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Abstract

Stochastic Analog Computation for Machine Learning

by

Yuan-Sheng Fang

Doctor of Philosophy in Physics

University of California, Berkeley

Associate Professor Michael R. DeWeese, Chair

Analog computers model logical and mathematical operations by exploiting the physical
properties of continuously evolving systems. Variables are often directly represented by
easily measurable quantities such as voltage, current, etc. By contrast, in typical digital
computers, the representation is much more abstract and manipulated in discrete time.
Despite certain advantages of analog computers, such as their power efficiency and speed,
they were eventually made obsolete by the better scalability of their digital counterparts.
However, with the recent advances in machine learning, specialized applications of analog
computation, such as optical neural networks, are becoming more viable. Presented here is
a collection of topics relevant to analog computing for machine learning. Rather than a set
of algorithmic procedures, machine learning models can be treated as physical systems and
studied accordingly. Specifically discussed are parameter estimation of the Ising spin glass,
deep learning with photonic networks, and fully analog implementation of latent variable
models.

For the most part, experimental physics is interested in the observation and measurement
of a system under various conditions. On the other hand, much of machine learning is
concerned with inferring the underlying properties of a system from known observations.
This type of inference is often referred to as the inverse problem by physicists. In Chapter 1,
one such concretely formalized task, parameter estimation, is used to study the Ising model
and Hopfield network.

The next chapter explores certain practical problems associated with implementing neural
networks with photonic components – optical neural networks (ONN). The analog noise and
imprecisions are present in all analog computers and impact their performance. Accordingly,
the proper characterization of ONNs require quantifying the effects of fabrication errors and
other noise on their operation. The trade-off between expressivity and robustness is explored
through comparison of two ONN architectures.
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Rather than minimizing the effects of noise in analog systems, in the last chapter, it is
demonstrated that they can be leveraged for more efficient computation. Manipulation and
analysis of probabilistic models often require the generation of continuous random variables.
Instead of using a deterministic, digital computer for this task, we demonstrate that this can
be much more efficiently done with an analog computer with inherent variability.

A more, in depth, summary of these topics is presented in the introduction. While each
chapter is self-contained, the common theme is a departure from discrete, deterministic
approaches to computation and a step toward continuous and stochastic dynamics. Taken
as a whole, the thesis acts as reference for further study in analog computation.
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Abstract

Stochastic Analog Computation for Machine Learning

by

Yuan-Sheng Fang

Doctor of Philosophy in Physics
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Associate Professor Michael R. DeWeese, Chair

Analog computers model logical and mathematical operations by exploiting the physical
properties of continuously evolving systems. Variables are often directly represented by
easily measurable quantities such as voltage, current, etc. By contrast, in typical digital
computers, the representation is much more abstract and manipulated in discrete time.
Despite certain advantages of analog computers, such as their power efficiency and speed,
they were eventually made obsolete by the better scalability of their digital counterparts.
However, with the recent advances in machine learning, specialized applications of analog
computation, such as optical neural networks, are becoming more viable. Presented here is
a collection of topics relevant to analog computing for machine learning. Rather than a set
of algorithmic procedures, machine learning models can be treated as physical systems and
studied accordingly. Specifically discussed are parameter estimation of the Ising spin glass,
deep learning with photonic networks, and fully analog implementation of latent variable
models.

For the most part, experimental physics is interested in the observation and measurement
of a system under various conditions. On the other hand, much of machine learning is
concerned with inferring the underlying properties of a system from known observations.
This type of inference is often referred to as the inverse problem by physicists. In Chapter 1,
one such concretely formalized task, parameter estimation, is used to study the Ising model
and Hopfield network.

The next chapter explores certain practical problems associated with implementing neural
networks with photonic components – optical neural networks (ONN). The analog noise and
imprecisions are present in all analog computers and impact their performance. Accordingly,
the proper characterization of ONNs require quantifying the effects of fabrication errors and
other noise on their operation. The trade-off between expressivity and robustness is explored
through comparison of two ONN architectures.
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Rather than minimizing the effects of noise in analog systems, in the last chapter, it is
demonstrated that they can be leveraged for more efficient computation. Manipulation and
analysis of probabilistic models often require the generation of continuous random variables.
Instead of using a deterministic, digital computer for this task, we demonstrate that this can
be much more efficiently done with an analog computer with inherent variability.

A more, in depth, summary of these topics is presented in the introduction. While each
chapter is self-contained, the common theme is a departure from discrete, deterministic
approaches to computation and a step toward continuous and stochastic dynamics. Taken
as a whole, the thesis acts as reference for further study in analog computation.
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Chapter 0

Introduction

This thesis is motivated by an interest in studying machine learning with tools available
to physicists. Various techniques in physics have been employed for better understanding
of machine learning problems. As one example, mean field theory has been used to study
batch normalization in neural networks [87]. Another direction is to discover new models and
solutions. Both the Hopfield networks [32] and the restricted Boltzmann machine (RBM) [66]
are closely related to the Ising spin glass and are known models for auto-associative memory
and representing latent variables respectively. In Chapter 2, it is shown that the capacity of
Hopfield networks to store patterns can be increased through a parameter estimation scheme
called minimum probability flow (MPF) [74].

In addition to theory, expertise in experimental physics has successfully been applied in
designing new hardware for acceleration of deep learning. Of particular interest are optical
neural networks (ONNs) [69]. In Chapter 3, the fabrication imprecisions of [some optical
devices] are modeled and their effects on ONNs are characterized. Strategies for mitigation
of the effects of analog noise are also presented. Moreover, instead of minimizing such effects,
the analog noise may actually be used to aid computation as well. A framework for how this
may be implemented for sparse coding [52] – a latent variable model – is shown in Chapter
4.

Because each of the topics discussed are fairly specialized, they are presented in self-
contained chapters that follow. In the current introductory chapter, brief descriptions of
various concepts are presented to make the thesis more accessible to a general audience.

0.1 Parameter estimation

Parameter estimation is the goal of inferring parameter(s) θ of some model from observations
X. While very common in machine learning, this is considered the inverse problem in physics
where often theory is developed to model observations from a system with given parameters.
Consider the Ising spin glass model as an example. The system consists of N spins described
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by vector s ∈ {−1,+1} and has an energy of the form

E(s; J) =
1

2
sTJs. (1)

Rather than understanding the statistics of s, one might be interested in estimating the
coupling matrix J from a set of observations {si} sampled from this system. One way of
formalizing this goal is to select J∗ that maximizes the likelihood of these observations.
Generally, this can be very difficult. Various methods for parameter estimation have been
developed and is an active area of research[78]. One such method is called minimum prob-
ability flow (MPF) and has found application in various machine learning tasks. In the
subsequent chapter, its applicability in training Hopfield networks is demonstrated.

Maximum Likelihood

For a set of samples {si|i = 1, . . . , N}, the likelihood of it being drawn i.i.d. from distribution
p(s; J) is

L(J) = p({si}; J) =
N∏
i=1

p(si; J). (2)

Conventionally, the negative log-likelihood is considered instead.

L(J) = − logL(J) = −
N∑
i=1

log p(si; J). (3)

The max likelihood (ML) estimator for J is therefore

J∗ = arg minL(J) (4)

Unfortunately, in the case of the Ising spin glass, along with many others, the normalized
distribution is intractable. Formally,

p(s; J) =
e−E(s;J)

Z(J)
(5)

where

Z(J) =
∑
s

e−E(s;J) (6)

is the partition function. and the sum is over all possible configurations of s. The number
of terms to be summed over is therefore 2N and quickly becomes very large.

Nonetheless, because the energy is known, the ratio between likelihoods of two different
configurations is directly calculable.

p(s; J)/p(s′; J) =
e−E(s;J)/Z(J)

e−E(s′;J)/Z(J)
= exp(−(E(s; J)− E(s′; J)) (7)

This fact is central to how MPF works.
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Hopfield Network

A Hopfield network is a dynamical system consiting of N neurons s ∈ {−1,+1}N with
the same energy as the Ising spin glass (Eq. 1). At each time-step, a single neuron si is
chosen, and either flips or stays to minimize the energy. More formally, for a given i, define
x′ = (x1, . . . ,−xi, . . . , xD) and then,

x←

{
x′ if E(x′) < E(x)

x if E(x′) ≥ E(x)
(8)

This process is iterated over all the dimensions i = 1, . . . , N . Then repeated until conver-
gence. Note that convergence is always possible as energy necessarily decreases whenever a
neuron flips. The main topic of study is whether the local minimum of the energy landscape
into which the neurons settle is meaningful.

As a model for memory, the aim is to store patterns {ξα|α = 1, . . . , N} as local minima.
This way, given a corrupted version of one of the stored patterns, ξα, through the Hopfield
update rule (Eq. 1.15), the corrupted pattern will converge to the stored memory (Fig. 1.1).

Fig. 0.1. Initialized to a pattern with both missing and noisy data, a Hopfield network
eventually successfully converges to the desired, stored memory.

The challenge lies in devising a procedure for producing coupling matrix J for which {ξα}
are local minima of the energy. There is a parallel between this and estimating J for which
observations {si} are likely events. For this reason, one might attempt to use a parameter
estimation scheme like MPF to train a Hopfield network. In Chapter 2, it is demonstrated
that this is indeed possible and the procedure outperforms competing methods of training
Hopfield networks.

0.2 Optical Neural Networks

An ONN is a physical implementation of artificial neural networks (ANNs) with optical
components. While a variety of ONNs exists, here the focus is multilayer perceptrons (MLPs)
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based on photonic meshes of Mach-Zehnder Interferometers (MZIs).

Multilayer Perceptron

A multilayer perceptron (MLP) with K layers consists of weights {Wk ∈ RNk×Nk−1 : k =
1 . . . K} and biases {θk ∈ RNk}. Each layer is modeled as

fk(x) = σ(Wkx + θk). (9)

σ is a nonlinear function applied element-wise (i.e. σ(z)i = σ(zi)). Then, the entire MLP
can be expressed as

f(x) = (fK ◦ fK−1 ◦ · · · ◦ f1)(x). (10)

While the input and output dimension (N0 and NK) is typically fixed, the dimensions
of intermediate layers (the width of the network) along with the total number of layers
(the depth) can be arbitrary. This allows for a large number of tunable parameters. The
nonlinearity σ is important because without it, the composition of linear functions is another
linear function. For example, ignoring biases, we would have

f(x) = WKWK−1 . . .W1x ≡ Wx (11)

for W ∈ RNK×N0 . Regardless of the depth and width of a linear network, the number of
non-redundant degrees of freedom is fixed at NK ×N0.

Roughly speaking, in training a MLP, the goal is to optimize parameters Wk, θk to min-
imize some loss function. This is often done through gradient descent. The architectural
design of MLPs, the choice of loss functions and optimization strategies, while very impor-
tant, is outside of the scope of this thesis.

Mach-Zehnder Interferometers

A single MZI is comprised of two 50-50 beamsplitters and two phaseshifters. Both photonic
components act linearly on two inputs of light, with two outputs. Accordingly, they may be
modeled by 2× 2 transfer matrices,

UBS =
1√
2

(
1 i
i 1

)
(12)

and

UPS(θ) =

(
eiθ 0
0 1

)
. (13)

Monochrome light on two waveguides with amplitude A1,2 and phase φ1,2 can be represented
by the complex vector

z = (A1e
iφ1 , A2e

iφ2)T . (14)
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Going through a beamsplitter, the output is then

z′ = UBSz, (15)

and for a phaseshifter,

z′′ = UPS(θ)z. (16)

Composing the transfer matrices of its constituent components, the MZI is represented as

UMZI(θ, φ) = UBSUPS(θ)UBSUPS(φ) (17)

=
1

2

(
1 i
i 1

)(
eiθ 0
0 1

)(
1 i
i 1

)(
eiφ 0
0 1

)
(18)

= ieiθ/2
(
eiφ sin θ

2
cos θ

2

eiφ cos θ
2
− sin θ

2

)
. (19)

By tuning the phases (θ, φ) of the MZI, inputs can be made to interfere in a controlled
manner. A mesh of MZIs, along with a few other photonic elements (Fig. 0.2) can implement
any linear transformation of arbitrary dimensions.

Amp

β

G
ridU

nitary(8)

GridUnitary(4)

MZI

Diagonal(4)

n

l

1
2
3
4
5
6
7
8

1 2 3 4 5 6  7 8

φ θ

UΣV†

Fig. 0.2. A schematic of a universal 8× 4 optical linear multiplier with two unitary multi-
pliers (red) consisting of MZIs in a grid-like layout and a diagonal layer (yellow). The MZIs
of GridUnitary multipliers are indexed according to their layer depth (l) and dimension (d).
Symbols at the top represent the mathematical operations performed by the various modules.
Inset: A MZI with two 50:50 beamsplitters and two tunable phaseshifters.

By interweaving optical nonlinearities such as saturable absorbers, a fully optical imple-
mentation of a multilayer perception is realizable. The content of Chapter 3 explores the
effects of fabrication error and other sources of uncertainties on the operation of such optical
neural networks.
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0.3 Analog Sampling for Sparse Coding

The noise and error mentioned above is inherently present in all analog systems. These have
been successfully leveraged into performing efficient sampling. In fact, an analog sampler
built using photonic meshes similar to the one described in the previous section has been
demonstrated [63]. In the last chapter, it is demonstrated that beyond just sampling, an
analog system modeled by Langevin dynamics can be effectively used to train a sparse coding
model.

Sparse Coding

Sparse coding is a simple yet efficient algorithm for dictionary learning. By adding an L1

regularization to the reconstruction loss, sparsity of coefficients can be achieved. While the
formulation is probabilistic, due to computational constraints, point estimates are typically
used to represent posterior distributions. As a result, the theoretically desired distribution is
not achieved. The main assumption is that data from some data set (x ∈ RD) is distributed
as a linear combination of dictionary A ∈ RD×K with added Gaussian noise n:

x = As + n (20)

with ni
iid∼ N(0, σ2). The coefficients s are further assumed to be L1 sparse with a Laplacian

prior:

ps(si) ∝ exp(−λ|si|). (21)

This probabilistic model can be described with the following energy function

E(A, s,x) =
1

2

||x− As||22
σ2

+ λ||s||1 (22)

such that p(x, s|A) = Z−1 exp(−E(A, s,x)). The maximum likelihood estimator (MLE) of
the dictionary is typically found through gradient descent:

A← A− ηA∇A〈E(A, s,x)〉s (23)

However, the expectation over s is intractable and is typically approximated by the maximum
a posteriori (MAP) estimator of s

s∗ = arg min
s
E(A, s,x). (24)

The MAP of s is also foudn through gradient desecent:

s← s− ηs∇sE(A, s,x) (25)

Before each step of A (Eq. 3.55), multiple step of s (Eq. 3.57) is run to obtain an estimate
for s∗. This set of discrete updates in such as nested loop makes implementation in analog
devices highly infeasible.
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Langevin Dynamics

Langevin dynamics is described by the following stochastic differential equation:

u̇ = −∇E(u) +
√

2Tξ(t), (26)

where ξ(t) is independent Gaussian white noise with 〈ξ(t)ξ(t′)T 〉 = Iδ(t−t′). The distribution
of p(u(t)), over time, will asymptotically converge to

p(∞)(u) ∝ e−E(u)/T . (27)

If S obeyed the following dynamics

τSṠ = −∇SE(A, S,X) +
√

2TτSξ(t), (28)

for fixed A,X, over time, S will sample from S|X. Consider if at the same time, A also had
some continuous dynamics described by

τAȦ = −∇AE(A, S,X). (29)

A useful property of (Eq. 28) is that the equilibrium distribution is independent of the time
constant τs. By taking τA � τS, the assumption that A is fixed with respect to the dynamics
of S can be upheld. Conversely, because S evolves much faster than A, the dynamics of A
is well approximated by

τAȦ = −〈∇AE(A, S,X)〉S|A,X . (30)

This is the exact mean gradient desired in Eq. 3.55. This way, probabilistic sparse coding
can be implemented by a system obeying Eq. 28, 29. Simulation of Langevin Sparse Coding
(LSC) and related results are presented in Chapter 4.
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Chapter 1

Training Higher Order Hopfield
Networks with MPF

1.1 Introduction

Minimum probability flow (MPF) is a method for parameter estimation developed by Sohl-
Dickenstein, et al. [73]. In this chapter, we expand upon a few theoretical properties of
MPF and explore alternative, related objective functions. Furthermore, we demonstrate an
application in learning higher order Ising models. Finally, we show that when used to train
Hopfield networks,

1.2 Minimum Proability Flow

Define p to be a data probability distribution over a set of states S where pi is the probability
a random observation would be in state i ∈ S. We wish to find, from a family of parametrized
data distribution {q(θ)|θ ∈ Θ} the “closest” model distribution q(θ̂) to the data distribution,
in the sense of maximizing the likelihood that sample p was drawn from q(θ). A well known
method is to minimize the KL divergence[39] between p and q:

θ̂ =θ∈Θ DKL(p||q(θ)) (1.1)

where

DKL(p||q) = −
∑
i∈S

pi log

(
qi
pi

)
. (1.2)

The objective function DKL however is often intractable.
MPF gets around this by considering the flow from p to q. Let Γ(θ) be the probability

flow matrix where Γij can be interpreted as the fraction of probability at state j that will
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“flow” to state i per unit time. We will take the definition of Γii = −
∑

j 6=i Γji. Then we will
choose Γ so that

q(θ) = lim
T→∞

pθ(t) ≡ lim
t→∞

eΓ(θ)tp. (1.3)

With detailed balance in consideration, we define

Γij = gij

√
pi
pj

= gij exp(−1

2
(Ei − Ej)). (1.4)

Ei is the energy of state i so that pi ∝ exp(−Ei) and gij = gji ∈ {0, 1} is the connection
matrix between i and j. This way,

Γijpj = Γjipi, (1.5)

as is required by detailed balance. The idea of MPF is that for flow in infinitesimal time
ε, the minimization of DKL between pθ(ε) and p is a sufficient objective function. We can
then define an objective function K as follows:

DKL(p||pθ(ε)) = DKL(p||p + εΓp) +O(ε2)

= −
∑
i∈S

pi log(
pi + ε(Γp)i

pi
)

= −
∑
i∈D

pi log(1 + ε
(Γp)i
pi

)

= −ε
∑
i∈D

pi
(Γp)i
pi

+O(ε2)

= ε
∑
i/∈D

(Γp)i = ε
∑
i/∈D

∑
j∈D

Γijpj ≡ εK.

The set of data states D is the support of p. That is the subset of S for which p is nonzero
on. In the last line we made use of the fact that

∑
i∈S Γij = 0.

An immediate problem with this objective function is that for dense data where D = S,
K would be identically zero for all possible parameter. However, we could then just expand
DKL(p||pθ(ε)) to the second or the lowest, non-vanishing order. The fundamental premise
behind MPF is that

θ̂MPF ≡ arg min
θ∈Θ

DKL(p||eΓ(θ)εp)

∣∣∣∣
ε→0

≈ arg min
θ∈Θ

DKL(p||q(θ)) ≡ θ̂ML. (1.6)

Although it is never explicitly (stated without very strong conditions, namely that it is ever
possible that p = q(θ) exactly) in the original paper that θ̂MPF will always be a consistent
estimator, a lot of work has been done using the MPF. However, it can be shown, for certain
trivial models that K can fail to be a useful objective function (See App. 1.A)
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1.3 Ising Spin Glass

As an example, we apply MPF in estimating the couplings in an Ising spin glass with energy

E(x; J, θ) = −1

2
xTJx− θTx, (1.7)

where x ∈ RD The probability flow matrix is then

Γ(x,x′) = g(x,x′) exp

(
−1

2
(E(x; J, θ)− E(x′; J, θ))

)
. (1.8)

One simple choice of the connectivity matrix is to connect all states exactly one bit flip
apart. That is,

g(x,x′) =

{
1 if x′ ∈ N(x)

0 otherwise
(1.9)

where we define

N(x) = {(x1, . . . ,−xn, . . . , xD)|n = 1, . . . , D}. (1.10)

The difference in energy due to a bit flip can also be calculated as

E(x)− E(x′) = 2xn

(∑
j 6=n

Jnjxj + θn

)
. (1.11)

With N observations D = {xn|n = 1, . . . , N}, the MPF objective function is

K(J, θ) =
∑
x∈D

∑
x′∈N(x)

exp

(
−1

2
(E(x; J, θ)− E(x′; J, θ))

)
(1.12)

=
∑
x∈D

∑
n

exp

(
−xn

[∑
j 6=n

Jnjxj + θn

])
(1.13)

1.4 Hopfield Networks

A Hopfield network[32] is a model for memory and consists of a collection of binary polar
“neurons”,

x ∈ {−1, 1}D (1.14)
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and the spin glass energy function (Eq. 1.7) Each neuron asynchronously updates if and
only if doing so decreases the overall energy. More formally, for a given i, define x′ =
(x1, . . . ,−xi, . . . , xD) and then,

x←

{
x′ if E(x′) < E(x)

x if E(x′) ≥ E(x)
(1.15)

This process is iterated over all the dimensions i = 1, . . . , N . Then repeated until conver-
gence. Note that convergence is always possible as energy necessarily decreases whenever a
neuron flips. However, whether the local minima in which the neurons settle in is meaningful
is the main topic of study.

As a model for memory, the aim is to store patterns {ξα|α = 1, . . . , N} as local minima.
This way, given a corrupted version of one of the stored patterns, ξα, through the Hopfield
update rule (Eq. 1.15), the corrupted pattern will converge to the stored memory (Fig. 1.1)

Fig. 1.1. Initialized to a pattern with both missing and noisy data, a Hopfield network
eventually successfully converges to the desired, stored memory.

We say that for a memory ξα, x is in its basin of attraction when initialized at x, network
converges to ξα. In the scenario described above, The corrupted pattern was in the basin
of the stored memory. However, it is possible for the pattern to be too corrupted to end
outside said basin (Fig. 1.2). In such case, the network will instead converge to another,
spurious minimum. Worse still, the network can converge to a spurious minimum even when
initialized exactly at a stored pattern. In such case, the memory is said to not have been
successfully stored.

When the number of stored patterns – N becomes too large, it becomes increasingly
difficult to store patterns in what is known as catastrophic forgetting[37].

1.5 Learning rules

In the section above, it was assumed that the network has already stored memories {ξα}.
Here, we discuss how the weights Jij, θi are set to store such memories.
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Fig. 1.2. Three scenarios illustrating the basin of attraction of a stored pattern “2”. In
the first case, the network was initialized within the basin of attraction and successfully
converges. In the second case, the starting pattern was outside the basin of attraction and
ends up stuck at an undesired state. In the last case, the network is over capacity and even
when initialized exactly at the stored pattern, the network converges to something else.

The original method for learning the couplings J as given by Hopfield is the outer product
rule (OPR) where we set

Jij =
N∑
α=1

ξαi ξ
α
j (1.16)

= ΞΞT . (1.17)

OPR is very fast to calculate but yields a fairly low capacity. The capacity ends up being
a small fraction the total number of neurons in the network – C ≈ 0.14D[45].

An alternative learning rule can be provided by MPF. We can treat the memories, {ξα}
as data drawn from an spin glass model and use MPF, as described in Sec. 1.3, to infer
the coupling responsible for generating these “samples”. A Hopfield network trained this
way has a capacity of approximately ten times higher[31] (C ≈ 1.4D). See Fig. 1.3 for
comparison.
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((a)) OPR on random data with p = 0.5 ((b)) MPF on random data with p = 0.5

((c)) OPR on random data with p = 0.3 ((d)) MPF on random data with p = 0.3

Fig. 1.3. Comparison of network trained using OPR and MPF on random data with
quadratic energy. The x-axis is the number of neurons. The y-axis is the number of patterns.
The color denote fraction of patterns that were successfully stored. We see that although
both MPF and OPR training allows for linear capacity, MPF gives a much better rate.

1.6 JK Model

It has been reported that using energies with higher order interactions increases the capacity
of Hopfield networks. Specifically, the capacity is proportional to

C ∝ Dd−1, (1.18)

where d is the order of the polynomial (e.g. C ∝ D for second order energy that we
have studied). To leverage this effect, we introduce a higher, fourth-order interaction. The
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K-0.3 +0.3

+0.3

-0.3

J

Fig. 1.4. Samples drawn from the JK model with various values of J and K. The samples
sampled from extreme values of J,K are enlarged to the right.

simplest way of doing so is through extension of the nearest neighbor Ising model.

E(x; J,K) = −1

2
J
∑
〈i,j〉

xi, xj −K
∑
ijkl∈�

xixjxkxl. (1.19)

The notation 〈i, j〉 denotes nearest neighbors and ijkl ∈ � denotes sites in a 2 × 2 square
configuration. A collection of samples were drawn at various values of J and K and are
shown in Fig. 1.4. Note that multiple samples were drawn while only a single representative
sample is shown in the figure.

Based on the data drawn at specific J,K, MPF was used to estimate the parameters
Ĵ , K̂. The parameters, estimators and errors are show in Fig. 1.5. Note that the error is
relatively evenly distributed.

We can then generalize the JK model to have the following energy:

E(x; J,K) = −1

2

4∑
n=1

∑
〈ij〉n

Jnxixj

− ∑
ijkl∈�

Kijkl · xixjxkxl. (1.20)

We have used 〈·〉n to denote the n−th nearest neighbors. Each grouping of fourth-order
interaction also has a separate coupling Kijkl. Fast computation of xixjxkxl can be found in
App. 1.B. Four networks of D = 100 neurons with second order and fourth order energies
(Eq. 1.20) were trained using MPF then OPR. Figure 1.6 demonstrates that MPF performs
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J

K

True Param. Estimation Error

Fig. 1.5. Estimation of J and K by MPF along with the true parameter and error. Note
that the error has a color scale much less than those of the parameters.

better than OPR using second order energies. Furthermore, MPF maintains its capacity
when used to store sparser patterns.

1.7 Conclusion

In this chapter, we have exhibited variants of the MPF objective function and benchmarked
them with simple models. Subsequently, MPF was used to train Hopfield networks. A
higher capacity was verified for quadratic energy. Furthermore, using the JK-Ising model,
a higher capacity is also achieved when compared against a fourth-order Hopfield network
when trained with OPR for sparse patterns.
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Fig. 1.6. Comparision of capacity using MPF vs OPR for second order and fourth order
energies.
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Appendix

1.A Modified MPF Objective Functions

Binomial distribution

Consider a the very simple family of n-trial binomial distributions {q(θ)|θ ∈ [0, 1]}. Where

qk(θ) =

(
n

k

)
θk(1− θ)n−k. (1.21)

This is, for example, the probability of obtaining k heads when flipping a biased coin n times
where the coin has a θ probability of landing on heads. Consider a sample of Ns = 100 i.i.d.
binomial trials with n = 10 and θ0 = 0.20. A typical sample is shown in Fig. 1.A.1(a).
Superimposed are four model distributions with different parameters θ = 0.0, 0.1, 0.2 and
0.3 respectively. Note that the data states are D = {0 ≤ k < 6} and {6 ≤ k ≤ 10} are
the non-data states. This is fairly typical of binomial samples of the specific prescribed
parameters.

We will now apply MPF on this sample to obtain an estimator for θ. The hope is that
we will have θ̂MPF ≈ θ0 = 0.2.
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θ = 0.0

θ = 0.1

θ = 0.2

θ = 0.3

((a)) Sample data (θ0 = 0.2) denoted by black dots.
Model distribution of various parameters shown in col-
ored lines. The black box shows the non-data states.

((b)) The MPF objective function.

Fig. 1.A.1. MPF estimation of binomial trials

For simplicity, use nearest neighbors connectivity. That is gij = 1 if and only if |i−j| = 1.
Fig. 1.A.4(b) shows the objective function K calculated over all values of θ ∈ [0, 1]. K(θ) at
θ = 0.0, 0.1, 0.2, 0.3 are illustrated as well. We notice right away that the objective function
is minimized not when θ = 0.2 but rather when θ = 0.

In fact, in this case, K(θ) has a very simple form. As there is only a single connection
between the data and non-data sets (j = 5 to i = 6) thus,

K = Γ56p6 =

√
pθ(6)

pθ(5)
p6 ∝

√
θ6(1− θ)4

θ5(1− θ)5
=

√
θ

1− θ

which is minimized when θ = 0. Note that despite the somewhat pathological partition of
data and non-data sets, in no way is the data dense. Indeed, unlike the case when D = S,
K does not vanish and the inclusion of the second order expansion does not remedy the
situation since K, as the lowest, non-zero, term will dominate over all higher order terms.
In this case,

θ̂MPF ≡ θ∈ΘDKL(p||eΓ(θ)εp)
∣∣
ε→0

will not be a consistent estimator regardless of the order that it is expanded to.
Changing the structure of the connection between states (i.e. gij) will not change this

either. We can see this by regarding K as

K(θ) =
∑
i 6=D

(Γp)i =
∑
i 6=D

pit.



CHAPTER 1. TRAINING HIGHER ORDER HOPFIELD NETWORKS WITH MPF 19

This is the net change in probability of non-data states, towards the model distribution.
The problem then reduces to the minimization model probability in non-data states only.
Looking at the region in the black box in Fig. 1.A.1(a), it’s clear that moving θ closer to 0
minimizes the probability in non-data states. In particular, when θ = 0, it is exactly zero.
Of course, the problem is that absolutely no consideration is given to data states.

Visualization of MPF with n = 3 toy model

For a more graphical and explicit look at what went wrong, let’s look at one of the simplest
non-trivial set of distributions, the n = 3 binomial distributions. The family of model
distributions are of the form

q(θ) = ((1− θ)2, 2(1− θ)θ, θ2).

The data distribution, in the most general case will take the form of

p = (a, 1− a− b, b).

Because p must have unit norm, it is completely parameterized by a and b. We also require
that 0 ≤ a+ b ≤ 1. Therefore, in this toy model, all possible data distributions must reside
in a 2D simplex shown as the colored region in Fig. 1.A.2 below:

Consider a model distribution at a = 0.2, b = 0 (i.e. p = (0.2, 0.8, 0)), which is depicted
as an orange point above. The flow from p to a set of model distributions {q(θ)|θ =
0.1, 0.2, · · · , 0.9 are represented by colored lines from the orange dot to a place along the
black curve (the model distribution space). The flow to q(θ = 0.4) and q(θ = 0.1) are of
particular interest and are colored green and red respectively. Once again, the connection
matrix gij was chosen to connect nearest neighbors. That is g01 = g10 = g12 = g21 = 1 and all
other off diagonal elements vanish. The KL divergence from p (i.e. DKL(p, ·) ) is visualized
as a set of contours. This provides for us a sense of distance from the data distribution. By
inspection, we see that of the subset of model distributions shown, q(0.4) is the “closest” to
the data distribution. In fact, θ̂ML = 0.4 is the parameter that minimizes the KL divergence
out of all possible θ ∈ [0, 1]. However, the point of MPF is to only consider an infinitesimal
flow from p.

Flowing p towards each of q(θ) for t = 0.01, we get pθ(0.01). They are shown above in
Fig. 1.A.3 as black points. In this case, we can clearly see that the “closest” point to p is
actually p0.1(0.01) despite p0.4(∞) being closer than p0.1(∞).

This provides an alternative, visual explanation for the exact same problem in the pervi-
ous section. The reason MPF fails for these cases is because the KL divergence from p gets
heavily “distorted” when near the edge (i.e. when b = 0). Points along the edge are seen
much “closer” than those further away.

While the “distortion” becomes less severe as we move away from the edge, it is still
enough to pose problems. For example take b = 0.005 instead of zero. The same plots
above are repeated for p = (0.2, 0.795, 0.005). In Fig. 1.A.4b, we see indeed, that the KL
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Fig. 1.A.2. The colored region denotes the simplex where all probability distributions
must reside. The black curve is the family of parametrized model distributions {q(θ)}. The
various blue, red and green lines represent the flow from the data distribution p (orange dot)
to {q(θ)|θ = 0.1, 0.2, · · · , 0.9}. The colored contour shows the distance in the sense of KL
divergence from the data distribution.

divergence contours are significantly less squashed than when b = 0 for just a small change
in b. Nonetheless, the effects are still enough to provide a very incorrect estimate of θ̂MPF

which is closer to 0.2 (red line) than 0.4 (green line).

Alternative objective functions

In the section, a few alternative but closely related objective functions to K are presented
and at least in the case of binomial distributions, they fare much better than the original
MPF objective function K.

K∆: Total change in probability

The first one, which we’ll call K∆, is due to Chris Hillar. Let A be a n × n matrix with
eigenvalues λ1 = 0 < λ2 ≤ λ3 ≤ · · · ≤ λn and corresponding eigenvectors {ui}. For any
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Fig. 1.A.3. Zoomed in on p by a factor of 20. The flow from p towards q(θ) for a small
time (t = 0.01) are shown as the black dots. The resolution of the contours of KL divergence
is updated for this new scale.

given vector x ∈ Rn, let’s define

x⊥ = x− (x · u1)/||u1||2.

This is the components of x perpendicular to the first eigenvector. Working in the eigenbasis
of A, we have

A = diag(0, λ2, · · · , λn)

and
ui = ei.

Defining xi ≡ x · ui,

xTAx = λ2x
2
2 + · · ·+ λnx

2
n ≥ λ2(x2

2 + · · ·+ x2
n) = λ2||x⊥||2.

Therefore,

||x⊥||2 ≤
xTAx

λ2

.
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((a)) Flow to q(θ). θ = 0.4 is still the closest to p out
of the subset shown.
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((b)) The MPF objective function.

Fig. 1.A.4. Flow visualization for (a, b) = (0.2, 0.005)

If we take A = ΓTΓ, we can see that it does fulfill the above conditions. Specifically,
Aq = ΓTΓq = ΓT (0) = 0 so u1 = q and xTAx = xTΓTΓx = ||Γ||2 ≥ 0 so it has no negative
eigenvalues. Γ also has a unique zero eigenvalue due to the Perron-Frobenius theorem (proof
omitted) so all other eigenvalues are non-zero. Then, for p⊥ = p − (p · q)/||q||2, we have
the following:

||p⊥||2 ≤
pTΓTΓp

λ2

=

(
||Γp||√
λ2

)2

or

||p⊥|| ≤
||Γp||√
λ2

≤ |Γp|√
λ2

.

Note that λ2, being second singular value of Γ, very much depends on the choice of Γ.
However, if it can be bounded from below by some value, as |Γp| → 0 so will ||p⊥|| and thus
q→ p. This gives us the objective function

K∆ ≡ |Γp| =
∑
i∈S

|(Γp)i|.

This is the sum of the magnitude of initial change in probabilities at t = 0 and does take
into account both data and non-data states. Reassuringly, when q = p, Γq = 0 by definition
and K∆ = 0. This does not of course imply that K∆ is always consistent as K = 0 in this
case as well.
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Kf : Total flow of probability

Confusingly, in this section, “flow” refers to the flow between probability states (i.e. Γijpj
is the flow in probability from state j to state i) and not the flow in probability space as
discussed previously. As K∆ was a bound on p⊥, we can derive a bound on K∆:

K∆ =
∑
i∈S

∣∣∣∣∣∑
j∈S

Γijpj

∣∣∣∣∣ ≤∑
i∈S

∑
j∈S

|Γijpj|

=
∑
i∈S

(∑
j 6=i

|Γijpj|+ |Γiipi|

)

=
∑
i∈S

(∑
j 6=i

Γijpj +

∣∣∣∣∣−∑
j 6=i

Γjipi

∣∣∣∣∣
)

= 2
∑
i 6=j

Γijpj ≡ 2Kf .

In the first line, we used the triangle inequality. In the third line, the fact that Γij > 0 for
i 6= j and pj > 0 for all j was used. Lastly, we exchanged indices i, j to get the final result.
Kf is the total flow between all states and unlike K∆ will never be zero even when p = q.
However, it can be shown that Kf reaches a minimum when q = p:

Kf =
∑
i 6=j

gij

√
qi
qj
pj =

∑
i<j

gij

(√
qi
qj
pj +

√
qj
qi
pi

)
=
∑
i<j

gij
√
pipj

(√
qipj
qjpi

+

√
qjpi
qiqj

)
.

Since x + 1/x is minimized when x = 1, each term in the sum will be minimized when
qi/qj = pi/pj for all pairs of i, j. As both probabilities must be normalized, this happens
when p = q. As with K and K∆, this also does not imply consistency. Kf has the advantage
over K∆ of being linear so its gradient is easier to calculate. Also, in the limit where the
data set D is sparse, Kf approaches K as S \D → S in that limit.

Comparison of objective functions

Four objective functions, DKL, K,K∆, Kf were compared empirically for the same binomial
model with n = 10, θ0 = 0.2. The results are shown below:

We see that K∆ and Kf both do a much better job than K. In this example, the estimates
given by Kf and K were almost identical. 1000 random i.i.d. samples data distributions
were taken and a parameter estimate by each objective function was generated. The mean
and variance of the parameter estimates are in the table below:

In this case, K∆ and Kf seem to be consistent (DKL is known to be consistent and
saturates the Cramer-Rao bound for the variance). Kf however has a variance that’s smaller
than K∆ by an order of magnitude and is very close to that of DKL.
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((a)) The model distribution chosen to fit the data by
each objective function.

((b)) The various objective functions with its mini-
mum labeled by a dot

Fig. 1.A.5. Comparison of objective functions. Red: DKL, Yellow: K, Green: K∆, Blue:
Kf

Objective functions DKL K K∆ Kf

Mean: 〈θ̂〉 0.19973 0.02701 0.20248 0.19982

Variance: 〈(θ̂ − 〈θ̂〉)
2
〉 1.58× 10−4 8.17× 10−3 1.32× 10−3 1.62× 10−4

Table 1.A.1: Comparison of parameter estimation by each of the objective functions

f-divergence

The f-divergence from a distribution q to a distribution p is defined[16] as

Df (p||q) =
∑
i∈S

f̃

(
pi
qi

)
qi

for some convex function f̃ with f̃(1) = 0. For example, the KL-divergence is a type of a
f-divergence with

f̃(t) = t log t.

Through scaling and addition of the term t− 1, we can ensure that for some value of c1, c2.

f̃(t)→ f(t) = c1(f(t) + c2(x− 1))

will also satisfy f ′(1) = f ′′(1) = 1 while staying convex. We will assume that f is normal-
ized in such a way. Note that in the case of the KL-divergence, the f function is already
normalized.
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Second order expansion

We are interested in the case where

q(t) = eΓtp.

Specifically, the MPF objective function can be generalized to

Df (p||eΓεp).

Expanding to second order and remembering that f(1) = 0, f ′(1) = f ′′(1) = 1:

Df (p||eΓεp) = −ε
∑
i

(Γp)i +
1

2
ε2
∑
i

(
(Γp)2

i

pi
− (Γ2p)i

)
.

This is almost identical to the first and second order MPF objective functions with the KL-
divergence. However, to make the expansion more rigorous, we should write the f-divergence
as

Df (p||q) =
∑
i∈F

f

(
pi
qi

)
qi

where

F =

{
i ∈ S

∣∣∣∣f (piqi
)
qi 6= 0

}
.

Then,

Df (p||eΓεp) = ε
∑
i/∈F

(Γp)i +
1

2
ε2
∑
i∈F

(
(Γp)2

i

pi
− (Γ2p)i

)
.

Two types of f-MPF objective functions

To see what F can be note that since f is convex, it must grow faster than any linear
function. Thus, as qi → 0,

f

(
pi
qi

)
qi →∞.

It follows that

f

(
pi
qi

)
qi = 0,

we must have

f

(
pi
qi

)
= 0.

We already have f(1) = 0. As f is convex, it has, at most, one other root. If the non-trivial
root exists, let’s call it α 6= 1 (i.e. f(α) = 0). In our case, however, we are dealing with
qi = pi + ε(Γp)i so pi/qi = 1 + δ is infinitesimally close to 1. This means pi/qi 6= 1, α. The
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only way that f(pi/qi) can be exactly zero is if pi = 0 and α = 0.

For our consideration, there are two types of f -divergences. One for which α = 0 and
F = D = {i ∈ S|pi 6= 0} and the other where α 6= 0 or that f only has the trivial root at
t = 1. Since fKL(t) = t log t has α = 0, it of the first type.

The two corresponding MPF objective function are

D
(1)
f (p||eΓεp) = ε

∑
i/∈D

(Γp)i +
1

2
ε2
∑
i∈D

(
(Γp)2

i

pi
− (Γ2p)i

)
and

D
(2)
f (p||eΓεp) =

1

2
ε2
∑
i∈S

(
(Γp)2

i

pi
− (Γ2p)i

)
.

It turns out that using f-divergences does not generalize MPF by much. This is because
f-divergences all locally look like the Fisher information matrix.

Comments and future work

In practice when the space of possible distributions is very large, we will always be dealing
with sparse data. In that limit, as mentioned previously, there is very difference between Kf

and K. However, the point of this write-up is to illustrate that the premise upon which K
is derived is incorrect in a few trivial cases and potentially others as well.

As shown in Sec. 1.A, the local landscape of DKL very close to p does not accurate
describe the situation further away. It would be interesting to see if there’s a way of fixing
this through information geometry. Also, empirically, MPF does work and quite well. There
needs to be a better explanation for why it does. If it’s simply because K and Kf are
identical for sparse data, then why does Kf work? Or is it because in more realistic settings,
and higher dimensions, DKL is much more likely to be “well-behaved”? If that’s the case, is
there a way of showing this?

1.B Convolution Trick

Here, we describe a fast method for calculating local higher order interactions of the form

E = −
∑
α

Kα

∏
(i,j)∈Nα

Xi,j.

To be concrete, consider a set of spins

x =

 +1 −1 +1
+1 +1 −1
−1 +1 −1
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and a local interaction involving three spins in the shape of Γ. We can iterate over all possible
groups to get the higher order correlation: +1 -1 +1

+1 +1 −1
−1 −1 −1

→ (
−1 ∗
∗∗ ∗

)
... +1 −1 +1

+1 +1 -1

−1 -1 −1

→ (
−1 −1
−1 +1

)
≡ C

The energy can then be written as E =
∑
KijCij. However, rather than looping over all

possible interactions explicity in calculating C, we can define a matrix M that describes the
interaction:

M =

(
1 1
1 0

)
.

We can use a cross-correlation to calculate the sum of terms in interacting sites:

S = X ?M.

We are, of course, interested in the product. However, it’s easy to see that with only spins
of value ±1, the product is (−1)N− where N− is the number of spin −1. The total number
of spins is the number of 1’s in M.∑

Mij = N = N− +N+.

The sum of the values is
Sij = N+ −N−.

With those two relations, we get

N− =
1

2
(N − Sij).

This way, Cij = (−1)
1
2

(N−Sij). The energy is easily calculated as

E = −
∑

KijCij ≡ −
∑

KαCα

where α = (i, j). We are, however, interested in the difference in energy due to a bit flip.
A bit flip will result in flipping the values of all relavent Cα. For example, consider flipping
the central bit of X:  +1 −1 +1

+1 +1 −1
−1 +1 −1

→
 +1 −1 +1

+1 −1 −1
−1 +1 −1

 .
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The patterns of interactions that this affects are the following three: +1 −1 +1

+1 -1 -1

−1 -1 −1

→ (
−1 +1

+1 -1

)
 +1 −1 +1

+1 -1 −1

-1 −1 −1

→ (
−1 +1

+1 −1

)
 +1 -1 +1

+1 -1 −1
−1 −1 −1

→ (
−1 +1
+1 −1

)
.

The corresponding three elements of C,(
−1 +1

+1 -1

)
,

is in the shape of the interaction matrix M but inverted. Since these elements are taken to
be negative of their original value, the total change in energy is

∆E = −2 · (C ∗M)
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Chapter 2

Design of optical neural networks
with component imprecisions

For the benefit of designing scalable, fault resistant optical neural networks (ONNs), we
investigate the effects architectural designs have on the ONNs’ robustness to imprecise com-
ponents. We train two ONNs – one with a more tunable design (GridNet) and one with
better fault tolerance (FFTNet) – to classify handwritten digits. When simulated with-
out any imperfections, GridNet yields a better accuracy (∼ 98%) than FFTNet (∼ 95%).
However, under a small amount of error in their photonic components, the more fault toler-
ant FFTNet overtakes GridNet. We further provide thorough quantitative and qualitative
analyses of ONNs’ sensitivity to varying levels and types of imprecisions. Our results offer
guidelines for the principled design of fault-tolerant ONNs as well as a foundation for further
research.

2.1 Introduction

Motivated by the increasing capability of artificial neural networks in solving a large class of
problems, optical neural networks (ONNs) have been suggested as a low power, low latency
alternative to digitally implemented neural networks. A diverse set of designs have been
proposed, including Hopfield networks with LED arrays [20], optoelectronic implementa-
tion of reservoir computing[58, 1], spiking recurrent networks with microring resonators[77,
76], convolutional networks through diffractive optics[10], and fully connected, feedforward
networks using Mach-Zehnder interferometers (MZIs) [69].

We will focus on the last class of neural networks, which consist of alternating lay-
ers of modules performing linear operations and element-wise nonlinearities[26]. The N -
dimensional complex-valued inputs to this network are represented as coherent optical signals
onN single-mode waveguides. Recent research into configurable linear optical networks[carolan2015universal,
61, 12, 5, 27] enables the efficient implementation of linear operations with photonic devices.
These linear multipliers, layered with optical nonlinearities form the basis of the physical
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design of ONNs. In Sec. 2.2, we provide a detailed description of two specific architectures
– GridNet and FFTNet – both built from MZIs.

While linear operations are made much more efficient with ONNs in both power and
speed, a major challenge to the utility of ONNs lies in their susceptibility to fabrication
errors and other types of imprecisions in their photonic components. Therefore, realistic
considerations of ONNs require that these imprecisions be taken into account. Previous
analyses of the effects of fabrication errors on photonic networks were in the context of post-
fabrication optimization of unitary networks [56, 65, 8]. Our study differs in three main
areas.

First, In the previous work, unitary optical networks were optimized to simulate randomly
sampled unitary matrices. We, instead, train optical neural networks to classify structured
data. ONNs, in addition to unitary optical multipliers, include nonlinearities, which add to
its complexity.

Second, rather than optimization towards a specific matrix, the linear operations learned
for the classification task is not, a priori, known. As such, our primary figure of merit is the
classification accuracy instead of the fidelity between the target unitary matrix and the one
learned.

Lastly, the aforementioned studies mainly focused on the optimization of the networks
after fabrication. The imprecisions introduced generally reduced the expressivity of the
network – how well the network can represent arbitrary transformations. Evaluation of
this reduction in tunability and mitigating strategies were provided. However, such post-
fabrication optimization requires the characterization of every MZI, the number of which
scales with the dimension (N) of the network as N2. Protocols for self configuration of
imprecise photonic networks have been demonstrated [46, 85]. While measurement of MZIs
were not necessary in such protocols, each MZI needed to be configured progressively and
sequentially. Thus, the same N2 scaling problem remained. Furthermore, if multiple ONN
devices are fabricated, each device, with unique imperfections, has to be optimized sepa-
rately. The total computational power required, therefore, scales with the number of devices
produced.

In contrast, we consider the effects of imprecisions introduced after software training of
ONNs (Code 1, Ref. [19]), details of which we present in Sec. 2.3. This pre-fabrication
training is more scalable, both in network size and fabrication volume. An ideal ONN (i.e.,
one with no imprecisions) is trained in software only once and the parameters are transferred
to multiple fabricated instances of the network with imprecise components. No subsequent
characterization or tuning of devices are necessary. In addition to the benefit of better
scalability, fabrication of static MZIs can be made more precise and cost effective compared
to re-configurable ones.

We evaluate the degradation of ONNs from their ideal performances with increasing
imprecision. To understand how such effects can be minimized, we investigate the role
that the architectural designs have on ONNs’ sensitivity to imprecisions. The results are
presented in Sec. 2.4. Specifically, we study the performance of two ONNs in handwritten
digit classification. GridNet and FFTNet are compared in their robustness to imprecisions.
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We found that GridNet achieved a higher accuracy (∼ 98%) when simulated with ideal
components compared to FFTNet (∼ 95%). However, FFTNet is much more robust to
imprecisions. After the introduction of realistic levels of error, the performance of GridNet
quickly degrades to below that of FFTNet. We also show, in detail, the effect that specific
levels of noise has on both networks.

In Sec. 2.4, we demonstrate that this is due to more than the shallow depth of FFT-
Net and that FFT-like architectures is more robust to error when compared to Grid-like
architectures of the same depth.

In Sec. 2.4, we investigate the effects localized imprecisions have on the network by
constraining the imprecisions to specific groups of MZIs. We demonstrate that the net-
work’s sensitivity to imprecisions is dependent on algorithmic choices as well as its physical
architecture.

With a growing interest in optical neural networks, a thorough analysis of the relationship
between ONNs’ architecture and its robustness to imprecisions and errors is necessary. From
the results that follow, in this article, we hope to provide a reference and foundation for the
informed design of scalable, error resistant ONNs.

2.2 Physical design of optical neural networks
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((a)) GridNet linear layer

FFTUnitary(8)

FFTUnitary(4)Diagonal(4) Amp

UΣV† β

((b)) FFTNet linear layer

Fig. 2.2.1. a) A schematic of a universal 8 × 4 optical linear multiplier with two unitary
multipliers (red) consisting of MZIs in a grid-like layout and a diagonal layer (yellow). The
MZIs of GridUnitary multipliers are indexed according to their layer depth (l) and dimension
(d). Symbols at the top represent the mathematical operations performed by the various
modules. Inset: A MZI with two 50:50 beamsplitters and two tunable phaseshifters b) An
FFT-like, non-universal multiplier with FFTUnitary multipliers (blue).

The ONN consists of multiple layers of programmable optical linear multipliers with
intervening optical nonlinearities (Fig. 2.3.1). The linear multipliers are implemented with
two unitary multipliers and a diagonal layer in the manner of a singular-value decomposition
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(SVD). These are, in turn, comprised of arrays of configurable MZIs, which each consist of
two phaseshifters and two beamsplitters (Fig. 2.2.1(a)).

Complex-valued N−dimensional input vectors are encoded as coherent signals on N
waveguides. Unitary mixing between the channels is effected by MZIs and forms the basis
of computation for ONNs. A single MZI consists of two beamsplitters and two phaseshifters
(PS) (Fig. 2.2.1(a) inset). While the fixed 50:50 beamsplitters are not configurable, the two
phaseshifters, parameterized by θ and φ, are to be learned during training. Each MZI is
characterized by the following transfer matrix (see App. 2.A for details):

UMZ(θ, φ) = UBSUPS(θ)UBSUPS(φ) = ieiθ/2
(
eiφ sin θ

2
cos θ

2

eiφ cos θ
2
− sin θ

2

)
. (2.1)

Early work has shown that universal optical unitary multipliers can be built with a
triangular mesh of MZIs[61]. These multipliers enabled the implementation of arbitrary
unitary operations and were incorporated into the ONN design by Shen et al. [69]. Its
asymmetry prompted the development of a symmetric grid-like network with more balanced
loss[12]. By relaxing the requirement on universality, a more compact design, inspired by
the Cooley-Tukey FFT algorithm [14], has been proposed[5]. It can be shown that FFT
transforms, and therefore convolutions, can be achieved with specific phase configurations
(see appendix 2.H). We allow the phase configurations to be learned for implementation of
a greater class of transformations.

In this section, we focus on the last two designs, referring to them as GridUnitary (Fig.
2.2.1(a)) and FFTUnitary (Fig. 2.2.1(b)), respectively. GridUnitary can implement unitary
matrices directly by setting the phaseshifters using an algorithm by Clements et al. [12].
Despite being non-universal and lacking a decomposition algorithm, FFTUnitary can be
used to reduce the depth of the unitary multipliers from N to log2(N). Reducing the number
of MZIs leads to lower overall noise and loss in the network. However, due to the FFT-like
design, waveguide crossings are necessary. To overcome this challenge, low-loss crossings[43]
or 3D layered waveguides[25, 57] could be utilized.

MZIs can also be used to attenuate each channel separately without mixing. This way, a
diagonal multiplier can be built. Because signals can only be attenuated by MZIs, subsequent
global optical amplification[13] is needed to emulate arbitrary diagonal matrices. Through
SVD, a universal linear multiplier can be created from two unitary multipliers and a diagonal
multiplier (Fig. 2.2.1(a)). Formally, a linear transformation represented by matrix M can
be decomposed as

M = β · UΣV †. (2.2)

Here both U and V † are unitary transfer matrices of GridUnitary multipliers while Σ rep-
resents a diagonal layer with eigenvalues no greater than one. β is a compensating scaling
factor.

Along with linear multipliers, nonlinear layers are required for artificial neural networks.
In fact, the presence of nonlinearties sets the study of ONNs apart from earlier research in
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linear photonic networks [47]. One possible implementation is by saturable absorbers such
as monolayer graphene [4]. This is has the advantage of being easily approximated with a
Softplus function (see Sec. 2.3 for details on implementation). However, it has been demon-
strated that Softplus underperforms, in many regards, when compared to rectified linear
units (ReLU)[48]. Indeed, a complex extension of ReLU, ModReLU, has been proposed
[2]. While it is physically unrealistic to implement ModReLU, the nonoptimality of Soft-
plus functions still motivates the exploration of other optical nonlinearities, such as optical
bistability in microring resonators[86], and two-photon absorption [35, 3] as alternatives.

2.3 Neural network architecture and software

implementation
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Fig. 2.3.1. Network design used for the MNIST classification task. GridNet used universal
unitary multipliers while FFTNet used FFT-Unitary multipliers. See Fig. 2.2.1 for details
of physical implementation of the three linear layers.

We considered a standard deep learning task of MNIST handwritten digit classification
[41]. Fully connected feedforward networks with two hidden layers of 256 complex-valued
neurons each were implemented with GridNet and FFTNet architectures (Fig. 2.3.1) and
simulated in PyTorch [59]. The 282 = 784 dimensional real-valued input was converted into
392 = 784/2 dimensional complex-valued vectors by taking the top and bottom half of the
image as the real and imaginary part. This was done to ensure the data is distributed evenly
throughout the complex plane rather than just along the real number line.

Each network consists of linear multipliers followed by nonlinearities. The linear layers
of GridNet and FFTNet were described in the previous section and illustrated in Fig. 2.2.1.
The response curve of the saturable absorption is approximated by the Softplus function[18]
(App. 2.C), a commonly used nonlinearity available in most deep learning libraries such as
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PyTorch. The nonlinearity is applied to the modulus of the complex numbers. A modulus
squared nonlinearity modeling an intensity measurement is then applied. The final SoftMax
layer allows the (now real) output to be interpreted as a probability distribution. A cross-
entropy[15] loss function is used to evaluate the output distribution against the ground truth.

An efficient implementation of GridNet requires representing matrix-vector multiplica-
tions as element-wise vector multiplications [36]. Nevertheless, training the phaseshifters
directly was still time consuming. Instead, a complex-valued neural network [80] was first
trained. An SVD (Eq. (2.2)) was then performed on each complex matrix. Finally, phase-
shifters were set to produce the unitary (U, V †) and diagonal (Σ) multipliers through a
decomposition scheme by Clements et al. [12].

However, note that SVD is ambiguous up to permutations (Π) of the singular values and
the columns of U and V .

UΣV † = (UΠ−1)(ΠΣΠ−1)(ΠV †). (2.3)

Conventionally, the ambiguity is resolved through ordering the singular values from largest
to smallest. In Sec. 2.4 we show that randomizing the singular values increases the er-
ror tolerance of GridNet. FFTNet is trained directly and its singular values are naturally
unordered. For a fair comparison, we randomly permute the singular values of GridNet.

After 10 training epochs with standard stochastic gradient descent[62], classification ac-
curacies of 97.8% (GridNet) and 94.8% (FFTNet) were achieved. Better accuracies can be
achieved through convolutional layers [71], Dropout regularization[75], better training meth-
ods, etc. However, we omitted these in order to focus purely on the effects of architecture.

The networks were trained assuming ideal components represented with double-precision
floating point values. Under realistic conditions, due to imprecision in fabrication, calibra-
tion, etc., the realizable accuracy could be much lower. During inference, we modeled these
imprecisions by adding independent zero-mean Gaussian noise of standard deviation σPS
and σBS to the phases (θ, φ) of the phaseshifters and the transmittance T of the beamsplit-
ters, respectively. Reasonable values for such imprecisions can be taken to be approximately
σPS ≈ 0.01rad and σBS ≈ 1% = 0.01 [22, 23]. Note that the dynamical variation due to
laser phase noise can be modeled by σPS as well. However, we show in App. 2.B that typical
values would be well below 0.01 rad.

2.4 Results

Degradation of network accuracy

To investigate the degradation of the networks due to imprecisions, we started by simulating
100 instances of imprecise networks with σBS = 1% and σPS = 0.01rad. Identical inputs of
a digit “4” (Fig. 2.4.1(a) inset) are fed through each network. The mean and spread of the
output of the ensemble is plotted and compared against the output from the ideal network
(Fig. 2.4.1).
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Fig. 2.4.1. Visualizing the degradation of ONN outputs, FFTNet is seen to be much more
robust than GridNet. Identical input is fed through GridNet (a, b) and FFTNet (c, d),
simulated with ideal components (a, c) and imprecise components (b, d) with σBS = 0.01
and σPS = 0.01rad. Imprecise networks are simulated 100 times and their mean output is
represented by bar plots. Error bars represent the 20th to 80th percentile range.

The degradation of classification output is significant for GridNet. Without imprecisions
in the photonic components, the digit is correctly classified with near 100% confidence (Fig.
2.4.1(a)). When imprecisions are simulated, we see a large decrease in classification confi-
dence (Fig. 2.4.1(b)). In particular, the image is often misclassified when the prediction
probability for class “9” is greater than that for class “4”. Repeating these experiments on
FFTNet demonstrated that they were much more resistant to imprecisions (Fig. 2.4.1(c),
2.4.1(d)). In Appendix 2.D, we show confusion matrices of both networks with increasing
error to further support this conclusion.

Evaluating the two networks on overall classification accuracy confirms the superior ro-
bustness to imprecisions of FFTNet. GridNet and FFTNet were tested at levels of impreci-
sions with of imprecisions with σPS/rad and σBS ranging from 0 to 0.02 with a step size of
0.001. At each level of imprecision, 20, instances of each network were created and tested.
The mean accuracies are plotted in Fig. 2.4.2(a), 2.4.2(b). A direct comparison between the
two networks along the diagonal (i.e., σPS = σBS cut line, taking 1% = 0.01 rad) is shown
in Fig. 2.4.2(c).

Starting at roughly 98% with ideal components, the accuracy of GridNet rapidly drops
with increasing σPS and σBS. By comparison, very little change in accuracy is seen for FFT-
Net despite starting with a lower ideal accuracy. Also of note are the qualitatively different
levels of sensitivity of the different components to imprecision. In particular, FFTNet is
much more resistant to phaseshifter error compared to beamsplitter error.

The experiments described in this section confirm the significant effect component impre-
cisions have on the overall performance of ONNs, as well as the importance of architecture
in determining the network’s robustness of the network to these imprecisions. Despite hav-
ing a better classification accuracy in the absence of imprecisions, GridNet is surpassed by
FFTNet when a small amount of error (σPS = 0.01, σBS = 1%rad) is present. In Appendix
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Fig. 2.4.2. The decrease in classification accuracy is visualized for GridNet and FFTNet.
(a,b) The two networks were tested with simulated noise of various levels for 20 runs. The
mean accuracy is plotted as a function of σPS and σBS. Note the difference in color map
ranges between the two plots. (c) The accuracies of GridNet and FFTNet are compared
along the σPS = σBS cutline.

2.E, we demonstrate that FFTNet is also more robust to quantization error that GridNet.
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Fig. 2.4.3. The architecture of a) StackedFFT and b) TruncGrid shown with FFTUnitary
and GridUnitary from which they were derived. For clarity, the dimension, here, is N = 24 =
16 so FFTUnitary was stacked four times and GridUnitary was truncated at the fourth layer.
In the experiments described in this section, the dimension was taken to be N = 28 = 256.

Stacked FFTUnitary and truncated GridUnitary

One obvious reason why FFTNet would be more robust than GridNet is its much lower
number of MZI layers. Their respective, constituent unitary multipliers, FFTUnitary and
GridUnitary contains log2(N) and N layers respectively. For N = 28 = 256, GridUnitary is
32 times deeper than FFTUnitary which contains only 8 layers.

To demonstrate that FFTUnitary is more robust due architectural reasons beyond its
shallow depth, in this section, we introduce two unitary multipliers – StackedFFT (Fig.
2.4.3(a)) and TruncGrid (Fig. 2.4.3(b)). StackedFFT consists of FFTUnitary multipliers
stacked end-to-end 32 times and TruncGrid is the GridUnitary truncated after 8 layers of
MZIs. This way, FFTUnitary and TruncGrid have the same depth as do GridUnitary and
StackedFFT.

Unitary multipliers by themselves are not ONNs and cannot be trained for classification
tasks. Instead, after introducing imprecisions to the each multiplier, we evaluated the fidelity
F (U0, U) between the original, error-free transfer matrix U0 and the imprecise transfer matrix
U . The fidelity, a measure of “closeness” between two unitary matrices, is defined as[81]

F (U0, U) =

∣∣∣∣Tr(U †U0)

N

∣∣∣∣2 . (2.4)

Ranging from 0 to 1, F (U0, U) = 1 only when U = U0. Using this metric of fidelity, we show
that StackedFFT is more robust to error than GridUnitary (Fig. 2.4.4(a)) and TruncGrid
more than FFTUnitary (Fig. 2.4.4(b)). Both comparisons are between multipliers with the
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Fig. 2.4.4. With the same layer depth, multipliers with FFT-like architectures are shown to
be more robust. The fidelity between the error-free and imprecise transfer matrices is plotted
as a function of increasing error. Two sets of comparisons between unitary multipliers of the
same depth are made. a) Both StackedFFT and GridUnitary have N = 256 layers of MZIs.
b) TruncGrid and FFTNet have logN = 8 layers.

same number of MZI layers. Yet, the FFT-like architectures are still more robust to their
grid-like counterparts.

One possible explanation could be the better mixing facilitated by FFTUnitary. GridUni-
tary and thus TruncGrid, at each MZI layer, only mixes neighboring waveguides. After P
layers, each waveguide is connected to, at most, to its 2P nearest neighbors. In comparison,
after P layers, FFTUnitary connects N = 2P .

Here, we have compared the robustness of different unitary multipliers in isolation. We
stress that the overall robustness of neural networks is a much more complex and involved
problem. A rough understanding can be formulated as follows. A trained neural network
defines a decision boundary throughout the input space. Introduction of errors perturbs the
decision boundary which can lead to misclassification. To reduce this effect, we can make the
decision boundary of ONNs more robust to errors. However, it is also important to consider
the robustness of misclassification due to perturbations of decision boundaries. Indeed, it
has been shown that robustness of neural networks are dependent on the geometry of the
boundary [21].

A complete analysis of the robustness of neural networks to various forms of perturbations
is outside the scope of this paper. Nonetheless, it is important to understand the dependence
of ONNs on both architectural and algorithmic design.
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Fig. 2.4.5. Change in accuracy due to localized imprecision in layer 2 of GridNet with
randomized singular values. A large amount of imprecision (σPS = 0.1rad) is introduced to
8 × 8 blocks of MZIs in an otherwise error-free GridNet. The resulting change in accuracy
of the network is plotted as a function of the position of the MZI block in GridUnitary
multipliers V †2 and U2 (coordinates defined as in Fig. 2.2.1(a)). The transmissivity of each
waveguide through the diagonal layer Σ2 is also plotted (center panel).

Localized imprecisions

To better understand the degradation of network accuracy, we mapped out the sensitivity of
GridNet to specific groups of MZIs. A relatively large amount of imprecision (σPS = 0.1rad)
was introduced to 8 × 8 blocks of MZIs in layer 2 (Fig. 2.3.1) of an otherwise error-free
GridNet. The resulting change in classification accuracy is plotted as a function of the
position of the MZI block (Fig. 2.4.5). We see no strong correlation between the change in
accuracy and the spatial location of the introduced error. In fact, error in many locations
led to small increases in accuracy, suggesting that much of the effect is due to chance.

This result seems to contradict previous studies on the spatial tolerance of MZIs in a
GridUnitary multiplier [56, 65, 8]. It was discovered that the central MZIs of the multiplier
had a much lower tolerance than those near the edges. When learning randomly sampled
unitary matrices, the central MZIs needed to have phase shift values very close to 0 (π,
following the convention used in this paper). This would only be achievable with MZIs with
extremely high extinction ratios and thus low fabrication error.

Empirically, this distribution of phases was observed in GridUnitary multipliers of trained
ONNs (See app. 2.F). However, the idea of tolerance of a MZI to beamsplitter fabrication
imprecision, while related, is not the same as the network sensitivity to localized impreci-
sions. To elaborate, tolerance is implicitly defined, in references[56, 65, 8], as roughly the
allowable beamsplitter imperfection (deviation from 50:50) that still permits post-fabrication
optimization of phaseshifter towards arbitrary unitary matrices. In our pre-fabrication opti-
mization approach, we take sensitivity to be the deviation from ideal classification accuracy
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when imprecision is introduced to the MZI with no further reconfiguration. See App. 2.G
for this difference further illustrated by experiments with another architecture.

Fig. 2.4.6. Effects of localized imprecision in layer 2 of GridNet with ordered singular
values. Similar to Fig. 2.4.5, except GridNet has its singular values ordered. Therefore, the
transmissivity is also ordered (center panel).

Recall that the singular values Σ of the GridNet’s linear layers could be permuted together
with columns and rows of U and V † respectively without changing the final transfer matrix
(Eq. (2.3)). The singular values were randomized to provide a fair comparison with FFTNet.
We then performed the same experiment on GridNet where the singular values of each layer
were not randomized but ordered from largest to smallest. Therefore, the transmissivity
T = | sin(θ/2)|2 of the diagonal multiplier Σ is also ordered (Fig. 2.4.6). In this case,
there is a significant, visible pattern because most of the signal travels through the top few
waveguides of Σ2 due to the ordering of transmissivities. Only MZIs connected to those
waveguides have a strong effect on the network. In fact, the network is especially sensitive
to imprecisions in MZIs closest to this bottleneck (Fig. 2.4.6, top-right of V †2 and top-left of
U2). It is important to note that this bottleneck only exist due to the locality of connections
in GridNet where only neighboring waveguides are connected by MZIs. In FFTNet, due to
crossing waveguides, no such locality exist.

In addition to, and likely due to the spatial non-uniformity in error sensitivity, GridNet
with ordered singular values is more susceptible to uniform imprecisions (Fig. 2.4.7). The
same GridNet architecture, could be made more resistant by shuffling its singular values.
This difference between two identical architectures implementing identical linear and non-
linear transformations demonstrates that the resistance to error in ONNs is effected by more
than architecture.
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Fig. 2.4.7. The degradation of accuracies with increasing σPS = σBS compared between
two GridNets one with ordered and another with randomized (but fixed) singular values.

2.5 Conclusion

Having argued that pre-fabrication, software optimization of ONNs is much more scalable
than post-fabrication, on-chip optimization, we compared two types of networks–GridNet
and FFTNet in their robustness to error. These two networks were selected to showcase
the trade-off between expressivity and robustness. We demonstrated in Sec. 2.4 that the
output of GridNet is much more sensitive to errors than FFTNet. We have illustrated the
robustness of FFTNet by a providing a thorough evaluation of both networks operating with
imprecisions ranging between 0 ≤ σBS, σPS ≤ 0.02. With ideal accuracies of 97.8% and 94.8%
for GridNet and FFTNet respectively, GridNet accuracy dropped rapidly to below 50% while
FFTNet maintained near constant performance. Under conservative assumptions of errors
associated with the beamsplitter (σBS > 1%) and phaseshifter (σPS > 0.01 rad), a more
robust network (FFTNet) can be favorable over one with greater expressivity (GridNet).

We then demonstrate, in Sec. 2.4, through modified unitary multipliers, TruncGrid and
StackedFFT, that controlling for MZI layer depth, FFT-like designs are inherently more
robust than grid-like ones.

To gain a better understanding of GridNet’s sensitivity to imprecision, in Sec. 2.4, we
probed the response of the network to localized imprecisions by introducing error to small
groups of MZIs at various locations. The sensitivity to imprecisions was found to be less
affected by the MZIs’ physical position within the grid and more so by the flow of the optical
signal. We then demonstrated that beyond architectural designs, small procedural changes
to the configuration of an ONN, such as shuffling the singular values, can change affect the
its robustness.

Our results, presented in this paper, provide clear guidelines for the architectural design
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of efficient, fault-resistant ONNs. In looking forward, it would be important to investigate
algorithmic and training strategies as well. A central problem in deep learning is to design
neural networks complex enough to model the data while being regularized to prevent over-
fitting of noise in the training set[26]. To this end, a wide variety of regularization techniques
such as Dropout[75], Dropconnect[82], data augmentation, etc. have been developed. This
problem parallels the trade-off between an ONN’s expressivity and its robustness to impre-
cisions presented here. Indeed, an important conclusion in Sec. 2.4 is that in addition to
architecture, even minor changes in the configuration of ONNs also have a great effect on
the network’s robustness to faulty components.

The robustness of neural networks to perturbations [21] is a well studied and open problem
that is outside of the scope of this article on architectural design. Nevertheless, a complete
analysis of ONNs with imprecise components requires an understanding of robustness due to
architectural design as well as due to software training, possibly under a unifying framework.
A natural direction for further exploration is to consider analogies to regularization in the
context of imprecise photonic components and to focus on the development of algorithms
and training strategies for error-resistant optical neural networks.
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Appendix

2.A MZI transfer matrix

Because MZIs are comprised of beampslitters and phaseshifters, we state their respective
transfer matrix first.

UBS(r) =

(
r it
it r

)
(2.5)

where t ≡
√

1− r2 and

UPS(θ) =

(
eiθ 0
0 1

)
. (2.6)

With the construction of PS-BS-PS-BS (Fig. 2.2.1(a), inset), the MZI transfer matrix is the
following matrix product:

UMZI(θ, φ; r, r′) = UBS(r)UPS(θ)UBS(r′)UPS(φ) (2.7)

=

(
r it
it r

)(
eiθ 0
0 1

)(
r′ it′

it′ r′

)(
eiφ 0
0 1

)
(2.8)

=

(
eiφ
(
eiθrr′ − tt′

)
i
(
tρ+ eiθrt′

)
ieiφ

(
eiθtr′ + rt′

)
rρ− eiθtt′

)
(2.9)

Assuming that the beamsplitter ratios are 50:50, we can take r = t = 1/
√

2 so that

UBS ≡ UBS (π/2) =
1√
2

(
1 i
i 1

)
(2.10)

and therefore,

UMZI(θ, φ) = ieiθ/2
(
eiφ sin θ

2
cos θ

2

eiφ cos θ
2
− sin θ

2

)
(2.11)

In our convention, the transmission and reflection coefficient is

T = | cos θ/2|2 and R = | sin θ/2|2 (2.12)
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respectively. In particular, the MZI is in the bar state (T = 0) when θ = π and in the cross
state (T = 1) when θ = 0.

However, in other conventions, the beamsplitter is often taken to be the Hardamard gate.

H =
1√
2

(
1 1
1 −1

)
. (2.13)

We note however, that

UBS =

(
1 0
0 i

)
H

(
1 0
0 i

)
= UPS(−π/2)HUPS(−π/2) (2.14)

up to a global phase. We then can express the MZI transfer matrix as

UMZ(θ, φ) = UPS(−π/2)HUPS(θ − π)HUPS(φ− π/2). (2.15)

Note in this convention the internal phase shift is now θ + π and thus the bar and cross
states are now at θ = 0 and θ = π respectively.

2.B Laser phase noise

The variance in phase for typical lasers can be modeled as[38]

σφ(τ)2 = 2π · δf · τ. (2.16)

Here, τ is the time of integration and δf the linewidth of the laser. For an order or magnitude
calculation, we ignore the refractive index and take τ = L/c where L is the distance between
two subsequent phaseshifters on an MZI. Again, as an order of magnitude estimate, we take
L = 100µm = 10−4m and thus τ ≈ 3 × 10−13. We wish to solve for the linewidth required
for σφ = 0.01rad:

σ2
φ = 10−4 = 2π · δf · τ (2.17)

≈ 6 · 3× 10−13sδf (2.18)

δf ≈ 5× 107Hz (2.19)

= 50MHz. (2.20)

A linewidth of 50 MHz is easily achieved by modern lasers. For example, Bragg reflector
lasers have been shown to achieve a linewidth of 300 kHz [40]. Thus, the contribution to
phase noise from the laser is roughly two orders of magnitude smaller than that from MZIs.
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Fig. 2.C.1. The saturable absorption response curve compared to the corresponding Soft-
plus approximation with various values of T .

2.C Approximating saturable absorption

Saturable absorption can be modeled by the relation[67]

u0 =
1

2

log(T/T0)

1− T
(2.21)

where T = u/u0 and u = στsI and u0 = στsI0. I0, I are the incidental and transmitted
intensities, respectively. The above equation can be solved to be

u =
1

2
W (2T0u0e

2u0) ≡ f(u0) (2.22)

Where W is the product log function or Lambert W function. However, since W is not readily
available in most deep learning libraries and difficult to implement, we wish to approximate
the above by the shifted and biased Softplus non-linearity of the form

σ(u) = β−1 log

(
1 + eβ(u−u0)

1 + e−βu0

)
. (2.23)
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The bias of −β−1 log(1 + e−βu0) was chosen to ensure that σ(0) = f(0) = 0. We now
choose β and u0 to ensure that

1. σ′(0) = f ′(0) = T0,

2. limu→∞ σ(u)− u = limu→∞ f(u)− u = 1
2

log T0.

The derivative of σ(u) is easily found to be

σ′(0) =
e−βu0

1 + e−βu0
(2.24)

= (1 + eβu0)−1. (2.25)

Requiring that it equals to f ′(0) = T0 allows us to solve for

u0 = β−1 log
(
T−1

0 − 1
)
. (2.26)

Next, in the large u limit, the biased Softplus converges to

σ(u)→ (u− u0)− β−1 log(1 + e−βu0). (2.27)

Solving for equality with f(u)→ u+ 1
2

log T0 gives

u0 + β−1 log(1 + e−βu0) = −1

2
log T0 (2.28)

βu0 + log

(
1 +

1

T−1
0 − 1

)
= −1

2
β log T0 (2.29)

log(T0) = −1

2
β log T0 (2.30)

β = 2. (2.31)

Going back to Eq. (2.26), we obtain

u0 =
1

2
log(T−1

0 − 1). (2.32)

Fig. 2.C.1 plots the saturable absorption response curve compared to the Softplus approxi-
mation derived above.

2.D Confusion matrices

To investigate the degradation of the networks due to imprecisions, we produce confusion
matrices for both networks in the ideal case, with no imprecisions, and with different levels
of error. σBS = 1%, σPS = 0.01rad and σBS = 2%, σPS = 0.02rad (Fig. 2.D.1).

The imprecisions were simulated 10 times and the mean of the output was used in gen-
erating the confusion matrices.
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((a)) Ideal GridNet ((b)) GridNet :
σ = 0.01

((c)) GridNet : σ = 0.02

((d)) Ideal FFTNet((e)) FFTNet :
σ = 0.01

((f)) FFTNet : σ = 0.02

Fig. 2.D.1. The degradation of ONN outputs visualized through confusion matrices. Each
confusion matrix shows how often each target class (row) is predicted as each of the ten pos-
sible classs (column). Both networks, GridNet (a, b, c) and FFTNet (d, e, f) are evaluated.
First in the ideal case (a, d) then, with increasing errors (b, e and c ,f). Note the logarithmic
scaling.

2.E Quantization error

In this section, we explore the quantization error introduced by thermo-optic phaseshifters.
Assuming a linear relationship between refractive index and temperature and quadratic
relationship between temperature and voltage, we have

θ ∝ V 2

θ = 2π

(
V

V2π

)2

≡ 2πu2√
θ

2π
= u.

We have taken V2π to be the voltage required for a 2π phaseshift and defined the dimensionless
voltage u = V/V2π. Assuming that the voltage can be set with B-bit precisions, u must take
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Fig. 2.E.1. The effects of quantization is shown for both GridNet and FFTNet. 10 instances
of GridNet (blue) and FFTNet (red) were trained then quantized to varying levels. The mean
classification accuracy at each level is shown by bar plots. The 20-80% quantiles are shown
with error bars. The dotted horizontal line denotes the full precision accuracy.

on values of

u ∈ {2−Bi : i = 0, . . . , 2B − 1}.

The quantization procedure then takes

θ → θ̃ ∈
{

2π

22B
i2 : i = 0, . . . , 2B − 1

}
.

To evaluate the sensitivity to quantization, we quantized GridNet and FFTNet with
varying levels of precision. Since quantization is deterministic, we trained 10 instances of
both networks with randomized initialization and thus different configuration but similar
ideal accuracies (∼ 95% and ∼ 98%). The networks were then quantized at varying levels –
from 4 to 10 bits. Their classification accuracy at each level is shown in Fig. 2.E.1.

Similar to results with simulated Gaussian noise, FFTNet is more robust than GridNet.
Note that in this case, the quantization was applied after training has finished. Neural
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networks in which quantization happens as part of the training procedure has been demon-
strated to have accuracies very near their full precision counterpart, down to even binary
weights [34, 60].

2.F Empirical distribution of phases

((a)) ((b))

Fig. 2.F.1. The central MZIs of GridNet has lower variance in internal phase shifts (θ). a)
The spatial distribution of internal phase shift (θd,l) of MZIs in U2 of GridNet. Reference
Fig. 2.2.1(a) for coordinates and Fig. 2.3.1 for location of U2 in context of network archi-
tecture. b) Histogram of phase shifts near the center (red), edge (green), and corner (blue)
of the GridUnitary multiplier. These phases are obtained from multiple instances of trained
GridNets with random initialization.

Analyses has been done on the distribution of the internal phase shift (θ) of MZIs of
GridUnitary multipliers when used to implement randomly sampled unitary matrices [65,
8, 56]. It was shown that the phases are not uniformly distributed spatially. To be more
concrete, We denote d the waveguide number and l the layer number (see Fig. 2.2.1(a)).
The distribution of the MZI reflectivity (r = sin(θ/2)) is[65]

rd,l ∼ Beta(1, βd,l). (2.33)

For large dimensions N ,

β ≈ N − 2 max(|d−N/2|, |l −N/2|) (2.34)

= N − 2||(d, l)− (N/2, N/2)||∞. (2.35)

β decreases from N at the center of the grid layout to 0 at the edge of the grid. For large β
(i.e. near the center), the mean and variance of rd,l are approximately

µr ≈ β−1;σ2
r ≈ β−2.
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((a)) ((b))

Fig. 2.F.2. The variance of internal phase shifts of FFTNet is uniform spatially (a) Spatial
distribution of phase shifts for a FFTUnitary multiplier. The MZIs are ordered as shown in
Fig. 2.2.1(b). (b) Histogram of phase shifts of FFTUnitary near the center (red) and top
(green). These phases are obtained from mulitple trained FFTNets with random initializa-
tion.

Consequently, the reflectivity, and therefore the internal phases, of MZIs near the center of
Gird Unitary multipliers are distributed very close to 0, with low variance. This effect is
magnified with larger dimensions N .

This result was derived with the assumption of Haar-random unitary matrices. Such
a distribution is not guaranteed and not expected for layers of trained neural networks.
(Fig. 2.F.1(a)) shows the spatial distribution of phases in the GridUnitary multiplier U2 (see
Fig. 2.3.1). While the empirical histogram (Fig. 2.F.1(b)) does not match the theoretical
distribution (Eq. (2.33)), the general trend of lower variance near the center of GridUnitary
multipliers is evident. This is claimed to translates to a lower tolerance for error[56].

A similar analysis was conducted for FFTNet. Immediately we notice that the distribu-
tion of phase shifts is mostly uniform across the MZIs (Fig. 2.F.2(a)). This can be attributed
to the non-local connectivity of FFTUnitary multipliers. Histograms constructed from an
ensemble of 100 trained FFTNets with random initial weights (Fig. 2.F.2(b)) confirms this
observation. The histogram for the region near the center (red) is nearly identical to the top
(green).

We reiterate the distinction, made in Section 2.4, between pre-fabrication error tolerance
and the sensitivity of error introduced post-fabrication. Pertinent to the first concept is how
well the network can be optimized after a known set of imperfections are introduced to the
network. The latter concept, which is relevant for our discussion, describes the sensitivity of
the network with no further reconfiguration to unknown errors. In contrast to pre-fabrication
error tolerance, our analysis in 2.4 does not show significant spatial dependence for post-
fabrication error sensitivity.
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2.G BlockFFTNet

We introduce a network with similar depth as GridUnitary but with non-local, crossing
waveguides in between as those seen in FFTUnitary (Fig. 2.G.1(a)). This is similar to the
coarse-grained rectangular design mesh in [56] which was motivated to produce a spatially
uniform distribution of phase and thus better tolerance for post-fabrication optimization.
We also empirically observe that when incorporated as part of a ONN (BlockFFTNet), the
distribution of phases are also uniformly distributed (Fig. 2.G.1(b)). We directly demon-

((a)) ((b))

Fig. 2.G.1. a) A schematic of BlockFFTUnitary. Blocks of MZIs in dashed, blue boxes are
similar to GridNet. The crossing waveguide, similar to those in FFTNet are between the
blocks. b) The distribution of phases after being trained. The dashed white lines denote the
locations of the crossing waveguides.

strate that better tolerance for post-fabrication optimization does not directly to better
error-resistance for a network optimized pre-fabrication. The accuracy loss due to increasing
imprecision is shown in Fig. 2.G.2.

2.H FFT algorithm and convolution

We show that the actual Cooley-Tukey FFT algorithm can be implemented with appropriate
configurations of the phases of FFTUnitary multiplier.

If we denote the input as xn ∈ CN , its Fourier transform is

Xk =
1√
N

N−1∑
m=0

xne
− 2πi

N
nk. (2.36)
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Fig. 2.G.2. No improvement in robustness to imprecision is seen with BlockFFTNet over
GridNet. In fact, there is a significant decrease.

The FFT algorithm, in short, is to rewrite the above as

Xk =
1√
2

(
Ek + e−

2πi
N
kOk

)
(2.37)

Xk+N/2 =
1√
2

(
Ek − e−

2πi
N
kOk

)
. (2.38)

Here, we have defined Ok and Ek to be the Fourier transform on the odd and even elements
of xn respectively. The calculation of Ek and Ok are done recursively. For N = 2K , a total of
K iterations are needed. It is well known that if xn is in bit-reversed order, the calculations
can be done in place.

Furthermore, in matrix form,(
Xk

Xk+N/2

)
=

1√
2

(
1 e−

2πi
N
k

1 −e− 2πi
N
k

)(
Ek
Ok

)
≡ Uk

(
Ek
Ok

)
.

From Eq. (2.1), we note that Uk = UMZ(θ = π/2, φ = 2πk/N), up to some global phase.
Therefore, if xn is in bit-reversed order, and passed through a FFTUnitary multiplier where
the kth layer is configured with θ = π/2, φ = 2πk/N , FFT can be performed.
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Going further, a convolution can be easily performed through multiplication of the Fourier
transformed signal by the Fourier transformed convolutional kernel, followed by a inverse
Fourier transform.
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Chapter 3

Sparse Dictionary Learning through
Analog Sampling

3.1 Introduction

Latent variable models such as sparse coding [52] and restricted Boltzmann machines [72]
have been shown to be powerful and flexible tools in machine learning. However, training
such models properly requires sampling from probability distributions over the variables.
Typically, instead of sampling, a point estimate or other heuristic are used since most sam-
pling algorithms are laboriously slow and have convergence guarantees only under limited
conditions. The time cost in large part comes from simulating stochastic dynamics of state
transitions on deterministic, discrete-logic based hardware, requiring random number gener-
ation and fine sampling intervals to avoid discretization errors.

Hardware Samplers of various types[83, 44] have been demonstrated, in an effort to
develop more efficient sampling methods (See Sec. 3.6 for more examples). The noise inherent
in these systems is used as a source of stochasticity to sample over the latent variables. One
direct way of exploiting these recent advances in analog sampling is to update parameters
using the samples collected from the sampler (Fig. 3.1.1(b)). However, this requires a
digital accumulator. Interfacing between analog and digital hardware is often a bottleneck
for sampling. For example, in recent work by [63], the limiting component for a photonic
sampler was identified as the photodetector.

Here we propose a novel, fully analog framework in which the update of parameters occurs
alongside the sampling of latent variables through continuous time dynamics (Fig. 3.1.1(c)).
Rather than waiting for the collection of samples for each discrete parameter update, the
effective accumulation of samples is achieved through a longer time constant.

In neuroscience it has been theorized that seemingly random fluctuations in neural
activity can be interpreted as a process for sampling from posterior distributions [33, 7, 55].
The results presented here are consistent with this idea, and moreover we propose specific
analog circuits that could enable this, along with a more general framework that encompasses
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((a)) Discrete Dictionary Update with MAP
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((b)) Discrete Update with Sampling
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Dictionary
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((c)) Continuous Update with Sampling

Fig. 3.1.1. Illustration of three approaches to learning latent variable models. a) Data x
is presented at regular intervals. A MAP estimate of latent variables s is calculated (green
trace). This is used for a discrete update to the dictionary A. The colored vertical bars illus-
trate the computational inefficiency where only a single point estimate of the coefficients are
used to make a discrete dictionary update. b) For each data interval, samples are collected
for a discrete dictionary update. The colored regions in the top panel show that many sam-
ples are collected to approximate the posterior distribution. However, the discrete dictionary
updates (at corresponding vertical bands) make a fully analog implementation difficult. c)
Rather than waiting for the accumulation of samples, The dictionary A is updated continu-
ously alongside both the latent variables s. The slow timescale of the dictionary compared to
the latent variables τA � τs allows for effective averaging. Note that the hyper-parameters
such as learning rates were not optimized for best convergence or regularization but instead
were exaggerated for illustrative purposes.
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dynamics for both inference and learning.
Langevin Sparse Coding; To study this analog sampling framework, we apply it

specifically to sparse coding. Sparse coding [79, 28] is a simple yet expressive probabilistic
model with an explicit prior over the latent variables. It has also been shown to account for
the neural representation of natural images in visual cortex [53]. In Section 3.3, we present
Langevin Sparse Coding (LSC), a fully continuous model making use of Langevin dynamics
to sample latent variables (s) and slower dynamics to update the dictionary (A).

Sampling with Langevin dynamics is well studied both in theory [9] and in application
to Bayesian learning [84]. However, to our knoweldge, this is the first fully analog approach
to inference and learning for sparse coding. Prior sampling-based approaches utilized a
mixture-of-Gaussians model and employed Gibbs sampling over the mixture weights [54] or
a method for preselecting parts of the space to sample via MCMC [68].

A key assumption of the sparse coding model is that the latent variables s assigned to
any given data sample x should be mostly zero. Traditionally this is enforced by imposing an
L1 cost function on s, which is used as a proxy for L0 since it allows for convex optimization.
However, in the probabilistic setting an L1 cost corresponds to a Laplacian prior, which
only weakly captures the notion of sparsity. We show in Section 3.4 that LSC allows for
a straightforward implementation of an L0 sparse prior. In Section 3.5, with a synthetic
dataset, we show that our approach is truly probabilistic by recovering the expected prior
and sparsity. Furthermore in Section 3.5, we demonstrate that our approach also allows for
learning the size of the dictionary, which was attempted in previous work using variational
approximation of the posterior [6].

Finally, in Section 3.5, we apply LSC in fitting our L0-sparse prior to the Van Hateren
dataset of natural images. In addition to learning the dictionary elements, we provide an
estimate for the sparsity of natural images, a challenging problem. To summarize, the main
contributions presented are:

• A theoretical formulation of mixed time-scale analog dynamics for simultaneously sam-
pling from and training latent variable models.

• LSC – A continuous-time, probabilistic model for training sparse coding.

• Using LSC to efficiently implement sampling of the posterior with a L0 prior.

• Using LSC to learn a dictionary for representing natural images as well as the associated
sparsity level.

• In addition to learning said dictionary, showing that LSC allows for learning the pa-
rameters of an L0 prior over the latent variables, as well as the size of the dictionary.
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3.2 Sparse Coding

Sparse coding is a simple yet efficient algorithm for dictionary learning. By adding an L1

regularization to the reconstruction loss, sparsity of coefficients can be achieved. While the
formulation is probabilistic, due to computational constraints, point estimates are typically
used to represent posterior distributions. As a result, the theoretically desired distribution
is not achieved.

In this section, starting from the canonical discrete sparse coding (DSC), sequential
modifications are introduced to produce a progressively more analog algorithm. First, with
continuous time sparse coding (CTSC), dictionary updates are made continuous and concur-
rent with the dynamics of the coefficients. With this modification, the nested loop structure
is made unnecessary and the input can be fed in asynchronously. By not only accounting
for, but also taking advantage of the inherent noise in analog systems to perform sampling,
in Sec. 3.3, we arrive at LSC.

Discrete Sparse Coding

Sparse coding assumes that data from some data set (x ∈ RD) is distributed as a linear
combination of dictionary A ∈ RD×K with added Gaussian noise n.

x = As + n (3.1)

with ni
iid∼ N(0, σ2). The coefficients s are further assumed to be L1 sparse with a Laplacian

prior:

ps(si) ∝ exp(−λ|si|). (3.2)

This probabilistic model can be described with the following energy function

E(A, s,x) =
1

2

||x− As||22
σ2

+ λ||s||1 (3.3)

such that p(x, s|A) = Z−1 exp(−E(A, s,x)). Note that conveniently, the partition function
Z = (

√
8πσ/λ)D and is a constant, specifically independent of A. This yields the nice

property that

∇A log p(x, s|A) = −∇AE(A, s,x). (3.4)

Our goal is to solve for the maximum likelihood estimator (MLE) of the dictionary

A∗ = arg max
A
〈log p(x|A)〉x∼D . (3.5)
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The expectation 〈·〉x∼D denotes expectation over dataset D (e.g. natural images). The MLE
can be found through gradient descent, where the gradient is

−∇A〈log p(x|A)〉 =
〈
〈∇AE(A, s,x)〉s|x

〉
x∼D

(3.6)

=
〈〈

(As− x)sT
〉
s|x

〉
x∼D

(3.7)

In practice, the expectation over the data is approximated via stochastic gradient descent
(SGD). On a drawn data {xn}n=1...N of batch size N , the update rule is

∆A =
1

N

N∑
n=1

〈
p(sn|xn) · (Asn − xn)sTn

〉
sn|xn

(3.8)

However, the expectation over sn is also intractable and is typically approximated by the
maximum a posteriori (MAP) estimator of sn

s∗n = arg min
sn

E(A, sn,xn). (3.9)

This can also be found via gradient descent with updates

∆sn = −∇snE(A, sn,xn) (3.10)

= − 1

σ2
AT (Asn − xn)− λ · sgn(sn). (3.11)

Both updates ∆A and ∆sn can be expressed more efficiently through gradient descent
on a batch energy function:

E(A, S,X) ≡
∑
n

E(A, sn,xn) (3.12)

=
1

2

||AS −X||2F
σ2

+ λ||S||1,1. (3.13)

We have defined matrices S ∈ RK×N and X ∈ RD×N . Recall that A ∈ RD×K with D being
the dimension of the the data, K the number of dictionary bases and N the batch size of X.
Above, || · ||F and || · ||1,1 are the Frobenius and (1, 1) matrix norms respectively. With the
batch energy defined, the update rules are

S ← S − ηs
∂E(A, S,X)

∂S
(3.14)

A← A− ηA
1

N

∂E(A, S,X)

∂A
. (3.15)

Note that we can redefine ηA to be ηA/N for simplicity. To coordinate the two updates,
a nested loop must be used (Alg. 3). The inner loop approximates the MAP estimator S∗

while the outer loop finds the MLE of A.
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Algorithm 1 Algorithm for discrete sparse coding. Note line 6 was included purely to
emphasize S∗ as an estimate of the MAP.

1: for k ← 1 to NA do
2: for n← 1 to Ns do
3: X ← SampleBatch()
4: S ← S − ηS · ∂E∂S (A, S,X)
5: end for
6: S∗ ← S
7: A← A− ηA ∂E∂A(A, S∗, X)
8: end for

Continuous Time Sparse Coding

Rather than updating the dictionary A at the end of the loop when S has converged to the
MAP estimator S∗, CTSC updates A continuously.

S ← S − ηS∇SE(A, S,X) (3.16)

A← A− ηA
NS

∇AE(A, S,X). (3.17)

To account for the fact that A will be updated multiple times instead of only once at the
end of the inner loop, the learning rate was divided by NS, the number of loop iterations. In
search of dynamics amenable to analog computation, we take the step sizes to be infinitesi-
mally small, and arrive at the following set of differential equations.

τSṠ = −∇SE(A, S,X(t)) (3.18)

τAȦ = −∇AE(A, S,X(t)). (3.19)

Here, we take X(t) to be updated synchronously at regular intervals of τX . At each update,
a new batch of samples is drawn. To see the similarity between CTSC and DSC, consider
the following simulation for CTSC using Euler Method.

Algorithm 2 Euler Method simulation of CTSC with stepsize of ∆t and regular interval
input of X

1: for t← 1 to tmax/∆t do
2: dS ← ∂E

∂S
(A, S,X(t))

3: dA← ∂E
∂A

(A, S,X(t))
4: S ← S − ∆t

τS
· dS

5: A← A− ∆t
τA
· dA

6: end for

Comparing Alg. 3 and Alg. 2, the timescales, τ can be related to the learning rates η,
and the number of iterations N .
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With continuous time dynamics, there is no longer need for synchronous, regular input of
X. While maintaining the advantages conferred by parallel, batched inputs the asynchronous
behavior allows for easier implementation in analog devices.

3.3 Langevin Sparse Coding

Langevin dynamics is described by the following stochastic differential equation:

u̇ = −∇E(u) +
√

2Tξ(t), (3.20)

where ξ(t) is independent Gaussian white noise with 〈ξ(t)ξ(t′)T 〉 = Iδ(t−t′). The distribution
of p(u(t)), over time, will asymptotically converge to

p(∞)(u) ∝ e−E(u)/T (3.21)

We can change the dynamics of CTSC (Eq. 3.19) by injecting noise to Ṡ so that

τSṠ = −∇SE(A, S,X) +
√

2TτSξ(t) (3.22)

For a fixed A, over time, S will sample from the desired distribution.

pS(S(t)) ∝ e−E(A,S,X)/T . (3.23)

With T = 0, we recover the CTSC dynamics where the dynamics converge to the MAP
estimation of S. A useful property of (Eq. 3.22) is that the equilibrium distribution is
independent of the time constant τs. By taking τA � τS, the assumption that A is fixed
with respect to the dynamics of S can be upheld. Conversely, because S evolves much faster
than A, the dynamics of A is well approximated by

τAȦ = −〈∇AE(A, S,X)〉S|A,X . (3.24)

This is the exact mean gradient we wish to calculate.
While all of the results are derived from computer simulations of Langevin dynamics (see

App. 3.D), our aim is not to produce another MCMC algorithm but to demonstrate the
feasibility of training latent variable models with analog devices. In the sections that follow,
we illustrate utility of systems capable of implementing LSC.

3.4 L0 Sparse Prior

Due to the difficulty of MAP estimation for L0 priors, a L1 prior is typically used. Consider,
instead, the following prior:

p0(s)ds = πλe−λs + (1− π)δ(s). (3.25)
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Fig. 3.4.1. An L0 can be sampled from using Langevin dynamics and a hidden variable.
a) The hidden variable u is made to follow an exponential distribution. b) By applying a
threshold function, s = f(u) achieves L0 sparsity.

With π as the activity, 1 − π quantifies the L0 sparsity, how likely s is to be zero. When
nonzero, s is exponentially distributed. Were we to find the MAP estimator with this prior,
using gradient descent, we would always eventually end up with s = 0, regardless of the
likelihood. However, with Langevin dynamics, LSC can efficiently implement this L0 sparse
prior (Fig. 3.4.1).

First, we define a hidden variable u such that ui independently follows the exponential
distributed:

pU(ui) = λe−λui . (3.26)

We then take the coefficients to be ui = f(si) where f is a biased ReLU function:

si = f(ui) =

{
ui − u0 if ui > u0

0 if ui < u0

(3.27)

for some positive u0. We then evaluate the distribution of random variable S = f(U).
First,

P (S = 0) =

∫ u0

0

du pU(u) (3.28)

= 1− e−λu0 ≡ 1− π. (3.29)

We have defined π = e−u0 . For positive s > 0, du/ds = 1, so

pS(s)ds = pU(u)du (3.30)

= λe−λ(s+u0) (3.31)

= πλe−λs. (3.32)
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This means that S is distributed according to the desired L0-sparse prior provided that

u0 = −λ−1 log(π). (3.33)

To continue with L0-LSC, we modify the energy function to be

E(A,u,x) =
1

2

||x− Af(u)||22
σ2

+ λ||u||1. (3.34)

Here, s is still the coefficients relevant for the reconstruction

x̂ = As = Af(u). (3.35)

However, the prior is defined over u instead. Furthermore, the variable undergoing Langevin
dynamics is also u. This way, conditioned on x, the distribution of u will converge to

p(u|x) ∝ exp
(
−||Af(u)− x||22/σ2 − λ||u||1

)
(3.36)

= p(x|f(u))pU(u) (3.37)

= p(x|s)p0(s). (3.38)

The distribution

p(u,x|A) ∝ e−E(A,u,x) (3.39)

has a partition function that is constant with respect to A and π as well. By following the
derivation in Sec. 3.A, we can also optimize for u0, and therefore, π via

u̇0 ∝ −

〈〈
∂E

∂u0

〉
s|x

〉
X∼D

(3.40)

=
〈〈
AT (As− x) · 1(s > 0)

〉
s|x

〉
x∼D

(3.41)

3.5 Results

To study the efficacy of L0 sparsity with LSC, we consider dictionary learning on the bars
dataset and natural scenes. The bars dataset presents itself as a nice control since we know
all the causes that generate the data.

Inference on Bars Dataset

For the bars dataset, samples are generated from a dictionary A consisting of vertical and
horizontal lines (Fig. 3.5.1(a)). We compare results obtained on this dataset against DSC as
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A0 A1 A2 A3 A4 A5 A6 A7

A8 A9 A10 A11 A12 A13 A14 A15

((a)) Bars Dictionary

((b)) Bars Sample: λ = 1, π = 0.3, σ = 0

((c)) Bars Sample: λ = 1, π = 0.3, σ = 0.5

Fig. 3.5.1. The synthetic Bars dataset used as a toy problem. a) The dictionary is the
collection of vertical and horizontal lines. b) An example of a sample drawn from the dataset.
c) Another sample with noise introduced.

well as another method for training sparse coding, the locally competitive algorithm (LCA)
[64].

We synthetically generate data as a linear combination of the dictionary with additive
Gaussian noise:

x = As + n (3.42)

where, ni ∼ N(0, σ2) and the coefficients are distributed according to L0 zero-inflated expo-
nential prior (Eq. 3.25). A sample drawn from this model without noise and with noise is
shown in Fig. 3.5.1(b) and 3.5.1(c).

When trained on this dataset, all three algorithms were successful at learning the correct
dictionary. However, LSC can better capture the posterior distribution than either DSC or
LCA. As a consequence, LSC can enforce L0 sparsity much more easily and directly. The
sparsity is controlled through adjusting a parameter λ in both DSC and LCA. However, the
relationship between λ and L0 (Fig. 3.5.2(a)) is rather indirect and no analytic expression
is known. On the other hand, a specific level of L0-sparsity (1− π) can be directly enforced
by setting u0 = −λ−1 log(π) (Eq. 3.33).

Moreover, the activity π can be learned by LSC without any guesswork or parameter
search (Eq. 3.40). Figure 3.5.2(b) shows the approximate convergence of model parameter
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Fig. 3.5.2. a) A correspondence between the parameters λ for both DSC and LCA is
mapped out above. There is however, no obvious, analytic relationship between λ and the
observed activity π. The parameter λ is swept for both LCA and DSC when trained on
data drawn with activity π = 0.3 and π = 0.1. b) With LSC, the activity π can be learned
directly without a parameter search.

π to the actual data activity. To further characterize the coefficients, the distributions of
the non-negative coefficients of the three algorithms were also plotted in Fig. 3.5.3. Using a
fixed dictionary, the algorithm was run to infer either the MAP (DSC and LCA) or to sample
from the posterior of input data. This was done with a correctly learned dictionary (Fig.
3.5.1(a)) as well as a random dictionary (i.e. uncorrelated gaussian noise). In addition to
having the correct L0-sparsity, LSC also samples correctly the desired prior (Fig. 3.5.3(c)),
in contrast to the other non-stochastic algorithms. In fact, this is only true with the correctly
learned dictionary. A more quantified analysis is provided in Section 9 in the Supplimentary
Materials.

Learning the Dictionary Norm

For both DSC and LCA, at each dictionary update, it is necessary to normalize the dictionary
elements. For A = (A1, . . . ,AK), after updating, we reassign

Ai ←
Ai

||Ai||2
≡ Âi. (3.43)

This is because the MAP estimator s∗ is biased and will consistently underestimate si. To
compensate, Ai will grow unless normalized (See Fig. 12 in the Suppl. Materials). In fact,
growing without bound, DSC and LCA cannot learn the correct dictionaries this way.

LSC, however, performs sampling and does not suffer from the same problem. As a
result, when using LSC, there is no need for normalization. Instead, the dictionary element
norms ||Ai|| will grow or shrink to optimize the likelihood.
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((b)) LCA
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Fig. 3.5.3. The distribution of non-zero coefficients of each of the four algorithms. The
dotted red line shows the prior of coefficients used in generating the dataset. The left panel of
each subfigure shows the distribution when each algorithm is run with random dictionaries.
The right shows the the distribution with trained dictionaries. Only LSC, with the correctly
trained dictionary has the a distribution matching the prior.

The adaptive norm property can be used to automatically select for the number of dictio-
nary elements needed. For data of dimension D, we consider a dictionary of size K = Ω×D,
to have an (over)completeness of Ω. A 2× overcomplete model was trained using the LSC
algorithm using a fixed activation probability pi, without normalizing the dictionary A. The
resulting, learned dictionary is shown in Fig. 3.5.4(b). In previous work by [6], Annealed
Importance Sampling (AIS) [49] was used to approximate the marginal likelihood in order
to find the optimal dictionary elements. However, LSC, without additional procedures, can
be used to effectively do the same through attenuation of unnecessary dictionary elements.

The learned dictionary contains exactly the bars dictionary and the remaining elements
were made to vanish. A clear illustration of this is shown in Fig. 3.5.4(a). When both ||Ai||
and π are being learned, a more stable solution is to have duplicated dictionary elements
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((a)) Evolution of dictionary norms ((b)) Unnecessary dictionary elements vanish.

Fig. 3.5.4. Fixing, the activity π, LSC is use to learn the dictionary of a twice overcomplete
model. a) Dictionary norms bifurcate. b) Half of the elements vanish leaving exactly one
copy of the generating dictionary elements.

with a reduced activity. is shown in Fig 3.5.5(a) with a duplicated dictionary but halved
activity (Fig. 3.5.5(b)).

Natural Image Patches

We ran the LSC algorithm on 8×8 patches of natural scenes from the Van Hateren dataset[29]
(see Fig. 3.5.6). First, the model activity was fixed at π = 0.5 and we used LSC to
learn a 4× overcomplete dictionary (K = 4 × 64 = 256). We can see in Fig. 3.5.7 that
only a fraction of the dictionary was utilized. The “inactive” dictionary elements had a
comparatively insignificant norm. In contrast to prior work by [6], this is emergent from
dictionary learning with sampling; no algorithms were used to determine the optimal number
of dictionary elements.

Then, unfixing π, we allow the activity to be learned. Repeating the experiment at differ-
ent levels of overcompleteness Ω, a correspondence between the activity and overcompleteness
is plotted in Figure 3.5.8(a). This relationship happens to be very well modeled by π ∝ Ω−1.
As a consequence, the expected number of active dictionary elements, π ×K = π × Ω×D
stayed near constant irrespective of the the completeness Ω.

3.6 Hardware implementation

A major shortcoming of most sampling approaches to latent variable models has been their
intractability. Indeed, when simulating LSC on a digital computer using the Euler-Maruyama
algorithm, the run time needed was significantly longer when compared to the point esti-
mate counterparts (DSC and LCA). However, the LSC algorithm was designed for eventual
hardware implementation. Presented here is a variety of candidates for such implementation.
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((a)) Duplicated dictionary learned

((b)) Activity learned by twice overcomplete
model
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((c)) Evolution of dictionary norms

Fig. 3.5.5. LSC is used to learn both the dictionary and activity of the same overcomplete
model a) The dictionary the learned is duplicated. b) But the activity π is half of the actual
activity.

A major requirement is an analog method of implementing matrix-vector multiplica-
tion. This has been demonstrated with photonic meshes of Mach-Zehnder interferometers
(MZIs)[61]. In fact, MZI meshes have been shown capable of sampling from Ising models[63].
Another good candidate is resistor crossgrid arrays. Memristors[11], in particular, allow for
fast, configurable coupling, which is necessary for fast weight updates. Finally, coupled
oscillators have also been shown viable in sampling Ising models [83] as well as Hopfield
networks[50].

Specific to sparse coding, previous work by [70] have implemented the LCA algorithm
for sparse coding on a memristor network with a field-programmable gate array (FPGA) for
weight updates. To take advantage of an algorithm like LCA would require a fully analog
implementation and is a direction for further research.
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((a)) Whitened Image ((b)) Image patches

Fig. 3.5.6. a) An example of whitened Van Hateren image. b) A sample of 8 × 8 patches
taken from the Van Hateren images.

3.7 Discussion

We have presented a novel mixed time-scale analog sampling framework. Using this, in
Sec. 3.3, we have introduced Langevin Sparse Coding (LSC), a novel method of training
sparse coding that is especially amenable to implementation on analog devices. Designed
to make use of inherent stochasticity found in analog systems it is able to sample from a
given posterior distribution. Furthermore, through application of a threshold function to the
stochastic dynamics, we demonstrate that a truly L0-sparse prior can be implemented (Sec.
3.4).

Applied to a synthetic dataset, LSC was compared against two alternative sparse coding
algorithms (DSC and LCA). From the results presented in Section 3.5, LSC was shown to
be better at sampling from the posterior distribution as well as capable of learning the mean
activity π of the latent variables s. We then used LSC for dictionary learning of natural
images (Sec. 3.5). One notable result found was that the mean number of of dictionary
elements was mostly invariant to the total dictionary size. This ran contrary to previous
results by [51] where, on average, the number of elements required for reconstructing a given
image went down with larger dictionaries.

In part, this discrepancy can be reconciled by the fact that the previous work was not done
with a truly probabilistic model of sparse coding. In such case, larger dictionaries do yield
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Fig. 3.5.7. With activity fixed (π = 0.5), only a fraction of the total dictionary elements
are “active”. The remaining have been made to vanish. The dictionary elements are sorted
by their respective norms.
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Fig. 3.5.8. a) Using LSC to learn dictionaries for natural scenes at multiple times at
different levels of completeness α, a π ∝ 1/α relationship is obtained. b) This implies that
the mean number of dictionary elements active is constant irrespective of the total number
of dictionary elements learned. Error bars on both plots denote the 10% - 90% range

fewer necessary elements for a MAP reconstruction. One can imagine a massive dictionary
where every possible natural image is represented. A single element is then required in
representing any image. However, in the case of LSC, each element has a prior probability
of π to be active regardless of the image.

Nonetheless, it is still curious that the mean number of dictionary elements active was
near constant suggesting that the overcompleteness is an under-utilized degree of freedom.
One hypothesis is that the prior of i.i.d. exponential distributions is overly simplified and
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ill-suited to represent the statistics of natural images. While we have only used the L0 sparse
exponential prior, LSC with more sophisticated priors needs to be explored. For example,
previous work by [24] used Laplacian Scale Mixture (LSM) to model dependencies across
dictionary elements.

The mixed time-scale analog sampling framework on which LSC is based goes beyond just
sparse coding. We hope to develop analogous procedures for learning other latent variable
models such as Restricted Boltzmann Machines, hierarchical Bayesian models[42], etc.

A review of potential hardware systems for implementation is presented in Section 3.6.
This is not exhaustive and more work needs to be done in designing a scalable analog system
for implementing LSC. Nonetheless, the work presented here highlights the benefits that
could be brought by implementation of probabilistic models on analog systems.
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Appendix

3.A Discrete Sparse Coding

Sparse coding assumes that data from some data set (x ∈ RD) is distributed as a linear
combination of dictionary A ∈ RD×K with added Gaussian noise n.

x = As + n (3.44)

with ni
iid∼ N(0, σ2). The coefficients s are further assumed to be L1 sparse with a Laplacian

prior:

ps(si) ∝ exp(−λ|si|). (3.45)

This probabilistic model can be described with the following energy function

E(A, s,x) =
1

2

||x− As||22
σ2

+ λ||s||1 (3.46)

such that

p(x, s|A) = Z−1 exp(−E(A, s,x)) (3.47)

Note that conveniently, the partition function Z = (
√

8πσ/λ)D and is a constant, specifically
independent of A. This yields the nice property that

∇Ap(x, s|A) = −∇AE(A, s,x) · p(x, s|A). (3.48)

Our goal is to solve for the maximum likelihood estimator (MLE) of the dictionary

A∗ = arg max
A
〈log p(x|A)〉x∼D . (3.49)



CHAPTER 3. SPARSE DICTIONARY LEARNING THROUGH ANALOG SAMPLING72

The expectation 〈·〉x∼D denotes expectation over dataset D (e.g. natural images). The MLE
can be found through gradient descent. Where the gradient is

−∇A〈log p(x|A)〉 = −
〈
∇Ap(|A)

p(x|A)

〉
(3.50)

= −
〈
∇A

∫
ds p(x, s|A)

p(x|A)

〉
(3.51)

= −
〈∫

ds ∇AE(A, s,x) · p(x, s|A)

p(x|A)

〉
(3.52)

= −
〈∫

ds ∇AE(A, s,x) · p(s|x, A)

〉
(3.53)

= −
〈∫

ds (As− x)sT · p(s|x, A)

〉
. (3.54)

In practice, the expectation of the data is approximated with the empirical mean of a
sample {xn}n=1...N from dataset D. So we have

∆A =
1

σ2

1

N

N∑
n=1

∫
dsn p(sn|xn) · (Asn − xn)sTn . (3.55)

The integration over sn is also intractable and is approximated by the maximum a pos-
teriori (MAP) estimator of sn

s∗n = arg min
sn

E(A, sn,xn). (3.56)

This can also be found via gradient descent with updates

∆sn = ∇snE(A, sn,xn). (3.57)

Both updates ∆A and ∆sn can be expressed more efficiently through gradient descent
on a batch energy function:

E(A, S,X) ≡
∑
n

E(A, sn,xn) (3.58)

=
∑
n

1

2

||Asn − xn||22
σ2

+ λ||sn||1 (3.59)

=
1

2

||AS −X||2F
σ2

+ λ||S||1,1. (3.60)

We have defined matrices S ∈ RK×N and X ∈ RD×N . Recall that A ∈ RD×K with D being
the dimension of the the data, K the number of dictionary bases and N the batch size of X.
Above, || · ||F and || · ||1,1 are the Frobenius and (1, 1) matrix norms respectively.
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With the batch energy defined,

S ← S − ηs
∂E(A, S,X)

∂S
(3.61)

A← A− ηA
1

N

∂E(A, S,X)

∂A
. (3.62)

Note that we can redefine ηA to be ηA/N for simplicity. To coordinate the two updates,
a nested loop must be used (Alg. 3). The inner loop approximates the MAP estimator S∗

while the outer loop finds the MLE of A.

Algorithm 3 Algorithm for discrete sparse coding. Note line 8 was included purely to
emphasize s∗ as an estimate of the MAP.

1: for k ← 1 to NA do
2: for n← 1 to Ns do
3: X ← SampleBatch()
4: S ← S − ηS · ∂E∂S (A, S,X)
5: end for
6: S∗ ← S . Included to emphasize that we have obtained a MAP estimator of S
7: A← A− ηA ∂E∂A(A, S∗, X)
8: end for

3.B Locally Competitive Algorithm

The locally competitive algorithm (LCA) is another method for training sparse coding which
solves a large set of similar problems that LSC addresses[64]. Explicitly, it is suitable for
parallel analog implementation and that it achieves L0 sparsity. In the context of LCA, The
thresholding function in Eq. 3.27 is known as a soft threshold. In this section, we provide a
brief introduction to LCA with a soft threshold and compare LCA to LSC.

The dynamics of LCA is given by

u̇ ∝ −AT (As− x)− (u− s). (3.63)

This has many similarities to the LSC dynamics:

u̇ ∝ −AT (As− x) · 1(|u| > u0)− λ · sgn(u) +
√

2Tξ(t). (3.64)

Specifically, for T = 0 and ui > u0 we have

u̇LCAi ∝ −
[
AT (As− x)

]
i
− u0. (3.65)

u̇LSC−0T
i ∝ −

[
AT (As− x)

]
i
− λ. (3.66)

(3.67)
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In taking u0 = λ, the two algorithms will have identical dynamic in this region. However for
|ui| < u0, the two differs significantly.

u̇LCAi ∝ −
[
AT (As− x)

]
i
− ui. (3.68)

u̇LSC−0T
i ∝ −0− λ. (3.69)

(3.70)

In this case, the LSC algorithm will quickly converge to ui → 0 since the reconstruc-
tion loss is no longer relevant. This is rectified through the noise term ξ(t) with non-zero
temperature T .

In addition to the stochasticity, the LSC dynamics is also derived from steepest descent
of its associated energy function. This, by design, is not true for LCA. In other words, the
LCA flow field is not conservative. The fact that LSC has an associated energy functions
allows us to sample from the exact prior distribution through Langevin Dynamics.

If we assumed u̇ = −∇ELCA for some energy ELCA, we have

∂2ELCA
∂u1

≡ ∂1ELCA = (ATA)11f(u1) + (ATA)12f(u2) + · · · − AT11x1 − AT12x2 − · · ·+ u1 − f(u1)

(3.71)

∂2∂1ELCA = (ATA)12f
′(u2). (3.72)

However,

∂1∂2ELCA = (ATA)21f
′(u1) 6= ∂2∂1ELCA (3.73)

unless f ′(u1) = f ′(u2). Note that this is not an issue with LSC where

∂1∂2ELSC = (ATA)21f
′(u1)f ′(u2) = (ATA)12f

′(u2)f ′(u1) = ∂2∂1ELSC . (3.74)

Of course, this should be the case by construction.

3.C DSC, LSC, Asynch, LSC

in Fig. 3.C.1, we see the evolution of the four algorithms when trained with the Bars dataset.
The mean squared reconstruction error (MSE) was calculated. Specifically

εrecon = 〈||As− x||22〉. (3.75)

The mean is taken over the batch of inputs and reconstructions as well as a small interval of
time. We then took the negative log MSE (NL-MSE) as a metric of reconstruction fidelity.
Up to a constant, NL-MSE is equal to the peak signal to noise ratio PSNR.
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Over the dynamics of each algorithm, their respective NL-MSE is plotted in Fig. 3.C.1.
We notice similar rates of convergence for DSC and CTSC and Async. The higher variance
associated with Asynch can be explained by the variable time for which each input is pre-
sented. LSC by contrast has a lower NL-MSE with significantly higher variance. This result
is, however, expected as in contrast to the other algorithms, LSC does not return a single
MAP estimate. Instead, the dynamics samples the posterior distribution.

Indeed, all four algorithms does successfully the correct dictionaries (Fig. 3.5.1(a)). The
mean cosine similarity of the learned dictionary with the correct dictionary is plotted in (Fig.
3.C.1). We also see similar rates of convergence.
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Fig. 3.C.1. Two metrics demonstrating the convergence rates for each algorithm in training
with the Bars dataset. a) Negative log MSE – a metric of reconstruction fidelity. The median
along with the 20%-80% range are plotted. b) The cosine similarity of learned dictionary to
the “true” dictionary.
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3.D Numerical Simulation of Langevin Dynamics

In simulating Eq. ??, we use the Euler-Maruyama method. First, for µ = 0, we have

dx = −∇V du+
√

2Tdu · η(u) (3.76)

x← x+ dx (3.77)

where du is a suitably small time step and η(u)
iid∼ N(0, 1). In the case of µ > 0, we can

solve the second order equation as two first order equations with a dimensionless momentum
defined as

π ≡ µτẋ. (3.78)

Then, we have

dx =
π

µ
du (3.79)

dπ = −π
µ
du−∇V du+

√
2Tdu · η(u) (3.80)

x← x+ dx (3.81)

π ← π + dπ. (3.82)

For better numerical stability, we may choose to do

x← dx/2 (3.83)

π ← dπ (3.84)

x← dx/2. (3.85)

3.E Circuit Implementation

Resistor cross-grid

We seek to implement an optimizer for both objective functions.

Matrix Inversion

As a starting point, it has been demonstrated that an analog circuit can be used to invert a
matrix G. Given current I = GV , it can be used to solve for V , (see Fig. 3.E.1)

Note that the op amps act as virtual grounds while preventing current from passing
through.
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Fig. 3.E.1. Circuit for matrix inversion

Fig. 3.E.2. Circuit realization of op amp (Tang, 2008).

L1-SC Analog Circuit

Taking the derivative of the energy, we derive as solutions the following equalities

∇E1(s) = AT (As− x) + λ · sgn(s) (3.86)

≡ Gs− y + λ · (s) (3.87)

Gs = y − λ · (s) (3.88)

where G = ATA and y = ATx. Given y,G, we wish to solve for sparse coefficients s wich
satisfy the condition above. This is very similar to the matrix inversion problem above with
the modification of an additional sign function. A circuit realization of a sign function is
achievable with three op amps (Fig. 3.E.2). To see how the matrix inversion matrix can be
modified to include the (s) term, the reduced circuit in Fig. 3.E.3 illustrates the idea with
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Fig. 3.E.3. Sign function modification

a single resistor G (i.e. N = 1). Here the total current I is split between IG and Iλ.

I = GV + λ · (V ) (3.89)

GV = I − λ · (V ). (3.90)

Modifying all of the op amps in the full N ×N circuit, gives the desired result.

L0-SC Circuit

To implement the L0 sparse prior, we modify the condition to

Gs = y − λ · (u) (3.91)

where s = f(u) and u is taken to be the internal state. Note that f can be modeled as two
ReLU functions

f(u) = ReLU(u− u0)− ReLU(−u− u0) (3.92)

and CMOS implementations of ReLU functions exist and have been demonstrated (see Fig.
3.E.4). The threshold function can be easily implemented by combing two biased ReLU in
parallel (and in different directions). We can then modify op amp again (this time the lower
lead), see Fig. 3.E.5. Here, the relevant voltage to the resistors G and determining the
current is f(V ) and we have again the desired result. Note that true to its interpretation,
the voltage V , representing u now, is indeed “hidden” from the resistor array.

3.F Coupling Function DSC to CTSC

To connect CTSC to DSC, we can define a τx-periodic coupling function

γ(t̃) =
βτx

1− e−βτx
eβt̃ (3.93)
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Fig. 3.E.4. CMOS implementation of ReLU
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Fig. 3.E.5. Sign function and threshold modification

where t̃ ≡ (t− τx) mod τx. Note that from this definition,∫ τx

0

dt̃γ(t̃) = τx =

∫ τx

0

dt̃. (3.94)

Now, we modify the dynamics of A to be

τA · Ȧ = −γ(t)∇AE(A, S,X(t)). (3.95)

The coupling γ weighs the dynamics of A to be more significant at later times. In taking
the limit β →∞, we end up with

τA · Ȧ = τxδ(t̃)∇AE(A, S,X(t) (3.96)

and A is only updated when t ≡ 0 mod τx with

∆A = ηA∇AE(A, S,X(t)). (3.97)
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In the opposite limit β → 0, we recover

τAȦ = −∇AE(A, S,X(t)). (3.98)

3.G Convergence Properties

(Dalalyan, 2016) [17] derived convergence gaurantees for Lagevin sampling if the energy is
strongly convex with Lipschitz continuous gradient. That is

E(θ + δθ)− E(θ)−∇E(θ) · δθ ≥ m

2
||δθ||2; (3.99)

||∇E(θ + δθ)−∇E(θ)|| ≤M ||δθ|| (3.100)

for some positive constants m and M . The informal result is that the Langevin dynamics
has a characteristic time scale of

τ = m−1. (3.101)

Furthermore, in simulating Langevin dynamics with the discrete algorithm, we require that
the time step be

∆t < M−1. (3.102)

To demonstrate this, consider a quadratic energy of the form

E(s) = 0.5||As||2. (3.103)

This, of course, corresponds to a normal distribution with covariance matrix

Σ = (ATA)−1. (3.104)

It can be shown that in this case, the constants are

M = σ−2
min; (3.105)

m = σ−2
max (3.106)

where σ2
max is the largest uncorrelated variance and σ2

min, the smallest. This gives us

∆t < σ2
min; (3.107)

τ = σ2
max. (3.108)
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Fig. 3.G.1. With increasing time (a, c, f), the position converges to the desired distribution
if the step size is small enough. When the simulation step size is too large, (b, d, f), the
dynamics will not converge.

3.H Proof for L0 prior

Take s = f(u) with k elements zero. That is, without loss of generality,

s = (0, . . . , 0, sk+1, . . . , sN). (3.109)

We must then have

ui ∈

{
(−u0, u0) if 1 ≤ i ≤ k

{si − u0 · sgn(si)} if k < i ≤ N.
(3.110)
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Then, the conditional probability of f(u) = s|x is

p(x, f(u) = s) =

∫ u0

−u0
du1 · · · duk pR(x|s) ·

∏
i

1

2λ
e−λ|ui| (3.111)

= pR(x|s) ·
N∏

i=k+1

1

2λ
e−λ|si|−λu0 ·

(∫ u0

−u0
dui

e−λui

2λ

)k
(3.112)

= pR(x|s)
N∏
i=1

e−λsi
(
e−λu0

)N−k (
1− e−λu0

)k
(3.113)

= pR(x|s)pS(s) · πk(1− π)N−k. (3.114)

We can easily interpret the final term as a L0 sparsity prior on s.
Note that using MAP estimation, the estimator u∗ will always be zero due to the delta

functions with infinite height albeit with finite mass.

3.I Quantifying convergence to prior

To better quantify the convergence to the desired prior, we estimate the KL-divergence from
p(si|λ), the target prior to p(si|A) the learned prior based on dictionary A. Because the
learned prior cannot be easily calculated, we rely on samples taken at regular time intervals.
The samples are then binned in the same way that generated the histograms in (Fig. 3.5.3)
.

DKL(p(s|λ)||p(s|A)) =

〈
log

(
p(s|λ)

p(s|A)

)〉
s|λ

(3.115)

≈
∑
n

pn(λ) log

(
pn(λ)

qn(A)

)
(3.116)

where

pn(λ) = P (nδs < s < (n+ 1)δs) (3.117)

with δs being the bin width. Figure 3.I.1 shows the evolution of the estimated DKL over
time. As expected, only with LSC does the KL-divergence approach 0.

3.J Learned Dictionary from Natural Scenes

Dictionary elements learned from the Van Hateren dataset is presented in Fig. ??. Only a
random selection of 64 dictionary elements are shown
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Fig. 3.I.1. The KL-Divergence for coefficients si is compared for each of the three sparse
coding methods. Only with LSC, does the DKL approach zero.

((a)) Complete dictionary; π ≈
0.16

((b)) 2× overcomplete dictio-
nary; π ≈ 0.08

3.K Convergence Tests

In using LSC to infer the dictionary element norms, we show in the sections various exper-
iments done to explore the convergence towards a known dictionary under various hyper-
parameters.
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Chapter 4

Conclusion

A variety of ideas from physics have been shown to have applicability in machine learning.
Specifically relevant to the work presented in this thesis are training Hopfield networks
with MPF[31], optical neural networks[69], and analog sampling[83, 63]. These results were
extended in this thesis.

In summary, alternative objective functions for MPF were first presented along with
an efficient method for training higher order Hopfield networks. In the next chapter, the
effects of fabrication error on the performance of ONNs were presented with architectural
designs mitigating these adverse effects. Lastly, A fully analog framework for training latent
variable models was developed with specific implementation applied to sparse coding for
natural images.

Due to the interdisciplinary nature of the work, there is much room for further extension.
Beyond using MPF to train higher order Hopfield networks on random data, it would be
important to see application in solving specific problems. One example would be discovering
temporal structure in time-series data, previously demonstrated with second order Hopfield
energy[30].

The study of robustness of optical neural networks was focused primarily on optimization
of architectural designs of ONNs. A more interesting follow up would involve an algorithmic
approach in minimizing the fabrication error present. Robustness of neural networks to noise
in input data is already a widely studied topic[21], generalizing the work to account for noise
in the network weights would be one approach.

By comparison, a more complete study of the Langevin Sparse Coding (LSC) algorithm
was presented. However, a concrete physical implementation needs to be developed. In the
absence of such physical system, LSC is idealized and more accurate modeling of the noise
present in specifc analog devices would be necessary.

While the topics studied are diverse, they were all inspired by a more probabilistic treat-
ment of existing problems. MPF is closely related to contrastive divergence. Instead of
sampling, however, the objective function is built from analytic manipulation of the con-
ditional distribution. Furthermore, making connections between the deterministic Hopfield
network to the probabilistic Ising model allowed MPF to be used for training. Then, in the
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case of optical neural networks, while previous acknowledged, a detailed treatment of the ef-
fect of fabrication error on the network performance was yet to be done. This understanding
led to an alternative architectural design that is significantly more robust to such errors. In
the case of sparse coding, while a inherently a probabilistic model, point estimates typically
replace sampling in most implementations due to the intractability of sampling on digital
computers. By utilizing the noise in analog systems, both sampling and training can be
achieved.

There is great value in continuing in this direction of studying machine learning problems
as stochastic, physical systems. Beyond further contributions to both physics and machine
learning, a better understanding of analog computation for machine learning is especially
useful for modeling computation in biology.
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