera et al., 2016b). ACE-C
is an adaptation of this battery to include a child-friendly
interface and additional instructional design to facilitate group-
administration. Importantly, the adaptive algorithms enabled
two critical affordances: (a) the same tasks could be used
with the same students across multiple timepoints to reveal a

student’s changing cognitive abilities without being confounded
by ceiling or floor effects or reduced motivation due to multiple
assessments, and (b) the same tasks could be used across
students of diverse ages to reveal individual differences in
cognitive abilities across development without the confound of
different tasks (Anguera et al., 2016b). This advancement in
our approach to assessment enabled robust integrative data
analytics within-subjects over time, and across-subjects from a
wide age range without any a priori assumptions about any
individual participant’s abilities, for example, according to their
age.

The assessment battery consisted of a color blindness test,
a response time control task, two working memory tasks, one
attentional filtering task, three context monitoring tasks, three
interference resolution tasks, and one cognitive flexibility task. The
attentional filtering task was excluded from the current analysis
due to differential task challenge across grade levels, while the
cognitive flexibility task was excluded due to technical errors
that prevented consistent data reporting across timepoints. All
other tasks are briefly described below along with the a priori
defined metric of interest selected based on the psychometrics
of each task. Full descriptions of each task are included in the
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Supplementary material. Example stimuli and schematics for tasks
are presented in Supplementary Figure 2.

2.2.1.1. Response time control task

The first ACE-C task was a measure of basic response time
(BRT; Supplementary Figure 2A). Because improvements in EFs
have also been associated with improvements in general processing
speed (e.g., Fry and Hale, 1996), BRT was designed to serve as a
covariate to be regressed from performance metrics of all other
ACE-C tasks. By using BRT as a control metric, analyses were kept
consistent across tasks and task-specific control metrics were not
required. Mean response time (RT) collapsed across both dominant
and non-dominant hands was the metric of interest for this task.

2.2.1.2. Color blindness test

The second ACE-C task was a screening assessment for
red-green color blindness (Ishihara, 1972; Supplementary
Figure 2B). We assessed whether students selected one or more
responses indicating red-green color blindness according to
scoring guidelines in Ishihara (1972).

2.2.1.3. Working memory

Two tasks were used to measure working memory (WM),
Forward Spatial Span (Supplementary Figure 2C) and Backward
Spatial Span (Supplementary Figure 2D). These two tasks were
digital modifications based on the Corsi Block Task (Corsi, 1973).
In this task, students were shown an array of open circles, with
a target sequence cued via circles becoming filled, in sequence,
with either green (Forward Spatial Span) or blue (Backward Spatial
Span) color. Once students viewed the cued sequence, they were
instructed to recreate the sequence in the same order (Forward
Spatial Span) or in the reverse order (Backward Spatial Span).
Sequence length increased according to performance. The metric
of interest for both tasks was span length, or the maximum number
of spatial locations attempted to be held in mind in the correct
sequence.

2.2.1.4. Context monitoring

Context monitoring (CM) was measured with three tasks:
Sustained and Impulsive Attention (both tasks administered
within a single test called Continuous Performance Task [CPT];
Supplementary Figure 2E) and Tap and Trace (Supplementary
Figure 2F). For all three tasks, students were instructed to respond
to a target stimulus and withhold a response to non-target stimuli.
CPT is a target detection test adapted from the Test of Variables
of Attention (TOVA; Greenberg et al., 1991). This test included
two tasks: a target frequent task (80% target trials) designed to
assess impulse control (Impulsive Attention) and a target infrequent
task (20% target trials) designed to test sustained attention abilities
(Sustained Attention). For Sustained Attention, we used a metric
that is sensitive to lapses in attention—the standard deviation
of the RT to infrequently presented targets (Leark et al., 2018).
For Impulsive Attention, we used a metric that would measure
detection of targets while accounting for withholding prepotent
responses to frequent non-targets–the signal detection metric of d’.
Tap and Trace is a dual-task assessment adapted from the paradigm
described by Eversheim and Bock (2001). This task included three
blocked conditions: one in which students used their dominant
hand to tap when they detected a target stimulus, a second in which

they traced a shape with their non-dominant hand, and a third in
which they performed both tasks simultaneously. To differentiate
this task from the CPT and better address task impurity concerns by
assessing context monitoring when EFs are challenged by divided
attention, we included performance only on the dual-task block.
For this task, the metric of interest was how reliably students could
detect a target vs. a distractor during the dual-task portion of the
task; thus, we again deployed d’.

2.2.1.5. Interference resolution

Interference resolution (IR) was measured with three tasks:
Stroop (Supplementary Figure 2G), Flanker (Supplementary
Figure 2H), and Boxed (Supplementary Figure 2I). Stroop is based
on the computerized version of the color-word Stroop task as
described by Mead et al. (2002) in which students selected the text
color (e.g., green) of a centrally presented color word (e.g., BLUE).
On 30% of trials, the text and word were incongruent, and on
70% of trials they were congruent. Flanker is a letter flanker task
based on the paradigm described by Eriksen and Eriksen (1974)
in which students are instructed to indicate the middle letter of
a string of five letters. On 50% of trials, the central and flanking
letters were congruent, and on 50% of trials they were incongruent.
Finally, Boxed is a top-down/bottom-up attention task based on
the visual search paradigm first described by Treisman and Gelade
(1980) in which students must identify a target stimulus in an array
of distractor stimuli. This task included four blocked conditions
that varied on search condition and number of distractors. In each
condition, the target was either identifiable by one feature (color)
or by the conjunction of two features (color of target and location
of opening of the target box) and either a low (3) or high (11)
number of distractor stimuli. For tasks in which students were
expected to respond to each trial, we used Rate Correct Score
(RCS) to index performance on both RT and accuracy. Task-level
RCS was calculated by dividing the number of correct responses
by the product of mean RT for all trials and the total number
of trials responded to Woltz and Was (2006), Vandierendonck
(2017) across all conditions. To achieve a high RCS, participants
must perform quickly and accurately across all trials, regardless of
condition. This approach thus takes into account how participants
perform on both congruent and incongruent conditions without
introducing reliability issues frequently cited when using more
traditional subtraction methods (Enkavi et al., 2019). RCS was
used for Stroop and Flanker, however, a technical error in Boxed
prevented RCS from being calculated in the same manner as the
other tasks. Instead, we used mean RT to all correct trials for Boxed.
The grouping of tasks into these three components differs slightly
from some extant literature in an effort to bring greater precision
to the EFs measured. For extended discussion on the battery design
and component grouping, see the “4. Discussion” section.

2.3. Analysis methods

2.3.1. Data cleaning procedures
A very small number of students who were red-green colorblind

as indicated by the colorblind screener (n = 16) were excluded from
analysis, given that several tasks required students to discriminate
between colors. Trials with no response when a response was
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expected and anticipatory trials (RT < 200 ms) were excluded from
analyses (1.8% of all trials).

Data from each student were evaluated and cleaned on a
task-level basis at each timepoint. In this way, participants were
not wholly excluded from analysis, but only task data for which
we could not be confident that the participant understood or
complied with the task instructions were excluded. For each task,
to be included in data analysis, students must have answered a
minimum of five trials per condition and achieved above-chance
accuracy on the easiest condition (i.e., the condition that required
lowest cognitive load). Data from each task were then evaluated
for outlier students based on performance within each cohort and
timepoint. Outlier performance was defined as performance falling
outside three median absolute deviations (MADs) of the median
performance of the relevant cohort at a given timepoint (Leys et al.,
2013). Finally, additional outlier analyses to identify influential
observations in the larger regression analysis of task performance
were conducted by computing Cook’s distance. Observations with
Cook’s d > 1 were removed. These cleaning procedures resulted in
exclusion of 1.9% of task-level data collected. See Supplementary
Table 1 for N datasets excluded per task per cleaning step. For
patterns of missing data across timepoints, see Supplementary
Figure 2.

2.3.2. Effects of age and time on task
performance

For each task’s metric of interest, we sought to understand
the developmental trajectory of performance across different age
ranges. We used linear mixed effects models to examine how an
individual student’s performance over time may differ depending
on age after controlling for multiple demographic variables. To
index the variable of time more precisely, it was coded as the
number of months since last assessment. In this way, the first
instance of a participant’s engagement with ACE-C was always
indexed as 0, regardless of whether that occurred during the first
timepoint of the study Fall 2016 or later (due to later enrollment,
absence on data collection day, etc.). Age was indexed as participant
age in months at the time of assessment. Control variables in these
models included mean RT on the BRT task (continuous) as an
indicator of general processing speed, cohort (3 categories: 3rd–
4th grade, 5th–6th grade, 7th–8th grade), and gender (2 categories;
male, female). Random effects included school (9 categories), the
random intercept of participant, and the random slope of time.
Models were run using the “lme4” package in R (Bates et al., 2014)
and significance of each variable was evaluated using Satterthwaite’s
degree of freedom method as implemented in the “lmerTest”
package in R (Kuznetsova et al., 2017).

2.3.3. Confirmatory factor analysis
We conducted latent variable modeling using confirmatory

factor analysis (CFA). We chose to use CFA over exploratory factor
analysis (EFA) because, while data-driven organizations of variables
are possible using EFA, exploratory approaches do not provide
a straightforward way to account for the high degree of overlap
between performance on EF tasks, and assignment of a behavior
to a latent variable is dubious, often resulting in uninterpretable
organizations (Brocki and Bohlin, 2004). We conducted separate
CFAs for the three cohorts at the four timepoints to avoid

assuming the structure of EF remained the same across timepoints
and to assess the stability of these structures over a two-
year measurement period. We evaluated five models of EF: the
maximally differentiated structure with three distinct factors, all
possible permutations of a two-factor model in which two of the
three factors are collapsed into one, and the simplest structure in
which all tasks represent a single, undifferentiated EF factor (see
Supplementary Figure 3). Although the longitudinal stability of
models can be tested with a CFA approach, such statistical tests for
longitudinal network analysis have not yet been developed. To keep
the results of the two modeling techniques comparable, we do not
account for the dependencies in observations across timepoints.

After assessing covariance coverage to ensure sufficient
available data for all tasks across all cohorts and timepoints, all
CFAs were conducted in Mplus version 8.1 (Muthén and Muthén,
2017) with the robust maximum likelihood estimation method.
To statistically compare nested models, we used Satorra-Bentler
scaled chi-square tests with degrees of freedom equal to the
difference in number of free parameters between the comparison
and nested models (Satorra and Bentler, 2010). These tests help
us to determine whether more complex representations of EF
are a better fit to EF task performance across middle childhood.
Because these statistics are meant to compare nested models, the
1-factor model was compared to each of the 2-factor models,
and each of the 2-factor models were compared to the 3-factor
model, but the 2-factor models cannot be statistically compared
to each other in this manner. In interpreting these results, we
took a conservative approach in which a more complex model
would be selected over a less complex model only if a more
complex model would always be preferred, regardless of which
2-factor permutation was considered. The results of chi-square
difference testing were corroborated by converging evidence from
the Comparative Fit Index (CFI), root mean square error of
approximation (RMSEA), Akaike Information Criteria (AIC), and
sample-size adjusted Bayesian Information Criterion (BICc). CFI
values > 0.90 were considered excellent model fit, with values closer
to 1 indicating better model fit. RMSEA values less than or equal to
0.06 were considered adequate model fit (Hu and Bentler, 1999),
with lower values indicative of better model fit.

Models explicitly incorporating a Common EF factor were
not tested here, as models in which Common EF is a higher-
order factor are not amenable to testing the differentiation
hypothesis. While Common EF could be incorporated as a higher-
order umbrella component reflecting what is common among all
lower-order components, structures with any fewer than three
differentiated components would not be considered properly
identified (i.e., it would not be possible to uniquely estimate each
component’s association with Common EF). While it is possible
to test the differentiation hypothesis with an alternative approach
incorporating Common EF as an additional lower-order latent
variable, taking such an approach was not possible with our
dataset. In such “bifactor” models, each observed variable measures
two latent variables: Common EF and another differentiated
component. Such a model would not be identified for this dataset
without assuming performance on the WM tasks contributes
equally to both the WM and Common EF factors (see Limitations),
which has not been supported in the literature (Friedman et al.,
2008, 2011).
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2.3.4. Network analysis
Replicating the general approach used for the latent variable

models, we created separate models of EF performance for each
cohort and timepoint. All network analyses were conducted in
R 4.1.2 (R Core Team, 2020). Network models were estimated
using the bootnet package (Epskamp, 2015). All models were fully
saturated partial correlation networks (non-regularized Gaussian
Markov random fields), and missing data were handled via full
information maximum likelihood. After estimating each network
model, the Spinglass algorithm (Reichardt and Bornholdt, 2006)
from the igraph package (Csardi and Nepusz, 2006) was applied
separately to each network to determine communities of tasks. We
employed the Spinglass algorithm rather than other community
detection algorithms, such as the Louvain algorithm, because it
can handle negative partial correlations in a network. To ensure
the stability of groupings, community detection was performed
1,000 times and the most frequent grouping is reported here.
Resulting network and community detection results were displayed
graphically using the qgraph package (Epskamp et al., 2012). For
graphing purposes, nodes were fixed to the same positions across
networks and partial correlations between -0.1 and 0.1 are not
displayed. To understand network stability over time, edge weights
from each network were correlated with each other. Because these
edge weights represent partial correlations, edge weights were
first Fischer transformed before computing correlations between
networks.

3. Results

We first show how the use of novel, adaptive assessments
can robustly measure EFs longitudinally across a wide age range
without floor and ceiling effects. We then demonstrate how
a holistic modeling approach that accounts for Common EF
can enhance our current understanding of the emergence and
development of EFs by testing the differentiation hypothesis
using two analytic approaches, latent variable analysis and
network analysis. Using a latent variable approach, we replicate
the ambiguous, difficult to interpret results found in prior
investigations. We then critically extend our understanding using
a network analytic approach, revealing developmental insights
missed under the latent variable approach that could not
appropriately take into account Common EF.

3.1. Novel EF measurement

To examine the utility of our novel adaptive assessment, we
performed two analyses, one to assess task performance, and
another to assess challenge level. We had different predictions
for each analysis. We predicted the adaptive response window
would equate task challenge level across cohorts and timepoints as
supported by similar percent of responses for which participants
received “correct” feedback across cohorts and timepoints.
However, we expected that task performance as measured by the
metric of interest for each task noted above, which did not take
into account whether the response was within the adaptive response
window and may have included other aspects of performance such

as response time (e.g., RCS, standard deviation of response time,
d’, etc.), would show traditional developmental improvements in
performance over time.

To confirm the effectiveness of the adaptive response window
across tasks, we examined percent of responses with “correct”
feedback only. In tasks with an adaptive response window
(Impulsive Attention, Sustained Attention, Tap and Trace, Stroop,
Flanker, and Boxed), participants only received “correct” feedback
if they provided the correct answer within a limited time frame.
All other responses resulted in feedback indicating the response
was correct but “late” or “incorrect”. This adaptive algorithm was
designed to produce ∼75% of responses resulting in “correct”
feedback for all participants and while this target accuracy was not
achieved across all tasks, it was confirmed in practice to produce an
average of 72.04% across tasks. Additionally, the adaptive algorithm
did not completely eliminate developmental effects; while linear
models examining the effect of cohort and time on percentage
of trials with “correct” feedback did show significant differences
between cohort and timepoint However, the significance of these
effects is likely driven by the large sample size used in the current
study; model effect sizes were small, accounting for less than 20%
of the variance across all tasks (average R2 = 0.10 see Table 2
and Supplementary Figure 5). Together, these results suggest the
adaptive tasks successfully presented a similar challenge across ages
and measurement occasions.

We next examined the potential developmental effect on task
performance as measured by the task-specific metric of interest
described above which did not take into account whether the
response was within the adaptive response window and may have
included other aspects of performance such as response time (e.g.,
RCS, standard deviation of response time, d’, etc.). We found
each adaptive EF assessment captured predicted developmental
improvements in performance. Linear mixed effects models
examining task performance for each metric of interest allowing
random effects for participant, school, and time, showed that,
across tasks, performance significantly improved with age and
time after controlling for BRT, cohort, and gender except the
two span tasks. Both Forward and Backward Spatial Span showed
significant effects of time, but only trended towards main effects
of age, possibly due to the ordinal nature of the metric of task
performance for these tasks which leaves little room for variation.
Plots of raw scores not accounting for these control variables are
shown in Figure 1 and effect sizes of each control variable are
shown in Supplementary Figure 4. For between task correlations
as well as the mean and standard deviation of task performance
after accounting for BRT for each cohort and timepoint (the
metric used in modeling analyses), see Supplementary Tables 2–
4. Beyond these predicted EF performance improvements with age,
performance on all but two tasks (Tap and Trace and Backwards
Spatial Span) showed a significant interaction between age and
time, suggesting that younger participants tended to improve
more over time compared to older participants. Across tasks,
the two control variables that most frequently had a significant
effect on performance were BRT and gender. The consistently
strong effect of BRT on all tasks was expected as this variable
was included to capture potential differences in an individual’s
pattern of responses, which might also capture such variance due to
familiarity with responding on a touch-screen device, etc. Further,
for all but Sustained Attention and Forward Spatial Span, there was
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a significant effect of gender, with students self-identifying as female
showing better task performance compared to those identifying as
male.

3.2. Novel EF modeling

After solving for persistent challenges to measuring EFs
through the use of our novel tool, ACE-C, we demonstrate how
network analysis can build on the findings from latent variable
analysis and generate new hypotheses regarding the organization
of EFs by accounting for what is common between EF components.

3.2.1. Latent variable analysis
To directly test the differentiation hypothesis using latent

variable modeling, we compared a series of models to establish
the number of distinguishable EF components at each stage of
development using CFA. In accordance with the differentiation
hypothesis, we expected more complex models with more unique
factors would provide better model fit for older students. Based
on prior adult literature and the tasks used in the current study,
the number of components could range from one to three, with
the maximally-differentiated organization of EFs representing WM,
IR, and CM grouping components. As noted in the methods,
we did not explicitly incorporate Common EF into these models
and instead examined correlations between factors to assess when
these components could be differentiated beyond the unifying
Common EF factor. Correlations greater than 0.70 between
factors indicate that components represent redundant information
(sharing more than 49% of variance) and are therefore likely not
fully differentiated from one another.

Overall, the latent variable approach revealed an indeterminate
developmental progression of differentiation of EF components.
Model fit statistics (Supplementary Table 5) tended to indicate a
2-factor model was the best fitting model for the 3rd–4th grade
cohort at all timepoints, though a different 2-factor model was
the best fitting at each timepoint. At timepoint 1, the model with
WM as distinct fit best, the model with IR as distinct fit best at
timepoints 2 and 3, and the model with CM as distinct fit best
at timepoint 4. However, it should be noted that at timepoints 1,
2, and 4, a 3-factor solution had similar fit statistics to these 2-
factor solutions. Fit statistics were similarly mixed at timepoint 1
for the 5th–6th grade cohort, with both the 2-factor model in which
WM is distinct and the 3-factor model showing best fit statistics.
After timepoint 1 though, fit statistics pointed towards the 3-factor
solution being the best fit through timepoint 4 for the 7th–8th grade
cohort. However, statistical comparisons of the models indicated
that while more complex models may have better fit indices, they
may not be necessary to model the data well.

Generally, results of statistical comparisons (Table 3) suggest
that a single component best describes the organization of EF
from 3rd through 4th grade, after which at least three distinct
EF components can be identified. However, this pattern is not
unequivocal, and many open questions remain. Within the 3rd–
4th grade cohort, at least two out of three 2-factor models did not
provide significantly better model fit than a 1-factor model with the
exception of timepoint 2. At this timepoint, even the 3-factor model
provided better fit than all but the 2-factor model in which IR is
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FIGURE 1

Growth in performance on executive function metrics of interest for each task and cohort. With few exceptions, all participants improved over time,
and younger students tended to show the most gains over time, as indicated by significant main effects. Shaded region represents 95% confidence
interval of linear regression of time on performance.

distinct. Yet, at timepoint 3, a more complex model never provided
significantly better fit compared to a single component, leaving the
developmental trajectory unclear. Further, at the first timepoint for
both the 5th–6th and 7th–8th grade cohort, the 2-factor model
combining CM and IR fit significantly better than a single-factor
model, but other potential 2-factor configurations did not fit the
data better than models with a single component. Additionally,
the 3-factor model did not fit better than the WM-distinct 2-factor
model, indicating EFs may not be well-differentiated at timepoint 1
for any age group. Moreover, alternative hypotheses around the EFs
involved in different tasks are unlikely to be developed from these
results. Different structures from those tested here may fit the data
better (e.g., a task may index a different EF component at different
developmental stages), but methods for statistically comparing

such alternate hypotheses regarding which EF component a task
draws on are not straightforward and would not be feasible to test
without additional theoretical guidance.

Finally, the degree of differentiation of these factors from
Common EF was unclear; factor correlations for structures in
which a 3-factor solution was selected suggest WM differentiates
by 5th grade (MWMandCM = 0.40; MWMandIR = 0.54), however,
a persistent high degree of overlap between CM and IR
(MIRandCM = 0.69) across cohorts leaves open the question of
whether one or both of these components would be distinguishable
from Common EF (see Supplementary Table 6–10 for full list
of factor loadings and correlations). Without statistical methods
to determine when components become distinct from both other
EFs and Common EF, the use of latent variable models to
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TABLE 3 Satorra–Bentler scaled χ2 tests comparing 1-, 2-, and 3-factor models of executive function.

1- versus 2-Factor (IR
with CM)

1- versus 2-Factor
(WM with CM)

1- versus 2-Factor
(WM with IR)

2- (IR with CM)
versus 3-Factor

2- (WM with CM)
versus 3-Factor

2- (WM with IR)
versus 3-Factor

Cohort
Time-
point

n 1χ2(1df) p 1χ2(1df) p 1χ2(1df) p 1χ2(1df) p 1χ2(1df) p 1χ2(1df) p

3rd-4th grade
cohort

1 210 10.602 (1) 0.001 0.157 (1) 0.692 0.225 (1) 0.635 0.277 (2) 0.871 10.642 (2) 0.005 11.199 (2) 0.004

2 209 4.539 (1) 0.033 28.671 (1) <0.001 20.036 (1) <0.001 21.504 (2) <0.001 3.486 (2) 0.175 12.052 (2) 0.002

3 217 0.002 (1) 0.962 2.975 (1) 0.085 1.449 (1) 0.229 3.662 (2) 0.160 0.255 (2) 0.880 2.155 (2) 0.340

4 234 2.804 (1) 0.094 3.513 (1) 0.061 11.037 (1) 0.001 10.544 (2) 0.005 10.116 (2) 0.006 2.397 (2) 0.302

5th–6th grade
cohort

1 211 9.077 (1) 0.003 1.5 (1) 0.221 3.059 (1) 0.080 3.056 (2) 0.217 10.232 (2) 0.006 9.389 (2) 0.009

2 201 9.685 (1) 0.002 18.086 (1) <0.001 9.551 (1) 0.002 12.839 (2) 0.002 7.828 (2) 0.020 14.254 (2) 0.001

3 281 10.905 (1) 0.001 2.194 (1) 0.139 17.954 (1) <0.001 15.696 (2) <0.001 30.375 (2) <0.001 10.741 (2) 0.005

4 273 9.23 (1) 0.002 14.339 (1) <0.001 38.936 (1) <0.001 18.365 (2) <0.001 13.323 (2) 0.001 7.003 (2) 0.030

7th–8th grade
cohort

1 447 10.761 (1) 0.001 2.335 (1) 0.126 5.982 (1) 0.014 5.445 (2) 0.066 14.184 (2) 0.001 10.575 (2) 0.005

2 453 13.883 (1) <0.001 5.112 (1) 0.024 6.9 (1) 0.009 6.739 (2) 0.034 15.111 (2) 0.001 13.203 (2) 0.001

3 432 26.161 (1) <0.001 7.093 (1) 0.008 21.051 (1) <0.001 18.276 (2) <0.001 38.066 (2) <0.001 20.456 (2) <0.001

4 410 42.235 (1) <0.001 20.249 (1) <0.001 37.355 (1) <0.001 33.262 (2) <0.001 57.776 (2) <0.001 41.058 (2) <0.001

IR, interference resolution; CM, context monitoring; WM, working memory; 1χ2 , difference in Satorra–Bentler scaled χ2 between nested and comparison models; 1df, difference in degrees of freedom between nested and comparison models. Bolded values p-values
represent cases where the more complex model shows significantly better model fit compared to the simpler model.
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answer questions about the differentiation hypothesis becomes
even more untenable.

3.2.2. Network analysis
Next, we demonstrate how using network analysis to treat

EF task performances as an interconnected set of cognitive
processes leads to insights into their development, which were not
revealed using latent variable modeling. Network analysis provided
a data-driven method for grouping task performance according
to strength of in-group performance compared to out-group
performance, resulting in EF component construction that was
not restricted by theoretical assumptions of which tasks draw on
each EF component. Further, because we used partial correlations
to form networks, the degree of differentiation of components
identified with this method is unambiguous; components are only
identified if they are distinct from the unifying Common EF
component. Thus, network analyses allow for the examination of
component grouping after Common EF is accounted for.

Concerning the number of components, community detection
results (Figure 2) revealed that the EFs examined in this study
were organized into two communities through grades 3 and 4,
then stabilized into a three-community structure by 5th grade. Yet
even through 8th grade, the relationships between tasks continued
to evolve over time. Both the CFA and network analytic methods
indicated the organization of EF task performances was most
variable early in development through grades 3 and 4. However,
unlike latent variable modeling, network analysis showed that while
the number of communities for the 3rd–4th grade cohort was
consistent across timepoints, the composition of these communities
was variable. In this youngest cohort, community detection analysis
consistently suggested two of the three theorized components
combined into a single component, though similar to the 2-factor
solutions tested in the CFA, which component was distinct differed
across all four timepoints. Network analysis showed WM was
distinct at timepoint 1, IR at timepoint 2, both IR and CM at
timepoint 3, and CM at timepoint 4. EF organization for the older
cohorts, though, was relatively stable. For both the 5th–6th grade
and 7th–8th grade cohorts, the tasks almost always formed three
communities with groupings consistent with those predicted by
theory. However, for the 5th-6th grade cohort, at timepoint 1,
Sustained Attention and Flanker switched communities, grouping
with IR and CM communities respectively. Further, at timepoint
2, Tap and Trace was grouped with IR tasks for the 7th–8th
grade cohort. Thus, while the EFs examined in this study can be
organized into at least three distinct components by about 5th
grade, network analysis suggests organization of the IR and CM
components in particular continue to undergo refinement across
the developmental period examined here. See Supplementary
material for additional analyses supporting the results of the
community detection analysis.

As indicated by the varying line thickness connecting tasks
across models in Figure 2, connections between tasks both within
and between communities waxed and waned over development,
suggesting the organization of these EFs continued to be refined
over time. See Supplementary Figure 6 for estimates for all edge
weights with parametric bootstrapped 95% confidence intervals.
A unique benefit of network analysis is our ability to leverage the
resulting network metrics to quantify and compare the degree of
network stability across cohorts. Specifically, we can determine

how stable a network is by examining how strongly individual
network connections correlate across timepoints for a given cohort.
For example, while the strength of individual connections between
task performances (e.g., Flanker and Stroop) might increase or
decrease over time, these changes are occurring in similar ways over
time for a given cohort, the network would be considered more
stable in that the organization of task performance is unlikely to
change. We used a one-way ANOVA to directly interrogate whether
correlations between network connections (Table 4) were more
variable in younger cohorts compared to older cohorts. Results
revealed these correlations indeed significantly differed across
cohorts (F(2,15) = 11.29, p = 0.001, η2 = 0.60). Tukey post-hoc tests
showed correlations between the 3rd–4th grade cohort networks
connections were significantly lower than correlations between
both the 5th–6th grade cohort networks (Mdifference = 0.34, 95%
CI [0.09–0.58], p = 0.008) and the 7th–8th grade cohort networks
(Mdifference = 0.43, 95% CI [0.18, 0.68], p = 0.001). Correlations
between network connections over time did not differ significantly
between these two older cohorts though (Mdifference = 0.09, 95%
CI [-0.15, 0.35], p = 0.60). Thus, the period between 3rd and
4th grade is further supported as one in which the organization
of EFs is undergoing larger degrees of change compared to
the period between 5th and 8th grade, which may show more
incremental change. Together, the results of the community
detection analysis and the between-cohort differences in network
connection correlations illustrate how a holistic examination of
the EF system that accounts for Common EF can reveal novel
insights into how these processes develop, beginning to resolve the
inconsistencies across the literature that have emerged from the use
of a reductionist framework that treats components as distinct, but
correlated constructs.

4. Discussion

This study exemplified a feasible analytical technique for testing
the differentiation hypothesis and for revealing new insights into
the developmental trajectories of EFs. It further demonstrated
how methodological choices can influence conclusions and
interpretations around the organization of EFs, particularly in
developmental populations. By comparing and contrasting the
results across analytic techniques, we can bring a new lens to
the inconsistencies in the number of EF components in children
reported in the literature to date and, with further investigation,
resolve them. Ultimately, this work can lay the groundwork towards
building a clearer consensus on which EFs emerge on what timeline,
and what factors might influence their development.

By applying network analysis techniques, we established a clear
developmental timeline of EF organization in our sample and
revealed several critical insights into how three EFs examined in the
current study evolve over time. First, while both modeling methods
used in our analyses point to organization of the examined EFs
stabilizing around 5th grade, network analyses were unambiguous
in the number of EF components at each timepoint. Network
analyses of this sample revealed that a single, undifferentiated
component of EF is an unlikely organization for any age in grades 3
through 8. Second, both methods suggest greater variability in the
3rd–4th grade cohort and continued refinement from 5th through
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FIGURE 2

Results of network analysis and community detection for each cohort and timepoint. Strength of the connection between task performance is
indicated by line thickness; thicker lines indicate a stronger relationship between two tasks. Edges between -0.1 and 0.1 are not shown for
visualization purposes. Connections between tasks are further categorized as either within community (black) or between community (red); weaker
and fewer between community connections compared to within community connections is consistent with more distinct communities.
Community detection algorithms indicate a two-community organization for the 3rd–4th grade cohort that differentiates into a three community
structure by about 5th grade. Fluctuations in grouping and magnitude of edge weights across older cohorts suggests continued subtle development
for older students. WM, working memory; CM, context monitoring; IR, interference resolution; B. span, backward spatial span; F. span, forward
spatial span; Sust Attn, sustained attention; Impul Attn, impulsive attention.

at least 8th grade, but only network analysis revealed which EFs
are developing and in what way. Our methods revealed that the
variability in the 3rd– 4th grade cohort sample was likely due
to development and not to traditional constraints such as sample
size and measurement differences. Finally, unlike latent variable
analysis, the metrics generated from network analyses were used to
gain further insight into the development of EFs and develop new
hypotheses around their trajectories.

This study presents innovative methods for understanding
precisely how EFs differentiate across middle childhood. Adaptive
algorithms in our EF assessments allow us to meet the learner where
they are, regardless of ability and without making assumptions
about skill level according to demographic variables such as age
and allow for multiple assessments within-subject over time. Using
our novel technology, we administered assessments to large groups

of children at once, affording us a larger sample size for each age
group studied. These large samples of students, who completed the
same tasks that presented a similar degree of challenge according
to individual performance, represent a unique dataset from which
to understand three EFs. Paired with simulation results, we can
be more confident that differences seen between cohorts are
developmentally-related—not merely due to differences in sample
size or task difficulty. In this way, we overcame one pernicious
limitation in the extant literature, which has commonly had to use
different tasks for different age ranges (e.g., McAuley and White,
2011; Camerota et al., 2020; though see Van der Ven et al., 2012;
Boelema et al., 2014) or seen ceiling effects in performance by older
students (e.g., Lee et al., 2013).

Using a network analytic approach and leveraging the power of
this dataset, we were able to explore new avenues for understanding
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TABLE 4 Correlations of network connections between network models.

Timepoint 3rd–4th grade cohort 5th–6th grade cohort 7th–8th grade cohort

1 2 3 4 1 2 3 4 1 2 3 4

3rd–4th grade cohort 1 1.00

2 0.40
[0.03, 0.67]

1.00

3 0.36
[-0.02, 0.64]

0.32
[-0.06, 0.62]

1.00

4 0.41
[0.05, 0.68]

0.32
[-0.06, 0.62]

0.45
[0.09, 0.7]

1.00

5th–6th grade cohort 1 0.48
[0.13, 0.72]

0.56
[0.23, 0.77]

0.54
[0.2, 0.76]

0.43
[0.07, 0.69]

1.00

2 0.37
[0, 0.65]

0.34
[-0.04, 0.63]

0.41
[0.04, 0.68]

0.51
[0.17, 0.74]

0.39
[0.01, 0.66]

1.00

3 0.43
[0.07, 0.69]

0.48
[0.13, 0.72]

0.47
[0.12, 0.72]

0.43
[0.07, 0.69]

0.75
[0.52, 0.88]

0.67
[0.4, 0.84]

1.00

4 0.36
[-0.01, 0.65]

0.51
[0.18, 0.74]

0.64
[0.34, 0.82]

0.55
[0.22, 0.76]

0.62
[0.32, 0.81]

0.58
[0.27, 0.79]

0.63
[0.33, 0.81]

1.00

7th–8th grade cohort 1 0.36
[-0.02, 0.65]

0.55
[0.23, 0.77]

0.42
[0.05, 0.68]

0.43
[0.07, 0.69]

0.57
[0.25, 0.78]

0.41
[0.04, 0.68]

0.60
[0.3, 0.8]

0.52
[0.18, 0.75]

1.00

2 0.34
[-0.04, 0.63]

0.54
[0.21, 0.76]

0.50
[0.16, 0.74]

0.42
[0.05, 0.68]

0.71
[0.46, 0.86]

0.60
[0.29, 0.79]

0.72
[0.47, 0.86]

0.69
[0.42, 0.84]

0.66
[0.38, 0.83]

1.00

3 0.54
[0.21, 0.76]

0.62
[0.33, 0.81]

0.39
[0.02, 0.67]

0.47
[0.12, 0.72]

0.72
[0.47, 0.86]

0.65
[0.37, 0.82]

0.78 [0.58, 0.9] 0.69
[0.42, 0.84]

0.61
[0.31, 0.8]

0.85
[0.69, 0.93]

1.00

4 0.55
[0.22, 0.77]

0.63
[0.34, 0.81]

0.36
[-0.02, 0.65]

0.51
[0.17, 0.74]

0.55
[0.22, 0.76]

0.63
[0.33, 0.81]

0.54
[0.21, 0.76]

0.62
[0.33, 0.81]

0.61
[0.3, 0.8]

0.64
[0.35, 0.82]

0.64
[0.35, 0.82]

1.00
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the development of EF as a dynamic interconnected network of
skills that can align behavioral and neural models. Our series of
analyses provide converging evidence that the period from third to
fourth grade is one of great change in the structure and organization
of EFs compared to later periods in development. Not only did
both latent variable and network analysis show a greater degree of
variability in the model that best represents organization of EFs, but
the between network correlations between edge weights support
characterizing organizations as “unstable”. This pattern of findings
may suggest individual differences in component differentiation
that should be explored in future research. Experience may drive
differentiation rates to differ across children. Further, individual
differences in differentiation rates may also explain differences in
the number of EF components found in this age range. For example,
studies have shown students might differentially employ EFs based
on, for example, pubertal stage, socioeconomic background, et
cetera (Haft and Hoeft, 2017; Doebel, 2020). Such differences in
the way individuals employ EFs may also impact the trajectory of
differentiation of these EFs. Understanding the potential paths in
development and how they can be influenced by life experience
will be critical in fostering continued growth of EF skills (Best and
Miller, 2010).

In the current study, network analysis allowed us to go
beyond assessing the stability of the number of components
across development and extend our assessment to the stability
of component composition. As discussed, the 3rd–4th grade
cohort in this study was highly variable across time, showing
a different combination of components at each of the four
timepoints examined. However, this variation in organization was
not restricted to the youngest cohort; the 5th–6th grade cohort
studied here showed a non-hypothesized organization at timepoint
1, namely, Flanker grouping with context monitoring rather than
interference resolution, and Sustained Attention grouping with
interference resolution. This finding, consistent with prior work
showing protracted development of EF skill (Davidson et al., 2006),
emphasizes that EFs may manifest or be deployed differently across
development, and tasks shown to measure one construct in adults
may measure a different one in children (Morra et al., 2018). Such
potential differences in how EFs might be employed to accomplish
a task across development were missed when using a latent variable
model approach, and may help explain the inconsistencies in the
extant literature regarding the number of components in this age
range (Lee et al., 2013). Latent variable analysis does not allow for
statistically comparing models with different configurations of the
same indicators. As such, alternate configurations are often not
investigated. During a period of such developmental instability, the
differences in the tasks used to measure each component and the
metric of skill on each of those tasks across studies could result in
many acceptable models of the data. Without a data-driven method
for determining which EF component a task reflects, researchers
are left with an untenable number of configurations to test.
Indeed in the current study, such configurational differences were
missed with factor analysis, since the theory-driven configuration
of EFs fit reasonably well, and there was no indication a different
configuration might better represent EF constructs. Considering
alternative approaches such as the network analysis shown here can
add to our understanding of the measurement approach that best
represents EFs across the lifespan (Camerota et al., 2020).

Importantly, the use of network analysis to test the
differentiation hypothesis allowed for the examination of
how different EFs become distinct from not only each other,
but from Common EF. To date, only one other investigation
to our knowledge has used analytic methods that support such
an investigation (Hartung et al., 2020). While this investigation
examined different EFs than those studied here (specifically,
Working Memory, Switching, Updating, and Inhibition), the
results are largely complementary. Specifically, Hartung and
colleagues analyses indicated that in younger children age 8–10,
EFs were highly correlated with one another, suggesting little
differentiation between Common EFs and individual components
at this age. Further, Inhibition, most similar to the CM and
IR examined here, became increasingly differentiated by about
age 10, consistent with the finding from the current study that
organization of CM, IR, and WM stabilized around 5th grade,
or age 10. Finally, a primary finding from Hartung et al.’s (2020)
investigation was the lack of a uniform pattern of development
across either components or individual tasks, suggesting a more
nuanced pattern of developmental trajectories, consistent with
the findings from the current study. Both studies underscore
the importance of carefully considering which components are
measured in what way, and whether the relationships between
tasks and EFs seen in adults holds true for childhood populations.

4.1. Limitations and future directions

This study makes significant strides in our approach to measure
and model EFs, improving on several critical limitations in the
field. Yet, further advancements are needed to build upon and
address limitations of this work, particularly regarding the scope of
EFs assessed and the availability of statistical methods to compare
network models longitudinally.

4.1.1. EF measurement
Developing a novel, adaptive battery of EF tasks for all ages and

abilities was not without its challenges, and a future iteration of
this battery that addresses many of the challenges encountered here
is already underway. This iteration, called ACE Explorer (ACE-X)
is currently undergoing large-scale norming and validation with a
nationally representative sample across ages 7–107. A key challenge
with using ACE-C concerned the design decisions made when
modifying tasks for large-group assessment and to incorporate
adaptive algorithms. Specifically, in this study, the WM component
was only indexed by two measures, which limited the type of latent
variable model that could be constructed and tested here. While
a third task hypothesized to measure WM, Filter, was originally
included in the ACE-C battery, it used a different adaptive
mechanism, which resulted in age-related differences in challenge
level, and ultimately its exclusion from the current analysis.
Consequently, we could not test certain factor configurations
without rendering the models uninformative. In ACE-X, we have
aligned the adaptive mechanism to use the response window in the
same manner as the majority of other tasks in the battery, which
has resulted in more consistent challenge-levels across age groups.

Further, as with any investigation that does include an
exhaustive assessment of all potential EFs, the conclusions
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concerning developmental trajectory of EFs can only be applied to
what was examined. The components examined via ACE-C were
not intended to be an exhaustive list of potential EF components,
and notably, not all components intended to be measured with
ACE-C were able to be included. Due to time constraints associated
with in-school testing sessions, we were limited in the number
of tasks that could be administered, and we chose to focus on
tasks commonly used to assess EFs and cognitive control across
both the adult and developmental literature to better bridge our
understanding of these constructs across the lifespan. Further, while
we did administer a task intended to assess the cognitive flexibility
component of EF, a technical malfunction in the analytics for this
task prevented its inclusion in the current study. As such, one
prominent EF component was not assessed here, though this issue
has been corrected in the ACE-X battery.

Additionally, careful consideration must be given to the terms
that are used to discuss EF components, and how those terms
are reflected by the task designs used in each investigation.
For example, the Stroop task has been considered to measure
inhibition when the verbal response mechanism is used, but
interference resolution when a motor response mechanism is
used, as is the case in the current study. Further, while the
components put forth by Miyake and colleagues (Miyake et al.,
2000b; “updating”, “inhibitory control”, and “cognitive flexibility”)
are the most frequently examined components (Karr et al., 2018)
they are often inconsistently defined across the literature. In
particular, the “inhibitory control” component is often measured
with a combination of tasks that involve both the “interference
resolution” and “context monitoring” aspects of cognitive control
(see Diamond, 2013 for review). However, neural data from
both children and adults indicate these are indeed two separate
components (Bunge et al., 2002). By including additional tasks
(e.g., Boxed and Tap and Trace) and separating inhibitory control-
related tasks into those in which a response must always be made
(interference resolution) and those in which a participant must
decide whether to make a response or not (context monitoring),
the ACE-C battery is able to bring further specificity to the
characterization of EFs in middle childhood.

Similarly, though, the “working memory” component of EF
would benefit from increased precision around its definition,
and therefore measurement. The field has not yet reached a
consensus on whether “short term memory” is distinct from
“working memory” and whether these constructs might differ
across development as this component evolves. While the inclusion
of both a forward and backward span in the ACE-C battery was
done in keeping with their widespread use in clinical practice to
assess what is referred to as “working memory” (see Berch et al.,
1998), these two tasks do not exhaustively capture all potential
aspects of the construct. Indeed, in this investigation we used the
term “working memory” rather than “updating” as is used in the
most commonly cited model of EF components (Miyake et al.,
2000b) because the Forward Spatial Span task does not strictly fit
with the component conceptualized as “updating”. By including
additional tasks that tap different aspects of “working memory”,
such as the Filter task that examines the ability to remember task-
relevant information while ignoring task irrelevant information
(Luck and Vogel, 1997), we can further understand the composition
of this construct and bring increased specificity to how it is
discussed and measured.

Finally, future directions for the ACE battery include increasing
its capabilities as a measurement tool of multiple components
of EF. First, ACE-X has been made more inclusive by using a
color palette compliant with the Americans with Disabilities Act to
ensure individuals who are colorblind can use the battery. Second,
to build on to the engaging design that afforded us high retention
and compliance rates in this study, ACE-X incorporates the battery
of tasks into a cohesive story to further motivate participants
to complete the full battery. Finally, the large-scale validation
efforts and norming with a nationally representative population will
further allow us to replicate the results shown here in additional
populations, including within sub-populations represented but not
separately examined in this study (e.g., students with learning
disabilities). In this way, we will be able to replicate and extend the
results of the current study, to better understand additional factors
that may impact the developmental trajectory described here.

4.1.2. EF modeling
This study demonstrated a new approach to modeling EFs

that better accounts for the unity while examining the diversity
of EFs. Yet, this methodological approach must continue to be
built upon to fully model the development of EFs. Indeed, there
were methodological challenges related to comparing two analytical
approaches in testing the differentiation hypothesis. For example,
we intentionally did not explicitly model the dependency of
multiple observations per student that occurs with longitudinal
data in either analytic approach. While it is possible to model
using factor analysis, development of network models that can
handle longitudinal data are still in their infancy (though see
Deserno et al., 2021). To keep the general modeling strategy
consistent and inferences comparable, we treated all observations
as independent in both approaches. However, this strategy is
unlikely to have affected the results for two reasons. First, without
accounting for within-person changes, within-cohort comparisons
were more conservative than necessary. Second, we did not perform
tests that were likely to be affected by treating observations
as independent. Nonetheless, as network analytic methodology
continues to advance, so too must the methods used to reveal the
evolution of EF structure advance.

Further, neither modeling approach was able to simultaneously
account for Common EF and provide statistical comparisons
between models of differing complexity. With latent variable
analysis, it is a straightforward process to compare whether a
model with more factors fits statistically better than a model
with fewer factors. These capabilities, though, are currently
limited with network models (though see Epskamp et al., 2021).
Community detection algorithms provide a likely grouping for
task performances, but there is no index to statistically determine
whether a two-community network explains EFs just as well
as a three-community network, for example. However, existing
methods for accounting for Common EF in the latent variable
approach preclude such statistical comparisons between models,
leaving the theoretical problem of how to account for Common
EF in the context of differentiation of components with this
approach unresolved. To date, the benefits of the network analysis
approach, which accounts for commonality among all EF task
performances rather than treating it as a separate component
entirely, presents a promising solution for accounting for Common
EF. The rapidly emerging statistical approaches for testing network
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model complexity position this technique as the path forward in
establishing the developmental trajectory of EFs.

The future potential for network analysis to help us understand
complex cognitive constructs is bright. Researchers in related fields
have already begun to capitalize on information gained from
taking a network analytic perspective to understand other cognitive
processes. For example, Kan et al. (2020) demonstrated how fit
statistics can be obtained for network models, allowing a direct
comparison between network and latent variable models. As such,
future research could directly compare a variety of configurations
of EF modeled using latent variable analysis to those using
network analysis to determine which organization best fits observed
EF performance. While outside the scope of the current paper,
researchers in the field of intelligence have used this approach to
show that modeling aspects of intelligence as being mutually and
reciprocally related through a network framework is favored over
modeling an overarching umbrella component (“g”) in a latent
variable framework (Kan et al., 2019). Given this field’s similar
dilemma around how to quantify developmental differentiation
in the presence of task commonality (Molenaar et al., 2010), we
anticipate such investigations in EFs will be similarly fruitful for
determining which modeling approach better reflects the unity and
diversity of EFs and for elucidating the mechanisms through which
skill changes arise.

Further, as methods for appropriately modeling longitudinal
data emerge, network analysis provides an avenue for
understanding the potential reciprocal relationships among EFs
over time (Deserno et al., 2021). For example, in a separate study we
are examining how growth in performance on individual tasks are
connected. By using a network framework for investigating EF skill
growth, we can evaluate whether the same communities formed
when modeling contemporaneous ties between task performances
also emerge when looking at their patterns of growth across time.
Such evidence would reinforce the identity of the communities
as distinct components of EF and allow us to answer whether
components of EF emerge independently or in tandem with other
components.

Such insights into the development of EFs are critical for
advancing our understanding of how they influence, and can be
influenced by, internal and external factors. For example, EFs
are often the focus of educational interventions with the goal of
improving academic-related outcomes (see e.g., Diamond and Lee,
2011; Titz and Karbach, 2014; Jacob and Parkinson, 2015). Network
analysis is well-poised to generate hypotheses regarding which
EF tasks or components might be more likely to transfer outside
a training regime, which can then guide future training studies.
Indeed, the findings from the current study provide a clear set of
testable hypotheses: given that the cross-sectional network models
found here suggest that WM is less strongly connected to other EF
components, future training studies should test the hypothesis that
training a highly connected component such as IR would be more
likely to result in transfer to other EFs compared to training on the
less-well connected WM component.

4.2. Conclusion

The findings from this study showcase how advances in
assessing EFs and an increasingly popular modeling technique,

network analysis, can be applied to the field of EFs to better
align behavioral and neural investigations. The dual paradigm
shifts to network analysis using adaptive measures provide a
promising pathway for refining and specifying our understanding
of how EFs develop. These insights can in turn be applied to
advance our understanding of EFs’ wide-reaching impact on factors
related to physical and cognitive health across the lifespan (Zelazo
et al., 2016). Together, our improved methodological approaches to
measuring EFs can lead to the development of improved methods
for supporting EFs and providing students the proper foundation
they need for learning and future educational success.
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