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Advances in computing technology, new and ongoing restoration initiatives, concerns about climate change's ef-
fects, and the increasing interdisciplinarity of research have encouraged the development of landscape-scale
mechanistic models of coupled ecological-geophysical systems. However, communication barriers and uneven
infiltration of new strategies for data-driven induction persist in the context of simulation model development
across disciplines. One challenge is that ecology and the geosciences have embraced different modeling episte-
mologies, with ecologists historically favoring inductive inference from generalized, phenomenological models
and geoscientists favoring deductive inference from detailed first-principles models. Today, many models used
for environmental management, particularly for aquatic ecosystems, tend to be highly detailed, with ecological
and geophysical components represented in different modules that are linked but often not closely integrated.
These observations highlight a need for cross-disciplinary dialogue about landscape-scale modeling objectives
and approaches. The philosophies of pattern-orientedmodeling in ecology and exploratorymodeling in geophys-
ics have yielded advances in theoretical and applied knowledge in both of those disciplines, but they are not com-
prehensive across all aspects of landscape-scale modeling. Here we define and synthesize the “Appropriate-
Complexity Method” (ACME), which builds upon these two philosophies to guide the development of process-
oriented models across a spectrum of scientific and management objectives. ACME helps modelers efficiently
converge upon an optimal modeling structure through: i) systematic evaluation of the attributes that comprise
computational and representational detail, forwhichwehavedeveloped anoperational decision tree; ii) iterative
adjustment of models based on pattern-oriented model evaluation strategies; and iii) the use of appropriate
datasets (where applicable) to build conceptual models and formulate predictions. Decisions about aspects of
computational and representational detail are based on the landscape's emergent properties. They are also
based on a hierarchy of classes of questions governing model objectives that represent a multi-attribute tradeoff
among validation potential, interpretability, tractability, and generality as functions of computational and repre-
sentational detail. Tradeoff curves, together with model objectives, provide further guidance for determining the
“appropriate” level of complexity for representation of processes in models. Once deemed adequate for address-
ing the original research question of interest, models may be used for projection and scenario testing. They may
next undergo expansion that moves them down the hierarchy, where they can then be used to address research
questions of higher specificity, detail, and validation potential, though at a cost of lower tractability and interpret-
ability on the tradeoff curves. This practical, systematic procedure provides clear guidance for the design and im-
provement of landscape models that may be used to address a wide variety of questions relevant to restoration,
over a spectrum of scales.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

How will marsh habitat distribution and the abundance of sub-
mersed aquatic vegetation change when proposed diversions to the
Mississippi River are enacted? What are the primary drivers regulating
landscape structure in the Florida Everglades? These types of questions
have prompted the development of models that couple ecological and
geophysical processes at the landscape scale so that the processes driv-
ing complex environmental systems can be better understood and/or
predicted. Aided by the increasing propensity to work across disciplin-
ary boundaries and by the panoply of modeling tools, approaches
(e.g., agent-based, cellular automata, finite element, finite difference,
GIS-based modeling), and resources (e.g., supercomputer time), mod-
elers face fewer barriers than ever before. However, development of
guiding theory has lagged behind emergence of computational tools.
Compounding the challenge, approaches to modeling in ecology and
geophysics have been divergent, and preexisting ecological and geo-
physical models that are simply coupled together commonly fail to ad-
equately represent the bidirectional feedbacks crucial in the emergence
of landscape structure (Jackisch et al., 2014).

A legacy of the International Biological Program of the 1960s and
1970s and its reductionist emphasis onmeasuring andmodeling every-
thing is that models used by regulatory agencies for management of
landscapes attempt to represent many state variables and require im-
mense computational resources to simulate just a few scenarios
(SFWMD, 2005; USEPA, 2010; Cloern et al., 2011; Groves et al., 2012).
Despite attempts to make the models as representative as possible,
these complex models may suffer from accumulation of error (Hajek
andWolinsky, 2012) andmay not provide insight intowhy phenomena
that they can predict, such as toxic cyanobacteria blooms, occur (Li et al.,
2014). Less visible in the environmental management scene aremodels
with reduced scope, scale, or representational detail (e.g., Seybold et al.,
2007; Larsen andHarvey, 2011; Liang et al., 2015b), often formulated by
individual researchers or groups of researchers, as opposed to agencies.
Compared tomore detailedmodels, these types of models may bemore
appropriate for providing process-level insight into dominant driving
processes or system sensitivity to perturbation (Murray, 2003). In fish-
eries management, Collie et al. (2014) describe a “sweet spot” for
models at intermediate levels of complexity, for which model fit is rea-
sonably good but excess parameter uncertainty has not accumulated.
Here we describe how models along the full spectrum of complexity
could fulfill different roles in environmental management, and provide
guidance to help modelers select an appropriate formulation. We use
the term “complexity,” in a loose sense, to refer to the level of detail in
models, as explicated further in Section 2.1. However, when we refer
to complex systems, we refer to collections of entities that exhibit emer-
gence (i.e., phenomena that arise non-additively from interactions be-
tween the components).

The Appropriate-Complexity Method (ACME) is a comprehensive
guide for developing and implementing models of complex environ-
mental systems for purposes of understanding the dominant factors re-
sponsible for their emergence and predicting how they will respond to
changes in those drivers, including alternate management scenarios. Its
focus is on mechanistic models, as many correlative statistical models,
evenmodels constructed using advanced machine learning techniques,
are not robust to violations of stationarity (Milly et al., 2008). In a non-
stationary regime, drivers may shift outside the envelope of variability
for which these statistical models were constructed. However, certain
types of emerging data-driven modeling techniques have roles in this
framework for resolving complex networks of interactions or forecast-
ing the future behavior of certain types of systemsunderstood to behave
deterministically, in a manner that is robust to nonstationarity.

ACMEemerges frommodeling traditions in ecology and geosciences,
building on extant frameworks. Model objectives are first broken down
into intermediate objectives classified within a hierarchy. This classifi-
cation sets the coarse-scale level of “appropriate” detail. Next the mod-
eler identifies the emergent properties of the system that the model
should reproduce and develops a conceptual model of the sets of pro-
cesses and variables hypothesized to be responsible for the develop-
ment of those emergent properties. From this starting point the
modeler systematically evaluates and fine-tunes distinct components
of the model's “detail,” making decisions that will ultimately regulate
the balance among the model's ability to reproduce emergent phenom-
ena, its interpretability, tractability, and specificity. The next step is
model evaluation, which determines whether themodel adequately re-
produces the system's key emergent behavior(s). The final step is itera-
tion, whereby the model is expanded to tackle questions that become
progressively detailed or location-specific. New data-driven inference
strategies can aid in structuring models by identifying dominant vari-
ables and the strength and nature of their couplings. When forecasting
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is the strict objective, some of these data-driven strategies make it pos-
sible to use an equation-free approach to develop predictions that are
robust to nonstationarity, but this alternative may be appropriate only
for a subset of low-dimensional systems.

2. ACME within a spectrum of approaches to modeling

2.1. The concept of “detail” in models

A clear definition of “detail” with respect to model formulation is
critical in developing a concept of “appropriate complexity.” Here, we
differentiate between “representational detail” and “computational de-
tail.” Briefly, representational detail refers to the number of state vari-
ables, processes, and interactions that a model simulates, directly or
indirectly, and their spatiotemporal extent. Computational detail re-
fers to how processes are simulated and includes factors such as spatio-
temporal resolution and whether processes are directly simulated
(mechanistic descriptions converted to equations) or implicitly consid-
ered (phenomenological descriptions represented by parameterized
functions, as discussed in Getz, 1998). Though correlated, the two
types of detail are not identical, as modelers can employ techniques
that reduce computational detail while not sacrificing representational
detail. Examples include implicit representation of processes or vari-
ables within a spatial dimension not contained within the governing
equations (e.g., stress or turbulence arising from flow gradients in a ver-
tical dimension that is not simulated), referred to as a “quasi” 2D or 3D
simulation, and parameterization of certain processes. Henceforth,
when we look across the set of models that are used to compute a spe-
cific process (e.g., population growth), we refer tomodels at the lowend
of the “computational detail spectrum” as “simple” and those at the high
end as “complex.”

2.2. Basic approaches to modeling in ecology and geosciences: A brief
history

Traditional approaches to modeling in ecology and the geosciences
diverge with respect to representational detail, which translates into
epistemological differences in how models have been used in each
field. Geoscientists traditionally used models grounded in first princi-
ples in a deductive manner, to derive predictions for specific systems.
In contrast, ecologists traditionally used phenomenological models to
induct common system behavior from observations. Recent changes in
approaches to modeling have expanded the ways in which models are
used for inquiry in both disciplines.

In geophysics the primary drivers can often be represented as sys-
tems of partial differential equations originating from classical mechan-
ical theory (e.g., describing heat flow, fluid flow, sediment transport, or
rock mechanics). Models with strictest adherence to first principles are
computationally intensive and thus typically limited to a small spatial
scale (e.g., usually centimeters to tens of centimeters for models of the
Navier-Stokes equations for fluid flow, but also see Khosronejad et al.,
2014). However, geophysicists are increasingly tackling problems at
the landscape scale, with greater numbers of coupled state variables,
using a variety of approaches. Modern landscape evolutionmodels cou-
ple hillslope, channel, tectonic, and even vegetation processes by linking
physically-grounded equations that are simplifications relative to first
principles (e.g., gradient-flux equations, geomorphic transport laws)
and/or semi-empirical (e.g., organic accumulation equations). These
models may combine stochastic (e.g., probabilities of sediment detach-
ment) and deterministic (e.g., water flow velocities) dynamics
(Willgoose, 2005; Tucker and Hancock, 2010; Fagherazzi et al., 2012).

Although many of the leading landscape evolution (reviewed in
Willgoose, 2005 and Tucker and Hancock, 2010) and ecogeomorphic
(reviewed in Fagherazzi et al., 2012 and Saco and Rodríguez, 2013) sim-
ulation models are typically run over large domains and are computa-
tionally intensive, geoscientists have also been leading the charge to
reduce computational and representational detail in models to a mini-
mal level. Stark and Passalacqua (2014) developed a highly simplified
landscape evolutionmodel as a set of low-dimensional, coupled dynam-
ical systems to explore the coevolution of biomass and regolith under
mass wasting and runoff erosion. The popular, alternative strategy of
cellular automata modeling involves abstracting the physics governing
fluid flow or sediment transport to discrete rules that route parcels of
water, air, or sediment based on information from surrounding model
grid cells (Willgoose et al., 1991; Murray and Paola, 1994, 1997). Cellu-
lar automata strategies have made it possible to simulate the develop-
ment of braided streams (Thomas and Nicholas, 2002; Coulthard and
Van De Wiel, 2006), floodplains (Murray and Paola, 2003), sand dunes
(Zhang et al., 2010, 2012), wetland landscape pattern (Larsen and
Harvey, 2010, 2011), and river deltas (Liang et al., 2015a, 2015b,
2016), and evaluate their sensitivity to global change and human
drivers.

In contrast to the geosciences, ecological modeling approaches were
originally phenomenological or analytical, with later increases in detail
as data and computing resources improved. Phenomenological
representations—termed “demonstration models” (Evans et al.,
2013)—were first used to describe predator-prey dynamics (Volterra,
1928; Holling, 1959; Arditi and Ginzburg, 1989), fisheries (Ricker,
1952), logistic growth of microbes to a carrying capacity (Monod,
1949), and ultimately competition (MacArthur and Levins, 1967;
Tilman, 1982). One advantage of these models was that, despite their
simplicity, they could reproduce complex dynamics, including the tran-
sition between regular and chaotic population dynamics (May, 1974;
Wilson et al., 1994; Bascompte and Solé, 1995). However, a shortcoming
was their implicit inclusion of complicated dynamics through parame-
ters difficult to quantify in reality (Eppstein and Molofsky, 2007). As a
result, a tradition of working with theoretical analytical models
emerged, with a focus on general equilibrium solutions. Because the pa-
rameters are difficult to quantify, modelers would examine how differ-
ent parameter combinations influence ecosystem properties, thus
emphasizing a general understanding of the consequences of ecological
dynamics rather than a specific understanding of how those dynamics
affect a particular site.

In answer to increasing calls to focus on transients and variability
rather than equilibrium dynamics (Hastings, 2004), ecologists have
gravitated toward more representational models, particularly as com-
puting resources improve. Lagrangian (particle-tracking) methods
such as agent-based modeling have been revolutionizing ecological
modeling by providing a means to account for spatial and functional
heterogeneities, deal with abruptly changing boundary conditions,
and represent animal dispersal (Mooij and DeAngelis, 2003,
Barraquand and Benhamou, 2008, Avgar et al., 2013). Other models in-
corporate detail hierarchically, such as stage- or age-structured models
(Tuljapurkar and Caswell, 2012; de Roos and Persson, 2013; Massie et
al., 2013; Harsch et al., 2014; de Valpine et al., 2014) or employ condi-
tional parameters (Bowler and Benton, 2005).

2.3. Modeling frameworks that ACME builds upon: Pattern-oriented
modeling (ecology) and exploratory modeling (geosciences)

ACME targets model detail based on underlying scientific questions
and the nature of the system being studied, building upon two transfor-
mative frameworks in ecology and the geosciences: pattern-oriented
modeling (Grimm and Railsback, 2012) and exploratory modeling
(Murray, 2007; Larsen et al., 2014), respectively. These frameworks
serve as philosophies of how to use models and improve them in an it-
erative way. Pattern-oriented modeling is an approach to model devel-
opment and assessment based on the extent to which the output
mimics patterns. Strong patterns are the dominant emergent features
a model should reproduce: population cycles or a spatial distribution
of vegetation patches, for example. Weak patterns are typically loose
qualitative relationships, like a positive association between one
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variable and another, or the existence of a population over a particular
span in time. Generally, ecological modelers will tune parameters to de-
termine the range of values that produce a match to either type of pat-
tern. It is likewise important in model assessment that models
reproduce broad spatiotemporal averages of interest such as an ecosys-
tem organic carbon content (Belyea and Baird, 2006; Voroney et al.,
2011), but for models of complex systems, this ability is often not suffi-
cient (Grimm and Railsback, 2012). Even the ability to match a pattern
may not be sufficient in the assessment of models of complex systems,
as it is common for multiple mechanisms to produce similar patterns
at a particular spatiotemporal scale (Levin, 1992; van de Koppel and
Crain, 2006; Eppinga et al., 2009). Rather, Grimm and Railsback
(2012) argue that multiple weak patterns at different scales or levels
of organization typically have more power in model validation and se-
lection than a single strong pattern or bulk average.

Exploratorymodeling refers to the use of simplifiedmodels to provide
insight into the core processes responsible for the development of emer-
gent features. As in pattern-oriented modeling, models representing al-
ternative conceptualizations of the system are evaluated and discarded
when they are unable to replicate key patterns. However, whereas pat-
tern-orientedmodeling typically compares effects of alternate parameter
values, exploratory modeling usually compares models with fundamen-
tally different structures, representing different sets of driving mecha-
nisms. In pattern-oriented modeling the emphasis is on output and
validation so that themodel can eventually be used for prediction or sce-
nario testing. In contrast, in exploratory modeling the emphasis is on the
processes: what are the dominant governing mechanisms and sensitivi-
ties? Often this approach leads to exclusion of processes or variables
not because they are thought to be unimportant but because their effect
Fig. 1.Overview of the Appropriate-Complexity Method (ACME) for developing process-based
tuning the appropriate level of detail for a model begins with identification of the class of qu
patterns and properties. Questions 1–3 within the hierarchy of motivating questions tend to
with higher levels of detail. The most detailed models (Question 6) are often applicable only o
an empirical form for relationships between variables that interact in complex ways (Section
strategic decisions regarding each of the critical attributes of detail (yellow box). In part VI, th
Mismatches between modeled and observed patterns trigger refinement of the conceptual an
to be used for projection and scenario testing (VIIa) or expansion/extension to questions fur
data-driven approaches for understanding and predicting system behavior as depicted in Fig. 4
to the web version of this article.)
may confound the interpretation of results needed to address the specific
research questions.

In ACME, exploratory and pattern-oriented modeling frameworks
become influential once the research question is classifiedwithin a hier-
archical scheme (Fig. 1). The most elementary type of motivating ques-
tion warrants an exploratory modeling approach focused primarily on
elucidating the system's dominant drivingmechanisms. If that basic be-
havior is well understood, the next step is a more detailed simulation
model. ACME guides decisions about the appropriate level of detail for
the model, including whether to use a cellular or differential equation-
based algorithm, Eulerian or Lagrangian framework, and the number
and type of dimensions, variables, and boundary conditions. Through-
out, a pattern-oriented approach guides interactions between model
development and evaluation.

3. The “appropriate-complexity” tradeoff

Inarguably, models are imperfect representations of systems that
balance constraints on computing capabilities, expert knowledge, and
desired level of detail. The particular balance of factors in this tradeoff
determines whether a model is useful for an application. Early in the
history of ecologicalmodeling, Levins (1966) stated thatmodels needed
to sacrifice generality, realism, or precision; they could not possess all
three qualities. Despite advances in computing technology, the general
idea of tradeoffs in modeling persists (Odenbaugh, 2006). As a first
step in developing a practical guide for the establishment of useful
models, we expand on Levins (1966), detailing the nature of contempo-
rary modeling tradeoffs. Namely, increases or decreases in computa-
tional and/or representational detail affect the tractability, specificity,
models for understandingmechanisms at the interface of geophysics and ecology. Coarse-
estions motivating the model and proceeds with identification of the relevant emergent
be suitable for exploratory models, whereas the higher numbers are suitable for models
ver small scales but may inform the development of larger-scale models by establishing
4.2.2). Part IV describes the process of fine-tuning model detail systematically by making
e model is executed, evaluated, and adjusted using a pattern-oriented modeling strategy.
d/or numerical models (Section 4.6), whereas a match indicates that the model is ready
ther down the hierarchy (numbers 1–5). Note also how ACME interfaces with emerging
. (For interpretation of the references to color in this figure legend, the reader is referred
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interpretability, and validation potential of the model (Fig. 2). The opti-
mal balance is constrained by the available resources, which establish
acceptable ranges in tractability, and on the application (i.e., the system
and questions addressed), which sets acceptable ranges in the other
entities.

Tractability refers primarily to the computational resources (i.e.,
number of processors, time per processor) demanded for the execution
of a single run, together with the number of runs needed to address the
motivating questions. In Fig. 2, we have conveniently represented trac-
tability as a negative power-law function of representational detail. In
reality, tractability is related most directly to computational detail. Al-
though computational detail encompasses more than just resolution
and spatial dimension, it was these aspects of detail that motivated
the depiction of tractability using a negative power-law functional rela-
tionship. In anN-dimensional computational domain divided into x cells
per dimension, the total number of von Neumann adjacencies (i.e.,
shared hyperfaces) in the domain is equal to 2NxN. Assuming that
each of these adjacencies requires a flux computation, the total time re-
quired to compute fluxes would scale with NxN.

Specificity is the opposite of generality or universality; it refers to
the extent towhich amodel applies to a single site or community rather
than a general type. It has a minimum at moderately low levels of rep-
resentational detail (Fig. 2), below which so many simplifying assump-
tions have been employed that themodel represents only special cases.
Evans et al. (2013) argue that increasing model complexity often in-
creases generality, in the sense that a linear equation (simple) is a spe-
cial case of a nonlinear equation (more complex but more general). In
our conceptual model, this increase in generality with increasing
model complexity contributes to the minimum in specificity when
approached from the left. To the right of that minimum, specific details
included in the model restrict the number of sites to which it applies.
Modeling “tricks” that reduce the computational detail associated with
a particular level of representational detail typically do so by increasing
specificity. Often, these tricks involve parameterization or statistical
(empirical) representation of dynamic processes, both of which require
calibration to site-specific conditions.

Building on the pattern-oriented modeling concept, validation po-
tential may be quantified as the number of patterns (strong and
Fig. 2. Proposed tradeoffs between specificity, interpretability, tractability, and validation pote
computational and representational detail typically scale together, and that “low” and “high”
detail. (In other words, for both the dashed and solid curve, computational detail increases fro
depicted on the specificity family of curves. The position of each case study on the other sets o
“low” and “high” computational detail curves. Semi-transparent shaded regions depict putativ
Fig. 1 and paraphrased on the right panel. The top portion of the right panel indicates the typ
available online without annotations for teaching purposes.
weak) a model can be expected to replicate, assuming its parameters
are set reasonably. Onemodel, for instance,may produce a river, where-
as the next produces a riverwithmeanmeander curvature thatmatches
that of an actual river, whereas the next replicates the mean and vari-
ance of meander curvature. Because validation potential refers to the
patterns and processes represented, it should scale directly and linearly
with representational detail, to a point. Beyond that point, increasing
representational detail will have diminishing returns. Aswewill discuss
later in this paper, determining whether the model produces a robust
“match” to a specified pattern remains research territory that is largely
underdeveloped.

Last, interpretability refers to the extent to which a signal in the
model's output is traceable to specific processes or inputs. Generally,
models that aremore interpretable provide greater mechanistic insight.
We assume that interpretability is most directly a function of computa-
tional detail, with an approximated inverse linear relationship. Further,
for a given level of representational detail, in the absence of extensive
post-processing of output, we assume that lower computational detail
results in a more interpretable model.

Levins argued that because of the tradeoff in the desirable attri-
butes of models, suites of models weak in different areas were need-
ed to advance ecological theory; in other words, that “our truth is the
intersection of independent lies” (1966; p. 423). One example of this
tactic in contemporary times is the use of ensemble models to pre-
dict global climate change and its effects. Here we argue that models
with different positions on the tradeoff continuum (Fig. 2) may be
individually sufficient to provide answers to individual questions,
but a spectrum of questions (addressed optimally with a corre-
sponding spectrum of models of varying levels of detail) lies behind
most theoretical and management challenges. Articulating the moti-
vating questions clearly enables identification of the key strong and
weak emergent properties that each model must reproduce. Then,
in general, the model with the minimum representational detail
that replicates these properties will strike the best balance between
resource requirements and ability to address scientific and manage-
ment questions meaningfully. Further increases in detail will incur
strict penalties in the form of diminished interpretability, generality,
and resource use.
ntial of models as a function of their representational and computational detail. Note that
computational detail, as used here, are relative to a particular level of representational

m left to right.) Approximate locations of the case-studies (A–G, as depicted in Fig. 3) are
f curves will have the same x-coordinate, with the same relative positioning between the
e optimal regions for models that address the six classes of governing questions listed in
es of questions that the case-study models have been used to address. Note: Figure also



Fig. 3.Case-studymodels of landscapes sculptedbywater, formulated across a gradient of complexity. Except for A,whereflow is into thepage, and F,whereflow is from top to bottom, the
flow vector is from left to right.
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4. ACME as a practical guide for developing numerical models

4.1. Case studies

Throughout this paper we illustrate major concepts and decisions
with a set of key case studies that have emerged within or at the inter-
face of ecology and the geosciences (Fig. 3). Although the influence of
human activities in the systems we focus on is typically restricted to
boundary conditions and/or input-output fluxes, we hope that this syn-
thesis also represents a step forward in the conversation about appro-
priate strategies for modeling coupled natural-human systems in
which feedbacks between human decision making and environmental
phenomena are explicitly simulated.

4.2. Step I: Identify appropriate question class governing model objectives

At the coarsest scale, the levels of computational and representation-
al detail included in models should be set by the nature of the motivat-
ing scientific question. Under the ACME framework (Fig. 1), studies
ideally evolve from the most basic sets of questions (low numbers in
the figure) tomore complicated questions that require a progressive in-
crease in the model's detail. Establishing the “ultimate” or “end-point”
question often follows from consideration of how the results will be
used and who the audience is.

4.2.1. Questions well suited to exploratory models.
1. Can a general process create an observed type of large-scale

emergent pattern or phenomenon? This question seeks to evaluate
the feasibility of first-order drivers or mechanisms for explaining obser-
vations. Exploratory models are often well suited to this type of ques-
tion. For example, Weerman et al. (2010; Fig. 3A) used a highly
simplified model to evaluate whether stress divergence could explain
the occurrence of regularly spaced ridges on mudflats. Key simplifica-
tions included erosion rates that depended on diatom biomass but not
water depth, constant maximum erosion rates in hollows, use of just a
single spatial dimension, and diatom growth rates that depended only
on diatom abundance and water level. Murray and Paola (1997; Fig.
3B),meanwhile, askedwhether simple sediment transport rules (lateral
erosion, limited uphill transport by flow, downstream transport by
flow) were sufficient to explain the development of braided streams.
Their key simplifications involved representing flow and sediment as
discrete parcels that were exchanged between neighboring cells based
on their elevation differences.

Though exploratory models may show that a particular process is a
feasible mechanism through which an emergent phenomenon can
arise, they cannot confirm that the mechanism is responsible. Instead,
they are often useful for ruling out hypothesized mechanisms. Some-
times exploratory models will show that several mechanisms can pro-
duce the same emergent phenomenon, termed equifinality. In that
case, a pattern-oriented modeling approach that compares model out-
put to one or more weak patterns may provide resolution, as in
Eppinga et al. (2008, 2009, 2010, Fig. 3D), who evaluated effects of
three different feedback processes on peatland development in a facto-
rial design experiment. They showed that either awater stress feedback
by itself or coupled to a nutrient accumulation feedback could repro-
duce the strong pattern of interest: regularly spaced ridges aligned per-
pendicular to peatland slopes. However, the models diverged in their
ability to replicate aweak pattern: the relative difference in phosphorus
concentrations between ridges and hollows (Eppinga et al., 2009). Sub-
sequent field sampling of porewater nutrients at these locations was
sufficient to resolve the combination of dominant mechanisms opera-
tive at different peatland sites worldwide (Eppinga et al., 2008, 2010).

Often, in evaluating whether particular processes can reproduce
emergent properties, researchers will focus on the stable or end state
of themodel. However, natural systemsmay be responding to transient
phenomena and located far from equilibrium (Hastings, 2001, 2004). It
is important to recognize that systemswith the same equilibrium point
may exhibit very different distributions of state variables on their way
to that equilibrium, and that the appropriate pattern comparison may
require consideration of the transient state(s).

2.What are the essential attributes that lead to the emergence of
a large-scale phenomenon or process? As above, this question lends
itself well to exploratorymodels. It takes the first question one step fur-
ther by recognizing that, even if a proposed set of mechanisms can pro-
duce an observed pattern, it may do so only within restricted ranges of
environmental variables or under certain formulations (e.g., sediment
transport simulated as a threshold rather than a simple power-law pro-
cess). Because of their efficiency, exploratory models facilitate sensitiv-
ity analyses, enabling exploration of the effects of many alternate rules
or parameterizations. InWeerman et al. (2010; Fig. 3A), such sensitivity
analyses revealed the bounds on the maximum erosion rate within
which patterned mudflats could persist and probed the influence of di-
atom density on pattern structure. In their model of braided streams,
Murray and Paola (1994) examined the influence of different sediment
transport rules on channel braiding (Fig. 3B). They concluded that es-
sential features were erodible banks and limited uphill sediment
transport.

3. What is the range of outcomes a particular set of mechanisms
can produce? Truly a variant of question 2, this question asks how the
emergent properties of a system change as parameters are varied with-
in their feasible range (i.e., a sensitivity analysis). Because this question
is focused on the effects of generalized, first-order mechanisms, it is
also well suited to the use of exploratory models that can easily be
run many times. Various strategies can be employed to explore the pa-
rameter space, including regular or randomized sampling of parame-
ters or space-filling algorithms. Larsen and Harvey (2011; Fig. 3E)
used space-filling Latin hypercube sampling of a nine-parameter
space to determine the range of effects arising from the combination
of a flow-sediment redistribution feedback with a differential organic
sediment accretion feedback. They found that these two feedback pro-
cesses could produce patterns similar to a wide variety of wetland
landscapes.

Bifurcation diagrams generated from simple analytical or numerical
models delineate the range of parameter values within which an emer-
gent behavior is stable. They also suggest whether a system's dynamics
may be characterized by tipping points. Heffernan (2008) analytically
developed a bifurcation diagramdepicting equilibrium abundance of ri-
parian vegetation. A logistic growth equation and amodifiedMichaelis-
Menten equation representing mortality due to scour comprised the
model. The diagram showed that over a range of flood frequencies, veg-
etated and bare riparian zones were alternate stable states, and that an
increase in flood frequency beyond this range could tip the system from
vegetated to bare. Larsen and Harvey (2010; Fig. 3E) derived a numeri-
cal bifurcation diagram of wetland landscape patterns emerging from
feedback between flow, sediment transport, and vegetation dynamics
over a range of water-surface slopes. To do so, they initiated their runs
from different initial conditions and ran them to stability. As with the
analytical analysis of Heffernan (2008), Larsen and Harvey's numerical
analysis indicated that these flow-sediment-vegetation feedbacks pro-
duce alternate stable landscape patterns and the potential for cata-
strophic shifts.

4.2.2. Questions well suited to models with intermediate or high level of
detail.

4. What mechanism is responsible for second-order details of a
pattern? This question addresses the general (i.e., not site-specific)
mechanistic drivers of second-order effects, or weak patterns. Whereas
first-order questionsmight focus on themechanisms producing distinct
vegetation patches, second-order questions might focus on the mecha-
nisms behind the patches' size distribution or shapes. Reproducing
those features may require an increase in the model's representational
detail. As an example, while Murray and Paola's simple cellular
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automata model (1994) reproduced the bifurcations and channel-
shifting characteristic of braided streams, the simulated streams
were overly sinuous (Doeschl-Wilson and Ashmore, 2005; Nicholas
and Quine, 2007). To represent meanders realistically, secondary cir-
culation (Nicholas et al., 2012; Nicholas, 2013) or an algorithm that
determined the radius of flow curvature on a cell-by-cell basis was
needed (Coulthard and Van De Wiel, 2006). In an example from ecol-
ogy, second-order questions about resilience of vegetation patches to
disturbance were investigated with both an exploratory and individu-
al-based model (Realpe-Gomez et al., 2013). The more detailed model
realistically produced patch shapes less smooth than those of the sim-
pler model and indicated that resilience may be underestimated if
plant establishment and growth is simplified to a single state variable.

5. Is it likely that a process creates a particular emergent pattern
in a specific site? A second question invoking the need for validation
with “weak” patterns is that of dominant mechanisms at specific sites.
Answering this questionmay require resolving equifinality and/ormod-
ifying the model's details specific to a site. Other conditions might also
suggest the necessity of more detail in a model. Expert knowledge or
preliminary investigationsmay suggest that emergent patterns are sen-
sitive to boundary conditions or inputs, or exhibit path dependency. In
these cases, the model would need to represent the historical inputs,
perturbations, or variable distributions at the site in a more detailed
simulation framework. Landscapes operating near a threshold also re-
quire more detail, usually in the representation of processes and/or res-
olution. For example, flows in the historic Everglades were likely near
the threshold of entrainment for flocculent bed sediment. A model of
that landscape (Larsen and Harvey, 2010; Fig. 3E) thus required physi-
cally governed and field validated representation of flow and sediment
flux through different vegetation canopies, aswell as fine spatial resolu-
tion in the transitions between vegetation communities. Such a model
addresses a different question (Could stress divergence and resulting sed-
iment redistribution have given rise to the ridge and slough landscape in the
Everglades?) than the mechanistically similar but simpler model of
Weerman et al. (2010) (Can stress divergence trigger the development
of ridges parallel to flow in a generalized mudflat?).

6. What is the relationship between one variable we do not un-
derstand very well and another? Highly detailed models are some-
times used to delineate the functional form of the relationship
between a pair of variables that interact in complex ways. Schmeeckle
(2014; Fig. 3G) used a large eddy simulation model together with a dis-
crete element model that simulated the motion of individual grains of
sand to elucidate the relationship between hydraulic roughness and
shear velocity. With sediment transport, the model showed a multifold
increase in hydraulic roughness, with an order-of-magnitude increase
upon transitioning from bedload- to suspended load-dominated trans-
port. As is typical with this type of model, spatial and temporal resolu-
tion were necessarily fine (e.g., 2 × 10−4 m vertical resolution),
compensated for by limited extent (12 × 6 × 4 cm, with results com-
piled from 5 s simulated time).

Using highly detailed models to elucidate complex relationships
may be an important first step to inform development of larger-scale
or more extensively coupled models and/or to provide guidance for re-
ducing a model's computational detail. As an example of the former, the
roughness solution developed in the Schmeeckle (2014) model might
be a component of a larger-scale but simplermodel of turbidity currents
thatwould need to represent tight coupling between hydraulic and sed-
iment dynamics. As an example of the latter, Larsen andHarvey's model
of Everglades landscape dynamics (2010) needed to incorporate a solu-
tion for bed shear stress within different vegetation canopies over a
range of water surface slopes and water levels. Solving for bed shear
stress within vegetation canopies requires knowledge of vertical veloc-
ity profiles, which might have compelled three-dimensional modeling.
Instead, the authors initially used a detailed fluid dynamical model to
solve for velocity profiles and depth-averaged velocities in different
vegetation canopies over a range of water depths and water surface
slopes. Then, in their two-dimensional, intermediate-complexity
model, they incorporated a lookup table for bed shear stress as a func-
tion of water depth and depth-averaged velocity, based on the fluid dy-
namicalmodeling. In thisway, they obtained a quasi-3D solution of flow
conditions while incurring only the computational expense of a simpli-
fied 2D model.
4.3. Step II: Identify relevant emergent patterns/properties and their critical
scales

In this step, the modeler identifies the emergent features to be
compared against model output, given the question identified in
step I. Early-stage identification of emergent properties aids in
coarse- and fine-tuning model detail and deciding on a general algo-
rithmic strategy. For lower-level questions in the hierarchy (Fig. 1),
the relevant emergent properties are often one or two strong pat-
terns. Widespread or universal landscape patterns (e.g., drainage
networks, banded vegetation patterns) are generally well suited to
simple modeling strategies because they are not sensitive to site-
specific detail (Werner, 1995). In contrast, patterns with many
types of patches and irregularly distributed features may require
more detailed models that are able to reproduce weak patterns,
such as distributions of patch sizes or patch richness or evenness
(Grimm and Railsback, 2012).

While the appropriate emergent properties to choose for model
evaluation are driven by the motivating mechanistic question, data
availability is an important consideration. Information on coarse, land-
scape-scale emergent patterns is often readily available through remote
sensing or other maps. Other times, identification of the relevant emer-
gent properties may set an agenda for needed data collection before the
modeling effort is worthwhile. The case study of Eppinga et al. (2008;
Fig. 3D) provides a pertinent example. Those authors found that the
weak pattern of phosphorus concentration under topographic features
was required to discern betweenmultiple possiblemechanisms of land-
scape pattern formation, prompting a sample collection effort for the
purpose of model evaluation.

Identification of the critical spatial scales of these strong and weak
patterns is often straightforward, typically accomplished through visual
observation in the field or from remote sensing. This information is nec-
essary to inform later decisions about the spatial extent of the model
and spatial meshing strategy for solution of the governing equations
(Section 4.5). Critical temporal scales of pattern development and per-
sistence should also be identified to the best of the modeler's ability
based on historic records or paleoecological information.

Emergent patterns also provide somegeneral indication of the type of
algorithmic strategy thatmight be appropriate. If a variable's evolution is
dominated by the behavior of variables in a local neighborhood (typically
the surrounding one or two layers of cells in the computational grid), it
may be well represented by a cellular automata modeling scheme or
other simplified approach. Metrics based on weak patterns may provide
an indication of the scale of the neighborhood of interaction. For exam-
ple, the Froude number—the ratio of inertial to gravitational forces driv-
ing flow, which indicates whether small perturbations to the water
surface will propagate upstream—has been used to determine whether
a simple, gradient-based cellular automata modeling scheme (e.g., Mur-
ray and Paola; Fig. 3B) is an appropriate strategy for representing sur-
face-water flow (Liang et al., 2015b; Fig. 3F). When, in contrast, a
variable's evolution is dominated by drivers outside a small neighbor-
hood of interaction, a differential equation-based modeling scheme will
be more appropriate. Individual- or agent-based models are appropriate
when emergent patterns are thought to arise from interactions of indi-
viduals (e.g., plants, animals, people) with their environment and
when those individuals exhibit adaptive behavior or have relevant dis-
tinctive features (e.g., genetic markers, immunological state; Grimm
and Railsback, 2013).
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4.4. Step III: Develop conceptual model(s) of processes and identify their
critical scales

Development of a mechanistic model that reproduces observed
emergent phenomena depends in large part on the identification of a
reasonable conceptual model of the system. The conceptual model is a
hypothesis about the key state variables and the nature of the interac-
tions among them. When a model is formulated explicitly to test a
hypothesis or alternative hypotheses, the conceptual model(s)
emerge(s) naturally. If the driving question is more-open ended (i.e.,
“What is the mechanism that causes x?” as opposed to, “Could mecha-
nism A cause x?”), the development of the conceptual model may be
based on expert knowledge about the system, knowledge of mecha-
nisms driving similar types of systems (i.e., analogues), or an under-
standing of the general effects of certain processes. The conceptual
model should include hypotheses about the critical spatiotemporal
scales over which the key processes occur, which may differ from the
spatial and temporal scales of emergence identified in step II. For exam-
ple, processes that produce emergent patterning at the scale of kilome-
ters may arise from distinct flow patterns that vary over the scale of
individual vegetation patches or stems (centimeters to meters). At
this stage, identification of the critical scale of processes need only be
done to an order of magnitude or in a relative way (e.g., large, medium,
small).

Investigators generally approach the challenge of developing a via-
ble conceptual model deductively, progressively ruling out hypothe-
sized conceptual models that do not produce outcomes similar to
observations until left with one or more that do. This process can be
time consuming, with no guarantee that a viable conceptual model or
set of models will emerge. Alternatively, emerging data science tools
may help investigators use inductive techniques to converge more rap-
idly on a viable conceptual model, through data-driven delineation of
process networks. A process network (Fig. 4; Ruddell and Kumar,
2009), also known as a causal network (Sugihara et al., 2012), is a net-
work of key variables and their interactions that is derived from data.

Resolution of process networks is most rigorously performed
through causal inference of interactions between paired variables. Com-
putations generally are performed on time-series of variables, such as
those acquired from sensors. “Classic” causal inference involves compu-
tation of Granger causality statistics.When knowledge of a lagged histo-
ry of variable A improves predictions of variable B beyond those
generated from knowing the history of B alone, A is said to Granger-
cause B (Granger, 1969). A more generalized alternative is transfer en-
tropy (Schreiber, 2000), which determines the extent to which uncer-
tainty in B is reduced by knowledge of A at some time in the past,
relative to the reduction of uncertainty from B′s most recent time histo-
ry. Transfer entropy is based on joint and marginal probability distribu-
tions, whereas Granger causality is based on regression. For Gaussian
distributed variables, transfer entropy produces identical results to
Granger causality, but transfer entropy is better at resolving nonlinear
relationships and is hence more general (Abdul Razak and Jensen,
2014).

One restriction on Granger causality is that it requires variables to be
separable—for A to contribute information independent of B′s long-
term history to prediction of the current value of B. (Note that this re-
striction does not apply to transfer entropy that, as it has been opera-
tionally applied in the earth sciences (Ruddell and Kumar, 2009),
evaluates the extent to which A reduces uncertainty in B relative to B′
s single previous time step.) Thus, for systems that are fully coupled
and deterministic, in which the time series of B contains all of the infor-
mation about the previous time steps of A and other drivers, lagged
values of A would contribute no unique information to the prediction
of B (Sugihara et al., 2012). For such systems, transfer entropy or alter-
native approaches grounded in dynamical systems theory may be more
appropriate. These approaches—convergent cross-mapping (CCM) and
empirical dynamical modeling (EDM)—assume that the system can be
defined by a relatively small number of variables that interact
deterministically.

EDM and CCM are grounded in Taken's Theorem, which states that,
for a closed, deterministic system, the manifolds representing trajecto-
ries in state-space (the space of all interacting state variables) over
time, called the strange attractor, may be reconstructed as “shadow
manifolds” using the timehistory of a single variable, given an appropri-
ate embedding dimension (Takens, 1981; Fig. 4). In CCM, A and B are
causally linked if data points in time that are close to each other (i.e.,
form an ellipse) in the shadow manifold of A are also close to each
other in the shadow manifold of B, and that the size of the correspond-
ing ellipse in B shrinks as the length of the time series from which the
manifolds were constructed increases (i.e., convergence in the sense
of Sugihara et al., 2012). In EDM, the shadowmanifolds are used to fore-
cast future behavior in B, using weighted regression based on vectors of
nearest-neighbor points. If A improves the skill of prediction of the fu-
ture behavior of B, it is considered causally linked (Ye et al., 2015).

In addition to identifying the variables that are causally linked, all of
the causal inference techniques described above can also help identify
critical spatiotemporal scales of interaction and the relative strength of
interactions among pairs of variables. Time lags associated with the
greatest transfer entropy or prediction skill are commonly taken as
the critical time scale associated with variable interactions (Ruddell et
al., 2013). Themagnitude of statistically significant values of transfer en-
tropy or prediction skill further provides information about the relative
strength of interactions across the network. Such information can guide
the formulation of the governing equations of a model simulating the
system of interest and aid in the selection of resolution, extent, and
other attributes of model detail (see Section 4.5 below).

Lastly, emerging data driven techniques can provide information
about the number of dominant variables involved in a process network
(top left of Fig. 4). For low-dimensional deterministic systems, Takens'
theorem can be invoked to determine the number of key variables in a
process network. Namely, the correlation dimension is a type of fractal
dimension that characterizes the number of time lags in a variable's his-
tory that must be accounted for to reconstruct the strange attractor in
the shadow manifold (Grassberger and Procaccia, 1983a, 1983b). It is
interpretable as approximately equal to the number of state variables
driving the behavior in the observed time series. Similar information
can be obtained operationally by determining the embedding dimen-
sion that produces themost accurate predictions for hindcasted time se-
ries (Clark et al., 2015). In the framework of Granger causality or
transfer entropy analyses, the number and identity of critical variables
can only be surmised through identification of significant pairwise caus-
al interactions based on available data, and there is no guaranteewheth-
er those data fully represent the system. Although data-driven
determination of dimensionality has not yet been applied to conceptual
model development for simulation modeling in the environmental sci-
ences, Patil et al. (2001) showed how doing so can improve data assim-
ilation for weather forecasting.

4.5. Step IV: Systematically evaluate the model's attributes that constitute
“detail”

The concept of model “detail” encompasses multiple attributes
(state variables, spatiotemporal dimensions, extent, resolution, and rep-
resentation of coupling), each of which presents important decisions
that govern themodel's tractability, interpretability, specificity, and val-
idation potential. Systematically making decisions about each of these
attributes in light of the driving question(s) (Section 4.2) and emergent
properties can help minimize computational detail for the selected “ap-
propriate” level of representational detail without compromising stan-
dards for specificity. While it would be impossible to provide universal
recommendations, we highlight several potential strategies in the next
sections and in Table 1. Appendix A operationalizes the textual guidance
as a decision tree, with a link to additional online materials that can



Fig. 4. Alternate strategies for data-driven causal inference (C1 for deterministic systems and C2 for a broad range of systems) to inform the development of process networks and make
projections (P1 for deterministic systems and P2 for a broad range of systems). The process network is a conceptual model of a simple system, here, a biofilm, in which ellipses represent
state variables (or indicators of those state variables that can be readilymeasuredwith sensors; pCO2=partial pressure of carbon dioxide; Chl-a=chlorophyll-a; andNO3=nitrate), and
links represent quantifiable directional causal relationships between variables. We have adopted the dynamical systems convention of representing positive relationships with
arrowheads and negative relationships with circles. For convenience, we assume that the biofilm is in the growth phase, not yet limited by dissolved oxygen availability, so that the
system simplifies to three state variables. If the interactions are dominantly deterministic (for example, if external nutrient concentrations are relatively steady), the system may
exhibit a strange attractor (almost certainly different from the well-known Lorenz attractor depicted here). Interactions may then be resolved from data time series through the
method of shadow manifold reconstruction and convergent cross-mapping (C1). Alternatively, transfer entropy can be calculated from data time series to resolve the existence and
magnitude of pairwise connections (C2). Resolved process networks may be translated into numerical models, which can then be used for projection (P2). Forecasts may also be
performed directly from the data, using the method of shadow manifold reconstruction (P1).
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serve as a teaching tool.We also point readers to the synthesis of surface
water flowmodeling strategies by Liang et al. (2015b) and the overview
of computational population biology by Getz (2013) for strategic
modeling advice relevant to particular subdisciplines.

4.5.1. State variables
Decisions about state variables set the scope of a model. If the most

parsimonious set of state variables is not known, the modeling exercise
itself can identify it, based on the extent to which alternate models re-
produce emergent phenomena (Larsen et al., 2014). One challenge in
this type of exploratorymodeling is determiningwhether discrepancies
are primarily attributable to the limited set of processes and state vari-
ables simulated, or whether they are linked most directly to choices
about the other attributes described here (Sections 4.5.2–4.5.5). Making
informed decisions about the level of detail with which to represent the
other attributes will minimize chances of the latter, but some trial-and-
error adjustment, systematic sensitivity analyses, or tests of conver-
gence may be necessary to achieve resolution.

Several techniques can effectively reduce the number of state vari-
ables included inmodels withminimal impact on themodels' represen-
tativeness. When bidirectional coupling between state variables occurs
over different timescales, both variables should be explicitly represent-
ed. In contrast, sometimes state variables are tightly coupled and
synchronous, making it possible to simulate just one of the correlated
variables. In their patterned mudflat model, Weerman et al. (2010;
Fig. 3A) modeled bed sediment fluxes not as a function of excess bed
shear stress (the most directly related state variable) but of the local
abundance of diatoms, which they found to be the primary driver of ex-
cess bed shear stress. In a more complex example, Larsen and Harvey
(2010) avoided directly simulating phosphorus concentration as a driv-
er of peat accumulation in the Everglades, despite its status as a highly
limiting nutrient. Initial small-scale simulations by those authors
(Larsen et al., 2007) revealed that within a patch, phosphorus concen-
trations vary predictably as a function of distance from the patch edge
and local elevation. They developed empirical relations between these
attributes and local rates of peat accumulation and used them to repre-
sent phosphorus indirectly in their landscape evolutionmodel, as a spa-
tially variable peat production parameter that was dependent on local
soil elevations and distance to the patch edge.

Another option for simplification is the discretization of state vari-
ables with continuously varying attributes that influence the variables'
behavior into classes or cohorts. Liang et al. (2015b; Fig. 3F) captured
the different behaviors of fine and course sediment in river deltas
using two uncoupled size classes. Meanwhile, age cohort models,
which are necessarily coupled, are common in ecology (DeAngelis et
al., 1993; DeAngelis and Mooij, 2005; Kendall et al., 2011).



Table 1
Strategies for reducing computational detail while maintaining high representational detail.

Aspect of detail Potential strategies

Number of state variables Simulate single representative variable within each synchronous group.
Use proxy variables that exhibit monotonic relationships to primary drivers.
Represent primary drivers indirectly through empirical relations to state variables, developed through other models or field measurement.
Use classes or cohorts to represent state variables that have continuously varying quantities.

Spatial dimension Perform spatial averaging.
Develop “quasi” 2D or 3D models by parameterizing or using lookup tables to represent additional dimension in a decoupled manner.
Response surface approach to decoupling: obtain multiple lower-dimension solutions to construct behavior across additional dimension.

Temporal dimension Obtain representative solutions for periods with distinctly different behavior (seasons, storms); multiply fluxes of interest by duration of the period.
Spatial extent Represent drivers that vary over larger scales than phenomenon of interest through specified boundary conditions, if feedback to those drivers is negligible.

Use periodic boundary conditions in regularly patterned or well-mixed systems.
Resolution Use heterogeneous and/or anisotropic grids and/or dynamic time stepping.

Employ underrelaxation and/or a diffuser/smoother.
Variable coupling Decouple solutions for variables with different spatial/temporal scales using a hierarchical modeling scheme.

Empirical representation of coupling.
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4.5.2. Spatial/temporal dimension
Questions about spatial and temporal dimension typically focus on

whether a model should represent vertical, lateral, and longitudinal di-
mensions of a problem, andwhether the solution should be steady state
or variable in time. For homogeneous, well-mixed systems, low-dimen-
sional models may be appropriate. However, when the system of inter-
est is heterogeneous, the modeler needs to decide whether processes
can be represented as spatial averages, or whether fluxes need to be
simulated explicitly. As an example of the former,manymodels of rivers
are two dimensional, solving for depth-averaged flow velocities and
sediment concentrations in order to compute reach-scale fluxes under
different fluvial inputs. In contrast, models of habitat suitability for
zebramusselsmay need to represent near-bed boundaryflows and con-
centration profiles explicitly, requiring a three-dimensional simulation
(Morales et al., 2006). However, when depth-variable flow characteris-
tics (e.g., vorticity, bed shear stress) are important, it may be possible to
represent them in a way that minimally increases computational de-
mands (e.g., “quasi” 3D or “quasi” 2D models, as described in Section
2.1). For example, in order to model sediment transport realistically,
Falcini and Jerolmack (2010) represented spiral flow in river bends
through parameterization. Meanwhile, the Lagrangian flow routing
model of Liang et al. (2015b) solved for a two-dimensional water sur-
face profile through the application of one-dimensional equations, ap-
plied along the streamlines of the tracked parcels of water.

Temporal solutions may compound the challenge of high spatial di-
mensionality, requiring a new spatial solution for each increment in
time. However, temporal dimensionality is not a strict binary between
steady-state and fully transient. In some circumstances, it may be possi-
ble to choose an intermediate approach, in which time is divided into
coarse phases (e.g., storm vs. interstorm; summer, fall, winter, spring)
over which it is reasonable to assume that use of an average flux term
is appropriate. For example, Larsen and Harvey (2010) solved for the
spatial distribution of flow velocities and bed shear stresses in the Ever-
glades for mean seasonal flood conditions, and assumed that the
resulting sediment fluxes were a reasonable approximation of fluxes
over the whole flood period. During interflood periods, flow velocities
were assumed insufficient to transport sediment and were not
simulated.
4.5.3. Extent and boundary conditions
The spatial extent of a model should always be several times larger

than the scale of the dominant feedback processes governing the phe-
nomena of interest. However, extent need not be as large as the scale
of controlling drivers that do not engage in bidirectional feedback
with the state variables, provided boundary conditions are selected ap-
propriately. Specified flux boundary conditions may represent input
drivers governed by processes operating at much larger scales than
the phenomena of interest. If natural processes would cause those
boundary conditions to vary over time and/or space, themodeler should
first determine whether the model is sensitive to those variations with
some test analyses. If so, the next question iswhether specific sequences
of inputs are relevant to the key questions being investigated (e.g., how
did amphibian habitat change as a result of the July fire following the
dry winter?), or whether general patterns of variation (how does am-
phibian habitat change seasonally and with different snowfall re-
gimes?) are more central. If the latter, idealized patterns in the
boundary conditions may be imposed (e.g., through a sinusoid). If the
former, a separatemodel ormodule (e.g., a hillslope hydrologymodule)
that covers a larger spatial extent may be needed. Extent also need not
be as large as the scale of the landscape of interest. In regularly pat-
terned or well-mixed landscapes, effectively larger areas can be simu-
lated with use of periodic (wrap-around) boundary conditions (e.g.,
Thiery et al., 1995), if it can be assumed that the portion of the landscape
being simulated is sufficiently far from real boundaries.

Decisions about critical temporal scale are inextricably linked to de-
cisions about spatial scale (Werner, 2003; Murray et al., 2008; Coco et
al., 2013). In most published simulations, temporal scale varies approx-
imately linearly with spatial scale; in other words, large-scale emergent
phenomena require long time scales of simulation and change at slow
rates (permitting use of a large time step) relative to smaller-scale
emergent phenomena. Because of the accumulation of error and the
highly nonlinear nature of complex environmental systems, prediction
of change for small spatial scales over long periods of time is often con-
sidered “impossible,” while prediction of change for the largest spatial
scales over the smallest time scales is considered “meaningless” (Coco
et al., 2013). However, hierarchical modeling strategies that simulate
dynamics at different critical spatial and temporal scales, with loose
coupling across scales, may expand the range of spatial/temporal scale
combinations for which models generate good predictions at a reason-
able computational cost (Werner, 2003; Coco et al., 2013).

4.5.4. Resolution
Spatial and temporal resolution should be selected to achievemodel

stability and convergence and to adequately represent phenomena over
spatial and timescales of interest. With regard to the latter, fast process-
es will generally require high resolution (spatially and temporally), and
processes affecting interfaces or patch edges generally require high spa-
tial resolution. Meanwhile, it is the slow or large-scale processes that af-
fect the duration/extent of the simulation. Therefore, models that
simulate processes over a range of spatial and temporal scales will re-
quire long durations and short time steps and/or fine grids, resulting
in a large computational burden.

Computational burdens attributable to resolution may be reduced
through certain strategies. Heterogeneous grids may be used, in which
cells are fine in the vicinity of interfaces but coarse elsewhere. The anal-
ogous approach for temporal resolution is to use dynamic time
stepping, in which a small time step is algorithmically selected during
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periods in which the state variables are changing rapidly (Salah et al.,
2010). In spatially anisotropic landscapes, anisotropic discretization
may be employed (Larsen and Harvey, 2010). One of themost powerful
tools for reducing computational burden may be to represent variables
as decoupled and simulate them on different spatial or temporal time
steps. This option should only be executed under careful consideration,
as detailed in the next section.

Temporal and spatial resolution choices collectively influencemodel
stability. In gradient-flux models, the Courant number (Courant et al.,
1967) specifies a necessary but not sufficient criterion for stability.
Models will sometimes achieve stability through use of an
underrelaxation scheme, which limits the amount by which a state var-
iable changes in a time step (e.g., Liang et al., 2015b) by formulating its
new value as a weighted average between the old value and the value
that results from application of modified Gauss-Seidel iteration of the
governing equations (Hoffman and Frankel, 2001). It can be an impor-
tant strategy in simple models, because it may allow researchers to
use spatial and temporal resolutions that would otherwise be unstable.
The spatial analogy to underrelaxation is application of a spatial diffuser
or smoother to ensure that variables that should vary continuously in
space do not exhibit discontinuities resulting from application of simpli-
fied governing equations on a coarse grid. Relaxation and smoothing
schemes are common in simulations of air and water flow but are not
typically used in simulations of biotic variables.

4.5.5. Representation of coupling
Choices about spatiotemporal resolution and extent are directly re-

lated to questions about which of the model's variables should be
coupled. Coupling is one of the most important aspects of “detail” in
models of ecological/geophysical systems. Models of ecological-geolog-
ical systems often employ the assumption that biotic-abiotic interac-
tions are characterized by one-dimensional forcing and/or that
timescales are sufficiently different that the dynamics can be simulated
as decoupled, with the driver represented as a parameter or a pre-
scribed quantity. For instance, habitat distributionmay govern fish pop-
ulations but not vice-versa over the time scale of interest. It is primarily
with the recognition of vegetation and animals like beavers or gophers
as ecosystem engineers (Jones et al., 1994; Chapin et al., 1997; Yoo et
al., 2005; Corenblit et al., 2007) that bidirectional, coupledmodels of bi-
otic-abiotic feedbackbegan to proliferate. Tightly coupledmodels create
computational challenges, but again, modelers have options for reduc-
ing computational burden based on the critical scales and emergent
characteristics of the system.

First, the emergent patterns identified in step II may help indicate
the extent of coupling needed. Regular patterning generally suggests
strong bidirectional coupling between biotic and abiotic elements.
Four classes of mechanisms generate regular patterns in landscapes
(Table 2). They often involve a limited set of physical and biological en-
tities that are in balance, requiring similar levels of representation in
Table 2
Strongly coupled mechanisms that lead to regular patterns in geological-ecological systems.

1)

Activator-inhibitor feedbacks: In this classic pattern-generating mechanism, patterns
positive feedback and larger-scale negative feedback. The larger-scale negative feedba
activator itself. In landscapes, this mechanism typically results from biota creating con
growth (e.g., the production of wrack).

2) Activator-depleted substrate feedbacks: In this mechanism, patterns also arise through
small-scale positive feedback and larger-scale negative feedback. In this case, the larger
activator depleting a more rapidly diffusing substrate. In landscapes, this mechanism ty
generating a resource locally, which produces a shortage in the resource outside patche

3) Stress divergence feedbacks:When a stress such as wind or water flow is the primary fact
stress divergence feedback can produce patterning. Analogous in many respects to the act
biota deflecting the stress vectors around the patch, promoting local patch persistence bu

4) Phase separation: Equations describing density-dependent rates of movement by anim
Cahn-Hilliard equation for phase separation in physics. Through differential rates of m
(which move fastest when present at very low or very high densities and slower at in
patterns can emerge.
models. Non-regular patterns might likewise evidence an approximate
balance between physical and biological state variables. Fluvial patterns
that differ from the minimum-energy configuration (such as multiple-
thread or overly sinuous channels) or patchy distributions of any state
variable suggest tight coupling between at least two state variables. De-
spite strong coupling these systems often lend themselves well to sim-
plified models, because the driving variables are typically few and
operate over similar scales. However, systems with more than two
types of patches (e.g., floodplains or forests with patches composed of
different vegetation communities) may be an exception, as different
factors could limit the different patches.

The characteristic timescale associated with the dynamics of the
coupled variables also informs the representation of coupling inmodels.
When coupled variables operate over different time scales, models may
be simplifiedbydecoupling the dynamics at the shorter of the two time-
scales, such that only the cumulative or average effect of the smaller-
timescale dynamics is represented at the larger scale (Fig. 5). Alterna-
tively, if the emergent properties of interest occur over the shorter of
the timescales, models may be decoupled at the longer timescale, ap-
proximating the variables that change over that longer timescale as
constant.

An exploratory model of vegetation-water dynamics on dunes illus-
trates principles and tradeoffs of simulating interacting state variables
as decoupled (Siteur et al., in press). In dunes, infiltration of water hap-
pens over very short timescales but influences the distribution of bio-
mass on longer timescales and the buildup of hydrophobic organic
compounds exuded by decomposing biomass over even longer time-
scales. Because of the difference in timescales, biomass and soil hydro-
phobic compound density may be represented as constant in a model
of soil moisture dynamics. Doing so results in the emergence of two sta-
ble states: a hydrophilic wet state or a hydrophobic dry state. However,
this representation does not reproduce the longer-timescale emergent
phenomena that arise when biomass and hydrophobic compound
buildup are simulated in a fully coupled way. Complete representation
of the coupling results in cyclic dynamics, in which periods of high bio-
mass lag periods of high soil moisture and precede periods of prolonged
soil hydrophobicity.

A different approach to strategic decoupling in ecological/geophysi-
cal models is to treat the slowly changing variables not as constant
through the simulation but as constant within intervals of time longer
than the model's time step. As an example, consider a river, floodplain,
or wetland that experiences semiannual flood pulses that redistribute
sediment. Sediment redistribution changes the topography, which in
turn influences the distribution of macrophytes. Establishment of mac-
rophytes stabilizes sediment deposits and generates soil organicmatter.
Because of these feedbacks, state variables describing flow, topography,
and vegetation growth are coupled, yet they operate over different
timescales, with different spatial scales of influence. Flow may be vari-
able throughout a year, with each flood pulse redistributing sediment.
arise through a combination of small-scale
ck is caused by an inhibitor produced by the
ditions that are detrimental to their own Turing, 1952; van de Koppel and

Crain, 2006
a combination of an activator generating a
-scale negative feedback is caused by the
pically results from biota concentrating and/or
s that limits further expansion of the biota.

Meinhardt, 1976; Rietkerk and Van de
Koppel, 2008

or influencing the spatial distribution of biota, a
ivator-inhibitor feedback, it involves patches of
t strictly limiting the width of patches.

Weerman et al., 2010

als are mathematically equivalent to the
ovement in organisms such as mussels
termediate densities), self-organized spatial

Liu et al., 2013



Fig. 5. Structure of a hierarchical modeling strategy and “unpacking” scheme. In basic hierarchical modeling, processes and variables (e.g., soil elevation, h) changing over scales larger or
longer than the focal level (e.g., annual primary productivity, y)may be represented as constant (k2), while those varying over smaller or shorter scales (e.g., diel groundwaterfluctuations,
g)maybe represented as a time average (denotedwith an overbar; k1). Typically,many of these cross-scale interactions are represented as parameters at the focal level of interest; herewe
depict only a select few for purposes of illustration. To test for whether this simple parameterization is adequate, “unpacking” should be undertaken, whereby parameters are “exploded”
into time-varying representations. If the resulting emergent features at the focal level remain the same, convergence has been achieved, and the simpler representation should be
sufficient. However, if results differ, the model should continue to be unpacked by next considering cross-scale feedback, whereby changes in state variables at the focal level affect the
time-varying properties of variables at other scales.
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New establishment of vegetation predominantly occurs during the
growing season and may be less influenced by individual storm
events than by the aggregate influence of the year's storms on the to-
pography. Thus, it may be reasonable to model vegetation and geo-
morphology as static over all storms within a year (e.g., D'Alpaos et
al., 2007; Kirwan and Murray, 2007; Larsen and Harvey, 2010). If
the storms can be approximated as steady over their duration and/
or identical, the flow field from each flood pulse occurring within a
year need only be simulated once, with sediment redistribution
rates simply multiplied over the total storm duration or number of
storms each year. At the end of the year, the vegetation dynamics
would be simulated. In this way, because of loose coupling between
vegetation and flow/sediment dynamics, modelers can select the
longer time step of one year (compared to the subdaily time step
usually used for flow) without much reduction in the model's ability
to represent relevant dynamics.

An alternative strategy is to use separate time steps for coupled
modules. For example, Saco and Moreno-de las Heras (2013) coupled
the SIBERIA landform evolution model to a model of banded vegetation
patterning but maintained separate time steps for the two. SIBERIA's
time step was set between days and years, appropriate to the erosion
rates of the system, whereas the vegetation patterning model operated
on a subdaily time step to capture transient infiltration andwater redis-
tribution processes.

Representation of coupling through simple parameterizations or
empiricisms is often insufficient for spatiotemporal processes (e.g., ani-
mal visitation times in certain locations or disease propagation) or het-
erogeneities in animal behavior. In these cases, individual- or agent-
based strategies are commonly used to track the movement, decisions,
and/or behavior of individuals. Most agent-based models represent
the “outer worlds” of animals, in which physical landscape configura-
tion and presence of other organisms influence movement and dispers-
al patterns (Topping et al., 2003; Goodwin et al., 2006). One frontier lies
in representing the “inner worlds” of animals through small-scale
models of immunology, reproductive or metabolic processes, or even
thinking processes that translate perceptual input into decisions and bi-
ological states (reviewed in Getz, 2013). Thesemodulesmay operate in-
dependently of the mainframe simulation or feed back into it,
computing the value of one of the mainframe simulation's parameters
through the procedure illustrated in Fig. 5.
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4.6. Step VI: Model evaluation—How to tell when the level of detail in a
model is good enough?

Following model development as detailed above, the next step is to
execute the model (step V in Fig. 1) and evaluate its performance (step
VI). Many researchers will call this phase “model validation.” Although
this term has been criticized when applied literally (Oreskes et al.,
1994), it is often interpreted as an evaluation of suitability of the
model for its intended purposes (Rykiel, 1996; Augusiak et al., 2014).
Here, we view model evaluation as a judgment of the plausibility of
the model and the physical processes that it represents. Depending on
the objective question governing themodel,model evaluationmay con-
sist of a pattern comparison phase, tests of convergence, and a
‘benchmarking’ phase.

For questions low in the hierarchy, pattern comparison should focus
on the model's reproduction of general features or processes. For ques-
tions higher in the hierarchy, pattern comparison may involve the spa-
tiotemporal behavior of the model and/or focus on weak patterns. A
prime challenge in pattern comparison is how to condense spatially
and temporally variable information to a single metric that feeds into
a yes/no decision about whether a pattern is matched (i.e., a so-called
“rejection filter”) or statistical inference about the model's likelihood
(Hartig et al., 2011). For an exploratory model, a simple qualitative as-
sessment may be sufficient. Quantitative pattern comparisons, howev-
er, may be necessary to automate evaluation (e.g., for sensitivity
analyses), or assess the model's ability to replicate weak or subtle pat-
terns at later stages within the hierarchy of questions (Fig. 1). Table 3
highlights several of the most commonmetrics for spatial pattern com-
parison used in geostatistics and landscape ecology. A suitable metric
should be able to distinguish between the observed pattern and ran-
domized spatial distributions of the state variable used to compute the
metric. To conduct this test, the researcher can randomly shuffle
datapoints that are distributed in space to derive a probability density
function of the pattern metric over randomized landscapes. The value
of the patternmetric for the nonrandomized landscape should fall with-
in theαth percentile tail; otherwise, themetric is insensitive to that par-
ticular pattern. A stricter test is that probability density functions of the
Table 3
Example metrics for pattern comparison and model evaluation.

Metric Description

Metrics for summarizing spatiotemporal pattern information
Class proportional abundances, richness, evenness,
diversity, patch shape complexity, contrast,
aggregation, subdivision, lacunarity, isolation

Appropriate for landscap
state variables.

Island shape factor, area, and aspect ratio Differentiates between p
Range of spatial autocorrelation
function/semivariogram

Identifies critical length

Fractal dimension, distribution of island sizes,
nearest-edge distance, distribution of shoreline
sediment fluxes, nourishment/catchment area,
channel-floodplain connectivity

A comprehensive suite o
deltas.

Shannon entropy index Describes spatial variatio
spatially periodic pattern

Connectivity-orientation curves Directional connectivity
orientations. Curves can
probability distributions

Spatial state-space plots Delay-coordinate embed
directional, deterministi
discrete probability distr
methods detailed in the

Logarithmic correlation integral (LCI) function Tests for self-affinity, an

Metrics for comparing vectors or distributions of summary statistics
Transportation distance Minimum average distan

be moved to duplicate o
Kolmogorov-Smirnov statistic Maximum separation dis

distributions.
Tucker's congruence coefficient Index of similarity betwe

factor analysis but also a
metric for different recognized classes of pattern should haveminimum
overlap; in other words, the variance of the metric within a class of pat-
tern should be far less than the variance among classes, which can be
tested using F-statistics or nonparametric counterparts such as the
Kruskal-Wallis test.

Information that the model is unable to replicate a pattern is poten-
tially useful, but it poses a challenge for interpretation. Mismatch be-
tween the modeled and observed pattern might arise because 1) the
hypothesized mechanism is wrong, 2) the parameter values are
wrong, 3) the modeled mechanisms are not represented at sufficient
levels of detail, or 4) there are large errors in the observation of the pat-
tern. If #1 or #2 is responsible for the mismatch, the modeler can rule
out the hypothesized mechanism under consideration and/or delineate
the parameter rangewithinwhich the emergent features occur. Howev-
er, if the model's detail is insufficient to reproduce emergent properties
(even if themechanisms and parameters are “correct”), or if the pattern
observations are in error (e.g., when pattern observations are them-
selves derived from models, such as atmospheric patterns derived
from reanalysis data products; Kennedy et al., 2011), conclusions
about mechanism or parameter range are suspect.

To rigorously evaluate whether a mismatch could be attributed to #3,
the convergence of models could be checked through the “unpacking”
strategy (Getz, 2013; Fig. 5). Most modelers are familiar with tests for
convergence in spatial or temporal resolution: the modeler progressively
refines the spatial grid or time step until the output ceases to change.
Unpacking is similar in principle. Processes represented as a single param-
eter in thefirst-ordermodel are “exploded” (i.e., simulated explicitlywith
a second-order submodel) to evaluate whether the additional detail
changes the first-order emergent patterns. If not, the model has con-
verged, and the first-order level of detail was sufficient. If the output did
change, the level of detail should be exploded to third order to evaluate
whether the second-order detailwas sufficient. In a hierarchicalmodeling
structure (Fig. 5), this third order expansion may involve converting the
parameter submodules to a form intrinsic to the dynamical system, in
which they are influenced by higher level state variables, adding feedback
to the system. Although it may not be practical to undertake the test for
convergence for all aspects of detail listed here, the modeler should
References
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endeavor to do so for those variables most in question, and, as a general
rule, for spatial/temporal resolution.

Tests for convergence with respect to model detail have been
underutilized in the literature. One good example from ecology is the
exploratory model of Scheffer et al. (2003), used to study competition
between floating and submerged plants for nutrients and light. To eval-
uate whether the three equilibria that emerged (floating plant-domi-
nated, submerged plant-dominated, or a stable mixed community)
were artifacts of the model's simplifications, a more elaborate version
of the model was also developed. This version incorporated additional
mechanistic details about the seasonal life cycle of water plants, season-
al variation in solar irradiation, and light interception. Although a stable
mixed state was no longer observed in the more detailed model,
bistability between the floating plant-dominated and submerged
plant-dominated state still occurred over a range of nutrient loading re-
gimes, motivating subsequent empirical testing.

Last, benchmarking may also address questions of robustness or
why a model fails to reproduce observed patterns. Benchmarking tests
are generally performed on subcomponents of the model to ensure
that they adequately represent constituent phenomena (Liang et al.,
2015a). The model is applied to an idealized, simplified situation, and
outputs are compared to theory or other validatedmodels. For example,
to provide the assurance that their simplified flow routing scheme for
river deltas captured the relevant physics, Liang et al. (2015a) evaluated
their model's outcomes against those of a computational fluid dynamics
model and analytical solutions. Tests compared the shape of the water
surface resulting from flow over a Gaussian bump, backwater profiles,
and flow velocities andwater-surface elevation in the vicinity of a chan-
nel bifurcation and over a delta with static topography. Benchmarking
of modeled ecological responses may invoke comparison of output dis-
tributions of a state variable to predictions from ecological theory (e.g.,
plant growth should exhibit a skewed unimodal response to tempera-
ture and a “limiting factor” response to light; Austin, 2007).

4.7. Step VIIa: Projection and scenario modeling

Once a mechanistic model passes tests of convergence and exhibits
agreement with observed patterns, it can be used for projection and sce-
nario modeling. Scenario modeling typically implies the use of detailed
models that address questions about how specific management alterna-
tives or perturbation scenarios are likely to impact a system. However,
in some cases the questions prompting predictive modeling may be
more general and well suited to models at low or intermediate levels of
detail.

Under certain circumstances, predictive models that are robust to
nonstationarity and grounded in a mechanistic description of the sys-
tem of interest but not explicitly process-based may be formulated.
These models, derived directly from data using nonlinear forecasting
techniques, completely circumvent the time-consuming steps III-IV of
ACME and are free of equations and hence low-detail (arrow P1 of Fig.
4). Suchmodelsmay be suitable for low-dimensional, deterministic sys-
tems for which time-series data of the critical state variable(s) are avail-
able. As with the EDM methods used for causal inference (Section 4.4),
the procedure begins with shadow manifold reconstruction from the
time series (Fig. 4). Based on that manifold (and potentially the shadow
manifolds of other forcing variables), the variable's value at a future
time can be predicted from weighted regression of vectors originating
at nearest-neighbor datapoints. For chaotic systems, this method is ef-
fective only for prediction of systembehavior for short times into the fu-
ture, as exponential divergence of nearby trajectories is a defining
feature of chaos. Nonlinear forecastingmethods such as these aremech-
anistic in the sense that they are based on the underlying structure of
the system's dynamics, even while they do not explicitly account for
process-level interactions. They are robust to nonstationarity because
even a nonstationary system responding to a consistent set of drivers
is expected to develop a coherent strange attractor. EDMs used to
forecast fisheries yields commonly outperform more complex process-
based models, due to the accumulation of error in the process-based
models (Liu et al., 2012; Glaser et al., 2014; Ye et al., 2015).

Although data-driven modeling approaches described here may
streamline or circumvent the standard ACME process, several key limi-
tations restrict their widespread application in landscape modeling.
Chief among them is that, whereas most processes that shape land-
scapes are spatiotemporal in nature, the causal inference and nonlinear
forecasting strategies discussed herewere developed for time series at a
point. Predictions for variables that change in space may be generated
by adopting a simple space-for-time substitution in the methodology
outlined above (Hossain and Sivakumar, 2005), but the theoretical
basis for doing so is dubious (Sivakumar, 2009). More recently, fisheries
modelers have dealt with the challenge of predicting yields over space
and time by performing individual phase space reconstructions for
each spatial cell of interest, effectively generating as many independent
models as there were predictive grid cells (Glaser et al., 2014). A similar
approach is to aggregate the time series acquired at different points in
space to perform a single phase space embedding, assuming the same
drivers control processes at all points monitored (Clark et al., 2015).
Even so, the latter two approaches do not explicitly account for the
role of spatial interactions in the temporal evolution of fish yields. A sec-
ond limitation is that nonlinear forecasting techniques are far more re-
stricted in the scope of the questions they can answer than mechanistic
modeling; they provide no insight into the mechanisms driving the
system's behaviors and are of limited utility in sensitivity or scenario
testing, as their long-term accuracy diminishes exponentially.

4.8. Step VIIb. Progression of model objectives

Once a model has been developed to address the mechanistic ques-
tion for which it was originally intended, it is ready for extension or ex-
pansion, potentially to address questions further down the hierarchy of
governing questions or to evaluate the role of a different set of drivers in
a different environment. Typically, this progression entails moving to
the right on the tradeoff diagram (Fig. 2). Practically, progression may
take the form of adding new state variables or processes, or changing
the way in which processes are represented. Unpacking (Fig. 5) may
constitute another important part of this process. For large environmen-
tal management models, model progression may also take the form of
integration of that model as a module or component of a larger model,
using a coupled, hierarchical modeling scheme, as detailed in Section 5.

As an example of the progression phase, consider again the Murray
and Paola (1997; Fig. 3B) model of braided streams that was originally
developed to address a question of type 2 (“What are the essential attri-
butes that lead to the emergence of a large-scale phenomenon or pro-
cess?”). This model formed the basis of later models that examined
the mechanisms responsible for realistic meander bend morphology
(Question 4: “What mechanism is responsible for the second-order de-
tails of a pattern?”) (Coulthard and Van De Wiel, 2006; Nicholas et al.,
2012; Nicholas, 2013), as well as models that examined whether the
same set offluvial processes, togetherwith the cohesive and drag effects
of vegetation, could producemeandering streams in environmentswith
vegetation (Murray and Paola, 2003; Fig. 3C).

5. A look ahead: Opportunities for ACME to advance environmental
science and management

Environmental restoration projects are rife with opportunity for
using, testing, and refining the principles of ACME. Many of the insights
described here were derived frommodeling related to restoration. Res-
toration projects require an understanding of how physical and biolog-
ical processes interact, how those interactions cascade across scales to
produce emergent features, and how those emergent features are likely
to change in the future under different management scenarios and
changes in external drivers such as climate.
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It is generally agreed that restoration should focus on process rather
than a static end state (Palmer et al., 2005; Suding and Gross, 2006), re-
quiring an understanding of the causal interactions driving ecosystems.
Hence, questions relevant to restoration andmanagement often overlap
those covered in the ACME approach. However, with the availability of
off-the-shelfmodels for driving processes such asflowvelocity distribu-
tions and sediment transport, it is easy to forget that the causal interac-
tions sculpting particular emergent features relevant to restorationmay
not bewell understood, andmodels that do not represent those interac-
tions could lead tomisleading projections. With an increasing emphasis
on data-driven analyses, it is worth noting that exploratory modeling
provides a robust route for testing not just the existence but the also
the functional form of causal interactions, in a way that is complemen-
tary to the data-driven techniques. Resolving the main causal interac-
tions and their simplest functional form is an important step in
restoration planning, as planning models that represent many relevant
interactions in high levels of detail might be too cumbersome to evalu-
ate over a range of scenarios or determine the long-term effects of man-
agement decisions.

River delta and coastal wetland restoration projects provide apt il-
lustrations of these points. In these dynamic and economically impor-
tant environments, flow and sediment interact with vegetation to
build and destroy land and habitat forfish and shellfish. Having suffered
from decades of sediment starvation, subsidence, altered hydrology,
and storm damage, they are targets for restoration through actions
that facilitate land building. However, because of extensive feedbacks
present over multiple scales, they present a challenge for forecasting
and management (Kim et al., 2009). In the slow flows characteristic of
deltas, vegetation distribution is governed by flow but also governs
flow. Similarly, cross-scale bidirectional couplings among hydrodynam-
ics, sediment transport, elevation, and vegetation dynamics play domi-
nant roles in the evolution of salt marsh and mangrove environments
(Fagherazzi et al., 2012; Saco and Rodríguez, 2013). Flow, sediment,
and vegetation collectively affect the distribution of habitat for fish. In-
creasingly, principles of ACME are being applied to coastalwetlands and
deltaic environments, though many opportunities remain untapped.

For example, the ACME framework can provide guidance onmodel-
ing restoration impacts over awider range of scales than is typical today.
In a review of how models guide restoration decisions relevant to fish
populations of coastal Louisiana, Rose et al. (2015) stated that one of
the three objective questions determined by stakeholderswas ultimate-
ly discarded because of the difficulty of finding solutions at fine spatio-
temporal scales. Instead of evaluating the effects of individual projects
on fish populations at the local scale, models focused on long-term ag-
gregate effects of multiple projects at the coastal scale. Moreover,
some of themodelswere selected on the basis of their past performance
rather than their ability to provide insight into the mechanisms
governing fish populations, as the former was judged more relevant
than the latter. The type ofmodeling strategies lowonACME's hierarchy
of objective questions could provide novel contributions to the evalua-
tion of effects of different management scenarios in the greater Missis-
sippi River Delta area. Exploratory models by Seybold et al. (2007)
and Liang et al. (2015b; Fig. 3F) identified theminimum set of processes
essential to simulating the evolution of delta morphology, with the lat-
ter providing an algorithm that vastly simplifies hydrodynamic calcula-
tions. Use of these reduced-complexity models for the governing
physics together with models representing other factors relevant to
fish habitat (i.e., through the modular linking described in Section 4.8)
may make it feasible to address questions about restoration's effects
across scales. The focus of exploratorymodeling or data-driven analyses
such as CCM or transfer entropy on mechanisms, though currently
deemed lower priority bymanagers of the coastal Louisiana restoration,
may have additional benefits. These analyses identify the most critical
drivers of the system, potentially leading to streamlining of models,
which could then be run over a wider range of spatiotemporal scales
and extent. Secondly, this process-based focus makes it relatively easy
to adjust models for major changes in drivers, such as potential effects
of increased frequency of major storms interacting with changes due
to management scenarios.

Importantly, converging on the appropriate level of complexity for a
model composes just one step of a “best practices” approach to model-
ing of environmental systems (Schmolke et al., 2010; Rose et al., 2015).
However, it is one of the most critical steps, and one that has not yet
been approached systematically for models that combine geophysics
and ecology across multiple scales. Ideally, modelers would embark on
the ACMEapproach in coordinationwith other best practices formodel-
ing: inclusion of stakeholders, and formulation of objectives with stake-
holder input (Schmolke et al., 2010). Other relevant best practices
include sensitivity analysis, use of multiple models (i.e., ensembles)
for projection, quantification of uncertainties, peer review, and docu-
mentation for transparency. ACME is somewhat different from previ-
ously identified best modeling practices, as it considers the choice of
model complexity to be inseparable from formulation of the conceptual
model, parameterization and calibration, and verification, because of
the iterative process inherent in the pattern-oriented evaluation of
model complexity.

We emphasize that there is no single formula for the selection of the
optimal level of computational and representational detail that will
work for all models. However, a systematic approach to examining the
different components of model detail in light of the objective questions
and the emergent features of the systemwill doubtlessly streamline the
process. In general, the simplest model that represents the dominant
processes driving the emergent features of interest will be themost ap-
propriate. Recent innovations in formulating exploratory models of
physical and biological processes suggest ways to reduce the computa-
tional detail ofmodelswhile retaining representational detail. Addition-
al streamlining of the process of converging on the appropriate level of
complexitymay result fromdata-driven approaches to identifyingdom-
inant processes and, potentially, their critical timescales and length
scales.
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Appendix A. Decision tree for honing attributes of model “detail”.

This decision tree extends and operationalizes the guidance on ap-
propriate levels of detail with which to represent processes provided
in Table 1 and the main text. An alternative, interactive format for the
decision tree (potentially for use as a teaching tool) is available at
http://prezi.com/ulpwhtd_1d9w/?utm_campaign=share&utm_
medium=copy (screen capture below). The decision tree addresses at-
tributes of model detail (Roman numerals) that all models share. To aid
in model formulation, users should start with each Roman numeral and
follow the series of questions that follows as though using a taxonomic
key. For some attributes of model detail, a series of leading questions
(capital letters) apply. Users are advised to “enter” the tree multiple
times so that each secondary branch point (each combination of a
Roman numeral and capital letter) is visited. The leaves of the tree
(written in italics) constitute the relevant advice, all of which is elabo-
rated in the main text.

http://google.com/site/rcmworkshop/home
http://prezi.com/ulpwhtd_1d9w/?utm_campaign=hare&amp;utm_mediumopy
http://prezi.com/ulpwhtd_1d9w/?utm_campaign=hare&amp;utm_mediumopy


Fig. A1. Screen capture of online interactive decision tree tool.
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I. State variables
A. Do state variables exhibit continuously varying attributes (e.g.,

age, size) that need to be tracked?
i. Yes………Consider using discrete classes or cohorts as individ-
ual state variables.

ii. No………Proceed to the next question.

II. Spatial/temporal dimension
A. Do the processes of interest have dynamics that could be con-

sidered homogeneous or uniform?
i. Yes………Consider using a model with low spatial dimension-
ality.

ii. No………Are the dynamics of the process heterogeneous
over a smaller scale than the scale of the emergent phenom-
ena of interest?

1. Yes………Consider spatial averaging to reduce dimensionality.
2. No………Can variability along one dimension be related to a differ-

ent state variable with lower dimensionality?
a. Yes………Consider “quasi”N-dimensional simulations: Parameterize var-

iability along the “quasi” (i.e., not explicitly simulated) dimension or use a
lookup table or empirical relation from a separate (“offline”) simulation.

b. No………Proceed with full-dimensional model.

III. Extent and boundary conditions
A. What is the spatial scale of the dominant feedback process-

es?………Spatial extent should be several times larger.
B. Are there drivers that vary over an extentmuch larger than the

phenomenon of interest?
i. Yes………Do they engage in feedback with the state vari-

ables of interest over the temporal extent of the simulation?
1. Yes………Consider a hierarchical modeling strategy.
2. No………Do the drivers vary over time or space?
a. Yes………Represent drivers as specified flux boundary conditions. Is the

outcome sensitive to variations in the boundary conditions?
i. Yes………Can general or idealized patterns of variability in the

boundary conditions (e.g., generalized seasonality) address the cen-
tral modeling question?

1. Yes………Impose idealized patterns in boundary conditions.
2. No………Use a specified sequence for boundary conditions.
ii. No………Impose constant boundary conditions.
b. No………Represent drivers as constant boundary conditions.

ii. No………Does the landscape have a pattern that is recurrent
in space?

1. Yes………Consider periodic boundary conditions and a smaller spatial
domain.

2. No………Impose constant or no-flux boundary conditions.

C. In relative terms (e.g., large, small, fast, slow), is the intended
temporal extent a close match to the spatial extent?
i. Yes………Proceed to the next question.
ii. No………Consider using a hierarchical modeling strategy.

IV. Resolution
A. Do the hypothesized processes affect edges, interfaces, or

transitions?
i. Yes………Use a relatively fine computational grid in the vicin-
ity of edges, interfaces, and transitions.

ii. No……… A uniformly sized computational grid may be
appropriate.

B. Is the observed emergent phenomenon anisotropic?
i. Yes………Consider spatially anisotropic computational grid

cells.
ii. No………Grid cells should be isotropic (i.e., all faces should be

the same size).

C. Are the simulated processes fast for at least some of the time,
relative to the size of the computational grid cells and duration
of the simulated period?
i. Yes………Are distinct periods of rapid change expected, in-

terspersed among periods of slower change?
1. Yes………Consider dynamic time stepping.
2. No………Small time steps are likely necessary. Choose time steps to

achieve stability with the desired spatial grid size (e.g., using a stability
criterion like the Courant criterion).

ii. No………Uniform time stepping without special consider-
ations is likely sufficient.



128 L.G. Larsen et al. / Earth-Science Reviews 160 (2016) 111–130
D. Are requirements for high spatial or temporal resolution (if
applicable) likely to diminish tractability substantially?
i. Yes………Consider underrelaxation as a strategy to increase

tractability, and/or perform spatial smoothing on a lower-
resolution grid.

ii. No………Use standard algorithms for iterating the model.

V. Coupling
A. Does the landscape exhibit regular patterning?

i. Yes………Strong biotic-abiotic coupling likely. May be condu-
cive to simple representation in models. See Table 2 for sugges-
tions relevant to conceptual model formulation.

ii. No………Does the landscape exhibit more than 2–3 types of
patches or features?

1. Yes………Model likely requires relatively high level of detail due to larg-
er numbers of interacting state variables.

2. No……… Strong biotic-abiotic coupling likely. May be conducive to
simple representation in models. See Table 2 for suggestions relevant
to conceptual model formulation.

B. Do the potentially coupled state variables operate at different
time scales?
i. Yes………Is the critical time scale associated with the emer-
gent phenomenon of interest closer to the longer of the time
scales of the interacting variables in question?

1. Yes………Represent the shorter-timescale process through its mean.
2. No………Are the dynamics (i.e., gradual changes) of the longer-time-

scale process likely important for the shorter timescale?
a. Yes………Approximate the longer-timescale process as constant for dis-

crete intervals in time, using distinct modules with different time steps
for the long- and short-timescale processes (i.e., hierarchical modeling).

b. No………Approximate the longer-timescale process with its average
value.

ii. No………Are variables synchronous?
1. Yes………Simulate one of the variables directly, and solve for the other

using the empirical relationship between variables.
2. No………Do the variables consist of diverse, individual agents?
a. Yes………Appropriate representation may be best suited for individual-

(agent-)based modeling framework.
b. No………Represent feedback or forcing between variables through

coupled governing equations.
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