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Abstract

All mammals begin life in social groups, but for some species, social relationships persist and 

develop throughout the course of an individual’s life. Research in multiple rodent species provides 

evidence of relatively conserved circuitry underlying social behaviors and processes such as social 

recognition and memory, social reward, and social approach/avoidance. Species exhibiting 

different complex social behaviors and social systems (such as social monogamy or familiarity 

preferences) can be characterized in part by when and how they display specific social behaviors. 

Prairie and meadow voles are closely related species that exhibit similarly selective peer 

preferences but different mating systems, aiding direct comparison of the mechanisms underlying 

affiliative behavior. This chapter draws on research in voles as well as other rodents to explore the 

mechanisms involved in individual social behavior processes, as well as specific complex social 

patterns. Contrasts between vole species exemplify how the laboratory study of diverse species 

improves our understanding of the mechanisms underlying social behavior. We identify several 

additional rodent species whose interesting social structures and available ecological and 

behavioral field data make them good candidates for study. New techniques and integration across 

laboratory and field settings will provide exciting opportunities for future mechanistic work in 

non-model species.

Keywords
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1. Introduction

All mammals exhibit some degree of social behavior, but the extent to which they are social 

varies widely across species. Social behavior is associated with costs, including increased 

risk of disease transmission and competition for resources. Nonetheless, benefits from 

increased predator detection, defense, and, in some species cooperative breeding, can lead to 

the evolution of sociality (Clutton-Brock & Lukas, 2012; Lukas & Clutton-Brock, 2012a, 

2012b, 2013; reviewed in Lee, 1994). Social relationships are best studied in species that 

display specific traits of interest. For example, social monogamy is rare among rodents 

(<5%) but has been studied in prairie voles and California mice. Group living has been 
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investigated in meadow voles, naked mole rats, social tuco-tucos, striped mice, and other 

colonial rodents (reviewed in Anacker & Beery, 2013; Beery, Kamal, Sobrero, & Hayes, 

2016; Beery, 2018). In this chapter we discuss mechanisms underlying behaviors supporting 

life in social groups, and how they may vary between species. We focus on prairie and 

meadow voles, two closely related species that provide an ideal opportunity to investigate 

diversity of mechanism and social system.

Despite the advantages of examining species that exhibit particular characteristics of 

interest, mammalian research is dominated by studies of mice and rats, which in 2009 made 

up approximately 90% of mammalian physiology studies (Beery & Zucker, 2011 

supplementary material). Mice and rats have provided important insights into social 

behavior—intense focus on a small number of model organisms allows for great depth of 

study, and the development of of cutting-edge technologies for these species makes them 

well-situated for mechanistic work. However, both species are gregarious and do not exhibit 

selective affiliation, making them inappropriate models for studies of adult social bonds and 

social preferences (Beery, Christensen, Lee, & Blandino, 2018; Schweinfurth et al., 2017). 

Furthermore, laboratory rodents are often highly inbred and far removed from the ecological 

contexts in which the social traits of interest evolved (but see Chalfin et al., 2014), making it 

difficult to determine links between behavior and natural history.

It is also possible that the mechanisms that are relevant for one species may not apply to 

another species with a different social organization. Even among species with similar social 

organization, the mechanisms that support sociality may be different (e.g. socially 

monogamous rodents and socially monogamous non-human primates and humans likely 

exhibit some key differences in mechanism). By examining the shared and unique basis of 

behaviors across species, we can hope to effectively determine how and when we can 

translate research across species, and potentially to humans. Laboratory studies of diverse 

species, for whom detailed studies of their field ecology and behavior are available, will 

improve our understanding of the species-specificity and generality of mechanisms 

supporting different social behaviors (Johnson & Young, 2018; Taborsky et al., 2015).

Although ultimate/evolutionary explanations are not the focus of this chapter, they may 

inform our understanding of proximate mechanisms of social behavior by suggesting 

hypotheses concerning whether mechanisms are likely to vary between ecological, 

phylogenetic, and behavioral contexts. For example, because reward pathways play an 

essential role in assessing salience of external stimuli such as a potential mate or high-

calorie foods, and thereby in motivating appetitive behaviors, we would expect them to be 

highly conserved across vertebrate taxa (O’Connell & Hofmann, 2011b). Thus, we approach 

the question of what circuits underlie social behavior with evolution in mind, by considering 

how species with varying social structures derive different benefits from life in groups. We 

focus on rodents throughout, as they are the most widely used animal model for many fields 

including neurobiology, and include discussion of both field and laboratory experiments. We 

describe the neural circuitry underlying specific social behaviors and processes before 

synthesizing them into complex social behaviors and social systems. We summarize relevant 

work in rats and mice in service of a more in-depth discussion of work in voles, as these 

classic models have significantly informed work in voles. We then highlight some of the 
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most socially distinctive rodents in the wild in order to illustrate potential candidates for 

future study, as well as describe the natural behaviors of already well-studied animals. The 

chapter concludes with remarks about new techniques that may help advance comparative 

work, as well as future directions in the study of neural mechanisms of social behavior.

2. Circuits underlying social behaviors and processes

Complex social behaviors, such as prairie vole pair bonding and rat maternal behavior, rely 

on specific social behaviors and processes. Here, we discuss social recognition and memory, 

social reward, and social approach/avoidance. These processes are often interrelated (Figure 

1); for example, social recognition is a form of short-term social memory. Social memory is 

necessary to form long-lasting social relationships, as individuals must recognize and 

remember their partner. In order for social recognition and social memory to lead to the 

formation of a social relationship, an individual must exhibit decreased fear and anxiety 

toward a prospective partner, thereby allowing for social approach rather than avoidance. 

Social reward may mediate motivation to approach, and may also reinforce social 

preferences. Although aggression is often thought to directly oppose sociality (and will not 

be discussed here), aggression can also play an important role in mediating social 

preferences. For example, if a relationship has been formed that is highly selective and/or 

motivating, an individual may exhibit aggression toward unfamiliar individuals.

2.1 Social recognition and memory

Social recognition and social memory are closely related and are important for life in some 

social groups, as animals may need to recognize and remember specific individuals in order 

to assess how to behave toward these individuals (e.g. in cases where strangers need to be 

quickly identified, or in cases where familiarity is a proxy for kinship recognition and degree 

of relatedness determines how an individual behaves toward a conspecific). The importance 

of social recognition and social memory to social structure will be discussed in Section 3.

Social recognition in rodents is measured via behavioral tests such as the habituation/

dishabituation test, which measures time spent investigating a conspecific stimulus animal 

after repeated exposure, followed by a novel animal (reviewed in Ferguson, Young, & Insel, 

2002; Gheusi, Bluthé, Goodall, & Dantzer, 1994). Behavioral tests such as these are based 

on the tendency of rats and mice to investigate unfamiliar individuals more than they would 

familiar individuals.

Many laboratory studies on social recognition have demonstrated the importance of two 

neuropeptides: oxytocin and vasopressin. Male vasopressin 1a receptor (V1aR) knockout 

mice showed impaired social recognition (Bielsky, Hu, Szegda, Westphal, & Young, 2004), 

and reexpression of V1aR in the lateral septum restored the behavior (Bielsky, Hu, Ren, 

Terwilliger, & Young, 2005). Similarly, greater V1aR expression and higher vasopressin 

activity in the lateral septum is associated with better social recognition (Everts & Koolhaas, 

1999; Landgraf et al., 1995, 2003) and social investigation in male rats and prairie voles 

(Ophir, Zheng, Eans, & Phelps, 2009). Male mice with a mutant form of the oxytocin gene 

did not exhibit social recognition (Ferguson et al., 2000), and oxytocin infusion in the 

medial amygdala rescued the behavior (Ferguson, Aldag, Insel, & Young, 2001). Studies 
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have mostly focused on males, but evidence suggests that oxytocin and potentially 

vasopressin are also important for social recognition in females (Clipperton-Allen et al., 

2012, but see Bluthe, Shoenen, & Dantzer, 1990). Furthermore, evidence suggests an 

important interplay with sex steroid hormones (Bluthe, Schoenen, & Dantzer, 1990).

Unsurprisingly, social recognition is mediated through more than just neuropeptide action, 

involving important connections to and from other systems. Dopaminergic, noradrenergic, 

and glutamatergic systems have all been implicated in social recognition, as well as 

muscarinic acetylcholine receptor activation, with neuropeptides likely serving as 

neuromodulators of neurotransmitter release (Bielsky & Young, 2004; Dluzen, Muraoka, 

Engelmann, Ebner, & Landgraf, 2000; Ferguson et al., 2002; Winslow & Insel, 2004). The 

vomeronasal system has also been found to play an essential role in social recognition, with 

the medial amygdala, and oxytocin in the medial amygdala, mediating relevant information 

processing in a sex-specific manner (Bergan, Ben-Shaul, & Dulac, 2014; Li & Dulac, 2018; 

Li et al., 2017; Yao, Bergan, Lanjuin, & Dulac, 2017). Due to the complexity and overlap of 

the neural circuits underlying all social behaviors and processes (Figure 1), those relevant to 

social recognition may be difficult to isolate.

Beyond social recognition, some animals maintain long-term social bonds that require social 

memory. In this chapter, social memory will refer to the set of behaviors routinely cited in 

the literature as distinct from short-term social recognition, including kin recognition, pair-

bond maintenance, selective pregnancy termination, territoriality, and maintenance of stable 

dominance hierarchies (Gheusi et al., 1994; Winslow & Insel, 2004). For example, pair-bond 

maintenance in prairie voles persists even after long-term separation (1–4 weeks) from a 

partner; at reunion, prairie voles show a preference for a partner (DeVries & Carter, 1999; 

Sun, Smith, Lei, Liu, & Wang, 2014). The dopamine and opioid systems play important 

roles in mediating the longevity of these mate bonds (Aragona et al. 2006; Resendez, 

Kuhnmuench, Krzywosinski, & Aragona, 2012). Social memory is also necessary for the 

maintenance of territoriality and dominance hierarchies, and the agonistic interactions 

between individuals that are involved in this maintenance are often modulated by social 

stress (reviewed in Tamashiro, Nguyen, & Sakai, 2005; van der Kooij & Sandi, 2012). Rats 

and mice in particular have been studied for their ability to spontaneously form stable 

dominance hierarchies. For example, glucocorticoids (Timmer & Sandi, 2010) and oxytocin 

receptor density (OTR) in the medial amygdala and lateral septum (Timmer, Cordero, 

Sevelinges, & Sandi, 2011) play important roles in the formation of dominance hierarchy-

related social memory in male rats. Similarly, higher brain gene expression of gonadotropin-

releasing hormone (GnRH) in the medial preoptic area (MPOA) of the hypothalamus is 

associated with opportunity for social ascent in male mice (Williamson, Romeo, & Curley, 

2017). Higher corticotropin releasing factor (CRF) mRNA in the medial and central nuclei 

of the amygdala and the MPOA, and glucocorticoid receptor mRNA in the hippocampus, are 

associated with higher dominance status (So, Franks, Lim, & Curley, 2015).

2.2 Social reward

In some species, social reward plays an important role in stable social groups by motivating 

initial social contact and later reinforcing this social contact. The neurobiology of reward has 
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been studied extensively in the context of sexual behavior and appetitive behaviors such as 

drug addiction (reviewed in Beloate & Coolen, 2017; Young, Gobrogge, & Wang, 2011). 

Reward has also been well studied in maternal behavior and social play in rodents, 

especially rats and mice (Trezza, Campolongo, & Vanderschuren, 2011). These studies have 

focused on dopamine, opioid, and serotonin neurotransmission as targets for manipulation. 

Furthermore, mounting evidence suggests that reward mechanisms associated with social 

behavior—specifically, social behavior for which an individual is highly motivated, 

including parental behavior and pair bonding—are very similar to those associated with 

sexual behavior and drug addiction. Some have even suggested these kinds of social 

attachments are themselves addictive (Insel, 2003; Young, Gobrogge, & Wang, 2011). From 

a fitness perspective, it is not difficult to understand why it would be beneficial for sexual 

behavior, parental behavior, and pair bonding to be highly rewarding and therefore highly 

motivating. Drugs of abuse co-opt conserved reward mechanisms to manipulate behavior.

Investigators seeking to illuminate the reward mechanisms associated with social behavior 

have likewise designed experiments that target the mesolimbic dopamine reward pathway. 

For example, activation of dopamine D2-type receptors—and concurrent interaction with 

OTR—is necessary for opposite-sex pair-bond formation in female prairie voles (Liu & 

Wang, 2003; Wang et al., 1999). Specifically, nucleus accumbens dopamine is critical for 

pair bonding in both male and female prairie voles (Aragona et al., 2006; Aragona, Liu, 

Curtis, Stephan, & Wang, 2003; Gingrich, Liu, Cascio, Wang, & Insel, 2000; Liu & Wang, 

2003). D1-like activation in the rostral shell of the nucleus accumbens prevented pair-bond 

formation in male prairie voles, whereas D2-like activation facilitated it (Aragona et al., 

2006). Furthermore, upregulation of D1-type receptors in the nucleus accumbens is 

associated with pair-bond maintenance. These dopamine-manipulated prairie voles show 

differences in partner preference but not in the number of mating bouts, distinguishing 

between sexual and social behavior. Consistent with this finding, prairie and meadow voles 

show similar increases in extracellular dopamine in the striatum after mating (Curtis, Stowe, 

& Wang, 2003). Thus, the necessity of dopamine in prairie vole pair-bond formation is 

specific to the partner preference, and not to any effects on mating.

It is likely that the mesolimbic dopamine reward pathway’s role in reinforcing certain social 

behaviors is conserved across vertebrates (Bruce & Braford, 2009; O’Connell & Hofmann, 

2011a). It has also been suggested that significant overlap exists between the reward system 

and the social behavior network, and that these circuits were present even in early 

vertebrates (O’Connell & Hofmann, 2011b). However, despite the importance of dopamine 

in prairie vole pair bonding, blocking it does not impair peer affiliation in female meadow 

voles (Beery & Zucker, 2010) or prairie voles (Lee et al., unpublished data). Thus, dopamine 

appears to be more important for selective relationships with mates than with peers.

2.3 Social approach/avoidance

Many animals find novel stimuli, including novel social stimuli, fear- and anxiety-inducing. 

This fear and anxiety must be countered to shift from an initial avoidance response to social 

approach and thereby social behavior. For example, nulliparous rats are fearful of pups, 

avoiding them and sometimes acting aggressively toward them, sometimes to the point of 
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infanticide (Fleming & Anderson, 1987). The onset of maternal behavior involves changes 

in approach/avoidance, whereby a maternal rat has greater tendency to approach pup stimuli 

than avoid it (Rosenblatt & Mayer, 1995). The MPOA has been pinpointed as a significant 

region for this shift, depressing antagonistic neural systems related to avoidance behaviors 

and activating appetitive neural systems related to approach behaviors (Numan, 2007). 

Furthermore, maternal memory may involve maternal experience-induced synaptic plasticity 

within relevant neural circuits, such that pup stimuli can more effectively activate these 

maternal circuits (Numan & Stolzenberg, 2009). These authors suggest such synaptic 

plasticity may include downregulation of the female rat’s withdrawal/avoidance system 

toward pups, so that pup stimuli are less likely to activate avoidance behavior. This 

approach-avoidance model applies to non-maternal social behavior as well (reviewed in 

O’Connell & Hofmann, 2011a).

In female meadow voles, a similar shift from avoidance to approach behaviors occurs with 

seasonal changes in day length. In the summer—or under long day-length conditions in a 

laboratory setting—meadow voles are aggressive and territorial (Madison, 1980; Madison & 

McShea, 1987; McShea & Madison, 1984). In the winter—under short day-length 

conditions—they become more tolerant of conspecifics and live in communal groups. Day-

length dependent changes in social behavior in the laboratory are concomitant with changes 

in brain and peripheral hormone circulation that may facilitate this behavioral shift. For 

example, both OTR and CRF receptors (1 and 2) vary with day length and with individual 

huddling in female meadow voles (Beery & Zucker, 2010; Beery, Vahaba, & Grunberg, 

2014). Glucocorticoid secretion also varies seasonally, and stress and glucocorticoid 

exposure alter the formation of both same- and opposite-sex partner preferences in voles 

(Anacker, Reitz, Goodwin, & Beery, 2016; DeVries, DeVries, Taymans, & Carter, 1996; 

Pyter, Weil, & Nelson, 2005).

Social approach can be measured in multiple ways: latency to approach a conspecific, 

amount of social contact with a conspecific, and social preference (preference for a social 

stimulus over a non-social stimulus). Social approach is not equivalent to affiliative 

behavior; it may refer only to the tolerance of an individual for a conspecific, or the amount 

an individual investigates and interacts with a conspecific. Sociability tests in rats and mice 

have found that oxytocin facilitates social approach and prevents social avoidance in these 

animals (reviewed in Lukas & Neumann, 2013). Although vasopressin—specifically, 

AVPR1a antagonist—did not have a clear effect on social approach (Lukas et al., 2011), 

AVPR1b antagonist reduced social avoidance in mice after social defeat (Litvin, Murakami, 

& Pfaff, 2011).

Social experience modulates the balance between approach and avoidance. For example, 

social contact itself may decrease fear and anxiety (reviewed in Hostinar, Sullivan, & 

Gunnar, 2014). Rats, prairie voles, guinea pigs, mice, California mice, and Siberian hamsters 

all show social buffering, whereby animals exhibit modulated stress responses with social 

interaction (reviewed in Beery & Kaufer, 2015). Unsurprisingly, oxytocin and opioids have 

been implicated in social buffering (reviewed in Kikusui et al., 2006). For example, social 

buffering in prairie voles is oxytocin-dependent (Burkett et al., 2016)—specifically, it 

involves oxytocin in the paraventricular nucleus (PVN) of the hypothalamus (Smith & 

Lee and Beery Page 6

Curr Top Behav Neurosci. Author manuscript; available in PMC 2020 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang, 2014). Conversely, social isolation in highly social animals may cause fear and 

anxiety. Disruption of both peer and mate relationships in prairie voles has been used as a 

model for affective disorders such as depression and anxiety. Social isolation induces 

behavioral, cardiac, autonomic, and neuroendocrine changes relevant to anxiety and 

depression in male and female prairie voles (Grippo, Gerena, et al., 2007; Grippo, Cushing, 

& Carter, 2007; Grippo, Lamb, Carter, & Porges, 2007; Grippo, Wu, Hassan, & Carter, 

2008). Pair-bond disruption in prairie voles causes depression-related behaviors and an 

increase in adrenocorticotropic hormone (ACTH) and corticosterone (McNeal et al., 2014). 

Changes in CRF are also associated with passive stress-coping after pair-bond disruption 

(Bosch, Nair, Ahern, Neumann, & Young, 2009), and isolation in juvenile prairie voles 

(Ruscio, Sweeny, Hazelton, Suppatkul, & Carter, 2007). These studies illustrate the intimate 

relationship between social approach, social avoidance, and the initiation or loss of a social 

bond.

3. Studying rodent sociality across social structures

The nature of sociality varies widely across rodents, such that group-living species may 

differ in group size, composition (e.g. kin, non-relatives, subadults, adult peers, mates), and 

the role of specific, selective relationships. Many laboratory studies focus on the 

mechanisms supporting individual social behaviors and processes. In moving from specific 

behaviors to social structure, rodent groups with inter- and intraspecific variation in sociality 

are particularly useful for comparison across different social structures. For example, the 

African mole-rat family is the only mammalian clade to contain eusocial species. Naked 

mole-rats are the most highly specialized of these species, studied in the lab for mechanisms 

underlying their social behavior, with a focus on effects of sex and social status (Hathaway, 

Faykoo-Martinez, Peragine, Mooney, & Holmes, 2016; Mooney, Coen, Holmes, & Beery, 

2015; Mooney, Douglas, & Holmes, 2014; Rosen, Vries, Goldman, Goldman, & Forger, 

2007), as well as for comparison with solitary Cape mole-rats (Coen, Kalamatianos, 

Oosthuizen, Poorun, Faulkes, & Bennett, 2015; Kalamatianos et al., 2010). Similarly, South 

American tuco-tucos are members of a genus consisting of social and non-social species, 

studied in the lab for oxytocin and vasopressin receptor binding differences (Beery, Lacey, & 

Francis, 2008). Examination of additional species with diverse social behaviors will aid our 

understanding of the specificity and generality of mechanisms underlying different aspects 

of life in groups (see Table 1 for examples of some promising species). The majority of 

research on mechanisms supporting peer sociality is in voles, which provide an excellent 

opportunity to examine inter- and intra-specific variation in social behavior.

3.1 Synthesizing social processes to understand selective relationships in voles

Prairie voles and meadow voles are closely related but behaviorally disparate species that 

have been well studied in both the field and lab. By identifying which social behavior 

processes are important in specific contexts, such as prairie vole pair bonds and meadow 

vole peer relationships, we can predict important mechanistic differences in prairie and 

meadow vole social behavior.
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Socially monogamous prairie voles are an increasingly popular rodent model of social 

behavior, and research on this species has informed our understanding of oxytocin and its 

importance in selective social bonds. Oxytocin, vasopressin, and dopamine are important 

molecules in the formation and maintenance of pair bonds in both males and females 

(Aragona et al., 2003; Cho, DeVries, Williams, & Carter, 1999; Wang et al., 1999). 

Specifically, oxytocin has been found to be particularly important for females (Insel & 

Hulihan, 1995; Williams, Carter, & Insel, 1992; Williams, Insel, Harbaugh, & Carter, 1994), 

and vasopressin for males (Donaldson, Spiegel, & Young, 2010; Lim & Young, 2004; Liu, 

Curtis, & Wang, 2001; Winslow, Hastings, Carter, Harbaugh, & Insel, 1993). Prairie voles 

have also been studied for their bi-parental behavior (Thomas & Birney, 1979) and selective 

same-sex social bonds (Beery et al., 2018; DeVries, Johnson, & Carter, 1997; Lee, 

Goodwin, Freitas, & Beery, in review).

Sexually promiscuous meadow voles have been studied as contrasts to socially monogamous 

prairie voles, with some studies assessing whether specific manipulations cause meadow 

voles to behave more like prairie voles. For example, meadow vole males were successfully 

manipulated to show more partner preference for an opposite-sex partner using viral vector 

V1aR gene transfer into the ventral forebrain (Lim et al., 2004). However, a similar 

experiment using viral vector OXTR gene transfer into the nucleus accumbens of females 

failed to enhance partner preference for opposite-sex partners (Ross et al., 2009). Meadow 

voles have also been studied for their ability to form selective same-sex relationships (e.g. 

Beery, Loo, & Zucker, 2008; Ondrasek et al., 2015; Parker & Lee, 2003). Perhaps 

unsurprisingly, oxytocin mediates prairie and meadow vole social behavior in different ways. 

While prairie vole mate bonds rely on oxytocin, oxytocin is not necessary for meadow vole 

peer relationships, although oxytocin can both enhance and eliminate peer partner 

preferences, acting in different brain regions (Anacker, Christensen, LaFlamme, Grunberg, 

& Beery, 2016; Beery & Zucker, 2010). This and other differences in mechanism may be 

predicted by identifying the social behavior processes relevant to specific complex social 

behaviors and social systems. For example, the relative importance of social recognition, 

reward, and social approach shift according to context. Pair bonding, parental care, and 

group living all provide variations on context that lead to variations in mechanism.

In reproductive pair bonds, prairie voles strongly exhibit all social behaviors and processes 

discussed previously. Social recognition, as well as social investigation and memory, are 

essential to pair-bond formation (Young, Young, & Hammock, 2005). Social recognition and 

decreased fear and anxiety are necessary for voles to approach potential mates and form a 

pair bond. Paired voles show partner preference even after prolonged separation, indicating 

long-term social memory. Following pair-bond formation, both sexes display increased 

aggression toward conspecifics of either sex (Carter & Getz, 1993). Aggression, especially 

inter-male aggression, allows prairie voles to maintain the exclusivity of their pair bond by 

mate guarding and defending their territory, and is also important for parental care via 

defense of young.

Meadow vole peer relationships share several behavioral elements in common with 

reproductive pair-bonds: they are also selective, enduring, and depend on long term social 

memory. In contrast to prairie vole pair bonds, meadow vole peer relationships do not appear 
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to be dependent on dopamine signaling (Beery & Zucker, 2010) and do not result in 

aggression toward extra-pair conspecifics. It is possible that meadow vole peer relationships 

involve increased tolerance toward all conspecifics rather than increased affiliation toward 

individuals, and that these bonds are neither as highly motivating nor as highly selective as 

those of prairie voles. Ongoing work is investigating the role of reward in prairie vole peer 

relationships, to elucidate whether the mechanisms of prairie vole pair-bond formation and 

maintenance are specific to the species (prairie vole) or specific to the behavior (pair 

bonding). Prairie voles can be socially conditioned to show place preference for mates but 

not long-term cagemates (Goodwin et al., 2018), and preliminary data suggests that prairie 

voles exhibit greater lever pressing for mates compared to peers (Lopez et al., Beery Lab, 

unpublished data). It seems likely that prairie vole mate bonds and meadow vole peer 

relationships are so different because the former are reproductive in nature and the latter are 

not. Indeed, preliminary data suggests that prairie vole peer relationships, like meadow vole 

peer relationships, do not rely on the dopaminergic reward pathway (Lee et al., Beery Lab, 

unpublished data).

This example of two closely related species exhibiting different social behaviors and 

underlying mechanisms highlights the advantage of the comparative perspective. 

Understanding affiliation will require study of both peer and mate relationships in multiple 

species.

4. Sociality in free-living rodents

Rodents are the most diverse, numerous, and widespread of all mammals (Wolff & Sherman, 

2007). Sociality is widespread in rodents, with at least 70 documented social species in 39 

genera (Lacey & Sherman, 2007). Social rodents are found in a vast range of environments 

and exhibit distinct social behaviors, even within the same genus. These features make them 

particularly valuable models for comparative work. Rodents are also favorite lab subjects, 

due to their generally small size, fast life history, ease of attainability, and availability. Thus, 

rodents are ideal subjects for understanding social behavior mechanisms in the context of 

ecological relevance and phylogenetic relatedness. Table 1 summarizes the social behaviors 

of some of the most socially distinctive rodents in the wild. For example, beavers, prairie 

voles, and California mice all provide an opportunity to study social monogamy, a rare 

behavior among mammals. Naked mole-rats and social tuco-tucos are examples of 

opportunities to study sociality in direct comparison to closely-related non-social species. 

Although some of these social rodents have been used in laboratory studies of affiliative 

behavior, the mechanisms of social behavior for many more remain to be elucidated.

The most studied rodents in the lab—rats and lab mice—are not often studied in their natural 

environments. Special strains of rats and mice have been bred to study specific behaviors or 

physiological characteristics, and these specific strains do not occur naturally in the wild. 

While some rodent researchers use wild-caught animals or animals bred from wild-caught as 

their subjects, or outbreed with wild-caught animals to maintain genetic diversity, these 

studies are not the norm (but see: research on wild rats, Ibe, Onyeanusi, Hambolu, & Ayo, 

2010; Ruan & Zhang, 2016). However, inbred strains of mice and rats have allowed for the 

development of genetic tools in these animals before any others (e.g. knock-out mice have 
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been used in research for many years). Furthermore, a variety of behavioral tests have been 

standardized in laboratory rodents, including tests of anxiety-like and depressive-like 

behavior (open field test, light-dark box test, elevated plus maze, forced swim test), spatial 

memory (Morris water maze), aggression (resident-intruder test), and affiliation (partner 

preference test). Although these laboratory techniques have allowed for incredible depth in 

mechanistic research, breadth is also necessary to inform translatability of mechanistic 

findings. Thus, much may be gained by increasing efforts to research the neurobiology of 

species with field data, and to research species with neurobiology data in the field.

5. New techniques and future directions

The studies discussed above use a variety of neural techniques including lesions and 

stimulation of different brain regions, pharmacological manipulations, and neurochemical 

measurement. Additional new methods promise to both enhance the specificity of control of 

particular circuits, and to bring genetic manipulations and measurements to species beyond 

the laboratory mouse. This will help increase the diversity of laboratory models.

5.1 Genetic techniques

Until recently, lab mice dominated genetic manipulation experiments, with transgenic mice 

employed extensively to study the roles of specific genes, receptors, and other players. Since 

the birth of genetic technology, the genomes of many more species have been sequenced, 

and transgenic prairie voles (Donaldson, Yang, Chan, & Young, 2009), zebra finches (Agate, 

Scott, Haripal, Lois, & Nottebohm, 2009), sticklebacks (Kingsley et al., 2004), and 

marmosets (Kishi, Sato, Sasaki, & Okano, 2014; Miller et al., 2016) now exist. CRISPR/

Cas9 is one of many new genetic manipulation techniques that is fine-scale, reversible, and 

can be performed in vivo (in mice, Swiech et al., 2015). It has recently been successfully 

applied to rhesus macaques (Kang et al., 2015; reviewed in Luo, Li, & Su, 2016; Niu et al., 

2014; Wan et al., 2015). This technique is also being developed in prairie and meadow voles, 

as well as many other species. Zinc finger nucleases (ZFN) and transcription activator-like 

effector nucleases (TALENs) can also now be used to make precise, targeted genome 

modifications in model species that include zebrafish, rats, and mice (Gaj, Gersbach, & 

Barbas, 2013).

However, most organisms still lack fully sequenced genomes. Transcriptome analysis 

provides a high-throughput, low-cost means of genomic sequencing by which refined 

differences or changes in gene expression are identified. Because this next-generation 

sequencing (e.g. RNA-seq) can be used in animals with few to no genomic resources, it is 

useful for studying non-model systems (Blumstein et al., 2010; Ekblom & Galindo, 2011; 

Ockendon et al., 2016; Taborsky et al., 2015). De novo transcriptome assembly allows for 

the identification of novel transcripts and does not require a reference genome. In fact, many 

new techniques, including optogenetics and chemogenetics, can be applied in both 

traditional and nontraditional systems and are equally effective in each. Optogenetics and 

chemogenetics, like CRISPR/Cas9, can activate and suppress neural action at a very fine 

scale; they are also reversible and can be performed in vivo.
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Despite the recent advances in technology that can be applied to non-model species, tools 

currently available primarily in mice provide a level of specificity and refinement that cannot 

yet be rivaled. Combined with techniques that can be used in both model and non-model 

species, such as optogenetics and chemogenetics, these methods have much to contribute to 

understanding the mechanisms underlying social behavior (e.g. Beloate, Omrani, Adan, 

Webb, & Coolen, 2016; Burgos-Robles et al., 2017; McHenry et al., 2017).

As new techniques become available for a larger number of species, they should be adopted 

when possible. We are only now emerging from a bottleneck created by the beginnings of 

genetic technology, which had been a “genetic revolution” that consisted of sequences and 

tools for only a few species (Brenowitz & Zakon, 2015). Now that genetic techniques are 

available for more than just a few species, more comparative, mechanistic work will be 

made possible.

5.2 New conceptual directions

The idea that no single neurochemical or brain region controls a behavior is now well 

accepted. For social behaviors, a complex, interconnected circuit is thought to play an 

important role in diverse social behaviors: the so-called social behavior network (Newman, 

1999) or social decision-making network (O’Connell & Hofmann, 2012). A growing 

movement has recently called for an integrative and comparative approach, arguing for the 

importance of both an ultimate and proximate perspective, both field and lab work, and the 

study of non-model organisms across a wide range of taxa (Blumstein et al., 2010; Hofmann 

et al., 2014; Rubenstein & Hofmann, 2015; Taborsky et al., 2015). Field work alone does not 

uncover mechanism, and lab work alone does not consider the context of an animal’s 

behavior—its functional significance in a specific ecological environment, and its 

evolutionary history. Furthermore, there is such incredible diversity in behavior and the 

mechanisms that underlie it, even within a single genus, that both basic biological processes 

and the human brain and disease can only hope to be understood by comparative, wide-

ranging research.

While the availability of new technology has proven essential to dissecting functional 

circuits, it has sometimes promoted a focus on technique rather than question. Many 

researchers argue neuroscientists have forgotten brains belong to behaving animals—that 

“neuroscience needs behavior” (Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 

2017) and that “nothing in neuroscience makes sense except in light of behavior” (Hofmann, 

Renn, & Rubenstein, 2016). Researchers may find themselves inundated with vast amounts 

of genetic data, but it is important to return to context and life history (Kültz et al., 2013).

Ultimately, we must not seek to understand a specific behavior in a specific species alone, 

but to understand the social brain, how it functions, and how it evolved.
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Figure 1. 
Key brain regions associated with social behavior. Abbreviations: BNST (bed nucleus of the 

stria terminalis), HC (hippocampus), LS (lateral septum), MPOA (medial preoptic area), 

NAcc (nucleus accumbens), PVN (paraventricular nucleus of the hypothalamus), VMH 

(ventromedial nucleus of the hypothalamus), VP (ventral pallidum), VTA (ventral tegmental 

area). Brain regions explicitly discussed in the text are depicted, as well as: BNST (Bielsky 

& Young, 2004; Lebow & Chen, 2016; O’Connell & Hofmann, 2011b; Walker, Toufexis, & 

Davis, 2003), hippocampus (Broadbent, Squire, & Clark, 2004; Brown & Aggleton, 2001; 

Hölscher, Jacob, & Mallot, 2003; Kogan, Frankland, & Silva, 2000; O’Connell & Hofmann, 

2011b), ventral pallidum (Smith, Tindell, Aldridge, & Berridge, 2009), VMH (Colpaert, 

1975; Grossman, 1972). The sagittal section was adapted from the mouse brain atlas of 

Paxinos and Franklin (2012).
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