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 2 

DEVELOPMENT OF A STOCKPILE HEATED AND AMBIENT AIR DRYER 3 

(SHAD) FOR FRESHLY HARVESTED ALMONDS 4 

Ismael K Mayanj1, Michael  C Coates2, Franz Niederholzer3, Irwin R. Donis-González1* 5 

 6 

Highlights 7 
• Almonds are conventionally dried in windrows, a process that accumulates significant dust. 8 
• Almonds were dried on-farm directly from the almond tree eliminating windrow drying. 9 
• SHAD dryer uses a combination of heated and ambient air to dry almonds in a stockpile. 10 
• The dryer has a SMER of 0.64, MER of 1.02, and COP of 1.33. 11 

Abstract.Abstract.Abstract.Abstract. Dust generated by farming activities is a safety hazard to farmworkers and an environmental 12 

contaminant. During the almond (Prunus dulcis) harvest in California, dust is primarily generated by the 13 

mechanized movement of almonds from the bare soil of the orchard floor, where they are sun-dried, into 14 

trucks for transport to processing facilities. Off-ground dust-less harvesting will only be achieved when 15 

the almond industry adopts feasible mechanical drying methods. Therefore, a stockpile heated and 16 

ambient air dryer (SHAD) was developed to determine the feasibility of dehydrating almonds (Var. 17 

‘Monterey’). A stockpile containing 4,155 kg of almonds was created and almonds were dehydrated from 18 

their initial 12.6% almond kernel dry-basis moisture content (MCdb) to final MCdb of 6.04%. Drying was 19 

achieved as a combination of heated air at a temperature of 55oC in the drying plenum with airflow of 20 

0.078 m3/s per m3 of fresh almonds. After drying, almond quality parameters were measured, including 21 

damage by molds or decay, insect injury, and presence of internal cavities. Drying energy consumption, 22 

cost, and performance indicators were also determined. The differences in MCdb between the bottom, 23 

middle, and top layers of the almond stockpile were significant (p ≤ 0.05). Post-hoc Tuckey test was 24 

conducted which indicated that the MCdb in the top layer was significantly lower than almond MCdb in the 25 
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middle and bottom layers. Results showed that damage by molds or decay, insect injury, and internal 26 

cavities were 1.81%, 0%, and 1.77% respectively after drying. Therefore, the overall almond quality was 27 

not compromised. The drying process cost $ 11.65 per tonne of the initial weight of almonds with a Specific 28 

Moisture Extraction Rate (SMER) of 0.64, Moisture Extraction Rate (MER) of 1.02, and a Coefficient of 29 

Performance (COP) of 1.33. Comparison with other dryers in the literature shows that SMER and MER 30 

are within limits. However, a low COP was observed. 31 

Keywords.Keywords.Keywords.Keywords.    Energy, stockpile drying, postharvest, tree nuts, dust. 32 

 33 

Almonds (Prunus dulcis) belong to the Rosaceae family, which includes many edible and economically 34 

important fruits such as peaches, raspberries, and apples (Potter et al., 2007; Verma, 2014). The almond 35 

fruit is a drupe that contains a thick fleshy exocarp, called the hull (Yetunde and Udofia, 2015). The hull 36 

encloses a hard shell (hardened endocarp) containing a seed, which is the edible component known as the 37 

kernel (Verma, 2014). Figures 1a, 1b, and 1c show the percentage mass (including moisture) of all the 38 

almond fruit components at harvest, an almond fruit illustration, and the estimated dry basis moisture 39 

content (MCdb) of different components of almonds at harvest, respectively. Average global almond 40 

production has increased by 26% over the past 10 years, reaching about 1.36 million tonnes during the 41 

2019 season (INC, 2020). California is the leading world producer accounting for 77% of the world market 42 

share, followed by Australia and Spain with 8% and 6%, respectively (INC, 2020).  43 
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 44 

Figure 1 (a). Percentage mass (including moisture) of almond components at harvest; (b) Schematic representation of main 45 

components of almonds (Dingke and Fielke, 2014); and (c) Approximate dry basis moisture content (MCdb) of different almond 46 

components at harvest (Moreira and Bakker-Arkema, 1989). Typical dimensions of a whole almond at harvest: Length: 25.74 47 

to 40.89 mm, Width: 16.13 to 29.20 mm, Thickness: 12.69 to 37.32 mm (Dingke and Fielke, 2014). 48 

Currently, almonds are harvested by vigorously shaking the tree with a mechanical shaker to drop them 49 

on the ground. Harvesting of almonds is carried out when the fruit is nearing 100% hull split, exposing 50 

the almond shell within the hull (Connell, 1996).  Almonds are then left to dry on the orchard floor for up 51 

to 21 days where they dry from a typical 10% to 20% kernel dry basis moisture content (MCdb) to an 52 

industry storage standard of about 6% MCdb or less. Drying is imperative as it increases almond shelf life 53 

and reduces their susceptibility to developing molds, rancidity (Chilka and Ranade, 2018; Perry et al., 54 

2010 ), and concealed damage (Reil et al., 1996). The dried almonds are then swept into a central windrow, 55 

parallel to the almond tree rows by a large mechanical sweeper that uses a cylindrical sweeper head with 56 

rubber or metal tines and a blower that often generates significant dust (Faulkner and Capered, 2012). 57 

Almonds are then picked up from the windrows on the orchard floor by mechanical pickers with 58 

considerable dust and are transported to the hulling and shelling facility as described in Figure 2.  59 

The pickup process generates dust as the pickup machine removes dirt, dust, leaf, and other trash from 60 

the windrow materials using a suction fan that discharges into the almond orchard (Downey et al., 2008). 61 

More specifically, CARB (2017) reported that shaking, sweeping and pickup of almonds from the ground 62 
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accumulates nearly 14.15 kg (31.2 Ib) of microscopic dust particles (PM10) when 4,047 m2 (1 acre) of 63 

almonds is harvested, which translates to 16.7 million kg (37 million lb) of PM10. Based on 2019 California 64 

acreage of approximately 4.8 billion m2 or 1,180,000 acres (CDFA, 2020). In 2019, the Almond Board of 65 

California (ABC) set a goal to reduce 50% of dust accumulated during the almond harvest by 2025 (ABC, 66 

2020). Reducing dust in the almond industry can range from addressing the steps that create most of the 67 

visible dust such as the sweeper and pick-up, all the way to dust-less (no soil contact) harvesting, 68 

challenging every step in the harvesting process. However, the lack of feasible mechanical drying methods 69 

impedes the voluntary adoption of practices that significantly reduce harvest dust. Additionally, the 70 

existing natural process of sun-drying almonds in the orchard is compromised if it rains or during periods 71 

of high humidity. The previous, calls for the need for a high-volume mechanical method of drying, which 72 

if appropriately developed, will potentially lead to overall improvements in efficiency and cost reduction 73 

within the almond industry.  74 
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Figure 2. Flow diagram showing post-harvest handling steps currently applied by almond growers in the USA. 75 

     The common practice during the almond harvest is to stockpile almonds in the open after drying. Moist 76 

almonds cannot be stockpiled since they are more susceptible to mold growth. Therefore, the objective of 77 

this study was to develop an outdoor stockpile heated and ambient air dryer (SHAD) to determine the 78 

feasibility of dehydrating almonds (Var. ‘Monterey’) in a stockpile adjacent to a commercial almond 79 

orchard. To assess this concept, an almond stockpile containing an initial mass of 4,155 kg was built and 80 

dehydrated from its initial 12.6±1.6% almond kernel dry-basis moisture content (MCdb) to the desired 81 

storage conditions equal to or less than 6% MCdb. Kernel damage by molds or decay, insect injury, and 82 

the presence of internal cavities were the quality parameters tested for the freshly harvested and dried 83 

almond samples. Then the energy efficiency, energy cost, and dryer performance indicators of the 84 

stockpile dryer were calculated and compared with other dryers. 85 

MATERIALS AND METHODS 86 

SAMPLE PREPARATION 87 

     Fresh ‘Monterey’ almonds were harvested from NICKELS Soil Laboratory (Arbuckle, California) 88 

nearing 100% hull split and swept into a windrow by a Flory Model 7630 sweeper (Flory Industries, 89 

Salida, CA). Almonds were picked up using a Flory 480 PTO harvester (Flory Industries, Salida, CA) 90 

powered by a Kubota M108 tractor (Kubota Tractor Co, Grapevine, Texas) and transferred to a conveyor 91 

cart (Jessee Manufacturing Co, Chico, CA). Immediately after pickup, experimental samples were 92 

collected from the conveyor cart using a plastic container, which carried about 2 kg (4.4 lb) of almonds, 93 

and they were placed in a labeled sample mesh bag. Almond collection was repeated to yield a total of 42 94 

samples. Twelve samples were immediately transported to the Postharvest engineering laboratory at the 95 

University of California (UC) Davis (Davis, CA) to test for initial moisture content and quality parameters. 96 

A wireless data logger (El-USB-2, Lascar electronics Co, Erie, Pennsylvania, USA) that recorded 97 
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temperature (T), relative humidity (RH), and dew point temperature every 5 minutes was placed in each 98 

of the remaining samples (30). These were used to monitor the drying process within the stockpile. Each 99 

data logger was roughly placed in the center of each sample mesh bag and fully covered 100 

with almonds to shield it from the environment. 101 

(b) 

(

(a
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Figure 3 (a). Schematic representation of stockpile dryer showing main components. (b). Picture showing stockpile dryer, taken 102 

at NICKELS soil laboratory Orchards (Arbuckle, California). (c). Schematic representation of the weather station kit and the 103 

main components. (d) Schematic representation of stockpile of almonds showing three layers of almonds. 104 

DRYING EQUIPMENT (PORTABLE INFIELD ALMOND DRYER) 105 

A mobile stand-alone drying system used for the stockpile drying experiment was built at the Biological 106 

and Agricultural Engineering (BAE) fabrication shop at UC Davis (Figs.3a and 3b). The drying system 107 

consists of the following components: 1) A 7.25 kW (9.72 hp) dual powered (propane and gasoline) 108 

generator (Model 100297, Champion Global power equipment, Santa Fe Springs, California, USA); 2) A 109 

1.49 kW (2 hp) propane heated vane axial fan with a 457.20 mm (18 in) diameter outlet (Sukup 110 

Manufacturing Co, Sheffield, Iowa, USA); 3) A 2.13 m (7 ft) x 1.52 m (5 ft) x 0.30 m (1 ft) air distribution 111 

plenum built from 28.70 mm (1.13 in) thickness plywood; 4) A 1.22 m (4 ft) height x 1.83 m (6-ft) carbon 112 

steel diamond-shaped expanded metal A-frame with 3.05 mm (0.12 in) overall thickness, openings of 113 

42.93 mm (1.69 in) x 14.22 mm (0.56 in), strand thickness of 4.06 mm(0.16 in) and strand width of 3.05 114 

mm (0.12 in); 5) High temperature rigid 304 stainless steel duct hoses of 152.40 mm (6 in) diameter to 115 

connect the fan to the plenum, and the plenum to the A-frame. A pressure sensor (Series MS Magnesense, 116 

Dwyer Instruments Inc, Michigan City, Indiana, USA) was used to record pressure in the drying plenum. 117 

A rechargeable battery operated weather station (Fig 3c) with a 5 W solar panel, held by a 2.99 m (9.8 118 

ft) tripod (U30-NRC-SYS-C, Onset Computer Corp, Bourne, Massachusetts, USA) was placed adjacent 119 

to the drying system to monitor environmental conditions during the experiment, consisting of the 120 

following: 1) A T/RH sensor (S-THB-M002, Onset Computer Corp) covered by a solar radiation shield 121 

(RS3, Onset Computer Corp); 2) A wind speed sensor (S-WSB-M003, Onset Computer Corp); 3) A wind 122 

direction sensor (S-WDA-M003); 4) A solar radiation sensor (S-LIB-M003); 5) A data logger (HOBO 123 

U30 NRC, Onset Computer Corp) to store the data from the weather station sensors at 5-minute intervals. 124 
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DRYING STOCKPILE AND SAMPLE DISTRIBUTION  125 

Almonds were deposited directly from the conveyer cart onto the A-frame until a stockpile height of 126 

about 0.30 m (1.00 ft) was achieved to form the bottom layer, ten replicates of almond mesh bags 127 

containing T/RH sensors were placed on the partial almond stockpile. The procedure was repeated to form 128 

the middle and top layers, with a partial stockpile height of 1.22 m (4.00 ft), and 2.13 m (7.00 ft) 129 

respectively, as shown in Figure 3d. The conveyer cart contained an inbuilt weighing scale that was used 130 

to record the almond stockpile mass that amounted to 4,155 kg (9,160 lb) at a height, width, and length 131 

equal to 2.13 m (7.00 ft) x 3.05 m (10.00 ft) x 3.66 m (12.00 ft) respectively. Corrugated French pipes of 132 

size 0.09 m (0.30 ft) x 3.05 m (10.00 ft) were used to demarcate the stockpile perimeter and keep it intact. 133 

Almonds were dried for 11 days until the desired storage moisture content of about 6% MCdb was achieved 134 

(USDA, 2019).  135 

Drying was achieved as a combination of heated air at 55 ± 5.29oC (131 ± 41 .52oF) recorded in the 136 

drying plenum with airflow of 0.078 ± 0.02 m3/s per m3 of fresh almonds (4.69 ± 1.13 cfm/ft3 of fresh 137 

almonds), and ambient air at a temperature and relative humidity of 18.47 ± 5.43oC (65.25 ± 41.77oF) and 138 

31.74 ± 13.77% respectively. After drying, 30 mesh bag samples of almonds were retrieved from the 139 

stockpile and immediately transported to the Postharvest engineering laboratory at UC Davis to test for 140 

final moisture content and quality parameters. 141 

SAMPLE MOISTURE CONTENT DETERMINATION  142 

Five almonds were randomly selected from each sample mesh bag. Hulls were manually removed 143 

(hulling), and then kernels were extracted after the shell was cracked with a hammer (shelling). Almond 144 

kernels were then placed in a 70 mm (2.8 in) diameter aluminum crimpled-walled weighing dish (Cole-145 

Parmer instrument co, Vernon Hills, Illinois, USA). Dry basis moisture content (MDdb), expressed as a 146 

percentage, was determined using the oven drying method for 24 hours at an oven temperature of 105oC 147 

as described by AOAC, (1990). 148 
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QUALITY PARAMETERS 149 

Ten almonds were randomly selected from each sample mesh bag to visually quantify any damage by 150 

molds or decay, insect injury, and presence of internal cavities. The number of defective almonds was 151 

counted and expressed as a percentage of the total sample (10) per tested quality parameter, as specified 152 

in the shipping point and market inspection instructions almonds manual (USDA, 1998). The presence of 153 

split cotyledons after cutting the kernels in half with a knife shows internal cavities (Coates, 2018). Moldy 154 

almonds were denoted when visible on the kernel. The white or grey mold that could easily be rubbed off 155 

with fingers was ignored and decay was recorded when the kernel was completely or partially decomposed 156 

(USDA, 1998; Kader, 2013). The presence of insect, web, frass, or evidence of insect feeding was counted 157 

as insect injury (Schatzki and Ong, 2001; USDA, 1998). 158 

 ENERGY USAGE DURING DRYING  159 

The total energy utilized by the SHAD is the sum of the electrical and propane energy consumed by the 160 

heater and fan. Electrical usage (E1) expressed in kWh is computed using Equation 1 (Motevali et al., 161 

2011; Muralidhara, 2017).  162 

�� = �� × � × 	  (1) 163 

where  164 

dp is the total pressure within the plenum (Pa).  165 

    q is the fan-delivered airflow (m3/s), which was calculated from the fan performance curve. 166 

t is the drying time (h)    167 

Propane energy usage (E2) by the heated fan is computed using Equation 2 168 

�
 = � × �                  (2) 169 

where  170 

   N is the amount of propane used by the heater (L). 171 

   P is the amount of energy in 1 liter of propane gas, equal to 25,503 kJ (Elgas, 2019)    172 
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The total energy used Et (kJ) is given by Equation 3, after converting E1 from kWh to kJ, where 1 kWh is 173 

equal to 3,600 kJ.  174 

� =  �� +  �
                           (3) 175 

where  176 

Et is the total energy consumption. 177 

Specific energy required to removed 1000 kg (a tonne) of water from the almond stockpile (Etn) is 178 

calculated using Equation 4. 179 

�� =  
��

�
× 1000                  (5) 180 

where 181 

W is the mass of water removed from the almonds (271 kg),  182 

Factor 1000 denotes a tonne of water in the almonds. 183 

ENERGY COST 184 

The energy cost required to dry a tonne of the initial weight of almond stockpile (Ctn) is calculated using 185 

Equation 5.    186 

�� =  
��

��
× 1000            (5) 187 

where 188 

 Ct is the sum of the propane cost (Cp) and electricity cost (Ce). 189 

Cp is the total propane cost ($ 0.63 per liter of propane) (EIA, 2019) 190 

Ce is the total electricity cost ($ 0.16 per 1 kWh) (EIA, 2020). 191 

ma is the initial weight of almonds (4,155 kg) 192 

Factor 1000 denotes a tonne of almonds before drying. 193 
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DRYER PERFORMANCE INDICATORS 194 

Specific Moisture Extraction Rate (SMER) 195 
SMER (kg/kWh) describes the effectiveness of energy used in the drying process (Prasertsan and 196 

Saensaby, 1998), calculated using Equation 6 (Stawreberg & Nilsson, 2010, Liu et al., 2018). 197 

���� =  
�

��
              (6) 198 

Moisture Extraction Rate (MER) 199 
MER (kg/h) measures the dryer capacity (Prasertsan and Saen-saby, 1998), calculated using Equation 200 

7 (Liu et al., 2018).  201 

��� =  
�


                 (7) 202 

Coefficient of Performance (COP) 203 
COP is used to evaluate the efficiency of the propane heated fan. COP is a dimensionless value 204 

expressed as the ratio of energy produced to the energy used by the propane heated fan, calculated  using 205 

Equation 8 (Oktay and Hepbasli, 2003; Yahya, 2016) 206 

��� =  
∑�

� 
                   (8) 207 

where 208 

   ∑Q (kJ) is the total dissipated energy.  209 

Ruíz (2015) indicates that Q is calculated as the sum of the energy required to raise the temperature of the 210 

almonds and the latent heat used to remove water from the almonds, as shown in Equation 9. 211 

    ! =  "# × �#$%� −  %
' +  ( × �)     (9) 212 

where 213 

  Ca is the specific heat capacity of the almonds taken as 2.2 kJ/kgK (ASHRAE,2010) 214 

  T1 and T2 are the initial and final temperatures of the almonds. 215 

During drying, the heater automatically turned on and off, controlling the airflow, pressure buildup, and 216 

saving energy usage. Equation 9 was modified into Equation 10 to account for the total energy (∑Q) 217 
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required to raise the temperature of the almonds during drying, as quantified by temperature sensors in 218 

each almond sample.  219 

∑! =  "# × �# × ∑$%� − %
'  +  ( ×  �)        (10) 220 

where 221 

∑$%� −  %
' is the summation of temperature rises during the entire drying period. 222 

Latent heat of vaporization of water (Cv) at 55 oC is 2,369.63 KJ/Kg (Osborne et al., 1939) 223 

2.7 DATA ANALYSIS 224 

All data visualization and analysis were developed in SAS Enterprise 7.1. A split-plot design was used 225 

for this experiment, where the stockpile (plot) was partitioned into three subplots: bottom, middle and top 226 

layers. Analysis-of-Variance (ANOVA) was conducted on both moisture content and quality parameters 227 

to determine whether the differences were statistically significant at each height level. When a significant 228 

main effect was found, a post-hoc test using Tukey's Honest Significant Difference (HSD) test was 229 

conducted to ascertain where the difference of the means lies in the height levels at a 95% confidence 230 

level (p ≤ 0.05). To assess this, data of temperature and relative humidity (RH) within each mesh bag 231 

sample were graphed against time (days) for each stockpile level (bottom, middle, and top) to visualize 232 

their trend and relationship.  233 

RESULTS AND DISCUSSION 234 

MOISTURE CONTENT AND QUALITY PARAMETERS 235 

After 11 days of drying, the mean MCdb for the bottom, middle and top layers were 7.12 ± 2.64%, 6.42 236 

± 3.27%, 4.59 ± 0.73% respectively as shown in Figure 4a.  ANOVA test showed that MCdb was 237 

significantly different between the stockpile layers (p-value < 0.01, F-value = 8.67, 2 degrees-of-freedom). 238 

Post hoc Tukey’s honestly significant difference (HSD) test was conducted, which showed that the MCdb 239 

in the bottom and middle layers were not statistically different. It is hypothesized that the significant 240 
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difference between the MCdb in the stockpile layers can partly be attributed to the non-uniform distribution 241 

of air during the drying process.  242 

Quality parameter testing for almonds before drying showed that internal cavities, decay or mold 243 

damage, and insect injury were 0%. After drying, the almond stockpile was 96.12 ± 3.59% free from 244 

quality concerns or defects. Internal cavities and decay or mold damage contributed 1.77 ± 2.66%, and 245 

1.81 ± 2.57%, respectively (Fig 4b). No evidence of insect injury was observed, so this factor was excluded 246 

for further analysis. ANOVA showed that the differences of the quality parameters were not significant 247 

between the stockpile layers (p-value = 0.93, F-value = 0.26, 5 degrees-of-freedom), therefore a post hoc 248 

test was not conducted. Mold or decay can potentially be attributed to sections within the stockpile, which 249 

did not receive sufficient air due to the potential lack of proper air distributed through the stockpile. Coates 250 

(2018) indicated that internal cavities are caused by a fast-drying rate, where the outer surface of the 251 

almond solidifies before the center leading to kernel splitting. USDA (1998) reports that decay or mold 252 

damage and insect injury have a 5% tolerance during grading while live insects have 0% tolerance, hence 253 

the quality parameter results are low and not concerning.  254 

AMBIENT CONDITIONS 255 

The stockpile was assumed to receive the same treatment of ambient conditions throughout, which are 256 

as follows: Average ambient temperature of 18.47 ± 5.43oC (65.25 ± 41.77oF) and RH of 31.74 ± 13.77% 257 

recorded by T/RH sensor; average wind speed of 1.61 ± 2.03 m/s and gust speed of 2.78 ± 2.81 m/s 258 

recorded by wind speed sensor; average wind direction of 133.30 ± 65.42 ∅ recorded by wind direction 259 

sensor; and average solar radiation of 197.47 ± 262.19 W/m2 recorded by a solar radiation sensor. 260 
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 261 

Figure 4. (a)  Bar plot showing moisture content with stockpile layer. Bar plots followed by the same letter are not 262 

significantly different at p = 0.05 (ANOVA) (Tukey's Honest Significant Difference). (b) Bar plots showing quality parameters 263 

(%) per stockpile layer. Error bars indicate standard error. 264 

DRYING CONDITIONS 265 

Freshly harvested almonds with an initial kernel MCdb of 12.6±1.6% and the initial RH for the almond 266 

stockpile was 70.38 ± 2.87%. At the end of the drying period, the top layer yielded the lowest RH (26.25%) 267 

in comparison to the middle (52.95%) and bottom layers (58.40%) as shown in Figure 5a. Additionally, a 268 

low rate of change in RH was recorded for the bottom (0.58% per day) and middle layers (0.26% per day) 269 

of the stockpile, which was not the case for the top layer (5.91% per day). Differences in RH can be partly 270 

attributed to the differences in the distribution and air delivery from the fan. Figure 5b shows the 271 

temperature profile. The fan ran throughout the entire experiment, but the heater turned on and off 272 

depending on the ambient conditions accounting for 28% of the drying time. The large temperature gap 273 

between the plenum temperature when the heater was on and the temperature of the almonds is an 274 

indication that the system was not efficient in achieving the desired drying temperature.  275 
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Figure 5. (a). Relative Humidity profile. (b) Temperature profile 276 

ENERGY USAGE DURING DRYING  277 

An average pressure (dp) of 308.48 ± 74.1 Pa and airflow (q) of 1.86 ± 0.45 m3/s (3941.12 ± 953.5 cfm) 278 

were recorded in the drying plenum. Electrical energy consumption equaled 545,328 kJ, propane energy 279 

usage equaled 978,809.36 kJ, and therefore the total energy consumption during the whole drying process 280 

was 1,524,137.36 kJ. The energy required to remove a tonne of water from the almond stockpile (Etn) is 281 

5,623,290 kJ/kg of water.  282 

ENERGY COST 283 

Propane and electricity costs of $ 24.18 and $ 24.24 respectively were calculated, achieving a total 284 

drying cost of $ 48.42. The cost required to dry a tonne of almonds is $ 11.65.  285 

DRYER PERFORMANCE INDICATORS 286 

Drying in this experiment was achieved as a combination of using both heated and ambient air to attain 287 

a SMER, MER, and COP of 0.64 kg/kWh, 1.02 kg/h, and 1.33 respectively. Perera and Rahman (1997), 288 

indicated that SMER of Heated Air Dryers (HAD) is in the 0.12 – 1.28 range. Further, Pal and Khan (2010) 289 

reported that drying sweet pepper with a HAD at 45o C (113o F)  yielded a  SMER of 0.93 kg/kWh and 290 

-10

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11

R
e
la

ti
v
e
 H

u
m

id
it

y
 (

%
)

Time (Days)

Top layer Middle layer Bottom layer

Ambient Plenum

(a)

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11

T
e
m

p
e
r
a
tu

r
e
 (

o
C

)

Time (Days)

Top layer Middle layer Bottom layer

Ambient Plenum

(b)



ASABE Journal Template July 2020  16 

MER of 0.22 kg/h, increasing the drying temperature to 55o C (131o F) provided SMER of 1.06 kg/kWh 291 

and MER of 0.37 kg/h. Therefore, the SMER of SHAD is within the range of existing HAD, and MER 292 

higher than the reported study was recorded.  293 

      A comparison of SHAD used in the experiment with other types of dryers shows that SMER (Fig 6a) 294 

and MER (Fig 6b) values are within the appropriate range. However, comparisons show that a low COP 295 

(Fig 6c) was generated. Kitanovski et al. (2009) reported that a low COP means the system was not 296 

efficient. For the case of SHAD, non-uniform distribution of warm air in the stockpile and heat lost 297 

because some sections of the A-frame were not fully covered by the almond stockpile which in turn forces 298 

longer drying periods are partly contributed to a low COP.  299 

Ultimately, further studies will focus on improving air distribution within the stockpile during the drying 300 

process, this can be achieved by introducing an air distribution duct underneath the stockpile with channels 301 

diverting air to the entire stockpile. The concept is adapted from Das et al. (2001) where an air distribution 302 

duct was developed for an air recirculating tray dryer and Noyes (2006) suggested the use of multiple air 303 

ducts to distribute the air in silos. Also, further studies comparing the SHAD with the conventional 304 

windrow drying method need to be carried out in parallel. Altering the drying conditions, such as drying 305 

temperature and airflow will also be considered. 306 
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Figure 6. (a). Bar plot comparing SMER of different dryers. (b) Bar plot comparing MER of different dryers. (c) Bar plot  307 

comparing COP of different dryers. A- Closed system heat pump dryer for ginger at 50 oC (Chapchaimoh et al., 2016), B- 308 

Convection solar dryer for bitter gourd (Vijayan et al., 2016), C- Heat pump dryer for tomato slices at 45 oC (Coşkun et al., 309 

2017), D- Solar dryer for cassava at 40 oC (Yahya et al., 2016), E- Solar assisted heat pump dryer for cassava at 45 oC (Yahya 310 

et al., 2016), F-Solar assisted heat pump for mushrooms at 45 oC (Şevik et al., 2013), G-Stockpile heated and ambient air dryer 311 

for almonds at 55 oC (this study), H- Solar dryer for chili at 50 oC (Mohanraj and Chandrasekar, 2009), I-Heat pump dryer for 312 

sweet pepper at 40 oC  (Pal & Khan, 2010). J- Heat pump assisted hybrid photovoltaic thermal solar dryer for saffron at 45 oC 313 

(Mortezapour et al., 2012). K – Heat pump for Mint leaves at 45 oC (Ceylan & Gürel, 2006) 314 
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CONCLUSION 315 

SHAD was developed to directly dry almonds outdoor in stockpiles. SHAD is intended to replace the 316 

conventional windrow drying of almonds, which involves sweeping and picking processes that accumulate 317 

dust. The adaptation of the SHAD has the potential to reduce the drying time of almonds if the efficiency 318 

of the dryer is improved. Almond stockpile of 4,155 kg was dried with SHAD using a combination of 319 

heated and ambient air for 11 days. Almonds were dried from 12.6 ± 1.6% to 6.046 ± 2.63 MCdb, Tukey’s 320 

HSD test showed that the bottom (7.125 ± 2.462 MCdb) and the middle layer (6.421 ± 3.265 MCdb) were 321 

in the same Tukey grouping from the top layer (4.593 ± 0.734 MCdb). This is attributed to the non-uniform 322 

distribution of air within the stockpile and air leakages which led to warm air escaping rather than going 323 

through the stockpile.  324 

Initial quality parameter tests showed that internal cavities, decay or mold damage, and insect injury 325 

were 0%. After drying, the stockpile was tested to be 96.12 ± 3.59% free from quality concerns, attributed 326 

to 1.77 ± 2.66% internal cavities, 1.81 ± 2.57% decay or mold damage, and there was no insect injury. 327 

The effect of quality parameters on the stockpile layer was found not to be significant (p < 0.05). Energy 328 

performance tests showed a SMER of 0.64 kg/kWh, MER of 1.02 kg/h, COP of 1.33, and the drying 329 

process cost $11.65 per tonne. Comparison with other commercial dryers showed that SMER and MER 330 

are within acceptable limits, however, a low COP was observed.  331 

The major drawback is that there was lack of appropriate air distribution through the stockpile. Work is 332 

ongoing to develop an air distributor to be placed underneath the A-frame to ensure that drying air is 333 

evenly distributed throughout the stockpile. Further studies will also include a parallel comparison of the 334 

SHAD drying method with the conventional windrow drying of almonds.  335 
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