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Abstract

Independence, Amalgamation, and Trees

by

Samuel Nicholas Ramsey

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Thomas Scanlon, Chair

This thesis is concerned with developing a theory of model-theoretic tree properties.
These properties are combinatorial properties of a formula or family or formulas that place
strong constraints on the behavior of forking and dividing yet are compatible with certain
forms of model-theoretic randomness. The most significant and intensively studied is the tree
property, whose negation characterizes the simple theories, and a successful theory for simple
theories was developed by Hrushovski, Kim, Pillay, and others, in the late 90s and early
2000s. Motivated by parallels with simplicity theory, we introduce a theory of independence
called Kim-independence and present a structure theory for NSOP1 theories in terms of it.
This unifies and explains simplicity-like phenomena observed in several non-simple examples,
such as existentially closed vector spaces with a bilinear form and ω-free PAC fields. This
machinery also gives a streamlined method for establishing that a given theory is NSOP1 and
for showing that certain generic constructions preserve NSOP1. We also develop techniques
for the manipulation of tree indiscernibles to address several questions concerning the syntax
of the related model-theoretic tree properties TP1, weak k-TP1, and the associated cardinal
invariants.

In the first two chapters, we develop the syntax of model-theoretic tree properties. We
consider two kinds of tree indiscernbles and establish several ‘operations’ on them that pre-
serve indiscernibility. Using these tools, we prove in Chapter 1, joint with Artem Chernikov,
that TP1 is always witnessed by a formula in a single free variable, partially answering a
question of Shelah, and that TP1 is equivalent to weak k-TP1, answering a question of Kim
and Kim. In Chapters 1 and 2, we study cardinal invariants of a theory T called κcdt(T ),
κsct(T ), and κinp(T ), which measure approximations to TP, TP1, and TP2, respectively. We
address two questions of Shelah concerning which relationships between the model-theoretic
tree properties TP, TP1, and TP2 have quantitative analogues that are reflected in the val-
ues of these invariants. This is accomplished by a combination of model-theoretic techniques
related to tree indiscernibles and set-theoretic tools from infinitary combinatorics.

Next, we focus on the tree property SOP1 and develop an interpretation of this property
in terms of independent amalgamation of types. This begins in Chapter 1, where we char-
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acterize SOP1 in terms of amalgamation and give a Kim-Pillay style criterion for NSOP1,
which is then applied to show many known examples are NSOP1. This is supplemented and
refined in Chapter 3, joint with Itay Kaplan, where we introduce Kim-independence, which
generalizes non-forking independence in simple theories, and corresponds to non-forking at
a generic scale. We show that in an NSOP1 theory, Kim-independence is symmetric and
satisfies the independence theorem and that, moreover, NSOP1 is characterized by these
properties. In Chapter 4, joint with Itay Kaplan and Saharon Shelah, we give a characteri-
zation of NSOP1 in terms of the local character of Kim-independence. Then in Chapter 5,
we prove that SOP1 is witnessed by a formula in a single free variable.

Finally, we focus on applying the theory of independence for NSOP1 theories to obtain
new examples of NSOP1 theories. Winkler showed that if T is a model-complete theory
eliminating the quantifier ∃∞, then T has a model companion when viewed as a theory in
a larger language, or when the language of T is enriched with Skolem functions, which may
be viewed as the generic expansion of T by new relations, functions, and constants, or the
generic Skolemization of T , respectively. In Chapter 6, we prove these constructions preserve
NSOP1 and characterize Kim-independence in the expansion in terms of Kim-independence
in T . We then specialize our analysis to the model companion of the empty theory in
an arbitrary language, arguably the simplest possible nonsimple NSOP1 theory when the
language contains a function symbol of arity at least 2, and give a complete description of
forking and imaginaries in this theory. In Chapter 7, we relate model-theoretic tree properties
of a PAC field to those of its absolute Galois group. Chatzidakis has shown that if the theory
of the inverse system of the absolute Galois group of a PAC field is NSOPn then so is the
field, for n ≥ 3. As NSOP1, and NSOP2 are defined very differently, extending this result
to the n = 1 and n = 2 case requires a different argument, but we show that Chatzidakis’s
result extends to these cases by applying the theory of Kim-independence in the NSOP1 case
and analyzing strongly indiscernible trees in the NSOP2 case.
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Chapter 0

Introduction

0.1 Background
Much of mathematical logic is concerned with asking what kinds of mathematical things
are the kinds of things we can classify. Figuring out what it means to classify something
is part of the question. Shelah’s Classification Theory [She90] begins by offering a pre-
cise and compelling suggestion for how to ask this question, and then proceeds to answer
it. The foundational results of Morley and Baldwin-Lachlan showed how to take a logical
hypothesis—ℵ1-categoricity or strong minimality—and construct a theory of dimension from
it, which in turn allowed one to determine the identity of a structure in terms of this sin-
gle invariant. Shelah took this as a paradigm and proposed interpreting the classification
problem with ‘mathematical things’ understood as models of a first-order theory and ‘clas-
sification’ interpreted as the assigment of cardinal invariants. And after nearly 600 pages,
his book concludes by more or less completely characterizing when this is possible. It is an
astonishing human achievement.

From Shelah’s Classification Theory there emerged a general philosophy that, in classi-
fying first-order theories, one should look for dividing lines. These are properties of theories
that split the first-order theories into ‘tame’ and ‘wild’. From this perspective, one should
be able to prove interesting theorems about theories lying on either side—structure theorems
for tame theories, nonstructure theorems for wild ones. Additionally, one hopes to find inside
criteria for the dividing line, which characterize it in terms of syntax, and outside criteria,
that make reference only to semantics, that is, to the models. Despite the distance that
model theory has traveled from Shelah’s original motivation, the dividing lines philosophy
still forms the basis of the vocabulary in which we describe what model theory is ultimately
trying to do. Within stability theory, most dividing lines were isolated as the possible reasons
that a theory could fail to be classifiable, but their interest extended beyond their relevance
to the motivating classification problem. Consequently, it became interesting to look for di-
viding lines even among the unstable theories and simplicity was the first to receive extensive
study.
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Simplicity theory emerged out of the confluence of three lines of research within model
theory. The first came from work of Shelah, who named the simple theories in [She80] and
gave a preliminary analysis of independence in simple theories via the notion of weak dividing.
Although the tree property had been isolated by Shelah in [She90] in the course of his
development of forking independence in stable theories, this paper was the first place in which
theories without the tree property were studied in their own right. Shelah’s aim here was to
show that simplicity is a dividing line by giving an ‘outside’ set-theoretic characterization
of the class of simple theories. He showed that, in a simple theory, the Boolean algebra of
non-weakly-dividing formulas satisfies a certain chain condition. He then showed that, by
forcing with this poset, one can construct very saturated models of a simple theory. More
precisely, Shelah defined the saturation spectrum of a theory T to be the set of pairs (λ, κ)
where λ ≥ κ are cardinals and every model of T of size ≤ λ has a κ-saturated elementary
extension of size λ. A standard unions-of-chains argument shows that if λ = λ<κ, then (λ, κ)
is in the saturation spectrum of any theory. Shelah’s discovery was that, assuming a forcing
axiom Ax0µ, the simple theories may be characterized as those theories whose saturation
spectra contain some (λ, κ) with λ 6= λ<κ. Although the question of what the saturation
spectra of first-order theories can be may appear rather arcane, Shelah’s chain condition was
later distilled into the S1 property of an ideal, a central notion in the work of Hrushovski
on approximate subgroups [Hru12], and Hrushovski’s letter to Shelah [Hru97], in which he
demonstrates that different simple unstable theories can have distinct saturation spectra,
opened up the study of generalized amalgamation, which continues to be a central topic
within pure model theory.

Secondly, work of Hrushovski [Hru91] and Hrushovski-Pillay [HP94] on structures related
to pseudo-finite fields led to many of the basic notions in simplicity theory. Pseudo-finite
fields where characterized by Ax as those fields that are perfect, have Galois group Ẑ, and
satisfy an algebraic condition called being pseudo-algebraically closed (PAC). A field K is
PAC if every absolutely irreducible variety defined over K has a K-rational point. When
K is perfect, K may be viewed as a definably closed substructure of its algebraic closure
Kalg. Hrushovski observed that the PAC condition can be reformulated model-theoretically
as the requirement that every multiplicity 1 formula (in the sense of the strongly minimal
theory Th(Kalg)) with parameters coming from K is realized in K. This condition makes
sense and is elementary in an arbitrary strongly minimal theory with weak elimination of
imaginaries and the definable multiplicity property, so Hrushovski set out to analyze PAC
substructures of strongly minimal theories satisfying these additional technical conditions,
together with a boundedness condition on the model-theoretic Galois group. Working at
this level of abstraction required the analysis to center on the fundamental properties of
dimension and genericity that the PAC substructure inherits from the ambient strongly
minimal one. The work of Hrushovski and Hrushovski-Pillay proved many approximations
to fundamental results of stability and stable group theory in an unstable setting by working
locally and relating properties of the unstable structure to those of an ambient stable one.

The third line of model-theoretic research that led to simplicity theory came from Lach-
lan’s program of classifying smoothly approximable structures. The starting point for this
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theory was the pioneering work on ω-stable ℵ0-categorical theories done by Cherlin, Har-
rington, and Lachlan [CHL85]. This provided a point of contact between Lachlan’s program
of classifying homogeneous stable structures and Zilber’s work on the geometric structure
theory of ℵ1-categorical theories. The Cherlin-Harrington-Lachlan analysis began with the
classification of strictly minimal sets—that is, strongly minimal ℵ0-categorical structures
satisfying an additional technical hypothesis—and then, using the ambient dimension the-
ory, to prove that an arbitrary ω-stable ℵ0-categorical theory may be coordinatized in terms
of them. One of the goals of this theory was to prove the non-finite axiomatizability of
ω-stable ℵ0-categorical structures and this was accomplished, in effect, by showing that they
are smoothly approximable. This suggested that a similar structure theory might exist at
the level of smoothly approximable structures. One significant obstacle to working at this
level of generality, however, was the appearance of unstable structures. Kantor, Liebeck, and
Macpherson [KLM] classified the primitive smoothly approximable structures and showed
that they are all closely related to classical geometries over finite fields. These may be unsta-
ble: although an infinite dimensional vector space over Fp is ω-stable, an infinite dimensional
vector space over Fp equipped with a nondegenerate bilinear form has the independence prop-
erty. Replacements for the core notions of stability theory, such as stationarity and canonical
bases, as well as finer notions from geometrical stability theory, like minimality and local
modularity, had to be adapted to the setting of smoothly approximable structures in order
to carry out a parallel theory in which an arbitrary smoothly approximable structure could
be analyzed in terms of coordinatizing primitive geometries. This analysis was carried out
by Cherlin and Hrushovski [CH03].

Much of the model-theoretic content in these developments was organized and explained
by Kim and Pillay, who established a general theory of simple theories based upon the prop-
erties of the independence relation of non-forking [KP97] [Kim98] [Kim01]. They showed that
a single combinatorial hypothesis—not having the tree property—was sufficient to recover
almost all of the properties of non-forking independence observed in the special settings of
bounded PAC substructures of strongly minimal sets and smoothly approximable structures.
In particular, Kim proved Kim’s lemma, which established that forking in a simple theory
is always witnessed by a Morley sequence, from which the equality of forking and dividing
and the symmetry of non-forking independence easily follow. Subsequently, Kim and Pillay
proved the independence theorem and a characterization of non-forking independence in a
simple theory in terms of abstract axioms of an independence relation. These breakthroughs
clarified the fundamental phenomena at the heart of simplicity theory, allowing the theory
to deepen. This led to the proliferation of new fundamental notions, such as hyperimagi-
naries, generalized amalgamation, stable forking, etc., which served as a driver of further
model-theoretic research.
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0.2 Problems from non-simple theories
So to recap the historical sketch given above, after Shelah’s work, new examples and new
phenomena created the need for generalizations of stability theory. These generalizations
were subsequently systematized around properties of an abstract independence relation and
these properties were shown to characterize and be characterized by simplicity. This point of
view paved the way for the deepening of simplicity theory, which became a significant area of
model-theoretic research in its own right, and served as the basis for further developments in
the field. In what follows, we will explain how the theory presented in this thesis—the theory
of Kim-independence and the theory of model-theoretic tree properties—may be motivated
by a remarkably parallel situation in which previous work on non-simple examples can be
unified and explained by a theory of independence, which in turn allows for new applications
and suggests new structures to consider.

As in the case of the development of simple theories in the wake of stability, the new
examples and new phenomena created that created need for new tools beyond simplicity
were related to saturation, PAC structures, and classical geometries. The initial impetus to
develop tree properties beyond simplicity comes from the C∗-order introduced by Shelah to
compare the the relative difficulty of producing saturated models of two theories. In their
extensive study of this order [DS04], Džamonja and Shelah introduce the tree properties
SOP1 and SOP2, as well as some variants of each, and study the relationship between these
properties and maximality in the order C∗. They observe that the theory of parametrized
equivalence relations T ∗feq is neither simple nor maximal in C∗, they show that maximality
in C∗ implies a property called SOP′′2, and also they observe that SOP2 coincides with
the property TP1 introduced earlier by Shelah. Later, Shelah and Usvyatsov showed that
SOP′′2 was equivalent to SOP2 [SU08]. A complete description, modulo GCH, of the C∗-
maximal theories was given by Malliaris and Shelah who showed that they are exactly the
SOP2 theories [MS15a]. This was one of the many byproducts of their cofinality spectrum
technology which also used to show SOP2 theories are maximal in Keisler’s order [MS16].
Their work on related problems has greatly clarified the relationship between model theoretic
properties and the construction of saturated models, proving illuminating structure theorems
among the simple theories and non-structure theorems for those with SOP2. This points to
an intriguing gap in our knowledge of the properties of nonsimple NSOP2 theories living
in-between.

A major source of new non-simple examples comes from unbounded PAC fields. Hrushovski’s
study of PAC substructures of strongly minimal sets imposed the hypothesis of boundedness.
In the context of a PAC field K, this is equivalent to the requirement that the field K have
finitely many degree n extensions for all n. Later, Chatzidakis showed that every unbounded
PAC field is not simple, hence a PAC field is simple if and only if it is bounded [Cha99]. How-
ever, Chatzidakis developed a Galois-theoretic interpretation of non-forking independence in
the context of ω-free PAC fields and, more generally, Frobenius fields and introduced a re-
lated independence relation called weak independence [Cha02]. She proved that Frobenius
fields satisfy the independence theorem for weak independence. Moreover, this relation sat-
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isfies symmetry and extension, and therefore closely resembles non-forking independence in
a simple theory, despite the fact that ω-free PAC fields and Frobenius fields are not simple.

Infinite-dimensional vector spaces over an algebraically closed field with a nondegenerate
bilinear form are an another important example of an non-simple tame structure. These were
given extensive study by Granger [Gra99], who proved quantifier-elimination in a reasonable
language, showed that they are not simple, and developed a theory of independence for
them. He defined Γ-independence in these structures and showed that it is symmetric,
transitive, and stationary. Stationarity is a very strong form of the independence theorem,
which can hold for non-forking independence only in a stable theory. Granger’s examples
represent one way of considering analogues of the classical geometries considered in the
smoothly approximable case over an infinite field. Another way comes from work of Liebeck,
Macpherson, and Tent who study and essentially classify primitive infinite ultraproducts of
finite permutation groups, finding again a close connection with classical geometries [LMT09].
They observe in the conclusion of their paper that these ultraproducts should give rise to
tame structures, but the appropriate notion of tameness and the associated structure theory
are lacking:

Initially, we hoped for a close connection between primitive ultraproducts (X∗, G∗)
of finite permutation groups and simple theories, analogous to the smoothly ap-
proximable structures... One might have hoped that there is a supersimple struc-
tureM∗ with domain X∗ such that G∗ = Aut(M∗), or, better (to avoid problems
with field automorphisms), so that Aut(M∗) ≤ G ≤ NSym(X )(Aut(M )). The lat-
ter seems correct, with the exception of cases where ultraproducts of unbounded
L-rank symplectic, orthogonal or unitary groups, over unbounded fields, are in-
volved. It was shown by Grainger [sic] that the theories of infinite-dimensional
vector spaces carrying a non-degenerate sesquilinear form, over an infinite field,
parsed in a two-sorted language, do not have simple theory. In Grainger’s [sic]
thesis some independence theory is developed for such structures (over an alge-
braically closed field), so there may be a reasonable model theory for all such
structures M∗.

A model-theoretic treatment of classical geometries over infinite fields, then, seems to require
an independence theory capable of generalizing and explaining the observations of Granger
in the test case of a bilinear form over an algebraically closed field.

0.3 What we do

Syntax

A well-known theorem of stability theory says that an unstable theory is unstable for one
of two conceptually distinct reasons. If T is unstable, then either T interprets a partial
order with infinite chains, i.e. T has the strict order property, or T interprets a graph that
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contains the random graph as an induced subgraph, i.e. T has the independence property. In
other words, if a theory has a lot of types, then they must either come from something very
structured—cuts in an order—or something highly random—partitions of a random graph.
Remarkably, this kind of dichotomy reappears at the level of forking. A sequence of nested
intervals in a dense linear order may be taken as a paradigm for ‘structured’ forking, while
a choice of equivalence classes in distinct equivalence relations in the theory T ∗feq of random
parametrized equivalence relations may be regarded as a canonical example of ‘random’
forking. Shelah proves that theories with lots of forking or dividing give rise to a pattern of
dividing that resembles one of these two examples. In order to state this precisely, we will
need the definitions for Shelah’s cardinal invariants related to the tree property:

Definition 0.3.1. 1. A cdt-pattern of height κ is a sequence of formulas ϕi(x; yi) (i <
κ, i successor) and numbers ni < ω, and a tree of tuples (aη)η∈ω<κ for which

a) pη = {ϕi(x; aη|i) : i successor , i < κ} is consistent for η ∈ ωκ

b) {ϕi(x; aη_〈α〉) : α < ω, i = l(η) + 1} is ni-inconsistent.

2. An inp-pattern of height κ is a sequence of formulas ϕi(x; yi) (i < κ), sequences (ai,α :
α < ω), and numbers ni < ω so that

a) for any η ∈ ωκ, {ϕi(x; ai,η(i)) : i < κ} is consistent.
b) For any i < κ, {ϕi(x; ai,α) : α < ω} is ni-inconsistent.

3. An sct-pattern of height κ is a sequence of formulas ϕi(x; yi) (i < κ) and a tree of
tuples (aη)η∈ω<κ so that

a) For every η ∈ ωκ, {ϕα(x; aη|α) : 0 < α < κ, α successor} is consistent.
b) If η ∈ ωα, ν ∈ ωβ, α, β are successors, and ν ⊥ η then {ϕα(x; aη), ϕβ(x; aν)} are

inconsistent.

4. For X ∈ {cdt, sct, inp}, we define κnX(T ) be the first cardinal κ so that there is no
X-pattern of height κ in n free variables. We define κX(T ) = sup{κnX}.

A cdt-pattern is a combinatorial configuration that emerges from instances of dividing.
The sct-patterns and inp-patterns may be viewed as the extremal forms that a cdt-pattern
can take. An sct-pattern is a cdt-pattern in which inconsistency is maximized and an inp-
pattern is one in which inconsistency is minimized. Shelah proves that if κcdt(T ) =∞ then
either κsct(T ) = ∞ or κinp(T ) = ∞ [She90]. By the pigeonhole principle and compactness,
forX ∈ {cdt, sct, inp}, saying that κX(T ) =∞ is equivalent to saying that there is an infinite
X-pattern in a single formula. The assertions κcdt(T ) =∞, κsct(T ) =∞, and κinp(T ) =∞
may be taken as the definition of T having the tree property (TP), the tree property of the
first kind (TP1), and the tree property of the second kind (TP2), respectively.

One issue raised by Shelah in Classification Theory is the extent to which theorems about
the tree properties TP, TP1, and TP2 have ‘quantitative’ analogues in terms of the cardinal
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invariants κcdt(T ), κsct(T ), and κinp(T ). One particular question he asked in this vein is
whether the equality κcdt(T ) = κsct(T ) + κinp(T ) for all T . In Chapter 1, joint with Artem
Chernikov, we address this question in the case of countable theories. We introduce several
‘operations’ on indiscernible trees and show these preserve indiscernibility. Then using these
operations, we study the way that a cdt-pattern of a given height can be manipulated to
yield patterns with additional properties. In the case of a countable theory, the invariant
κcdt(T ) can only take on the values ℵ0,ℵ1, and ∞ and we answer the question positively
for the countable theories with an argument tailored to the two cases not already covered
by Shelah’s theorem. In the finitary case κncdt(T ) = ℵ0 where T has arbitrarily large finite
cdt-patterns but no infinite one, we recover a quantitive form of Shelah’s dichotomy. But
we show that from an infinite cdt-pattern we can construct an infinite sct-pattern, hence
κcdt(T ) ≥ ℵ1 if and only if κsct(T ) ≥ ℵ1. This has the curious consequence that the natural
candidate for the definition of a ‘super-NTP1’ theory—namely κsct(T ) = ℵ0—coincides with
supersimplicity. We also make use of the tree-indiscernible methods to prove that TP1 is
always witnessed by a formula in a single free variable, answering the local case of a another
question of Shelah, who asked if κsct(T ) = κ1

sct(T ).
In Chapter 2, we consider the question of whether κcdt(T ) = κsct(T )+κinp(T ) without any

restriction on the cardinality of T . We construct a family of counterexamples, using strong
colorings studied by Shelah in the context of pcf theory. From a strong coloring, we build
a theory which can be obtained as a union of theories in finite reducts of the (uncountable)
language, each of which is stable, ℵ0-categorical, and has quantifier-elimination. In some
sense, the gap between global complexity and local tameness is maximized in these examples
so that the formulas in a cdt-pattern can be carefully analyzed and large sct- and inp-patterns
can be ruled out. We also use a similar construction to answer a related technical question
of Shelah concerning the impact of these cardinal invariants on saturation of ultrapowers.

Kim-independence

The theory of Kim-independence and the associated structure theory for NSOP1 theories
forms the heart of this thesis. To start, we give the definition of NSOP1:

Definition 0.3.2. A formula ϕ(x; y) has SOP1 if there is a collection of tuples (aη)η∈2<ω

satisfying the following:

• For all η ∈ 2ω, {ϕ(x; aη|n) : n < ω} is consistent.

• For all η, ν ∈ 2<ω, if (η ∧ ν) _ 〈0〉E η and (η ∧ ν) _ 〈1〉 = ν, then {ϕ(x; aη), ϕ(x; aν)}
is inconsistent.

A theory T has SOP1 if some formula has SOP1 modulo T . We say T is NSOP1 if does not
have SOP1.

This rather bizarre-looking property was introduced by Džamonja and Shelah and later
discussed by Shelah and Usvyatsov, but it remained unclear if there were any meaningful
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consequences to either having or lacking this SOP1. We show that it may characterized in
several distinct ways in terms of a natural independence relation and that NSOP1 provides
a worthwhile setting in which one can treat model-theoretically several structures of general
mathematical interest.

Kim showed that many of the desirable properties of non-forking independence in a simple
theory in fact characterize simplicity. A theory in which non-forking independence satisfies
symmetry, (right) transitivity, Kim’s lemma, or local character must be simple [Kim01].
Consequently, it is somewhat surprising that the property thought of as most characteris-
tic of simplicity-like behavior, the independence theorem, does not imply simplicity. This
was first explicitly observed by Chatzidakis, who showed that the independence theorem
for non-forking independence (in its usual formulation as well as a dual version) holds in
ω-free PAC fields, which were known to be non-simple by her earlier work. Despite the
fact that the independence theorem does not imply simplicity, Kim observed, modulo the
existence of a measurable cardinal, that the independence theorem for non-forking indepen-
dence implies that the theory is NTP1 [Kim01]. Later, Chernikov removed the set-theoretic
hypothesis [Che14]. By a careful analysis of the proof, together with Chernikov, we noticed
that from a weaker hypothesis we could obtain a stronger conclusion: if T has SOP1 then
the independence theorem fails in a strong way. Moreover, we showed this strong failure
of the independence theorem must always come from an instance of SOP1, yielding a new
characterization of the NSOP1 theories in terms of amalgamation of types. As a corollary,
we obtained the following Kim-Pillay-style criterion for a theory being NSOP1:

Proposition 0.3.3. [Proposition 1.5.8] Assume there is an Aut(M)-invariant independence
relation |̂ on small subsets of the monster M |= T such that it satisfies the following
properties, for an arbitrary M |= T and arbitrary tuples from M.

1. Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈ tp(a/bM) such

that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

2. Existence over models: M |= T implies a |̂
M
M for any a.

3. Monotonicity: aa′ |̂
M
bb′ =⇒ a |̂

M
b.

4. Symmetry: a |̂
M
b ⇐⇒ b |̂

M
a.

5. Independent amalgamation: c0 |̂ M c1, b0 |̂ M c0, b1 |̂ M c1, b0 ≡M b1 implies there
exists b with b ≡c0M b0, b ≡c1M b1.

Then T is NSOP1.

This criterion was then used to show that the theory of parametrized equivalence rela-
tions, infinite-dimensional vector spaces over an algebraically closed fields, and ω-free PAC
fields all have an NSOP1 theory. In each case, the notion of independence for these structures
was ad hoc, defined in combinatorial or algebraic terms particular to the structures. In order
to complete the analogy with the theorem of Kim and Pillay, however, it was necessary to
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develop a theory of independence in a general NSOP1 theory, which would specialize to these
ad hoc notions of independence in these particular theories.

This challenge is met by the theory of Kim-independence, a notion of independence de-
fined in terms of dividing at a generic scale. The definition of Kim-independence emerged out
of an attempt to better understand an argument of Malliaris and Shelah that characterized
the NSOP2 theories in terms of a notion they called a higher formula [MS15a]. Though this
differs from their presentation, a higher formula may be described as a triple (ϕ(x, y), A, q)
where A is a set of parameters, q is a global A-finitely satisfiable type, and ϕ(x; y) is a
formula that does not divide with respect to any Morley sequence in q over A, or, to use
Hrushovski’s terminology, does not q-divide over A [Hru12]. We observed that NSOP1 is
equivalent to the statement that if q and r are global A-invariant types with q|A = r|A,
then (ϕ(x, y), A, q) is higher if and only if (ϕ(x; y), A, r) is higher. In the argument, A-finite
satisfiability was used merely to ensure A-invariance, so NSOP1 is additionally equivalent to
the statement that if q and r are A-invariant types with q|A = r|A then, for any ϕ, ϕ(x; y)
q-divides over A if and only if ϕ(x; y) r-divides over A. This can be viewed as a version of
Kim’s lemma for the following notion of dividing:

Definition 0.3.4. We say that a formula ϕ(x; b) Kim-divides over A if there is some A-
invariant global type q ⊇ tp(b/A) and Morley sequence 〈bi : i < ω〉 over A in q so that
{ϕ(x; bi) : i < ω} is inconsistent. The formula ϕ(x; b) Kim-forks over A if ϕ(x; b) `∨
i<k ψi(x; ci) and each ψi(x; ci) Kim-divides over A. A type Kim-forks if it implies a formula

which does. If tp(a/Ab) does not Kim-fork over A, we write a |̂ K
A
b.

In an NSOP1 theory, Kim-dividing over a modelM is dividing that is witnessed by some,
equivalently every, Morley sequence in global M -invariant types over M . The interpretation
of higher formulas and q-dividing in the NSOP1 context in terms of the independence notion
|̂ K was inspired by a suggestion of Kim for a notion of independence in the NTP1 setting
[Kim09]. This, together with the fact that |̂ K satisfies an analogue of Kim’s lemma in
NSOP1 theories, is why the notion bears Kim’s name.

In Chapter 3, joint with Itay Kaplan, we develop fairly comprehensive theory of Kim-
independence in the NSOP1 setting. The following is our main theorem, which gives several
characterizations of NSOP1 in terms of |̂ K , which gives compelling evidence that SOP1 is
a dividing line:

Theorem 0.3.5. [Theorem 3.8.1] The following are equivalent for the complete theory T :

1. T is NSOP1

2. Kim’s lemma for Kim-dividing: For every model M |= T and ϕ(x; b), if ϕ(x; y) q-
divides for some global M-invariant q ⊇ tp(b/M), then ϕ(x; y) q-divides for every
global M-invariant q ⊇ tp(b/M).

3. Symmetry over models: for every M |= T , then a |̂ K
M
b if and only if b |̂ K

M
a.
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4. Independence theorem over models: ifM |= T , a ≡M a′, a |̂ K
M
b, a′ |̂ K

M
c, and b |̂ K

M
c,

then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂ K

M
bc.

Additionally, we refine the Kim-Pillay-style criterion for NSOP1 into an abstract charac-
terization of Kim-independence in an NSOP1 theory:

Theorem 0.3.6. [Theorem 3.9.1] Assume there is an Aut(M)-invariant ternary relation
|̂ on small subsets of the monster M |= T which satisfies the following properties, for an
arbitrary M |= T and arbitrary tuples from M.

1. Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈ tp(a/bM) such

that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

2. Existence over models: M |= T implies a |̂
M
M for any a.

3. Monotonicity: aa′ |̂
M
bb′ =⇒ a |̂

M
b.

4. Symmetry: a |̂
M
b ⇐⇒ b |̂

M
a.

5. The independence theorem: a |̂
M
b, a′ |̂

M
c, b |̂

M
c and a ≡M a′ implies there is a′′

with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂

M
bc

Then T is NSOP1 and |̂ strengthens |̂ K—i.e. if M |= T , a |̂
M
b then a |̂ K

M
b. If,

moreover, |̂ satisfies

6. Witnessing: if a 6 |̂
M
b witnessed by ϕ(x; b) and (bi)i<ω is a Morley sequence over M

in a global M-invariant type extending tp(b/M), then {ϕ(x; bi) : i < ω} is inconsistent.

then |̂ = |̂ K.

This theorem serves as a tool for characterizing Kim-independence in concrete examples,
even when finitely satisfiable and invariant types are not easy to directly understand. We
apply this method to characterize Kim-independence in several theories, showing that Kim-
independence coincides with the weak independence of Chatzidakis in Frobenius fields and
is closely related to Granger’s Γ-independence in infinite-dimensional vector spaces over
algebraically closed fields with a nondegenerate bilinear form, which confirms the naturality
of Kim-independence in this setting.

Several new technical notions were required for these results. Kim’s lemma for Kim-
dividing is a consequence of a synactic reformulation of SOP1 in terms of an array of pairs,
which is much easier to understand and manipulate than a tree. These syntactic reformula-
tions were also essential for proving that SOP1 is always witnessed in a single free variable,
which is the content of Chapter 5. Familiar arguments from simplicity theory immediately
adapt to show the equality Kim-forking and Kim-dividing in NSOP1 theories, so |̂ K sat-
isfies existence and extension over models. But symmetry of Kim-independence is proved
after introducing tree Morley sequences which are indiscernible sequences sufficiently generic
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to witness Kim-dividing, but weaker than Morley sequences in invariant types and thus ex-
ist under more general hypotheses. The construction of tree Morley sequences is the most
technically involved part of this thesis, as it requires the use of indiscernible trees and an
inductive construction of certain ill-founded trees. These inductive constructions, and not
just the existence of tree Morley sequences, are used repeatedly, particularly in the proof of
the independence theorem for Kim-independence in NSOP1 theories.

Chapter 4, joint with Itay Kaplan and Saharon Shelah, considers the local character of
Kim-independence. In a simple theory, local character states that every type is a non-forking
extension of a type of size |T |. Informally, this suggests that all the essential information
about a realization of the type is contained in some small set of formulas. Despite the fact
that Kim-independence gives a robust generalization of non-forking independence in simple
theories, it lacks base monotonicity and this introduces subtleties into finding the right
analogue of local character for Kim-independence. In a simple theory, if p ∈ S(B) does not
fork over some A ⊆ B, then p also does not fork over any set in the cone {C ⊆ B : A ⊆ B}.
This fails in an NSOP1 theory for Kim-forking, in general, but one would like to capture the
idea that, in an NSOP1 theory, a type should not Kim-fork over a ‘large’ number of small
subsets. The appropriate notion of largeness is provided by the generalized club filter. Given
a set X and a cardinal κ, a subset Z of [X]κ is called club if it is closed under ⊆-increasing
chains of length κ and for any Y ∈ [X]κ there is Y ′ ∈ Z with Y ⊆ Y ′. Accordingly, Z ⊆ [X]κ

is stationary if it intersects every club subset. With these definitions in hand, we prove the
following theorem:

Theorem 0.3.7 (Theorem 4.3.9). Suppose T is a complete theory. The following are equiv-
alent:

1. T is NSOP1.

2. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide is a stationary subset of [M ]|T |.

3. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide is a club subset of [M ]|T |.

This gives yet another distinct characterization of NSOP1 in terms of Kim-independence.
We expect it will have applications in the future, in generalizing theorems from simplicity
that make use of both local character and base monotonicity.

Examples

In the final section, we apply the theory developed earlier in the thesis to produce new
examples of tame theories. In Chapter 6, joint with Alex Kruckman, we focus on ‘generic
structure’ methods for producing new NSOP1 theories from old ones. The precedent for these
kinds of theorems was established by Chatzidakis and Pillay [CP98], who showed that adding
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a generic automorphism or generic predicate to a stable theory resulted in a simple theory,
which was, in general, unstable. In the context of adding a generic predicate, it sufficed to
assume the underlying theory is simple to show that adding a generic predicte produces a
simple theory. In a different vein, Jeřábek studied the model companion of the empty theory
in an arbitrary language, showing that is not simple when the language contains a function
symbol of arity greater than 2 but is always NSOP3. In an early preprint of [Jeř17], he
showed that this theory is NSOP3 for every choice of language and asked if it must always
be NSOP1. We address this question by situating it in a broader context, in which it may
be viewed as a question about generic expansion. Given an L-theory T , we may view T as
an L′-theory, for any language L′ containing L. An old theorem of Winkler shows that if
T is model complete and eliminates the quantifier ∃∞, then T , considered as an L′-theory,
has a model companion [Win75]. We call this model companion the generic L′-expansion of
T . When T is the theory of an infinite set in the empty language and L′ is any language,
the the model companion of T , considered as an L′-theory, is exactly the model companion
of the empty theory in the language L′. Consequently, Jeřábek’s question may be viewed
as a special case of the following problem: given a model complete NSOP1 L-theory T and
language L′ containing L, is the model companion of T as an L′-theory also NSOP1?

We answer this question positively. When Winkler introduced the generic expanion of
T , he also showed that if T is model-complete and eliminates the quantifier ∃∞, then there
is a generic expansion of T to a theory with Skolem functions. We give a uniform analysis
of Kim-independence in both constructions and show that they preserve NSOP1. This gives
a positive answer to Jeřábek’s question (which was independently obtained by Jeřábek) and
gives a general method for constructing new NSOP1 theories. It also shows that NSOP1

theories that eliminate the quantifier ∃∞ may be expanded such that every type over an
arbitrary set has a global invariant extension, which greatly simplifies the analysis of Kim-
independence, which a priori only makes sense over models.

In the final chapter, we show that PAC fields whose Galois group has NSOP1 or NSOP2

inverse system characterize are NSOP1 and NSOP2, respectively. Early work of Cherlin, van
den Dries, and Macintyre [CvdDM80] show how to regard the inverse system of a profinite
group as a many-sorted first order structure with a sort Xn for each n consisting of cosets
of open normal subroups of index ≤ n in a sufficiently rich language to encode the group
operation on each associated quotient and the maps between them. This approach to the
model theory of profinite groups was pursued further by Chatzidakis who showed that, in
this language, free profinite groups and, more generally, profinite groups with the embed-
ding property have ω-stable theory [Cha98]. Later, Chatzidakis proved that independent
amalgamation in a PAC field is, in a precise sense, completely controlled by independent
amalgamation in the inverse system of the Galois group [Cha17]. From this, she was able to
conclude that a PAC field is NSOPn if the theory of the inverse system of its Galois group is
NSOPn, for n ≥ 3. As SOP1 and SOP2 are defined differently from the SOPn heirarchy for
n ≥ 3, extending the result of Chatzidakis to NSOP1 and NSOP2 inverse systems requires
new arguments. Our proof in the NSOP1 case relates Kim-independence in the field to Kim-
independence in the Galois group. This gives the ultimate form of the results in Chapter 1
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that ω-free PAC fields are NSOP1 and in Chapter 3 that Frobenius fields are NSOP1, since
ω-free PAC fields are Frobenius fields and the absolute Galois group of a Frobenius field has
an ω-stable (hence NSOP1) inverse system. The NSOP2 case makes use of the analysis of
strongly indiscernible witnesses to SOP2 begun in Chapter 1.
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Part II

Syntax
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Chapter 1

Model-theoretic tree properties

This chapter is joint work with Artem Chernikov.

1.1 Introduction
One of the central tasks of abstract model theory is to understand what kinds of complete
first-order theories there are and how complicated they can be. In practice, this is achieved by
classifying theories according to the combinatorial configurations that do or do not appear
among the definable sets in their models. The most meaningful of these configurations,
the so-called dividing lines, have the property that their absence signals the existence of
some positive structure, while their presence indicates some kind of complexity. Dividing
lines come in two flavors: local properties, which describe the combinatorics of sets defined
by instances of a single formula, and global properties, which describe the interaction of
definable sets generally. Stability, simplicity, NIP are examples of the former, while ω-
stability, supersimplicity, and strong dependence are examples of the latter (see e.g. [Con]).

In this chapter, we study some questions around Shelah’s tree property TP and its
relatives SOP1, TP1, TP2 and weak k-TP1, as well as their global analogues detected by the
cardinal invariants κcdt(T ), κinp(T ), and κsct(T ). Our point of departure is the third chapter
of Shelah’s Classification Theory. There, Shelah investigates the global combinatorics of
stable theories in terms of a cardinal invariant κ(T ) quantifying the complexity of forking
in models of T . In the final section of this chapter, he introduces variations on κ(T ) with
the invariants κcdt(T ), κsct(T ), and κinp(T ) and proves several results about how they relate.
In contemporary language, these invariants bound the size of approximations to the tree
property, the tree property of first kind, and the tree property of the second kind consistent
with T , respectively. Later as the theory developed, a property of stable theories that
forking satisfies local character was isolated and theories satisfying this condition, the simple
theories, were intensively studied [She80]. These theories are exactly the theories without
the tree property, which is to say those theories with κcdt(T ) bounded. Nonetheless, until
recently, the aforementioned invariants have received very little attention and many basic
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questions remain unaddressed.
Here, we focus on two such questions. Shelah proved that a theory has the tree property

if and only if it has the tree property of the first kind or the tree property of the second
kind [She90]. In terms of the invariants, this amounts to the assertion that κcdt(T ) = ∞
if and only if κinp(T ) + κsct(T ) = ∞. It is natural to ask if this relationship persists when
κcdt(T ) is bounded — in other words, if the equality κcdt(T ) = κinp(T ) + κsct(T ) holds in
general. Shelah also proved that κcdt(T ) = κ is always witnessed by a sequence of formulas
in a single free variable when κ is an infinite cardinal or ∞. Recently, Chernikov proved
an analogous result for κinp(T ) [Che14]. We consider here whether or not the computation
of κsct(T ) similarly reduces to a single free variable. These questions were both raised by
Shelah (Question 7.14 in [She90]).

We do not give a complete answer to any of them, but for each of these questions there are
two model-theoretically natural special cases to consider: first, the case of countable theories
and, secondly, the case where one or more of the invariants in question are unbounded (which
reduces to a question about configurations in a single formula). In Section 1.3, we show that
κcdt(T ) = κinp(T ) + κsct(T ) for countable T . In Section 1.4, we show that if κsct(T ) = ∞
then this will be witnessed by a formula in a single free variable by showing that TP1 is
always witnessed by a formula in one free variable. The main ingredient in our argument
is the notion of a strongly indiscernible tree, which is more easily manipulated than the
s-indiscernible trees used in other studies of the tree property of the first kind.

At the present state of the theory, the class of non-simple theories without the strict order
property is poorly understood even at the level of syntax. In their study of the order E∗,
Dzamonja and Shelah introduced a weakening of TP1 called SOP1 [DS04]. Subsequently,
Kim and Kim introduced two infinite families of properties called k-TP1 and weak k-TP1

for k ≥ 2 and showed

TP1 ⇐⇒ k-TP1 ⇐⇒ weak 2-TP1 =⇒ weak 3-TP1 =⇒ . . . =⇒ SOP1

It was left open whether the properties weak k-TP1 are inequivalent for distinct k and
whether or not weak k-TP1 is equivalent to TP1 [KK11]. In our work on proving that TP1

is witnessed by a formula in one free variable, we obtained unexpectedly a simple and direct
proof that the weak k-TP1 hierarchy collapses and that they are all equivalent to TP1.

In the final two sections of the chapter, we study theories without the property SOP1.
We show that independent amalgamation fails in a strong way in theories with SOP1 and
that they are in fact characterized by this feature. This gives rise to a useful criterion for
showing that a theory is NSOP1 (and hence NTP1). Leveraging work of Granger [Gra99] and
Chatzidakis [Cha02], this allows us to conclude that both the two sorted theory of infinite-
dimensional vector spaces over an algebraically closed field with a generic bilinear form, as
well as the theory of ω-free PAC fields of characteristic zero are NSOP1. Finally, we generalize
the construction of the theory of parametrized equivalence relations T ∗feq to give a general
method for constructing NSOP1 theories from simple ones. We learned after this work was
completed that essentially the same construction had been studied by Baudisch [Bau02], but
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our emphasis is different. We show that the independence theorem holds for these structures,
allowing us to obtain a proof that T ∗feq is NSOP1 as a corollary.

1.2 Preliminaries on indiscernible trees
We fix a complete first-order theory T in a language L, M |= T is a monster model. In
several of the arguments below, we will make use of the notion of an indiscernible tree. For
our purposes, there are two different languages we will need to place on the index model:
Ls,λ = {C,∧, <lex, (Pα : α < λ)} and L0 = {C,∧, <lex} where λ is a cardinal. We may
view the tree κ<λ as an Ls,λ− or L0-structure in a natural way, interpreting C as the tree
partial order, ∧ as the binary meet function, <lex as the lexicographic order, and Pα as a
predicate which identifies the αth level (we will only consider κ = 2 and κ = ω). See [KKS14]
and [TT12] for more details.

Definition 1.2.1. Suppose that (aη)η∈κ<λ and (aα,i)α<κ,i<ω are collections of tuples and C
is a set of parameters in some model.

1. We say (aη)η∈κ<λ is an s-indiscernible tree over C if

qftpLs,λ(η0, . . . , ηn−1) = qftpLs,λ(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1/C) = tp(aν0 , . . . , aνn−1/C), for all n ∈ ω.

2. We say (aη)η∈κ<λ is a strongly indiscernible tree over C if

qftpL0
(η0, . . . , ηn−1) = qftpL0

(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1/C) = tp(aν0 , . . . , aνn−1/C), for all n ∈ ω.

3. We say (aα,i)α<κ,i<λ is a mutually indiscernible array over C if, for all α < κ, (aα,i)i<λ
is a sequence indiscernible over C ∪ {aβ,j : β < κ, β 6= α, j < λ}.

Lemma 1.2.2. Let (aη : η ∈ κ<λ) be a tree strongly indiscernible over a set of parameters
C.

1. All paths have the same type over C: for any η, ν ∈ κλ, tp((aη|α : α < λ)/C) =
tp((aν|α : α < λ)/C).

2. For any η ⊥ ν ∈ κ<λ and any ξ, tp(aη, aν/C) = tp(aξ_0, aξ_1/C).

3. The tree (a0_η : η ∈ κ<λ) is strongly indiscernible over a∅C.

Proof. (1) This follows by strong indiscernibility of the tree as for any η, ν ∈ κ<λ, qftpL0
((η|α :

α < λ)) = qftpL0
((ν|α : α < λ)).
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(2) Let η ⊥ ν ∈ κ<λ be given, without loss of generality η <lex ν and let µ = η∧ ν. Then
there are i < j < κ so that µ _ 〈i〉 E η and µ _ 〈j〉 E ν. Then qftpL0

(η, ν) = qftpL0
(µ _

〈i〉, µ _ 〈j〉) = qftpL0
(µ _ 0, µ _ 1) = qftpL0

(ξ _ 0, ξ _ 1), and we conclude by strong
indiscernibility of the tree.

(3) Clear as qftpL0
(η̄) = qftpL0

(ν̄) implies qftpL0
(η̄, ∅) = qftpL0

(ν̄, ∅), provided ∅ is not
enumerated in neither η nor ν.

Lemma 1.2.3. Let (aη : η ∈ κ<λ) be a tree s-indiscernible over a set of parameters C.

1. All paths have the same type over C: for any α, ν ∈ κλ, tp((aη|α)α<λ/C) = tp((aν|α)α<λ/C).

2. Suppose {ηα : α < γ} ⊆ κ<λ satisfies ηα ⊥ ηα′ whenever α 6= α′. Then the array
(bα,β)α<γ,β<κ defined by

bα,β = aηα_〈β〉

is mutually indiscernible over C.

Proof. (1) This follows by s-indiscernibility of the tree as for any η, ν ∈ κ<λ, qftpLs((η|α :
α < λ)) = qftpLs((ν|α : α < λ)).

(2) Fix α < γ and let A = {aηα′_〈β〉 : α 6= α′ < γ, β < κ} ∪ C. As the elements of
{ηα : α < γ} are pairwise incomparable, it is easy to check that for any β0 < . . . < βn−1 < κ
and β′0 < . . . < β′n−1 < κ,

qftpLs(aηα_〈β0〉, . . . , aηα_〈βn−1〉/A) = qftpLs(aηα_〈β′0〉, . . . , aηα_〈β′n−1〉/A),

which proves (2).

Now we note that s-indiscernible and strongly indiscernible trees exist.

Definition 1.2.4. Suppose I is an L′-structure, where L′ is some language. We say that
I-indexed indiscernibles have the modeling property if, given any (ai : i ∈ I) from M, there
is an I-indexed indiscernible (bi : i ∈ I) in M locally based on the (ai): given any finite set
of formulas ∆ from L and a finite tuple (t0, . . . , tn−1) from I, there is a tuple (s0, . . . , sn−1)
from I so that

qftpL′(t0, . . . , tn−1) = qftpL′(s0, . . . , sn−1)

and also
tp∆(bt0 , . . . , btn−1) = tp∆(as0 , . . . , asn−1).

Fact 1.2.5. [TT12, Sco12,KKS14] Let I0 denote the L0-structure (ω<ω,E, <lex,∧) and Is
be the Ls,ω-structure (ω<ω,E, <lex,∧, (Pα)α<ω) with all symbols being given their intended
interpretations and each Pα naming the elements of the tree at level α. Then strongly indis-
cernible trees (I0-indexed indiscernibles) and s-indiscernible trees (Is-indexed indiscernibles)
have the modeling property.
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In the arguments below, we will often argue by induction where at each stage it is
necessary to modify a tree of tuples in a way that maintains the indiscernibility of the tree.
A convenient way of organizing these arguments is to make a catalogue of operations on
indiscernible trees and prove that these operations preserve the relevant indiscernibility.

Definition 1.2.6. Fix k ≥ 1.

1. (widening) The k-fold widening of (aη)η∈ω<ω at level n is defined to be the tree (a′η)η∈ω<ω
where

a′η =


aη if l(η) < n

(aν_(ki)_ξ, . . . , aν_(ki+(k−1))_ξ) if η = ν _ i _ ξ
where ν ∈ ωn−1, i ∈ ω, ξ ∈ ω<ω.

2. (stretching) The k-fold stretch of (aη)η∈ω<ω at level n is defined to be the tree (a′′η)η∈ω<ω
where

a′′η =


aη if l(η) < n

(aη, aη_0, . . . , aη_0k−1) if l(η) = n
aν_0k−1_ξ if η = ν _ ξ for ν ∈ ωn, ξ 6= ∅

3. (fattening) Given a tree (aη)η∈2<κ , define the k-fold fattening of (aη)η∈2<κ to be the
tree (a

(k)
η )η∈2<κ by induction as follows: for each η ∈ 2<κ let a(0)

η = aη. If (a
(n)
η )η∈2<κ

has been defined, for each η ∈ 2<κ, let a(n+1)
η = (a

(n)
0_η, a

(n)
1_η). Let Ck = {aη : η ∈ 2<k},

the stump below k. Set C0 = ∅.

4. (restricting) Given the tree (aη)η∈λ<κ andW ⊆ κ, we define the restriction of (aη)η∈λ<κ
to W to be the collection of tuples

{aη : l(η) ∈ W and if β 6∈ W, then η(β) = 0}.

If the order type of W is α, the restriction of (aη)η∈λ<κ may be naturally identified
with (aη)η∈λ<α .

5. (elongating) Given η ∈ κ<ω, with l(η) = n, define η̃ ∈ κ<ω to be the tuple with length
k(l(η)− 1) + 1 defined by

η̃(i) =

{
η(i/k) if k|i

0 otherwise

Then define the k-fold elongation of (aη)η∈κ<ω to be the tree (bη)η∈κ<ω where

bη = (aη̃, aη̃_0, . . . , aη̃_0k−1).
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Proposition 1.2.7. 1. s-indiscernibility is preserved under widening, stretching, fatten-
ing, restriction, and elongating.

2. Strong indiscernibility is preserved under restriction, fattening, and elongating. More-
over, if (aη)η∈2<ω is strongly indiscernible, then the k-fold fattening (a(k))η∈2<ω is strongly
indiscernible over Ck.

Proof. The proofs of these facts can be found in Section 1.7.

1.3 Cardinal invariants and tree properties
Definition 1.3.1. Suppose T is a complete theory and ϕ(x; y) ∈ L is a formula in the
language of T .

1. ϕ(x; y) has the tree property (TP) if there is k < ω and a tree of tuples (aη)η∈ω<ω in
M such that

• for all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent,
• for all η ∈ ω<ω, {ϕ(x; aη_〈i〉) : i < ω} is k-inconsistent.

2. ϕ(x; y) has the tree property of the first kind (TP1) if there is a tree of tuples (aη)η∈ω<ω
in M such that

• for all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent,
• for all η ⊥ ν in ω<ω, {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

3. ϕ(x; y) has the tree property of the second kind (TP2) if there is a k < ω and an array
(aα,i)α<ω,i<ω in M such that

• for all functions f : ω → ω, {ϕ(x; aα,f(α)) : α < ω} is consistent,
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• for all α, {ϕ(x; aα,i) : i < ω} is k-inconsistent.

4. T has one of the above properties if some formula does modulo T .

It is easy to see that if a theory has the tree property of the first or second kind, then it
also has the tree property. Remarkably, the converse is also true.

Fact 1.3.2. [She90] A complete theory T has TP if and only if it has TP1 or TP2.

The above theorem was first proven in different language, before any of the three prop-
erties were actually defined. The purpose of this section is to prove a refinement of this
theorem, by studying the relationship between approximations to the tree property and
those to the tree property of the first or second kind. In order to do so, however, it will be
necessary to return to the vocabulary in which Fact 1.3.2 was initially formulated.

Definition 1.3.3. The following notions were introduced in [She90].

1. A cdt-pattern of depth κ is a sequence of formulas ϕi(x; yi) (i < κ, i successor) and
numbers ni < ω, and a tree of tuples (aη)η∈ω<κ for which

a) pη = {ϕi(x; aη|i) : i successor , i < κ} is consistent for η ∈ ωκ,
b) {ϕi(x; aη_〈α〉) : α < ω, i = l(η) + 1} is ni-inconsistent.

A cdt-pattern with ni ≤ n for all i < κ, is called a (cdt, n)-pattern.

2. An inp-pattern of depth κ is a sequence of formulas ϕi(x; yi) (i < κ), sequences (ai,α :
α < ω), and numbers ni < ω such that

a) for any η ∈ ωκ, {ϕi(x; ai,η(i)) : i < κ} is consistent,
b) for any i < κ, {ϕi(x; ai,α) : α < ω} is ni-inconsistent.

3. An sct-pattern of depth κ is a sequence of formulas ϕi(x; yi) (i < κ) and a tree of tuples
(aη)η∈ω<κ such that

a) for every η ∈ ωκ, {ϕα(x; aη|α) : 0 < α < κ, α successor} is consistent,
b) If η ∈ ωα, ν ∈ ωβ, α, β are successors, and ν ⊥ η then the formulas {ϕα(x; aη), ϕβ(x; aν)}

are inconsistent.

If instead of (b), we have: for any pairwise incomparable (ηi : i < k), {ϕl(ηi)(x; aηi) :
i < k} is inconsistent, then we call this a (sct, k)-pattern.

4. For X ∈ {cdt, sct, inp}, we define κnX(T ) to be the first cardinal κ so that there is
no X-pattern of depth κ in n free variables, and ∞ if no such κ exists. We define
κX(T ) = supn∈ω{κnX}.
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Remark 1.3.4. We note that the notion of a (cdt, n)-pattern strengthens that of a cdt-
pattern by imposing a uniform finite bound on the size of the inconsistency at each level,
while the notion of an (sct, n)-pattern weakens that of an sct-pattern by only requiring any
n incomparable elements to be inconsistent rather than any 2. One can regard an (sct, n)-
pattern as an approximation to a witness to n-TP1 (see Definition 1.4.1 below).

Observation 1.3.5. Fix a complete theory T .

1. κnsct(T ) ≥ n, κninp(T ) ≥ n and κncdt(T ) ≥ n for all n.

2. a) κcdt(T ) =∞ if and only if κcdt(T ) > |T |+ if and only if T has TP.

b) κsct(T ) =∞ if and only if κsct(T ) > |T |+ and only if T has TP1.

c) κinp(T ) =∞ if and only if κinp(T ) > |T |+ if and only if T has TP2.

3. max{κnsct(T ), κninp(T )} ≤ κncdt(T ).

Proof. (1) follows from the fact that “=" is in the language.
(2) As each case is entirely similar, we’ll sketch the argument for (a) only. If κcdt (T ) >

|T |+, then in the pattern witnessing it we may assume that ϕi (x, yi) = ϕ (x, y) and ki = k,
because |T | ≥ ℵ0. This is a witness to TP. And then using compactness we can find a
pattern witnessing that κncdt(T ) > κ for any cardinal κ.

(3) If ϕi(x; yi) (i < κ), (ai,α : α < ω), (ni)i<ω form an inp-pattern of depth κ, obtain
a cdt-pattern of depth κ with respect to the same formulas by defining (bη)η∈ω<κ by bη =
al(η),η(l(η)−1).

Lemma 1.3.6. (1) If there is an sct-pattern (cdt-pattern) of depth κ modulo T , then there
is an sct-pattern (cdt-pattern) ϕα(x; yα), (aη)η∈ω<κ in the same number of free variables so
that (aη)η∈ω<κ is an s-indiscernible tree.

(2) If there is an inp-pattern of depth κ modulo T , then there is an inp-pattern ϕα(x; yα)
(α < κ), (kα)α<κ, (aα,i)α<κ,i<ω in the same number of free variables so that (aα,i)α<κ,i<ω is a
mutually indiscernible array.

Proof. (1) By compactness and Fact 3.5.4.
(2) This is Lemma 2.2 of [Che14].

Now we fix a complete theory T and for X ∈ {cdt, sct, inp}, we write κX for κX(T ).

Proposition 1.3.7. Assume that κncdt ≥ ℵ0. Then either κninp ≥ ℵ0 or κnsct,k ≥ ℵ0 for some
k ∈ ω (i.e. there are (κsct, k)-patterns in n variables of arbitrary finite depth). In fact, if
κninp < ℵ0, then one can take k = κninp.

Proof. If κninp ≥ ℵ0 does not hold, then in fact we have κninp ≤ k for some k ∈ ω.
Fix an arbitrarym ∈ ω, then by assumption and Lemma 1.3.6 we can find (aη : η ∈ ω<2m) , (ϕi (x, yi) : i < 2m) , (ki : i < 2m)

an s-indiscernible cdt-pattern with |x| = n, i.e.:
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1. (aη : η ∈ ω<2m) is an s-indiscernible tree,

2. {ϕi (x, aη�i) : i < 2m} is consistent for every η ∈ ω2m,

3.
{
ϕi
(
x, aη_〈j〉

)
: j ∈ ω

}
is ki-inconsistent for every i < 2m− 1 and η ∈ ωi.

For l < m and ν ∈ ωl we define ν∗ = (ν (0) , 0, ν (1) , 0, . . . , ν (l − 1) , 0) ∈ ω<2m. Let
{ν0, . . . , νk−1} ⊆ ω<m be pairwise E-incomparable, and let li = l(ν∗i ).

Claim.
{
ϕli
(
x, aν∗i

)
: i < k

}
is inconsistent.

Proof. By definition of ν∗i and assumption on νi’s it follows that for any i, i′ < k
the elements ν∗i � (li − 1) and ν∗i′ � (li′ − 1) are incomparable. Then by Lemma 2.2.4(2)
we see that the sequences āi =

(
aν∗i �(li−1)̂ 〈j〉 : j ∈ ω

)
are mutually indiscernible. But if{

ϕli
(
x, aν∗i

)
: i < k

}
was consistent, this would give us an inp-pattern of depth k, contrary

to the assumption (as
{
ϕli
(
x, aν∗i �(li−1)̂ 〈j〉

)
: j ∈ ω

}
is kli-inconsistent for every i).

Now using the claim it is easy to see that
{
ϕ2l(η) (x, aη∗) : η ∈ ω<m

}
is an (sct, k)-pattern

of depth m. As m was arbitrary, we conclude that κnsct,k ≥ ℵ0.

Proposition 1.3.8. Let k < ω be fixed. Assume that for any n < ω we have, in some fixed
number of variables, an (sct, k)-pattern of depth n. Then there are, in the same number of
variables, (cdt, 2)-patterns of arbitrary finite depth.

Proof. Let m ∈ ω be arbitrary, and let (aη : η ∈ ω<m×m) , (ϕi (x, yi) : i < m×m) be an s-
indiscernible (sct, k)-pattern - in particular this is a cdt-pattern such that for i < m × m,
{ϕi(x; aη) : l(η) = i} is k-inconsistent.

For i < m, consider

Γi (x) =
∧
l<m

(ϕi×m+l (x, a0i×m_0_0l−1) ∧ ϕi×m+l (x, a0i×m_1_0l−1)) .

Case 1. Γi (x) is consistent for some i < m.
Obtain an s-indiscernible tree, using Lemma 1.2.7(1), by first taking the 2-fold widening

of (aη)η∈ωm×m at level i × m + 1, then taking the restriction to {i × m + l : l < m}. Let
(ψl : l < m) be chosen so that

ψl (x, b0l) = ϕi×m+l (x, a0i×m_0_0l−1) ∧ ϕi×m+l (x, a0i×m_1_0l−1) .

Then (bη : η ∈ ω<m) , (ψl : l < m) is a cdt-pattern of depth m such that, for all l < m,
{ψl(x; bη) : l(η) = l} is bk

2
c-inconsistent.

Case 2. Γi (x) is inconsistent for every i < m.
Using Lemma 1.2.7(1), obtain an s-indiscernible tree (bη)η∈ω<m by taking the m-fold

elongation of (aη)η∈ω<m×m . Let (ψl : l < m) be chosen so that

ψl(x; b0l) =
∧
r<m

ϕl×m+r(x; a0l×m_0r).

Then (bη)η∈ω<m , (ψl : l < m) is an (cdt, 2)-pattern.
Repeating several times if necessary we conclude.
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For κ ≤ ω, finding an sct-pattern of depth κ is equivalent to finding a (cdt, 2)-pattern of
depth κ.

Lemma 1.3.9. Let κ ≤ ω, and let (aη : η ∈ ω<κ) , (ϕi (x, yi) : i < κ) be a (cdt, 2)-pattern (i.e.
for every η ∈ ω<κ the set

{
ϕl(η)+1 (x, aη̂ j) : j ∈ ω

}
is 2-inconsistent). For η ∈ ω<κ define bη =

aη�0aη�1 . . . aη�(l(η)−1)aη and ψi (x; yi,0, . . . , yi,i−1) =
∧
j<i ϕj (x, yj). Then (bη : η ∈ ω<κ) , (ψi (x, ȳi) : i < κ)

is an sct-pattern.

Proof. If η ∈ ωn for n < κ, then the set {ψi (x, bη�i) : i < n} contains only conjunctions of
formulas from {ϕi (x, aη�i) : i < n} which is consistent by assumption. On the other hand if
η1, η2 ∈ ω<κ are incomparable, let η = η1∧η2. Then ψl(η1) (x, bη1) implies ϕl(η)+1

(
x, aη̂ η1(l(η)+1)

)
and ψl(η2) (x, bη2) implies ϕl(η)+1

(
x, aη̂ η2(l(η)+1)

)
, and these two implied formulas are incon-

sistent by assumption.

Combining Propositions 1.3.7 and 1.3.8 with Lemma 1.3.9, we have:

Proposition 1.3.10. If κncdt ≥ ℵ0, then either κninp ≥ ℵ0 or κnsct ≥ ℵ0.

Remark 1.3.11. Inspecting the proof, we actually get the following bound: κnsct ≥ (
κncdt

2
)

1
κn
inp .

The next proposition is an analog of Proposition 1.3.8 for inp-patterns. It is not used in
this chapter, but we include it for reference.

Proposition 1.3.12. Let k < ω be fixed. Assume that for any n < ω we have, in some
fixed number of free variables, an inp-pattern of depth n such that each row is k-inconsistent.
Then there are, in the same number of variables, inp-patterns of arbitrary finite depths in
which every row is 2-inconsistent.

Proof. Let m ∈ ω be arbitrary, and let (ai,j)i<m×m,j∈ω , (ϕi (x, yi))i<m×m be an inp-pattern
with mutually indiscernible rows such that every row is k-inconsistent. For i < m, consider
Γi (x) =

∧
i×m≤l<(i+1)×m (ϕl (x, al,0) ∧ ϕl (x, al,1)).

Case 1. Γi (x) is consistent for some i < m.
Then for l < m we take ψl (x, bl,0) = ϕi×m+l (x, ai×m+l,0) ∧ ϕi×m+l (x, ai×m+l,1) and bl,j =

ai×m+l,2jai×m+l,2j+1.
Case 2. Γi (x) is inconsistent for every i < m.
Then for l < m we take ψl (x, bl,0) =

∧
r<m ϕl×m+r (x, al×m+r,0) and bl,j = (al×m+r,j : r < m).

It is easy to see that in each of the cases (bi,j)i<m,j<ω , (ψi (x, yi))i<m is an inp-pattern
of depth m, and moreover it is max

{
2,
⌈
k
2

⌉}
-inconsistent (

⌈
k
2

⌉
-inconsistent in the first case

and 2-inconsistent in the second case). As m was arbitrary, this shows that there are inp-
pattern of arbitrarily large finite depth with max

{
2,
⌈
k
2

⌉}
-inconsistent rows. Repeating the

argument several times if necessary we conclude.

Now we consider the case of countably infinite patterns.

Proposition 1.3.13. κncdt ≥ ℵ1 implies κnsct ≥ ℵ1.
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Proof. Suppose (ϕi : i < ω), (aη)η∈ω<ω is a cdt-pattern. By replacing aη with bη =
(a∅, aη|1, . . . , aη|l(η)−1, aη) and ϕi(x; aη) by

ψi(x; bη) :=
∧
j≤i

ϕj(x; aη|j),

if necessary, we may assume that if ν C η, then

|= (∀x)[ϕl(η)(x; aη)→ ϕl(ν)(x; aν)].

Then by replacing (aη)η∈ω<ω by an s-indiscernible tree locally based on it, we may moreover
assume the (aη)η∈ω<ω are s-indiscernible by Fact 3.5.4.

By induction, we will construct cdt-patterns (ϕni : i < ω), (anη )η∈ω<ω so that

1. (anη )η∈ω<ω is s-indiscernible.

2. For all η ∈ ω<n and i < j,

{ϕnl(η)+1(x; anη_〈i〉), ϕ
n
l(η)+1(x; anη_〈j〉)}

is inconsistent.

3. If ν C η, then
|= (∀x)[ϕnl(η)(x; anη )→ ϕnl(ν)(x; anν )].

4. For all η, if n, n′ ≥ l(η), then anη = an
′
η . For all m ≤ m′, ϕm′m = ϕmm.

For the base case, let ϕ0
i = ϕi for all i and a0

η = aη for all η. (1) is satisfied by assumption, (2)
is vacuous, and (3) follows from the initial remarks above. Now suppose we have constructed
(ϕni : i < ω) and (anη )η∈ω<ω . By definition of a cdt-pattern, there is a least k ≥ 1 so that⋃

i<2k

{ϕnn+1+j(x; an0n_〈i〉_0j) : j < ω}

is inconsistent. By compactness, there is N so that⋃
i<2k

{ϕnn+1+j(x; a0n_〈i〉_0j) : j < N} (1.1)

is inconsistent. Let (bη)η∈ω<ω be the N -fold stretch of (an)η∈ω<ω at level n. Let (ψi(x; zi) :
i < ω) be defined as follows: for i ≤ n, zi = yi and ψi(x; zi) = ϕi(x; yi). Let zn+1 =
(yn+1, yn+2, . . . , yn+N) and

ψn+1(x; zn+1) =
∧
j<N

ϕnn+1+j(y; yn+1+j).

Finally, for i > n + 1, let zi = yi+N−1 and ψi(x; zi) = ϕi+N−1(x; yi+N−1). By Lemma 1.7.4,
(bη)η∈ω<ω is an s-indiscernible tree and, by construction, (ψi(x; zi) : i < ω), (bη)η∈ω<ω is a
cdt-pattern. Moreover, this cdt-pattern satisfies
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5. {ψn+1(x; b0n_〈i〉) : i < 2k} is inconsistent and

6. {ψn+1+j(x; b0n_〈i〉_0j) : i < 2k−1, j < ω} ∪ {ψl(x; b0l) : l < ω} is consistent.

Condition (5) follows by the inconsistency (1.1) and the definition of ψn+1. To see (6), we
note that by the minimality of k,

{ψn+1+j(x; b0n_〈i〉_0j) : i < 2k−1, j < ω}

is consistent. By (3) above and the definition of the ψm, this establishes (6).
Let (cη)η∈ω<ω be the 2k−1-fold widening of (bη)η∈ω<ω at level n+ 1. Let (χi(x;wi) : i < ω)

be defined as follows: if i < n + 1, let wi = zi and χi(x;wi) = ψi(x; zi). If i ≥ n + 1, let
wi = (z0

i , . . . , z
2k−1−1
i ) a tuple of variables consisting of 2k−1 copies of zi. Then put

χi(x;wi) =
∧

j<2k−1

ψi(x; zji ).

By Lemma 1.7.3, (cη)η∈ω<ω is s-indiscernible and, by construction, (χi(x;wi) : i < ω),
(cη)η∈ω<ω is a cdt-pattern and, moreover, if i 6= j

{χn+1(x; c0n_〈i〉), χn+1(x; c0n_〈j〉)}

is inconsistent. For all m < ω and η ∈ ω<ω, define ϕn+1
m = ξm and an+1

η = cη. We have
satisfied requirements (1)-(3) and since our construction did not modify the formulas and
parameters with level at most n, the construction never injures requirement (4).

Finally, define a cdt-pattern (ϕ∞n : n < ω), (a∞η )η∈ω<ω by ϕ∞n = ϕnn and a∞η = a
l(η)
η . Our

construction gives

7. (a∞η )η∈ω<ω is s-indiscernible.

8. If η ∈ ωω, {ϕ∞(x; a∞η|n) : n < ω} is consistent.

9. If ν C η, then |= (∀x)[ϕ∞l(η)(x; a∞η )→ ϕ∞l(ν)(x; a∞ν )].

10. For all n, and i 6= j {ϕ∞n+1(x; a∞0n_〈i〉), ϕ
∞
n+1(x; a∞0n_〈j〉)} is inconsistent.

By s-indiscernibility, (9) and (10) imply that if η ⊥ ν, then

{ϕ∞l(η)(x; a∞η ), ϕ∞l(ν)(x; a∞ν )}

is inconsistent. This shows (ϕ∞n : n < ω) and (a∞η )η∈ω<ω form an sct-pattern. We have thus
shown κnsct ≥ ℵ1.

We obtain the main theorem of this section.

Theorem 1.3.14. If T is countable, then κcdt(T ) = κsct(T ) + κinp(T ). Moreover, κncdt(T ) =
κnsct(T ) + κninp(T ), provided κncdt(T ) is infinite.
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Proof. By Observation 1.3.5, κncdt(T ) ≥ n for any T and κcdt(T ) > |T |+ if and only if
κcdt(T ) = ∞. It follows that, for countable theories, the possible values of κcdt(T ), and
the only possible infinite values of κncdt(T ), are ℵ0, ℵ1, and ∞. The case of ℵ0 is treated in
Proposition 1.3.10, ℵ1 is handled by Proposition 1.3.13, and for ∞ the result follows from
Shelah’s theorem (Fact 1.3.2).

1.4 TP1 and weak k − TP1

Say that a subset {ηi : i < k} ⊆ ω<ω is a collection of distant siblings if given i 6= i′, j 6= j′,
all of which are < k, ηi ∧ ηi′ = ηj ∧ ηj′ .

Definition 1.4.1. Fix k ≥ 2.

1. The formula ϕ(x; y) has SOP2 if there is a collection of tuples (aη)η∈2<ω satisfying the
following.

a) For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
b) If η, ν ∈ 2<ω and η ⊥ ν, then {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

2. The formula ϕ(x; y) has weak k-TP1 if there is a collection of tuples (aη)η∈ω<ω satisfying
the following.

a) For all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent.
b) If {ηi : i < k} ⊆ ω<ω is a collection of distinct distant siblings, then {ϕ(x; aηi) :

i < k} is inconsistent.

3. The formula ϕ(x; y) has k-TP1 if there is a collection of tuples (aη)η∈ω<ω satisfying the
following.

a) For all η ∈ ωω, {ϕ(x; aη|α) : α < ω} is consistent.
b) If {ηi : i < k} ⊆ ω<ω is a collection of distinct pairwise incomparable nodes, then
{ϕ(x; aηi) : i < k} is inconsistent.

4. The theory T has either of the above properties if some formula does.

We remark that TP1 is equivalent to SOP2 in a strong way:

Fact 1.4.2. If a theory has TP1 witnessed by a formula ϕ, then the theory also has SOP2

witnessed by the same formula, and vice versa.

We recall the argument from [KK11]. Suppose ϕ(x; y) witnesses SOP2 with respect to
the tree of parameters (bη)η∈2<ω . Define a map h : ω<ω → 2<ω recursively by h(∅) = ∅
and h(β _ 〈i〉) = h(β) _ 1i _ 0, where 1i denotes the all 1’s sequence of length i.
It is straightforward to check that ϕ(x; y) witnesses TP1 with respect to the parameters
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(bh(η))η∈ω<ω . The converse is obvious. Although SOP2 and TP1 are equivalent, it will be
important for us to notationally distinguish them, as various combinatorial constructions are
simplified by a judicious choice of the index set.

In [KK11], Kim and Kim show that k-TP1 is equivalent to TP1 for all k ≥ 2, but the
questions of whether weak k-TP1 is equivalent to TP1 was left unresolved. Using strongly
indiscernible trees, we settle this, as well as show that TP1 is always witnessed by a formula
in a single free variable.

Finding and manipulating indiscernible witnesses

Lemma 1.4.3. 1. If T has weak k-TP1 witnessed by ϕ(x; y) then there is a strongly in-
discernible tree (aη)η∈ω<ω witnessing this.

2. If ϕ(x; y) has TP1 then there is a strongly indiscernible tree witnessing this.

3. If ϕ(x, y) has SOP2, then there is a strongly indiscernible tree (aη)η∈2<ω witnessing this.

Proof. (1) This was observed in [TT12], but we sketch a proof here for completeness. Let
(bη)η∈ω<ω be a tree of tuples with respect to which ϕ(x; y) witnesses weak k-TP1. Let
(aη)η∈ω<ω be locally based on the tree (bη)η∈ω<ω . Suppose η0, . . . , ηn−1 ∈ ω<ω lie along a path
and let ψ(y0, . . . , yn−1) denote the formula (∃x)

∧
i<n ϕ(x; yi). Then there are ν0, . . . , νn−1 ∈

ω<ω so that
qftpL0

(η0, . . . , ηn−1) = qftpL0
(ν0, . . . , νn−1)

and
tpψ(aη0 , . . . , aηn−1) = tpψ(bν0 , . . . , bνn−1).

The first equality implies that ν0, . . . , νn−1 all lie along a path so {ϕ(x; bνi) : i < n} is
consistent. By the second equality, {ϕ(x; aηi) : i < n} is consistent. By compactness, this
shows that all paths are consistent. Showing that any k distinct distant siblings remain
inconsistent is similar. So ϕ(x; y) witnesses weak k-TP1 with respect to the tree (aη)η∈ω<ω .

(2) This follows from (1) as weak 2-TP1 and TP1 are the same.
(3) By Fact 1.4.2, ϕ(x, y) has TP1. Now by (2), we may find a strongly indiscernible tree

(aη)η∈ω<ω such that ϕ witnesses TP1 with respect to (aη)η∈ω<ω . Making the identification
2<ω = {η ∈ ω<ω : η(k) ∈ {0, 1} for all k < l(η)}, it is easy to see that (2<ω,C, <lex,∧) is
an L0-substructure of (ω<ω,E, <lex,∧) since 2<ω is closed under the ∧-function and all the
symbols in L0 acquire their natural interpretation on 2<ω via restriction from ω<ω. It follows
that if η0, . . . , ηn−1 and ν0, . . . , νn−1 are two sequences from 2<ω with

qftpL0
(η0, . . . , ηn−1) = qftpL0

(ν0, . . . , νn−1)

in 2<ω, then this equality also holds in ω<ω and hence

tp(aη0 , . . . , aηn−1) = tp(aν0 , . . . , aνn−1),
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so (aη)η∈2<ω is strongly indiscernible. Moreover, paths in 2ω are paths also in ωω and incom-
parables in 2<ω remain incomparable when considered as elements in ω<ω so it is clear that
ϕ(x; y) will witness SOP2 with respect to (aη)η∈2<ω .

Remark 1.4.4. We aren’t making the (ostensibly) stronger claim that if ϕ(x; y) witnesses
SOP2 with respect to the tree (bη)η∈2<ω then there is a strongly indiscernible tree (aη)η∈2<ω

based on it — the proof of the existence of a strongly indiscernible tree witness involved
going through TP1 and then restricting.

Lemma 1.4.5. 1. If (aη)η∈ω<ω is a strongly indiscernible tree and ϕ(x; y) is a formula
so that for some η ∈ ωω, {ϕ(x; aη|n) : n < ω} is consistent and for some ξ ∈ ω<ω,
{ϕ(x; aξ_0), ϕ(x; aξ_1)} is inconsistent, then T has TP1.

2. If (aη)η∈2<ω is a strongly indiscernible tree and ϕ(x; y) is a formula so that for some η ∈
2ω, {ϕ(x; aη|n) : n < ω} is consistent and for some η ∈ 2<ω, {ϕ(x; aη_0), ϕ(x; aη_1)}
is inconsistent, then T has SOP2.

Proof. Both parts are immediate by Lemma 1.2.2, (1) and (2).

Lemma 1.4.6. (Path Collapse) Suppose κ is an infinite cardinal, (aη)η∈2<κ is a tree strongly
indiscernible over a set of parameters C and, moreover, (a0α : 0 < α < ω) is indiscernible
over cC. Let

p(y; z) = tp(c; (a0_0γ : γ < κ)/C).

Then if
p(y; (a0_0γ )γ<κ) ∪ p(y; (a1_0γ )γ<κ)

is not consistent, then T has SOP2, witnessed by a formula with free variables y.

Proof. We may add C to the language, so assume C = ∅. With p defined as above, suppose

p(y; (a0_0γ : γ < κ)) ∪ p(y; (a1_0γ : γ < κ))

is inconsistent. Then by indiscernibility and compactness, there is a formula ψ and n < ω
so that

{ψ(y; a0, . . . , a0_0n−1)} ∪ {ψ(y; a1, a10, . . . , a1_0n−1)}
is inconsistent. Let (bη)η∈2<κ denote the n-fold elongation of (aη)η∈2<κ . By Lemma 1.2.7,
(bη : η ∈ 2<κ) is strongly indiscernible. Since c |= {ψ(y; b0α) : α < κ} and ψ(y; b0) ∧ ψ(y; b1)
is inconsistent (by strong indiscernibility), by Lemma 1.4.5, ψ witnesses SOP2.

Remark 1.4.7. It is significant that the type p does not contain a∅ as a parameter. As b0 and
b1 are incomparable and ψ(x; b0) and ψ(x; b1) are inconsistent, we can conclude that ψ(x; bη)
and ψ(x; bν) are inconsistent for all incomparable η, ν by strong indiscernibility. But, for
example, strong indiscernibility does not guarantee b0_0b0_1 has the same type as b0b1 over
a∅ as 0 ∧ 1 = ∅ while 0n−1 _ 0 ∧ 0n−1 _ 1 = 0n−1.

We now give two applications of the path-collapse lemma.
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Weak k − TP1

Theorem 1.4.8. Given k ≥ 2, T has weak k-TP1 if and only if T has TP1.

Proof. We will show that if T has weak k-TP1, then T has SOP2. Let ϕ(x; y) witness weak
k-TP1 with respect to the strongly indiscernible tree (aη)η∈ω<ω . Let n be maximal so that

{ϕ(x; a〈i〉_0α) : i < n, α < ω}

is consistent. By definition of weak k-TP1, n is at least 1 and at most k − 1. Let C =
{a〈i〉_0α : i < n − 1, α < ω} (and put C = ∅ in the case that n = 1). Given η ∈ ω<ω, let η̂
be defined by

η̂(i) =

{
η(i) + n− 1 if i = 0

η(i) otherwise,

for all i < l(η). The tree (bη)η∈ω<ω defined by bη = aη̂ is strongly indiscernible over C. By
choice of n,

{ϕ(x; a〈i〉_0α) : i < n, α < ω}
is consistent, so let c realize it. By compactness, Ramsey, and automorphism, we may assume
(b0α : 0 < α < ω) (i.e. (a〈n−1〉_0α : α < ω)) is indiscernible over c. Letting the type p be
defined by

p(y; z) = tp(c; (b0_0α : α < α)/C),

and unravelling definitions, we see that the type

p(y; (b0_0α : α < ω)) ∪ p(y; (b1_0α : α < ω))

implies {ϕ(x; a〈i〉_0α) : i < n+ 1, α < ω} and is therefore inconsistent by the choice of n. By
path-collapse, we’ve shown that T has SOP2, completing one direction. The other direction
is obvious.

Reducing to one variable

Proposition 1.4.9. Suppose T witnesses SOP2 via ϕ(x, y; z). Then there is a formula
ϕ0(x; v) with free variables x and parameter variables v, or a formula ϕ1(y;w) with free
variables y and parameter variables w so that one of ϕ0 and ϕ1 witness SOP2.

Proof. Let ϕ(x, y; z) witness SOP2 with respect to the strongly indiscernible tree (aη)η∈2<ω .
The first path is consistent and it is an indiscernible sequence so it follows that there is some
(c, c0) |= {ϕ(x, y; a0α) : α < ω} and such that moreover (a0α : α < ω) is indiscernible over c0

(by Ramsey, automorphism, and compactness).
Define the function h : 2<ω → 2<ω recursively by h(∅) = ∅ and h(η _ 〈i〉) = h(η) _ 0 _

〈i〉. Define the tree (bη)η∈2<ω by bη = ah(η). It is proved in Lemma 1.7.7(1) that (bη)η∈2<ω is
a strongly indiscernible tree. For each n, define a map hn : 2<ω → 2<ω by

hn(η) =

{
h(η) if l(η) ≤ n

h(ν) _ ξ if η = ν _ ξ, l(ν) = n.
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By Lemma 1.7.7(2), the tree (dn,η)η∈2<ω defined by dn,η = ahn(η) is strongly indiscernible as
well. Moreover, as paths in (bη)η∈2<ω and (dn,η)η∈2<ω are contained in paths in (aη)η∈2<ω and
incomparable elements in these trees correspond to incomparable elements in (aη)η∈2<ω , ϕ
witnesses SOP2 with respect to these trees of parameters as well.

Assume that no formula in the variable y has SOP2. By induction, we will choose cn so
that

{ϕ(x, cn; dn,η|m) : m < n} ∪ {ϕ(x, cn; dn,η_0α) : α < ω} (*)
is consistent for every η ∈ 2≤n.

For this, consider (d
(n)
n,η)η∈2<ω , the nth-fattening of (dn,η), and let Cn = (dn,η : η ∈ 2<n).

By induction we show:
Claim. There is cn+1 such that

(
(d

(n+1)
n+1,0α) : α < ω

)
is indiscernible over cn+1Cn and

cn

(
d

(n)
n,0_0_0α

)
≡
d
(n)
n,∅Cn

cn+1

(
d

(n)
n,0_0_0α

)
≡
d
(n)
n,∅Cn

cn+1

(
d

(n)
n,0_1_0α

)
.

Note that d(n)
n,∅Cn = Cn+1.

Proof: The base case is above. Let

pn(y, z) = tp
(
cn, (d

(n)
n,0_0_0α : α < ω)/(dn,∅)

(n)Cn

)
.

By the path-collapse lemma,

pn

(
y,
(

(d
(n)
n,0_0_0α) : α < ω

))
∪ pn

(
y,
(

(d
(n)
n,0_1_0α) : α < ω

))
is consistent. Let cn+1 realize it. Moreover, as(

d
(n)
n,0_0_0α , d

(n)
n,0_1_0α

)
α<ω

=
(
d

(n+1)
n+1,0α

)
α<ω

is an indiscernible sequence, by Ramsey, automorphism, and compactness we may assume
that it is indiscernible over cn+1Cn. This shows (*).

By the definition of the trees (dn,η)η∈2<ω , we have shown that

{ϕ(x, cn; bη|m) : m < n} ∪ {ϕ(x, cn; bη_0α) : α < ω}

is consistent for each n and η ∈ 2≤n. By compactness, we can find one c which works
for all possible paths in 2ω simultaneously, giving a tree (c, bη)η∈2<ω witnessing SOP2 for
ϕ(x; y, z).

Remark 1.4.10. The necessity of defining the trees (bη)η∈2<ω and (dn,η)η∈2<ω via h and hn,
respectively, stems from a technical obstacle in applying the path-collapse lemma: starting
with the tree (aη)η∈2<ω , we cannot apply the path collapse lemma directly to the type

q(y; (a0α : α < ω)) = tp(c0/(a0α : α < ω)),

as this type has a∅ as a parameter (see Remark 1.4.7 above). This is corrected by the offset
functions h and hn, allowing us to apply the path-collapse lemma ‘higher’ in the tree, where
the parameters of interest are indiscernible over what we have constructed so far.
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Corollary 1.4.11. 1. T has SOP2 if and only if there is some formula in a single free
variable witnessing this

2. T has TP1 if and only if there is some formula in a single free variable witnessing this

At this point it is natural to ask if κ1
sct = κnsct holds for arbitrary n, at least for countable

theories. Corollary 1.4.11 resolves the case of ∞, and we remark that the case of ℵ1 follows
from a standard argument in simplicity theory.

Proposition 1.4.12. Any theory satisfies κ1
cdt = κncdt, for all n ∈ ω.

Proof. The following are equivalent (see e.g. [Cas11, Proposition 3.8]).

1. κncdt ≤ κ.

2. For any type p (x) ∈ Sn (A), there is some A0 ⊆ A such that |A0| < κ and p does not
divide over A0.

Clearly κncdt ≥ κ1
cdt. Assume now that κ1

cdt ≤ κ for some κ. We show by induction
that (2) above holds for all n with respect to κ. Given a1 . . . anan+1 and A, it follows
by the inductive assumption that a1 . . . an |̂ A0

A for some A0 ⊆ A with |A1| < κ and
an+1 |̂ A1a1...an

Aa1 . . . an for some A1 ⊆ A with |A1| < κ. Combined this implies (by left
transitivity and right base monotonicity of dividing in arbitrary theories, see e.g. [CK12, Sec-
tion 2]) that a1 . . . anan+1 |̂ A0A1

A and |A0 ∪ A1| < κ.

Corollary 1.4.13. If κnsct ≥ ℵ1 then κ1
sct ≥ ℵ1.

Proof. By Proposition 1.3.13, it is enough to show that κ1
cdt ≥ ℵ1, which follows by assump-

tion and Proposition 1.4.12.

The case of ℵ0 appears to involve more complicated combinatorics and we leave it for
future work.

1.5 Independence and amalgamation in NSOP1 theories
We recall the definition of SOP1 from [DS04]:

Definition 1.5.1. A formula ϕ(x; y) exemplifies SOP1 if and only if there are (aη)η∈2<ω so
that

• For all η ∈ 2ω, {ϕ(x; aη|n) : n < ω} is consistent,

• If η _ 0 E ν ∈ 2<ω, then {ϕ(x; aη_1), ϕ(x; aν)} is inconsistent.

Given an array (ci,j)i<ω,j<2, write ci = (ci,0, ci,1) and c<i for (cj)j<i.
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Lemma 1.5.2. Suppose (ci,j)i<ω,j<2 is an array and ϕ(x; y) is a formula over C with

1. For all i < ω, ci,0 ≡Cc<i ci,1;

2. {ϕ(x; ci,0) : i < ω} is consistent;

3. j ≤ i =⇒ {ϕ(x; ci,0), ϕ(x; cj,1)} is inconsistent,

then T is SOP1.

Proof. For each n, define a subtree Tn of 2<ω by

Tn = {η _ 0α : η ∈ 2≤n, α < ω} ∪ {η _ 0α _ 1 : η ∈ 2≤n, α < ω}.

Let P (Tn) ⊆ 2ω be the set of infinite branches of Tn. Namely,

P (Tn) = {η _ 0ω : η ∈ 2≤n}.

As a first step, by induction on n we build an ascending sequence of trees (lη, rη)η∈Tn , so
that:

1. if η ∈ P (Tn), (lη|α, rη|α)α<ω ≡C (cα,0, cα,1)α<ω,

2. if η _ 0 ∈ Tn then rη_0 = lη_1,

3. if η ∈ 2≤n then (lη_0, rη_0) ≡ClEηrEη (lη_1, rη_1).

For the n = 0 case, define l0α = cα,0, r0α = cα,1 and l0α_1 = r0α_0 for all α < ω. For
each α < ω, we can choose σα ∈ Aut(M/Cc<α) such that σα(cα,0) = cα,1. Let r0α_1 =
σα+1(cα+1,1) = σα+1(r0α_0). This defines (lη, rη)η∈T0 satisfying (1)-(3).

Now by induction suppose (lη, rη)η∈Tn has been defined. Suppose η ∈ P (Tn+1) \ P (Tn).
Then there is ν ∈ 2≤n so that η = ν _ 1 _ 0ω. Then ν _ 1 ∈ Tn and, by induction,

(lν_0, rν_0) ≡ClEνrEν (lν_1, rν_1)

and rν_0 = lν_1. Choose an automorphism σ ∈ Aut(M/ClEνrEν) such that σ(lν_0, rν_0) =
lν_1, rν_1. Then define

(lν_1_0α , rν_1_0α) = σ(lν_0_0α , rν_0_0α) and

(lν_1_0α_1, rν_1_0α_1) = σ(lν_0_0α_1, rν_0_0α_1)

for all α < ω. This completes the construction of (lη, rη)η∈Tn+1 , properties (1)–(3) are satisfied
because of the inductive assumption. We obtain (lη, rη)η∈2<ω as the union over all n of
(lη, rη)η∈Tn .

Now we check that with respect to the parameters (lη)η∈2<ω , ϕ witnesses SOP1. Fix
any path η ∈ 2ω, we have to check that {ϕ(x; lη|α) : α < ω} is consistent. But given any
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n, lE(η|n) ⊂ Tn and by (1), lE(η|n) ≡C (cα,0)α≤n hence {ϕ(x; lη|α) : α ≤ n} is consistent, as
{ϕ(x; cα,0) : α ≤ n} is consistent, by hypothesis. Then {ϕ(x; lη|α) : α < ω} is consistent by
compactness.

Now fix η ⊥ ν ∈ 2<ω so that (η ∧ ν) _ 0 E η and (η ∧ ν) _ 1 = ν. We must check
{ϕ(x; lη), ψ(x; lν)} is inconsistent. As ν = (η∧ν) _ 1, we know that lν = l(η∧ν)_1 = r(η∧ν)_0

by (2). Let ξ = (η ∧ ν) _ 0. Then ξE η and lν = rξ so it suffices to show {ϕ(x; lη), ϕ(x; rξ)}
is inconsistent. Let n = l(η) and m = l(ξ). Then m ≤ n and by (1), we have (lη, rξ) ≡C
(cn,0, cm,1). By hypothesis, this implies {ϕ(x; lη), ϕ(x; rξ)} is inconsistent, so we finish.

Definition 1.5.3. Suppose |̂ is an Aut(M)-invariant ternary relation on small subsets of
M.

1. We say |̂ satisfies weak independent amalgamation over models if, given M |= T ,
b0c0 ≡M b1c1 satisfying bi |̂ M ci for i = 0, 1 and c0 |̂ M c1, there is b satisfying bc0 ≡M
bc1 ≡M b0c0.

2. We say |̂ satisfies independent amalgamation over models if, given M |= T , b0 ≡M b1

satisfying bi |̂ M ci for i = 0, 1 and c0 |̂ M c1, there is b satisfying bc0 ≡M b0c0 and
bc1 ≡M b1c1.

3. We say |̂ satisfies stationarity over models if: given M |= T , if b0 ≡M b1 and
b0 |̂ M c, b1 |̂ M c then b0 ≡Mc b1.

Definition 1.5.4. Suppose A,B,C are small subsets of the monster M.

1. We say A |̂ i
C
B if and only if tp(A/BC) can be extended to a global type Lascar-

invariant over C. We denote its dual by |̂ ci - i.e. A |̂ i
C
B holds if and only if

B |̂ ci
C
A.

2. We say A |̂ u
C
B if and only if tp(A/BC) is finitely satisfiable in C. We denote its dual

by |̂ h - i.e. A |̂ h
C
B if and only if B |̂ u

C
A.

Suppose q(x) and r(y) are globalM -invariant types. Recall that the product q(x)⊗r(y) ∈
Sxy(M) is defined by q(x)⊗ r(y) = tp(ab/M) where b |= r and a |= q|Mb.

Proposition 1.5.5. Fix a model M |= T . Suppose c1 |̂ iM c0, cj |̂ iM bj for j = 0, 1 and
b0c0 ≡M b1c1, but there is no b such that bc0 ≡M bc1 ≡M b0c0. Then T has SOP1.

Proof. Let p(x; y) = tp(b0c0/M). Our assumption entails that p(x; c0) ∪ p(x; c1) is inconsis-
tent. By compactness, there is some ϕ(x; y) ∈ p(x; y) so that {ϕ(x; c0), ϕ(x; c1)} is incon-
sistent. Fix a global M -invariant type r so that c0 |= r|Mb0

and a global M -invariant type
q so that c1 |= q|Mc0

. Then c1c0 |= (q ⊗ r)|M . Let (ci1, c
i
0)1≤i<ω be a Morley sequence in

(q ⊗ r)|Mb0c0c1 and put (c0
1, c

0
0) = (c1, c0).
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First, we note that b0 |= {ϕ(x; ci0) : i < ω} so a fortiori {ϕ(x; ci0) : i < ω} is consistent.
Secondly, for any N < ω, we have

(c1
0c

1
1) . . . (cN0 c

N
1 )

i

|̂
M

c0c1

so by M -invariance and the fact that c0 ≡M c1, we know that

c0 ≡Mc10c
1
1...c

N
0 c

N
1
c1

Next, as c1
1 |= q|Mc0c1 , we have c1

1 ≡Mc0 c1 and therefore {ϕ(x; c0), ϕ(x; c1
1)} is inconsistent.

As (ci1, c
i
0)i<ω is an M -indiscernible sequence, we’ve shown the following.

1. If X ⊆ ω and j < k for all k ∈ X, then {ϕ(x; ck0) : k ∈ X} ∪ {ϕ(x; cji )} is consistent
for i = 0, 1.

2. If X ⊆ ω and j < k for all k ∈ X, then, writing cX for an enumeration of {ck0ck1 : k ∈
X}, we have cj0 ≡McX cj1.

3. If j ≤ k then {ϕ(x; cj0), ϕ(x; ck1)} is inconsistent.

Now by compactness (reversing the ordering on the sequence of pairs), we can find an array
(di,j)i<ω,j<2 such that the following holds.

1. For all i < ω, di,0 ≡Md<i
di,1;

2. {ϕ(x; di,0) : i < ω} is consistent;

3. j ≤ i =⇒ {ϕ(x; di,0), ϕ(x; dj,1)} is inconsistent.

By Lemma 1.5.2, this implies T has SOP1.

The following argument is an elaboration on [Che14, Proposition 6.20], which, in turn,
was an elaboration on an argument of Kim [Kim01, Proposition 2.6].

Proposition 1.5.6. Assume ϕ(x; y) witnesses SOP1. Then there are M , c0, c1, b0, b1 so that
c0 |̂ uM c1, c0 |̂ uM b0, c1 |̂ uM b1, b0c0 ≡M b1c1 and |= ϕ(b0, c0)∧ϕ(b1, c1) but ϕ(x; c0)∧ϕ(x; c1)
is inconsistent.

Proof. Suppose T has SOP1 witnessed by ϕ. By compactness, we may assume that we have
a tree of tuples (aη)η∈2<κ for κ large enough (≥ 2|T | suffices) so that

• For all η ∈ 2κ, {ϕ(x; aη|α) : α < κ} is consistent

• η _ 0Cν ∈ 2<κ, then {ϕ(x; aη_1), ϕ(x; aν)} is inconsistent.

Fix a Skolemization T Sk of T and in what follows, we’ll work modulo this expanded theory.
We will construct a sequence (ηi, νi)i<ω of elements of 2<κ satisfying the following.
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1. aνi , aηi have the same type over aη<i , aν<i

2. If i < j then ηi C ηj and ηi C νj.

3. (ηi ∧ νi) _ 0Cηi and (ηi ∧ νi) _ 1 = νi.

Given n, suppose (ηi, νi : i < n) have been chosen satisfying (1)-(3). Consider the se-
quence (aηn−1_0α_1 : α < κ). As κ is large enough, there are α < β < κ so that
aηn−1_0α_1, aηn−1_0β_1 have the same type over (aη<n , aν<n). Let νn = ηn−1 _ 0α _ 1
and ηn = ηn−1 _ 0β _ 1. Now (1) and (2) are clearly satisfied, and, as α < β, (ηn ∧ νn) =
ηn−1 _ 0α so (3) follows. This completes the construction.

Now we claim that (aηi , aνi)i<ω satisfies:

4. {ϕ(x; aηi) : i < ω} is consistent,

5. aνi , aηi have the same type over aν<i , aη<i ,

6. {ϕ(x; aνi), ϕ(x; aνj)} is inconsistent for i 6= j.

Here (5) is immediate from our choice of the sequence and we get (4) since i < j implies
ηi C ηj and paths are consistent. To see (6), notice that if i < j then as ηi C νj and ηi ⊥ νi,
we have (νi ∧ νj) = (ηi ∧ νi) and hence (νi ∧ νj) _ 0 E νj and νi = (νi ∧ νj) _ 1 from which
(6) follows, using SOP1.

By compactness and Ramsey, we can find b and (aηi , aνi)i≤ω+1 indiscernible over b, satis-
fying (4)-(6), and such that b |= {ϕ(x; aηi) : i ≤ ω + 1}. Let M = Sk(aηi , aνi)i<ω. Then we
have aηω+1 |̂

u

M
b and aνω |̂

u

M
aηω+1 by indiscernibility. As aνω , aηω start an M -indiscernible

sequence, there is σ ∈ Aut(M/M) sending aηω 7→ aνω . Let b′ = σ(b). Then b′ ≡M b,
aνω |̂

u

M
b′ (as aηω |̂

u

M
b by indiscernibility) and |= ϕ(b′; aνω). But {ϕ(x; aηω+1), ϕ(x; aνω)} is

inconsistent by (5) and (6). As ϕ is an L-formula, M is, in particular, an L-model and |̂ u

in the sense of T Sk implies |̂ u in the sense of T .

Theorem 1.5.7. The following are equivalent.

1. |̂ ci satisfies weak independent amalgamation: given any M |= T , b0c0 ≡M b1c1 so that
c1 |̂ iM c0 and cj |̂ iM bj for j = 0, 1, there is b so that bc0 ≡M bc1 ≡M b0c0.

2. |̂ h satisfies weak independent amalgamation: given any M |= T , b0c0 ≡M b1c1 so that
c1 |̂ uM c0 and cj |̂ uM bj for j = 0, 1, there is b so that bc0 ≡M bc1 ≡M b0c0.

3. T is NSOP1.

Proof. (1) =⇒ (2) is clear.
(2) =⇒ (3) is Proposition 1.5.6.
(3) =⇒ (1) is Proposition 1.5.5.
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Proposition 1.5.8. Assume there is an Aut(M)-invariant independence relation |̂ on small
subsets of the monster M |= T such that it satisfies the following properties, for an arbitrary
M |= T and arbitrary tuples from M.

1. Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈ tp(a/bM) such

that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

2. Existence over models: M |= T implies a |̂
M
M for any a.

3. Monotonicity: aa′ |̂
M
bb′ =⇒ a |̂

M
b.

4. Symmetry: a |̂
M
b ⇐⇒ b |̂

M
a.

5. Independent amalgamation: c0 |̂ M c1, b0 |̂ M c0, b1 |̂ M c1, b0 ≡M b1 implies there
exists b with b ≡c0M b0, b ≡c1M b1.

Then T is NSOP1.

Proof. Claim Let M |= T , then a |̂ u
M
b =⇒ a |̂

M
b.

Proof of claim. If a 6 |̂
M
b then by strong finite character, there is some ϕ(x;m, b) ∈

tp(a/Mb) so that a′ 6 |̂
M
b for any a′ with |= ϕ(a′;m, b). However, as a |̂ u

M
b, it follows that

there is some a′ ∈ M such that |= ϕ(a′;m, b). Then b 6 |̂
M
a′ by symmetry and b 6 |̂

M
M by

monotonicity, contradicting existence.
Now assume towards contradiction that T has SOP1, and let M, c0, c1, b0, b1, ϕ(x; y) as

given in Proposition 1.5.6. By the claim and symmetry of |̂ we have c0 |̂ M c1, b0 |̂ M c0, b1 |̂ M c1.
As |̂ satisfies independent amalgamation over models, there is some b |̂

M
c0c1, b ≡c0M b0,

b ≡c1M b1. This contradicts the inconsistency of {ϕ(x; c0), ϕ(x; c1)}.

1.6 Examples of NSOP1 theories

Vector spaces with a generic bilinear form

Let L denote the language with two sorts V and K containing the language of abelian groups
for variables from V , the language of rings for variables from K, a function · : K × V → V ,
and a function [ ] : V × V → K. T∞ is the model companion of the L-theory asserting that
K is a field, V is a K-vector space of infinite dimension with the action of K given by ·, and
[ ] is a non-degenerate bilinear form on V . If (K,V ) |= T∞ then K is an algebraically closed
field.

The theory T∞ was introduced by Nicolas Granger in [Gra99], who observed that its
completions are not simple, but nonetheless have a notion of independence called Γ-non-
forking satisfying essentially all properties of forking in stable theories, except local character.

Definition 1.6.1. We are using the notation from [Gra99, Notation 9.2.4]. Let M = (V, K̃)
be a sufficiently saturated model of T∞. Let A ⊆ B ⊂ M and c ∈ M with c a singleton.
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Let c |̂ Γ

A
B be the assertion that KAc |̂ KA KB in the sense of non-forking independence for

algebraically closed fields and one of the following holds:

1. c ∈ K̃

2. c ∈ 〈A〉

3. c 6∈ 〈B〉 and [c, B] is Φ-independent over A,

where ‘[c, B] is Φ-independent over A’ means that whenever {b0, . . . , bn−1} is a linearly inde-
pendent set in BV ∩ (V \ 〈A〉) then the set {[c, b0], . . . , [c, bn−1]} is algebraically independent
over the field KB(KAc).

By induction, for c = (c0, . . . , cm) define c |̂ Γ

A
B by

c
Γ

|̂
A

B ⇐⇒ (c0, . . . , cm−1)
Γ

|̂
A

B and cm
Γ

|̂
Ac0...cm−1

Bc0 . . . cm−1.

Fact 1.6.2. [Gra99, Theorem 12.2.2] LetM = (V,K) |= T∞. Then the relation on subsets of
M given by Γ-non-forking is automorphism invariant, symmetric, and transitive. Moreover,
it satisfies extension, finite character, and stationarity over a model.

Lemma 1.6.3. If c is a tuple and A,B are small sets with c 6 |̂ Γ

A
B, then there is a formula

ϕ(x; a, b) ∈ tp(c/AB) so that

|= ϕ(c′; a, b) =⇒ c′
Γ

6 |̂
A

B.

Proof. Suppose c = (c0, . . . , cn−1) a tuple and c 6 |̂ Γ

A
B. Let k be maximal so that (c0, . . . , ck−1) |̂ Γ

A
B.

It follows that ck 6 |̂ Γ

Ac0...ck−1
Bc0 . . . ck−1, so one of the following possibilities occurs:

1. KAc0...ck 6 |̂
ACF

KAc0...ck−1

KBc0...ck−1

2. ck ∈ 〈Bc0 . . . ck−1〉 \ 〈Ac0 . . . ck−1〉

3. There is a linearly independent set {d0, . . . , dl−1} from (Bc0 . . . ck−1)V∩(V \〈Ac0 . . . ck−1〉)
so that {[ck, d0], . . . , [ck, dl−1]} is not algebraically independent overKBc0...ck−1

(KAc0...ck).

The existence of the desired formula requires an argument only in case (3). In this case, there
is a nonzero polynomial p(x0, . . . , xl−1; a, b, c0, . . . , ck) with coefficients in KBc0...ck−1

(KAc0...ck)
so that p([ck, d0], . . . , [ck, dl−1]; a, b, c0, . . . , ck) = 0. By reindexing the dj, we may assume that
there is m ≤ l so that dj = cij for j < m and dj ∈ B for j ≥ m. Let d = (dm, . . . , dl−1).
Writing y = (y0, . . . , yk), let χ(y; a, b, d) be the formula which asserts the following:

1. the polynomial p(x0, . . . , xl−1; a, b, y) is a nonzero polynomial;



CHAPTER 1. MODEL-THEORETIC TREE PROPERTIES 41

2. the set {yi0 , . . . , yim−1} ∪ {dm, . . . , dl−1} is linearly independent;

3. p([yk, yi0 ], . . . , [yk, yim−1 ], [yk, dm], . . . , [yk, dl−1]; a, b, y) = 0

Then χ(y; a, b, d) ∈ tp(c/B) and if |= χ(c′; a, b, d) then it is easy to check c′ 6 |̂ Γ

A
B.

Corollary 1.6.4. The two-sorted theory T∞ of infinite dimensional vector spaces over alge-
braically closed fields with a generic bilinear form is NSOP1.

ω-free PAC fields of characteristic zero

Definition 1.6.5. A field F is called pseudo-algebraically closed if every absolutely irre-
ducible variety defined over F has an F -rational point. A field F is called ω-free if it has a
countable elementary substructure F0 with G(F0) ∼= F̂ω, the free profinite group on countably
many generators.

In [Cha99], Chatzidakis showed that a PAC field has a simple theory if and only if it
has finitely many degree n extensions for all n so an ω-free PAC field will not be simple.
Nonetheless, she showed that an ω-free PAC field comes equipped with a notion of indepen-
dence which is well-behaved.

Fact 1.6.6. [Cha02] Suppose F is a sufficiently saturated ω-free PAC field of characteristic
zero. Given A = acl(A), B = acl(B), C = acl(C) with C ⊆ A,B ⊆ F , write A |̂ I

C
B to

indicate that A |̂ ACF

C
B and AalgBalg ∩ acl(AB) = AB. Extend this to non-algebraically

closed sets by stipulating a |̂ I
D
b holds if and only if acl(aD) |̂ I

acl(D)
acl(bD). Then |̂ I

satisfies existence over models, monotonicity, symmetry, and independent amalgamation
over models.

It remains to check that |̂ I satisfies strong finite character. The proof of it was pointed
out to us by Zoé Chatzidakis, whom we would like to thank.

Lemma 1.6.7. Suppose F is a sufficiently saturated ω-free PAC field of characteristic zero.
If a, b, c are tuples from F and a |̂ I

c
b then there is a formula ϕ(x; b, c) ∈ tp(a/bc) so that if

F |= ϕ(a′; b, c) then a′ 6 |̂ I
c
b.

Proof. If a 6 |̂ ACF

c
b, then the existence of such a formula is clear, so we may assume a |̂ ACF

c
b.

As a 6 |̂ I
c
b, there are β ∈ 〈cb〉alg, α ∈ 〈ca〉alg not in F such that F (α) = F (β) and β /∈ F 〈c〉alg.

We choose them so that F (β) is Galois over F (always possible since F ∩ 〈ca〉alg〈cb〉alg is
Galois over (F ∩ 〈ca〉alg)(F ∩ 〈cb〉alg) = acl(ca) acl(cb)).

Some of the conjugates of β over 〈cb〉 might lie in F 〈c〉alg and this will be witnessed
by elements of acl(cb) = F ∩ 〈cb〉alg. We choose an element b′ of acl(cb) such that 〈cbb′〉
contains 〈cbβ〉 ∩ F and 〈cbb′〉 is closed under Aut(acl(cb)/〈cb〉). Let the formula θ(y; b, c)
isolate tp(b′/bc).
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Let P (Y, b, c) be a minimal polynomial of b′ over 〈bc〉, and let Q(Z, Y, b, c) be such that
Q(Z, b′, b, c) is a minimal polynomial of β over 〈cbb′〉.

Claim. If |= θ(b1, b, c), then P (b1, b, c) = 0, Q(Z, b1, b, c) is irreducible of degree [〈cbβ〉 :
〈cbb′〉] and a solution of Q defines a Galois extension, which is not contained in F 〈c〉alg.

The first two assertions of the claim are immediate. For the last one, assume that
(b1, b2) satisfies P (b1, b, c) = 0 ∧ Q(b2, b1, b, c) = 0, and that Q(Z, b1, b, c) is irreducible and
defines a Galois extension of the right degree (all this is expressible in tpF (b′/bc)), but that
b2 ∈ F 〈c〉alg. Then there is a formula in tpF (b1/cb) which will say that such a b2 exists, and
is therefore not in tpF (b′/bc).

Similarly let a′ ∈ acl(ac) be such that 〈caα〉 ∩ F = 〈caa′〉 and let R(W,T, c) be such
that R(W,a, c) is a minimal polynomial of a′ over 〈ca〉 and let S(X,W, T, c) be such that
S(X, a′, a, c) is a minimal polynomial of α over 〈caa′〉.

The formula ϕ(t, b, c) is a conjunction of the following assertions:

• ∃yθ(y, b, c),

• R(W, t, c) is not the trivial polynomial,

• (∃w)R(w, t, c) = 0 and S(X,w, t, c) is irreducible over F of degree [〈caα〉 : 〈caa′〉],

• (∀z)[Q(z, y, b, c) = 0→ “F (z) contains a root of S(X,w, t, c) = 0”.

These statements are first-order using standard facts on interpretability of finite algebraic
extensions of a field in a field and definability of irreducibility.

Assume now that d satisfies ϕ(t, b, c). Let y = b1 and w = d1 ∈ F be as guaranteed to
exist by ϕ, and let b2 be a root of Q(Z, b1, b, c) = 0; then F (b2) is a proper Galois extension
of F of degree [〈cbβ〉 : 〈cbb′〉] which is not contained in F 〈c〉alg.

Because d satisfies ϕ, if d2 satisfies S(X, d1, d, c) = 0, then F (d2) = F (b2). As F (b2) 6⊆
F 〈c〉alg, we necessarily have d 6∈ 〈c〉alg and, therefore, either d 6 |̂ ACF

c
b or, otherwise, 〈cd〉alg〈cb〉alg∩

F 6= acl(cd)acl(cb). This shows d 6 |̂ I
c
b.

Corollary 1.6.8. The theory of ω-free PAC fields of characteristic 0 is NSOP1.

Examples via Parametrization

In this subsection, we show how to construct NSOP1 theories from simple ones. We start with
a simple theory T obtained as the theory of a Fraïssé limit satisfying the strong amalgamation
property and, by analogy with the theory of parametrized equivalence relations T ∗feq, form
the parametrization of this structure. We show that the resulting theories are NSOP1 by
proving an independence theorem for a natural independence notion associated to these
theories. The construction we perform here was studied by Baudisch [Bau02] in the context
of arbitrary model complete theories eliminating ∃∞. We expect that our results hold in this
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greater generality as well, but our setting already encompasses many interesting examples
and simplifies the study of amalgamation.

We begin by recalling some facts from Fraïssé theory.

Definition 1.6.9. (SAP) Suppose K is a class of finite structures. We say K has the Strong
Amalgamation Property (SAP) if given A,B,C ∈ K and embeddings e : A → B and
f : A → C there is a D ∈ K and embeddings g : B → D and h : C → D so that the
following diagram commutes:

B
g

  
A

e

??

f

��

D

C

h

>>

and, moreover, (img) ∩ (imh) = imge (and hence = imhf , as well).

The following is a useful criterion for SAP:

Fact 1.6.10. [Hod93] Suppose K is the age of a countable ultrahomogeneous structure M .
Then the following are equivalent:

1. K has the strong amalgamation property.

2. M has no algebraicity.

Let K denote a Fraïssé class in a finite relational language L = 〈Ri : i < k〉 where each
relation symbol Ri has arity ni. Let T the complete L-theory of the Fraïssé limit of K.
We’ll define a new language Lpfc which contains two sorts P and O. For each i < k, there
is an (ni + 1)-ary relation symbol Ri

x where x is a variable of sort P and the suppressed ni
variables belong to the sort O.

Given an Lpfc-structure M , it is convenient to write M = (A,B) where O(M) = A and
P (M) = B. We will refer to elements named by O as objects and elements named by P as
parameters. Given b ∈ B, we define the L-structure associated to b in M, denoted Ab, to be
the L-structure interpreted in M with domain A and each relation symbol Ri interpreted by
Ri
b(A). If b ∈ B and C ⊆ A, write 〈C〉b to denote the L-substructure of Ab generated by C

(as we assume the language is relational, this will have C as its domain).
We describe a class of finite structures Kpfc to be the class defined in the following way.

Let
Kpfc = {M = (A,B) ∈ Mod(Lpfc) : |M | < ℵ0, (∀b ∈ B)(∃D ∈ K) (Ab ∼= D)}

From now on, we’ll assume K also satisfies SAP.

Lemma 1.6.11. Kpfc is a Fraïssé class satisfying the Strong Amalgamation Property (SAP).



CHAPTER 1. MODEL-THEORETIC TREE PROPERTIES 44

Proof. HP is clear and, as we allow the empty structure to be a model in Kpfc, JEP follows
from SAP. So we show SAP.

First, we may assume that 3 models in the amalgamation diagram have the same set of
parameters. Suppose (A,D), (B,E) and (C,F ) are in Kpfc and we have embeddings

(C,F )

(A,D)

i
::

j

$$
(B,E)

By moving F and E over D if necessary, we may assume that i and j are just the inclusion
maps on parameters and that F∩E = D. By SAP inK, for each d ∈ D, there are embeddings
fd, gd and Gd ∈ K so that the following diagram commutes,

Cd
fd

  
Ad

i
>>

j

  

Gd

Bd

gd
>>

where i and j are the induced maps, so that fd(Cd) ∩ gd(Bb) = (fd ◦ i)(Ad). Since the
language is relational, HP implies that we may take Gd = fd(Cd) ∪ gd(Dd). Moreover, we
may choose fd and gd so that they are the same functions for all d ∈ D on the underlying
sets C and B respectively. Call these functions f and g. Let G be the underlying set of Gd

for some (all) d ∈ B. Now define a structure (G,E ∪ F ) so that for all d ∈ D = E ∩ F ,
Gd is as above, if a ∈ E \ F , Ga is some structure in K extending g(Ba) and, likewise, if
a ∈ F\E, Ga is some structure extending f(Ca). The functions f and g extend to embeddings
f : (C,F )→ (G,E ∪F ) and g : (B,E)→ (G,E ∪F ) so that f and g are both inclusions on
parameters. By construction, it is clear that fi = gj. Moreover, fi(A) = f(C) ∩ g(B) and
fi(D) = f(E) ∩ g(F ), which establishes SAP in Kpfc.

As Kpfc is a Fraïssé class, there is a unique countable ultrahomogeneous Lpfc-structure
with age Kpfc. Let Tpfc denote its theory. By Fraïssé theory, this theory eliminates quantifiers
and is ℵ0-categorical.

Lemma 1.6.12. Suppose (A,B) |= Tpfc. Then, for all b ∈ B, Ab |= T .

Proof. Since the property that for all b ∈ B, Ab |= T is an elementary property, it suf-
fices to check this when (A,B) is the unique countable model of Tpfc. If d, e ∈ Ab satisfy
tpL(d) = tpL(e) then, by quantifier-elimination, it is easy to check tpLpfc

(b, d) = tpLpfc
(b, e)
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and ultrahomogeneity of (A,B) implies there is an Lpfc-automorphism of (A,B) fixing b and
taking d to e. The induced L-automorphism of Ab witnesses that Ab is ultrahomogeneous. By
Fraïssé theory there is up to isomorphism a unique countable ultrahomogeneous L-structure
with age K so Ab is isomorphic to a model of T , so Ab |= T .

Suppose M = (A,B) is a monster model of Tpfc. Given a formula ϕ ∈ L and a parameter
p ∈ B, define ϕp ∈ Lpfc to be the formula obtained by replacing each occurrence of Ri by Ri

p

and giving the objects their eponymous interpretations in Ap – formally, this defines ϕp for
atomic ϕ and then the full definition follows by induction on the complexity of the formulas.
If C ⊆ A is a set of objects and q is an L-type over C (considered as a subset of Ap), we
define the type qp by

qp = {ϕp : ϕ ∈ q}.

Lemma 1.6.13. Suppose {pi : i < α} ⊆ B is a collection of distinct parameters and qi : i <
α) is a sequence of non-algebraic L-types over C ⊆ A (possibly with repetition), where qi is
considered as a type in Api. Then the Lpfc-type

⋃
i<α q

i
pi

is consistent.

Proof. By compactness, it suffices to consider the case where α < ω and when the qi are all
finite types. Hence, we simply have to show

M |= (∃x)
∧
i<α

qipi(x).

Moreover, by quantifier-elimination in T , we may assume that each qi is quantifier-free.
For each i < α, let Ci ∈ Age(Api) the finite substructure generated by the elements of C
mentioned in all of the qi. So, the underlying set of each Ci is the same, although the
interpretations of the relations may differ. Given any i < α, we know that

Api |= (∃x)
∧

qipi(x)

so there is Di ∈ Age(Api) containing a witness di to the above existential formula. By
non-algebraicity of each type, we may assume that di 6∈ Ci and, by HP, that Di = C ∪ {di}.

Now define an Lpfc-structure E with underlying set of objects C ∪ {∗} where ∗ is some
new element and its parameters are {pi : i < α}, and the relations are interpreted so that for
each i < α, the map is the identity on C and sends di 7→ ∗ is an isomorphism of L-structures
from Di to Epi . It is clear that E ∈ Kpfc so there is a copy F isomorphic over C∪{pi : i < α}
to it in Age(M). Now

F |= (∃x)
∧
i<α

qipi(x)

and hence this is satisfied in M, so we’re done.

Lemma 1.6.14. Suppose A,B,C ⊆ A are small sets of objects, F ⊆ B is a small set of
parameters, A ∩ B ⊆ C, and b0, b1 ∈ B satisfy b0 ≡CF b1. Then there is some b ∈ B so that
b ≡ACF b0 and b ≡BCF b1 (all in Lpfc).
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Proof. Given a set D ⊆ A and p ∈ B, recall that we write 〈D〉p for the L-substructure of Ap

with underlying set D. By compactness, it suffices to prove the lemma when A,B,C, and F
are finite. By quantifier-elimination, demanding some b ∈ B so that b ≡AC b0 and b ≡BC b1

is equivalent to asking that 〈AC〉b ∼= 〈AC〉b0 and 〈BC〉b ∼= 〈AC〉b1 . Now, as b0 ≡C b1, 〈C〉b0
may be identified with 〈C〉b1 . We may view C, 〈AC〉b0 , and 〈BC〉b1 as elements of K. In K,
we have inclusions i : C → 〈AC〉b0 and j : C → 〈BC〉b1 , so by SAP, there are embeddings
f, g and a D ∈ K so that the following diagram commutes

〈AC〉b0
f

##
C

i
;;

j

##

D

〈BC〉b1

g
;;

where f(AC)∩ g(BC) = C. By HP, D may be taken to have f(AC)∪ g(BC) as its domain.
Since A ∩B ⊆ C, D is isomorphic over C to an L-structure with underlying set A ∪B ∪C,
so we may assume that f and g are both inclusions. Let b∗ denote some new parameter
element outside of F and define a structure with parameter set {b∗, b0, b1}∪F and A∪B∪C
as its set of objects so that 〈ABC〉b∗ ∼= D. This clearly defines a structure in Kpfc. In the
substructure with only A∪C as the set of objects, there is an automorphism fixing F taking
b∗ to b0. This shows that b∗ ≡ACF b0 and a symmetric argument shows b∗ ≡BCF b1. It follows
that we can find such a b∗ in B.

Towards proving an independence theorem for Tpfc, we will define a notion of indepen-
dence for parameterized structures.

Definition 1.6.15. ( |̂ pfc)

1. Suppose p ∈ B is a parameter. Suppose A,B,C ⊆ A. We define |̂ p by

A
p

|̂
C

B in M ⇐⇒ A |̂
C

B in Ap,

where the undecorated |̂ on the right-hand side denotes the usual non-forking inde-
pendence – i.e. tp(A/BC) does not fork over C.

2. If A,B,C ⊆ A and D,E, F ⊆ B, we define |̂ pfc by

A,D
pfc

|̂
C,F

B,E ⇐⇒ D ∩ E ⊆ F, and for all p ∈ F,A
p

|̂
C

B.
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Proposition 1.6.16. Assume T is a simple theory. Suppose A,B ⊆ A are small sets of
objects and D,E ⊆ B are small sets of parameters and M = (C,F ) is a small model of Tpfc

satisfying

A,D
pfc

|̂
C,F

B,E

Suppose moreover that a0, a1 are tuples from A and b0, b1 are tuples from B satisfying
a0, b0 |̂ pfc

CF
A,D, a1, b1 |̂ pfc

C,F
B,E and a0, b0 ≡CF a1, b1. Then there are a from A and b

from B so that a, b ≡ACDF a0, b0 and a, b ≡BCEF a1, b1.

Proof. First, we solve the amalgamation problem for objects. Without loss of generality,
D,E, F are pairwise disjoint. By Lemma 1.6.12, we know that for each p ∈ F , Cp is a
model of T . By definition of |̂ pfc, we know that in Ap, we have A |̂ p

C
B, a0 |̂ pC A and

a1 |̂ pC B. As T is simple, the independence theorem over a model implies that there is
some tuple ap in Ap such that ap ≡LAC a0, ap ≡LBC a1 and ap |̂ pC AB. For each p ∈ F ,
let qp(x) = tpL(ap/ABC) considered as an L-type in Ap. By Lemma 1.6.13, denoting the
relativization of qp to the parametrized language with respect to p by qpp, we know that the
type

⋃
p∈F q

p
p is consistent. Let a be a realization. Then a ≡AC a0 and a ≡BC a1 in Ap for

all p ∈ F so a ≡ACF a0 and a ≡BCF a1.
Now we solve the problem for parameters. First assume that b0, b1 are singletons in

B. Without loss of generality b0, b1 /∈ F (as otherwise they are equal by assumption, and
there is nothing to do). By quantifier-elimination, we need some b 6∈ D ∪ E ∪ F so that
〈aAC〉b ∼= 〈a0AC〉b0 and 〈aBC〉b ∼= 〈a1BC〉b1 . First, find b2 ≡ACF b0 and b3 ≡BCF b1 outside
of D ∪ E ∪ F so that 〈aAC〉b2 ∼= 〈a0AC〉b0 and 〈aBC〉b3 ∼= 〈a1BC〉b1 . So ab2 ≡ACF a0b0 and
ab3 ≡BCF a1b1. Now b2 ≡aCF b3 and aAC ∩ aBC ⊆ aC, so Lemma 1.6.14 applies and we
can find a b so that 〈aAC〉b ∼= 〈aAC〉b2 and 〈aBC〉b ∼= 〈aBC〉b3 , and we can take this b to be
outside of D ∪ E ∪ F . Now as b 6∈ D ∪ E ∪ F , we have ab ≡ACDF a0b0 and ab ≡BCEF a1b1.

Now let b0 = (b0,i : i < k), b1 = (b1,i : i < k) be arbitrary tuples from B. Without loss
of generality, all of the elements in {bt,i : i < k} are pairwise-distinct, for t ∈ {0, 1}. Let
St = {i < k : bt,i /∈ F} for t ∈ {0, 1}, note that S0 = S1 = S as b0 ≡F b1. Repeatedly
applying the argument above for singletons, we can find pairwise distinct b′i for i ∈ S such
that a, b′i ≡ACDF a0, b0,i and a, b′i ≡BCEF a1, b1,i for all i ∈ S. Let b∗ = (b∗i : i < k) be defined
by taking b∗i = b0,i = b1,i for all i /∈ S and b∗i = b′i for all i ∈ S. As there are no relations
in the language involving more than one element from the parameter sort except for the
equality, it follows that a, b∗ ≡ACDF a0, b0 and a, b∗ ≡BCEF a1, b1 — as wanted.

Theorem 1.6.17. Assume T is simple. Then |̂ pfc is an Aut(M)-invariant independence
relation on small subsets of the monster M |= Tpfc such that it satisfies, for an arbitrary
M |= Tpfc:

1. strong finite character: if a 6 |̂ pfc

M
b, then there is a formula ϕ(x, b,m) ∈ tp(a/bM) such

that for any a′ |= ϕ(x, b,m), a′ 6 |̂ pfc

M
b;
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2. existence over models: M |= Tpfc implies a |̂ pfc

M
M for any a;

3. monotonicity: aa′ |̂ pfc

M
bb′ =⇒ a |̂ pfc

M
b;

4. symmetry: a |̂ pfc

M
b ⇐⇒ b |̂ pfc

M
a;

5. independent amalgamation: c0 |̂ pfc

M
c1, b0 |̂ pfc

M
c0, b1 |̂ pfc

M
c1, b0 ≡M b1 implies there

exists b with b ≡c0M b0, b ≡c1M b1.

Proof. Automorphism invariance and (1)-(4) are immediate from the definition of |̂ pfc,
using that T is simple and hence non-forking independence satisfies all these properties; (5)
was proven in Proposition 1.6.16.

Corollary 1.6.18. Suppose T is a simple theory which is the theory of a Fraïssé limit of a
Fraïssé class K satisfying SAP. Then Tpfc is NSOP1. Moreover, if the D-rank of T is ≥ 2,
then Tpfc is not simple.

Proof. By Proposition 6.2.4, Tpfc is NSOP1, as |̂ pfc gives an independence relation satisfying
all the hypotheses. So now we prove that Tpfc is not simple, under the assumption that the
D-rank of T is ≥ 2. This assumption implies that there is an L-formula ϕ(x; y) and an
indiscernible sequence (ai)i<ω so that {ϕ(x; ai) : i < ω} is k-inconsistent for some k and
the set defined by ϕ(x; ai) is infinite. Let M |= T be some model containing the sequence
(ai)i<ω. Construct an Lpfc-structure N with domain ωtM and relations interpreted so that
N |= Ri(b) ⇐⇒ M |= R(b) for each tuple b ∈ M , every i < ω, and relation symbol R
of L. Extend N to Ñ |= Tpfc. Let ψ(x; y, z) be the formula ϕz(x; y) and define an array
(bij)i,j<ω by bij = (aj, i) ∈M ×ω ⊂ Ñ2. Using Lemma 1.6.13, it is easy to check that for all
f : ω → ω,

⋃
i<ω{ψ(x; bif(i))} is consistent. Also {ψ(x; bij) : j < ω} is k-inconsistent for all i

so ψ witnesses TP2.

Remark 1.6.19. For the above argument to work, we used that the formula witnessing di-
viding was non-algebraic — this fails in many natural examples (e.g. the random graph).
However, given an L-structure M , define the imaginary cover of M as follows: let L′ be the
language L together with a new binary relation symbol E for an equivalence relation, and
let M̃ be the L′-structure obtained by replacing each element of M with an infinite E-class
and defining the relations of L on M̃ on the corresponding E-classes. Now it is easy to check
that Age(M̃) has SAP, the theory of M̃ is simple of D-rank at least 2.

Corollary 1.6.20. T ∗feq is NSOP1.

Proof. The theory T of an equivalence relation with infinitely many infinite classes is a stable
theory, obtained as the Fraïssé limit of all finite models of the theory of an equivalence
relation. This class has no algebraicity, so it satisfies SAP. Tpfc is exactly T ∗feq, so it is
NSOP1.

This result was claimed in [SU08], but the proof is apparently incorrect due to an illegit-
imate use of tree-indiscernibles. See the footnote on [HS14, p. 22] for a discussion.
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Theories approximated by simple theories

In her thesis [HS14], Gwyneth Harrison-Shermoen considers theories that have a model
approximated by a directed system H of homogeneous substructures, each of which has
a simple theory. She proves that such theories carry an invariant independence notion
|̂ lim satisfying strong finite character, monotonicity, symmetry, and existence over a model
(existence over a model is implied by Claim 3.3.4 in [HS14]). Finally, she observes that if
non-forking independence |̂ f satisfies the independence theorem over algebraically closed
sets for each model in H, then so does |̂ lim for the approximated theory. Hence, we obtain
the following:

Corollary 1.6.21. Suppose T is a theory approximated, in the sense of Harrison-Shermoen,
by a directed system of structures each with a simple theory in which |̂ f satisfies the inde-
pendence theorem over algebraically closed sets. Then T is NSOP1.

1.7 Lemmas on preservation of indiscernibility
Lemma 1.7.1. Suppose η0, . . . , ηl−1, ν0, . . . , νl−1 are elements of ω<ω. Let η and ν denote
enumerations of the ∧-closures of {ηi : i < l} and {νi : i < l} respectively. Then if

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1),

then
qftpLs(η) = qftpLs(ν).

Proof. Easy. See Remark 3.2 from [KKS14]

Lemma 1.7.2. Let η0, . . . , ηl−1, ν0, . . . , νl−1 ∈ ω<ω be such that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

Suppose i < l and η C ηi, ν C νi with l(η) = l(ν). Then, setting ηl = η and νl = ν, we have

qftpLs(η0, . . . , ηl) = qftpLs(ν0, . . . , νl).

Proof. Without loss of generality, we may take {ηi : i < l} and {νi : i < l} to be ∧-closed,
by the previous lemma. Then {ηi : i < l + 1} and {νi : i < l + 1} are also ∧-closed. So we
need only to check that for any j, j′ < l + 1

1. ηj C ηj′ ⇐⇒ νj ⇐⇒ ν ′j

2. ηj <lex ηj′ ⇐⇒ νj <lex νj′
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We have 3 cases.
Case 1: j, j′ < l.
(1) and (2) follow by assumption.
Case 2: j < l and j′ = l

ηj C ηl ⇐⇒ ηj C ηi and l(ηj) ≤ l(ηl)

⇐⇒ ηj C ηi ∧
∨

k<l(ηl)

Pk(ηj)

⇐⇒ νj C νi ∧
∨

k<l(νl)

Pk(νj)

⇐⇒ νj C νl.

ηj <lex ηl ⇐⇒ l(ηj ∧ ηi) < l(ηl) and ηj <lex ηi

⇐⇒

 ∨
k<l(ηl)

Pk(ηj ∧ ηi)

 ∧ ηj <lex ηi

⇐⇒

 ∨
k<l(νl)

Pk(νj ∧ νi)

 ∧ νj <lex νi

⇐⇒ νl <lex νj.

Case 3: j = l and j′ < l

ηl C ηj ⇐⇒ ηl C (ηi ∧ ηj)
⇐⇒

∨
l(ηl)<k≤l(ηi)

Pk((ηi ∧ ηj))

⇐⇒
∨

l(νl)<k≤l(νi)

Pk((νi ∧ νj))

⇐⇒ νl C νj

ηl <lex ηj ⇐⇒ (l(ηj ∧ ηi) < l(ηl))→ ηi <lex ηj

⇐⇒

 ∨
k<l(ηl)

Pk(ηj ∧ ηi)

→ ηi <lex ηj

⇐⇒

 ∨
k<l(νl)

Pk(νj ∧ νi)

→ νi <lex νj

⇐⇒ νl <lex νj.

Lemma 1.7.3. Let (aη)η∈ω<ω be an s-indiscernible tree. If (a′η)η∈ω<ω is the k-fold widening
of (aη)η∈ω<ω at level n, then (a′η)η∈ω<ω is also s-indiscernible.
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Proof. Pick η0, . . . , ηl−1 and ν0, . . . , νl−1 in ω<ω so that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

By Lemma 1.7.2, we may assume that {ηi : i < l} and {νi : i < l} are both ∧-closed
and closed under initial segment. Moreover, we may assume that these elements have been
enumerated so that for some m ≤ l, l(ηi), l(νi) < n if and only if i ≥ m. So for each i < m,
we may write

ηi = µi _ αi _ ξi

νi = υi _ βi _ ρi,

where µi, υi ∈ ωn−1, αi, βi ∈ ω, and ξi, ρi ∈ ω<ω. For each i < m, let

ηi = (µi _ (kαi) _ ξi, µi _ (kαi + 1) _ ξi, . . . , µi _ (kαi + k − 1) _ ξi)

νi = (υi _ (kβi) _ ρi, υi _ (kβi + 1) _ ρi, . . . , υi _ (kβi + k − 1) _ ρi).

and for m ≤ i < l, let ηi = ηi, νi = νi. Now we must show that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

It is clear that the sets
⋃
i<l ηi and

⋃
i<l νi are closed under initial segment. They are also

closed under ∧: this is obvious for elements of length < n and for elements of longer length
whose meet has length < n by our assumptions. On the other hand if, for some i, i′ < l
and j, j′ < k, l((ηi)j), l((νi′)j′) ≥ n and l((ηi)j ∧ (νi′)j′) ≥ n, then if j = j′, we have
(ηi)j ∧ (νi′)j′ = (ηi ∧ ηi′)j and if j 6= j′, then (ηi)j ∧ (νi′)j′ is equal to the common initial
segment of each element of length n− 1. In the first case, the meet is enumerated in one of
the tuples because our initial set of tuples was ∧-closed, in the second case because it was
taken to be closed under initial segment. To check equality of the quantifier-free types, we
have 3 cases:

Case 1: i, i′ ≥ m Follows by assumption, as for any i ≥ m, ηi = ηi and νi = νi.
Case 2: i ≥ m, i′ < m and j < k

ηi C (ηi′)j ⇐⇒ νi C (νi′)j

ηi <lex (ηi′)j ⇐⇒ νi <lex (ηi′)j

(ηi′)j <lex ηi ⇐⇒ (νi′)j <lex νi
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Case 3: i, i′ < m and j, j′ < k

(ηi)j C (ηi′)j′ ⇐⇒ ηi C ηi′ and j = j′

⇐⇒ νi C νi′ and j = j′

⇐⇒ (νi)j C (νi′)j′

(ηi)j <lex (ηi′)j′ ⇐⇒ (ηi <lex ηj and (l(ηi ∧ ηj) < n or j = j′)) or
(l(ηi ∧ ηi′) ≥ n and j < j′)

⇐⇒ (νi <lex νj and (l(νi ∧ νj) < n or j = j′)) or
(l(νi ∧ νi′) ≥ n and j < j′)

⇐⇒ (νi)j <lex (νi′)j′ .

Lemma 1.7.4. Let (aη)η∈ω<ω be an s-indiscernible tree. If (a′′η)η∈ω<ω is the k-fold stretch of
(aη)η∈ω<ω at level n, then (a′′η)η∈ω<ω is also s-indiscernible.

Proof. Given η ∈ ω<ω, let

η =


η if l(η) < n

(η, η _ 0, . . . , η _ 0k−1) if l(η) = n
ν _ 0k−1 _ ξ if η = ν _ ξ, with ν ∈ ωn, ξ 6= ∅

Pick η0, . . . , ηl−1, ν0, . . . , νl−1 ∈ ω<ω so that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1),

and, without loss of generality, we may suppose {ηi : i < l} and {νi : i < l} are both
∧-closed. We must show that

qftpLs(η0, . . . , ηl−1) = qftpLs(ν0, . . . , νl−1).

Assume that {ηi : i < l} is ordered so that i < m if and only if l(ηi) = n, and similarly for
{νi : i < l}. Clearly {ηi : i < l} and {νi : i < l} are also ∧-closed, so we have to check that
the two sequences of tuples have the same quantifier type with respect to the relations <lex

and C. We’ll show this by considering the various cases:
Case 1: i, i′ ≥ m. Then

ηi C ηi′ ⇐⇒ ηi C ηi′

⇐⇒ νi C νi′

⇐⇒ νi C νi′

ηi <lex ηi ⇐⇒ ηi <lex ηi′

⇐⇒ νi <lex νi′

⇐⇒ νi <lex νi′ .
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Case 2: i, i′ < m and j, j′ < k. Then

(ηi)j C (ηi′)j′ ⇐⇒ (ηi = ηi′) ∧ (j < j′)

⇐⇒ (νi = νi′) ∧ (j < j′)

⇐⇒ (νi)j C (ν)j′

(ηi)j <lex (ηi′)j′ ⇐⇒ ηi <lex ηi′ ∨ (νi = νi′ ∧ j < j′)

⇐⇒ νi <lex νi′ ∨ (νi = νi′ ∧ j < j′)

⇐⇒ (νi)j <lex (νi′)j′ .

Case 3: i < m, i′ ≥ m, j < k.

(ηi)j C ηi′ ⇐⇒ ηi C ηi′

⇐⇒ νi C νi′

⇐⇒ (νi)j C νi

ηi′ C (ηi)j ⇐⇒ ηi′ C ηi

⇐⇒ νi′ C νi

⇐⇒ (νi′)j C νi

(ηi)j <lex ηi′ ⇐⇒ ηi <lex ηi′

⇐⇒ νi <lex νi′

⇐⇒ (νi)j <lex νi′

ηi′ <lex (ηi)j ⇐⇒ νi′ <lex νi

⇐⇒ νi′ <lex νi

⇐⇒ νi′ <lex (νi)j.

Lemma 1.7.5. 1. Each tuple a(n)
η may be enumerated as (aν_η : ν ∈ 2n)

2. If (aη)η∈2<κ is strongly indiscernible, then for all n, the n-fold fattening (a
(n)
η )η∈2<κ is

strongly indiscernible over Cn

Proof. (1) This is trivial for n = 0. Then if true for n, we have

a(n+1)
η = (a

(n)
0_η, a

(n)
1_η) = ((aν_0_η : ν ∈ 2n), (aν_1_η : ν ∈ 2n)) = (aξ_η : ξ ∈ 2n+1).

(2) By (1) we have a(n+1)
η = (aµ_η : µ ∈ 2n). Let µ = (µ ∈ 2≤n). In order to show

indiscernibility over Cn have to show that if η0, . . . , ηk−1, ν0, . . . , νk−1 ∈ 2<ω and

qftpL0
(η0, . . . , ηk−1) = qftpL0

(ν0, . . . , νk−1)

then qftpL0
(µ, (aµ_η0 : µ ∈ 2n), . . . , (aµ_ηk−1

: µ ∈ 2n)) is equal to qftpL0
(µ, (aµ_ν0 : µ ∈

2n), . . . , (aµ_νk−1
: µ ∈ 2n)). To this end, we may assume {η0, . . . , ηk−1} and {ν0, . . . , νk−1}
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are meet-closed. Then 2≤n∪{µ _ ηi : µ ∈ 2n, i < k} and 2≤n∪{µ _ νi : µ ∈ 2n, i < k} is also
meet-closed and we just have to check that the tuples in the above equation have the same
time with respect to the language Lt = {C, <lex}. Choose ξ0, ξ1 from the tuple (µ, (aµ_η0 :
µ ∈ 2n), . . . , (aµ_ηk−1

: µ ∈ 2n)) and ρ0, ρ1 from (µ, (aµ_ν0 : µ ∈ 2n), . . . , (aµ_νk−1
: µ ∈ 2n))

so that ξi sits in the same position in the enumeration of the tuple as ρi for i = 0, 1. Now,
we must show that ξ0 <lex ξ1 if and only if ρ0 <lex ρ1 and ξ0 E ξ1 if and only if ρ0 E ρ1.
Choose arbitrary µ0, µ1 ∈ 2≤n, ηi, ηj, νi, νj.

Case 1: l(µ0) = l(µ1) = n, ξ0 = µ0 _ ηi, ξ1 = µ1 _ ηj, and hence ρ0 = µ0 _ νi and
ρ1 = µ1 _ νj.

µ0 _ ηi E µ1 _ ηj ⇐⇒ µ0 = µ1 ∧ ηi E ηj
⇐⇒ µ0 = µ1 ∧ νi E νj
⇐⇒ µ0 _ νi C µ1 _ νj

µ0 _ ηi <lex µ1 _ ηj ⇐⇒ µ0 <lex µ1 ∨ (µ0 = µ1 ∧ ηi <lex ηj)

⇐⇒ µ0 <lex µ1 ∨ (µ0 = µ1 ∧ νi <lex νi′)

⇐⇒ µ0 _ νi <lex µ1 _ νj

Case 2: ξ0 = µ0, ξ1 = µ1, ρ0 = µ0, and ρ1 = µ1.
Clear.
Case 3: l(µ0) = n, ξ0 = µ0 _ ηi, ξ1 = µ1, ρ0 = µ0 _ νi, ρ1 = µ1.
It is never the case that µ0 _ ηi C µ1 or µ0 _ νi C µ1 so it suffices to check <lex:

µ0 _ ηi <lex µ1 ⇐⇒ µ0 <lex µ1

⇐⇒ µ0 _ νi <lex µ1.

Case 4: l(µ1) = n, ξ0 = µ0, ξ1 = µ1 _ νj, ρ0 = µ0, ρ1 = µ1 _ νj.

µ0 E µ1 _ ηj ⇐⇒ µ0 E µ1

⇐⇒ µ0 E µ1 _ νj

µ0 ≤lex µ1 _ ηj ⇐⇒ µ0 ≤lex µ1

⇐⇒ µ0 ≤lex µ1 _ νj

Lemma 1.7.6. If (aη)η∈2<ω is strongly indiscernible, then for all natural numbers k ≥ 1, the
k-fold elongation (a′η)η∈2<ω of (aη)η∈2<ω is also strongly indiscernible.

Proof. Given η ∈ 2<ω, with l(η) = n, we defined η̃ ∈ 2<ω to be the element with length
k(l(η)− 1) + 1 defined by

η̃(i) =

{
η(i/k) if k|i

0 otherwise
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As the k-fold elongation of (aη)η∈2<ω is defined to be the tree (bη)η∈2<ω where

bη = (aη̃, aη̃_0, . . . , aη̃_0k−1).

Write η for the tuple (η̃, η̃ _ 0, . . . , η̃ _ 0k−1). We are reduced to showing that if η0, . . . , ηl−1,
ν0, . . . , νl−1 are elements of 2<ω so that

qftpL0
(η0, . . . , ηl−1) = qftpL0

(ν0, . . . , νl−1)

then
qftpL0

(η0, . . . , ηl−1) = qftpL0
(ν0, . . . , νl−1).

We may assume that {ηi : i < l} and {νi : i < l} are both ∧-closed, from which it follows
that {ηi : i < l} and {νi : i < l} are both ∧-closed. So we must check that (ηi : i < l) and
(νi : i < l) have the same quantifier-free type with respect to the language Lt = 〈E, <lex〉.
We note

η̃i _ 0l E η̃j _ 0l
′ ⇐⇒ η̃i C η̃j ∨ (η̃i = η̃j ∧ l ≤ l′)

⇐⇒ ηi C ηj ∨ (ηi = ηj ∧ l ≤ l′)

⇐⇒ νi C νj ∨ (νi = νj ∧ l ≤ l′)

⇐⇒ ν̃i C ν̃j ∨ (ν̃i = ν̃j ∧ l ≤ l′)

⇐⇒ ν̃i _ 0l C ν̃j _ 0l
′

η̃i _ 0l <lex η̃j _ 0l
′ ⇐⇒ η̃i <lex η̃j ∨ (η̃i = η̃j ∧ l < l′)

⇐⇒ ηi <lex ηj ∨ (ηi = ηj ∧ l < l′)

⇐⇒ νi <lex νj ∨ (νi = νj ∧ l < l′)

⇐⇒ ν̃i <lex ν̃j ∨ (ν̃i = ν̃j ∧ l < l′)

⇐⇒ ν̃i _ 0l <lex ν̃j _ 0l
′
.

Lemma 1.7.7. Suppose (aη)η∈2<ω is a strongly indiscernible tree over C.

1. Define a function h : 2<ω → 2<ω by h(∅) = ∅ and h(η) = h(ν) _ 0 _ 〈i〉 whenever
η = ν _ 〈i〉. Then (ah(η))η∈2<ω is strongly indiscernible over C.

2. For each n, define a map hn : 2<ω → 2<ω by

hn(η) =

{
h(η) if l(η) ≤ n

h(ν) _ ξ if η = ν _ ξ, l(ν) = n.

Then (ahn(η))η∈2<ω is strongly indiscernible over C.
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Proof. (1) At the outset, we note that η E ν ⇐⇒ h(η)E h(ν) and η <lex ν ⇐⇒ h(η) <lex

h(ν). The only difficulty arises from ∧ which is not preserved by h, because if η ⊥ ν and
η ∧ ν = ξ then h(η) ∧ h(ν) = h(ξ) _ 0.

It suffices to show that if η, ν are finite tuples from 2<ω with qftpL0
(η) = qftpL0

(ν) then
qftpL0

(h(η)) = qftpL0
(h(ν)). Given such η, ν, it is clear that if qftpL0

(h(η)) 6= qftpL0
(h(ν))

then qftpL0
(h(η′)) 6= qftpL0

(h(ν ′)) where η′ and ν ′ are the ∧-closures of η and ν respectively.
So we may assume η and ν are ∧-closed. We may assume that the tuple η = 〈ηi : i < k〉 is
enumerated so that for some l ≤ k, if i < l, then there are ηj ⊥ ηj′ so that ηj ∧ ηj′ = ηi. It
follows that the ∧-closure of h(η) may be enumerated as 〈h(ηi) : i < k〉_ 〈h(ηi) _ 0 : i < l〉,
and, likewise, the ∧-closure of h(ν) can be enumerated as 〈h(νi) : i < k〉_ 〈h(νi) _ 0 : i <
l〉. Now we note that, by definition of h, if i, j < k

h(ηi) C h(ηj) _ 0 ⇐⇒ h(ηi) _ 0 C h(ηj)

⇐⇒ h(ηi) _ 0 C h(ηj) _ 0

⇐⇒ h(ηi) C h(ηj)

h(ηi) <lex h(ηj) _ 0 ⇐⇒ h(ηi) _ 0 <lex h(ηj)

⇐⇒ h(ηi) _ 0 <lex h(ηj) _ 0

⇐⇒ h(ηi) <lex h(ηj)

And similarly for νi, νj. As h respects C and <lex, and qftpL0
(η) = qftpL0

(ν), it follows that
qftpL0

(h(η)) = qftpL0
(h(ν)).

(2) is entirely similar.
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Chapter 2

Invariants related to the tree property

2.1 Introduction
One of the fundamental discoveries in stability theory is that stability is local – a theory
is stable if and only if no formula has the order property. Among the stable theories, one
can obtain a measure of complexity by associating to each theory T its stability spectrum,
namely, the class of cardinals λ such that T is stable in λ. A classification of stability
spectra was given by Shelah in [She90, Chapter 3]. Part of this analysis amounts showing
that stable theories do not have the tree property and, consequently, that forking satisfies
local character. But a crucial component of that work was studying the approximations to
the tree property can exist in stable theories and what structural consequences they have.
These approximations were measured by a cardinal invariant of the theory called κ(T ), and
Shelah’s stability spectrum theorem gives an explicit description of the cardinals in which
a given theory T was stable in terms of the cardinality of the set of types over the empty
set and κ(T ). Shelah used the definition of κ(T ) as a template for quantifying the global
approximations to other tree properties in introducing the invariants κcdt(T ), κsct(T ), and
κinp(T ) which bound approximations to the tree property (TP), the tree property of the first
kind (TP1), and the tree property of the second kind (TP2), respectively. Eventually, the
local condition that a theory does not have the tree property (simplicity), and the global
condition that κ(T ) = κcdt(T ) = ℵ0 (supersimplicity) proved to mark substantial dividing
lines. These invariants provide a coarse measure of the complexity of the theory, providing a
“quantitative" description of the patterns that can arise among forking formulas. They are
likely to continue to play a role in the development of a structure theory for tame classes of
non-simple theories.

Motivated by some questions from [She90], we explore which relationships that obtain
between the local properties TP, TP1, and TP2 also hold for the global invariants κcdt(T ),
κsct(T ), and κinp(T ). In short, we are pursuing the following analogy:
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local TP TP1 TP2

global κcdt κsct κinp

This continues the work done in Chapter 1, where, with Artem Chernikov, we considered a
global analogue of the following theorem of Shelah:
Theorem. [She90, III.7.11] For complete theory T , κcdt(T ) =∞ and only if κsct(T ) =∞ or
κinp(T ) =∞. That is, T has the tree property if and only if it has the tree property of the
first kind or the tree property of the second kind.
Shelah then asked if κcdt(T ) = κsct(T ) + κinp(T ) in general [She90, Question III.7.14]1. In
Chapter 1, we showed that is true under the assumption that T is countable. For a countable
theory T , the only possible values of these invariants are ℵ0,ℵ1, and ∞ – our proof handled
each cardinal separately using a different argument in each case. Here we consider this
question without any hypothesis on the cardinality of T , answering the general question
negatively:
Theorem. There is a theory T so that κcdt(T ) 6= κsct(T ) +κinp(T ). Moreover, it is consistent
with ZFC that for every regular uncountable κ, there is a theory T with |T | = κ and
κcdt(T ) 6= κsct(T ) + κinp(T ).

To construct a theory T so that κcdt(T ) 6= κsct(T ) + κinp(T ), we use results on strong
colorings constructed by Galvin under GCH and later by Shelah in ZFC. These results show
that, at suitable regular cardinals, Ramsey’s theorem fails in a particularly dramatic way.
The statement κcdt(T ) = κsct(T ) + κinp(T ) amounts to saying that a certain large global
configuration gives rise to another large configuration which is moreover very uniform. This
has the feel of many statements in the partition calculus and we show that, in fact, a
coloring f : [κ]2 → 2 can be used to construct a theory T ∗κ,f such that the existence of a
large inp- or sct-patterns relative to T ∗κ,f implies some homogeneity for the coloring f . The
theories built from the strong colorings of Galvin and Shelah, then, furnish ZFC counter-
examples to Shelah’s question, and also give a consistency result showing that, consistently,
for every regular uncountable cardinal κ, there is a theory T with |T | = κ and κcdt(T ) 6=
κsct(T ) + κinp(T ). This suggests that the aforementioned result of Chapter 1 for countable
theories is in some sense the optimal result possible in ZFC.

Our second theorem is motivated by the following theorem of Shelah:
Theorem. [She90, VI.4.7] If T is not simple, D is a regular ultrafilter over I, M is an |I|++-
saturated model of T , then M I/D is not |I|++-compact.

1This formulation is somewhat inaccurate. Shelah defines for x ∈ {cdt, inp, sct}, the cardinal invariant
κrx, which is the least regular cardinal ≥ κx. Shelah’s precise question was about the possible equality
κrcdt = κrsct + κrinp. For our purposes, we will only need to consider theories in which κx is a successor
cardinal, so we will not need to distinguish between these two variations.
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In an exercise, Shelah claims that the hypothesis that T is not simple in the above theorem
may be replaced by the condition κinp(T ) > |I|+ and asks if κcdt(T ) > |I|+ suffices [She90,
Question VI.4.20]. We prove the following:
Theorem. There is a theory T so κinp(T ) = λ++ yet for any regular ultrafilter D on λ and
λ++-saturated model of T , Mλ/D is λ++-saturated. On the other hand, for an arbitrary T ,
if λ = λ<λ and κsct(T ) > λ+, M is an λ++-saturated model of T and D is a regular ultrafilter
over λ, then Mλ/D is not λ++-compact.
This contradicts Shelah’s Exercise VI.4.19 and a fortiori answers Question VI.4.20 negatively.
Although κinp(T ) > |I|+ and hence κcdt(T ) > |I|+ do not suffice to guarantee a loss of
saturation in the ultrapower, one can ask if κsct(T ) > |I|+ does suffice. Shelah’s original
argument for Theorem 2.5.4 does not generalize, but fortunately a recent new proof due
to Malliaris and Shelah [MS15b] does and we point out how the revised question can be
answered by an easy and direct adaptation of their argument. These results suggest that the
rough-scale asymptotic structure revealed by studying the λ++-compactness of ultrapowers
on λ is global in nature and differs from the picture suggested by the local case considered
by Shelah.

In order to construct these examples, it is necessary to build a theory capable of coding
a complicated strong coloring yet simple enough that the invariants are still computable.
This was accomplished by a method inspired by Medvedev’s QACFA construction [Med],
realizing the theory as a union of theories in a system of finite reducts each of which is the
theory of a Fraïssé limit. The theories in the finite reducts are ℵ0-categorical and eliminate
quantifiers and one may apply the ∆-system lemma to the finite reducts arising in global
configurations. Altogether, this makes computing the invariants tractable.

2.2 Preliminaries

Notions from Classification Theory

Definition 2.2.1. We recall the following definitions, introduced in [She90].

1. A cdt-pattern of height κ is a sequence of formulas ϕi(x; yi) (i < κ, i successor) and
numbers ni < ω, and a tree of tuples (aη)η∈ω<κ for which

a) pη = {ϕi(x; aη|i) : i successor , i < κ} is consistent for η ∈ ωκ

b) {ϕi(x; aη_〈α〉) : α < ω, i = l(η) + 1} is ni-inconsistent.

2. An inp-pattern of height κ is a sequence of formulas ϕi(x; yi) (i < κ), sequences (ai,α :
α < ω), and numbers ni < ω so that

a) for any η ∈ ωκ, {ϕi(x; ai,η(i)) : i < κ} is consistent.
b) For any i < κ, {ϕi(x; ai,α) : α < ω} is ni-inconsistent.
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3. An sct-pattern of height κ is a sequence of formulas ϕi(x; yi) (i < κ) and a tree of
tuples (aη)η∈ω<κ so that

a) For every η ∈ ωκ, {ϕα(x; aη|α) : 0 < α < κ, α successor} is consistent.
b) If η ∈ ωα, ν ∈ ωβ, α, β are successors, and ν ⊥ η then {ϕα(x; aη), ϕβ(x; aν)} are

inconsistent.

4. For X ∈ {cdt, sct, inp}, we define κnX(T ) be the first cardinal κ so that there is no
X-pattern of height κ in n free variables. We define κX(T ) = sup{κnX}.

Example 2.2.2. Fix a regular uncountable cardinal κ and let L = 〈Eα : α < κ〉 be a
language consisting of κ many binary relations. Let Tsct be the model companion of the L-
theory asserting that each Eα is an equivalence relation and α < β implies Eβ refines Eα. Let
Tinp be the model companion of the L-theory which only asserts that each Eα is an equivalence
relation. Now κcdt(Tsct) = κcdt(Tsct) = κ+, and further κsct(Tsct) = κinp(Tinp) = κ+. However,
we have κinp(Tsct) = ℵ0 and κsct(Tinp) = ℵ1.

In order to simplify many of the arguments below, it will be useful to work with indis-
cernible trees and arrays. Define a language Ls,λ = {C,∧, <lex, Pα : α < λ} where λ is a
cardinal. We may view the tree κ<λ as an Ls,λ-structure in a natural way, interpreting C as
the tree partial order, ∧ as the binary meet function, <lex as the lexicographic order, and
Pα as a predicate which identifies the αth level. See Chapter 1 for a detailed treatment.

Definition 2.2.3.

1. We say (aη)η∈κ<λ is an s-indiscernible tree over A if

qftpLs,λ(η0, . . . , ηn−1) = qftpLs,λ(ν0, . . . , νn−1)

implies tp(aη0 , . . . , aηn−1/A) = tp(aν0 , . . . , aνn−1/A).

2. We say (aα,i)α<κ,i<ω is a mutually indiscernible array over A if, for all α < κ, (aα,i)i<ω
is a sequence indiscernible over A ∪ {aβ,j : β < κ, β 6= α, j < ω}.

The following facts are also in Chapter 1:

Fact 2.2.4. Let (aη : η ∈ κ<λ) be a tree s-indiscernible over a set of parameters C.

1. All paths have the same type over C: for any α, ν ∈ κλ, tp((aη|α)α<λ/C) = tp((aν|α)α<λ/C).

2. Suppose {ηα : α < γ} ⊆ κ<λ satisfies ηα ⊥ ηα′ whenever α 6= α′. Then the array
(bα,β)α<γ,β<κ defined by

bα,β = aηα_〈β〉

is mutually indiscernible over C.
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Fact 2.2.5. 1. If there is an inp-pattern of height κ modulo T , then there is an inp-
pattern (ϕα(x; yα) : α < κ), (aα,i)α<κ,i<ω so that (aα,i)α<κ,i<ω is a mutually indiscernible
array.

2. If there is an sct-pattern (cdt-pattern) of height κ modulo T , then there is an sct-
pattern (cdt-pattern) ϕα(x; yα), (aη)η∈ω<κ so that (aη)η∈ω<κ is an s-indiscernible tree.

Fraïssé Theory

We will recall some basic facts from Fraïssé theory, from [Hod93]. Let L be a finite language
and let K be a non-empty finite or countable set of finitely generated L-structures which has
HP, JEP, and AP. Such a class K is called a Fraïssé class. Then there is an L-structure D,
unique up to isomorphism, such that D has cardinality ≤ ℵ0, K is the age of D, and D is
ultrahomogeneous. We call D the Fraïssé limit of K, which we sometimes denote Flim(K).
We say that K is uniformly locally finite if there is a function g : ω → ω so that a structure
in K generated by n elements has cardinality at most g(n). If K is a countable uniformly
locally finite set of finitely generated L-structures and T = Th(D), then T is ℵ0-categorical
and has quantifier-elimination.

Fact 2.2.6. [KPT05] Let A be a countable structure. Then A is ultrahomogeneous if and
only if it satisfies the following extension property: if B,C are finitely generated and can
be embedded into A, f : B → A, g : B → C are embeddings then there is an embedding
h : C → A so that h ◦ g = f .

The following is a straight-forward generalization of [KPT05, Proposition 5.2]:

Lemma 2.2.7. Suppose L ⊆ L′, and K is a Fraïssé class of L-structures and K′ is a Fraïssé
class of L′-structures satisfying the following two conditions:

1. A ∈ K if and only if there is a D′ ∈ K′ so that A is an L-substructure of D′ � L.

2. If A,B ∈ K, π : A→ B is an L-embedding, and C ∈ K′ with C = 〈A〉CL′, then there is
a D ∈ K′ with D = 〈B〉DL′ and an L′-embedding π̃ : C → D extending π.

Then Flim(K′) � L = Flim(K).

Proof. Let F ′ = Flim(K′) and suppose F = F ′ � L. Fix A0, B0 ∈ K and an L-embedding
π : A0 → B0. Suppose ϕ : A0 → F is an L-embedding. Let E = 〈ϕ(A0)〉F ′L′ . Up to
isomorphism over A0, there is a unique C ∈ K′ containing A0 so that C = 〈A0〉CL′ and
ϕ̃ : C → F ′ is an L′-embedding extending ϕ and with E = ϕ̃(C). By hypothesis, there
is some D ∈ K′ with B0 ⊆ D and D = 〈B0〉DL′ and there is an L′-embedding π̃ : C → D
extending π. By the extension property for F ′, there is an L′-embedding ψ : D → F ′ so that
ψ ◦ π̃ = ϕ̃ and hence ψ ◦ π = ϕ. As ψ � B0 is an L-embedding, this shows the extension
property for F . So F is ultrahomogeneous, and Age(F ) = K by (1) so F ∼= Flim(K), which
completes the proof.
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Strong Colorings

Definition 2.2.8. [She94] Write Pr1(λ, µ, θ, χ) for the assertion: there is a coloring c : [λ]2 →
θ so that for any A ⊆ [λ]<χ of size µ consisting of pairwise disjoint subsets of λ and any
color γ < θ there are a, b ∈ A with max(a) < min(b) with c({α, β}) = γ for all α ∈ a, β ∈ b.

Note, for example, that Pr1(λ, λ, 2, 2) holds if and only if λ 6→ (λ)2
2 - i.e. λ is not weakly

compact.

Observation 2.2.9. For fixed λ, if µ ≤ µ′, θ′ ≤ θ, χ′ ≤ χ, then

Pr1(λ, µ, θ, χ) =⇒ Pr1(λ, µ′, θ′, χ′).

Proof. Fix c : [λ]2 → θ witnessing Pr1(λ, µ, θ, χ). Define a new coloring c′ : [λ]2 → θ′

by c′({α, β}) = c({α, β}) if c({α, β}) < θ′ and c′({α, β}) = 0 otherwise. Now suppose
A ⊆ [λ]<χ

′ is a family of pairwise disjoint sets with |A| ≥ µ′. Then, in particular, A ⊆ [λ]<χ

and |A| ≥ µ so for any γ < θ′, as γ < θ, there are a, b ∈ A with max(a) < min(b) with
c′({α, β}) = c({α, β}) = γ for all α ∈ a, β ∈ b, using Pr1(λ, µ, θ, χ) and the definition of c′.
This shows c′ witnesses Pr1(λ, µ′, θ′, χ′).

Galvin proved Pr1 holds in some form for arbitrary successor cardinals from instances
of GCH. Considerably later, Shelah proved that Pr1 holds in a strong form for the double-
successors of arbitrary regular cardinals in ZFC.

Fact 2.2.10. [Gal80] If λ is an infinite cardinal and 2λ = λ+, then Pr1(λ+, λ+, λ+,ℵ0).

Fact 2.2.11. [She97] The principle Pr1(λ++, λ++, λ++, λ) holds for every regular cardinal λ.

2.3 The main construction
From strong colorings, we construct theories with κsct(T ) + κinp(T ) < κcdt(T ). For each
regular uncountable cardinal κ and coloring f : [κ]2 → 2 we build a theory T ∗κ,f which
comes equipped with a canonical cdt-pattern of height κ, in which the consistency of two
incomparable nodes, one on level α and another on level β, is determined by the value of the
coloring f({α, β}). We then analyze the possible inp- and sct-patterns that arise in models
of T ∗κ,f and show that the existence of an inp- or sct-pattern of height κ implies certain
homogeneity properties about the coloring f . If there is an inp-pattern of height κ, we can
conclude that f has a homogeneous set of size κ. In the case that there is an sct-pattern of
height κ, we cannot quite get a homogeneous set, but one nearly so: we prove in this case
that there is a color γ ∈ {0, 1} and a collection (vα : α < κ) of pairwise disjoint finite subsets
of κ so that given α < α′, there are ξ ∈ vα, ζ ∈ vα′ so that f({ξ, ζ}) = γ. This is precisely the
kind of homogeneity which a strong coloring witnessing Pr1(κ, κ, 2,ℵ0) explicitly prohibits.
The theory associated to such a coloring, then, gives the desired counterexample.
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Building a Theory

Suppose κ is a regular uncountable cardinal. We define a language Lκ = 〈O,Pα, fαβ, pα :
α ≤ β < κ〉, where O and all the Pα are unary predicates and the fαβ and pα are unary
functions. Given a subset w ⊆ κ, let Lw = 〈O,Pα, fαβ, pα : α ≤ β, α, β ∈ w〉. Given a
function f : [κ]2 → 2, we define a universal theory Tκ,f with the following axiom schemas:

1. O and the Pα are pairwise disjoint;

2. fαα is the identity function, for all α < β,

(∀x) [(x 6∈ Pβ → fαβ(x) = x) ∧ (x ∈ Pβ → fαβ(x) ∈ Pα)] ,

and if α < β < γ, then

(∀x ∈ Pγ)[fαγ(x) = (fαβ ◦ fβγ)(x)].

3. For all α < κ,

(∀x) [(x 6∈ O → pα(x) = x) ∧ (pα(x) 6= x→ pα(x) ∈ Pα)] .

4. If α < β < κ and f({α, β}) = 0, then we have the axiom (∀z ∈ O)[pα(z) 6= z∧ pβ(z) 6=
z → pα(z) = (fαβ ◦ pβ)(z)].

The O is for “objects" and
⋃
Pα is a tree of “parameters” where each Pα names nodes of

level α. The functions fαβ map elements of the tree at level β to their unique predecessor
at level α. So the tree partial order is coded in a highly non-uniform way, for each pair of
levels. The pα’s should be considered as partial functions on O which connect objects to
elements of the tree. Axiom (4) says, in essence, that if f({α, β}) = 0, then the only way
for an object to connect to a node on level α and a node on level β is if these two nodes lie
along a path in the tree.

Lemma 2.3.1. Define a class of finite structures

Kw = { finite models of Tκ,f � Lw}.

Then for finite w, Kw is a Fraïssé class and, moreover, it is uniformly locally finite.

Proof. The axioms for Tκ,f are universal so HP is clear. JEP and AP are proved similarly, so
we will give the argument for AP only. Suppose A includes into B and C where A,B,C ∈ Kw

and B∩C = A. B∪C may be viewed as an Lw-structure by interpreting each predicate Q of
Lw so that QB∪C = QB ∪QC and similarly interpreting gB∪C = gB ∪ gC for all the function
symbols g ∈ Lw. It is easy to check that B ∪C is a model of Tκ,f � Lw. To see uniform local
finiteness, just observe that a set of size n can generate a model of size at most (|w| + 1)n
in virtue of the way that the functions are defined.
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Hence, for each finite w ⊂ κ, there is a countable ultrahomogeneous Lw-structure Mw

with Age(Mw) = Kw. Let T ∗w = Th(Mw).

Lemma 2.3.2. Suppose w ⊆ v ⊆ κ and v, w are both finite. Then T ∗w ⊂ T ∗v .

Proof. Suppose w is a finite subset of κ and γ ∈ κ \ w. By induction, it suffices to consider
the case when v = w∪{γ}. We will use Lemma 2.2.7. It is clear that if D ∈ Kw and A is an
Lv-substructure of D|Lv then A ∈ Kv. For the other direction, suppose A ∈ Kv and we will
construct D ∈ Kw so that A is an Lv-substructure of D|Lv . If γ is the greatest element of
v, let D be the Lw-structure expanding A with PD

γ = ∅ and pγ and each fβγ interpreted as
the identity functions for all β ∈ w. It is easy to check that D ∈ Kw. If γ is not the greatest
element of w, let α∗ be the least element of w greater than γ. Let D have underlying set
A ∪ {∗d : d ∈ PA

α∗}, where the ∗d denote new formal elements. Interpret the predicates of
Lw on D so that PD

γ = {∗d : d ∈ PA
α∗}, OD = OA and PD

β = PA
β for all β ∈ v. If β ≤ δ

are in v, interpret fDβδ|PDδ = fAβδ|PAδ and to be the identity function elsewhere. If β ∈ v and
β > γ and c ∈ PD

β , define fDγβ(c) = ∗fα∗β(c) and to be the identity elsewhere. If β ∈ v and
β < γ then define fDβγ to be the identity outside of PD

γ and so, on PD
γ , fβγ(∗d) = fβα∗(d).

Finally, interpret fDγγ to be the identity function. It is clear from the construction that A is
an Lv-substructure of D|Lv and easy to check that D ∈ Kw. This shows that the condition
of Lemma 2.2.7(1) is satisfied.

To verify the condition of Lemma 2.2.7(2), must show that if A,B ∈ Kw, π : A → B is
an Lw-embedding, and C ∈ Kv with C = 〈A〉CLv , then there is some D ∈ Kv with 〈B〉DLv = D
and an Lv-embedding π̃ : C → D extending π.

Let A,B, π and C as above be given, and we will construct D. We may assume that
C∩B = ∅. The requirement that C = 〈A〉CLv implies that the only elements of the underlying
set of C that are not already in A appear in Pγ(C). As a set, define D to be the set

D = B ∪ Pγ(C) ∪ {∗d : d ∈ Pα∗(B) \ π(Pα∗(C))}

where α∗ is the least element of w greater than γ (and if there is no such, then let D =
B ∪ Pγ(C)) and, as above, the ∗d denote new formal elements. Let π̃ be the map extending
π which is the identity on Pγ(C).

Let PD
γ = Pγ(C)∪{∗d : d ∈ Pα∗(B)\π(Pα∗(C))} and interpret all other unary predicates

onD to coincide with their interpretation on B. Define the interpretations of the functions on
D as follows: for any pair α, β ∈ w with α ≤ β, and b ∈ B let fDαβ(b) = fBαβ(b). Interpret fDγα∗
on Pγ(D) so that c ∈ Pγ(C) then fDγα∗(π(c)) = fCγα∗(c) = π̃(fCγα∗(c)) and so that fγα∗(d) = ∗d.
Then let fDγα∗ be the identity outside of Pα∗(D). Now the interpretations of the others are
forced: if α ≥ α∗ and β ≤ β∗, define fDγα so that fDγα = fBγα∗ ◦ fDα∗α and fDβγ = fBββ∗ ◦ fDβ∗γ.
Finally, interpret pDα = pBα for α ∈ w and let pDγ be interpreted so that

pDγ (d) =

{
pCγ (c) = π̃(pCγ (c)) if d = π(c), c ∈ OC

d otherwise.
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By construction pDγ (x) = x for all x outside of O(D) and pDγ (x) 6= x implies pDγ (x) = pC(y) ∈
Pγ(C) = Pγ(D) for some y ∈ C with π(c) = x, so D satisfies axiom (3). It is clear that
π̃ : C → D is a function which extends π and, moreover, it preserves all Lv-structure so π̃
is an Lv-embedding. Finally, we check axiom (4). Suppose there are α < β with α, β ∈ v
and f({α, β}) = 0, together with d ∈ O(D), g ∈ Pα(D), h ∈ Pβ(D) so that pα(d) = g
and pβ(d) = h. We must show that fαβ(h) = g. If α, β ∈ w, then this is immediate,
as axiom (4) is satisfied in B. So consider the case that β = γ. Now pγ(d) = h 6= d
implies, by construction, that there is some c ∈ C so that d = π(c). As pα(d) ∈ Pα(D) and
pβ(d) ∈ Pβ(D), it follows that pα(c) ∈ Pα(C) and pβ(c) ∈ Pβ(C). As axiom (4) is satisfied
in C, we know that (fαβ ◦ pβ)(c) = pα(c). It follows that (fαβ ◦ pβ)(d) = pα(d) in D, which
shows fαβ(h) = g in D. The case that α = γ is entirely similar, so axiom (4) is satisfied in
D.

Lemma 2.3.2 shows that we may construct a complete Lκ-theory as a union of the theories
of the Fraïssé limits of the Kw for w ⊂ κ finite. Define the theory T ∗κ,f as the union of the
T ∗w for all finite w ⊂ κ. Because each T ∗w is complete and eliminates quantifiers, it follows
that T ∗κ,f is a complete theory extending Tκ,f which eliminates quantifiers.

2.4 Analysis of the invariants
For this section, we will fix κ a regular uncountable cardinal, a coloring f : [κ]2 → 2, and a
monster model M |= T ∗κ,f .

Rectification and other preparatory lemmas

Definition 2.4.1. Given X ∈ {inp, sct}, we say an X-pattern (ϕα(x; yα) : α < κ) of height
κ is rectified if the following conditions hold:

1. There is a sequence of sets (wα : α < κ)ach ϕα(x; yα) is contained in the language Lwα
where wα ⊂ κ is finite. The sets (wα : α < κ) form a ∆-system with root r so that for
all α < κ, max r < min(wα \ r) and if α < α′, max(wα \ r) < min(wα′ \ r). Moreover,
each wα has the same cardinality.

2. The witnessing parameters are indiscernible in the relevant sense (s-indiscernible in
the case that X = sct, mutually indiscernible in the case of X = inp).

3. ϕα(x; yα) isolates the Lwα-type of x over yα.

4. The tuples in the witnessing parameters are closed under the functions in the language
corresponding to their level: if X = inp and (ϕα(x; yα) : α < κ) is an inp-pattern
witnessed by the mutually indiscernible array (aα,i)α<κ,i<ω then for all α < κ and i < ω,
aα,i is closed under the functions of Lwα . Similarly, if X = sct and (ϕα(x; yα) : α < κ)
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is an sct-pattern witnessed by (aη)η∈ω<κ , then for all η ∈ ω<κ, the tuple aη is closed
under the functions of Lwl(η) .

By the associated ∆-system of a rectified X-pattern, we mean the ∆-system (wα : α < κ)
so that ϕα ∈ Lwα . We will consistently denote the root r = {αi : i < n} and the sets
vα = wα \ r = {βα,i : i < m} where the enumerations are increasing.

Lemma 2.4.2. Given X ∈ {inp, sct}, if there is an X-pattern of height κ in T , there is a
rectified one.

Proof. Given an X-pattern (ϕα(x; yα) : α < κ) one can choose some finite wα ⊂ κ so that
ϕα(x; yα) is in Lwα . Apply the ∆-system lemma to the collection (wα : α < κ) to find some
I ⊆ κ so that (wα : α ∈ I) forms a ∆-system with root r. By pigeonhole and the regularity
of κ, we may assume |wα| = m for all α, for all α < κ max r < min(wα \ r), and if α < α′,
max(wα \ r) < min(wα′ \ r). By renaming, we may assume I = κ.

If X = inp, we may take the parameters witnessing that (ϕα(x; yα) : α < κ) to be a
mutually indiscernible array (aα,i)α<κ,i<ω by Fact 2.2.5(1). Moreover, mutual indiscernibility
is clearly preserved after replacing each aα,i by its closure under the functions of Lwα and by
ℵ0-categoricity of T ∗wα this stays finite. Let b |= {ϕα(x; aα,0) : α < κ}. Using again the ℵ0-
categoricity of T ∗Lwα , replace ϕα(x; yα) by a complete Lwα-formula ϕ′α(x; yα) so that ϕ′α(x; aα,0)
isolates the type tpLwα (b/aα,0). By mutual indiscernibility, if f : κ → ω is a function, there
is σ ∈ Aut(M) so that σ(aα,0) = aα,f(α) for all α < κ. Then σ(b) |= {ϕ′α(x; aα,f(α)) : α < κ}
so paths are consistent. The row-wise inconsistency is clear so (ϕ′α(x; yα) : α < κ) forms an
inp-pattern.

If X = sct, we may take the parameters witnessing that (ϕα(x; yα) : α < κ) is an
sct-pattern to be s-indiscernible, by Fact 2.2.5(2). s-indiscernibility is preserved by re-
placing each aη by its closure under the functions of Lwl(η) and this closure is finite. Let
b |= {ϕα(x; a0α) : α < κ} and replace ϕα by ϕ′α(x; yα), a complete Lwα-formula isolat-
ing tpLwα (b/a0α). For all η ∈ ωκ, there is a σ ∈ Aut(M) so that σ(a0α) = aη|α. Then
σ(b) |= {ϕ′α(x; aη|α) : α < κ} so paths are consistent. Incomparable nodes remain inconsis-
tent, so (ϕ′α(x; yα) : α < κ) forms an sct-pattern.

Computing κcdt
Proposition 2.4.3. κcdt(T

∗
κ,f ) = κ+.

Proof. First, we will show κcdt(T
∗
κ,f ) ≥ κ+. We will construct a cdt-pattern of height κ. By

recursion on α < κ, we will construct a tree of tuples (aη)η∈ω<κ so that l(η) = β implies
aη ∈ Pβ and if η E ν with l(η) = β and l(ν) = γ, then fβγ(aν) = aη. For α = 0, choose an
arbitrary a ∈ P0 and let a∅ = a. Now suppose given (aη)η∈ω≤α . For each η ∈ ωα, choose
an infinite set {bi : i < ω} ⊆ f−1

αα+1(aη). Define aη_〈i〉 = bi. This gives us (aη)η∈ω≤α+1 with
the desired properties. Now suppose δ is a limit and we’ve defined (aη)η∈ω≤α for all α < δ.
Given any η ∈ ωδ, we may, by saturation, find an element b ∈

⋂
α<δ f

−1
αδ (aη|α). Then we can

set aη = b. This gives (aη)η∈ω≤δ and completes the construction.
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Given α < κ, let ϕα(x; y) be the formula pα(x) = y. For any η ∈ ωκ, {ϕα(x; aη|α) : α < κ}
is consistent and, for all ν ∈ ω<κ, {ϕl(ν)+1(x; aν_〈i〉) : i < ω} is 2-inconsistent. We have thus
exhibited a cdt-pattern of height κ so κcdt(T

∗
κ,f ) ≥ κ+.

Using quantifier-elimination, it is easy to check that each theory T ∗w is stable (in fact,
ω-stable) for any finite w ⊂ κ. Hence T ∗κ,f is stable and therefore κcdt(T

∗
κ,f ) ≤ |T ∗κ,f |+ = κ+.

This yields the desired equality.

Case 1: κinp = κ+

Lemma 2.4.4. Fix a collection of ordinals < κ (βα,i)α<κ,i<2 so that if α < α′ < κ, then
βα,0 ≤ βα,1, βα′,0 ≤ βα′,1, βα,0 ≤ βα′,0 and βα,1 < βα′,1. Suppose that there is a mutually
indiscernible array (cα,k)α<κ,k<ω so that, with ϕα(x; yα) defined by (fβα,0βα,1 ◦ pβα,1)(x) = yα,
(ϕα(x; yα) : α < κ), (cα,k)α<κ,k<ω forms an inp-pattern of height κ. Then for all α < α′,
f({βα,1, βα′,1}) = 1.

Proof. If α < α′ and f({βα,1, βα′,1}) = 0, then pβα,1(x) = (fβα,1βα′,1 ◦ pβα′,1)(x) for any x with
pβα,1(x) 6= x and pβα′,1(x) 6= x, and hence

(fβα,0βα,1 ◦ pβα,1)(x) = (fβα,0βα,1 ◦ fβα,1βα′,1 ◦ pβα′,1)(x)

= (fβα,0βα′,1 ◦ pβα′,1)(x)

= (fβα,0,βα′,0 ◦ fβα′,0βα′,1 ◦ pβα′,1)(x),

for any x with pβα,1(x) 6= x and pβα′,1(x) 6= x. Consequently,

{(fβα,0βα,1 ◦ pβα,1)(x) = cα,k, (fβα′,0βα′,1 ◦ pβα′,1)(x) = cα′,k′}

is consistent only if cα,k = fβα,0βα′,0(cα′,k′), which contradicts the definition of inp-pattern.

For the remainder of this subsection, we fix a rectified inp-pattern (ϕα(x; yα) : α < κ),
(aα,i)α<κ,i<ω and, by [Che14, Corollary 2.9], we may assume l(x) = 1. The associated ∆-
system is denoted (wα : α < κ) with root r = {αi : i < n} and wα \ r = vα = {βα,j : j < m}.

Lemma 2.4.5. For all α < κ, ϕα(x; yα) ` x ∈ O.

Proof. First, note that we may assume that there is a predicate Q ∈ {O,Pαi : i < n} so that
ϕα(x; yα) ` x ∈ Q for all α < κ – if not, using that the wα’s form a ∆-system, there would
be some α < κ so that ϕα(x; yα) implies that x is not contained in any predicate of Lwα
in which case it is easy to check that {ϕα(x; aα,i) : i < ω} is consistent, contradicting the
definition of inp-pattern. So we must show that ϕα(x; yα) ` Pαi for some i < n is impossible.
Write each tuple in the array aα,i as aα,i = (bα,i, cα,i, dα,i, eα,i) where the elements of bα,i are
in O, the elements of cα,i are in predicates indexed by the root

⋃
i<n Pαi , the elements of dα,i

are in predicates outside the root
⋃
j<m Pβα,j , and the elements of eα,i are in any predicate

of Lwα . By quantifier-elimination, each ϕα(x; aα,i) may be expressed as a conjunction of

1. x ∈ Pαi
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2. x 6= (aα,i)l for all l < l(aα,i)

3. (fγαi(x) = (c)l)
tγ,l for all l < l(cα,i) and γ ∈ wα less than αi and some tγ,l ∈ {0, 1}.

For each k < i, let γk be the least ordinal < κ so that ϕγk(x; aγk,0) ` fαkαi(x) = c for
some c ∈ cγk,0 and 0 if there is no such. Let γ = max{γk : k < i}. We claim that
{ϕγ+1(x; aγ+1,j) : j < ω} is consistent. For all j < ω,

{ϕα(x; aα,0) : α ≤ γ} ∪ {ϕγ+1(x; aγ+1,j)}

is consistent so any equality of the form fαkαi(x) = c implied by ϕγ+1(x; aγ+1,j) is already
implied by ϕα(x; aα,0) by our choice of γ and any inequality of the form fαkαi(x) 6= c implied
by ϕγ+1(x; aγ+1,j) is compatible with {ϕα(x; aα,0) : α ≤ γ}. Choosing a realization b |=
{ϕα(x; aα,0) : α ≤ γ} satisfying every inequality of the form fαkαi(x) 6= c implied by the
ϕγ+1(x; aγ+1,j) yields a realization of {ϕγ+1(x; aγ+1,j) : j < ω}. This contradicts the definition
of inp-pattern.

Proposition 2.4.6. There is a subset H ⊆ κ with |H| = κ so that f is constant on [H]2.

Proof. By quantifier elimination and Lemma 2.4.5, for each α < κ, ϕα(x; aα,0) is a conjunc-
tion of the following:

1. x ∈ O

2. x 6= (a)l for all l < l(a)

3. (pγ(x) = x)t.

4. The values of the pγ and how they descend in the tree:

a) ((fδγ ◦ pγ)(x) = (a0,α)l)
t for l < l(a0,α), δ ≤ γ in wα.

b) ((fδγ ◦ pγ)(x) = (fδγ′ ◦ pγ′)(x))t for δ, γ, γ′ ∈ wα with δ ≤ γ < γ′.

Let γ < κ be some ordinal so that for any α < κ if there is a c ∈ aα,0 so that ϕα(x; aα,0) `
(fαiαi′ ◦ pαi′ )(x) = c for some i ≤ i′ < n, then there is some α′ < γ so that ϕα′(x; aα′,0) `
(fαiαi′ ◦ pαi′ )(x) = c. As the root r = {αi : i < n} is finite and the all 0’s path is consistent,
such a γ must exist.

Claim: Given α < κ, there are εα ≤ ε′α ∈ wα and pairwise distinct cα,k ∈ aα,k so that
ϕα(x; aα,k) ` (fεαε′α ◦ pε′)(x) = cα,k.

Proof of claim: Suppose not. Then, by the description of ϕα(x; aα,k) given above, the
partial type

{ϕα(x; aα,k) : k < ω}

is equivalent to a finite number of equations common to each instance ϕα(x; a0,k) and an
infinite collection of inequations. Then, it is easy to see then that {ϕα(x; a0,k) : k < ω} is
consistent, contradicting the definition of an inp-pattern. This proves the claim.
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Note that, by the pigeonhole principle, we may assume that either (i) εα, ε′α ∈ r for all
α < κ, (ii) εα ∈ r, ε′α ∈ vα for all α < κ, or (iii) εα, ε′α ∈ vα for all α < κ. Case (i) is
impossible by the choice of γ and, again by the pigeonhole principle, we may assume that if
we are in case (ii), that εα is constant for all α. Then by rectification, we know that when
α < α′, εα ≤ εα′ and ε′α < ε′α′ . Because for all α < κ, the cα,k are pairwise distinct and k
varies, the set of formulas

{(fεαε′α ◦ pε′α)(x) = cα,k : k < ω}

is 2-inconsistent. Moreover, if g : κ→ ω is a function, the partial type

{(fεαεα′ ◦ pε′α)(x) = cα,g(α) : α < κ}

is implied by {ϕα(x; aα,g(α)) : α < κ} and is therefore consistent. It follows that ((fεαε′α ◦
pε′α)(x) = yα)α<κ, (cα,k)α<κ,k<ω is an inp-pattern. By Lemma 2.4.4, f({ε′α, ε′α′}) = 1 for all
α < α′. Therefore H = {ε′α : α < κ} is a homogeneous set for f .

Case 2: κsct = κ+

In this subsection, we show that if κsct(T ∗κ,f ) = κ+ then f satisfies a homogeneity property
inconsistent with f being a strong coloring. In particular, we will show that if this homogene-
ity property fails, then for any putative sct-pattern of height κ, there are two incomparable
elements in ω<κ which index compatible formulas, contradicting the inconsistency condition
in the definition of an sct-pattern. This step is accomplished by relating consistency of the
relevant formulas to an amalgamation problem in finite structures. The following lemma
describes the relevant amalgamation problem:

Lemma 2.4.7. Suppose given:

• Finite sets w,w′ ⊂ κ with w ∩ w′ = v so that for all α ∈ v, β ∈ w \ v, γ ∈ w′ \ v, we
have α < β < γ and f({β, γ}) = 1.

• Structures A ∈ Kw∪w′, B = 〈d,A〉Lw ∈ Kw, C = 〈e, A〉Lw′ ∈ Kw′ so that the map
sending d 7→ e induces an isomorphism of Lv-structures over A between 〈d,A〉Lv and
〈e, A〉Lv .

Then there is D = 〈f, A〉DLw∪w′ ∈ Kw∪w′ extending A so that l(f) = l(d) = l(e) and 〈f, A〉DLw ∼=
B over A and 〈f, A〉DLw′

∼= C over A via the isomorphisms over A sending f 7→ d and f 7→ e,
respectively.

Proof. Let f be a tuple of formal elements with l(f) = l(d)(= l(e)) with Lw and Lw′ in-
terpreted so that 〈f, A〉Lw extends A and is isomorphic over A to B, and so that 〈f, A〉Lw′
extends A and is isomorphic over A to C. Let D have underlying set

〈f, A〉Lw ∪ 〈f, A〉Lw′ ∪ {∗α,c : α ∈ w \ v, c ∈ Pγ(〈f, A〉Lw′ ) \ Pγ(A)},
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where γ is the least element of w′ \ v. We must give D an Lw∪w′-structure. Let the elements
of A, 〈f, A〉Lw , 〈f, A〉Lw′ in D inherit the interpretations from these respective structures.
Interpret the predicates on the new formal elements ∗α,c by ensuring Pα(∗α,c) holds and no
other predicates hold on this element for all α ∈ w and c ∈ Pγ(〈f, A〉Lw′ ) \ Pγ(A). Given
α ∈ w \ v and c ∈ Pγ(〈f, A〉Lw′ )\Pγ(A), interpret fDαγ(c) = ∗α,c and for any β ∈ w′ \ v, define
fDαβ = fDαγ ◦ fDγβ on PD

β and the identity on D \ PD
β . If α ∈ w \ v and ξ ∈ v, interpret fDξα so

that fDξα(∗α,c) = fDξγ(c). Finally, interpret each function of the form pβ for β ∈ w ∪ w′ to be
the identity on the ∗α,c. This completes the definition of the Lw∪w′-structure on D.

Now we must check that D ∈ Kw∪w′ . It is easy to check that axioms (1)−(3) are satisfied
in D. As f({α, β}) = 1 for all α ∈ w \ v, β ∈ w′ \ v, the only possible counterexample to
axiom (4) can occur when ξ ∈ v, β ∈ (w∪w′) \ v and f({ξ, β}) = 0. As the formal elements
∗α,c are not in the image of O under the pα, it follows that a counterexample to axiom (4)
must come from a counter-example either in B or C, which is impossible. So D ∈ Kw∪w′ ,
which completes the proof.

Lemma 2.4.8. Suppose (ϕα(x; yα) : α < κ), (aη)η∈ω<κ is a rectified sct-pattern such that
l(x) is minimal among sct-patterns of height κ. Then for all α < κ, ϕα(x; yα) ` (x)l ∈
O ∪

⋃
i<n Pαi for all l < l(x).

Proof. It is easy to see that if, for some l < l(x) and all α < κ, ϕα(x; yα) ` (x)l 6∈ O ∪⋃
i<n Pαi ∪

⋃
j<m Pβα,j , then the only relations that ϕα(x; yα) can assert between (x)l and the

elements of yα and the other elements of x are equalities and inequalities allowing us to find
an sct-pattern in fewer variables, contradicting minimality (or if l(x) = 1 a contradiction).
So there is some α < κ and j < m so that ϕα(x; yα) ` (x)l ∈ Pβα,j and therefore, for all
α′ 6= α, ϕα′(x; yα′) implies that (x)l is not in any of the unary predicates of Lwα′ , as βα,j
is outside the root of the ∆-system. So (ϕα′(x; yα′) : α′ < κ, α′ 6= α) forms an sct-pattern
which falls into the first case considered, a contradiction.

Proposition 2.4.9. Suppose (ϕα(x; yα) : α < κ) is a rectified sct-pattern such that l(x) is
minimal among sct-patterns of height κ and whose associated ∆-system is (wα : α < κ), with
vα = wα \ r, where r is the root. Then there is γ so that for any α, α′ with γ < α < α′ < κ
there is ξ ∈ vα, ζ ∈ vα′ so that f({ξ, ζ}) = 0.

Proof. Suppose not. By Lemma 2.4.8, we know that up to a relabeling of the variables,
there is a k ≤ l(x) so that ϕα(x; yα) ` (x)l ∈

⋃
i<n Pαi for l < k and ϕα(x; yα) ` (x)l ∈ O

for l ≥ k. Choose γ < κ so that if δ < κ and ϕδ(x; a0δ) ` fαiαi′ ((x)l) = c for l < k, or
ϕδ(x; a0δ) ` pαi((x)l) = c or ϕδ(x; a0δ) ` (fαiαi′ ◦ pαi′ )((x)l) = c for l ≥ k, for some c, then
this is implied by ϕδ′(x; 0δ

′
) for some δ′ < γ (possible as the root is finite). By assumption,

there are α, α′ with γ < α < α′ < κ so that f({ξ, ζ}) = 1 for all ξ ∈ vα, ζ ∈ vα′ . Choose
η ∈ ωα, ν ∈ ωα

′ so that η ⊥ ν. Let A = 〈aη, aν〉Lwα∪wα′ be the finite Lwα∪wα′ -structure
generated by aη and aν . By assumption and quantifier-elimination, it is possible to choose
d with ϕα(d; aη) and e with ϕα′(e; aν) so that tpLr(d/A) = tpLr(e/A). Let B = 〈d,A〉Lwα
and C = 〈e, A〉Lwα′ . By Lemma 2.4.7, there is a D ∈ Kwα∪wα′ so that D = 〈g, A〉DLwα∪wα′ so
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that l(g) = l(d) = l(e) and 〈g, A〉Lwα ∼= B over A and 〈g, A〉Lwα′
∼= C over A. It follows by

model-completeness that in M, g |= {ϕα(x; aη), ϕα′(x; aν)}, contradicting the definition of
sct-pattern. This completes the proof.

Conclusion

Theorem 2.4.10. There is a theory T so that κcdt(T ) 6= κsct(T ) + κinp(T ). Moreover, it is
consistent with ZFC that for every regular uncountable κ, there is a theory T with |T | = κ
and κcdt(T ) 6= κsct(T ) + κinp(T ).

Proof. If κ is regular and uncountable satisfying Pr1(κ, κ, 2,ℵ0), then choose f : [κ]2 → 2
witnessing Pr1(κ, κ, 2,ℵ0). There can be no homogeneous set of size κ for f , using Ob-
servation 2.2.9, and, moreover, there can be no collection (vα : α < κ) of disjoint finite
sets so that, given α < α′ < κ, there are ξ ∈ vα, ζ ∈ vα′ so that f({ξ, ζ}) = 0. Let
T = T ∗κ,f . Then κcdt(T ) = κ+, by Proposition 2.4.3, but κsct(T ) < κ+ and κinp(T ) < κ+ by
Proposition 2.4.9 and Proposition 2.4.6 respectively. By Fact 2.2.11 and Observation 2.2.9,
Pr1(λ++, λ++, 2,ℵ0) holds for any regular uncountable λ. Then T = T ∗κ,f gives the desired
theory, for κ = λ++ and any f witnessing Pr1(λ++, λ++, 2,ℵ0). For the “moreover” clause,
note that ZFC is equiconsistent with ZFC + GCH + “there are no inaccessible cardinals"
which entails that every regular uncountable cardinal is a successor. By Fact 2.2.10 this
implies that Pr1(κ, κ, 2,ℵ0) holds for all regular uncountable cardinals κ, which completes
the proof.

Remark 2.4.11. In Chapter 1, it was proved that κcdt(T ) = κinp(T )+κsct(T ) for any countable
theory T . The above theorem shows that in a certain sense, this result is best possible.

2.5 Compactness of ultrapowers
We say an ultrafilter D on I is regular if there is a collection of sets {Xα : α < |I|} ⊂ D
such that for all t ∈ I, the set {α : t ∈ Xα} is finite and D is uniform if all sets in D
have cardinality |I|. In this section we study the decay of saturation in regular ultrapowers.
Given a theory T , we start with a regular uniform ultrafilter D on λ and a λ++-saturated
model M |= T . We then consider whether the ultrapower Mλ/D is λ++-compact. Shelah
has shown [She90, VI.4.7] that if T is not simple, then in this situation Mλ/D will not be
λ++-compact and asked whether an analogous result holds for theories T with κinp(T ) > λ+.
We will show by direct construction that κinp(T ) > λ+ does not suffice but, by modifying
an argument due to Malliaris and Shelah [MS15b, Claim 7.5], κsct(T ) > λ+ is sufficient to
obtain a decay in compactness, by levaraging the finite square principles of Kennedy and
Shelah [KS02].
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A counterexample

Fix κ a regular uncountable cardinal. Let L′κ = 〈O,Pα, pα : α < κ〉 be a language where O
and each Pα is a unary predicate and each pα is a unary function. Define a theory T ′κ to be
the universal theory with the following as axioms:

1. O and the Pα are pairwise disjoint.

2. pα is a function so that (∀x ∈ O)[pα(x) ∈ Pα] and (∀x 6∈ O)[pα(x) = x].

Given a finite set w ⊂ κ, define L′w = 〈O,Pα, pα : α ∈ w〉. Let K′w denote the class of finite
models of T ′κ � L′w.

Lemma 2.5.1. Suppose w ⊂ κ is finite. Then K′w is a Fraïssé class

Proof. The axioms of T ′κ � Lw are universal so HP is clear. As we allow the empty structure
to be a model, JEP follows from AP. For AP, we reduce to the case where A,B,C ∈ K′w,
A is a substructure of both B and C and B ∩ C = A. Define an L′w-structure D on B ∪ C
by taking unions of the relations and functions as interpreted on B and C. It is easy to see
that D ∈ K′w, so we’re done.

By Fraïssé theory, for each finite w ⊂ κ, there is a unique countable ultrahomogeneous
L′w-structure with age K′w. Let T †w denote its theory.

Lemma 2.5.2. Suppose v and w are finite sets with w ⊂ v ⊂ κ. Then T †w ⊂ T †v .

Proof. By induction, it suffices to consider the case when v = w ∪ {γ} for some γ ∈ κ \ w.
By Fact 2.2.7, we must show (1) that A ∈ K′v if and only if there is D ∈ K′w so that A is an
L′v-substructure of D � Lv and (2) that whenever A,B ∈ K′w, π : A → B is an embedding,
and C ∈ K′v satisfies C = 〈A〉CL′v then there is D ∈ K′v so that D = 〈B〉DL′v and π extends to
an L′v-embedding π : C → D.

For (1), it is clear from definitions that if D ∈ Kw then D � Lv ∈ Kv. Given A ∈ Kv, we
may construct a suitable Lw-structure D as follows: let the underlying set of D be A ∪ {∗}
and interpret the predicates and functions to extend their interpretations on A and so that
PD
γ = {∗} and pDγ is the identity on the complement of OD (= OA) and the constant function

with value ∗ on OD. Clearly D ∈ Kw and A is an Lv-substructure of D � Lv.
For (2), suppose A,B ∈ K′w, π : A→ B is an embedding, and C ∈ K′v satisfies C = 〈A〉CL′v .

The requirement that C = 〈A〉CL′v entails that any points of C \ A lie in Pγ. Write O(B) =
π(O(A)) t E. Define an L′v-structure D whose underlying set is B ∪ Pγ(A) ∪ {∗e : e ∈ E}.
Interpret the relations on D so that all symbols of L′w agree with their interpretations on B
and define Pγ(D) = Pγ(A) ∪ {∗e : e ∈ E}. Finally, define pDγ by

pDγ (x) =

{
pCγ (a) if x = π(a)
∗x if x 6∈ π(O(C)).
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Clearly D ∈ K′v. Extend π to a map π : C → D by defining π to be the identity on Pγ(C).
We claim this is an embedding: note that for all x ∈ O(C), pDγ (π(x)) = pCγ (x) = π(pCγ (x))
and π obviously respects all other structure from L′w.

Define the theory T †κ to be the union of T †w for all finite w ⊂ κ. This is a complete stable
L′κ-theory with quantifier-elimination, as these properties are inherited from the T ∗w. Fix a
monster M |= T †κ and work there.

Proposition 2.5.3. κinp(T †κ) = κ+.

Proof. For each α < κ, choose distinct aα,β ∈ Pα(M) for all β < ω. It is easy to check
that, for all functions f : κ → ω, {pα(x) = aα,f(α) : α < κ} is consistent and, for all α < κ,
{pα(x) = aα,β : β < ω} is 2-inconsistent. Thus (pα(x) = yα : α < κ), (aα,β)α<κ,β<ω forms an
inp-pattern of height κ so κinp(T †κ) ≥ κ+. The upper bound κinp(T †κ) ≤ κ+ follows from the
stability of T †κ .

Proposition 2.5.4. Suppose D is a regular ultrafilter on λ, κ = λ+, and M |= T †κ is λ++-
saturated. Then Mλ/D is λ++-saturated.

Proof. Suppose A ⊆ Mλ/D, |A| = κ = λ+. To show that any q(x) ∈ S1(A) is realized, we
have three cases to consider:

1. q(x) ` x ∈ Pα for some α < κ

2. q(x) ` x 6∈ O and q(x) ` x 6∈ Pα for all α < κ

3. q(x) ` x ∈ O.

It suffices to consider q non-algebraic and A = dcl(A). In case (1), q(x) is implied by
{Pα(x)} ∪ {x 6= a : a ∈ A} and in case (2), q(x) is implied by {¬O(x) ∧ ¬Pα(x) : α <
κ} ∪ {x 6= a : a ∈ A}. To realize q(x) in case (1), for each t ∈ λ, choose some bt ∈ Pα(M)
such that bt 6= a[t] for all a ∈ A, which is possible by the λ++-saturation of M and the fact
that |A| = λ+. Let b = 〈bt〉t∈λ/D. By Los’s theorem, b |= q. Realizing q in case (2) is
entirely similar.

So now we show how to handle case (3). Fix some complete type q(x) ∈ S1(A) such
that q(x) ` x ∈ O. First, we note that by possibly growing A by κ many elements, we may
assume that

q(x) = {x ∈ O} ∪ {x 6= a : a ∈ O(A)} ∪ {pα(x) = cα},
since, for each α < κ, either q(x) ` pα(x) = cα for some cα, or it only proves inequations of
this form. In the latter case, we can choose some element cα ∈ Pα(Mλ/D) not in A (possible
by case (1) above) and extend q(x) by adding the formula pα(x) = cα, which will then
imply all inequations of the form pα(x) 6= a for any a ∈ A, and this clearly remains finitely
satisfiable. So now given q in the form described above, let Xt = {α < κ : M |= Pα(cα[t])}.
Let the type qt(x) be defined by

qt(x) = {x ∈ O} ∪ {x 6= a[t] : a ∈ O(A)} ∪ {pα(x) = cα[t] : α ∈ Xt}.
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By construction, if α 6= α′ ∈ Xt then M |= Pα(cα[t]) ∧ Pα′(cα′ [t]) so this type is consistent
and over a parameter set of size at most κ, hence realized by some bt ∈M . Let b = 〈bt〉t∈λ/D
and let Jα be defined by Jα = {t ∈ λ : M |= Pα(cα[t])}. As q(x) is a consistent type, Jα ∈ D
and, by construction, Jα ⊆ {t ∈ λ : M |= pα(bt) = cα[t]} so Mλ/D |= pα(b) = cα. It is
obvious that b satisfies all of the other formulas of q so we’re done.

Corollary 2.5.5. Suppose T is a complete theory, |I| = λ, D on I is a regular ultrafilter,
and M |= T is a λ++-saturated model of T . The condition that κinp(T ) > |I|+ is, in general,
not sufficient to guarantee that M I/D is not λ++-compact. In particular, the condition that
κcdt(T ) > |I|+ is, in general, not sufficient to guarantee that M I/D is not λ++-compact.

Proof. Given λ, I with |I| = λ, and D, a regular ultrafilter on I, choose any λ++-saturated
model of T †λ+ . By Lemma 2.5.3, κcdt(T

†
λ+) ≥ κinp(T †λ+) = λ++ > |I|+, but, by Proposition

2.5.4, M I/D is λ++-saturated and hence λ++-compact.

Loss of saturation from large sct-patterns

If T is not simple, then it has either the tree property of the first kind or the second kind -
Shelah argues in [She90, VI.4.7] by demonstrating that either property results in a decay of
saturation with an argument tailored to each property. The preceding section demonstrates
that the analogy between TP2 and κinp(T ) > |I|+ breaks down, but we show that the analogy
between TP1 and κsct(T ) > |I|+ survives. The following is a straightforward adaptation of
the argument of [MS15b, Claim 8.5]:

Fact 2.5.6. [KS02, Lemma 4] Suppose D is a regular uniform ultrafilter on λ and λ = λ<λ.
There is an array of sets 〈ut,α : t < λ, α < λ+〉 satisfying the following properties:

1. ut,α ⊆ α

2. |ut,α| < λ

3. α ∈ ut,β =⇒ ut,β ∩ α = ut,α

4. if u ⊆ λ+, |u| < ℵ0 then {t < λ : (∃α)(u ⊆ ut,α)} ∈ D.

Theorem 2.5.7. Suppose |I| = λ and λ = λ<λ. Suppose κsct(T ) > |I|+, M is an |I|++-
saturated model of T and D is a regular ultrafilter over I. Then M I/D is not |I|++-compact.

Proof. Let (ϕα(x; yα) : α < λ+), (aη)η∈λ<λ+ be an sct-pattern. We may assume l(yα) = k for
all α < λ+. Let 〈ut,ε : t < λ, α < λ+〉 be given as by Fact 2.5.6. By induction on α < λ+,
we’ll construct 〈ηt,α : α < λ+〉 such that ηt,α ∈ λα and ηt,α E ηt,β ⇐⇒ α ∈ ut,β: suppose
〈ηt,β : β < α〉 has been constructed. The set {ηt,β : β ∈ ut,α} is contained in a path since, if
β < β′ are elements of ut,α then β ∈ ut,α ∩ β′ = ut,β′ so ηt,β E ηt,β′ by induction. Then we
can pick ηt,α ∈ λα so that ηt,β E ηt,α if and only if β ∈ ut,α. For each α < λ+ we thus have
an element cα ∈Mλ/D given by cα = 〈cα[t] : t < λ〉/D where cα[t] = aηt,α ∈M .
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Claim: p(x) := {ϕα(x; cα) : α < λ+} is consistent.
Fix any finite u ⊆ λ+. If for some t < λ and α < λ+, we have u ⊆ ut,α then {ηt,β :

β ∈ u} ⊆ {ηt,β : β ∈ ut,α} which is contained in a path, hence {ϕβ(x; cβ[t]) : β ∈ u} =
{ϕβ(x; aηt,β) : β ∈ u} is consistent by definition of an sct-pattern. We know {t < λ :
(∃α)(u ⊆ ut,α)} ∈ D so the claim follows by Los’s theorem and compactness.

Suppose b = 〈b[t]〉t∈λ/D is a realization of p in Mλ/D. For each α < λ+ define Jα = {t <
λ : M |= ϕα(b[t], cα[t])} ∈ D. For each α, pick tα ∈ Jα. The map α 7→ tα is regressive on
the stationary set of α with λ ≤ α < λ+. By Fodor’s lemma, there’s some t∗ so that the
set S = {α < λ+ : tα = t∗} is stationary. Therefore p∗(x) = {ϕα(x; aηt∗,α) : α ∈ S} is a
consistent partial type in M so {ηt∗,α : α ∈ S} is contained in a path, by definition of sct-
pattern. Choose an α ∈ S so that |S∩α| = λ. Then, by choice of the ηt,α, we have β ∈ S∩α
implies ηt∗,β E ηt∗,α and therefore β ∈ ut∗,α. This shows |ut∗,α| ≥ λ, a contradiction.
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Part III

NSOP1 in detail
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Chapter 3

Kim-Independence

This chapter is joint work with Itay Kaplan.

3.1 Introduction
The class of simple theories was one of the first classes of unstable theories to receive ex-
tensive study. The starting point is Classification Theory, where, in the course of studying
stable theories, Shelah isolates local character as a key property of non-forking independence
and observes a dichotomy in the way local character can fail, a theorem we now recog-
nize as saying that a non-simple theory must have the tree property of the first or second
kind [She90, Theorem III.7.11]. Shortly after the publication of the first edition of [She90],
Shelah defined the class of simple theories and characterized them in terms of a certain
chain condition of the Boolean algebra of non-weakly dividing formulas, which in turn led to
consistency results on their saturation spectra [She80]. The aim of that work was to obtain
an ‘outside’ set-theoretic definition of the class to support the claim that simplicity marked
a dividing line. In separate developments, questions concerning concrete examples created
the need for new methods to treat unstable structures. Hrushovski and Pillay used local sta-
bility and S1-rank in the study of the definability of groups in pseudo-finite and PAC fields
in [HP94], and these methods were situated in the broader context of PAC structures studied
by Hrushovski [Hru91], where an independence theorem was proved. Moreover, Lachlan’s
far-reaching theory of smoothly approximated structures furnished examples of tame un-
stable theories. After Kantor, Liebeck, and Macpherson [KLM89] classified the primitive
smoothly approximable structures, Cherlin and Hrushovski [CH03] used stability theoretic
methods concerning independence and amalgamation to describe how these primitive pieces
fit together to form a quasi-finite structure.

Kim’s thesis and subsequent work by Kim and Pillay showed how to regard these de-
velopments as instances of a common theory, with non-forking independence at its cen-
ter [Kim98], [KP97]. Kim proved that in a simple theory, forking and dividing coincide,
non-forking independence is symmetric and transitive, and Kim and Pillay proved that the
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independence theorem holds over models. Moreover, Kim showed that symmetry and transi-
tivity of non-forking both individually characterize the simple theories, and Kim and Pillay
showed that any independence relation satisfying the basic properties of non-forking in-
dependence must actually coincide with non-forking independence, giving both a striking
characterization of the simple theories and a powerful method for showing that a particular
theory is simple, namely by observing that it has an independence relation of the right kind.

Here, we study the class of NSOP1 theories. These are the theories which do not have
the property SOP1, which form a class of theories that properly contain the simple theories
and which are contained inside the class of theories without the tree property of the first
kind. SOP1 was defined by Džamonja and Shelah in their study of the E∗-order [DS04] and
later studied by Shelah and Usvyatsov in [SU08]. The NSOP1 theories were characterized as
the theories satisfying a weak independence theorem for invariant types in Chapter 1. This
characterization provided a point of contact between the combinatorics of model-theoretic
tree properties and the study of definability in particular algebraic examples. Chatzidakis
[Cha99], [Cha02] studied independence in ω-free PAC fields and, more generally, Frobenius
fields and showed that the independence theorem holds for these structures even though they
are not simple. Similarly, Granger showed in his thesis that the model companion of the
theory of infinite-dimensional vector spaces with a bilinear form is not simple but nonetheless
comes equipped with a good notion of independence. The amalgamation criterion of Chapter
1 established that these structures have NSOP1 theory by appealing to the existence of
these independence relations, but what was missing was a theory of independence in NSOP1

theories more generally. The purpose of this paper is to establish exactly such a theory.
One central tool in the study of forking in simple theories is Kim’s lemma: in a simple

theory, a formula divides over a set A if and only if it divides with respect to some Morley
sequence over A if and only if it divides for all Morley sequences over A. In [CK12], this was
shown to hold over models in NTP2 theories, provided that the Morley sequence is a strict
invariant Morley sequence. In the setting of NSOP1 theories, we find a new phenomenon:
forking which is never witnessed by a generic sequence. In fact, we show that any NSOP1

theory with a universal witness to dividing must be simple (Proposition 3.8.7 below) and
that forking need not equal dividing in an NSOP1 theory. Nonetheless, we find that, by
restricting attention to the forking that is witnessed by a generic sequence, one can recover
many of the properties of forking in simple theories. We show moreover that this kind of
simplicity at a generic scale is characteristic of NSOP1 theories.

There is considerable freedom in the choice of notion of generic sequence. One suggestion
which inspired our work is due to Kim, who proposed in his 2009 talk on NTP1 theories
[Kim09] that one might develop an independence theory for NTP1 theories or a subclass
therein by considering only formulas which divide with respect to every non-forking Morley
sequence. Compared to invariance or finite satisfiability, forking is a relatively weak notion
of independence and this notion proved unwieldy at the beginning stages of developing the
theory presented here. However, Hrushovski’s study of q-dividing [Hru12] and Malliaris and
Shelah’s characterization of NTP1 theories in terms of higher formulas [MS15a] provided
evidence that one might be able to build a theory around an investigation of formulas that
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divide with respect to a Morley sequence in a global invariant or finitely satisfiable type.
Building off this work, we introduce the notion of Kim-dividing – a formula Kim-divides
over a set A if it divides with respect to a Morley sequence in a global A-invariant type –
and the associated notion of independence, Kim-independence. Our first observation is that
a theory is NSOP1 if and only if Kim-dividing satisfies a version of Kim’s lemma over models,
where a formula divides with respect to a Morley sequence in some global invariant type
extending the type of the parameters if and only if it divides with respect to every Morley
sequence in an appropriate invariant type.

From Kim’s lemma for Kim-dividing, many familiar properties of non-forking indepen-
dence follow: Kim-forking equals Kim-dividing, Kim-independence satisfies extension and a
version of the chain condition, etc. In subsequent sections, we investigate additional proper-
ties of Kim-independence in NSOP1 theories and prove that, in many cases, these properties
are characteristic of NSOP1. In Section 3.4 we observe a form of local character for Kim-
independence in the context of NSOP1 theories. In Section 3.5, we show additionally that
Kim-independence is symmetric over models. The argument there centers upon the notion
of a tree Morley sequence which is defined in terms of indiscernible trees. We show that tree
Morley sequences always witness Kim-dividing and prove a version of the chain condition for
them. In Section 3.6, we prove the independence theorem. In Section 3.7, we prove that in
an NSOP1 theory a formula Kim-divides over a model if and only if it divides with respect
to every non-forking Morley sequence in the parameters and this too characterizes NSOP1

theories. This means that Kim-independence could have been defined from the outset in es-
sentially the way Kim proposed, but curiously, proving anything about this notion without
making use of invariant types seems quite difficult. In Section 3.8, we state our main theorem:
Kim’s lemma for Kim-dividing, symmetry over models, and the independence theorem both
hold in NSOP1 theories and individually characterize NSOP1 theories. We also show that
the simple theories can be characterized in several new ways in terms of Kim-independence.
In particular, we show that Kim-independence coincides with non-forking over models if and
only if the theory is simple, which means that our theorems imply the corresponding facts
for non-forking independence in a simple theory.

We conclude the paper with Section 3.9 where we describe Kim-independence explicitly in
several concrete examples. We show it may be described in purely algebraic terms in the case
of Frobenius fields, where Kim-independence turns out to coincide with weak independence,
as defined by Chatzidakis. We also show that in Granger’s two-sorted theory of a vector space
over an algebraically closed field with a generic bilinear form, Kim-independence is closely
related to Granger’s Γ-independence and may be given a simple algebraic description. These
results suggest the naturality and robustness of Kim-dividing, but also serve to explain the
simplicity-like phenomena observed in these concrete examples on the basis of a general
theory. We additionally describe a combinatorial example of a NSOP1 theory, based on a
variant of T ∗feq introduced by Džamonja and Shelah, which furnishes counter-examples to
some a priori possible strengthenings of the results we prove. In particular, we give the first
example of a simple non-cosimple type, answering a question of Chernikov [Che14], and the
first example of an NSOP3 theory in which every complete type has a global non-forking
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extension but forking does not equal dividing, answering a question of Conant [C+17].

3.2 Syntax
In this section we will define SOP1 and prove its equivalence with a syntactic property of a
different form. This will allow us to relate SOP1 to dividing. We will often work with arrays
and trees. Suppose (cij)i<κ,j<λ is an array. Write ci = (ci,j)j<λ for the ith row of the array
and c<i for the sequence of rows with index less than i, i.e. (ck)k<i. Suppose T is a tree,
(aη)η∈T is a collection of tuples indexed by T . We write E for the tree partial order and <lex

for the lexicographic order on T . For a node η ∈ T , write aEη for the sequence 〈aν : ν E η〉,
and likewise aCη for 〈aν : ν C η〉. We use the notation aDη and aBη similarly. If the tree T is
contained in 2<κ or ω<κ, we write 0α to denote the element of the tree of length α consisting
of all zeros. Throughout the paper, T denotes a complete theory and M |= T is a monster
model of T .

Definition 3.2.1. [DS04, Definition 2.2] The formula ϕ(x; y) has SOP1 if there is a collection
of tuples (aη)η∈2<ω so that

• For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.

• For all η ∈ 2<ω, if ν D η _ 〈0〉, then {ϕ(x; aν), ϕ(x; aη_1)} is inconsistent.

We say T is SOP1 if some formula has SOP1 modulo T . T is NSOP1 otherwise.

The following lemma is close to Lemma I.5.2, but with a key strengthening which will
allow us to relax the 2-inconstency in the definition of SOP1 to a version with k-inconsistency.

Lemma 3.2.2. Suppose (ci,j)i<ω,j<2 is an array where ci,j = (dij, eij) for all i, j and χ1(x; y)
and χ2(x; z) are formulas over C. Write ψ(x; y, z) for χ1(x; y) ∧ χ2(x; z) and suppose

1. For all i < ω, ei,0 ≡Cc<i,0e<i,1 ei,1.

2. {ψ(x; ci,0) : i < ω} is consistent.

3. j ≤ i =⇒ {χ1(x; di,0), χ2(x; ej,1)} is inconsistent.

then T has SOP1.

Proof. By adding constants, we may assume C = ∅. By Ramsey and compactness, we may
assume (ci)i<ω is a C-indiscernible sequence. By compactness again, we may extend the
array to an array whose rows are indexed by the integers (ci)i∈Z. We will construct, for each
n < ω, a tree (cη)η∈2≤n so that

1. If ν ∈ 2n, then {ψ(x; cν|i) : i ≤ n} is consistent.

2. If ν ∈ 2<n and ν _ 〈0〉 C η〉 then {ψ(x; cη), ψ(x; cν_〈1〉)} is inconsistent.
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3. If η ∈ 2n, (cν)νEη ≡c<−n,0e<−n,1 (ci,0)−n≤i≤0.

To define (cη)η∈2≤0 , we put c∅ = c0,0. Now suppose we are given Sn = (cη)η∈2≤n satisfying
the requirements. There is an automorphism σ taking e−n,0 to e−n,1 fixing c<−n,0e<−n,1.
Define Sn+1 = (c′η)η∈2≤n+1 by c′∅ = c−(n+1),0 and, for all η ∈ 2≤n, c′〈0〉_η = cη, c′〈1〉_η = σ(cη).
Clearly all branches have the same type over c<−(n+1),0e<−(n+1),1 as (ci,0)−(n+1)≤i≤0. Write
c′η = (d′η, e

′
η) for all η ∈ 2≤n+1. Now note that in both Sn and σ(Sn) conditions (1) and

(2) are preserved and that ψ(x; c′〈1〉) is inconsistent with ψ(x; c′〈0〉_η) for any η ∈ 2≤n since
χ2(x; e−n,1)∧χ1(x; dη) is consistent if and only if χ2(x; e−n,1)∧χ1(x; di,0) is consistent, for i =
l(η)−n. Likewise, instantiating ψ(x; y) along any branch through this tree yields something
consistent: any branch in Sn or σ(Sn) has the same type over c−(n+1),0 as (ci,0)−n≤i≤0 and
{ψ(x; ci,0) : −(n+ 1) ≤ i ≤ 0} is consistent. We conclude by compactness.

Lemma 3.2.3. Suppose ϕ(x; y) is a formula, k is a natural number, and (ci)i∈I is an infinite
sequence with ci = (ci,0, ci,1) satisfying:

1. For all i ∈ I, ci,0 ≡c<i ci,1.

2. {ϕ(x; ci,0) : i ∈ I} is consistent.

3. {ϕ(x; ci,1) : i ∈ I} is k-inconsistent.

Then T has SOP1.

Proof. By compactness and Ramsey, it suffices to prove this when I = Q – so suppose
(ci,0, ci,1)i∈Q is an indiscernible sequence with ci,0 ≡c<i ci,1, {ϕ(x; ci,0) : i ∈ Q} is consistent,
and {ϕ(x; ci,1) : i ∈ Q} is k-inconsistent.

For integers l < l′, define a partial type Γl,l′(x) by

{ϕ(x; ci,0) : i ∈ (l +m, l +m+ 1),m ∈ ω,m < l′ − l} ∪ {ϕ(x; cl+m,1) : m < l′ − l,m ∈ ω}.

Let Γl,l(x) = ∅. Note that if Γl,l′(x) is consistent then Γl+z,l′+z(x) is consistent for any
integer z by indiscernibility of the sequence (ci)i∈Q. Let n ∈ ω be maximal so that Γ0,n(x) is
consistent. Note that Γ0,0(x) is consistent, as it is the empty partial type and we have

Γ0,k(x) ` {ϕ(x; ci,1) : i ∈ ω, i < k},

which is inconsistent, so 0 ≤ n < k. So now we know Γ−n,0(x) is consistent and Γ−n,1(x) =
Γ−n,0(x) ∪ Γ0,1(x) is inconsistent. By indiscernibility and compactness, we may fix some
integer N > 0 so that

Γ−n,0(x) ∪ {ϕ(x; c0,1)} ∪ {ϕ(x; c j+1
N
,0) : j ∈ ω, j < N − 1}

is inconsistent. Now choose ∆(x) ⊆ Γ−n,0(x) finite so that

∆(x) ∪ {ϕ(x; c0,1)} ∪ {ϕ(x; c j+1
N
,0) : j ∈ ω, j < N − 1}
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is inconsistent. Let z indicate the tuple of variables (y0, . . . , yN−2) and let χ(x; z) be the
formula χ(x; z) =

∧
i<N ϕ(x; yi) ∧

∧
∆(x). Let (ai,j)i<ω,j<2 be defined as follows:

ai,0 = (ci,0; di,0) = (ci,0; ci+ 1
N
,0, . . . , ci+N−1

N
,0).

Now choose di,1 so that ci,0di,0 ≡c<i ci,1di,1 – this is possible as ci,0 ≡c<i ci,1. Then we put
ai,1 = (ci,1, di,1). Let ψ(x; yz) = ϕ(x; y) ∧ χ(x; z).

To conclude, we have to establish the following:
Claim: The array (ai,j)i<ω,j<2 and the formulas ϕ(x; y), χ(x; z) satisfy the following:

1. ai,0 ≡a<i,0,c<i,1 ai,1.

2. {ψ(x; ai,0) : i < ω} is consistent.

3. If l ≤ l′ then {ϕ(x; cl,1), χ(x; dl′,0)} is inconsistent.

Proof of claim: (1) follows from the fact that ai,0 ≡c<i ai,1 and both a<i,0 and c<i,1 are
enumerated in c<i. Note that Γ−n,0(x) is consistent so, by indiscernibility,

Γ−n,0(x) ∪ {ϕ(x; ci,0) : i ∈ [0,∞) ∩Q}

is consistent, which establishes (2). Finally, if l ≤ l′, then {ϕ(x; cl,1), χ(x; dl′,0)} implies

{ϕ(x; cl,1)} ∪ {ϕ(x; cl′+ j+1
N

) : j ∈ ω, j < N − 1} ∪∆(x).

By indiscernibility of (ci)i∈Q and the fact that l ≤ l′, this set is consistent if and only if

{ϕ(x; c0,1)} ∪ {ϕ(x; c j+1
N
,0) : j ∈ ω, j < N − 1} ∪∆(x)

is consistent. As this latter set is inconsistent, this shows (3), which proves the claim. The
lemma now follows by Lemma 3.2.2.

Finally, we note that the criterion for SOP1 from Lemma 4.2.2 is an equivalence. This was
implicit in Chapter 1, at least in its 2-inconsistent version, but we think that the property
described by Lemma 4.2.2 is, in most cases, the more fruitful way of thinking about SOP1

and therefore worth making explicit.

Proposition 3.2.4. The following are equivalent, for a complete theory T :

1. T has SOP1.

2. There is a formula ϕ and an array (ci,j)i<ω,j<2 so that:

a) ci,0 ≡c<i ci,1 for all i < ω.

b) {ϕ(x; ci,0) : i < ω} is consistent.

c) {ϕ(x; ci,1) : i < ω} is 2-inconsistent.
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3. There is a formula ϕ and an array (ci,j)i<ω,j<2 so that:

a) ci,0 ≡c<i ci,1 for all i < ω.

b) {ϕ(x; ci,0) : i < ω} is consistent.

c) {ϕ(x; ci,1) : i < ω} is k-inconsistent for some k.

Proof. (3) =⇒ (1) is Lemma 4.2.2.
(1) =⇒ (2). This follows from the proof of Proposition I.5.6.
(2) =⇒ (3) is obvious.

Remark 3.2.5. Though the configurations described in (2) and (3) are not obviously preserved
by expansion, SOP1 as defined in Definition 3.2.1 clearly is. It follows, then, that one can
take (ci)i<ω to be indiscernible with respect to some Skolemization in the language LSk of T
and, moreover, obtain ci,0 ≡L

Sk

c<i
ci,1 for all i < ω (in fact, this is what the proof of Proposition

I.5.6 directly shows).

3.3 Kim-dividing

Averages and Invariant Types

Definition 3.3.1. A global type q ∈ S(M) is called A-invariant if b ≡A b′ implies ϕ(x; b) ∈ q
if and only if ϕ(x; b′) ∈ q. A global type q is invariant if there is some small set A such that
q is A-invariant. If q(x) and r(y) are A-invariant global types, then the type (q ⊗ r)(x, y)
is defined to be tp(a, b/M) for any b |= r and a |= q|Mb. We define q⊗n(x0, . . . , xn−1) by
induction: q⊗1 = q and q⊗n+1 = q(xn) ⊗ q⊗n(x0, . . . , xn−1). When M is a model, write
a |̂ i

M
b to mean tp(a/Mb) extends to a global M -invariant type.

Fact 3.3.2. [Sim15, Chapter 2] Given a global A-invariant type q and positive integer n,
q⊗n is a well-defined A-invariant global type. If N ⊃ A is an |A|+-saturated model and
p ∈ S(N) satisfies ϕ(x; b) ∈ p ⇐⇒ ϕ(x; b′) ∈ p whenever b, b′ ∈ N and b ≡A b′, then p
extends uniquely to a global A-invariant type.

Definition 3.3.3. Suppose q is an A-invariant global type and I is a linearly ordered set.
By a Morley sequence in q over A of order type I, we mean a sequence (bα)α∈I such that
for each α ∈ I, bα |= q|Ab<α where b<α = (bβ)β<α. Given a linear order I, we will write
q⊗I = q⊗I(xα : α ∈ I) for the A-invariant global type so that if b |= q⊗I then bα |= q|Mb<α for
all α ∈ I.

The above definition of q⊗I generalizes the finite tensor product q⊗n – given any global
A-invariant type q and linearly ordered set I, one may easily show that q⊗I exists and is
A-invariant, by Fact 3.3.2 and compactness.
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Definition 3.3.4. Let I ⊆ Mn be a collection of tuples, A ⊆ M a set, and D an ultrafilter
over I. We define the average type of D over A to be the type defined by

Av(D, A) = {ϕ(x; a) : a ∈ A and {b ∈ I : M |= ϕ(b; a)} ∈ D}.

Fact 3.3.5. [She90, Lemma 4.1] Let I ⊆ Mn be a collection of tuples and D an ultrafilter
on I.

1. For every set C, Av(D, C) is a complete type over C.

2. The global type Av(D,M) is I-invariant.

3. For any model M |= T , if p ∈ Sn(M), there is some ultrafilter E on Mn so that
p = Av(E ,M).

One important consequence of Fact 4.2.4 for us is that every type over a model M
extends to a global M -invariant type: given p ∈ S(M), one chooses an ultrafilter D so that
Av(D,M) = p. Then Av(D,M) is a global type extending p which is M -invariant. In the
arguments below, it will often be convenient to produce global invariant types through a
particular choice of ultrafilter.

Fact 3.3.6. [CK12, Remark 2.16] Write a |̂ u
A
b to mean that tp(a/Ab) is finitely satisfiable

in A – the u is for “ultrafilter" as this is equivalent to asserting tp(a/Ab) = Av(D, Ab) for
some ultrafilter D on A. The relation |̂ u satisfies both left and right extension over models:

1. (Left extension) If M is a model and a |̂ u
M
b then for all d, there is some b′ ≡Ma b so

that ad |̂ u
M
b′.

2. (Right extension) If M is a model and a |̂ u
M
b then for all c, there is some a′ ≡Mb a

so that a′ |̂ u
M
bc.

Definition 3.3.7. Suppose M |= T and a = (ai)i<ω is an M -indiscernible sequence. A
global M -invariant type q ⊇ tp(a/M) is called an indiscernible type if whenenver a′ |= q, a′
is M-indiscernible.

Definition 3.3.8. A collection of sequences (aα)α<κ where aα = 〈aα,i : i < λ〉 is called a
mutually indiscernible array over a set of parameters C if, for each α < κ, the sequence aα
is an indiscernible sequence over Ca 6=α.

The following two lemmas are essentially [Adl14, Lemma 8]. We include a proof for
completeness.

Lemma 3.3.9. If a = (ai)i<ω is an M-indiscernible sequence, there is an indiscernible global
M-invariant type q ⊇ tp(a/M).
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Proof. Let N be an |M |+-saturated elementary extension ofM of size κ and let r ⊇ tp(a/M)
be an arbitrary global M -invariant type extending tp(a/M). Let b = (bi)i<ω |= r|N . By
Ramsey and compactness, we may extract from b anN -indiscernible sequence (ci)i<ω. Clearly
tp(c/N) extends tp(a/M). It is also M -invariant: if not, there are n ≡M n′ in N , an
increasing k-tuple i from ω, and a formula ϕ so that

|= ϕ(ci;n)↔ ¬ϕ(ci, n
′).

Then there is an increasing k-tuple j so that

|= ϕ(bj;n)↔ ¬ϕ(bj;n
′),

since the sequence c is extracted from b. This contradicts the fact that b realizes an M -
invariant type over N . By Fact 3.3.2, the type tp(c/N) determines a unique M -invariant
extension to M. Call it q. Then q is an indiscernible type.

Lemma 3.3.10. Suppose M |= T , a = (ai)i<ω is an M-indiscernible sequence, and q ⊇
tp(a/M) is a global M-invariant indiscernible type. Let (ai)i<ω |= q⊗ω|M with a0 = a, where
ai = (ai,j)j<ω. Then (ai)i<ω is a mutually indiscernible array over M .

Proof. We prove by induction on n that (ai)i≤n is mututally indiscernible overM . For n = 1,
there’s nothing to prove. Suppose it’s been shown for n and consider (ai)i≤n+1. As q is an
indiscernible type, an+1 is Ma≤n-indiscernible. For i ≤ n, we know, by induction, that
ai is Ma<iai+1 . . . an-indiscernible. As an+1 |= q|Ma≤n , this entails ai is indiscernible over
Ma<iai+1 . . . an+1, which completes the induction.

Kim-dividing

In this subsection, we define Kim-dividing and Kim-forking, the fundamental notions ex-
plored in this paper. To start, we will need the definition of q-dividing, introduced by
Hrushovski in [Hru12, Section 2.1]:

Definition 3.3.11. Suppose q(y) is an A-invariant global type. The formula ϕ(x; y) q-
divides over A if for some (equivalently, any) Morley sequence 〈bi : i < ω〉 in q over A,
{ϕ(x; bi) : i < ω} is inconsistent.

We note that we will consistently use the letters p, q, r to refer to types, n,m, k, l to refer
to numbers. In this way, no confusion between q-dividing and the more familiar k-dividing
will arise.

The related notion of a higher formula was introduced by Malliaris and Shelah in [MS15a]
on the way to a new characterization of NTP1 theories:

Definition 3.3.12. [MS15a, Definition 8.6] A higher formula is a triple (ϕ,A,D) where
ϕ = ϕ(x; y) is a formula, A is a set of parameters, and D is an ultrafilter on Al(y) so that, if
q = Av(D,M) and 〈bi : i < ω〉 |= q⊗ω|A then {ϕ(x; bi) : i < ω} is consistent.
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We can rephrase the above definition as: (ϕ,A,D) is a higher formula if, setting q =
Av(D,M), ϕ(x; y) does not q-divide over A.

Definition 3.3.13. We say that a formula ϕ(x; b) Kim-divides over A if there is some A-
invariant global type q ⊇ tp(b/A) so that ϕ(x; y) q-divides. The formula ϕ(x; b) Kim-forks
over A if ϕ(x; b) `

∨
i<k ψi(x; ci) and each ψi(x; ci) Kim-divides over A. A type Kim-forks if

it implies a formula which does. If tp(a/Ab) does not Kim-fork over A, we write a |̂ K
A
b.

We call this notion Kim-dividing to make explicit the fact that this definition was inspired
by a suggestion of Kim in his 2009 BIRS talk [Kim09], where he proposed an independence
relation based on instances of dividing that are witnessed by every appropriate Morley se-
quence. A rough connection between Kim’s notion and ours is provided by Theorem 3.3.16
below, which shows that, in an NSOP1 theory, dividing with respect some invariant Morley
sequence is equivalent to dividing with respect to all. An even tighter connection is estab-
lished by Theorem 3.7.7, which shows that we can drop the assumption that the Morley
sequences are generated by an invariant type. (We note that for technical reasons our notion
is still different from Kim’s – the proposal of [Kim09] forces a kind of base monotonicity and
we do not).

In general, we only know that a type over A has a global A-invariant extension when A
is a model. Thus, when working with Kim-independence below, we will restrict ourselves
almost entirely to the case where the base is a model.

The next two propositions explain how the notions of higher formula and q-dividing
interact with SOP1.

Proposition 3.3.14. Suppose T has SOP1. Then there is a model M |= T , a formula
ϕ(x; b), and ultrafilters D0,D1 on M with

Av(D0,M) = Av(D1,M) = tp(b/M),

so that (ϕ,M,D0) is higher but (ϕ,M,D1) is not higher.

Proof. Fix a Skolemization T Sk of M . As T has SOP1, there is, by Proposition 5.2.1, a
formula ϕ(x; y) and an array (ci,j)i<ω+1,j<2 such that

1. (ci)i<ω+1 is an indiscernible sequence (with respect to the Skolemized language)

2. cω,0 ≡L
Sk

c<ω cω,1.

3. {ϕ(x; ci,0) : i < ω + 1} is consistent.

4. If i < j, then {ϕ(x; ci,1), ϕ(x; cj,1)} is inconsistent.

Put M = Sk(c<ω). For j = 0, 1, let Dj be any non-principal ultrafilter on M , concentrating
on 〈ci,j : i < ω〉 and set qj = AvL(Dj,M) for j = 0, 1. Note that q0|M = tpL(cω,0/M) =
tpL(cω,1/M) = q1|M by (2). By (3), ϕ(x; y) does not q0-divide, hence (ϕ,M,D0) is higher.
However, by (4), {ϕ(x; cj,1) : j < ω} is 2-inconsistent hence ϕ(x; y) q1-divides, so (ϕ,M,D1)
is not higher.
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Proposition 3.3.15. Suppose A is a set of parameters and ϕ(x; b) is a formula which q-
divides over A for some global A-invariant type q ⊇ tp(b/A). If there is some global A-
invariant r ⊇ tp(b/A) such that ϕ(x; y) does not r-divide, then T has SOP1.

Proof. As ϕ(x; y) q-divides over A, there is k so that instances of ϕ(x; y) instantiated on a
Morley sequence of q are k-inconsistent.

Let (ci,1, ci,0)i∈Z |= (q⊗r)⊗Z|M . We have to check that the sequence satisfies the following
properties:

1. {ϕ(x; ci,0) : i ∈ Z} is consistent

2. {ϕ(x; ci,1) : i ∈ Z} is k-inconsistent

3. ci,0 ≡c>i ci,1 for all i ∈ Z.

Note that (ci,0)i∈Z |= r⊗Z|M so (1) follows from our assumption that ϕ(x; y) does not r-divide.
Likewise, (ci,1)i∈Z |= q⊗Z|M so (2) follows from the fact that ϕ(x, y) q-divides. Finally, for
any i ∈ Z, we have c>i realizes a global M -invariant type over Mci,0ci,1. Hence (3) follows
from the fact that ci,0 ≡M ci,1.

Theorem 3.3.16. The following are equivalent for the complete theory T :

1. T is NSOP1

2. Ultrafilter independence of higher formulas: for every model M |= T , and ultrafilters D
and E on M with Av(D,M) = Av(E ,M), (ϕ,M,D) is higher if and only if (ϕ,M, E)
is higher.

3. Kim’s lemma for Kim-dividing: For every model M |= T and ϕ(x; b), if ϕ(x; y) q-
divides for some global M-invariant q ⊇ tp(b/M), then ϕ(x; y) q-divides for every
global M-invariant q ⊇ tp(b/M).

Proof. (1) =⇒ (3) is the contrapositive of Proposition 3.3.15.
(2) =⇒ (1) is the contrapositive of Proposition 3.3.14.
(3) =⇒ (2): Immediate, since every type finitely satisfiable in M is M -invariant.

Remark 3.3.17. Note that the proof gives a bit more: if T is NSOP1, (2) is true over arbitrary
sets and (3) is true over an arbitrary set A as well, though this may be vacuous if tp(b/A)
does not extend to a global A-invariant type.
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The basic properties of Kim-independence

Theorem 3.3.16, a kind of Kim’s lemma for Kim-dividing, already gives a powerful tool for
proving that in NSOP1 theories Kim-independence enjoys many of the properties known to
hold for non-forking independence in simple theories.

We will frequently use the following easy observation. The proof is exactly as in the case
of dividing. See, e.g., [GIL02, Lemma 1.5] or [She80, Lemma 1.4].

Lemma 3.3.18. (Basic Characterization of Kim-dividing) Suppose T is an arbitrary com-
plete theory. The following are equivalent:

1. tp(a/Ab) does not Kim-divide over A.

2. For any global A-invariant q ⊇ tp(b/A) and I = 〈bi : i < ω〉 |= q⊗ω|A with b0 = b, there
is a′ ≡Ab a such that I is Aa′-indiscernible.

3. For any global A-invariant q ⊇ tp(b/A) and I = 〈bi : i < ω〉 |= q⊗ω|A with b0 = b, there
is I ′ ≡Ab I such that I ′ is Aa-indiscernible.

Note that in an NSOP1 theory, by Kim’s Lemma for Kim-dividing, we could have replaced
(2) by: there is a global A-invariant q ⊇ tp(b/A) and I = 〈bi : i < ω〉 |= q⊗ω|A with b0 = b,
so that for some a′ ≡Ab a I is Aa′-indiscernible (and similarly for (3)), provided tp(b/A)
extends to a global A-invariant type.

The following proposition is proved by the same argument one uses to prove forking =
dividing via Kim’s lemma, as in [GIL02, Theorem 2.5] or [CK12, Corollary 3.16].

Proposition 3.3.19. (Kim-forking = Kim-dividing) Suppose T is NSOP1. If M |= T , if
ϕ(x; b) Kim-forks over M then ϕ(x; b) Kim-divides over M .

Proof. Suppose ϕ(x; b) `
∨
j<k ψj(x; cj) where each ψi(x; ci) Kim-divides over M . Fix an

ultrafilter D on M so that (b, c0, . . . , ck−1) |= Av(D,M). Let (bi, c
0
i , . . . , c

k−1
i )i<ω be a Morley

sequence in Av(D,M). Then (bi)i<ω is an M -invariant Morley sequence. We must show
{ϕ(x; bi) : i < ω} is inconsistent. Suppose not – let a |= {ϕ(x; bi) : i < ω}. We have
ϕ(x; bi) `

∨
j<k ψj(x; cji ) so for each i < ω, there is j(i) < k so that |= ψj(i)(a; c

j(i)
i ). By the

pigeonhole principle, there is j∗ < k so that X = {i < ω : j(i) = j∗} is infinite. Then (cj∗i )i∈X
is an M -invariant Morley sequence in tp(cj∗/M). As T is NSOP1, Kim-dividing over M is
witnessed by any M -invariant Morley sequence so {ψj∗(x; cj∗i ) : i ∈ X} is inconsistent. But
a |= {ψj∗(x; cj∗i ) : i ∈ X}, a contradiction.

Proposition 3.3.20. (Extension over Models) Suppose M is a model, and a |̂ K
M
b. Then

for any c, there is a′ ≡Mb a so that a′ |̂ K
M
bc.

Proof. This is exactly as in the usual proof that forking satisfies extension. Let p(x; b) =
tp(a/Mb). We claim that the following set of formulas is consistent:

p(x; b) ∪ {¬ψ(x; b, c) : ψ(x; b, c) ∈ L(Mbc) and ψ(x; b, c) Kim-divides over M}.
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If this set of formulas is not consistent, then by compactness,

p(x; b) `
∨
i<k

ψi(x; b, ci),

where each ψi(x; b, ci) Kim-divides over M . It follows that tp(a/Mb) Kim-forks over M , a
contradiction. So this set is consistent and we may choose a realization a′. Then a′ |̂ K

M
bc

and a′ ≡Mb a.

Proposition 3.3.21. (Chain Condition for Invariant Morley Sequences) Suppose T is NSOP1

and M |= T . If a |̂ K
M
b and q ⊇ tp(b/M) is a global M-invariant type, then for any

I = 〈bi : i < ω〉 |= q⊗ω|M with b = b0, there is a′ ≡Mb a so that a′ |̂
M
I and I is Ma′-

indiscernible.

Proof. By the basic characterization of Kim-dividing, Lemma 3.3.18, given a |̂ K
M
b, q ⊇

tp(b/M) a global M -invariant type, and I = 〈bi : i < ω〉 |= q⊗ω|M with b = b0, there
is a′ ≡Mb a so that I is Ma′-indiscernible. To prove the proposition it suffices to show
a′ |̂ K

M
b<n for all n. Given n < ω, let r(x; y0, . . . , yn−1) = tp(a′; b0, . . . , bn−1/M). Then

〈(bkn+n−1, bkn+n−2, . . . , bkn) : k < ω〉 |= (q⊗n)⊗ω|M and, by indiscernibility,

a′ |=
⋃
k<ω

r(x; bkn+n−1, bkn+n−2, . . . , bkn).

As T is NSOP1, this shows a′ |̂ KM b<n.

Section 3.5 will be dedicated to the proof that |̂ K is symmetric in NSOP1 theories. The
argument will require more tools, but at this stage we can already observe the converse: even
a weak form of symmetry for |̂ K will imply that a theory is NSOP1.

Proposition 3.3.22. The following are equivalent for a complete theory T :

1. T is NSOP1.

2. Weak symmetry: if M |= T , then b |̂ i
M
a =⇒ a |̂ K

M
b.

Proof. (1) =⇒ (2). Suppose T is NSOP1. As b |̂ i
M
a, there is a global M -invariant type

r ⊇ tp(b/Ma). We can find a Morley sequence I = 〈bi : i < ω〉 in q|Ma with b0 = b. Then I
is Ma-indiscernible, so no formula in tp(a/Mb) divides with respect to the sequence I. But
by Kim’s lemma for Kim-dividing, this implies a |̂ K

M
b.

(2) =⇒ (1). Suppose T has SOP1. Then by Theorem I.5.1, there is a model M |= T ,
a0b0 ≡M a1b1 with bi |̂ iM ai and b1 |̂ iM b0, but, setting p(x; b0) = tp(a0/Mb0), we have
p(x; b0)∪p(x; b1) is inconsistent. As b0 ≡M b1 and b1 |̂ iM b0, (b0, b1) starts a Morley sequence
in some M -invariant type, 〈bi : i < ω〉. As

⋃
i<ω p(x; bi) is inconsistent, we have a0 6 |̂ KM b0.

Since b0 |̂ iM a0, weak symmetry fails.
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3.4 Local character
In this section, we prove local character for |̂ K in NSOP1 theories: for every NSOP1

theory, there is a cardinal κ so that, given a model M |= T and a type p ∈ S(M), there is
an elementary submodel M ′ � M of size < κ such that p does not Kim-fork over M ′. We
give a simple and soft argument showing first that κ can be taken to be the first measurable
cardinal above |T |. Then, in a more difficult argument, we show that κ can be taken to
be (2|T |)+. The argument involving large cardinals is, of course, implied by the stronger
result, but we thought that the conceptual simplicity of the first argument might be helpful
in understanding the second. Lastly, we show that for any regular κ, we can construct a
model which satisfies local character—this clarifies the situation for cardinals between |T |
and 2|T |.

In order to prove our first theorem, we will use the following facts about measurable
cardinals:

Fact 3.4.1. [Kan03, Theorem 7.17] Suppose that µ > |T | is a measurable cardinal and that
U is a normal (non-principal) ultrafilter on µ. Suppose that (ai)i<µ is a sequence of finite
tuples in M, then for some set X ∈ U , (ai)i∈X is an indiscernible sequence.

Fact 3.4.2. [KLS16, Fact 2.9] If A =
⋃
i<µAi ⊆ M is a continuous increasing union of sets

where |Ai| < µ, B ⊆ M is some set of cardinality < µ, and (ai)i<µ, U are as in Fact 3.4.1
with ai tuples from A, then for some set X ∈ U , (ai)i∈X is fully indiscernible over B (with
respect to A and (Ai)i<µ), which means that for every i ∈ X and j < i in X, we have aj ⊆ Ai
, and (aj)i≤j∈X is indiscernible over Ai ∪B.

Theorem 3.4.3. Suppose that T is NSOP1 and that |T | < µ is measurable. Suppose that
M |= T . Then for every p ∈ S (M) there is a model N ≺ M with |N | < µ such that p does
not Kim-fork over N .

Proof. Suppose not. Construct by induction on i < µ a sequence ((Mi, bi, b
′
i, ϕi))i<µ such

that:

• (Mi)i<µ is an increasing continuous sequence of models.

• For i < µ, ϕi (x, yi, y′i) is a formula in L.

• b′i ∈Mi and bi ∈M \Mi.

• ϕ (x, bi, b
′
i) ∈ p witnesses Kim-dividing of p over Mi.

• For i < µ, Mi is some model containing {bj : j < i} of size |T |+ |i|.

We can construct such a sequence by our assumption.
Note that all clubs E ⊆ µ are in U (see the proof of Fact 3.4.2 in [KLS16, Fact 2.9]).
By Fodor’s lemma for normal ultrafilters [Kan03, Exercise 5.10], applied to the function

F : lim (µ) → µ such that F (δ) = min{i < δ : b′δ ∈ Mi}, there is some X0 ∈ U (consisting
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of limit ordinals) such that for all i ∈ X0, b′i = b′ is constant. For convenience assume that
b′ ∈M0.

By Fact 3.4.2, there is some X1 ⊆ X0 in U such that (bi)i∈X1 is fully indiscernible with
respect to (Mi)i<µ.

Let X2 ⊆ X1 in U be such that for all i ∈ X2 if j < i then there is j < α < i such that
α ∈ X1 (as X1 is unbounded, the set of all i < µ such that for all j < i there is such an α is
a club, so in U).

Let α0 ∈ X2. Then (bi)i≥α0,i∈X2 is an indiscernible sequence such that bi |̂ uMα0

b>i for all
α0 ≤ i ∈ X2. To see this, suppose that ψ (bi, b>i,m) holds where m ∈ Mα0 . Then m ∈ Mβ

for some β < α0 (as α0 is limit). So by definition of X2, there is some β < j < α0 in X1.
But then (bε)ε≥j is indiscernible over Mβ by choice of X1, so ψ (bj, b>i,m) holds as well. But
bj ∈Mα0 by construction.

We get a contradiction, since {ϕ (x, bi, b
′) : i ∈ X2, i ≥ α0} is in p but also inconsistent

since ϕ (x, bα0 , b
′) Kim-divides over Mα0 .

Lemma 3.4.4. Suppose that N is some model and that p ∈ S (M) is a global type finitely
satisfiable in N which extends tp (c/N). Given any set A ⊆ N , there is some B ≺ N of size
≤ |T | + |A| such that A ⊆ B and p⊗ω|B is a type of a Morley sequence generated by some
global type finitely satisfiable in B.

In particular, if ϕ (x, c) Kim-divides over N then ϕ (x, c) Kim-divides over B.

Proof. Let p ∈ S (M) be a global type extending tp (c/N), finitely satisfiable in N .
LetB0 be any model containing A of size≤ |A|+|T |, and let c̄ |= p⊗ω|N . LetN ⊇ B′1 ⊇ B0

be such that for every n < ω and every formula ψ (y, c<n) over B0, if M |= ψ (cn, c<n) then
ψ (y, c<n) is satisfiable in B′1 and let B1 be any model containing B′1 of size |T |+|A|. Continue
like this, and finally, let B =

⋃
i<ω Bi. Then c̄ is still a Morley sequence sequence over B in

a B-finitely satisfiable type (note that it is indiscernible).

Theorem 3.4.5. Suppose T is NSOP1. Then for any M |= T and p ∈ S(M), there is
M ′ �M so that p does not Kim-fork over M ′ and |M ′| ≤ 2|T |.

Proof. Let κ = (2|T |)+—κ is a regular cardinal, greater than 2|T |, and µ < κ implies µ|T | < κ
(these are the only properties of κ we will use).

Suppose not. Then there is some p ∈ S (M) witnessing this. Clearly |M | ≥ κ. For every
i < κ we can find ci, di, Ni, and ϕi (x, yi, zi) such that:

• ci ∈ Ni+1 \ Ni, di ∈ Ni, 〈Ni : i < κ〉 is increasing continuous, |Ni| ≤ |T | + |i| < κ,
ϕi (x, yi, zi) is a formula such that ϕi (x, ci, di) Kim-divides over Ni and is in p.

Let S be {δ < κ : cof (δ) = |T |+}. Then S is a stationary set.
For every δ ∈ S, fix some global coheir qδ ∈ S (M) over Nδ extending tp (cδ/Nδ). Given

a partition of a stationary subset of κ into < κ parts, one of these has to be a stationary
set. Hence, we may assume that for every δ ∈ S, ϕδ = ϕ and ϕ (x, ci, di) is k-Kim-dividing
for some fixed k, witnessed by any Morley sequence in qδ. Define the regressive function
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f : S → κ by f(δ) = min{i < δ : dδ ∈ Ni} (this set is non-empty by continuity of
the sequence). By Fodor’s lemma, we may assume that f is constant on S, and further
restricting it, we may even assume that dδ = d is fixed for every δ ∈ S. This allows us to
assume for simplicity that d = ∅.

By Lemma 3.4.4, for every δ ∈ S there is some Mδ ≺ Nδ of size |T | such that ϕ (x, cδ)
Kim-divides overMδ, and moreover, such that q⊗ωδ |Mδ

is a type of a Morley sequence of some
global coheir rδ over Mδ.

As cof (δ) = |T |+ for every δ ∈ S, for each such δ there is some i < δ such that Mδ ≺ Ni.
Hence by Fodor’s lemma, there is some i < κ and a stationary S ′ ⊆ S such that for every
δ ∈ S ′, Mδ ≺ Ni. Then we can find some model M∗

0 , a global coheir r∗0 over M∗
0 and a

stationary S0 ⊆ S ′ such that for every δ ∈ S0, Mδ = M∗
0 (note that the number of possible

Mδ’s is ≤ |Ni||T | < κ) and q⊗ωδ |M∗0 = r⊗ωδ |M∗0 = r∗⊗ω0 |M∗0 (the number of ω-types over M∗
0 is

≤ 2|M∗0 | < κ as |M∗
0 | = |T |).

Let δ0 = minS0 and e0 = cδ0 .
By Lemma 3.4.4, for every δ ∈ S0\ {δ0} there is some M∗

0 cδ0 ⊆ Mδ ≺ Nδ of size |T |
such that ϕ (x, cδ) Kim-divides over Mδ, and moreover, such that q⊗ωδ |Mδ

is a type of a
Morley sequence of some global coheir overMδ. Thus, as above, we can find some stationary
S1 ⊆ S0\ {δ0}, M∗

1 and r∗1 such that for every δ ∈ S1, Mδ = M∗
1 and q⊗ωδ |M∗1 = r∗⊗ω1 |M∗1 . Let

δ1 = minS1 and e1 = cδ1 .
Continuing like this we find and increasing sequence 〈δi : i < ω〉 of ordinals in κ, an

increasing sequence of models 〈M∗
i : i < ω〉, ei ∈ M for i < ω and global coheirs (over M∗

i )
r∗i such that:

• M∗
i contains e<i, ϕ (x, ej) is k-Kim-dividing over M∗

i for every i < j, r∗i is a global
coheir over M∗

i such that for all i ≤ j, r∗i extends tp (ej/M
∗
i ) (in particular, ej ≡M∗i ei

for all j ≥ i) and r∗⊗ωj |M∗i = r∗⊗ωi |M∗i .

Denote e = 〈ei : i < ω〉. Note that {ϕ(x; ei) : i < ω} is a subset of p, hence consistent.
Claim: Suppose i0 < . . . < in−1 < ω and for each j < n, fj |= r∗ij |M∗ij ef>j . Then

1. eij ≡ei<j f<j fj for all j < n

2. {ϕ(x; fj) : j < n} is k-inconsistent.

Proof of claim: By induction on n, we prove that if i0 < . . . < in−1 < ω, then
eij ≡M∗i0e<ij f<j fj. For n = 0 there is nothing to prove. Suppose the claim is true for n and
we are given i0 < . . . < in and (fj)j<n+1 with fj |= r∗ij |M∗ij ef>j for all j < n+ 1. Then clearly
f0 ≡M∗i0 ei0 . For 0 < j < n + 1, by induction fj ≡M∗i1e<ij f∈[1,j) eij , hence fj ≡M∗i0e<ij f∈[1,j) eij .
As f0 |̂ uM∗i0

ef>0, we get that fj ≡M∗i0e<ij f<j eij . This shows (1). To see (2), note that

(fn−1, fn−2, . . . , f0) |= r⊗ni0 |M
∗
i0

= q⊗nδi0
|M∗

0 , hence {ϕ(x; fj) : j < n} is k-inconsistent, by our
assumption that ϕ(x; cδ0) k-Kim-divides with respect to Morley sequences in qδ0 .
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By compactness, we can find an array (ci,0, ci,1)i<ω so that {ϕ(x; ci,0) : i < ω} is consistent,
{ϕ(x; ci,1) : i < ω} is k-inconsistent, and ci,0 ≡c<i ci,1 for all i < ω. By Lemma 4.2.2, we
obtain SOP1, a contradiction.

Corollary 3.4.6. Suppose that T is a complete theory. The following are equivalent.

1. For some uncountable cardinal κ, there is no sequence 〈Ni, ϕi (x, yi) , ci : i < κ〉 such
that 〈Ni : i < κ〉 is an increasing continuous sequence of models of T , ϕi(x, yi) is a
formula over Ni, ci ∈ Ni+1, such that ϕi(x, ci) Kim-forks over Ni and {ϕ(x, ci) : i < κ}
is consistent.

2. T is NSOP1.

Proof. (2) implies (1) by the proof of Theorem 3.4.5 (with κ = (2|T |)+).
(1) implies (2). This is a variation on the proof of Proposition 3.3.14. Suppose T has

SOP1 as witnessed by some formula ϕ(x, y). Let T sk be a Skolemized expansion of T . Then
T sk also has SOP1 as witnessed by ϕ(x, y). Thus by Proposition 2.4, we can find a formula
ϕ(x, y) and an array (ci,j)i<ω,j<2 such that ci,0 ≡c<i ci,1 for all i < ω, {ϕ(x, ci,0) : i < ω} is
consistent and {ϕ(x, ci,1) : i < ω} is 2-inconsistent (all in Msk). By Ramsey and compactness
we may assume that 〈ci : i < ω〉 is indiscernible (with respect to Msk). Extend this sequence
to one of length κ.

For i < κ, let Ni = dcl(c<i) (in Msk). Then for every limit ordinal δ < κ, ϕ(x, cδ,1)
Kim-divides over Nδ as the sequence 〈cj,1 : δ ≤ j < κ〉 is indiscernible and for all δ ≤ j,
cj |̂ uNδ c>j. As cδ,1 ≡c̄<δ cδ,0, it follows that cδ,1 ≡Nδ cδ,0, and hence ϕ (x, cδ,0) also Kim-
divides. As κ is uncountable, otp (lim (κ)) = κ, so 〈Nδ, ϕ(x, y), cδ,0 : δ < κ〉 contradicts
(1).

Theorem 3.4.7. Suppose that T is NSOP1. Then for every regular cardinal κ > |T | there
is a model M of size κ such that for all p ∈ S (M) there is N ≺ M with |N | < κ such that
p does not Kim-fork over N .

Proof. Let I = (ai)i<κ be an indiscernible sequence with respect to T sk — a Skolemized
expansion of T . Let M = dcl (I). Let p ∈ S (M). For i < κ let

Ni = dcl ((aj)j<i) .

Suppose for contradiction that for every i < κ, p Kim-forks over Ni.
This means that for every i < κ there is a formula ϕi(x, ti(bi, b′i)) witnessing Kim-dividing

overNi, where ti is a Skolem term, bi ⊆ {aj : j ≥ i}, b′i ⊆ {aj : j < i}, and both are increasing
tuples.

Let E ⊆ κ be the set of limits α ∈ κ such that for all i < α, bi ⊆ (aj)j<α. Then E is a club
of κ. Define F : E → κ by F (α) = max{j : aj ∈ b′α}. By Fodor’s lemma there is a stationary
set S ⊆ E on which F is constant γ. Reducing to an unbounded subset of S, we may assume
that for every α ∈ S, ϕα = ϕ, tα = t and b′α = b′ (all the b′α come from {aj : j < γ} which has
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size |γ| < |S| = κ). By choice of E, for all α <β from S, bα < bβ (i.e., every coordinate of bβ
is greater than every coordinate of bα). Hence (t(bα, b

′))α0≤α∈S is an indiscernible sequence
over Nα0 such that t (bα, b

′) |̂ u
Nα0

t (b>α, b
′) for every α0 ∈ S by the construction of Nα0 , and

hence, as ϕ(x, t(bα0 , b
′)) Kim-divides over Nα0 , {ϕ(x, t(bα, b

′)) : α0 ≤ α ∈ S} in inconsistent,
but it is contained in p.

Remark 3.4.8. Note that this theorem is most interesting for the case |T | < κ ≤ 2|T |, as this
is not covered by Theorem 3.4.5.

3.5 Symmetry

Generalized indiscernibles and a class of trees

For an ordinal α, let the language Ls,α be 〈E,∧, <lex, (Pβ)β<α〉. We may view a tree with α
levels as an Ls,α-structure by interpreting E as the tree partial order, ∧ as the binary meet
function, <lex as the lexicographic order, and Pβ interpreted to define level β. For the rest
of the paper, a tree will be understood to be an Ls,α-structure for some appropriate α. We
will sometimes suppress the α and refer instead to Ls, where the number of predicates is
understood from context. We define a class of trees Tα as follows.

Definition 3.5.1. Suppose α is an ordinal. We define Tα to be the set of functions f so that

• dom(f) is an end-segment of α, possibly empty unless α is a limit.

• ran(f) ⊆ ω.

• finite support: the set {γ ∈ dom(f) : f(γ) 6= 0} is finite.

We interpret Tα as an Ls,α-structure by defining

• f E g if and only if f ⊆ g. Write f ⊥ g if ¬(f E g) and ¬(g E f).

• f ∧ g = f |[β,α) = g|[β,α) where β = min{γ : f |[γ,α) = g|[γ,α)}, if non-empty (note that β
will not be a limit, by finite support). Define f ∧ g to be the empty function if this set
is empty (note that this cannot occur if α is a limit).

• f <lex g if and only if f C g or, f ⊥ g with dom(f ∧ g) = [γ + 1, α) and f(γ) < g(γ)

• For all β < α, Pβ = {f ∈ Tα : dom(f) = [β, α)}. Pα is only defined on Tα if α is a
successor, in which case it only contains the empty function.
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Figure 3.1: Illustration of the trees Tα

It is easy to check that for all n < ω, Tn ∼= ω≤n. For α infinite, however, Tα will be
ill-founded (as a partial order). In particular, P0 names the level at the top of the tree, Pβ+1

names the level immediately below Pβ, and so on.
As many arguments in this paper will involve inductive constructions of trees of tuples

indexed by Tα, it will be useful to fix notation as follows:

Definition 3.5.2. Suppose α is an ordinal.

1. (Restriction) If w ⊆ α, the restriction of Tα to the set of levels w is given by

Tα � w = {η ∈ Tα : min(dom(η)) ∈ w and β ∈ dom(η) \ w =⇒ η(β) = 0}.

2. (Concatenation) If η ∈ Tα, dom(η) = [β + 1, α), and i < ω, let η _ 〈i〉 denote the
function η ∪ {(β, i)}. We define 〈i〉 _ η ∈ Tα+1 to be η ∪ {(α, i)}. We write 〈i〉 for
∅_ 〈i〉.

3. (Canonical inclusions) If α < β, we define the map ιαβ : Tα → Tβ by ιαβ(f) =
f ∪ {(γ, 0) : γ ∈ β \ α}.

4. (The all 0’s path) If β < α, then ζβ ∈ Tα denotes the function with dom(ζβ) = [β, α)
and ζβ(γ) = 0 for all γ ∈ [β, α).

The function iαβ includes Tα into Tβ by adding zeros to the bottom of every node in Tα.
Clearly if α < β < γ, then ιαγ = ιβγ ◦ ιαβ. If β is a limit, then Tβ is the direct limit of the Tα
for α < β along these maps. Visually, to get Tα+1 from Tα, one takes countably many copies
of Tα and adds a single root at the bottom.

Definition 3.5.3. Suppose I is an L′-structure, where L′ is some language.

1. We say (ai : i ∈ I) is a set of I-indexed indiscernibles if whenever
(s0, . . . , sn−1), (t0, . . . , tn−1) are tuples from I with

qftpL′(s0, . . . , sn−1) = qftpL′(t0, . . . , tn−1),

then we have
tp(as0 , . . . , asn−1) = tp(at0 , . . . , atn−1).
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2. In the case that L′ = Ls,α for some α, we say that an I-indexed indiscernible is
s-indiscernible. As the only Ls,α-structures we will consider will be trees, we will often
refer to I-indexed indiscernibles in this case as s-indiscernible trees.

3. We say that I-indexed indiscernibles have themodeling property if, given any (ai : i ∈ I)
from M, there is an I-indexed indiscernible (bi : i ∈ I) in M locally based on (ai : i ∈ I)
– i.e., given any finite set of formulas ∆ from L and a finite tuple (t0, . . . , tn−1) from
I, there is a tuple (s0, . . . , sn−1) from I so that

qftpL′(t0, . . . , tn−1) = qftpL′(s0, . . . , sn−1)

and also
tp∆(bt0 , . . . , btn−1) = tp∆(as0 , . . . , asn−1).

Fact 3.5.4. [KKS14, Theorem 4.3] Let denote Is be the Ls,ω-structure (ω<ω,E, <lex,∧, (Pα)α<ω)
with all symbols being given their intended interpretations and each Pα naming the elements
of the tree at level α. Then Is-indexed indiscernibles have the modeling property.

Remark 3.5.5. Note that the tree ω<ω is not the same tree as Tω, which is ill-founded.

Corollary 3.5.6. For any α, Tα-indexed indiscernibles have the modeling property.

Proof. By Fact 3.5.4 and compactness.

Definition 3.5.7. Suppose (aη)η∈Tα is a tree of tuples, and C is a set of parameters.

1. We say (aη)η∈Tα is spread out over C if for all η ∈ Tα with dom(η) = [β+1, α) for some
β < α, there is a global C-invariant type qη ⊇ tp(aDη_〈0〉/C) so that (aDη_〈i〉)i<ω is a
Morley sequence over C in qη.

2. Suppose (aη)η∈Tα is a tree which is spread out and s-indiscernible over C and for all
w, v ∈ [α]<ω with |w| = |v|,

(aη)η∈Tα�w ≡C (aη)η∈Tα�v

then we say (aη)η∈Tα is a Morley tree over C.

3. A tree Morley sequence over C is a C-indiscernible sequence of the form (aζβ)β<α for
some Morley tree (aη)η∈Tα over C.

Remark 3.5.8. If (aη)η∈Tα is s-indiscernible over C, then, in order to be spread out over C, it
suffices to have global C-invariant types as in (1) for all η identically zero—i.e. those nodes
in the tree of the form ζβ for some β < α. Note that the condition in (2) forces (aζβ)β<α to be
C-indiscernible—in fact, (1) and (2) together can be shown to be equivalent to demanding
that the tree is indiscernible with respect to the language L = 〈E, <lex,∧,≤len〉, where ≤len
is interpreted as the pre-order which compares the lengths of nodes in the tree. Finally, in
(3) we speak of (aζβ)β<α, the sequence indexed by the all-zeroes path in the tree, simply
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because this is a convenient choice of a path. In an s-indiscernible tree over C, any two
paths will have the same type over C. Hence, (3) may be stated more succinctly as: a tree
Morley sequence over C is a path in some Morley tree over C.

Lemma 3.5.9. Suppose (ai)i<ω is a tree Morley sequence over C.

1. If ai = (bi, ci) for all i < ω, where the bi’s are all initial subtuples of ai of the same
length, then (bi)i<ω is a tree Morley sequence over C.

2. Given 1 ≤ n < ω, suppose di = (an·i, an·i+1, . . . , an·i+n−1). Then (di)i<ω is a tree Morley
sequence over C.

Proof. (1) is immediate from the definition: s-indiscernibility, spread-outness, and being a
Morley tree over C are all preserved under taking subtuples.

(2) Suppose (aη)η∈Tω is a Morley tree over C with aζi = ai. Define a function j : Tω → Tω
so that if η ∈ Tω with dom(η) = [k, ω), then dom(j(η)) = [n(k + 1), ω) and

j(η)(l) =

{
η
(
l
n
− 1
)

if n|l
0 otherwise

for all l ∈ [n(k + 1), ω). Define (bη)η∈Tω by

bη = (aj(η), aj(η)_〈0〉, . . . , aj(η)_0n−1).

It is easy to check that this is also an s-indiscernible tree over M (more formally, this
construction corresponds to the n-fold elongation of the tree (aη)η∈Tω as defined in Chapter
1 so (bη)η∈Tω is s-indiscernible over M by Proposition I.2.1(1) there). It is also easy to check
that (bη)η∈Tω is spread out over M . Finally, the tree (bη)η∈Tω is also a Morley tree over M :
given w ∈ [ω]<ω, let w′ = {n(k + 1)− l : k ∈ w, l < n}. Then if w, v ∈ [ω]<ω and |w| = |v|,
then |w′| = |v′| so (aη)η∈Tω�w′ ≡C (aη)η∈Tω�v′ so (bη)η∈Tω�w ≡C (bη)η∈Tω�v. It follows that
(bζi)i<ω is a tree Morley sequence over C. We have

bζi = (aζn(i+1)
, aζn(i+1)_〉0〉, . . . , aζn(i+1)_0n−1)

= (an(i+1), an(i+1)−1, . . . , an(i+1)−(n−1)),

so by reversing the order of the tuple, we deduce that (di)i<ω is a tree Morley sequence over
M .

From the existence of a sufficiently large tree which is spread out and s-indiscernible
over M , one can obtain a Morley tree which is based on it. The proof is via a standard
Erdős-Rado argument. We follow the argument of [GIL02, Theorem 1.13].

Lemma 3.5.10. Suppose (aη)η∈Tκ is a tree of tuples, spread out and s-indiscernible over M .
If κ is sufficiently large, then there is a Morley tree (bη)η∈Tω so that for all w ∈ [ω]<ω, there
is v ∈ [κ]<ω so that

(aη)η∈Tκ�v ≡M (bη)η∈Tω�w.



CHAPTER 3. KIM-INDEPENDENCE 98

Proof. Let λ = 2|M |+|T | and set κ = iλ+(λ). Given a tree (aη)η∈Tκ s-indiscernible and spread
out over M , let

Γn = {tp((aη)η∈Tω�w/M) : w ∈ [κ]n}.

By induction on n, we will find a sequence of types pn ∈ Γn so that

∆(xη : η ∈ Tω) =
⋃
n<ω

⋃
w∈[ω]n

pn(xη : η ∈ Tω � w)

is consistent. Construct by induction on n cofinal subsets Fn ⊆ λ+ and subsets Xξ,n ⊆ κ so
that

1. Fn+1 ⊆ Fn.

2. |Xξ,n| > iα(λ) when ξ is the αth element of Fn.

3. If w ∈ [Xξ,n]n, then (aη)η∈Tκ�w |= pn.

4. |Fn| = λ+.

For n = 0, we let F0 = λ+ and Xξ,0 = κ for all ξ < λ+. Suppose Fn and (Xξ,n)ξ∈Fn have
been constructed. Write Fn = {ξα : α < λ+} where the ξα enumerate Fn in increasing order.
Then for all α < λ+,

|Xξα+n+1,n| > iα+n+1(λ).

For a moment, fix ξ = ξα+n+1. Define a coloring on [Xξ,n]n+1 by

w 7→ tp((aη)η∈Tκ�w/M).

This is a coloring with at most λ many colors so by Erdős-Rado there is a homogeneous
subset Xξ,n+1 ⊆ Xξ,n with |Xξ,n+1| > iα(λ). Let pn+1,α+n+1 denote its constant value. By
the pigeonhole principle, as the set of possible values is λ and {α+ n+ 1 : α < λ+} has size
λ+, there must be some subset Y ⊆ {α+n+ 1 : α < λ+} of cardinality λ+ so that β, β′ ∈ Y
implies pn+1,β = pn+1,β′ . Let pn+1 = pn+1,β for some/all β ∈ Y . Put Fn+1 = {ξβ : β ∈ Y }.
Then pn+1, Fn+1, and (Xξ,n+1)ξ∈Fn+1 clearly satisfy the requirements.

By compactness, this shows that ∆(xη : η ∈ Tω) is consistent. Let (bη)η∈Tω be a re-
alization—now to show (bη)η∈Tω is a Morley tree over M , we must show that (bη)η∈Tω is
s-indiscernible and spread out over M . To see that it is spread out over M , fix any η ∈ Tω
with dom(η) = [n + 1, ω). Setting w = {0, . . . , n}, there is v ∈ [κ]<ω, v = {α0 < . . . < αn}
so that (bν)ν∈Tω�w ≡M (aν)ν∈Tκ�v. If νi ∈ Tκ has domain [α0, κ), νi(α0) = i and νi is iden-
tically zero elsewhere, 〈aDνi : i < ω〉 is a Morley sequence over M in an M -invariant type.
It follows that 〈bDη_〈i〉 : i < ω〉 is also a Morley sequence in an M -invariant type, which
establishes spread-outness of the tree. Checking that the tree is s-indiscernible over M is
entirely similar.
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The symmetry characterization of NSOP1

In this subsection, we prove a version of Kim’s lemma for tree Morley sequences and use
it to prove that Kim-independence is symmetric over models in an NSOP1 theory. Lemma
3.5.11 is the key step, showing that tree Morley sequences exist under certain assumptions.
The method of proof is an inductive construction of a spread out s-indiscernible tree, from
which a Morley tree (and hence a tree Morley sequence) can then be extracted. This basic
proof-strategy will be repeated several times throughout the paper.

Lemma 3.5.11. Suppose T is NSOP1, M |= T , and a |̂ K
M
b. For any ordinal α ≥ 1, there

is a spread out s-indiscernible tree (cη)η∈Tα over M , so that if η C ν and dom(ν) = α, then
cηcν ≡M ab.

Proof. We will argue by induction on α. For the case α = 1, fix q ⊇ tp(b/M), a global
M -invariant type. Let 〈bi : i < ω〉 |= q⊗ω|M . As a |̂ K

M
b, we may assume this sequence is

Ma-indiscernible. Put c1
∅ = a and c1

〈i〉 = bi. It is now easy to check that (c1
η)η∈T1 is a spread

out s-indiscernible tree satisfying the requirements.
Suppose for α we have constructed (cβη )η∈Tβ for 1 ≤ β ≤ α such that, if γ < β ≤ α

and η ∈ Tγ then cγη = cβιγβ(η). By spread-outness, we know that 〈cαD〈i〉 : i < ω〉 is an M -
invariant Morley sequence which is, by s-indiscernibility over M , Mcα∅ -indiscernible. There-
fore, cα∅ |̂

K

M
(cαD〈i〉)i<ω. By extension (Proposition 6.3.18), we may find some c′ ≡M(cαD〈i〉)i<ω

cα∅
so that

c′
K

|̂
M

(cαη )η∈Tα .

Choose a globalM -invariant type q ⊇ tp((cαη )η∈Tα/M). Let 〈(cαη,i)η∈Tα : i < ω〉 |= q⊗ω|M with
cαη,0 = cαη for all η ∈ Tα. By the chain condition (Lemma 3.3.21), we can find c′′ ≡M(cαη )η∈Tα

c′

so that c′′ |̂ K
M

(cαη,i)η∈Tα,i<ω and 〈(cαη,i)η∈Tα : i < ω〉 is Mc′′-indiscernible. Define a new tree
(dη)η∈Tα+1 by setting d∅ = c′′ and dιαα+1(η) = cαη for all η ∈ Tα. Then let (cα+1

η )η∈Tα+1 be a
tree s-indiscernible over M locally based on (dη)η∈Tα . By an automorphism, we may assume
cα+1
ιαα+1(η) = cαη for all η ∈ Tα. This satisfies our requirements.

Finally, suppose for δ limit we have constructed (cβη )η∈Tβ for 1 ≤ β < δ such that, if
γ < β < δ and η ∈ Tγ then cγη = cβιγβ(η). If η ∈ Tδ, then for some β < δ, there is ν ∈ Tβ so
that ιβδ(ν) = η. Then put cδη = cβν . This defines for all β ≤ δ an s-indiscernible tree (cβη )η∈Tη
satisfying our requirements.

Figure 3.2: The construction of the tree indexed by T2 in stages.
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The figure displays the construction of the tree indexed by T2 in stages: 1. The tree
indexed by T1. 2. Using extension to obtain a new base point. 3. Taking a Morley sequence
in the given tree, indiscernible over the new base point. 4. Extracting an s-indiscernible tree
to obtain a spread out, s-indiscernible tree indexed by T2.

Lemma 3.5.12. Suppose T is NSOP1, M |= T , and a |̂ K
M
b. Then there is a tree Morley

sequence (ai)i<ω which is Mb-indiscernible with a0 = a.

Proof. By Lemma 3.5.11, for arbitrarily large cardinals κ, there is a tree (cη)η∈Tκ which is
spread out and s-indiscernible over M so that if η C ν and dom(ν) = κ then cηcν ≡M ab.
Note that T ′ = Tκ \ {ν ∈ Tκ : dom(ν) = κ} = {η ∈ Tκ : dom(η) ⊆ [1, κ)} is isomorphic
to Tκ. So we may enumerate (cη)η∈T ′ as (dη)η∈Tκ . Note that for all η ∈ Tκ, dη ≡M a and
dζα = cζ1+α for all α < κ. By Lemma 3.5.10, there is a Morley tree over M (d′η)η∈Tω so that
for all w ∈ [ω]<ω there is v ∈ [κ]<ω so that (dη)η∈Tκ�v ≡M (d′η)η∈Tω�w.

Let p(x; a) = tp(b/Ma). We claim
⋃
i<ω p(x; d′ζi) is consistent. Given n, let w =

{0, . . . , n − 1}. Find v ∈ [κ]<ω so that (dη)η∈Tκ�v ≡M (d′η)η∈Tω�w. If v = {α0, . . . , αn−1},
then for i < n we have dζαi = c1+ζαi

. Then because cζ1+αicζ0 ≡M ab for all i < n, we have
cζ0 |=

⋃
i<n p(x; dζαi ). This shows

⋃
i<n p(x; dζαi ) is consistent and hence

⋃
i<n p(x; d′ζi) is

consistent. The claim follows by compactness.
Let b′ |=

⋃
i<ω p(x; d′ζi). Extract from (d′ζi)i<ω an Mb′-indiscernible sequence (ai)i<ω. As

(ai)i<ω ≡M (d′ζi)i<ω, we know (ai)i<ω is a tree Morley sequence. By an automorphism, we
may assume b′ = b and a0 = a.

Proposition 3.5.13. Suppose T is NSOP1 and M |= T . Suppose (ai)i<ω is a tree Morley
sequence over M . Then {ϕ(x; ai) : i < ω} is inconsistent if and only if ϕ(x; a0) Kim-divides
over M .

Proof. Suppose (ai)i<ω is a tree Morley sequence over M . Let (aη)η∈Tω be a Morley tree over
M with aζi = ai. Let ηi ∈ Tω be the function with dom(ηi) = [i, ω) and

ηi(j) =

{
1 if i = j
0 otherwise.

Consider the sequence I = (aηi , aζi)i<ω. Because (aη)η∈Tω is a Morley tree over M , I is an
M -indiscernible sequence. Moreover, by s-indiscernibility, aη0 ≡MI>0 aζ0 . By indiscernibility,
for all i, we have aηi ≡MI>i aζi . By NSOP1, it follows that {ϕ(x; aηi) : i < ω} is consistent
if and only if {ϕ(x; aζi) : i < ω} is consistent: if exactly one of them is consistent, then we
have SOP1 by Proposition 5.2.1.

Because (aη)η∈Tω is a spread out tree over M , aηi |̂
i

M
aη<i for all i. Using the fact that

(aηi)i<ω is an M -indiscernible sequence and the compactness of the space of M -invariant
types, we have (aηi)i<ω is a Morley sequence in some global M -invariant type extending
tp(a/M), so ϕ(x; a) Kim-divides over M if and only if {ϕ(x; aηi) : i < ω} is inconsistent.

Corollary 3.5.14. (Kim’s lemma for tree Morley sequences) Suppose T is NSOP1 and
M |= T . The following are equivalent:
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1. ϕ(x; a) Kim-divides over M .

2. For some tree Morley sequence (ai)i<ω over M with a0 = a, {ϕ(x; ai) : i < ω} is
inconsistent.

3. For every tree Morley sequence (ai)i<ω over M with a0 = a, {ϕ(x; ai) : i < ω} is
inconsistent.

Corollary 3.5.15. (Chain condition for tree Morley sequences) Suppose T is NSOP1 and
M |= T . If a |̂ K

M
b and I = (bi)i<ω is a tree Morley sequence over M with b0 = b, then there

is a′ ≡Mb a so that a′ |̂ K
M
I and I is Ma′-indiscernible.

Proof. The proof is identical to Proposition 3.3.21 above, since, by Lemma 3.5.9, 〈(bkn+n−1, bkn+n−2, . . . , bkn) :
k < ω〉 is a tree Morley sequence over M .

Theorem 3.5.16. (Symmetry) Suppose T is a complete theory. The following are equivalent:

1. T is NSOP1.

2. |̂ K is symmetric over models: for any M |= T and tuples a, b from M, a |̂ K
M
b ⇐⇒

b |̂ K
M
a.

3. |̂ K enjoys the following weak symmetry property: for any M |= T and tuples a, b from
M, a |̂ i

M
b implies b |̂ K

M
a.

Proof. (1) ⇐⇒ (3) is Proposition 3.3.22 and (2) =⇒ (3) is immediate from the fact that
a |̂ i

M
b implies a |̂ K

M
b.

(1) =⇒ (2). Suppose T is NSOP1. Assume towards contradiction that a |̂ K
M
b and

b 6 |̂ K
M
a. By Lemma 3.5.12, there is a tree Morley sequence over M with a0 = a which is

Mb-indiscernible. Since b 6 |̂ K
M
a, there is some ϕ(x; a) ∈ tp(b/Ma) which Kim-divides over

M . By Corollary 3.5.14, {ϕ(x; ai) : i < ω} is inconsistent. But |= ϕ(b; ai) for all i < ω by
indiscernibility, a contradiction.

Corollary 3.5.17. Assume the complete theory T is NSOP1 and M |= T . Then

a
K

|̂
M

b ⇐⇒ acl(a)
K

|̂
M

b ⇐⇒ a
K

|̂
M

acl(b).

Proof. By symmetry, it is enough to prove acl(a) |̂ K
M
b, assuming a |̂ K

M
b. If a |̂ K

M
b, there is

a Morley sequence in anM -invariant type 〈bi : i < ω〉 with b0 = b which isMa-indiscernible.
Then it is automatically Macl(a)-indiscernible so acl(a) |̂ K

M
b.
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3.6 The independence theorem
The full independence theorem will be deduced from a weak independence theorem, which
has an easy proof:

Proposition 3.6.1. Assume T is NSOP1. Then |̂ K satisfies the following weak indepen-
dence theorem over models: if M |= T , a ≡M a′, a |̂ K

M
b, a′ |̂ K

M
c and b |̂ u

M
c, then there

is a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂ K

M
bc.

Proof. Suppose T is NSOP1 and fix M |= T and tuples a, a′, b, c so that a ≡M a′, a |̂ K
M
b,

a′ |̂ K
M
c and b |̂ u

M
c.

Claim: There is c′ so that ac′ ≡M a′c and a |̂ K
M
bc′.

Proof of claim: By symmetry, it suffices to find c′ with ac′ ≡M a′c and bc′ |̂ K
M
a. Let

p(x; a′) = tp(c/Ma′). By invariance, we know p(x; a) does not Kim-fork over M . We have
to show

p(x; a) ∪ {¬ϕ(x, b; a) : ϕ(x, y; a) ∈ L(Ma) Kim-divides over M}

is consistent. If not, then by compactness and Kim-forking = Kim-dividing, we must have

p(x; a) ` ϕ(x, b; a),

for some ϕ where ϕ(x, y; a) Kim-divides over M . By symmetry, b |̂ K
M
a, so there is some

M -invariant Morley sequence (ai)i<ω with a0 = a which is moreover Mb-indiscernible. Then
we have ⋃

i<ω

p(x; ai) ` {ϕ(x, b; ai) : i < ω}.

As p(x; a) does not Kim-fork over M , we know
⋃
i<ω p(x; ai) is consistent. But, by Kim’s

lemma for Kim-dividing, we know {ϕ(x, y; ai) : i < ω} is inconsistent and a fortiori {ϕ(x, b; ai) :
i < ω} is inconsistent, a contradiction. So the given partial type is consistent. Let c′ realize
it. Then ac′ ≡M a′c and c′b |̂ K

M
a, which proves the claim.

As b |̂ u
M
c, by left extension, there is c′′ ≡Mb c with bc′ |̂ u

M
c′′. Then by right ex-

tension and automorphism, we can choose some b′′ so that bc′ ≡M b′′c′′ and bc′ |̂ u
M
b′′c′′.

As bc′ |̂ u
M
b′′c′′ and bc′ ≡M b′′c′′, it follows that (b′′c′′, bc′) starts a Morley sequence I in

some global M -finitely satisfiable (hence M -invariant) type. As a |̂ K
M
bc′, we may, by the

chain condition (Proposition 3.3.21) find some a∗ ≡Mbc′ a so that I is Ma∗-indiscernible
and a∗ |̂ KM I. Then, we obtain a∗ ≡Mb a, a∗c′′ ≡M a′c, and a∗ |̂ KM bc′′. By construction,
c′′ ≡Mb c so there is σ ∈ Aut(M/Mb) with σ(c′′) = c. Then σ(a∗) |̂ KM bc, σ(a∗) ≡Mb a,
and σ(a∗) ≡Mc a

′, which shows that the weak independence theorem over models holds for
T .

Lemma 3.6.2. Suppose T is NSOP1, M |= T , and a |̂ K
M
b. Fix an ordinal α and any

q ⊇ tp(b/M), a global M-invariant type. If (bη)η∈Tα is a tree, spread out over M , so that,
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for all ν ∈ Tα, bν |= q|MbBν , then, writing p(x; b) for tp(a/Mb), we have⋃
η∈Tα

p(x; bη)

is consistent and non-Kim-forking over M .

Proof. The proof is by induction on α. For α = 0, there is nothing to show. For α limit, it
follows by induction, using that Tα is the direct limit of the Tβ for β < α along the maps
ιβα. Now suppose given (bη)η∈Tα+1 as in the statement. We know that bDζα = (bιαα+1(η))η∈Tα
is a tree spread out over M so that, for all ν ∈ Tα, bιαα+1(ν) |= q|M(bιαα+1(η)

)ηDν . Note that
∅_ 〈0〉 = ζα. By induction, then, ⋃

νD∅_〈0〉

p(x; bν)

is consistent and non-Kim-forking over M . By spread outness over M , 〈bD∅_〈i〉 : i < ω〉 is a
Morley sequence in some global M -invariant type. By the chain condition,⋃

i<ω

⋃
νD∅_〈i〉

p(x; bν)

is consistent and non-Kim-forking over M . As b∅ |= q|M(bνB∅), it follows by Proposition 3.6.1
that

p(x; b∅) ∪
⋃
i<ω

⋃
νD∅_〈i〉

p(x; bν)

is consistent and non-Kim-forking over M . Unwinding definitions, this says⋃
η∈Tα+1

p(x; bη)

is consistent and non-Kim-forking over M , completing the proof.

Remark 3.6.3. In the above proof, the hypothesis that bν |= q|MbBν is used to apply the
weak independence theorem (Proposition 3.6.1). Once one has proved the full independence
theorem (Theorem 3.6.5), the same proof gives

⋃
η∈Tα p(x; bη) is consistent and non-Kim-

forking over M , just under the hypothesis that (bη)η∈Tα is s−indiscernible and spread out
over M , since bν |̂ KM bBν in any tree s-indiscernible and spread out over M .

Lemma 3.6.4. (Zig-zag Lemma) Suppose the complete theory T is NSOP1, M |= T and
b |̂ K

M
b′. Then for any global M-invariant type q ⊇ tp(b/M), there is a tree Morley sequence

over M (bi, b
′
i)i<ω starting with (b, b′) so that

1. If i ≤ j, then bib′j ≡M bb′.
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2. If i > j, then bi |= q|Mb′j
.

Proof. Fix q ⊇ tp(b/M) and let p(x; b) = tp(b′/Mb). By recursion on α, we will construct
trees (cαη , d

α
η )η∈Tα so that, for all α

1. If η ∈ Tα, then
cαη |= q|McαBηd

α
Bη

2. If η ∈ Tα, then
dαη |=

⋃
νDη

p(x; cαν )

3. (cαη , d
α
η )η∈Tα is spread out and s-indiscernible over M

4. If β < α then (cαιβα(η), d
α
ιβα(η)) = (cβη , d

β
η ) for all η ∈ Tβ.

To start, define (c0
∅, d

0
∅) = (b, b′). This defines (c0

η, d
0
η)η∈T0 .

Now suppose given (cαη , d
α
η )η∈Tα . Let 〈(cαη,i, dαη,i) : i < ω〉 be an M -invariant Morley

sequence with (cαη,0, d
α
η,0)η∈Tα = (cαη , d

α
η )η∈Tα . Pick c∗ so that

c∗ |= q|M(cαη,i,d
α
η,i)η∈Tα,i<ω

.

Then, by Lemma 3.6.2, we may choose d∗ so that

d∗ |=
⋃
η∈Tα
i<ω

p(x; cαη,i) ∪ p(x; c∗).

Define a tree (eη, fη)η∈Tα+1 by

(e∅, f∅) = (c∗, d∗)

(e〈i〉_η, f〈i〉_η) = (cαη,i, d
α
η,i).

Finally, let (cα+1
η , dα+1

η )η∈Tα+1 be a tree s-indiscernible over M locally based on this tree.
By an automorphism, we may assume that cα+1

ιαα+1(η) = cαη for all η ∈ Tα. This satisfies the
requirements.

Finally, arriving to stage δ for δ limit, we simply define (cδη, d
δ
η)η∈Tδ by stipulating (cδιβδ(η), d

δ
ιβδ(η)) =

(cβη , d
β
η ) for all β < δ. By the coherence condition (4), this is well-defined, and satisfies the

requirements. We conclude by extracting a Morley tree, by Lemma 3.5.10.

Theorem 3.6.5. Suppose T is a complete theory. The following are equivalent:

1. T is NSOP1.

2. |̂ K satisfies the independence theorem over models: if M |= T , a ≡M a′, a |̂ K
M
b,

a′ |̂ K
M
c, and b |̂ K

M
c, then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a

′ and a′′ |̂ K
M
bc.
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Proof. (2) =⇒ (1) follows from Theorem I.5.1, using that |̂ i implies |̂ K .
(1) =⇒ (2): Assume T is NSOP1. Suppose M |= T , a ≡M a′, and a |̂ K

M
b, a′ |̂ K

M
c and

b |̂ K
M
c. We must show there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a

′ and a′′ |̂ K
M
bc. Let p0(x; b) =

tp(a/Mb) and p1(x; c) = tp(a′/Mc). Suppose towards contradiction that p0(x; b) ∪ p1(x; c)
Kim-forks over M . Let q ⊇ tp(b/M) be a global type finitely satisfiable in M . In particular,
q is M -invariant so, by Lemma 3.6.4, there is a tree Morley sequence over M , (bi, ci)i∈Z so
that

(a) If i ≤ j, then bicj ≡M bc.

(b) If i > j, then bi |= q|Mcj .

Then both (b2i, c2i+1)i∈Z and (b2i, c2i−1)i∈Z are tree Morley sequences overM by Lemma 3.5.9.
By (a), we know p0(x; b0) ∪ p1(x; c1) Kim-forks over M so⋃

i∈Z

p0(x; b2i) ∪ p1(x; c2i+1)

is inconsistent. However, because b0 |̂ uM c−1 by (2), Proposition 3.6.1 gives that p0(x; b0) ∪
p1(x; c−1) does not Kim-fork over M . Therefore⋃

i∈Z

p0(x; b2i) ∪ p1(x; c2i−1)

is consistent. And this is a contradiction, as these two partial types are the same. This
completes the proof.

Corollary 3.6.6. Suppose T is NSOP1, M |= T , b ≡M b′ and b |̂ K
M
b′. Then there is a tree

Morley sequence (bi)i<ω over M , with b0 = b and b1 = b′.

Proof. Let p(x; b) = tp(b′/Mb). By induction on ordinals α ≥ 1, we will build trees (bαη )η∈Tα
spread out and s-indiscernible over M so that

1. ν C η then bαν bαη ≡M b′b.

2. If 1 ≤ β < α, then bαιβα(η) = bβη .

To start, let b = (bi)i<ω be an M -invariant Morley sequence—as b |̂ K
M
b′, we may assume

this sequence is Mb′-indiscernible. Define (b1
η)η∈T1 by b1

∅ = b′ and b1
〈i〉 = bi. Then (b1

η)η∈T1 is
spread out and s-indiscernible over M and clearly satisfies (1).

Now suppose given (bαη )η∈Tα . Let 〈(bαη,i)η∈Tα : i < ω〉 be an M -invariant Morley sequence
with (bαη,0)η∈Tα = (bαη )η∈Tα . Choose b′′ |̂

K

M
(bαη )η∈Tα with

b′′ |=
⋃
η∈Tα

p(x; bαη ),
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(this is possible by Remark 3.6.3). By the chain condition, we may assume the sequence
〈(bαη,i)η∈Tα : i < ω〉 isMb′′-indiscernible and that b′′ |̂ K

M
(bαη,i)η∈Tα,i<ω. Define a tree (cη)η∈Tα+1

by c∅ = b′′ and c〈i〉_η = bαη,i. Then let (bα+1
η )η∈Tα+1 be a tree which is s-indiscernible over M

and locally based on (cη)η∈Tα+1 . By an automorphism, we may assume that bα+1
ιαα+1(η) = bαη for

all η ∈ Tα. This satisfies the requirements.
Finally, if δ is a limit and we are given (bαη )η∈Tα for all α < δ, define (bδη)η∈Tδ as follows:

if η ∈ Tδ, choose any α < δ and ν ∈ Tα so that η = ιαδ(ν). Then define bδη = bαν . By the
coherence condition, this is well-defined and clearly satisfies the requirements.

To conclude, let κ be big enough for Erdős-Rado and consider (bκη)η∈Tκ given by the above
construction. Apply Lemma 3.5.10 to find (cη)η∈Tω , a Morley tree over M , based on this
tree. By an automorphism, we may assume cζ0 = b and cζ1 = b′. The sequence (cζi)i<ω is
the desired tree Morley sequence.

3.7 Forking and witnesses

Basic properties of forking

Definition 3.7.1. 1. The formula ϕ(x; b) divides over A if there is an A-indiscernible
sequence 〈bi : i < ω〉 with b0 = b so that {ϕ(x; bi) : i < ω} is inconsistent. A type p(x)
divides over A if it implies some formula that divides over A. Write a |̂ d

A
B to mean

that tp(a/AB) does not divide over A.

2. The formula ϕ(x; b) forks over A if ϕ(x; b) implies a finite disjunction
∨
i ψi(x; ci) where

each ψi(x; ci) divides over A. A type p(x) forks over A if it implies a formula which
forks over A. We write a |̂ f

A
B to mean that tp(a/AB) does not fork over A.

The following facts about forking and dividing are easy and well-known – see, e.g., [GIL02]
[Adl05].

Fact 3.7.2. The following are true with respect to an arbitrary theory:

1. a |̂ d
A
b if and only if, given any A-indiscernible sequence I = 〈bi : i < ω〉 with b = b0,

there is a′ ≡Ab a so that I is Aa′-indiscernible.

2. |̂ f is an invariant ternary relation on small subsets satisfying:

a) (Extension) If a |̂ f
A
b, then, for all c, there is a′ ≡Ab a so that a′ |̂ f

A
bc.

b) (Base Monotonicity) If a |̂ f
A
bc then a |̂ f

Ab
c.

c) (Left Transitivity) If a |̂ f
Ab
c and b |̂ f

A
c then ab |̂ f

A
c.

3. For any model M ,

a
i

|̂
M

b =⇒ a
f

|̂
M

b =⇒ a
K

|̂
M

b.
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Remark 3.7.3. |̂ d may fail to satisfy (2)(a) in an arbitrary theory, but always satisfies (2)(b)
and (2)(c).

As a warm-up to the theorem in the next subsection, we note that these properties easily
give a weak form of transitivity for |̂ K :

Lemma 3.7.4. Suppose a |̂ d
M
bc and b |̂ K

M
c. Then ab |̂ K

M
c.

Proof. Assume a |̂ d
M
bc and b |̂ K

M
c. As b |̂ K

M
c, for any M -invariant Morley sequence I =

(ci)i<ω with c0 = c, there is I ′ = (c′i)i<ω with I ′ ≡Mc0 I which is, moreover, Mb-indiscernible.
By base monotonicity of |̂ d, a |̂ d

Mb
c so there is anMab-indiscernible sequence I ′′ = (c′′i )i<ω

with I ′′ ≡Mbc I
′. Thus I ′′ is an M -invariant Morley sequence with c′′0 = c which is Mab-

indiscernible. By an automorphism, we obtain a′b′ ≡Mc ab so that I is Ma′b′-indiscernible.
As I was an arbitrary M -invariant Morley sequence over M , it follows that ab |̂ K

M
c.

Morley Sequences

Definition 3.7.5. SupposeM |= T . An |̂ K-Morley sequence overM is anM -indiscernible
sequence 〈bi : i < ω〉 satisfying bi |̂ KM b<i. Likewise, an |̂ f -Morley sequence over M is an
M -indiscernible sequence 〈bi : i < ω〉 satisfying bi |̂ fM b<i.

Lemma 3.7.6. Suppose the complete theory T is NSOP1, M |= T , and ϕ(x; b) does not
Kim-divide over M . Then for any |̂ K-Morley sequence 〈bi : i < ω〉 over M with b0 = b,
{ϕ(x; bi) : i < ω} is non-Kim-forking overM . In particular, this set of formulas is consistent.

Proof. By induction on n, we will show that {ϕ(x; bi) : i ≤ n} is non-Kim-forking over
M . The case of n = 0 follows by hypothesis. Now suppose {ϕ(x; bi) : i ≤ n} is non-
Kim-forking over M . Fix σ ∈ Aut(M/M) with σ(b0) = bn+1. Let a |= {ϕ(x; bi) : i ≤ n}
with a |̂ K

M
b≤n. Then σ(a) ≡M a and |= ϕ(σ(a); bn+1). We know bn+1 |̂ KM b≤n so by the

independence theorem, there is a′ with a′ ≡Mb≤n a and a′ ≡Mbn+1 σ(a) so that a′ |̂ K
M
b≤n+1.

As a′ |= {ϕ(x; bi) : i ≤ n + 1}, this completes the induction. The lemma, then, follows by
compactness.

Theorem 3.7.7. Suppose the complete theory T is NSOP1 and M |= T . The following are
equivalent:

1. ϕ(x; b) Kim-divides over M .

2. For some |̂ f -Morley sequence (bi)i<ω over M with b0 = b, {ϕ(x; bi) : i < ω} is
inconsistent.

3. For every |̂ f -Morley sequence (bi)i<ω over M with b0 = b, {ϕ(x; bi) : i < ω} is
inconsistent.
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Proof. (3) =⇒ (2) is immediate, as a Morley sequence in a global M -invariant type is, in
particular, an |̂ f -Morley sequence and such sequences always exist.

(2) =⇒ (1) follows from Lemma 3.7.6, as an |̂ f -Morley sequence is an |̂ K-Morley
sequence.

Now we show (1) =⇒ (3). Suppose not—assume that ϕ(x; b) is a formula which Kim-
divides over M , but there is some |̂ f -Morley sequence over M with b0 = b so that
{ϕ(x; bi) : i < ω} is consistent. By induction on n, we will construct a sequence (b′i)i≤n
and an elementary chain (Ni)i≤n so that

1. For all n < ω, b0 . . . bn ≡M b′0 . . . b
′
n.

2. For all n < ω, M ≺ Nn ≺ Nn+1 ≺M.

3. For all n < ω, b′n |̂
f

M
Nn.

4. For all n < ω, b′n ∈ Nn+1.

For the n = 0 case, set b′0 = b0 and N0 = M . Now suppose we are given (Ni)i≤n and
(b′i)i≤n. Let Nn+1 be an arbitrary (small) elementary extension of Nn which contains b′n. By
invariance and extension of |̂ f , we may choose some b′n+1 so that b′0 . . . b′n+1 ≡M b0 . . . bn+1

and b′n+1 |̂
f

M
Nn+1. This completes the recursion.

Set N =
⋃
i<ωNi.

Claim 1: For all n < ω, (b′i)i≥n |̂
f

M
Nn.

Proof of claim: Fix n. We will argue by induction on k that b′n . . . b′n+k |̂
f

M
Nn. For k = 0,

this is by construction. Assume it has been proven for k. Note that b′n+k+1 |̂
f

M
Nn+k+1. Now

Nn and (b′i)i≤n+k are contained in Nn+k+1 so, in particular, we have b′n+k+1 |̂
f

M
Nnb

′
0 . . . b

′
n+k.

By base monotonicity, we have

b′n+k+1

f

|̂
Mb′0...b

′
n+k

Nn.

This, together with the induction hypothesis, implies

b′0 . . . b
′
n+k+1

f

|̂
M

Nn

by left-transitivity. The claim follows by finite character.
Let D be any non-principal ultrafilter on {b′i : i < ω} and (ci)i<ω be a sequence chosen

so that ci |= Av(D, Nc<i), i.e. a Morley sequence over N in the global (b′i)i<ω-invariant type
Av(D,M).

Claim 2: (ci)i<ω |̂ fM N .
Proof of claim: Suppose not. Then by finite character, there is l so that (ci)i<l 6 |̂ fM N

so we choose some ϕ(x0, . . . , xl−1; d) ∈ tp(c0, . . . , cl−1/N) which forks over M . Choose n
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so that d ∈ Nn. By definition of average type, we may find i0 > . . . > il−1 > n so that
M |= ϕ(b′i0 , . . . , b

′
il−1

; d). Then (b′i)i≥n 6 |̂
f

M
Nn, contradicting Claim 1.

Let q ⊇ tp((ci)i<ω/M) be a global M -invariant and indiscernible type, as in Definition
3.3.7. Let 〈(ck,i)i<ω : k < ω〉 be a Morley sequence over M in q with c0,i = ci for all i < ω.
By Lemma 3.3.10, (ck)k<ω is a mutually-indiscernible array over M . By Claim 2, we know
c0 |̂ fM N hence c0 |̂ KM N , so we may assume the sequence (ck)k<ω is N -indiscernible by
symmetry. We know that {ϕ(x; bi) : i < ω} is consistent so {ϕ(x; b′i) : i < ω} is consistent,
and therefore {ϕ(x; c0,i) : i < ω} is consistent. The sequence (c0,i)i<ω is also an N -invariant
Morley sequence so ϕ(x; c0,0) does not Kim-divide over N . But as c0,0 ≡M b, (ci,0)i<ω is
an M -invariant Morley sequence over M , and ϕ(x; b) Kim-divides over M , we know that
{ϕ(x; ci,0) : i < ω} is inconsistent.

Let (di)i<ω be a mutually indiscernible array over N , locally based on (ci)i<ω (exists by
[Che14, Lemma 1.2]), with (di)i<ω an N -indiscernible sequence. By Lemma 3.3.10, we have
(di,0)i<ω ≡M (ci,0)i<ω. Also, because (ci)i<ω was taken to be N -indiscernible and c0 was an N -
invariant Morley sequence, we know each ci is an N -invariant Morley sequence, and therefore
each di is an N -invariant Morley sequence. By choice of the array, {ϕ(x; di,j) : j < ω} is
consistent for all i, so ϕ(x; di,0) does not Kim-divide overN . Also, we have {ϕ(x; di,0) : i < ω}
is inconsistent. Thus, to derive a contradiction, it suffices by Lemma 3.7.6 to establish the
following:

Claim 3: (di,0)i<ω is an |̂ K-Morley sequence over N .
Proof of claim: As the (di,j)i,j<ω forms a mutually indiscernible array over N , we know

that for each i < ω, di is an Nd<i-indiscernible sequence. But it is also an N -invariant Morley
sequence so d<i |̂ KN di,0. By symmetry, this yields in particular that di,0 |̂ KN d0,0 . . . di−1,0.
This proves the claim and completes the proof.

Witnesses

Definition 3.7.8. Suppose M is a model and (ai)i<ω is an M -indiscernible sequence.

1. Say (ai)i<ω is a witness for Kim-dividing over M if, whenever ϕ(x; a0) Kim-divides
over M , {ϕ(x; ai) : i < ω} is inconsistent.

2. Say (ai)i<ω is a strong witness to Kim-dividing over M if, for all n, the sequence
〈(an·i, an·i+1, . . . , an·i+n−1) : i < ω〉 is a witness to Kim-dividing over M .

Corollary 3.5.14 and Lemma 3.5.9 show that tree Morley sequences are strong witnesses
for Kim-dividing. The following proposition shows the converse, giving a characterization of
strong witnesses as exactly the tree Morley sequences.

Proposition 3.7.9. Suppose T is NSOP1 and M |= T . Then (ai)i<ω is a strong witness for
Kim-dividing over M if and only if (ai)i<ω is a tree Morley sequence over M .
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Proof. If (ai)i<ω is a tree Morley sequence, then (an·i, an·i+1, . . . , an·i+(n−1))i<ω is also a tree
Morley sequence over M by Lemma 3.5.9. It follows that (ai)i<ω is a strong witness to
Kim-dividing by Corollary 3.5.14.

For the other direction, suppose (ai)i<ω is a strong witness to Kim-dividing overM . Given
an arbitrary cardinal κ, we may, by compactness, stretch the sequence to (ai)i<κ which is
still a strong witness to Kim-dividing over M . By recursion on α < κ, we will construct
trees (aαη )η∈Tα so that

1. For all i < α, aαζi = ai and also aα∅ = aα for α successor.

2. (aαη )η∈Tα is spread out over M and s-indiscernible over M(ai)i>α.

3. If α < β, then aαη = aβιαβ(η) for all η ∈ Tα.

For the case α = 0, put a0
∅ = a0. This satisfies the demands. Suppose (aβη )η∈Tβ has been

defined for all β ≤ α. By Ramsey, compactness, and an automorphism, we may assume
(ai)i>α is M(aαη )η∈Tα-indiscernible. As I>α = (ai)i>α is also a strong witness to Kim-dividing
over M , we have

(aαη )η∈Tα
K

|̂
M

I>α.

Let J = 〈(aαη,i)η∈Tα : i < ω〉 be a Morley sequence in an M -invariant type with aαη,0 = aαη
for all η ∈ Tα. By symmetry, I>α |̂ KM(aαη )η∈Tα so we may assume J is MI>α-indiscernible.
Define the tree (aα+1

η )η∈Tα+1 by aα+1
∅ = aα+1 and aα+1

〈i〉_η = aαη,i for all η ∈ Tα and i < ω. Note
in particular, this definition gives aα+1

ιαα+1(η) = aα+1
0_η = aαη for all η ∈ Tα. The tree we just

constructed is clearly spread out. By an automorphism, we may further assume (aα+1
η )η∈Tα+1

is s-indiscernible over MI>α+1. This completes the successor step.
Now suppose given (aβη )η∈Tβ for all β < δ, where δ is a limit. Define (aδη)η∈Tδ by setting

aδιαδ(η) = aαη for all α < δ and η ∈ Tα. Condition (3) guarantees that this is well-defined.
Taking κ to be sufficiently large, we may extract a Morley tree from the tree we just

constructed by Lemma 3.5.10 – in particular, we may obtain a Morley tree (bη)η∈Tω so that
(bζi)i<ω ≡M (ai)i<ω. This shows that (ai)i<ω is a tree Morley sequence over M .

Corollary 3.7.10. Suppose T is NSOP1 and M |= T . An |̂ f -Morley sequence over M is
a tree Morley sequence.

Proof. Suppose (ai)i<ω is an |̂ f -Morley sequence over M . Arguing as in Claim 1 of the
proof of Theorem 3.7.7, for all n < ω, a>n |̂ fM a≤n. Therefore,
〈(an·i, an·i+1, . . . , an·i+n−1) : i < ω〉 is an |̂ f -Morley sequence over M , hence a witness to
Kim-dividing over M by Theorem 3.7.7. This shows (ai)i<ω is a strong witness to Kim-
dividing over M . By Proposition 3.7.9, (ai)i<ω is a tree Morley sequence over M .
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In any theory, if (ai)i<ω is an |̂ f -Morley sequence over A, then, as the proof of Corollary
3.7.10 shows, that a>n |̂ fA a≤n for all n < ω. As base monotonicity and left-transitivity do
not necessarily hold for |̂ K , we give a Morley sequence with this stronger behavior a name:

Definition 3.7.11. Say theM -indiscernible sequence (ai)i<ω is a total |̂ K-Morley sequence
if a>n |̂ KM a≤n for all n < ω.

3.8 Characterizing NSOP1 and simple theories

The Main Theorem

Before continuing with the rest of the paper, we pause to take stock of what has been shown:

Theorem 3.8.1. The following are equivalent for the complete theory T :

1. T is NSOP1

2. Ultrafilter independence of higher formulas: for every model M |= T , and ultrafilters D
and E on M with Av(D,M) = Av(E ,M), (ϕ,M,D) is higher if and only if (ϕ,M, E)
is higher

3. Kim’s lemma for Kim-dividing: For every model M |= T and ϕ(x; b), if ϕ(x; y) q-
divides for some global M-invariant q ⊇ tp(b/M), then ϕ(x; y) q-divides for every
global M-invariant q ⊇ tp(b/M).

4. Local character: for some infinite cardinal κ, there cannot be a sequence 〈Ni, ϕi (x, yi) , ci :
i < κ〉 such that 〈Ni : i < κ〉 is an increasing continuous sequence of models of T ,
ϕi(x, yi) is a formula over Ni, ci ∈ Ni+1, such that ϕi(x, ci) Kim-forks over Ni and
{ϕ(x, ci) : i < κ} is consistent.

5. Symmetry over models: for every M |= T , then a |̂ K
M
b if and only if b |̂ K

M
a.

6. Independence theorem over models: ifM |= T , a ≡M a′, a |̂ K
M
b, a′ |̂ K

M
c, and b |̂ K

M
c,

then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂ K

M
bc.

Proof. (1)⇐⇒ (2)⇐⇒ (3) is Theorem 3.3.16.
(1)⇐⇒ (4) is Corollary 3.4.6.
(1)⇐⇒ (5) is Theorem 3.5.16.
(1)⇐⇒ (6) is Theorem 3.6.5.
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Simplicity within the class of NSOP1 theories

Definition 3.8.2. [Che14, Section 6] Suppose p(x) is a partial type over the set A.

1. We say p is a simple type if there is no ϕ(x; y), (aη)η∈ω<ω and k < ω so that {ϕ(x; aη_〈i〉) :
i < ω} is k-inconsistent for all η ∈ ω<ω and p(x) ∪ {ϕ(x; aη|i) : i < ω} is consistent for
all η ∈ ωω. Equivalently, p(x) is simple if, whenever B ⊇ A, q ∈ S(B), and p ⊆ q, then
q does not divide over AB′ for some B′ ⊆ B, |B′| ≤ |T | (for the definition of dividing,
see Definition 3.7.1 above).

2. We say p(x) is a co-simple type if there is no formula ϕ(x; y) ∈ L(A) for which there
exists (aη)η∈ω<ω and k < ω so that {ϕ(x; aη_〈i〉) : i < ω} is k-inconsistent for all
η ∈ ω<ω and {ϕ(x; aη|i) : i < ω} is consistent for all η ∈ ωω and moreover aη |= p for
all η ∈ ω<ω.

Proposition 3.8.3. Assume T is NSOP1 and let π(x) be a partial type over A.

1. Assume that for any ϕ(x; a) and any model M ⊇ A, π(x) ∪ {ϕ(x; a)} divides over M
if and only if π ∪ {ϕ(x; a)} Kim-divides over M . Then π(x) is a simple type.

2. Assume that if M ⊇ A, then for any a and for any b |= π(x), a |̂ f
M
b if and only if

a |̂ K
M
b. Then π is a co-simple type.

Proof. Fix a Skolemization T Sk of T . Throughout the proof, indiscernibility will be with
respect to the language LSk of the Skolemization. (1) Suppose π is not simple. Then by
compactness, there is a formula ϕ(x; y) over A and a tree (aη)η∈ω<ω+1 s-indiscernible over A
so that for some k < ω

• For all η ∈ ωω+1, π(x) ∪ {ϕ(x; aη|α) : α < ω + 1} is consistent

• For all η ∈ ω<ω+1, {ϕ(x; aη_α) : α < ω} is k-inconsistent.

Moreover we may assume (a0α : α < ω + 1) is an A-indiscernible sequence. Let b |=
π(x) ∪ {ϕ(x; a0α) : α < ω + 1}. By Ramsey, compactness, and automorphism, we may
assume (a0α : α < ω+ 1) is Ab-indiscernible. Let C = {a0α : α < ω}. Then s-indiscernibility
implies (a0ω_β : β < ω) is indiscernible over A∪C and {ϕ(x; a0ω_β) : β < ω} is k-inconsistent
by our assumption. As b |= ϕ(x; a0ω_〈0〉), we have b 6 |̂ d

AC
a0ω_〈0〉. But by indiscernibility,

a0ω_〈0〉 |̂ uAC b so in particular a0ω_〈0〉 |̂ KM b and b |̂ K
M
a0ω_〈0〉, where M = Sk(AC), by

symmetry.
(2) We argue similarly. Suppose (aη)η∈ω<ω+1 is a collection of realizations of π, forming a

tree s-indiscernible over A, with respect to which ϕ(x; y) witnesses that π is not co-simple.
Let a |= {ϕ(x; b0α) : α < ω + 1}. By Ramsey, compactness, and automorphism, we may
assume (b0α : α < ω + 1) is a Ba-indiscernible sequence. Setting M = Sk(A(b0α)α<ω), we
have a 6 |̂ d

M
b0ω_〈0〉 but b0ω_〈0〉 |̂ uM a so a |̂ K

M
b0ω_〈0〉.



CHAPTER 3. KIM-INDEPENDENCE 113

In a similar vein, we have:

Proposition 3.8.4. The complete theory T is simple if and only if T is NSOP1 and |̂ f =

|̂ K over models.

Proof. If T is simple, then |̂ f = |̂ K over models by Kim’s lemma for simple theories
[Kim98, Proposition 2.1], as a Morley sequence in a global invariant type is, in particular,
a Morley sequence in the sense of non-forking. On the other hand, by [Kim01, Theorem
2.4] forking is symmetric if and only if T is simple and, by [Che14, Lemma 6.16], we even
have that if forking is symmetric over models then T is simple. If T is NSOP1, then |̂ K is
symmetric so |̂ K = |̂ f implies T is simple.

We also can give an interesting new proof of the following well-known fact:

Corollary 3.8.5. The complete theory T is simple if and only if T is NSOP1 and NTP2.

Proof. In an NTP2 theory, if ϕ(x; b) divides over a model M , there is a Morley sequence
sequence over M in some global M -finitely satisfiable type witnessing this [CK12, Lemma
3.14]. So |̂ d = |̂ K , which implies T is simple.

Definition 3.8.6. [YC14, Definition 2.5] We say (ai)i∈κ is a universal Morley sequence in
p ∈ S(A) if

• (ai)i∈κ is indiscernible with ai |= p

• If ϕ(x; y) ∈ L(A) and ϕ(x; a0) divides over A then {ϕ(x; ai) : i ∈ κ} is inconsistent.

Proposition 3.8.7. Suppose T is NSOP1. Then T is simple if and only if, for any M |= T
and p(x) ∈ S(M), there is a universal Morley sequence in p.

Proof. If T is simple, then in any type p(y) ∈ S(M), there is a |̂ f -Morley sequence in p(y).
By Kim’s lemma for simple theories [Kim98, Proposition 2.1], this is a universal Morley
sequence in p.

If T is not simple, then there is some formula ϕ(x; b) ∈ L(Mb) which divides over M
but does not Kim-divide over M , by Proposition 3.8.4. Suppose there is a universal Morley
sequence in tp(b/M)—by compactness we can take it to be (bi)i∈Z indexed by Z. Then given
i ∈ Z, we have b<i is Mbi-indiscernible so b<i |̂ dM bi so bi |̂ KM b<i by symmetry. So (bi)i∈Z

is an |̂ K-Morley sequence. By Lemma 3.7.6, {ϕ(x; bi) : i ∈ Z} is consistent. But ϕ(x; b)
divides overM and (bi)i∈Z is a universal Morley sequence so {ϕ(x; bi) : i ∈ Z} is inconsistent.
This is a contradiction.

If a |̂ K
M
bb′, it does not always make sense to ask if a |̂ K

Mb
b′, since it is not always

the case that tp(b′/Mb) extends to a global Mb′-invariant type. This can occur, however,
whenever Mb′ is a model, for instance. Say |̂ K satisfies base monotonicity over models if,
whenever a |̂ K

M
Nb where M,N |= T , then a |̂ K

N
b.
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Proposition 3.8.8. The NSOP1 theory T is simple if and only if |̂ K satisfies base mono-
tonicity over models.

Proof. It T is simple, this follows from Proposition 3.8.4, using Fact 3.7.2(2b). On the other
hand, suppose |̂ K satisfies base monotonicity over models. We will show that |̂ K = |̂ d
over models. It follows then that T is simple, by Proposition 3.8.4. So suppose towards
contradiction that a |̂ K

M
b but a 6 |̂ d

M
b, witnessed by ϕ(x; b) ∈ tp(a/Mb) and I = (bi)i<ω+1

an M -indiscernible sequence with bω = b and {ϕ(x; bi) : i < ω + 1} inconsistent. Fix a
Skolemization T Sk of T . By Ramsey and automorphism, we may assume (bi : i < ω + 1)
is LSk-indiscernible over M . As a |̂ K

M
b, we may, by extension, assume a |̂ K

M
Sk(MI). Let

N = Sk(MI<ω). By base monotonicity over models, we have a |̂ K
N
b. But stretching I to

(bi)i<ω+ω, we have that (bω+i)i<ω is a N -invariant Morley sequence (in the reverse order) in
tp(b/N) and {ϕ(x; bω+i) : i < ω} is inconsistent. So a 6 |̂ K

N
b, a contradiction.

3.9 Examples

A Kim-Pillay-style characterization of |̂ K

We are interested in explicitly describing |̂ K in concrete examples. As in simple theories,
this is most easily acheived by establishing the existence of an independence relation with
certain properties and then deducing that, therefore, the relation coincides with |̂ K . The
following theorem explains how this works. The content of the theorem is essentially the same
as Proposition I.5.8, where a Kim-Pillay style criterion for NSOP1 theories was observed,
but we point out how this gives information about Kim-independence.

Theorem 3.9.1. Assume there is an Aut(M)-invariant ternary relation |̂ on small subsets
of the monster M |= T which satisfies the following properties, for an arbitrary M |= T and
arbitrary tuples from M.

1. Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈ tp(a/bM) such

that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

2. Existence over models: M |= T implies a |̂
M
M for any a.

3. Monotonicity: aa′ |̂
M
bb′ =⇒ a |̂

M
b.

4. Symmetry: a |̂
M
b ⇐⇒ b |̂

M
a.

5. The independence theorem: a |̂
M
b, a′ |̂

M
c, b |̂

M
c and a ≡M a′ implies there is a′′

with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂

M
bc

Then T is NSOP1 and |̂ strengthens |̂ K—i.e. if M |= T , a |̂
M
b then a |̂ K

M
b. If,

moreover, |̂ satisfies
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6. Witnessing: if a 6 |̂
M
b witnessed by ϕ(x; b) and (bi)i<ω is a Morley sequence over M

in a global M-invariant type extending tp(b/M), then {ϕ(x; bi) : i < ω} is inconsistent.

then |̂ = |̂ K.

Proof. It was shown in Proposition I.5.8 that if there is such a relation |̂ , then T is NSOP1.
The proof there shows that if |̂ satisfies axioms (1)-(4), then a |̂ u

M
b implies a |̂

M
b. Now

suppose a |̂
M
b. Let p(x; b) = tp(a/Mb) and let q be a global coheir of tp(b/M). By the

independence theorem for |̂ , if (bi)i<ω is a Morley sequence over M in q with b0 = b, then⋃
i<ω p(x; bi) is consistent. But then a |̂ K

M
b. The “moreover" clause follows by definition of

|̂ K .

Remark 3.9.2. The condition (6) can be weakened to quantifying only over global coheirs of
tp(b/M), or asserting the existence of one such coheir – this is sometimes slightly easier in
practice.
Remark 3.9.3. Axioms (1)-(5) do not, by themselves, suffice to characterize |̂ K . See Remark
3.9.37 below.

Combinatorial examples

In this section, we study some combinatorial examples of NSOP1 theories which are not
simple. They are structures which encode a generic family of selector functions for an
equivalence relation. The theories defined below provide a different presentation of a theory
defined by Džamonja and Shelah in [DS04] (where it was called T ∗feq – though this name
is now typically reserved for a different theory) and later studied by Malliaris in [Mal12]
(where it was called T s). We give a family of theories T ∗n as n ranges over positive integers,
but we will only be interested in the case of n = 1, 2. Among non-simple NSOP1 theories,
the theory T ∗1 is probably the easiest to understand, and we show that already T ∗1 witnesses
many of the new phenomena in our context: with respect to this theory, we give explicit
examples of formulas which divide but do not Kim-divide, formulas which fork and do not
divide over models, and types which contain no universal Morley sequences.

We use T ∗1 to answer a question of Chernikov from [Che14] concerning simple and co-
simple types and a question of Conant from [Con14] concerning forking and dividing. A
type is simple if no instance of the tree property is consistent with the type and a type is
co-simple if the tree property cannot witnessed using parameters which realize the type (see
Definition 3.8.2 above for the precise definition). For stability, no such distinction arises, but
Chernikov was able to show that, in general, there are co-simple types which are not simple.
In fact, examples can be found in the triangle-free random graph. It was asked if there can
exist simple types which are not co-simple and he showed that there can be no such types
in an NTP2 theory. In [Con14], Conant gave a detailed analysis of forking and dividing in
the Henson graphs and showed that forking does not equal dividing for formulas, though
every complete type has a global non-forking extension. As the Henson graphs all have the
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property SOP3, Conant asked if there could be an NSOP3 example of this behavior. We
show the answer to both questions is yes already within the class of NSOP1 theories.

Lastly, we use T ∗2 to give a counter-example to transitivity for |̂ K . Because Kim-dividing
does not behave well with respect to changing the base, the normal formulation of transitivity
does not necessarily make sense. Nonetheless, there is a natural way to formulate a version
which does make sense. Suppose T is NSOP1, M |= T and both a |̂ K

M
bc and b |̂ K

M
c. Must

it also be the case, then, that ab |̂ K
M
c? We show the answer is no.

For the remainder of this subsection, if A is a structure in some language and X ⊆ A,
write 〈X〉A for the substructure of A generated by X. We write just 〈X〉 when A is the
monster model.

For a natural number n ≥ 1, let Ln = 〈O,F,E, eval〉 where O,F are sorts, E is a binary
relation symbol, and eval is an n+ 1-ary function. The theory Tn will say

• O and F are sorts—O and F disjoint and the universe is their union.

• E ⊆ O2 is an equivalence relation on O.

• eval : F n × O → O is a function so that for all f ∈ F n, eval(f,−) is a function from
O to O which is a selector function for E – more formally, for all b ∈ O, we have
E(eval(f, b), b) and if b, b′ ∈ O and E(b, b′) then we have

eval(f, b) = eval(f, b′).

The letter F is for ‘function’ and O is for ‘object’—we think of a tuple f ∈ F n as naming
the function eval(f,−). Let Kn be the class of finite models of Tn.

Recall that a Fraïssé class K is said to have the strong amalgamation property (SAP) if,
whenever A,B,C ∈ K, and e : A → B and f : A → C are embeddings, then there is a
structure D ∈ K and embeddings g : B → D, h : C → D so that ge = hf and, moreover,
(img) ∩ (imh) = (imge) (and hence also = (imhf)).

Lemma 3.9.4. The class Kn is a Fraïssé class with SAP. Moreover, it is uniformly locally
finite.

Proof. HP is clear as the axioms of Tn are universal. The argument for JEP is identical to
that for SAP, so we show SAP. Suppose A,B,C ∈ Kn where A ⊆ B,C and B ∩ C = A. It
suffices to define a Ln-structure with domain D = B∪C, extending both B and C. Interpret
OD and FD by OD = OB ∪ OC and FD = FB ∪ FC . Let ED be the equivalence relation
generated by EB ∪ EC . It follows that if b ∈ B, c ∈ C and (b, c) ∈ ED, then there is some
a ∈ A so that (a, b) ∈ EB and (a, c) ∈ EC and, moreover, (OD, ED) extends both (OB, EB)
and (OC , EC) as equivalence relations.

We are left with interpreting evalD. Let {ai : i < k0} enumerate a collection of rep-
resentatives for the EA-classes in A. Then let {bi : i < k1} and {ci : i < k2} enumerate
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representatives for the EB- and EC-classes of elements not represented by an element of A,
respectively. Then every element of OD is equivalent to a unique element of

X = {ai : i < k0} ∪ {bi : i < k1} ∪ {ci : i < k2}.

Suppose d ∈ X. If f ∈ (FB)n, define evalD(f, d) = evalB(f, d) if d ∈ B and evalD(f, d) = d
otherwise. Likewise, if f ∈ (FC)n and d ∈ C, put evalD(f, d) = evalC(f, c) if c ∈ C and
evalC(f, c) = c otherwise. If f ∈ (FD)n \ ((FB)n ∪ (FC)n), put evalD(f, d) = d. This defines
eval on (FD)n×X. More generally, if f ∈ (FD)n and e ∈ OD, define evalD(f, e) = evalD(f, d)
for the unique d ∈ X equivalent to e. This is well-defined as B and C agree on A and the D
defined in this way is clearly in Kn.

Finally, note that a structure in Kn generated by k elements is obtained by applying
≤ kn functions of the form eval(f,−) to ≤ k elements in O, so has cardinality ≤ kn+1 + k.
This shows Kn is uniformly locally finite.

It follows that there is a complete ℵ0-categorical theory T ∗n extending Tn whose models
have age Kn [Hod93, Chapter 7]. By the uniform local finiteness of Kn, T ∗n has quantifier-
elimination so T ∗n is the model completion of Tn. Let Mn |= T ∗n be a monster model.

Definition 3.9.5. Define a ternary relation |̂ ∗ on small subsets of Mn by: a |̂ ∗
C
b if and

only if

1. dcl(aC)/E ∩ dcl(bC)/E ⊆ dcl(C)/E.

2. dcl(aC) ∩ dcl(bC) ⊆ dcl(C).

where X/E = {[x]E : x ∈ X} denotes the collection of E-classes represented by an element
of X.

Lemma 3.9.6. The relation |̂ ∗ satisfies the independence theorem over structures: if M |=
Tn (not necessarily T ∗n), a ≡M a′, a |̂ ∗

M
B, a′ |̂ ∗

M
C and B |̂ ∗

M
C then there is a′′ with

a′′ ≡MB a, a′′ ≡MC a
′, and a′′ |̂ ∗

M
BC.

Proof. We may assumeM is a substructure ofMn,M ⊆ B,C and that B and C are definably
closed. Write a = (d0, . . . , dk−1, e0, . . . , el−1) with di ∈ F and ej ∈ O and likewise
a′ = (d′0, . . . , d

′
k−1, e

′
0, . . . , e

′
l−1). Fix an automorphism σ ∈ Aut(Mn/M) with σ(a) = a′. Let

U = {uf : f ∈ dcl(aB) \ B} and V = {vf : f ∈ dcl(a′C) \ C} denote a collection of new
formal elements with uh = vσ(h) for all h ∈ 〈aM〉 \B. Let, then, a∗ be defined by

a∗ = (ud0 , . . . , udk−1
, ue0 , . . . , uel−1

) = (vd′0 , . . . , vd′k−1
, ve′0 , . . . , ve′l−1

).

We will construct by hand an L-structure D extending 〈BC〉 with domain UV 〈BC〉 in which
a∗ ≡B a, a∗ ≡C a′ and a∗ |̂ ∗M BC.

There is a bijection ι0 : dcl(aB)→ BU given by ι0(b) = b for all b ∈ B and ι0(f) = uf for
all f ∈ dcl(aB)\B. Likewise, we have a bijection ι1 : dcl(a′C)→ CV given by ι1(c) = c for all
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c ∈ C and ι1(f) = vf for all f ∈ dcl(a′C)\C. The union of the images of these functions is the
domain of the structure D to be constructed and their intersection is ι0(〈aM〉) = ι1(〈a′M〉).
Consider BU and CV as Ln-structures by pushing forward the structure on dcl(aB) and
dcl(a′C) along ι0 and ι1, respectively. Note that ι0|〈aM〉 = (ι1 ◦ σ)|〈aM〉.

We are left to show that we can define an Ln-structure on UV 〈BC〉 extending that of
BU , CV , and 〈BC〉 in such a way as to obtain a model of T ∗n . To begin, interpret the
predicates by OD = OBU ∪OCV ∪O〈BC〉 and FD = FBU ∪ FCV ∪ F 〈BC〉. Let ED be defined
to be the equivalence relation generated by EBU , ECV , and E〈BC〉. The interpretation of the
predicates is well-defined since if f is an element of ι0(〈aM〉) = ι1(〈a′M〉) then ι−1

0 (f) is in
the predicate O if and only if ι−1

1 (f) is as well, and, moreover, it is easy to check that our
assumptions on a, a′, B, C entail that no pair of inequivalent elements in BU , CV , or 〈BC〉
become equivalent in D.

All that is left is to define the function evalD extending evalBU ∪ evalCV ∪ eval〈BC〉. We
first claim that evalBU ∪ evalCV ∪ eval〈BC〉 is a function. The intersection of the domains of
the first two functions is (in a Cartesian power of) ι0(〈aM〉) = ι1(〈aM〉). If b, b′ are in this
intersection, we must show

evalBU(b, b′) = c ⇐⇒ evalCV (b, b′) = c.

Choose b0, b
′
0, c0 ∈ 〈aM〉 and b1, b

′
1, c1 ∈ 〈a′M〉 with ιi(bi, b′i, ci) = (b, b′, c) for i = 0, 1. Then

since ι0 = ι1 ◦ σ on 〈aM〉, we have

Mn |= eval(b0, b
′
0) = c0 ⇐⇒ Mn |= eval(σ(b0), σ(b′0)) = σ(c0)

⇐⇒ Mn |= eval(b1, b
′
1) = c1.

Since evalBU and evalCV are defined by pushing forward the structure on 〈aB〉 and 〈a′C〉
along ι0 and ι1, respectively, this shows that evalBU ∪ evalCV defines a function. Now the
intersection of 〈BC〉 with BU ∪ CV is BC and, by construction, all 3 functions agree on
this set. So the union defines a function.

Choose a complete set of ED-class representatives {di : i < α} so that if di represents
an ED-class that meets M then di ∈ M . If e ∈ OD is ED-equivalent to some e′ and (f, e′)
is in the domain of evalBU ∪ evalCV ∪ eval〈BC〉, define evalD(f, e) to be the value that this
function takes on (f, e′). On the other hand, if f ∈ (FD)n \ ((FBU)n ∪ (FCV )n ∪ (F 〈BC〉)n)
or e is not ED-equivalent to any element on which evalD(f,−) has already been defined,
put evalD(f, e) = di for the unique di which is ED-equivalent to e. This now defines evalD

on all of (FD)n × OD and, by construction, evalD(f,−) is a selector function for ED for all
f ∈ (FD)n. This completes the construction of D and we have shown D is a model of Tn. By
model-completeness and saturation, D embeds into Mn over BC. If we can show a∗ |̂ ∗M BC
in D, then this will be true for the image of a∗ in D.

We have already argued that BU and CV are substructures of D—it follows that every
ED-class represented by an element of a∗ can only be equivalent to an element of B or
C if it is equivalent to an element of M . Moreover, our construction has guaranteed that
〈a∗M〉D ∩ 〈BC〉 ⊆ BU ∩ 〈BC〉D ⊆ B and, by similar reasoning, 〈a∗M〉 ⊆ C. This implies
〈a∗M〉D ∩ 〈BC〉B ∩ C ⊆M , so a∗ |̂ ∗M BC.
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Proposition 3.9.7. The theory T ∗n is NSOP1 and, moreover, if M |= T ∗n , then a |̂ ∗
M
b if

and only if a |̂ K
M
b.

Proof. In Lemma 3.9.6, we showed |̂ ∗ satisfies the independence theorem over a model, and
the other conditions (1)-(4) in Theorem 6.2.4 are clear for |̂ ∗. To show (6), notice that if
A 6 |̂ ∗

M
B with A,B definably closed and containing M , then either there is some a ∈ A and

b ∈ B so that |= E(a, b) and the E-class of b does not meet M or a = b for some b 6∈ M .
Suppose (bi)i<ω is a Morley sequence in some global M -invariant q ⊇ tp(b/M). If the class
of b does not meet M , then ¬E(bi, bj) for i 6= j by M -invariance so {E(x; bi) : i < ω} is
2-inconsistent. Likewise, if b is not in M , then bi 6= bj for i 6= j so {x = bi : i < ω} are
2-inconsistent. It follows that |̂ ∗ = |̂ K over models.

We note that |̂ K satisfies (a form of) local character in T ∗1 :

Proposition 3.9.8. For any model N |= T ∗1 and p ∈ S(N), there is a countable M ≺ N so
that p(x) does not Kim-fork over M .

Proof. We use the characterization of |̂ K from Proposition 3.9.7. Let a |= p and choose
M0 ≺ N to be an arbitrary elementary submodel. By induction, construct an elementary
chain (Mi)i<ω of countable elementary submodels of N so that dcl(aMi) ∩ N ⊆ Mi+1 and
every equivalence class in dcl(aMi)/E ∩ N/E is represented by an element of Mi+1. Since
Mi is countable, dcl(aMi) is countable, there is no problem in choosing Mi+1, by downward
Löwenheim-Skolem. Let M =

⋃
i<ωMi. We claim a |̂ K

M
N . Given c ∈ dcl(aM) ∩ N , there

is n so that c ∈ dcl(aMn) ∩N hence c ∈Mn ⊆M . This shows dcl(aM) ∩N ⊆M . Arguing
similiarly, we have dcl(aM)/E ∩N/E ⊆M/E. This shows a |̂ K

M
N .

Lemma 3.9.9. Modulo T ∗1 , the formula O(x) axiomatizes a complete type over ∅ which is
not co-simple.

Proof. That O(x) implies a complete type is clear from quantifier-elimination. In O(M1),
choose an array (aα,β)α,β<ω of distinct elements so that, for all α < α′ < ω, given β, β′,
M1 |= E(aα,β, aα,β′) and M1 |= ¬E(aα,β, aα′,β′). Let ϕ(x; y) be the formula eval(x, y) = y. It
is now easy to check

• For all functions f : ω → ω, {ϕ(x; aα,f(α)) : α < ω} is consistent

• For all α < ω, {ϕ(x; aα,β) : β < ω} is 2-inconsistent,

so ϕ(x; y) witnesses TP2 with respect to parameters realizing O(x). This shows O(x) is not
co-simple.

Lemma 3.9.10. Suppose A ⊆M1. Then acl(A) = 〈A〉 = A ∪ eval(F (A)×O(A)).

Proof. The equality of acl(A) and 〈A〉 follows from SAP for K1 [Hod93, Theorem 7.1.8]. The
axioms of T ∗1 imply that every term of L1 is equivalent to one of the form x or eval(x, y), so
〈A〉 = A ∪ eval(F (A)×O(A)).
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We will see that |̂ ∗ characterizes dividing when elements on the left-hand side come
from O. The following lemma is the key ingredient in proving this:

Lemma 3.9.11. Suppose A = dcl(A) ⊆ M1 and A = 〈a,B〉 for some a ∈ O(A) and
B = dcl(B) ⊆ M1, where l(a) = 1. Given a sequence (Bi)i<N of substructures of M1

isomorphic to B over C = dcl(C) where for i 6= j, Bi ∩Bj = C. Then if a |̂ ∗
C
B, then there

is a structure D |= T1 and some a′ ∈ D so that

1. 〈(Bi)i<N〉 ⊆ D.

2. 〈a′, Bi〉D ∼=C 〈a,B〉 for all i < N .

Proof. Suppose A = 〈a,B〉, (Bi)i<N and C are given as in statement, satisfying (1). If
a ∈ C, the lemma is clear so assume it is not, and therefore a 6∈ B by our assumption that
A |= a 6= b for all b ∈ B \ C. Moreover, we may assume B0 = B. Note that the underlying
set of A is B ∪ {a} ∪ eval(F (B), a). Let X = 〈(Bi)i<N〉.

Case 1: A |= E(a, c) for some c ∈ C. In this case, the underlying set of A is B ∪ {a} ∪
eval(F (B), c) = B ∪ {a}. Let D be the extension of X with underlying set X ∪ {a} with
relations interpreted so that D |= a ∈ O ∧ E(a, c) and the function eval defined to extend
evalX and so that evalD(d, a) = evalX(d, c) for all d ∈ OD. It is easy to check that this
satisfies (2).

Case 2: A |= ¬E(a, c) for all c ∈ C. By our assumption that A satisfies (1), it follows
that A |= ¬E(a, b) for all b ∈ B and hence the underlying set of A is the disjoint union of
B and {a} ∪ evalA(F (B), a). Let Y = {a} ∪ evalA(F (B), a). We will define an L1-structure
extending X with underlying set X ∪ Y . Interpret the sorts FD = FX and OD = OX ∪ Y .
Define the equivalence relation so that EX ⊂ ED and Y forms one ED-class.

Fix for all i < N a C-isomorphism σi : Bi → B0 (assume σ0 = idB0). Note that
FX =

⋃
i<N F

Bi . Interpret evalD to extend evalX and so that, if b ∈ FBi and e ∈ Y ,

evalD(b, e) = evalA(σi(b), a).

This defines D |= T1 and, by construction, the map extending σi and sending a 7→ a induces
an isomorphism 〈a,Bi〉D → 〈a,B0〉D = A for all i < N . This completes the proof.

Corollary 3.9.12. Suppose F is a substructure of M1. If a ∈ O(M1) and l(a) = 1, then
a |̂ d

F
B if and only if a |̂ ∗

F
B.

Proof. If a 6 |̂ ∗
F
B then clearly a 6 |̂ d

F
B, so we prove the other direction. Suppose a |̂ ∗

F
B and

a 6 |̂ d
F
B and we will get a contradiction. Suppose ϕ(x; c, b) witnesses dividing, so ϕ(x; c, b) ∈

tp(a/FB) with c ∈ F and b ∈ B, and there is an F -indiscernible sequence 〈bi : i < ω〉
with b0 = b so that {ϕ(x; c, bi) : i < ω} is k-inconsistent for some k. As a |̂ ∗

F
B we may,

by growing the tuple c, assume that every equivalence class represented both by b and a
is represented by an element of c. Let Bi = 〈c, bi〉, C = B0 ∩ Bi for some/all i 6= 0 (by
F -indiscernibility, this is well-defined and contains c) and A = 〈a, b, c〉. As a |̂ ∗

C
B, the
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structures A, C, and (Bi)i<k+1 satisfy (1) of Lemma 6.3.17, and therefore there is D ∈ K1

and some a′ ∈ D so that 〈(Bi)i<k+1〉 ⊆ D and 〈a′, Bi〉D ∼= 〈a,B〉A for all i < k + 1. By
embedding D into M1 over 〈(Bi)i<k+1〉D we see that, in M1, {ϕ(x; c, bi) : i < k + 1} is
consistent by quantifier-elimination. This is a contradiction.

Corollary 3.9.13. The theory T ∗1 is NSOP1 and the formula O(x) axiomatizes a complete
type which is simple and not cosimple.

Proof. Lemma 3.9.9 shows that O(x) axiomatizes a complete type which is not cosimple.
To show O(x) is simple, we have to show that |̂ d satisfies local character on O(x). So fix
any a ∈ M1 with M1 |= O(a) and any small set B ⊆ M1. We may suppose B = dcl(B).
Notice that dcl(a) = a. If a ∈ B then a |̂ ∗

a
B. If a 6∈ B but M |= E(a, b) for some b ∈ B

then a |̂ ∗
b
B. Finally, if a not E-equivalent to any element of B then a |̂ ∗∅B. Corollary

3.9.12 showed a |̂ ∗
C
B if and only if a |̂ d

C
B for any a with M |= O(a), so |̂ d satisfies local

character on O. Therefore O is simple.

Remark 3.9.14. This answers Problem 6.10 of [Che14].
Remark 3.9.15. Given a model M |= T ∗1 , one can consider the complete type p(x) over M
axiomatized by saying

• O(x)

• ¬E(x,m) for all m ∈ O(M)

• eval(m,x) 6= x for all m ∈ O(M)

In a similar fashion, one can check that this is simple, non-co-simple so, in particular, nothing
is gained by working over a model. In fact, in this situation, we get another proof of the
corollary, using Proposition 3.8.3, as we have shown that if a |= p, then a |̂ d

M
b if and only

if a |̂ K
M
b so p is simple.

Proposition 3.8.7 above shows that in any non-simple NSOP1 theory, there are types over
models with no universal Morley sequences in them. The following gives an explicit example:

Proposition 3.9.16. Given M |= T ∗1 , there is a type p ∈ S(M) with no universal Morley
sequence.

Proof. Pick b ∈ O(M) not in M and let p(x) = tp(b/M). Towards contradiction, suppose
(bi)i<ω is a universal Morley sequence in p.

Case 1: M |= E(bi, bj) for all i, j < ω.
The formula E(x; b) divides over M : choose any M -indiscernible sequence 〈ci : i < ω〉

with c0 = b and ¬E(ci, ci+1) – then {E(x; ci) : i < ω} is inconsistent. But {E(x; bi) : i < ω}
is consistent, a contradiction.

Case 2: M |= ¬E(bi, bj) for i 6= j. The formula eval(x, b) = b divides over M – choose
any M -indiscernible sequence 〈ci : i < ω〉 with E(ci, cj) for all i, j and c0 = b. Then
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{eval(x, ci) = ci : i < ω} is inconsistent (as for any a, the function eval(a,−) takes on only
one value on elements of any equivalence class). But {eval(x, bi) = bi : i < ω} is consistent,
a contradiction.

Proposition 3.9.17. In T ∗1 , forking does not equal dividing, even over models.

Proof. Fix M |= T ∗1 . Let ϕ(x, y; z) be the formula eval(x, z) = z ∨ E(y, z). Given any
b ∈ O(M1) not in M , we claim the formula ϕ(x, y; b) forks but does not divide over M .
The proof of Proposition 3.9.16 shows that both E(x, b) and eval(x, b) = b divide over M
so ϕ(x, y; b) forks over M . Given any M -indiscernible sequence 〈bi : i < ω〉 starting with b,
either all bi’s lie in a single equivalence class, in which case {E(y, bi) : i < ω} is consistent,
or they all lie in different classes, in which case {eval(x, bi) = bi : i < ω} is consistent. Either
way, {ϕ(x, y; bi) : i < ω} is consistent, so ϕ(x, y; b) does not divide over M .

Lemma 3.9.18. Any a be a tuple in F , b a tuple in O, and C = dcl(C) ⊆ M. Then
tp(a, b/C) extends to a global C-invariant type.

Proof. Write a = (a0, . . . , an−1), b = (b0, . . . , bk−1). We may assume that no equalities occur
between the elements of a and of b, or between a, b and C. We define a C-invariant global
type p(x, y) ∈ S(M) as follows. The type p(x, y) contains all formulas of tp(a, b/C) together
with the following axiom scheme:

eval(xi,m) 6= m ∈ p(x, y) for all i < n,m ∈M \ C.
eval(xi,m) 6= eval(xj,m) ∈ p(x, y) for all i < j < n,m ∈M with m/E 6∈ C/E.

eval(xi, yj) 6= m ∈ p(x, y) for all i < n, j < k,m ∈M \ C.
eval(m, yj) 6= yj ∈ p(x, y) for all j < k,m ∈M \ C.

¬E(yj,m) ∈ p(x, y) for all j < k,m ∈M with m/E 6∈ C/E.

It is clear that this type is consistent and C-invariant. We claim it implies a complete
type over M: note that because eval(x, eval(y, z)) = eval(x, z), every term is equivalent
to x or eval(x, y). Because E(x, eval(y, z)) is equivalent to E(x, z), every atomic formula is
equivalent to an equality of terms or of the form E(x, y). Equalities of the form eval(xi, yj) =
eval(xi′ , yj′) are implied or negated by tp(a, b/C), so the truth value of every atomic formula
in the variables x, y with parameters in M is determined by the above.

Corollary 3.9.19. The theory T ∗1 is an NSOP1 theory for which forking does not equal
dividing, yet every type has a global non-forking extension.

Remark 3.9.20. This answers Question 7.1(1) of [Con14], which asked if forking = dividing
in every NSOP3 theory in which every type has a global non-forking extension, as every
NSOP1 theory is NSOP3 [DS04, Claim 2.3].

Finally, the following proposition gives a counter-example to the form of transitivity
mentioned at the beginning of the subsection.
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Proposition 3.9.21. For any modelM |= T ∗2 , there are f, g, and c so that f |̂ K
M
gc, g |̂ K

M
c,

and fg 6 |̂ K
M
c.

Proof. Given M |= T ∗2 , choose any c ∈ M2 \M in an E-class represented by an element m
of M—let {mi : i < α} enumerate a set of representatives for the remaining E-classes of M .
Then choose distinct elements f, g ∈ F so that

1. eval(f, g,m) = eval(g, f,m) = c.

2. eval(f, h,m) = eval(h, f,m) = m and

eval(f, h,mi) = eval(h, f,mi) = mi

for all h ∈ FM ∪ {f}.

3. eval(g, h,m) = eval(h, g,m) = m and

eval(g, h,mi) = eval(h, g,mi) = mi

for all h ∈ FM ∪ {g}.

Then we have

dcl(fM) = M ∪ {f}
dcl(gM) = M ∪ {g}
dcl(cM) = M ∪ {c}

dcl(fgM) = M ∪ {f, g, c}
dcl(gcM) = M ∪ {g, c}.

It follows that dcl(fM)∩ dcl(gcM) and dcl(gM)∩ dcl(cM) are contained in M so f |̂ ∗
M
gc

and g |̂ ∗
M
c. However, c ∈ (dcl(fgM) ∩ dcl(cM)) \M , showing fg 6 |̂ ∗

M
c. As Proposition

3.9.7 showed |̂ K = |̂ ∗, we are done.

Frobenius Fields

In this section, we study a class of NSOP1 fields. If F is a field, we write F alg and F s for
the algebraic and separable closures of F , respectively.

Definition 3.9.22. Suppose F is a field.

1. We say F is pseudo-algebraically closed (PAC) if every absolutely irreducible variety
over F has an F -rational point.
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2. We say F is a Frobenius field if F is PAC and its absolute Galois group G(F ) has the
embedding property (also known as the Iwasawa property), that is, if α : G(F ) → A
and β : B → A are continuous epimorphisms and B is a finite quotient of G(F ), then
there is a continuous epimorphism γ : G(F )→ B so that β ◦ γ = α as in the following
diagram:

G(F )

|||| ����
B // // A

The free profinite group on countably many generators F̂ω has the embedding property so
the ω-free PAC fields are Frobenius fields. However, there are many others—see, e.g., [FJ08,
24.6].

Definition 3.9.23. Suppose G is a profinite group. Let N (G) be the collection of open
normal subgroups of G. We define

S(G) =
∐

N∈N (G)

G/N.

Let LG the language with a sort Xn for each n ∈ Z+, two binary relation symbols ≤, C, and
a ternary relation P . We regard S(G) as an LG-structure in the following way:

• The coset gN is in sort Xn if and only if [G : N ] ≤ n.

• gN ≤ hM if and only if N ⊆M

• C(gN, hM) ⇐⇒ N ⊆M and gM = hM .

• P (g1N1, g2N2, g3N3) ⇐⇒ N1 = N2 = N3 and g1g2N1 = g3N1.

Note that we do not require that the sorts be disjoint (see [Cha98, Section 1] for a discussion
on the syntax of this structure).

Interpretability of S(G(F )) in (F alg, F ) is proved in [Cha02, Proposition 5.5]. The “more-
over” clause is clear from the proof.

Fact 3.9.24. Both F and S(G(F )) are interpretable in (K,F ) where K is any algebraically
closed field containing F . Call the interpretation π. Moreover, if L ⊆ F is a subfield so that
F is a regular extension of L, then the restriction of π to (K,L) produces an interpretation
of S(G(L)), contained in S(G(F )) in a natural way.

Lemma 3.9.25. Let F be a large sufficiently saturated and homogeneous field (i.e. a monster
model of its theory) and M ≺ F a small elementary substructure. Suppose A = acl(A),
B = acl(B) are subsets of F with M ⊆ A ∩B.

1. If A ≡M B in F , then S(G(A)) ≡S(G(M)) S(G(B)).
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2. If (Ai)i<ω is anM-indiscernible sequence with A0 = A, then (S(G(Ai)))i<ω is S(G(M))-
indiscernible.

3. If A |̂ u
M
B in F , then S(G(A)) |̂ uS(G(B))

S(G(B)) in S(G(M)).

Proof. (1) If A ≡M B in F , then there is an automorphism σ ∈ Aut(F/M) with σ(A) = B.
The map σ has an extension σ̃ to F alg which is, then, an automorphism of the pair (F alg, F )
taking A to B and fixing M pointwise. It follows A ≡M B in the pair (F alg, F ). Since
A = acl(A) and B = acl(B), we know F is a regular extension of A and of B (see, e.g., [Cha99,
Section 1.17]). By Fact 7.1.7, we have S(G(A)) ≡S(G(M)) S(G(B)).

(2) If (Ai)i<ω is an M -indiscernible sequence with A0 = A, given i0 < . . . < ik−1

and j0 < . . . < jk−1, we know Ai0 . . . Aik−1
≡M Aj0 . . . Ajk−1

so acl(Ai0 . . . Aik−1
) ≡M

acl(Aj0 . . . Ajk−1
). Then by (1) S(G(acl(Ai0 . . . Aik−1

))) ≡S(G(M)) S(G(acl(Aj0 . . . Ajk−1
))),

which implies (S(G(Ai)))i<ω is S(G(M))-indiscernible.
(3) In any theory, if π is an interpretation of the structure X in the structure Y , and

A |̂ u
C
B in Y , then π(A) |̂ u

π(C)
π(B). It follows that ifA |̂ u

M
B in F , then S(G(A)) |̂ uS(G(M))

S(G(B))

by Fact 7.1.7.

Proposition 3.9.26. Suppose F is an arbitrary field and, in an elementary extension F ∗ of
F , a |̂ K

F
b. Then the fields A = acl(Fa) and B = acl(Fb) satisfy the following conditions:

1. A and B are linearly disjoint over F

2. F ∗ is a separable extension of AB

3. acl(AB) ∩ AsBs = AB.

Proof. In [Cha99, Theorem 3.5], Chatizdakis proves (1)-(3) for an arbitrary theory of fields
under the assumption that a |̂ f

F
b. She deduces from a |̂ f

F
b that there is an F -indiscernible

coheir sequence (Bi)i<ω, i.e. an F -indiscernible sequence with B<i |̂ uF Bi for all i, so that
ABi ≡F AB for all i (rather, she proves this with a heir sequence, but the argument is
symmetric). She then proves that (1)-(3) follow from the existence of such a sequence. Note,
however, that this follows merely from the assumption a |̂ K

F
b.

Remark 3.9.27. Note (1) and (2) are equivalent to saying A |̂ SCF
F

B [Cha99, Remark 3.3],
where SCF denotes the complete (stable) theory of which F s is a model.

Lemma 3.9.28. Suppose F is a Frobenius field. If A = acl(A), B = acl(B) contain F and
A |̂ K

F
B then S(G(A)) |̂ fS(G(F ))

S(G(B)) in Th(S(G(F ))).

Proof. Chatzidakis [Cha98] shows that the Galois group S(G(F )) is ω-stable. Let (Bi)i<ω be
a Morley sequence in a global type finitely satisfiable in F extending tp(B/F ). As A |̂ K

F
B,

we may assume (Bi)i<ω is A-indiscernible. Then (S(G(Bi)))i<ω is a Morley sequence in a
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global type finitely satisfiable in S(G(F )) which is moreover S(G(A))-indiscernible. This im-
plies S(G(A)) |̂ KS(G(F ))

S(G(B)). As Th(S(G(F )) is simple, this implies S(G(A)) |̂ fS(G(F ))
S(G(B))

by Kim’s lemma [Kim98, Proposition 2.1].

Fix a field F and let SCF denote the complete theory of which F s is a model.

Definition 3.9.29. Suppose A = acl(A), B = acl(B), and C = acl(C) in the field F . We
say A is weakly independent from B over C if

1. A |̂ SCF
C

B

2. S(G(A)) |̂ fS(G(F ))
S(G(B)), where |̂ f denotes non-forking independence in Th(S(G(F)))

Extend this to arbitrary tuples by stipulating a is weakly independent from b over c if and
only if acl(a, c) is weakly independent from acl(b, c) over acl(c).

Theorem 3.9.30. [Cha02, Theorem 6.1] Let F be a Frobenius field, sufficiently saturated,
and E = acl(E) a subfield of F . Assume, moreover, that acl(S(G(E))) = S(G(E)) and if the
degree of imperfection of F is finite, that E contains a p-basis of F . Assume that the tuples
a, b, c1, c2 of F satisfy:

1. a and c1 are weakly independent over E, b and c2 are weakly independent over E,
c1 ≡E c2

2. acl(Ea) and acl(Eb) are SCF-independent over E.

Then there is c realizing tp(acl(Ea)) ∪ tp(c2/acl(Eb)) such that c and acl(Eab) are weakly
independent over E.

Theorem 3.9.31. Suppose F is a Frobenius field and a, b are tuples from an elementary
extension of F . Then a |̂ K

F
b if and only if a and b are weakly independent over F .

Proof. Given a, b, and F , set A = acl(aF ) and B = acl(bF ). It suffices to show A |̂ K
F
B

if and only if A is weakly independent from B over F . If A |̂ K
F
B, then A |̂ SCF

F
B by

Proposition 3.9.26 and S(G(A)) |̂ fS(G(F ))
S(G(B)) by Proposition 3.9.26. Hence A and B

are weakly independent over F . For the other direction, suppose A and B are weakly
independent over F . Let (Bi)i<ω be a Morley sequence in a global F -invariant type with
B0 = B and set p(X;B) = tp(A/B). We will show by induction that

⋃
i≤n p(X;Bi) has a

realization weakly independent from (Bi)i≤n over F . For n = 0, this is by the assumption that
A and B are weakly independent over F . If it has been shown for n, then note that, because,
Bn+1 |̂ iF B0 . . . Bn, we have, in particular, Bn+1 and (Bi)i≤n are weakly independent over
F . By Theorem 3.9.30, p(X;Bn+1) ∪

⋃
i≤n p(X;Bi) has a realization weakly independent

from (Bi)i≤n+1. By compactness, we conclude
⋃
i<ω p(X;Bi) is consistent. As (Bi)i<ω was

arbitrary, this shows A |̂ K
F
B.
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Vector spaces

The theories of a vector space over a field equipped with a symmetric or alternating bilinear
form have model companions—they are the theories of an infinite dimensional vector space
over an algebraically closed field equipped with a generic nondegenerate alternating or sym-
metric bilinear form. We use T∞ to refer to both the model companion where the form is
symmetric and where it is alternating, as this choice makes no difference for our analysis
below. The language is two-sorted: there is a sort V for the vector space, with the language
of abelian groups on it, a sort K for the field, equipped with the ring language, a function
K × V → V for the action of scalar multiplication, and a function [, ] : V × V → K for the
bilinear form. In this subsection, we write M |= T∞ for a fixed monster model of T∞.

Fact 3.9.32. Given a set X ⊆M, write XK for the field points of X and XV for the vector
space points of X. For Y a set of vectors, write 〈Y 〉 for the MK-span of V .

1. T∞ eliminates quantifiers after expanding the vector space sort with an n-ary predi-
cate θn interpreted so that |= θn(v0, . . . , vn−1) if and only if v0, . . . , vn−1 are linearly
independent for all n ≥ 2 [Gra99, Theorem 9.2.3].

2. For any set A ⊆ M, the field points of dcl(A) contain the field generated by AK ,
{[a, b] : a, b ∈ AV }, and for each n, and every set {α0, . . . , αn−1} such that there are
v0, . . . , vn ∈ AV with M |= θn(v0, . . . , vn−1) and vn = α0v0 + . . . + αn−1vn−1. The
vector space points of dcl(A) are the (dcl(A))K-span of AV . The field points of acl(A)
are the algebraic closure of (dcl(A))K and the vector space points of acl(A) are the
(acl(A))K-span of AV [Gra99, Proposition 9.5.1].

Definition 3.9.33. Write |̂ ACF to denote algebraic independence, which coincides with
non-forking independence in the theory ACF. Suppose A ⊆ B and c is a singleton. Let
c |̂ Γ

A
B be the assertion that (dcl(cA))K |̂ ACF(dcl(A))K

(dcl(B))K and one of the following holds:

1. c ∈MK

2. c ∈ 〈AV 〉

3. c 6∈ 〈BV 〉 and [c, B] is Φ-independent over A,

where ‘[c, B] is Φ-independent over A’ means that whenever {b0, . . . , bn−1} is a linearly inde-
pendent set in BV ∩(MV \〈A〉) then the set {[c, b0], . . . , [c, bn−1]} is algebraically independent
over the compositum of (dcl(B))K and (dcl(Ac))K .

By induction, for c = (c0, . . . , cm) define c |̂ Γ

A
B by

c
Γ

|̂
A

B ⇐⇒ (c0, . . . , cm−1)
Γ

|̂
A

B and cm
Γ

|̂
Ac0...cm−1

Bc0 . . . cm−1.
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Fact 3.9.34. [Gra99, Theorem 12.2.2] The relation |̂ Γ is automorphism invariant and
symmetric. Moreover, it satisfies extension, strong finite character, and the independence
theorem over a model. Consequently, T∞ is NSOP1.

Proposition 3.9.35. Suppose M |= T∞. Then if A = acl(A), B = acl(B) and A∩B ⊇M ,
then A |̂ K

M
B if and only if A ∩B = M .

Proof. The right to left direction is trivial and holds in any theory. Suppose M is a model,
A = acl(A), B = acl(B), andA∩B ⊆M . Let C = acl(AB) and let (Ci)i<ω be anM -invariant
Morley sequence over M with C0 = C. Fix σ ∈ Aut(M/M) with σ(Ci) = Ci+1 for all i < ω.
By restricting the sequence (Ci)i<ω to a subtuple, we obtain anM -invariant Morley sequence
(Bi)i<ω with B0 = B. Let D = acl((Bi)i<ω). Let K̃ = (acl((Ci)i<ω))K . Let {ui : i < α} be a
basis for MV . Let {vi : i < β} complete this set to a basis for AV and let (w0,j)j<γ complete
it to a basis for (B0)V , then let (wi,j)j<γ be the set of vectors completing {ui : i < α} to
a basis for (Bi)V corresponding to the (w0,j)j<β—i.e. wi,j = σi(w0,j). By our assumptions,
{ui : i < α}∪{vi : i < β}∪{wi,j : i < ω, j < γ} is a set of linearly independent vectors inMV .
Let Ṽ be the K̃-vector space with basis {ui : i < α}∪ {vi : i < β}∪ {wi,j : i < ω, j < γ}. To
define the model N = (Ṽ , K̃), we are left with definining the form on Ṽ—for this it suffices
to define the form on a basis. First, interpret the form so that N extends the structure on
D—i.e.

[ui, ui′ ]
N = k ⇐⇒ [ui, ui′ ]

D = k

[ui, wi′,j]
N = k ⇐⇒ [ui, wi′,j]

D = k

[wi,j, wi′,j′ ]
N = k ⇐⇒ [wi,j, wi′,j′ ]

D = k.

And likewise, interpret the structure so that it extends the structure on A—i.e.

[ui, vi′ ]
N = k ⇐⇒ [ui, vi′ ]

A = k

[vi, vi′ ]
N = k ⇐⇒ [vi, vi′ ]

A = k.

Then finally, we interpret the form so that the structure generated by ABi does not depend
on i: put [vi, w0,j]

N = k ⇐⇒ [vi, w0,j]
C = k and set

[vi, wi′,j]
N =

{
k if [vi, w0,j]

C = k ∈ A
σi
′
(k) if [vi, w0,j]

C = k 6∈ A

This defines N . By quantifier-elimination, there is an embedding ι : N → M over D into
M. Let A′ = ι(A). By quantifier-elimination, we have AB0 ≡M A′Bi for all i. This shows
tp(A/B) does not Kim-divide over M .

Proposition 3.9.36. Suppose M |= T∞. Then

1. a |̂ Γ

M
b =⇒ a |̂ K

M
b.

2. There are a and b so that a |̂ K
M
b and a 6 |̂ Γ

M
b.
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Proof. (1) Suppose a |̂ Γ

M
b. By transitivity of |̂ ACF, (dcl(aM))K |̂ ACF

MK
(dcl(bM))K so

acl(aM)K
ACF
|̂

MK

(acl(bM))K

since the field points of the algebraic closure of any set X are just the field-theoretic alge-
braic closure of (dcl(X))K . Similarly, transitivity of independence for vector spaces forces
〈(aM)V 〉 ∩ 〈(bM)V 〉 ⊆ 〈M〉. This shows acl(aM)∩ acl(bM) = M so a |̂ K

M
b, by Proposition

3.9.35.
(2) Given anyM |= T∞, choose two vectors b1, b2 ∈MV that areMK-linearly independent

over M . By model-completeness, we can find some vector a so that acl(aM)∩ acl(b1b2M) ⊆
M , so a |̂ K

M
b1b2, and also [a, b1] = [a, b2]. Then we clearly have {[a, b1], [a, b2]} algebraically

dependent, as they are equal, hence a 6 |̂ Γ

M
b1b2.

Remark 3.9.37. This observation implies that axioms (1)-(5) in Theorem 6.2.4 do not suffice
to characterize |̂ K , since |̂ Γ satisfies these axioms and |̂ Γ 6= |̂ K by Proposition 3.9.36(2).
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Chapter 4

Local character

This chapter is joint work with Itay Kaplan and Saharon Shelah.

4.1 Introduction
A well-known theorem of Kim and Pillay characterizes the simple theories as those theories
with an independence relation satisfying certain properties and shows that, moreover, any
such independence relation must coincide with non-forking independence. As the theory of
simple theories was being developed, work of Chatzidakis on ω-free PAC fields and Granger
on vector spaces with bilinear forms furnished examples of non-simple theories for which
there are nonetheless independence relations satisfying many of the fundamental properties of
non-forking independence in simple theories. These properties include extension, symmetry,
and the independence theorem. In Chapter 1, we proved an analogue of one direction of
the Kim-Pillay theorem for NSOP1 theories, showing essentially that the existence of an
independence relation with these properties implies that a theory is NSOP1. To establish
the other direction, we introduced Kim-independence and showed that it is well-behaved
in any NSOP1 theory. The theory of Kim-independence provides an explanation for the
simplicity-like phenomena observed in certain non-simple examples and a central issue of
research concerning NSOP1 theories is to determine the extent to which properties of non-
forking independence in simple theories carry over to Kim-independence in NSOP1 theories.
This chapter addresses the specific issue of local character for Kim-independence.

Simple theories are defined to be the theories in which forking satisfies local character.
Local character of non-forking asserts that there is some cardinal κ (T ) so that, for any
complete type p over A, there is a set B ⊆ A with |B| < κ (T ) over which p does not
fork. An analogue of local character for Kim-independence in NSOP1 theories was proved in
Theorem III.4.5. It was shown there that if T is NSOP1 andM |= T , then for any p ∈ S (M),
there is N ≺M with |N | < κ =

(
2|T |
)+ such that p does not Kim-fork over N .

However, this result was an unsatisfactory generalization of local character in simple
theories for three reasons. First, with respect to non-forking, it follows almost immediately
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that if κ (T ) exists at all, it can be taken to be |T |+: given a type p ∈ S (A) with no
B ⊆ A of size < |T |+ over which p does not fork, one can find a chain of forking types of
length |T |+ and then by the pigeonhole principle, some formula must fork infinitely often
with respect to the same disjunction of dividing formulas. This equivalence is no longer
immediate when considering Kim-independence, because of the added constraint that the
formulas must divide with respect to Morley sequences and it was asked [KR17, Question
4.7] if

(
2|T |
)+ can be replaced by |T |+ in an arbitrary NSOP1 theory. Secondly, non-forking

independence satisfies base monotonicity, which means that if p ∈ S (A) does not fork over
B, then p does not fork over B′ whenever A ⊆ B′ ⊆ B. In other words, local character
of forking implies that every type does not fork over an entire cone of small subsets of its
domain. However, in an NSOP1 theory T , Kim-independence satisfies base monotonicity if
and only if T is simple. One would like an analogue of local character for NSOP1 theories
that shows that types over models do not Kim-divide over many small submodels. Finally,
local character of non-forking independence characterizes simple theories. Many tameness
properties of Kim-independence are known to characterize NSOP1 theories, e.g. symmetry
and the independence theorem, so it is natural to ask if local character does as well.

Our main theorem is:

Theorem 4.1.1. Suppose T is a complete theory with monster model M |= T . The following
are equivalent:

1. T is NSOP1.

2. There is no continuous increasing sequence of |T |-sized models
〈
Mi

∣∣ i < |T |+〉 with
union M and p ∈ S (M) such that p �Mi+1 Kim-forks over Mi for all i < |T |+.

3. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide is a stationary subset of [M ]|T |.

4. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide contains a club subset of [M ]|T |.

5. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide is a club subset of [M ]|T |.

6. Suppose that N |= T , M ≺ N and p ∈ S (N) does not Kim-divide over M . Then the
set of elementary substructures of M of size |T | over which p does not Kim-divide is a
club subset of [M ]|T |.

The equivalence of (1) and (2) was noted in Corollary III.4.6 with |T |+ replaced by(
2|T |
)+, which is considerably weaker than the theorem proved here.
In particular, this theorem implies that if T is NSOP1, M |= T , and p ∈ S (M), then

the set of N ≺ M with |N | = |T | such that p does not Kim-fork over N is non-empty.
However, by demanding a stronger form of local character, we obtain a new characterization
of NSOP1.
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Remark 4.1.2. In the first draft of this chapter, published online as a preprint on July 2017,
we did not yet have (5) or (6) above. Shortly after that draft was available, Pierre Simon
have found an easier proof of (1) implies (4), and we thank him for allowing us to include his
proof here. Later we found a proof of (6). These proofs uses symmetry of Kim-independence,
but are not straightforward as in the proof in simple theories, and our original proof.

Our original proof assumes towards contradiction that local character fails and reaches a
contradiction to NSOP1 as is done in e.g. simple theories. For this approach to work we used
stationary logic. This logic expands first-order logic by introducing a quantifier aa interpreted
so thatM |= (aaS)ϕ (S) if and only if the set of countable subsetsX ⊆M such thatM , when
expanded with the predicate S interpreted as X, satisfies ϕ (S) contains a club of [M ]ω. This
logic was introduced by Shelah in [She75] and later studied by Mekler and Shelah [MS86]
who showed that the satisfiability of a theory in L (aa) implies the satisfiability of a theory
in a related logic, where the second-order quantifiers range over uncountable sets of a certain
size. This theorem, which may be regarded as a version of the upward Lowenheim-Skolem
theorem, provides a tool for “stretching" a family of counterexamples to local character in
such a way that preserves the cardinality and continuity constraints needed to produce SOP1.

After further review, we noticed that our original proof gives rise to a new phenomenon,
which we call dual local character.

4.2 Preliminaries

NSOP1 theories, invariant types, and Morley sequences

Definition 4.2.1. [DS04, Definition 2.2] A formula ϕ (x; y) has the 1-strong order property
(SOP1) if there is a tree of tuples 〈aη | η ∈ 2<ω〉 so that

• For all η ∈ 2ω, the partial type {ϕ (x; aη�n) |n < ω} is consistent.

• For all ν, η ∈ 2<ω, if ν _ 〈0〉E η then
{
ϕ (x; aη) , ϕ

(
x; aν_〈1〉

)}
is inconsistent.

A theory T is NSOP1 if no formula has SOP1 modulo T .

Fact 4.2.2. Proposition III.2.4 T has NSOP1 if and only if there is a formula ϕ (x; y), k < ω,
and a sequence 〈c̄i | i ∈ I〉 with ci = (ci,0, ci,1) satisfying:

1. For all i ∈ I, ci,0 ≡c<i ci,1.

2. {ϕ (x; ci,0) | i ∈ I} is consistent.

3. {ϕ (x; ci,1) | i ∈ I} is k-inconsistent.

We also use following notation. Write a |̂ u
M
B for tp (a/MB) is finitely satisfiable in

M , in other words it is a coheir of its restriction to M . A type p ∈ S (M) is an heir of its
restriction to N ≺ M if for every formula ϕ (x; y) ∈ L (N) and every b ∈ M , if ϕ (x; b) ∈ p
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then ϕ (x; b′) ∈ p for some b′ ∈ N . We denote this by c |̂ h
N
M . This is equivalent to saying

that M |̂ u
N
c.

Definition 4.2.3. A global type q ∈ S (M) is called A-invariant if b ≡A b′ implies ϕ (x; b) ∈ q
if and only if ϕ (x; b′) ∈ q. A global type q is invariant if there is some small set A such that
q is A-invariant. If q (x) and r (y) are A-invariant global types, then the type (q ⊗ r) (x, y)
is defined to be tp (a, b/M) for any b |= r and a |= q|Mb. It is also A-invariant. We define
q⊗n (x0, . . . , xn−1) by induction: q⊗1 = q and q⊗n+1 = q (xn)⊗ q⊗n (x0, . . . , xn−1).

Fact 4.2.4. [She90, Lemma 4.1] If T is any complete theory, M |= T , and p ∈ S (M), then
there is a complete global type q extending p which is, moreover, finitely satisfiable in M .
In particular, q is M -invariant.

Definition 4.2.5. Suppose q is an A-invariant global type and I is a linearly ordered set.
By a Morley sequence in q over A of order type I, we mean a sequence 〈bα |α ∈ I〉 such that
for each α ∈ I, bα |= q|Ab<α where b<α = 〈bβ | β < α〉. Given a linear order I, we will write
q⊗I for the A-invariant type in variables 〈xα |α < I〉 so that for any B ⊇ A, if b |= q⊗I |B
then bα |= q|Bb<α for all α ∈ I. If q is, moreover, finitely satisfiable in A, then we refer to a
Morley sequence in q over A as a coheir sequence over A.

The above definition of q⊗I generalizes the finite tensor product q⊗n – given any global
A-invariant type q and linearly ordered set I, one may easily show that q⊗I exists and is
A-invariant by compactness.

Definition 4.2.6. Suppose M is a model.

1. Given a formula ϕ (x; b) and a global M -invariant type q ⊇ tp (b/M), we say that
ϕ (x; b) k-Kim-divides over M via q if, whenever 〈bi | i < ω〉 is a Morley sequence over
M in q, then {ϕ (x; bi) | i < ω} is k-inconsistent.

2. If q is a global M -invariant type with q ⊇ tp (b/M), we say ϕ (x; b) Kim-divides over
M via q if ϕ (x; b) k-Kim-divides over M via q for some k < ω.

3. We say ϕ (x; b) Kim-divides overM if ϕ (x; b) Kim-divides overM via q for some global
M -invariant q ⊇ tp (b/M).

4. We say that ϕ (x; b) Kim-forks over M if it implies a finite disjunction of formulas,
each Kim-dividing over M .

5. We write a |̂ K
M
B for tp (a/MB) does not Kim-fork (or Kim-independent) over M .

Note that if a |̂ u
M
B then a |̂ f

M
B (i.e. tp (a/BM) does not fork over M) which implies

a |̂ K
M
B.

Fact 4.2.7. Theorem III.3.15 The following are equivalent for the complete theory T :

1. T is NSOP1.
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2. (Kim’s lemma for Kim-dividing) Given any modelM |= T and formula ϕ (x; b), ϕ (x; b)
Kim-divides via q for some globalM -invariant q ⊇ tp (b/M) if and only if ϕ (x; b) Kim-
divides via q for all global M -invariant q ⊇ tp (b/M).

From this it easily follows that Kim-forking is equal to Kim-dividing Proposition III.3.19.
The notion of Kim independence, denoted by |̂ K , satisfies many nice properties which turn
out to be equivalent to NSOP1.

Fact 4.2.8. Theorem III.8.1 The following are equivalent for the complete theory T :

1. T is NSOP1.

2. Symmetry of Kim independence over models: a |̂ K
M
b iff b |̂ K

M
a for any M |= T .

3. Independence theorem over models: if A |̂
M
B, c |̂

M
A, c′ |̂

M
B and c ≡M c′ then

there is some c′′ |̂
M
AB such that c′′ ≡MA c and c′′ ≡ c′MB.

Fact 4.2.9. Lemma III.7.6 Suppose that T is NSOP1 and that 〈ai | i < ω〉 is an |̂ K-Morley
sequence over M in the sense that ai |̂ KM a<i and the sequence is indiscernible. Then if
ϕ (x, a0) does not Kim-divide over M , then {ϕ (x, ai) | i < ω} does not Kim-divide over M ,
and in particular it is consistent.

The generalized club filter

Definition 4.2.10. Let κ be a cardinal and X a set with |X| ≥ κ. We write [X]κ to denote
{Y ⊆ X | |Y | = κ}.

1. A set C ⊆ [X]κ is unbounded if for every Y ∈ [X]κ, there is some Z ∈ C with Y ⊆ Z.

2. A set C ⊆ [X]κ is closed if, whenever 〈Yi | i < α ≤ κ〉 is a chain in C, i.e. each Yi ∈ C
and i < j < α implies Yi ⊆ Yj, then

⋃
i<α Yi ∈ C.

3. A set C ⊆ [X]κ is club if it is closed and unbounded.

4. A set S ⊆ [X]κ is stationary if S ∩ C 6= ∅ for every club C ⊆ [X]κ.

The club filter on [X]κ is the filter generated by the clubs. If |X| = κ, then the club filter
on [X]κ is the principal ultrafilter consisting of subsets of [X]κ containing X.

Example 4.2.11. IfM is an L-structure of size ≥ κ ≥ |L|, then the collection of elementary
substructures of M of size κ is a club in [M ]κ.

Remark 4.2.12. In the literature, e.g. [Jec13, Definition 8.21], the above definitions are given
instead for subsets of Pκ+ (X) = {Y ⊆ X | |Y | < κ+} but note that [X]κ is a club subset of
Pκ+ (X), hence all definitions relativize to this set in the natural way.

Fact 4.2.13. Let κ be a cardinal and X a set with |X| ≥ κ+.
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1. The club filter on [X]κ is κ+-complete [Jec13, Theorem 8.22].

2. For every club C ⊆ [X]κ, there is a collection of finitary functions f = 〈fi : i < κ〉 with
fi : Xni → X such that Cf := {Y ∈ [X]κ | fi (Y ni) ⊆ Y for all i < κ} is contained in
C. Equivalently, there is a function F : X<ω → [X]κ such that CF ⊆ C [Jec13, Lemma
8.26].

3. Conversely, given a collection of finitary functions f = 〈fi : i < κ〉 with fi : Xni → X,
the set Cf is club in [X]κ.

4. When κ = ω, for any club C ⊆ [X]κ, there is a function F : X<ω → X such that
CF ⊆ C [Jec13, Theorem 8.28].

We leave the proof of the next lemma to the reader.

Lemma 4.2.14. Suppose λ is a cardinal, X is a set with |X| = λ+, and 〈Yα : α < λ+〉 is an
increasing continuous sequence of sets of cardinality λ with union X. Then {Yα |α < λ+} is
a club of [X]λ. In particular, if X = λ+ and C ⊆ λ+ \ λ is a club of λ+, then C is a club of
[X]λ.

4.3 The main theorem

A short proof of (1) implies (4) in Theorem 4.1.1 using heirs

Here we give a short proof of (1) implies (4) in Theorem 4.1.1, due to Pierre Simon. We
thank him for allowing us to include this proof.

Lemma 4.3.1. Suppose p (x) ∈ S (M), M |= T . Then the set of N ≺M such that |N | = |T |
and p is an heir of p|N is a club subset of [M ]|T |.

Proof. It is easy to verify that this set is closed under increasing unions, so it is enough to
show that it contains a club.

Consider the Lp-structure Mp expanding M by forcing p to be definable — i.e. for every
L-formula ϕ (x; y) add a relation Rϕ (y) interpreted as

{
b ∈M |y|

∣∣ϕ (x, b) ∈ p
}
. Note that

|Lp| = |L|. Then if N ′ ≺ Mp then its L-reduct N is such that p is an heir of p|N . Thus we
are done by Example 4.2.11.

Theorem 4.3.2. Suppose T is NSOP1. IfM |= T and p ∈ S (M), then the set of elementary
substructures N ≺ M with |N | = |T | such that p does not Kim-divide over N contains a
club.

Proof. By Lemma 4.3.1, it suffices to show that if p is an heir of p|N , then p does not Kim-
divide over N . But if p is an heir of p|N , then, given c |= p, M |̂ u

N
c, hence M |̂ K

N
c by

symmetry of Kim-independence (in fact one needs only a weak version of symmetry, see
Proposition III.3.22) which implies c |̂ K

N
M . This shows that p does not Kim-divide over

N .
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A proof of (1) implies (6) in Theorem 4.1.1

Lemma 4.3.3. Suppose T is an arbitrary theory and M |= T with |M | ≥ |T | = κ. Given
any global M-finitely satisfiable type q, let Cq denote the set of N ≺ M with |N | = κ such
that q⊗ω|N = r⊗ω|N for some global N-finitely satisfiable type r. Then:

1. Cq is in the club filter on [M ]κ.

2. Given any set A, there is some N ≺M of size ≤ |T |+ |A| such that A ⊆ N and q⊗ω|N
is a type of a Morley sequence generated by some global type r finitely satisfiable in N
and if ϕ (x, c) Kim-divides over M via q then ϕ (x, c) Kim-divides over N via r.

Proof. One proof of (1) essentially follows from the proof of Lemma III.4.4, so we also give
an alternative one. Let ā = 〈ai : i < ω〉 be a coheir sequence generated by q over M . Then,
N ∈ Cq iff N ≺M and ā is a coheir sequence over N in the sense that tp (ai/a<iN) if finitely
satisfiable in N . Thus it is easy to see that Cq is closed under unions.

Note that if N ≺ M is such that tp (ā/M) is an heir extension of its restriction to N ,
then N ∈ Cq: if ϕ (ai, a<i) holds when ϕ (x, y) is some formula over N , then for some c ∈M ,
ϕ (c, a<i) holds, and by choice of N , we may assume that c ∈ N . Now Lemma 4.3.1 finishes
the proof.

(2) is immediate from (1), applied to the theory T (A) obtained from T by adding con-
stants for the elements of A.

Theorem 4.3.4. Suppose T is NSOP1 with |T | = κ and M |= T . Then for a finite tuple b
and any set A, the following are equivalent:

1. A |̂ K
M
b.

2. There is a club C ⊆ [M ] κ of elementary substructures of M such that A |̂ K
N
b for all

N ∈ C.

3. There is a stationary set S ⊆ [M ] κ of elementary substructures of M such that A |̂ K
N
b

for all N ∈ S.

Proof. (1) =⇒ (2) Suppose that A |̂ K
M
b. Let q ⊇ tp (b/M) be a globalM -finitely satisfiable

type and choose 〈bi : i < ω〉 |= q⊗ω|M with b0 = b. By Lemma 4.3.3, there is a club Cq of
elementary substructures N ≺M with |N | = |T | so that q⊗ω|N = r⊗ω|N for some global N -
finitely satisfiable type r. Fix N ∈ C, a a finite tuple from A and ϕ (x; b, n) ∈ tp (a/Nb). As
a |̂ K

M
b, we know {ϕ (x; bi, n) | i < ω} is consistent. As 〈bi : i < ω〉 is also a Morley sequence

over N in a global N -finitely satisfiable type, it follows from Kim’s lemma for Kim-dividing
(Fact 4.2.7) that ϕ (x; b, n) does not Kim-divide over N . As ϕ (x; b, n) was arbitrary, we
conclude a |̂ K

N
b. Since this was true for any a, we have that A |̂ K

N
b.

(2) =⇒ (3) is immediate.
(3) =⇒ (1) Suppose a 6 |̂ K

M
b for some finite tuple a from A. Let ϕ (x; b,m) ∈ tp (a/Mb)

be a formula witnessing this. Fix q ⊇ tp (b/M) a global M -finitely satisfiable type and
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bi : i < ω〉 |= q⊗ω|M . Let C ′ = {N ≺M | |N | = |T | and m ∈ N}. The set C ′ is clearly club
so the intersection C ′′ = Cq ∩C ′ is in the club filter on [M ]κ. If N ∈ C ′′ and q⊗ω|N = r⊗ω|N
for some global type r finitely satisfiable in N , then ϕ (x; b,m) ∈ tp (a/Nb) and 〈bi : i < ω〉
realizes r⊗ω|N . As {ϕ (x; bi,m) | i < ω} is inconsistent, we have a 6 |̂ K

N
b. As S is stationary,

it must intersect C ′′, so we get a contradiction.

Corollary 4.3.5. Suppose T is NSOP1 with |T | = κ and M |= T . Then for a finite tuple a
and any set B, the following are equivalent:

1. a |̂ K
M
B.

2. There is a club C ⊆ [M ] κ of elementary substructures of M such that a |̂ K
N
B for all

N ∈ C.

3. There is a stationary set S ⊆ [M ] κ of elementary substructures ofM such that a |̂ K
N
B

for all N ∈ S.

Proof. Follows immediately from symmetry of Kim-independence and Theorem 4.3.4.

Lemma 4.3.6. Suppose T is NSOP1. Assume M ≺ N . Suppose that a |̂ K
M
N and ϕ (x, a)

Kim-divides over N for ϕ (x, y) ∈ L (M). Then ϕ (x, a) Kim-divides over M .

Proof. Let 〈ai : i < ω〉 be an indiscernible sequence over N starting with a0 = a such that
ai |̂ hN a<i and {ϕ (x, ai) | i < ω} is inconsistent (to construct it, let 〈bi : i ∈ Z〉 be a coheir
sequence in the type of tp (a/N), so in particular bi |̂ uN b<i for i < 0, hence b>i |̂ uN bi by
transitivity of |̂ u, and let ai = b−i for i < ω).

Then 〈ai | i < ω〉 is an |̂ K-Morley sequence over M in the sense that ai |̂ KM a<i. To see
this, suppose not, i.e., by symmetry suppose that a<i 6 |̂ KM ai. Then for some formula ψ (z, x)
overM , ψ (a<i, ai) holds and ψ (z, ai) Kim-divides overM . Since a<i |̂ uN ai, for some n ∈ N ,
ψ (n, ai) holds. However, since ai ≡N a, by symmetry N |̂ K

M
ai — contradiction.

Suppose that ϕ (x, a) does not Kim-divide overM . Then by Fact 4.2.9, {ϕ (x, ai) | i < ω}
is consistent — contradiction.

Lemma 4.3.7. Suppose T is NSOP1. Suppose that 〈Mi | i ≤ α〉 is an increasing sequence
of elementary substructures of a model N , that Mα =

⋃
{Mi | i < α} and that p ∈ S (N).

Assume that p does not Kim-fork over Mi for all i < α. Then p does not Kim-fork over Mα.

Proof. Let a |= p. We want to show that a |̂ K
Mα

N , so by symmetry it is enough to show
that N |̂ K

Mα
a. Suppose not. Then there is some formula ϕ (x, y) in L (Mα) and some

b ∈ N such that ϕ (b, a) holds and ϕ (x, a) Kim-divides over Mα. Let i < α be such that
ϕ (x, y) ∈ L (Mi). Since Mα ⊆ N and a |̂ K

Mi
N by assumption, a |̂ K

Mi
Mα. Hence by

Lemma 4.3.6, ϕ (x, a) Kim-divides overMi. Hence b 6 |̂ KMi
a. But this is a contradiction since

a |̂ K
Mi
N so by symmetry b |̂ K

Mi
a.
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We can now prove (1) =⇒ (6) from Theorem 4.1.1.

Theorem 4.3.8. Suppose that T is NSOP1. Suppose that a is a finite tuple, a |̂ K
M
N and

M ≺ N . Then the set E of M ′ ∈ [M ]|T | such that M ′ ≺M and a |̂ K
M ′
N is a club.

Proof. The family E is closed under unions by Lemma 4.3.7. Hence to finish we only need
to show that E contains a club, and this follows from Corollary 4.3.5 (1) =⇒ (2).

The equivalence (1)–(6)

We finish the proof of Theorem 4.1.1 with the following.

Theorem 4.3.9. Suppose T is a complete theory. The following are equivalent:

1. T is NSOP1.

2. There is no continuous increasing sequence of |T |-sized models
〈
Mi

∣∣ i < |T |+〉 with
union M and p ∈ S (M) such that p �Mi+1 Kim-forks over Mi for all i < |T |+.

3. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide is a stationary subset of [M ]|T |.

4. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide contains a club subset of [M ]|T |.

5. For any M |= T , p ∈ S (M), the set of elementary substructures of M of size |T | over
which p does not Kim-divide is a club subset of [M ]|T |.

6. Suppose that N |= T , M ≺ N and p ∈ S (N) does not Kim-divide over M . Then the
set of elementary substructures of M of size |T | over which p does not Kim-divide is a
club subset of [M ]|T |.

Proof. (1) =⇒ (6) is Theorem 4.3.8.
(6) =⇒ (5) =⇒ (4) =⇒ (3) is trivial (for (6) implies (5), note that for p ∈ S (M), p

does not Kim-divide over M trivially).
(3) =⇒ (2) By Lemma 4.2.14, C =

{
Mi

∣∣ i < |T |+} is a club of [M ]|T |. As T is NSOP1,
there is a stationary set S ⊆ [M ]|T | such that N ∈ S implies p does not Kim-fork over N .
Choose any Mi ∈ C ∩ S to obtain a contradiction.

(2) =⇒ (1). Suppose T has SOP1 as witnessed by some formula ϕ (x, y). Let T sk be
a Skolemized expansion of T . Then T sk also has SOP1 as witnessed by ϕ (x, y). Thus
by Proposition 4.2.2, we can find a formula ϕ (x, y) and an array 〈ci,j | i < ω, j < 2〉 such
that ci,0 ≡c<i ci,1 for all i < ω, {ϕ (x, ci,0) | i < ω} is consistent and {ϕ (x; ci,1) | i < ω} is
2-inconsistent (all in Msk). By Ramsey and compactness we may assume that 〈ci | i < ω〉 is
indiscernible (with respect to Msk) and extend this sequence to length |T |+.
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For i ≤ |T |+, let Ni = dcl (c<i) (in Msk). Then for every limit ordinal δ < |T |+, ϕ (x, cδ,1)
Kim-divides over Nδ as the sequence

〈
cj,1
∣∣ δ ≤ j < |T |+

〉
is indiscernible and for all δ ≤ j,

cj |̂ uNδ c>j. As cδ,1 ≡c̄<δ cδ,0, it follows that cδ,1 ≡Nδ cδ,0, and hence ϕ (x, cδ,0) also Kim-

divides. Let p ∈ S
(
N|T |+

)
be any complete type containing {ϕ (x, cδ,0) | δ < κ}, which is

possible as this partial type is consistent. The sequence
〈
Nδ

∣∣ δ ∈ lim
(
|T |+

)〉
is an increasing

and continuous sequence of elementary substructures of N|T |+ of size |T | with union N|T |+
witnessing that (2) fails.

Corollary 4.3.10. Suppose T is NSOP1, M |= T , M ≺ N , and p ∈ S (N). Then p does
not Kim-fork over M iff for every κ with |T | ≤ κ ≤ |M |, the set of elementary substructures
of M of size κ over which p does not Kim-divide is a club subset of [M ]κ.

Proof. Suppose that p does not Kim-fork over M . Let A ⊆ M be any subset of M of size
κ and apply Theorem 4.1.1 to the theory T (A) obtained from T by adding new constant
symbols for the elements of A.

For the other direction, apply the left hand side with κ = |T | and use Corollary 4.3.5.

Corollary 4.3.11. Suppose T is NSOP1 and M |= T . Then given any set A, there is a club
E ⊆ [M ]|T |+|A| such that N ∈ E iff A |̂ K

N
M .

Proof. Let κ = |A|+ |T |. By Corollary 4.3.10, we know for each finite tuple a from A, there
is a club Ea ⊆ [M ]κ so that N ∈ Ea iff a |̂ K

N
M . Let E =

⋂
a∈AEa. As |A| ≤ κ and the

club filter on [M ]κ is κ+-complete (Fact 4.2.13(1)), E is a club of [M ]κ. By the strong finite
character of Kim-independence, we have A |̂ K

N
M iff N ∈ E.

A sample application

Proposition 4.3.12. Suppose T is NSOP1 and A |= T . Given any set C, there is some
C ′ ⊇ C with |C ′| = |C|+ |T | such that C ′ ∩ A is a model and C ′ |̂ K

A∩C′ A.

Proof. Let κ = |C| + |T |. Let C0 = C and, by Corollary 4.3.11, we may let E0 ⊆ [A]κ be
a club of elementary substructures of A such that N ∈ E0 implies C0 |̂ KN A. By induction,
we will choose sets Ci, clubs Ei ⊆ [A]κ, and models Xi ≺ A such that

1. Xi ∈
⋂
j≤iEi and Ci ∩ A ⊆ Xi.

2. Ci+1 = Ci ∪Xi.

3. For all N ∈ Ei, we have Ci |̂ KN A.

Given 〈Ci, Xi, Ei | i ≤ n〉, let Cn+1 = Cn ∪Xn. By Corollary 4.3.11, we may let En+1 ⊆ [A]κ

be a club such that N ∈ En+1 implies Cn+1 |̂ KN A. As

{X ∈ [A]κ |Cn+1 ∩ A ⊆ X}
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is a club of [A]κ, we may choose Xn+1 ∈
⋂
i≤n+1Ei containing Cn+1 ∩A. This completes the

induction.
Let Cω =

⋃
i<ω Ci. By construction, Cω ∩ A =

⋃
i<ωXi. As i < j implies Xi ⊆ Xj, and

i ≥ n implies Xi ∈ En, it follows that

Cω ∩ A =
⋃
i≥n

Xi ∈ En

for all n, as En is club. Also as each Xi is a model, this additionally shows that Cω ∩ A
is a model. Moreover, if c ∈ Cω is a finite tuple, there is some n so that c ∈ Cn, hence
c |̂ K

Cω∩A
A, by the choice of En. Setting C ′ = Cω, we finish.

4.4 A proof using stationary logic

More on clubs

Definition 4.4.1. Suppose κ is a cardinal and A ⊆ B, S ⊆ [A]κ, and T ⊆ [B]κ. We define
SB ∈ [A]κ and T � A ∈ [A]κ by

SB = {Y ∈ [B]κ |Y ∩ A ∈ S}
T � A = {X ∈ [A]κ | there is Y ∈ T such that X = Y ∩ A} .

Fact 4.4.2. [Jec13, Theorem 8.27] Suppose κ is a cardinal, A ⊆ B, S ⊆ [A]κ, and T ⊆ [B]κ.

1. If S is stationary in [A]κ, then SB is stationary in [B]κ.

2. If T is stationary in [B]κ, then T � A is stationary in [A]κ.

Lemma 4.4.3. Suppose X is a set and λ and κ are cardinals with λ ≤ κ < |X|. Suppose,
moreover, we are given a stationary subset S ⊆ [X]κ and, for every Y ∈ S, a stationary
subset SY ∈ [Y ]λ. Then S ′ =

⋃
Y ∈S SY is a stationary subset of [X]λ.

Proof. Suppose D ⊆ [X]λ is a club. We must show S ′ ∩D 6= ∅. By Fact 4.2.13(3), there is a
sequence of finitary functions f = 〈fi | i < λ〉 where for all i < λ, fi : Xni → X and the set
Cf ⊆ [X]λ of λ-sized subsets of X closed under f is a club with Cf ⊆ D. The subsets of X
of size κ closed under f form a club C∗

f
⊆ [X]κ, hence C∗

f
∩ S 6= ∅. Fix Y ∈ C∗

f
∩ S. Define

a sequence of functions g = 〈gi | i < λ〉 by gi = fi � Y ni for all i < λ. This definition makes
sense as Y is closed under the functions fi so that Cf ∩ [Y ]λ = Cg, the subsets of Y closed
under g, hence is a club of [Y ]λ. Therefore Cf ∩ [Y ]λ ∩ SY 6= ∅. In particular, this shows
D ∩ S ′ 6= ∅, which completes the proof.

The club filter on [X]ω was characterized by Kueker in terms of games of length ω [Kue72].
The natural analogue for games of length λ determines a filter on Pλ+ (X), which, in general,
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differs from the club filter. In generalizing stationary logic to quantification over sets of some
uncountable size λ, it turns out that this filter provides a more useful analogue to the club
filter on [X]ω than the club filter on [X]λ.

Definition 4.4.4. Suppose X is a set and λ is a regular cardinal. Given a subset F ⊆
Pλ+ (X), we define the game G (F ), to be the game of length λ where Players I and II
alternate playing an increasing λ sequence of elements of Pλ+ (X). In this game, Player II
wins if and only if the union of the sets played is in F . The filter Dλ (X) is defined to be
the filter generated by the sets F ⊆ Pλ+ (X) in which Player II has a winning strategy in
G (F ). We say Y ⊆ Pλ+ (X) is Dλ (X)-stationary if Y intersects every set in Dλ (X).

It is easy to check that every club C ⊆ [X]λ is an element of Dλ(X) and, therefore, that
every S ⊆ [X]λ that is Dλ (X)-stationary is also stationary with respect to the usual club
filter on [X]λ. It was remarked in [MS86] that if λ = λ<λ, then Dλ (λ+) is just the filter
generated by the clubs of λ+ intersected with the set of ordinals of cofinality λ (considered
as initial segments of λ+). More precisely, we have the following fact. (We omit its proof
since it is not necessary for the rest.)

Fact 4.4.5. Suppose λ is an infinite cardinal and write Sλ+λ for the stationary set {α < λ+ | cf (α) = λ}.

1. If C ⊆ λ+ is a club, then C ∩ Sλ+λ ∈ Dλ (λ+).

2. Suppose λ = λ<λ. Then Dλ (λ+) is generated by sets of the form C ∩ Sλ+λ , where
C ⊆ λ+ is a club.

Lemma 4.4.6. Suppose X is a set of size λ+, and 〈Xα |α < λ+〉 is an increasing and con-
tinuous sequence from Pλ+ (X) with union X. Suppose S ⊆ Pλ+ (X) is Dλ (X)-stationary.
Then the set S∗ = {α < λ+ | cf(α) = λ,Xα ∈ S} is a stationary subset of λ+.

Proof. As |X| = λ+, we may assume X = λ+. Let C ⊆ λ+ consist of the ordinals α < λ+

such that Xα = α. This set is easily seen to be a club.
Let C∗ ⊆ λ+ be a club. We must show C∗ ∩ S∗ 6= ∅. By Fact 4.4.5(1), C∗ ∩ C ∩ Sλ

+

λ ∈
Dλ (X), hence

(
Sλ

+

λ ∩ C ∩ C∗
)
∩ S 6= ∅. Pick Y in this intersection. Then by definition of

C, Y = Xα = α for some α ∈ Sλ+λ . As Xα ∈ S, we have α ∈ S∗. This shows S∗∩C∗ 6= ∅.

Lemma 4.4.7. Suppose A ⊆ B and S ⊆ Pλ+ (B) is Dλ (B)-stationary. Then the set
S � A = {X ∩ A |X ∈ S} is Dλ (A)-stationary.

Proof. It is enough to show that if F ∈ Dλ (A) then FB = {X ∈ Pλ+ (B) |X ∩ A ∈ F} ∈
Dλ (B). We may assume that there is some winning strategy f for Player II in the game
G (F ), since F ∈ Dλ (A). That is, the function f is defined so that if, at stage i, Player I
has played 〈Aj | j ≤ i〉 then f (〈Aj | j ≤ i〉) outputs the play for Player II.
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Now we will define a winning strategy for Player II in the game G
(
FB
)
. At stage i, if

Player I has played 〈Aj | j ≤ i〉, Player II plays Bi = Ai ∪ f (〈Aj ∩ A | j ≤ i〉). As the rules
of the game require that the sets are increasing, we have

Ai ∩ A ⊆ f (〈Aj ∩ A | j ≤ i〉) ⊆ A,

hence Bi ∩ A = f (〈Aj ∩ A | j ≤ i〉). It follows that

I A0 ∩ A A1 ∩ A · · ·
II B0 ∩ A B1 ∩ A · · ·

is a play according to f in G (F ). Therefore,(⋃
i<λ

Ai ∪Bi

)
∩ A =

⋃
i<λ

(Ai ∩ A) ∪ (Bi ∩ A) ∈ F,

which shows
⋃
i<λAi ∪ Bi ∈ FB. We have shown that Player II has a winning strategy in

G
(
FB
)
so FB ∈ Dλ (B).

Stationary logic

The stationary logic L (aa) was introduced in [She75] (where it was called L
(
Qss
ℵ1

)
). The

logic is defined as follows: given a first-order language L, expand the language with countably
many new unary predicates {Si | i < ω} and a new quantifier aa. The formulas of L in L (aa)
are the the smallest class containing the first-order formulas of L, closed under the usual
first-order formation rules together with the rule that if ϕ is a formula, then (aaSi)ϕ is also
a formula, for any new unary predicate Si. Satisfaction is defined as usual, together with
the rule that M |= (aaS)ϕ (S) if and only if M |= ϕ (S) when SM = X for “almost all”
X ∈ [M ]ω—that is,

{
X ∈ [M ]ω

∣∣ if SM = X then M |= ϕ (S)
}
contains a club of [M ]ω. We

define the quantifier stat dually: M |= (statS)ϕ (S) if and only if M |= ¬ (aaS)¬ϕ (S).
Note that M |= (statS)ϕ (S) if and only if

{
X ∈ [M ]ω

∣∣ if SM = X then M |= ϕ (S)
}

is
stationary. Given an L-structure M , we write Thaa (M) for the set of L (aa)-sentences
satisfied by M . We refer the reader to [BKM78, Section 1] for a detailed treatment of
stationary logic.

Later work by Mekler and Shelah extended stationary logic, which quantifies over count-
able sets, to a logic that permits quantification over sets of higher cardinality [MS86]. For
λ a regular cardinal, the logic L

(
aaλ
)
is defined analogously to L (aa), with semantics de-

fined so that M |=
(
aaλS

)
ϕ (S) if and only if

{
X ∈ [M ]λ

∣∣∣ if SM = X then M |= ϕ(S)
}
∈

Dλ (M). The quantifier statλ is also understood dually: M |=
(
statλS

)
ϕ (S) if and only if

M |= ¬
(
aaλS

)
¬ϕ (S). If T is an L (aa)-theory, one obtains an L

(
aaλ
)
-theory by replac-

ing the quantifier aa with aaλ. We call this theory the λ-interpretation of T . By working
with Dλ (M) instead of the full club filter on [M ]λ, one is able to relate satisfiability of an
L (aa)-theory to the satisfiability of its λ-interpretation. Below, the “moreover” clause about
λ-saturation is not stated in [MS86], but is immediate from the proof.
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Fact 4.4.8. [MS86, Theorem 1.3] Suppose λ = λ<λ and T is a consistent L (aa)-theory of
size at most λ. Then the λ-interpretation of T has a model of size at most λ+. In fact, there
is such a model which is, moreover, λ-saturated.

The following easy observation is also useful:

Lemma 4.4.9. Suppose ϕ is a first-order formula, possibly with parameters from M and
|ϕ (M)| > ℵ0. Then if M ′ |= Thaa (M) in the λ-interpretation, then |ϕ (M ′)| > λ.

Proof. Suppose not. Then
{
S ∈ [M ′]λ

∣∣∣ϕ (M ′) ⊆ S
}

is a club of [M ′]λ hence an element

of Dλ (M ′). Therefore M ′ |=
(
aaλS

)
∀x (ϕ (x)→ S (x)). As M ′ |= Thaa (M ′) in the λ-

interpretation, M |= (aaS)∀x (ϕ (x)→ S (x)), so ϕ (M) is countable, a contradiction.

Reduction to a countable language

Remark 4.4.10. Suppose that T is an NSOP1 theory in the language L. Suppose thatM |= T
and ϕ (x, y) is any formula. Then for any language L′ ⊆ L containing ϕ, and any b ∈ M,
ϕ (x, b) Kim-divides over M in L iff ϕ (x, b) Kim-divides over M ′ := M � L′ (in the sense of
T � L′). Indeed, this follows from Kim’s lemma for Kim-dividing (Fact 4.2.7) and the fact
that if b̄ is a coheir sequence in L over M starting with b, then it is also in L′.

Lemma 4.4.11. Suppose T is an NSOP1 theory in the language L, M |= T and for some
p ∈ S (M), the set

S = {N ≺M | |N | = |T | , p Kim-divides over N}

is stationary in [M ]|T |. Then there is a countable sublanguage L′ ⊆ L and a stationary set
S ′ ⊆ [M ]ω so that, setting p′ = p � L, we have that for all N ′ ∈ S ′, p′ Kim-divides over N ′.

Proof. For each N ∈ S, choose some ϕN (x; bN) ∈ p such that ϕ (x; bN) Kim-divides over
N . By Fact 4.2.13(1), the club filter on [M ]|T | is |T |+-complete, so for any a partition of a
stationary set into |T | many pieces, we may find some piece which is stationary. Therefore we
may assume there is some formula ϕ so that ϕN (x; bN) = ϕ (x; bN) for all N ∈ S. Let L′ be
any countable sublanguage of L containing ϕ. By Remark 4.4.10 and (the proof of) Theorem
4.3.4, for each N ∈ S, there is a club CN ⊆ [N ]ω of countable L′-elementary substructures
over which ϕ (x; bN) Kim-divides. By Lemma 4.4.3, S ′ =

⋃
N∈S CN is a stationary subset of

[M ]ω. By definition of S ′, if N ′ ∈ S ′, then there is some ϕ (x; bN ′) ∈ p such that ϕ (x; bN ′)
Kim-divides over N ′.

Stretching

Lemma 4.4.12. Suppose T is NSOP1, |T | = ℵ0, M |= T , and there is p ∈ S (M) so that
the set

S0 = {N ≺M | |N | = ℵ0 and p Kim-divides over N}
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is stationary. Then, given any regular uncountable cardinal λ = λ<λ, there is a model
M ′ |= T , |M ′| = λ+, a formula ϕ (x; y), and a type p∗ over M ′ so that

S ′0 = {N ′ ≺M ′ | |N ′| = λ, there is ϕ (x; a′N) ∈ p∗ that Kim-divides over N ′}

is Dλ (M ′)-stationary.

Proof. As no type Kim-divides over its domain, it follows that M is uncountable. For each
N ∈ S0, there is some formula ϕN (x; aN) ∈ p and kN < ω so that ϕ (x; aN) kN -Kim-divides
over N via a Morley sequence in some global N -finitely satisfiable type. As the club filter on
[M ]ω is ℵ1-complete, Fact 4.2.13(1), there are ϕ and k so that for some stationary S ⊆ S0,
we have N ∈ S implies ϕN (x; aN) = ϕ (x; aN) and kN = k.

Let l = |aN | for all N ∈ S and let M̃ be an ℵ1-saturated elementary extension of M .
Let χ be a sufficiently large regular cardinal so that all objects of interest are contained in
H (χ). In particular, we may choose χ so that M̃, ωM̃, T , L, and p are contained in H (χ),
together with a bijection to ω witnessing the countable cardinality of L, and we consider the
structure

H =
(
H (χ) ,∈,M, M̃, L, T, p

)
.

By Fact 4.4.2(1), the set S∗ = {X ∈ [H]ω |X ∩M ∈ S} is a stationary subset of [H]ω.
Let Φ (X) be the formula in the language of H together with a new predicate X that

naturally asserts: there exists c ∈ M l, such that ϕ (x; c) ∈ p and such that there exists
f ∈ ω

(
M̃ l
)

) such that:
X ∩M is an elementary substructure of M .
f = 〈fi | i < ω〉 is an (X ∩M)-indiscernible sequence such that tp (fi/ (X ∩M) f<i) is

finitely satisfiable in (X ∩M).
f (0) = c.
{ϕ (x; fi) | i < ω} is k-inconsistent.
We first show the following:

Claim. H |= (statX) Φ (X).

Proof of claim. As S∗ is stationary, it suffices to show that if X ∈ S∗ and SH = S∗ then
H |= Φ (S). Recall that if X ∈ S∗, then X ∩M ∈ S so X ∩M is a countable elementary
substructure of M , and ϕ (x; aX∩M) is a formula in p that k-Kim-divides over X ∩M . As
M̃ is ℵ1-saturated, there is a coheir sequence 〈ai | i < ω〉 over X ∩M in M̃ with a0 = aX∩M
and {ϕ (x; ai) | i < ω} k-inconsistent. Put c = a0 and let f ∈ ω(M̃ l) be defined by fi = ai,
we easily have (1)-(4) satisfied, proving the claim.

By Fact 4.4.8, there isH′ which is a model of the λ-interpretation of Thaa (H) with |H′| =
λ+, H′ =

(
H′,∈′,M ′, M̃ ′, L′, p′

)
. As L and T are coded by natural numbers, the language

L is contained in L′ and thus the definable set
{
x ∈ H′

∣∣∣x ∈ M̃ ′
}

may be regarded as the
domain of an L′-structure whose reduct to L is a model of T and likewise for M . Moreover
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M ′ ≺L M̃ ′ and |M ′| = λ+, by Lemma 4.4.9. As H′ |=
(
statλX

)
Φ (X), there is a Dλ (H′)-

stationary set S ′∗ ⊆ [H′]λ witnessing this. Let S ′ = S ′∗ � M
′—i.e. S ′ = {X ∩M ′ |X ∈ S ′∗}.

By Lemma 4.4.7, S ′ is Dλ (M ′)-stationary. Let p∗ = p′ � L. To conclude the proof, it suffices
to establish the following:
Claim. p∗ is a type overM ′ and if N ∈ S ′, then p∗ k-Kim-divides over N via some ϕ (x; a′N) ∈
p∗.

Proof of claim. It is clear that p∗ is a consistent type overM ′. Now fix N ∈ S ′. By definition
of S ′, N = X ∩M ′ for some X ∈ [H′]λ such that H′ |= Φ (S) when SH

′
= X. It follows

that for some b ∈M ′, there is an N -indiscernible sequence 〈bi | i ∈ I〉 with b0 = b, such that
tp (bi/Nb<i) is finitely satisfiable in N , ϕ (x; b0) ∈ p′ and {ϕ (x; bi) | i ∈ I} is k-inconsistent,
where I denotes the (possibly non-standard) natural numbers of H′. By indiscernibility,
〈bi | i ∈ I〉 is a Morley sequence over N in a global N -finitely satisfiable type, which shows
ϕ (x; b0) k-Kim-divides over N . This completes the proof.

The main lemma

Lemma 4.4.13. (Main Lemma) Suppose T is a complete theory, M |= T is a model with
|M | ≥ |T |, and for some p ∈ S (M), the set

S0 =
{
N ∈ [M ]|T |

∣∣∣N ≺M, p Kim-divides over N
}

is stationary. Then T has SOP1.

Proof. Towards contradiction suppose T is NSOP1. By Lemma 4.4.11, there is a countable
sublanguage L′ ⊆ L and a stationary set S ′0 ⊆ [M ]ω such that if p′ = p � L′ then for all
N ∈ S, N ≺L′ M and p′ Kim-divides over N . Therefore, we may assume for the rest of the
proof that T is countable.

By forcing with the LÃľvy collapse Coll
(
λ+, 2λ

)
for a sufficiently large cardinal, we may

assume there is some an uncountable cardinal κ = κ<κ, namely κ = λ+, while preserving the
situation. By Lemma 4.4.12, there is a model M ′ |= T with |M ′| = κ+ and a type p′ over
M ′ so that

S ′′0 =
{
N ∈ [M ′]

κ ∣∣N ≺M ′ and some ϕ (x; cN) ∈ p′ Kim-divides over N
}

is Dκ (M ′)-stationary. Let 〈Mα |α < κ+〉 be a continuous and increasing sequence of κ-sized
elementary substructures of M ′ with union M ′. The set S = {α < κ+ | cf (α) = κ,Mα ∈ S ′′0}
is a stationary subset of κ+ by Lemma 4.4.6. By intersecting with a club, we may also
assume that for all α ∈ S, Mα contains cMβ

for all β ∈ α ∩ S.
From here, the proof closely follows the proof of Theorem III.4.5. For each α ∈ S, let

cα denote cMα and let rα be a global Mα-finitely satisfiable type extending tp (cα/Mα). By
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reducing S, we may assume that there is some k < ω such that r witnesses that ϕ (x; cα)
k-Kim-divides over Mα. For each α ∈ S, apply Lemma 4.3.3(2) to choose a countable
Nα ≺ Mα such that r⊗ωα |Nα is the type of a Morley sequence in some global Nα-finitely
satisfiable type and hence such that ϕ (x; cα) k-Kim-divides over Nα. Define ρ : S → κ+ by
ρ (α) = min {β < α |Nα ⊆Mβ}. This is well-defined and pressing down on S as κ is regular
and uncountable. By Fodor’s lemma, there is S ′ ⊆ S such that ρ is constant on S ′, say with
constant value β0. As |Mβ0| = κ, there are ≤ κℵ0 = κ many choices for Nα ⊆Mβ0 so there is
a stationary S ′′ ⊆ S ′ and N ′0 so that Nα = N ′0 for all α ∈ S ′′. As there are ≤ 2ℵ0 ≤ κ choices
for r⊗ωα |N ′0 , there is a stationary S∗ ⊆ S ′′ such that r⊗ωα |N ′0 is constant, with value s⊗ω0 |N ′0 for
some global coheir s0 over N ′0. Let δ0 = minS0, e0 = cδ0 .

Repeating this process ω many times, we find an increasing sequence 〈δi | i < ω〉 of or-
dinals in κ+, an increasing sequence of models 〈N ′i | i < ω〉, ei ∈ M ′ for i < ω and global
N ′i-finitely satisfiable types si such that:

N ′i contains e<i, ϕ (x; ej) is k-Kim-dividing over N ′i for every i ≤ j, si is a global coheir
over N ′i extending tp (ei/N

′
i) and ej ≡N ′i ei for all j ≥ i. In addition, s⊗ωj |N ′i = s⊗ωi |N ′i for all

j ≥ i.
Denote e = 〈ei : i < ω〉. Note that {ϕ (x; ei) | i < ω} is a subset of p′, hence consistent.

Now, exactly as in the claim in the proof of Theorem III.4.5, we can show that if i0 <
. . . < in−1 < ω and for each j < n, fj |= sij |N ′ij ef>j then eij ≡ei<j f<j fj for all j < n and
{ϕ (x; fj) | j < n} is k-inconsistent. By compactness, we can find an array 〈(ci,0, ci,1) | i < ω〉
so that {ϕ (x, ci,0) | i < ω} is consistent, {ϕ (x, ci,1) | i < ω} is k-inconsistent, and ci,0 ≡c<i ci,1
for all i < ω. By Fact 4.2.2, we obtain SOP1, a contradiction.

Corollary 4.4.14. Theorem 4.1.1 (1) =⇒ (4) holds.

4.5 Dual local character
Definition 4.5.1. (T any theory) Say that a formula ϕ (x, a) strongly Kim-divides over a
model M if for every global M -invariant type q ⊇ tp (a/M), ϕ (x, a) Kim-divides over M
via q.

Remark 4.5.2. By Fact 4.2.7, strong Kim-dividing = Kim-dividing iff T is NSOP1.

Definition 4.5.3. A dual type (over A) in x is a set F of (A-)definable sets in x such that for
some k < ω, it is k-inconsistent. Say that F dually divides over a model N , if every X ∈ F
which is not definable over N divides over N . Similarly define when F dually Kim-divides
over N and when F strongly dually Kim-divides over N .

Theorem 4.5.4. The following are equivalent for a complete theory T .

1. T is NSOP1.
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2. There is no continuous increasing sequence of |T |-sized models
〈
Mi

∣∣ i < |T |+〉 with
union M and a dual type F over M such that F � Mi+1 does not strongly dually
Kim-divide over Mi for all i < |T |+.

3. Assume that M |= T and F a dual type over M . Then there is a stationary subset S
of [M ]|T | such that if N ∈ S then N ≺M and F strongly dually Kim-divides over N .

4. (Dual local character) Same as (3) but S is a club.

Proof. The proof is essentially dualizing or inverting the proof (using stationary logic) of
Theorem 4.1.1 (1) =⇒ (4), but we go into some details.

(1) =⇒ (4). We follow the proof of “(1) implies (4)” of Theorem 4.1.1 as described in
Section 4.4. Namely, assume that (2) fails. This means that there is a stationary subset S
of [M ]|T | such that if N ∈ S then N ≺ M and there is some X ∈ F which is not definable
over N but still does not Kim-divide over N . Using the same proof as in Lemma 4.4.11, we
may assume that the language L is countable and that there is a single formula ϕ (x, y) with
|x| = n such that if N ∈ S then for some b ∈ M\N , ϕ (x, b) does not Kim-divide over N
(and ϕ (x, b) is not N -definable). Now we repeat the same procedure as in Lemma 4.4.12.
Thus, for a regular uncountable cardinal λ = λ<λ, we get a model M ′ |= T , |M ′| = λ+, a
formula ϕ (x, y), and a k-inconsistent family F∗ of definable formulas over M ′ so that

S ′0 = {N ′ ≺M ′ | |N ′| = λ,∃ϕ (x; a′N) ∈ F∗ not N ′-definable and does not Kim-divide over N ′}

is Dλ (M ′)-stationary. Now we repeat the proof of Lemma 4.4.13. The contradiction we will
arrive at the end will be the same contradiction, but the roles of the sequences ei and fj
are reversed. Now {ϕ (x, ei) | i < ω} is k-inconsistent (note that the formulas ϕ (x, ei) must
define distinct definable sets from F∗) and 〈ϕ (x, fj) | j < n〉 is consistent.

(4) =⇒ (3) =⇒ (2) is exactly as in the proof of Lemma 4.3.9. The proof of (2) =⇒
(1) is just dualizing the proof of “(2) implies (1)” in Theorem 4.3.9 in the sense that the
sequences 〈ci,0 | i < ω〉 and 〈ci,1 | i < ω〉 exchange places.

Question 4.5.5. Is there a proof of the dual local character which does not use stationary
logic? Such a proof may reveal some new properties of Kim-dividing.
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Chapter 5

SOP1 in one variable

5.1 Introduction
This chapter is concerned with showing strong order property 1 (SOP1) is witnessed by a
formula with only one free variable. SOP1 was introduced by Džamonja and Shelah in their
study of the E∗-order and they observed the class of NSOP1 contains the simple theories
[DS04]. Our subsequent work with Artem Chernikov in Chapter 1characterized NSOP1 in
terms of independent amalgamation of types, which gave a Kim-Pillay-style criterion for
NSOP1 that, in turn, implied that many nonsimple examples of interest lie within this class.
Later in Chapter 3, with Itay Kaplan, we introduced the theory of Kim-independence which
provided evidence that NSOP1 is a meaningful dividing line, admitting a structure theory
close to simplicity theory.

SOP1 is distinctive among dividing lines because of the difficulty of showing that a theory
is NSOP1 directly by syntactic means. In essentially all known examples of non-simple
NSOP1 theories, one first shows that the theory has a well-behaved notion of independence
and then makes use of the Kim-Pillay-style criterion from Corollary I.4.1 to show that this
implies the theory is NSOP1. In algebraic examples, such as Frobenius fields or bilinear forms
over an algebraically closed field, this strategy is natural and closely parallels the established
strategy for showing the simplicity of similar theories, such as bounded PAC fields or ACFA.
However, in combinatorial examples, this approach can seem rather cumbersome or indirect.

We simplify the syntax of SOP1 by proving that SOP1 is always witnessed by a formula
in a single free variable. One-variable theorems have been proved for almost all of the major
dividing lines, both because it makes it easier to check whether a theory has the given
property, and because it is a natural test question for one’s understanding of the dividing
line’s behavior. Yet these theorems can sometimes be difficult to discover. For example, the
questions of whether there are one-variable theorems for the strict order property or the tree
property of the second kind were both posed as open problems by Shelah; the former was
settled later by Lachlan [Lac75], the latter much later by Chernikov [Che14]. In some cases,
the analysis can be simplfied by considering generalized indiscernibles, e.g. indiscernible
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arrays for TP2 or indiscernible trees for TP1/SOP2, but these are of little direct use in
studying formulas witnessing SOP1 (see [HS14, p. 29n1] for a discussion). The argument
below instead makes use of an equivalent formulation of SOP1 in terms of a sequence of pairs
to conclude by a direct combinatorial argument.

5.2 The proof
We begin by noting some equivalent formulations of SOP1 in terms of arrays that will be
useful. In referring to an array (ci,j)i<ω,j<2, we write ci = (ci,0, ci,1) and c<i = (ck)k<i. We
write L(C) to denote the collection of L-formulas with parameters from the set C. We always
assume T is a complete theory with monster model M |= T .

Fact 5.2.1. Proposition III.2.4 The following are equivalent:

1. T has SOP1—that is, there is a formula ϕ(x; y) and a tree of tuples (aη)η∈2<ω so that

a) For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
b) For all ν _ 〈0〉E η ∈ 2<ω, {ϕ(x; aη), ϕ(x; aν_〈1〉)} is inconsistent.

2. There is a formula ϕ(x; y) and array (ci,j)i<ω,j<2 so that

a) ci,0 ≡c<i ci,1 for all i < ω.

b) ϕ(x; ci,0) : i < ω} is consistent.
c) {ϕ(x; ci,1) : i < ω} is 2-inconsistent.

3. There is an array (ci,j)i<ω,j<2, with ci,j = (dij, eij) for all i, j, and formulas χ1(x; y) and
χ2(x; z) so that, writing ψ(x; y, z) for χ1(x; y) ∧ χ2(x; z), the following conditions are
satisfied:

a) For all i < ω, ei,0 ≡Cc<i,0e<i,1 ei,1;
b) {ψ(x; ci,0) : i < ω} is consistent;
c) j ≤ i =⇒ {χ1(x; di,0), χ2(x; ej,1)} is inconsistent.

Remark 5.2.2. Although conditions (1)-(3) are not, in general, equivalent at the level of
formulas, if one of the conditions is true for a formula ϕ(x; y), then for any of the other
conditions, there is a formula ϕ′(x′; y′) witnessing this with l(x) = l(x′). Hence we say T has
SOP1 witnessed by a formula in a single free variable if there is a ϕ(x; y) with l(x) = 1 for
at least one of the conditions (1)-(3).

Lemma 5.2.3. If T has SOP1, there is a formula ϕ(x; y) and an array (ci,0, ci,1)i<ω so that

1. {ϕ(x; ci,0) : i < ω} is consistent.

2. {ϕ(x; ci,1) : i < ω} is 2-inconsistent.
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3. (ci)i<ω is an indiscernible sequence.

4. ci,0 ≡c<i ci,1 for all i < ω.

5. (ck,0)k≥i is c<ici,1-indiscernible.

Proof. If T has SOP1, then by Fact 5.2.1(2), Ramsey, and compactness, there is a formula
ϕ(x; y) and an array (bi,0, bi,1)i<ω satisfying (1)-(4) in the statement. Define ci,0 = b2i+1,0

and ci,1 = b2i,1 for all i < ω. The array (ci,0, ci,1)i<ω clearly satisfies (1)-(3). (5) is also
clear, since (bk,0)k≥2i+1 is b<2k+1-indiscernible. To see (4), note b2i+1,0 ≡b<2i

b2i+1,1 and hence
b2i+1,1 ≡b<2i

b2i,1 by (3) so, by definition, ci,0 ≡c<i ci,1.

Lemma 5.2.4. Suppose T does not witness SOP1 with any formula in the variables x.
Suppose b is a tuple of the same length as x, C is some set of parameters, and (ci,0, ci,1)i<ω
is an array satisfying

1. (ci)i<ω is a C-indiscernible sequence.

2. (ci,0)i<ω is Cb-indiscernible.

3. ci,0 ≡Cc<i ci,1 for all i < ω.

4. (ck,0)k≥i is Cc<ici,1-indiscernible.

Then
tp(b/C(ci,0)i<ω) ∪ {ϕ(x; ci,0)↔ ϕ(x; ci,1) : i < ω, ϕ ∈ L(C)}

is consistent.

Proof. Suppose not. Let N be maximal so that

tp(b/C(ci,0)i<ω) ∪ {ϕ(x; ci,0)↔ ϕ(x; ci,1) : i < N,ϕ ∈ L(C)}

is consistent. By compactness, we may fix χ(x; c≤M,0) ∈ tp(b/C(ci,0)i<ω), a finite ∆(x) ⊆
{ϕ(x; ci,0)↔ ϕ(x; ci,1) : i < N,ϕ ∈ L(C)}, and a formula ϕ ∈ L(C) so that

χ(x; c≤M,0) ∧
∧

∆(x) ` ϕ(x; cN,0)↔ ¬ϕ(x; cN,1).

Necessarily by the choice of N , we haveM ≥ N , and, without loss of generality, χ(x; c≤M,0) `
ϕ(x; cN,0). Put C ′ = C ∪ c<N and let

ai.0 = (c(M−N)i+N,0, c(M−N)i+N+1,0, . . . , c(M−N)i+M,0)

bi,0 = c(M−N)i+N,0

ai,1 = c(M−N)i+N,1.
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Unravelling definitions, we have bi,0 ≡C′a<i,0b<i bi,1 for all i. Therefore, we may choose, for
all i < ω, some ai,1 so that ai,0bi,0 ≡C′a<i,0b<0

ai,1bi,1. Set z = (z0, . . . , zM−N) and define
ψ(x; z) ∈ L(C ′) by

ψ(x; z) = χ(x; c<N,0, z0, . . . , zM−N) ∧
∧

∆(x).

Write µ(x; y, z) = ϕ(x; y) ∧ ψ(x; z) ∈ L(C ′). Setting di,j = (ai,j, bi,j), for i < ω, j < 2, we
obtain an array (di,0, di,1)i<ω so that di,0 ≡C′d<i,0b<i,1 di,1.

Since χ(x; c<N,0, cN,0, . . . , cM,0) ∈ tp(b′/C(ci,0)i<ω) and (ci,0)i<ω is Cb-indiscernible, we
have

{χ(x; c<N,0, c(M−N)i+N,0, . . . , c(M−N)i+M,0) : i < ω} ⊆ tp(b/C(ci,0)i<ω).

By construction, ∆(x) ∪ tp(b/C(ci,0)i<ω) is consistent. Unravelling definitions, we have
{µ(x; di,0) : i < ω} is consistent. By our choice of N , we know

χ(x; c<N,0, cN,0, . . . , cM,0) ∧
∧

∆(x) ∧ ϕ(x; cN,0) ∧ ϕ(x; cN,1)

is inconsistent. By indiscernibility of the sequence (ci)i<ω, for all i < ω,

χ(x; c<N,0, c(M−N)i+N,0, . . . , c(N−M)i+M,0) ∧
∧

∆(x) ∧ ϕ(x; c(M−N)i+N,0) ∧ ϕ(x; c(M−N)i+N,1)

is inconsistent. Then as the sequence (ck,0)k≥(M−N)i+N is Cc<(M−N)i+Nc(M−N)i+N,1-indiscernible,
it follows that, for all j ≥ i,

χ(x; c<N,0, c(M−N)j+N,0, . . . , c(N−M)j+M,0) ∧
∧

∆(x) ∧ ϕ(x; c(M−N)j+N,0) ∧ ϕ(x; c(M−N)i+N,1)

is inconsistent. Unravelling definitions again, this shows that for i ≤ j, µ(x; dj,0) ∧ ϕ(x; bi,1)
is inconsistent. By Fact 5.2.1(3), this shows T has SOP1 (in some formula in the variables
x).

Theorem 5.2.5. If T has SOP1, there is some formula in a single free-variable with SOP1.

Proof. Suppose ϕ(x, y; z) is a formula witnessing SOP1. So there is an array (ci,0, ci,1)i<ω
satisfying conditions (1)-(5) of Lemma 5.2.3 with respect to ϕ(x, y; z). We will suppose T
does not witness SOP1 in the free variables y and we will exhibit a formula witnessing SOP1

in the free variables x. Let Cn be the set enumerated by c<n. For n ≤ m < ω, define the
partial type qn,m(y) by

qn,m(y) = {ψ(y; cm,0)↔ ψ(y; cm,1) : ψ ∈ L(Cn)}.

By induction on n < ω, we will choose bn so that

1. {ϕ(x, bn; ci,0) : i < ω} is consistent.

2. bn realizes qk,m for all k < n and m ≥ k.
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3. (ck)k≥n is Cnbn-indiscernible.

To begin, choose an arbitrary (a0, b0) |= {ϕ(x, y; ci,0) : i < ω}. By Ramsey, compactness,
and automorphism, we may assume (ci)i<ω is b0-indiscernible. Next, suppose we are given
bn so that {ϕ(x, bn; ci,0) : i < ω} is consistent, bn realizes qk,m for all k < n and m ≥ k,
and (ck)k≥n is bnCn-indiscernible. We additionally know ck,0 ≡Cnc<k ck,1 and (cl,0)l≥k is
Cnc<kck,1-indiscernible for all k ≥ n. Therefore, we may apply Lemma 5.2.4 to conclude

tp(bn/Cn(ci,0)i<ω) ∪ {ψ(y; cm,0)↔ ψ(y; cm,1) : m ≥ n, ψ ∈ L(Cn)}

is consistent. Let bn+1 realize this partial type. By Ramsey, compactness, and an au-
tomorphism over Cn, we may assume (ck)k≥n is Cnbn+1-indiscernible, hence (ck)k≥n+1 is
Cn+1bn+1-indiscernible. It follows, then, that {ϕ(x, bn+1; ci,0) : i < ω} is consistent, (ck)k≥n+1

is bn+1Cn+1-indiscernible, and bn+1 realizes qk,m(y) for all k < n+ 1 and m ≥ k.
By compactness, then, we obtain a tuple b so that {ϕ(x, b; ci,0) : i < ω} is consistent

and b realizes qn,k(y) for all n ≤ k < ω. It follows that cn,0 ≡c<nb cn,1 for all n. Setting
di,j = (b, ci,j) for all i < ω, j < 2, we obtain an array (di,0, di,1)i<ω so that {ϕ(x; di,0) : i < ω}
is consistent, {ϕ(x; di,1) : i < ω} is inconsistent, and di,0 ≡d<i di,1 for all i. This shows there
is a formula in the variables x witnessing SOP1. This shows we may reduce the number of
variables in the formula witnessing SOP1 and, by induction, we conclude.
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Part IV

Examples and Applications
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Chapter 6

Generic expansion and Skolemization

This chapter is joint work with Alex Kruckman.

6.1 Introduction
Many of the early developments in the study of simple theories were guided by the thesis
that a simple theory can be understood as a stable theory plus some ‘random noise.’ This
loose intuition became a concrete recipe for creating new simple theories: start with a stable
theory, and, through some kind of generic construction, add additional random structure in
an expanded language. This strategy was pursued by Chatzidakis and Pillay [CP98], who
showed that adding a generic predicate or a generic automorphism to a stable theory results
in a simple theory which is, in general, unstable. In the case of adding a generic predicate,
it suffices to assume that the base theory is simple; that is, expansion by a generic predicate
preserves simplicity. The paper [CP98] spawned a substantial literature on generic structures
and simple theories, which in turn shed considerable light on what a general simple theory
might look like.

We are interested in using generic constructions to produce new examples of NSOP1 the-
ories. The class of NSOP1 theories, which contains the class of simple theories, was isolated
by Džamonja and Shelah [DS04] and later investigated by Shelah and Usvyatsov [SU08].
Until recently, very few non-simple examples were known to lie within this class. A cri-
terion, modeled after the well-known theorem of Kim and Pillay characterizing the simple
theories as those possessing a well-behaved independence relation, was observed in Chapter
1. This criterion was applied to show that the theory of an ω-free PAC field of charac-
teristic zero and the theory of an infinite dimensional vector space over an algebraically
closed field with a generic bilinear form are both NSOP1. That chapter also showed, by a
variation on a construction of Baudisch, that a simple theory obtained as a Fraïssé limit
with no algebraicity may be ‘parametrized’ to produce an NSOP1 theory which is, in gen-
eral, non-simple. Chapter 3 developed a general theory of independence in NSOP1 theories,
called Kim-independence, which turns out to satisfy many of the familiar properties of fork-
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ing independence in simple theories (e.g. extension, symmetry, the independence theorem,
etc.). In this chapter, we apply this theory of independence to verify that certain generic
constructions preserve NSOP1.

In Section 6.2, we review the theory of Kim-independence in NSOP1 theories and make
some technical contributions to this theory. We establish strengthenings of the extension
property, the chain condition, and the independence theorem for Kim-independence, obtain-
ing additional instances of algebraic independence in their conclusions (see Definition 6.2.8,
and Theorems 6.2.15, 6.2.18, and 6.2.21). The main deficiency of Kim-independence is the
failure of base monotonicity, and this work can be viewed as an effort to circumvent that
deficiency, since the instances of algebraic independence that we need would be automatic
in the presence of base monotonicity (see Remarks 6.2.9 and 6.2.10).

Section 6.3 is dedicated to an analysis of the theory T ∅L of the generic L-structure (the
model completion of the empty theory in an arbitrary language L). The work in this section
was motived by a preprint of Jeřábek [Jeř17]. In an early draft of [Jeř17], Jeřábek showed that
T ∅L is always NSOP3, regardless of the language. He asked if this could be improved to NSOP1

and if T ∅L weakly eliminates imaginaries. We give positive answers to these questions, and
we characterize Kim-independence and forking independence in this theory. In a subsequent
draft of [Jeř17], Jeřábek also independently answered both questions.

But Jeřábek’s first question suggested a much more general one. An L-theory T may
be considered as an L′-theory for any language L′ that contains L. A theorem of Winkler
[Win75] establishes that, as an L′-theory, the theory T has a model completion TL′ , provided
that T is model complete and eliminates the quantifier ∃∞. The theory TL′ axiomatizes the
generic expansion of T by the new constants, functions, and relations of L′. Using the theory
developed in Section 6.2, we show that if T is NSOP1, then TL′ is as well; that is, generic
expansions preserve NSOP1.

In [Win75], Winkler also showed that if T is a model complete theory eliminating the
quantifier ∃∞, then T has a generic Skolemization TSk. More precisely, if T is an L-theory,
one may expand the language by adding a function fϕ for each formula ϕ(x, y) of L. And
T , together with axioms asserting that each fϕ(x) acts as a Skolem function for ϕ(x, y), has
a model companion. This result was used by Nübling in [Nüb04], who showed that one may
Skolemize algebraic formulas in a simple theory while preserving simplicity. Nübling further
observed that, in general, adding a generic Skolem function for a non-algebraic formula
produces an instance of the tree property, and hence results in a non-simple theory. We
show, however, that generic Skolemization preserves NSOP1. By iterating, we show that any
NSOP1 theory eliminating the quantifier ∃∞ can be expanded to an NSOP1 theory with built-
in Skolem functions, and we also characterize Kim-independence in the expansion in terms
of Kim-independence in the original theory. This result is of intrinsic interest, but it also
provides a new technical tool in the study of Kim-independence in NSOP1 theories, which,
at least at its current stage of development, only makes sense when the base is a model.
Preservation of NSOP1 by generic expansion and generic Skolemization is established in
Section 6.4.
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6.2 NSOP1 and independence

Preliminaries on NSOP1

Throughout this section, we fix a complete theory T and a monster model M |= T .

Definition 6.2.1. A formula ϕ(x; y) has SOP 1 modulo T if there is a tree of tuples (aη)η∈2<ω

in M so that:

• For all η ∈ 2ω, the partial type {ϕ(x; aη|α) | α < ω} is consistent.

• For all ν, η ∈ 2<ω, if ν _ 〈0〉E η then {ϕ(x; aη), ϕ(x; aν_〈1〉)} is inconsistent.

The theory T is NSOP1 if no formula has SOP 1 modulo T . An incomplete theory is said to
be NSOP1 if every completion is NSOP1.

Definition 6.2.2. We call any p ∈ S(M) a global type. A global type p is A-invariant if,
for all formulas ϕ(x; y), if b ≡A b′, then ϕ(x; b) ∈ p if and only if ϕ(x; b′) ∈ p (equivalently,
p is invariant under the action of Aut(M/A) on S(M)). If p is a global A-invariant type, a
Morley sequence in p over A is a sequence (bi)i∈I from M so that bi |= p|A(bj)j<i . We denote
by p⊗n|A the type tp(bi1 , . . . , bin/A) when i1 < i2 < · · · < in. By invariance, this type does
not depend on the choice of Morley sequence (bi)i∈I or indices ik.

Definition 6.2.3. Fix a model M ≺M.

1. A formula ϕ(x; b) Kim-divides over M if there is an M -invariant global type q ⊇
tp(b/M) so that if (bi)i<ω is a Morley sequence over M in q, then {ϕ(x; bi) | i < ω} is
inconsistent.

2. A partial type p(x) Kim-divides overM if p(x) implies some formula which Kim-divides
over M .

3. We write a |̂ K
M
b for the assertion that tp(a/Mb) does not Kim-divide over M .

A well-known theorem of Kim and Pillay characterizes the simple theories as those theo-
ries with a notion of independence satisfying certain properties—this serves both as a useful
way to establish that a theory is simple and as a method to characterize forking indepen-
dence for the given theory. An analogous criterion for establishing that a theory is NSOP1

was proved in Chapter 1. Later, it was observed in Chapter 3 that this criterion gives rise
to an abstract characterization of |̂ K .

Theorem 6.2.4. Proposition I.5.8, Theorem III.9.1 Assume there is an Aut(M)-invariant
ternary relation |̂ on small subsets of M satisfying the following properties, for an arbitrary
M ≺M and arbitrary tuples from M:

1. Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈ tp(a/Mb) such

that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.
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2. Existence over models: a |̂
M
M .

3. Monotonicity: if aa′ |̂
M
bb′, then a |̂

M
b.

4. Symmetry: if a |̂
M
b, then b |̂

M
a.

5. The independence theorem: if a |̂
M
b, a′ |̂

M
c, b |̂

M
c and a ≡M a′, then there exists

a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′, and a′′ |̂

M
bc.

Then T is NSOP1 and |̂ strengthens |̂ K, i.e. if a |̂
M
b, then a |̂ K

M
b. If |̂ satisfies the

following additional property, then |̂ = |̂ K over models, i.e. a |̂
M
b if and only if a |̂ K

M
b:

6. Witnessing: if a 6 |̂
M
b, then there exists a formula ϕ(x, b,m) ∈ tp(a/Mb), such that

for any Morley sequence (bi)i<ω over M in a global M-finitely satisfiable type extending
tp(b/M), {ϕ(x, bi,m) | i < ω} is inconsistent.

The following is a reformulation of some of the main results of Chapter 3:

Theorem 6.2.5. If T is NSOP1, then |̂ K satisfies the properties (1)-(6) in Theorem 6.2.4,
as well as

7. Extension: if a |̂
M
b, then for any c, there exists a′ such that a′ ≡Mb a and a′ |̂

M
bc.

8. The chain condition: if a |̂
M
b and I = (bi)i<ω is a Morley sequence over M in a

global M-invariant type extending tp(b/M), then there exists a′ such that a′ ≡Mb a,
a′ |̂

M
I, and I is Ma′-indiscernible.

We will also be interested in the relation of algebraic independence, |̂ a. Algebraic
independence comes close to satisfying the criteria in Lemma 6.2.4 in any theory, but it
typically does not satisfy the independence theorem.

Definition 6.2.6. For any set C ⊂M and any tuples a and b, we define

a
a

|̂
C

b ⇐⇒ acl(Ca) ∩ acl(Cb) = acl(C).

Lemma 6.2.7. In any theory T , |̂ a satisfies extension, existence over models, monotonic-
ity, symmetry, strong finite character, and witnessing.

Proof. Extension for algebraic independence is proved in [Hod93, Theorem 6.4.5]. Existence
over models, monotonicity, and symmetry are immediate from the definitions.

For strong finite character and witnessing, note that if M |= T , a 6 |̂ a
M
b, and c ∈

(acl(Ma) ∩ acl(Mb)) \M witnesses this, then one can choose χ(z; a,m) ∈ tp(c/Ma) and
ψ(z; b,m) ∈ tp(c/Mb) which isolate these types. In particular, for some k, k′ < ω, we may
choose χ and ψ so that for all a′, there are at most k realizations of χ(z; a′,m), and for all b′,
there are at most k′ realizations of ψ(z; b′,m). Note that, since ψ(z; b,m) isolates tp(c/Mb),
if b′ ≡M b, then none of the realizations of ψ(z; b′,m) are in M .
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Let ϕ(x, b,m) be the formula ∃z (χ(z;x,m)∧ψ(z; b,m)). For any a′ satisfying ϕ(x, b,m),
the witness to the existential quantifier also witnesses a′ 6 |̂ [a]Mb. This verifies strong finite
character.

We use the same formula ϕ(x, b,m) for witnessing. Let (bi)i<ω be a Morley sequence
over M in a global M -finitely satisfiable type extending tp(b/M). If M |= ∃z (ψ(z; bi,m) ∧
ψ(z; bj,m)) with i < j, then by finite satisfiability, there exists m′ ∈ M such that M |=
∃z (ψ(z; bi,m) ∧ ψ(z;m′,m)). But every realization of ψ(z;m′,m) is algebraic over M and
hence in M , while no realization of ψ(z; bi,m) is in M . It follows that the sets {ψ(M; bi,m) |
i < ω} are pairwise disjoint, and thus the partial type {ϕ(x, bi,m) | i < ω} is inconsistent,
since for any a′, the set χ(M; a′,m) intersects at most k of the sets ψ(M; bi,m).

In Section 6.4, we will need strengthenings of the extension property and the independence
theorem, which tell us that Kim-independence interacts with algebraic independence in a
reasonable way. Along the way to proving the strengthening of the independence theorem,
we will need a similar strengthening of the chain condition.

Definition 6.2.8. Using the same notation as in Theorem 6.2.4, we define the following
properties of an abstract independence relation |̂ :

• Algebraically reasonable extension: if a |̂
M
b, then for any c, there exists a′ such that

a′ ≡Mb a and a′ |̂
M
bc, and further a′ |̂ a

Mb
c.

• The algebraically reasonable chain condition: if a |̂
M
b and I = (bi)i<ω is a Morley

sequence over M in a global M -invariant type extending tp(b/M), then there exists a′
such that a′ ≡Mb a, a′ |̂ M I, and I is Ma′-indiscernible, and further bi |̂ aMa′

bj for all
i 6= j.

• The algebraically reasonable independence theorem: if a |̂
M
b, a′ |̂

M
c, b |̂

M
c, and

a ≡M a′, then there exists a′′ such that a′′ ≡Mb a, a′′ ≡Mc a
′, and a′′ |̂

M
bc, and

further a′′ |̂ a
Mb
c, a′′ |̂ a

Mc
b, and b |̂ a

Ma′′
c.

Remark 6.2.9. If T is simple, then by Proposition III.8.4, |̂ K coincides with forking in-
dependence |̂ f over models, and the “and further” clauses of Definition 6.2.8 follow easily
from the basic properties of forking independence.
Remark 6.2.10. In any theory, forking independence satisfies base monotonicity and strength-
ens algebraic independence. So for any set A and tuples a, b, and c, a |̂ f

A
bc implies a |̂ f

Ab
c,

which implies a |̂ a
Ab
c. Even in an NSOP1 theory T , however, it is possible to have a model

M |= T and tuples a, b, and c, with a |̂ K
M
bc and a 6 |̂ a

Mb
c. See Example 6.3.15 below.

In the remainder of this section, we will show that in an NSOP1 theory, Kim-independence
satisfies the algebraically reasonable properties in Definition 6.2.8. The reader who is not
interested in the technicalities of these proofs may skip directly to Section 6.3.



CHAPTER 6. GENERIC EXPANSION AND SKOLEMIZATION 159

An improved independence theorem

We will first establish a slight improvement to the conclusion of the independence theorem,
removing the apparent asymmetry between a, b, and c in the conclusion. As in Remark 6.2.9,
this improved statement is easy in the context of a simple theory, where it follows from the
basic properties of forking independence.

Definition 6.2.11. Suppose T is NSOP1, M ≺ M, and (ai)i<ω is an M -indiscernible se-
quence.

1. Say (ai)i<ω is a witness for Kim-dividing over M if, whenever ϕ(x; a0) Kim-divides
over M , {ϕ(x; ai) | i < ω} is inconsistent.

2. Say (ai)i<ω is a strong witness to Kim-dividing over M if, for all n < ω, the sequence
(an·i, an·i+1, . . . , an·i+n−1)i<ω is a witness to Kim-dividing over M .

3. If I is any ordered index set, we say (ai)i∈I is a strong witness to Kim-dividing over M
if it has the same EM-type as a strong witness to Kim-dividing over M indexed by ω.

By Proposition III.7.9, in an NSOP1 theory, the class of strong witnesses to Kim-dividing
over M coincides with the tree Morley sequences over M . As we will not need the Morley
tree machinery of Chapter 3, we will refer only to strong witnesses. The following facts are
all contained in Chapter 3:

Fact 6.2.12. Suppose T is NSOP1 and M |= T .

1. Suppose (ai, bi)i∈I is a strong witness to Kim-dividing over M and J ⊆ I is an infinite
subset. Then (ai)i∈J and (bi)i∈J are strong witnesses to Kim-dividing over M .

2. If b ≡M b′ and b |̂ K
M
b′, then there is a strong witness to Kim-dividing over M , (bi)i∈Z,

with b0 = b and b1 = b′.

3. a |̂ K
M
b if and only if there is an Ma-indiscernible sequence (bi)i<ω which is a strong

witness to Kim-dividing over M with b0 = b.

4. If a |̂ K
M
b, and I = (bi)i∈Z is a strong witness to Kim-dividing over M with b0 = b,

then there exists a′ ≡Mb a such that I is Ma′-indiscernible and a′ |̂ K
M
I.

Theorem 6.2.13. Suppose T is NSOP1, M ≺M, a0 |̂ KM b, a1 |̂ KM c, b |̂ K
M
c and a0 ≡M a1.

Then there exists a with a ≡Mb a0, a ≡Mc a1, and a |̂ K
M
bc, and further b |̂ K

M
ac and

c |̂ K
M
ab.

Proof. Applying the independence theorem, we obtain a2 with a2 ≡Mb a0, a2 ≡Mc a1, and
a2 |̂ KM bc. Since b |̂ K

M
c, by extension and an automorphism, there exists b′ with b′ ≡Mc b

such that b |̂ K
M
b′c. By symmetry, b′c |̂ K

M
b, and by extension and an automorphism again,

there exists c′ with c′ ≡Mb c such that b′c |̂ K
M
bc′. Altogether, b′c ≡M bc ≡M bc′, so by
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Fact 6.2.12(2), there is a strong witness to Kim-dividing over M , I = (bi, ci)i∈Z, so that
(b0, c0) = (b, c′) and (b1, c1) = (b′, c).

Choose a3 such that a3bc
′ ≡M a2bc. Then a3 |̂ KM bc′, so by Fact 6.2.12(4), there exists

a ≡Mbc′ a3 such that I is Ma-indiscernible and a |̂ K
M
I. By monotonicity, a |̂ K

M
bc. And we

have a ≡Mb a3 ≡Mb a2 ≡Mb a0, and by indiscernibility, ac ≡M ac′ ≡M a3c
′ ≡M a2c ≡M a1c,

so a ≡Mc a1.
By Fact 6.2.12(1), (bi)i≤0 is a strong witness to Kim-dividing overM with b0 = b which is

Mac-indiscernible, so b |̂ K
M
ac by symmetry and Fact 6.2.12(3). Likewise, (ci)i≥1 is a strong

witness to Kim-dividing over M with c1 = c which is Mab-indiscernible, so c |̂ K
M
ab. This

completes the proof.

As an immediate corollary of the strengthened independence theorem, we get the follow-
ing form of extension.

Corollary 6.2.14. Suppose T is NSOP1 and M |= T . If a |̂ K
M
b and c |̂ K

M
a, then there is

c′ ≡Ma c such that a |̂ K
M
bc′ and c′ |̂ K

M
ab.

Proof. By extension, choose c∗ ≡M c with c∗ |̂ KM b. Then by Theorem 6.2.13, there exists
c′ such that c′ ≡Ma c, c′ ≡Mb c∗, c′ |̂ KM ab, a |̂ K

M
bc′, and b |̂ K

M
ac′, which is more than we

need.

Kim-independence and algebraic independence

We are now ready to show that Kim-independence satisfies the algebraically reasonable
conditions of Definition 6.2.8 in any NSOP1 theory.

Theorem 6.2.15. If T is NSOP1, then |̂ K satisfies algebraically reasonable extension.

Proof. Suppose we have a model M and tuples a, b, c, with a |̂ K
M
b. Let b be a tuple

enumerating acl(Mb), and let c = (ci)i∈I be a tuple enumerating acl(Mbc) \ acl(Mb). Then
we also have a |̂ K

M
b (Corollary III.5.17). And for any a′, we have a′ 6 |̂ [a]Mbc if and only if

there is some index i ∈ I such that ci ∈ acl(Ma′b).
Let κ = | acl(Mab)|. Since b enumerates an algebraically closed set, we can find pairwise

disjoint tuples (cα)α<κ+ such that cα ≡Mb c for all α. By extension, there exists a′′ ≡Mb a such
that a′′ |̂ K

M
b(cα)α<κ+ . In particular, for every α, a′′ |̂ K

M
bcα. And since | acl(Ma′′b)| = κ,

there is some α such that cα is disjoint from acl(Ma′′b), so a′′ |̂ a
Mb
cα.

Let σ be an automorphism moving cα to c and fixing b, and let a′ = σ(a′′). Then a′ |̂ K
M
bc

and a′ |̂ a
Mb
c.

Lemma 6.2.16. Suppose T is NSOP1 and M |= T . If b |̂ K
M
a and c |̂ K

M
a, then there is

c′ ≡Ma c such that bc′ |̂ K
M
a and b |̂ a

Ma
c′.
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Proof. We build a sequence (bi)i<ω by induction, such that for all i < ω, the following
conditions hold:

1. bi ≡Ma b.

2. bi+1 |̂ KM ab≤i.

3. bi+1 |̂ aMa
b≤i.

Set b0 = b, and given b≤i, as b |̂ K
M
a, use algebraically reasonable extension to find

bi+1 ≡Ma b such that bi+1 |̂ KM ab≤i and bi+1 |̂ aMa
b≤i.

In particular, note that bi |̂ aMa
bj for all i 6= j.

Define a partial type Γ(x; a, b) by

Γ(x; a, b) = tp(c/Ma) ∪ {¬ϕ(x, b; a) | ϕ(x, y; a) Kim-divides over M}.

Claim: For all n < ω,
⋃
i≤n Γ(x; a, bi) is consistent.

Proof of claim: By induction on n, we will find cn |̂ KM ab≤n so that cn |=
⋃
i≤n Γ(x; a, bi),

i.e. cn ≡Ma c and bic |̂ KM a for all i ≤ n.
For n = 0, the existence of such a c0 is given by Corollary 6.2.14. Suppose we have

cn |̂ KM ab≤n realizing
⋃
i≤n Γ(x; a, bi). By extension, choose c′ ≡M c with c′ |̂ K

M
bn+1. As

bn+1 |̂ KM ab≤n, we may apply the strengthened independence theorem (Theorem 6.2.13), to
find cn+1 |= tp(cn/Mab≤n) ∪ tp(c′/Mbn+1) with cn+1 |̂ KM ab≤n+1 and bn+1cn+1 |̂ KM ab≤n. In
particular, bn+1cn+1 |̂ KM a, so cn+1 |= Γ(x; a, bn+1). This gives cn+1 |=

⋃
i≤n+1 Γ(x; a, bi).

Let κ = | acl(Mac)|, and let (b′α)α<κ+ be an Ma-indiscernible sequence locally based on
(bi)i<ω. Then we have b′α |̂

a

Ma
b′β for all α 6= β, and

⋃
α<κ+ Γ(x; a, b′i) is consistent, by the

claim. Let c∗ realize this partial type, so c∗ ≡Ma c and b′αc∗ |̂
K

M
a for all α.

Since the sets acl(Mab′α) are pairwise disjoint over acl(Ma), and | acl(Mac∗)| = κ, there
is some α < κ+ such that acl(Mab′α) is disjoint from acl(Mac) over acl(Ma), so b′α |̂

a

M
c.

Since bα ≡Ma b, we can find an automorphism σ fixing Ma and moving b′α to b. Taking
c′ = σ(c∗), we have c′ ≡Ma c∗ ≡Ma c and bc′ |̂ KM a, as desired.

Corollary 6.2.17. Suppose T is NSOP1 and M |= T . If b |̂ K
M
a, then for any cardinal κ,

there is an Ma-indiscernible sequence I = (bα)α<κ with b0 = b, such that bα |̂ aMa
bβ for all

α 6= β, and I |̂ K
M
a.

Proof. We first build a sequence (ci)i<ω by induction, such that for all i < ω, the following
conditions hold:

1. ci ≡Ma b.

2. ci |̂ aMa
c<i.
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3. c≤i |̂ KM a.

Set c0 = b, and given c≤i, as c≤i |̂ KM a and b |̂ K
M
a, we may apply Lemma 6.2.16 to find

ci+1 ≡Ma b such that ci+1 |̂ aMa
c≤i and c≤i+1 |̂ KM a.

Now let I = (bα)α<κ be an Ma-indiscernible sequence locally based on (ci)i<ω. By
condition (1), we may assume that b0 = b. Condition (2) implies that ci |̂ aMa

cj for all i 6= j,
so bα |̂ aMa

bβ for all α 6= β, and I |̂ K
M
a by condition (3) and the strong finite character of

Kim-dividing.

Theorem 6.2.18. If T is NSOP1, then |̂ K satisfies the algebraically reasonable chain
condition.

Proof. Suppose a |̂ K
M
b, and let I = (bi)i∈ω be a Morley sequence over M in a global M -

invariant type q ⊇ tp(b/M).
Claim: For all n, there exists (c0, . . . , cn) |= q⊗(n+1)|M such that ci ≡Ma b for all i ≤ n,

ci |̂ aMa
cj for all i 6= j, and (ci)i≤n |̂ KM a.

Proof of claim: By induction on n. When n = 0, taking c0 = b suffices. So suppose we are
given the tuple (c0, . . . , cn) by induction. Let κ = | acl(Mab)|, and, applying Corollary 6.2.17,
let J = (d0,α)α<κ+ be an Ma-indiscernible sequence with d0,0 = b, such that d0,α |̂ aMa

d0,β

for all α 6= β, and J |̂ K
M
a.

Let (d1, . . . , dn+1) realize q⊗(n+1)|MJ . Since d0,α |= q|M for all α, we have (d0,α, d1, . . . , dn+1) |=
q⊗(n+2)|M for all α. Let σ ∈ Aut(M/M) be such that σ(ci) = di+1 for all i ≤ n, and let
a′ = σ(a). Now a ≡M a′, a |̂ K

M
J (by choice of J), a′ |̂ K

M
(d1, . . . , dn+1) (by invariance), and

(d1, . . . , dn+1) |̂ K
M
J (since tp(d1, . . . , dn+1/MJ) extends to a global M -invariant type).

Applying the independence theorem, we find a′′ with a′′ ≡MJ a, a′′ ≡Md1...dn+1 a
′, and

a′′ |̂ K
M
Jd1 . . . dn+1. Then we still have di |̂ aMa′′

dj for all 1 ≤ i < j ≤ n + 1, and since
the sets acl(Ma′′d0,α) are pairwise disjoint over acl(Ma′′), and | acl(Ma′′di)| = κ for all
1 ≤ i ≤ n, there is some α < κ+ such that acl(Ma′′d0,α) is disjoint from each of these n sets
over acl(Ma′′). So setting d0 = d0,α, we have di |̂ aMa′′

dj for all i 6= j.
It remains to move a′′ back to a by an automorphism σ ∈ Aut(M/M). The tuple

σ(d0, . . . , dn+1) has the desired properties.
By compactness, we can find I ′ = (ci)i<ω |= q⊗ω, i.e. a q-Morley sequence over M , such

that ci ≡Ma b for all i < ω, ci |̂ aMa
cj for all i 6= j, and I ′ |̂ K

M
a. In fact, we can assume that

I ′ is Ma-indiscernible, by replacing it with an Ma-indiscernible sequence locally based on it.
As I ′ and I are both q-Morley sequences over M , we can move I ′ to I by an automorphism
σ ∈ Aut(M/M), and take a′ = σ(a).

Lemma 6.2.19. Suppose (ai)i<ω is a Morley sequence for a global M-invariant type, which
is moreover Mb-indiscernible. If b |̂ a

M(ai)i<ω
b′, then b |̂ a

Ma0
b′.

Proof. Suppose there is some element c ∈ acl(Ma0b)∩acl(Ma0b
′). We would like to show that

c ∈ acl(Ma0). What we have is that c ∈ acl(M(ai)i<ω), and in particular c ∈ acl(Ma0b) ∩
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acl(Ma0ai1 . . . ain) for some 0 < i1 < · · · < in. Now (ai)i≥1 is indiscernible over Ma0b, hence
indiscernible over acl(Ma0b), which contains c. So c is also in both acl(Ma0a1 . . . an) and
acl(Ma0an+1 . . . a2n).

But tp(an+1, . . . , a2n/Ma0a1 . . . an) extends to a global Ma0-invariant type, so we must
have an+1 . . . a2n |̂ aMa0

a1 . . . an. Hence c ∈ acl(Ma0).

Lemma 6.2.20. Given a |̂ K
M
b and globalM-invariant types p(x) and q(y) extending tp(a/M)

and tp(b/M) respectively, there exist mutually indiscernible Morley sequences (ai)i<ω and
(bi)i<ω in p and q, with a0 = a and b0 = b, such that (ai)i<ω |̂ KM(bi)i<ω, and ai |̂ aMb

aj and
bi |̂ aMa

bj for all i 6= j.

Proof. Let (ai)i<ω be a Morley sequence in p, with a0 = a. By the algebraically reasonable
chain condition, there is some b′ ≡Ma b, such that (ai)i<ω is Mb′-indiscernible, b′ |̂ K

M
(ai)i<ω,

and ai |̂ aMb′
aj for all i 6= j. At the expense of moving (ai)i<ω by an automorphism fixing

Ma, we may assume that b′ = b.
Now let (bi)i<ω be a Morley sequence in q, with b0 = b. Since (ai)i<ω |̂ KM b, we can find

some (a′i)i<ω ≡Mb (ai)i<ω, such that (bi)i<ω isM(a′i)i<ω-indiscernible, (a′i)i<ω |̂
K

M
(bi)i<ω, and

bi |̂ aM(a′i)i<ω
bj for all i 6= j. Further, we may replace (a′i)i<ω with an M(bi)i<ω-indiscernible

sequence (a′′i )i<ω locally based on it, and at the expense of moving (bi)i<ω by an automorphism
fixing Mb, we may assume that (a′′i )i<ω = (ai)i<ω.

The result is that (ai)i<ω and (bi)i<ω are mutually indiscernible Morley sequences in p and
q with a0 = a and b0 = b and (ai)i<ω |̂ KM(bi)i<ω. We have also ensured that ai |̂ aMb

aj for
all i 6= j and bi |̂ aM(ai)i<ω

bj for all i 6= j. By Lemma 6.2.19, also bi |̂ aMa
bj for all i 6= j.

Theorem 6.2.21. If T is NSOP1, then |̂ K satisfies the algebraically reasonable indepen-
dence theorem.

Proof. We have a model M and tuples a, a′, b, c, with a |̂ K
M
b, a′ |̂ K

M
c, b |̂ K

M
c, and a ≡M

a′. Let p(x), q(y), and r(z) be global M -invariant types extending tp(a/M) = tp(a′/M),
tp(b/M), and tp(c/M), respectively.

Apply Lemma 6.2.20 to q(y) and r(z), obtaining Morley sequences (bi)i<ω and (ci)i<ω.
Then apply it two more times, to p(x) and q(y), obtaining Morley sequences (ai)i<ω and
(b̂i)i<ω, and then to p(x) and r(z), obtaining Morley sequences (a′i)i<ω and (ĉi)i<ω. At the
expense of moving (ai)i<ω and (a′i)i<ω by automorphisms over M , we may assume that
(b̂i)i<ω = (bi)i<ω and (ĉi)i<ω = (ci)i<ω. Note that (ai)i<ω and (a′i)i<ω are both p-Morley
sequences over M , so (ai)i<ω ≡M (a′i)i<ω.

We now apply the independence theorem to the sequences (ai)i<ω, (a′i)i<ω, (bi)i<ω, and
(ci)i<ω, obtaining a sequence (a′′i )i<ω such that (a′′i )i<ω ≡M(bi)i<ω (ai)i<ω, (a′′i )i<ω ≡M(ci)i<ω

(a′i)i<ω, and (a′′i )i<ω |̂
K

M
(bi)i<ω(ci)i<ω. The sequences (a′′i )i<ω, (bi)i<ω, and (ci)i<ω are pair-

wise mutually indiscernible over M and have the property that any pair from one sequence
is algebraically independent over any element of another sequence.
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Let κ be a cardinal larger than the sizes of M , the language, and the tuples a, b, and
c. We can stretch the (bi) sequence to have length κ+ and stretch the (ci) sequence to
have length κ++, while maintaining their mutual indiscernibility and algebraic independence
properties.

Fix a∗ = a′′0. For any i < κ+, | acl(Ma∗bi)| ≤ κ. Since the sets {acl(Ma∗cj) | j < κ++}
are pairwise disjoint over acl(Ma∗), we can remove any cj such that there exists an i < κ+

such that bi 6 |̂ [a]Ma∗cj, and we are still left with a sequence of length κ++.
Similarly, since for all i < κ+, the sets {acl(Mbicj) | j < κ++} are pairwise disjoint over

acl(Mbi), we can further remove any cj such that there exists an i such that a 6 |̂ [a]Mbicj,
and we are still left with a sequence of length κ++. Fix a c∗ from this sequence.

Finally, since the sets {acl(Mbic∗) | i < κ+} are pairwise disjoint over acl(Mc∗), we can
remove any bi such that a∗ 6 |̂ [a]Mc∗bi, and we are still left with a sequence of length κ+. Fix
a b∗ from this sequence.

It remains to move b∗c∗ back to bc by an automorphism σ fixing M , and set a′′ =
σ(a∗).

6.3 The model companion of the empty theory

The theory T ∅L

Let L be any language. Then the empty L-theory has a model completion, which we call
T ∅L. As the theory T ∅L may be regarded as the generic expansion of the theory of an infinite
set in the empty language, this fact is a special case of Theorem 5 in [Win75] (see Fact 6.4.2
below), and it was reproven by Jeřábek in [Jeř17]. We include a proof, following the idea
of [Win75], for completeness and to fix notation.

Definition 6.3.1. A partial diagram ∆ is a set of atomic and negated atomic formulas. ∆
is flat if each formula in ∆ has the form R(z), ¬R(z), or f(z) = z′, where z is a tuple of
variables and z′ is a single variable. We view constant symbols as 0-ary function symbols,
so this includes formulas of the form c = z′.

In a flat diagram, we always intend distinct variables to refer to distinct elements.

Definition 6.3.2. A flat diagram ∆ is consistent if, for each tuple of variables z,

1. At most one of R(z) and ¬R(z) is in ∆, where R is a relation symbol.

2. There is at most one variable z′ such that f(z) = z′ is in ∆, where f is a function
symbol.

Definition 6.3.3. A consistent flat diagram ∆ in the variables w is complete if, for each
tuple of variables z from w,

1. Either R(z) or ¬R(z) is in ∆.
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2. There is some variable z′ in w such that f(z) = z′ is in ∆.

Let A be any L-structure. Then there is a complete flat diagram diagf (A) in the variables
(wa)a∈A, which contains a formula ψ(wa1 , . . . , wan) of one of the allowed forms if and only if
A |= ψ(a1, . . . , an). The following easy lemma establishes the converse.

Lemma 6.3.4. Suppose ∆ is a consistent flat diagram in the nonempty set of variables
(wa)a∈A. Then there is an L-structure with domain A such that for all ψ(wa1 , . . . , wan) ∈ ∆,
A |= ψ(a1 . . . , an).

Proof. First, we extend ∆ to a complete flat diagram ∆′ as follows: For each n-ary relation
symbol R, and for each n-tuple z such that neither R(z) nor ¬R(z) is in ∆, add ¬R(z) to ∆′.
Now fix an arbitrary variable wa. For each n-ary function symbol f , and for each n-tuple z
such that no formula of the form f(z) = z′ is in ∆, add f(z) = wa to ∆′.

We define an L-structure with domain A, according to ∆′. If R is an n-ary relation
symbol, we set RA = {(a1, . . . , an) ∈ An | R(wa1 , . . . , wan) ∈ ∆′}. If f is an n-ary function
symbol and (a1, . . . , an) ∈ An, we set fA(a1, . . . , an) = a′, where a′ is the unique element
of A such that f(wa1 , . . . , wan) = wa′ ∈ ∆′. Consistency ensures that this L-structure is
well-defined and satisfies all the formulas in ∆′ (and hence in ∆).

For the purposes of axiomatizing the existentially closed L-structures, we will be inter-
ested in a class of finite partial diagrams, which we call extension diagrams.

Definition 6.3.5. Let w be a finite tuple of variables, partitioned into two subtuples x and
y. An extension diagram in (x, y) is a consistent flat diagram ∆ in the variables w, such that
for each formula R(z), ¬R(z), or f(z) = z′ in ∆, some variable in z is in y. In particular,
no constant symbols appear in extension diagrams.

A tuple a = (ai)i∈I is non-redundant if ai 6= aj for all i 6= j. Given a finite tuple of
variables z = (z1, . . . , zn), let δ(z) be the formula which says that z is non-redundant:∧

1≤i<j≤n

zi 6= zj.

Given a finite partial diagram ∆ in the finite tuple of variables w, let ϕ∆(w) be the
conjunction of all the formulas in ∆, together with δ(w): ∧

ψ(z)∈∆

ψ(z)

 ∧ δ(w).

Lemma 6.3.6. Let ∆ be an extension diagram in (x, y), and let A be an L-structure. If
a is a non-redundant tuple from A of the same length as x, then there is an L-structure B
containing A and a tuple b from B of the same length as y such that B |= ϕ∆(a, b).
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Proof. Consider the flat diagram diagf (A) ∪∆(xa1 , . . . , xan , yb1 , . . . , ybn), where we identify
the variables x in ∆ with the variables in diagf (A) enumerating a, and we index the variables
y in ∆ by a new tuple b. This diagram is consistent, since diagf (A) and ∆ are individually
consistent, and for every formula R(z), ¬R(z), or f(z) = z′ in ∆, some element of the tuple
z is in y, while diagf (A) does not mention the variables in y. Hence, by Lemma 6.3.4, there
is a structure B with domain A ∪ {b1, . . . , bn}, such that B satisfies diagf (A) (so A is a
substructure of B), and B |= ϕ∆(a, b).

Lemma 6.3.7. If an L-structure A is not existentially closed, then there is a non-redundant
tuple a from A and an extension diagram ∆ in (x, y), such that A |= ¬∃y ϕ∆(a, y).

Proof. Since A is not existentially closed, there is a quantifier-free L-formula ϕ(x, y), an
L-structure B containing A, and tuples a ∈ A and b ∈ B, such that B |= ϕ(a, b), but
A |= ¬∃y ϕ(a, y). We may assume the the tuples a and b are non-redundant and that
bi ∈ B \ A for all i. Writing ϕ in disjunctive normal form, one of the disjuncts is satisfied
by (a, b) in B, so we may assume that ϕ is a conjunction of atomic and negated atomic
formulas. Let ∆ be the finite partial diagram containing these formulas. Then ϕ∆(x, y) is
equivalent to ϕ(x, y) ∧ δ(x, y), and we have B |= ϕ∆(a, b), but A |= ¬∃y ϕ∆(a, y).

We will transform ∆ into an extension diagram. This process will involve adding and
deleting variables and making corresponding changes to the tuples a and b, but we will
maintain the invariants that ∆ is finite, A |= ¬∃y ϕ∆(a, y), B |= ϕ∆(a, b), and bi ∈ B \A for
all i. We write w for the tuple (x, y) and c for (a, b).

First, we flatten ∆. Suppose that there is an n-ary function symbol f such that the term
f(wi1 , . . . , wik) (where the wij are variables) appears in a formula in ∆ which is not of the
form f(wi1 , . . . , wik) = w′ for some variable w′. Let d = fB(ci1 , . . . , cik). If d = cik+1

for some
ik+1, then we simply replace this instance of f(wi1 , . . . , wik) with wik+1

and add the formula
f(wi1 , . . . , wik) = wik+1

to ∆ if it is not already there. If d is not in the tuple c, we introduce
a new variable w′ (a new x if d ∈ A and a new y otherwise), add d to c (as a new a if d ∈ A
and a new b otherwise), replace this instance of f(wi1 , . . . , wik) with w′, and add the formula
f(wi1 , . . . , wik) = w′ to ∆.

Repeating this procedure, we eventually ensure that every formula in ∆ has the form
w = w′, w 6= w′, R(wi1 , . . . , win), ¬R(wi1 , . . . , win), or f(wi1 , . . . , win) = w′.

Next we remove the equations and inequations between variables. Since the tuples a and
b are non-redundant, ∆ does not contain any equalities between distinct variables, and the
equalities of the form w = w can of course be removed. Further, we may assume that ∆
does not contain any inequalities wi 6= wj between variables either, since these inequalities
are all implied by δ(x, y) and hence by ϕ∆. The set of formulas ∆ is now a flat diagram. It
is consistent, since it is satisfied by the non-redundant tuple c.

Finally, let ∆′ be the extension diagram obtained by removing from ∆ any formula R(z),
¬R(z), or f(z) = z′ in which none of the variables in z are in y. Note that in the case of
f(z) = z′, if all of the z are in x, then their interpretations come from A, and since A is
closed under the function symbols, z′ is in x as well.
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So ϕ∆(x, y) is equivalent to ϕ∆′(x, y) ∧
∧N
j=1 ψj(x), where each ψj is atomic or negated

atomic. But since

A |= ¬∃y

(
ϕ∆′(a, y) ∧

N∧
j=1

ψj(a)

)
,

also A |= ¬∃y ϕ∆′(a, y), as was to be shown.

Given an extension diagram ∆ in (x, y), let ψ∆ be the sentence

∀x (δ(x)→ ∃y ϕ∆(x, y)),

and let T ∅L = {ψ∆ | ∆ is an extension diagram in (x, y)}.

Theorem 6.3.8. T ∅L is the model companion of the empty L-theory.

Proof. It suffices to show that the class of existentially closed L-structures is axiomatized by
T ∅L [CK90, Proposition 3.5.15].

Suppose A is an existentially closed L-structure, and let ∆ be an extension diagram in
(x, y). Let a be any non-redundant tuple from A of the same length as x. By Lemma 6.3.6,
there is an L-structure B containing A and a tuple b from B such that B |= ϕ∆(a, b). So
B |= ∃y ϕ∆(a, y). But since A is existentially closed, also A |= ∃y ϕ∆(a, y). Hence A |= ψ∆,
and since ∆ was arbitrary, A |= T ∅L.

Conversely, suppose the L-structure A is not existentially closed. By Lemma 6.3.7,
there is a non-redundant tuple a from A and an extension diagram ∆ in (x, y) such that
A |= ¬∃y ϕ∆(a, y). Hence A 6|= ψ∆, and A 6|= T ∅L.

Lemma 6.3.9. The class of L-structures satisfies the disjoint amalgamation property.

Proof. Let f1 : A→ B and f2 : A→ C be embeddings of L-structures. LetB′ = B\f1(A) and
C ′ = C \f2(A), and consider the diagrams diagf (B) = ∆B((xa)a∈A, (xb)b∈B′) and diagf (C) =
∆C((xa)a∈A, (xc)c∈C′), where we use the same variables (xa)a∈A to enumerate f1(A) and
f2(A).

Then ∆B∪∆C is consistent, since the two diagrams agree on diagf (A). By Lemma 6.3.4,
we get an L-structure D with domain A ∪ B′ ∪ C ′, and the obvious maps g1 : B → D and
g2 : C → D satisfy g1 ◦ f1 = g2 ◦ f2. These maps are embeddings, since D satisfies ∆B and
∆C , and the images of B and C are disjoint over the image of A.

The following corollary now follows from standard facts about model completions (see
[CK90, Proposition 3.5.18]).

Corollary 6.3.10. T ∅L is a model completion of the empty L-theory, and it has quantifier
elimination. The completions of T ∅L are obtained by specifying (by quantifier-free sentences)
the isomorphism type of the structure 〈∅〉 generated by the constants. Such a completion T̃
is the model completion of the theory of L-structures containing a substructure isomorphic
to 〈∅〉. If there are no constant symbols in L, then T ∅L is complete.
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Corollary 6.3.11. Let M be a monster model for some completion of T ∅L. For any set
A ⊆M, acl(A) = dcl(A) = 〈A〉.

Proof. Since 〈A〉 ⊆ dcl(A) ⊆ acl(A), it suffices to show that acl(A) ⊆ 〈A〉. Suppose ϕ(a, y)
is an algebraic formula with parameters a from A, which is satisfied by exactly k elements
of M, including b. By Corollary 6.3.10, we may assume that ϕ is quantifier-free. Suppose
for contradiction that b /∈ 〈A〉, so that 〈A〉 is a proper substructure of B = 〈Ab〉. Let
C0 = B and, by induction, apply Lemma 6.3.9 to obtain a disjoint amalgam Ci+1 of Ci
and B over 〈A〉. Let Bi denote the image of B in Ci. Then Ck+1 contains 〈A〉, together
with substructures B1, . . . , Bk+1, pairwise disjoint over 〈A〉 and each isomorphic to B over
〈A〉. Then, by quantifier elimination and saturation, Ck+1 embeds in M over 〈A〉, and we
may identify the Bi with their images in M. Each Bi contains an element bi such that
qftp(bi/A) = qftp(b/A), so M |= ϕ(a, bi) for all i, which is a contradiction.

Independence and NSOP1

For the remainder of this section, we fix a monster model M |= T ∅L. As there is a monster
model for every choice of completion of T ∅L and M is arbitrary, to show that T ∅L is NSOP1, it
suffices to establish this for Th(M).

Theorem 6.3.12. |̂ a satisfies the independence theorem over arbitrary sets.

Proof. Suppose we are given C ⊆ M and tuples a, a′, b, c, with a |̂ a
C
b, a′ |̂ a

C
c, b |̂ a

C
c,

and a ≡C a′. Let xC be a tuple enumerating 〈C〉, let xa, xb and xc be tuples enumerating
〈Ca〉 \ 〈C〉, 〈Cb〉 \ 〈C〉, and 〈Cc〉 \ 〈C〉, respectively, and let xab, xac, and xbc be tuples
enumerating 〈Cab〉 \ (〈Ca〉 ∪ 〈Cb〉), 〈Ca′c〉 \ (〈Ca′〉 ∪ 〈Cc〉), and 〈Cbc〉 \ (〈Cb〉 ∪ 〈Mc〉),
respectively.

Observe that (xC , xa, xb, xab) enumerates 〈Cab〉 without repetitions. The only thing to
check is that no elements of xa and xb name the same element of 〈Cab〉, and this is exactly
the condition that a |̂ a

C
b. Similarly, (xC , xa, xc, xac) enumerates 〈Ca′c〉 (where we view xa

as enumerating 〈Ca′〉 \ 〈C〉 via the isomorphism 〈Ca〉 → 〈Ca′〉 induced by a 7→ a′), and
(xC , xb, xc, xbc) enumerates 〈Cbc〉.

Let pab = diagf (〈Cab〉), pac = diagf (〈Ca′c〉), and pbc = diagf (〈Cbc〉). The flat diagram
pab(xC , xa, xb, xab) ∪ pac(xC , xa, xc, xac) ∪ pbc(xC , xb, xc, xbc) is consistent, since pab, pac, and
pbc agree on diagf (〈Ca〉) = diagf (〈Ca′〉) (again, allowing xa to enumerate 〈Ca′〉 \ 〈C〉),
diagf (〈Cb〉), and diagf (〈Cc〉). So by Lemma 6.3.4, it extends to the flat diagram of an
L-structure X with domain xC ∪ xa ∪ xb ∪ xc ∪ xab ∪ xac ∪ xbc.

Having constructed X, which agrees with M on the substructure generated by the empty
set, we can embed it in M by i : X →M. Further,

qftp(i(xC), i(xb), i(xc), i(xbc)) = qftp(〈Cbc〉),

so by quantifier elimination

(i(xC), i(xb), i(xc), i(xbc)) ≡ 〈Cbc〉,
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and, by an automorphism of M, we may assume that i(xC , xb, xc, xbc) = 〈Cbc〉. Let a′′ the
subtuple of i(xC , xa) corresponding to the subtuple of (xC , xa) enumerating a.

Now qftp(i(xC), i(xa), i(xb), i(xab)) = qftp(〈Cab〉), so a′′ ≡Cb a, and similarly

qftp(i(xC), i(xa), i(xc), i(xac)) = qftp(〈Cac〉),

so a′′ ≡Cc a′. Finally, a′′ |̂ a
C
bc, since i(xa) enumerates 〈Ca′′〉 \ C and is disjoint from

(i(xb), i(xc), i(xbc)), which enumerates 〈Cbc〉 \ C.

Corollary 6.3.13. T ∅L is NSOP1 and |̂ K = |̂ a over models.

Proof. By Theorem 6.3.12, Lemma 6.2.7, and Theorem 6.2.4.

On the other hand, except in trivial cases, T ∅L has TP2 and therefore is not simple. For
definitions of simple and TP2 see, e.g., [Che14].

Proposition 6.3.14. If L contains at least one n-ary function symbol with n ≥ 2, then T ∅L
has TP2, and is therefore not simple.

Proof. In M |= T ∅L, choose a set of pairwise distinct (n−1)-tuples B = {bi : i < ω} and a set
of pairwise distinct elements C = {ci,j : i, j < ω} so that B and C are disjoint. Note that:

• For all i < ω, {f(x, bi) = ci,j | j < ω} is 2-inconsistent.

• For all g : ω → ω, {f(x, bi) = ci,g(i) | i < ω} is consistent.

Hence the formula ϕ(x; y, z) given by f(x, y) = z has TP2, witnessed by the array (bi, ci,j)i<ω,j<ω.

Forking and dividing

Next, we analyze forking and dividing in T ∅L. See [Adl05, Section 5] for the definitions of fork-
ing and dividing. We begin with an example of the distinction between forking independence
and Kim-independence.

Example 6.3.15. Suppose L contains an n-ary function symbol f with n ≥ 2. Let M |=
T ∅L, let b be any (n − 1)-tuple not in M , let c be any element not in 〈Mb〉, and let a
be an element satisfying a |̂ a

M
bc, but f(a, b) = c. By Corollary 6.3.13, a |̂ K

M
bc. But

c ∈ (〈Mab〉 ∩ 〈Mbc〉) \ 〈Mb〉, so a 6 |̂ [a]Mbc. Then also a 6 |̂ [f ]Mbc, since otherwise we would
have a |̂ f

Mb
c and hence a |̂ a

Mb
c, by base monotonicity.

This example is closely related to the TP2 array in Proposition 6.3.14. The formula
f(x, b) = c divides along any sequence (bci)i<ω where b is constant but the ci are distinct
(like the rows of the TP2 array). But this formula does not Kim-divide, since in any Morley
sequence (bici)i<ω for a global M -invariant type extending tp(bc/M), the bi are distinct (like
the columns of the TP2-array). See also Proposition 6.3.20 below.
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Definition 6.3.16. For subsets A, B, and C of M, we define

A
M

|̂
C

B ⇐⇒ for all C ⊆ C ′ ⊆ acl(BC), A
a

|̂
C′
B.

We will show that |̂ M agrees with dividing independence |̂ d in T ∅L (Proposition 6.3.17).
The notation |̂ M comes from Adler [Adl05], who calls this relation “M -dividing indepen-
dence”. Adler shows that algebraic independence |̂ a satisfies all of his axioms for a strict
independence relation except possibly base monotonicity (which it fails in T ∅L whenever there
is an n-ary function symbol, n ≥ 2).

The relation |̂ M is obtained from |̂ a by forcing base monotonicity, and it satisfies
all of the axioms of a strict independence relation except possibly local character and ex-
tension. If we go one step further and force extension, we get the relation |̂ þ of thorn
forking independence [Adl05, Section 4], just as we get the relation |̂ f of forking indepen-
dence by forcing extension on |̂ d. But, as we will see, |̂ M already satisfies extension in
T ∅L (Proposition 6.3.18), so M -dividing independence, thorn forking independence, dividing
independence, and forking independence all coincide in T ∅L. Of course, when L contains an
n-ary function symbol with n ≥ 2, these independence relations lack local character, since T ∅L
is not simple, so T ∅L is also not rosy. In contrast, |̂ a = |̂ K has local character but lacks base
monotonicity. This tension between local character and base monotonicity is characteristic
of the difference between forking independence and Kim-independence in NSOP1 theories.

Proposition 6.3.17. In T ∅L, |̂
d = |̂ M .

Proof. In any theory, ifA |̂ d
C
B, thenA |̂ M

C
B [Adl05, Remark 5.4.(4)]. So supposeA |̂ M

C
B.

We may assumeB = acl(BC) = 〈BC〉, sinceA |̂ M
C
B impliesA |̂ M

C
acl(BC) andA |̂ d

C
acl(BC)

implies A |̂ d
C
B.

Let b be a tuple enumerating B, and let (bi)i<ω be a C-indiscernible sequence, with b0 = b.
Let Bi be the set enumerated by bi. Let C ′ be the set of all elements of B which appear
in some bi for i 6= 0. Then C ⊆ C ′ ⊆ B, every element of C ′ appears in every bi, and
C ′ = 〈C ′〉. Letting c′ enumerate C ′ and writing bi = (c′, b′i) for all i, we have that (b′i)i<ω is
a C ′-indiscernible sequence, and b′i and b′j are disjoint for all i 6= j.

Let the tuple x enumerate 〈AC ′〉\C ′, and let the tuple y0 enumerate 〈AB〉\ (〈AC ′〉∪B).
By assumption, we have A |̂ a

C′
B, so (x, y0, c

′, b′0) enumerates 〈AB〉 without repetitions
(since no elements of x and b′0 are equal). LetD = 〈

⋃
i<ω Bi〉, and let d enumerateD\

⋃
i<ω Bi.

Let p(x, y0, c
′, b′0) = diagf (〈AB〉), and let q(c′, (b′i)i<ω, d) = diagf (D). Consider the flat

diagram q(c′, (b′i)i<ω, d) ∪
⋃
i<ω p(x, yi, c

′, b′i), where the yi for i > 0 are new tuples. This
is consistent, since any two copies of p agree on diagf (〈AC ′〉), and the copy of p indexed
by i agrees with q on diagf (Bi). So by Lemma 6.3.4, there is an L-structure X with this
diagram, and we can embed X in M over D by i : X → M, since qftpX(c′, (b′i)i<ω, d

′) =
qftpM(c′, (b′i)i<ω, d

′).
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Letting A′ be the subset of (i(x), c′) corresponding to A as a subset of (x, c′), we have by
quantifier elimination that tp(A′/Bi) = tp(A/B) for all i. So A |̂ d

C
B.

Proposition 6.3.18. The relations |̂ M and |̂ d satisfy extension over arbitrary sets, so
|̂ M = |̂ þ and |̂ d = |̂ f .

Proof. By Proposition 6.3.17, it suffices to show that |̂ M satisfies extension. Suppose we
have A |̂ M

C
B, and let B′ be another set. We may assume that C ⊆ A, C ⊆ B ⊆ B′, and

A, C, B and B′ are algebraically closed. We would like to show that there exists A′ ≡B A
such that A′ |̂ M

C
B′.

Let D = 〈AB〉 ⊗B B′, the fibered coproduct of 〈AB〉 and B′ over B in the category
of L-structures. We can give an explicit description of D: Let D0 be the disjoint union
of 〈AB〉 and B′ over B, i.e. with the elements of B in 〈AB〉 and in B′ identified. Any
term with parameters from D0 can be uniquely simplified with respect to 〈AB〉 and B′,
by iteratively replacing any function symbol whose arguments are all elements of 〈AB〉, or
whose arguments are all elements of B′, by its value (as usual, we view constant symbols
as 0-ary functions). Then the underlying set of D is given by the simplified terms with
parameters from D0, i.e. those terms with the property that no function symbol appearing
in the term has all its argument in 〈AB〉 or all its arguments in B′. The interpretation of
function symbols in D is the obvious one (compose the function with the given simplified
terms, then simplify if necessary), and the only instances of relations which hold in D are
those which hold in 〈AB〉 or in B′.

Note that 〈AB〉 and B′ embed in D, by sending an element a to the term a ∈ D0, and
〈AB〉 ∩ B′ = B in D. Identifying these structures with their isomorphic copies in D, there
is an embedding i : D → M which is the identity on B′. Let A′ = i(A). Then 〈A′B〉 is
isomorphic to 〈AB〉, so A′ ≡B A. In particular, A′ |̂ M

C
B. Of course, 〈A′B′〉 is isomorphic

to 〈A′B〉 ⊗B B′.
Towards showing that A′ |̂ M

C
B′, pick C ′ with C ⊆ C ′ ⊆ B′. We may assume that C ′ is

algebraically closed. Let C̃ = C ′ ∩ B, which is also algebraically closed. We will prove by
induction on terms with parameters from A′C ′ that:

1. If such a term evaluates to an element of B′, then that element is in C ′.

2. If such a term evaluates to an element of 〈A′B〉, then that element is in 〈A′C̃〉.

First, we handle the base cases. The constant symbols are automatically in C ′ and in
〈A′C̃〉. The parameters from C ′ are already in C ′, and if they are also in 〈A′B〉, then since
C ′ ⊆ B′, they are in 〈A′B〉 ∩ B′ = B, and hence in C̃ ⊆ 〈A′C̃〉. On the other hand,
the parameters from A′ are already in 〈A′C̃〉, and if they are also in B′, then they are in
〈A′B〉 ∩B′ = B, hence in A′ ∩B = C (as A′ |̂ a

C
B), and C ⊆ C ′.

So suppose our term is f(t1, . . . , tn), where t1, . . . , tn are terms with parameters from
A′C ′ satisfying (1) and (2). Suppose ti evaluates to ci for all i, and let b = f(c1, . . . , cn).
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Case 1: ci ∈ B′ for all i. Then by induction, ci ∈ C ′ for all i, and hence b ∈ C ′. And if b
is also in 〈A′B〉, then by the argument for parameters in C ′, it is in 〈A′C̃〉.

Case 2: ci ∈ 〈A′B〉 for all i. Then by induction, ci ∈ 〈A′C̃〉 for all i. (2) is immediate,
since also b ∈ 〈A′C̃〉. For (1), suppose b ∈ B′. Then b ∈ 〈A′B〉 ∩ B′ = B. But since
A′ |̂ M

C
B, we have A′ |̂ a

C̃
B, so b ∈ C̃ ⊆ C ′.

Case 3: Neither of the above. Then writing each ci in its normal form as a simplified
term in 〈A′B〉 ⊗B′, the element b does not simplify down to a single parameter from 〈A′B〉
or from B′, since it is not the case that all of the arguments of f come from 〈A′B〉 or from
B′. So (1) and (2) are trivially satisfied.

Of course, condition (1) establishes that A′ |̂ a
C′
B′, as desired.

Remark 6.3.19. If we define a new relation |̂ ⊗ on subsets of M by A |̂ ⊗
C
B if and only if

the natural map 〈AC〉 ⊗〈C〉 〈BC〉 → 〈ABC〉 is an isomorphism, then we can interpret the
proof of Proposition 6.3.18 as a “mixed transitivity” statement. If C ⊆ B ⊆ B′, then:

A
d

|̂
C

B and A
⊗
|̂
B

B′ =⇒ A
d

|̂
C

B′.

Thanks to this form of transitivity, |̂ d inherits extension from |̂ ⊗.
It may be worth noting that a similar pattern occurs in Conant’s analysis of forking

and dividing in the theory Tn of the generic Kn-free graph [Con14], which has SOP 3 (and
hence also has SOP 1) when n ≥ 3. Conant defines a relation |̂ R which satisfies extension
( [Con14, Lemma 5.2]), and the proof of [Con14, Theorem 5.3] shows that |̂ d and |̂ R enjoy
the same mixed transitivity property:

A
d

|̂
C

B and A
R

|̂
B

B′ =⇒ A
d

|̂
C

B′.

As a consequence, |̂ d inherits extension from |̂ R, and hence |̂ d = |̂ f in Tn.
Proposition 6.3.18 tells us that forking equals dividing for complete types. On the other

hand, forking does not equal dividing for formulas, even over models.

Proposition 6.3.20. Suppose L contains an n-ary function symbol f with n ≥ 2. For any
set A, there is a formula which forks over A but does not divide over A.

Proof. Let b = (b0, . . . , bn−1) be an (n− 1)-tuple such that b0 /∈ 〈A〉, and let c be an element
such that c /∈ 〈Ab〉. Then the formula ϕ(x; b, c) given by f(x, b) = c∨ f(x, x) = b0 forks over
A but does not divide over A.

First, we show that the subformulas f(x, b) = c and f(x, x) = b0 divide over A. For the
first, let (bici)i<ω be any sequence of realizations of tp(bc/A) such that bi = (bi,0, . . . , bi,n−1)
and bi, j = bj for all i < ω and j < n, but ci 6= cj for all i 6= j (this is possible, since
c /∈ acl(Ab)). Then {f(x, b) = ci | i < ω} is 2-inconsistent. For the second, let (bi)i<ω be a
sequence of realizations of tp(b/A) with bi, 0 6= bj, 0 for all i 6= j. Again, {f(x, x) = bi | i < ω}
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is 2-inconsistent. Since ϕ(x; b, c) is a disjunction of two formulas which divide over A, it forks
over A.

To show that this formula does not divide, let (bici)i<ω be any A-indiscernible sequence
with b0c0 = bc. If bi = b for all i < ω, {ϕ(x; bi, ci) | i < ω} is consistent, witnessed by any a
such that f(a, a) = b. On the other hand, if bi 6= bj for all i 6= j, then we can find some a
such that f(a, bi) = ci for all i < ω, so {ϕ(x; bi, ci) | i < ω} is consistent in this case too.

Elimination of imaginaries

Definition 6.3.21. The theory T has weak elimination of imaginaries if for all imaginary
elements e, there is a real element a ∈ acleq(e) with e ∈ dcleq(a).

We prove weak elimination of imaginaries for T ∅L. The argument follows the standard
route to elimination of imaginaries via an independence theorem as in [Hru91, Proposition
3.1] and [CP98, Subsection 2.9].

Proposition 6.3.22. T ∅L has weak elimination of imaginaries.

Proof. Suppose we are given an imaginary element e, and suppose a is a tuple from M and
f is a 0-definable function (in Meq) with f(a) = e. Put C = acleq(e) ∩M and q = tp(a/C).
We may assume tp(a/acleq(e)) is not algebraic, because, if it is, we’re done.

Claim: There are a, b |= q with a |̂ a
C
b with f(a) = f(b) = e.

Proof of claim: tp(a/acleq(e)) is non-algebraic so, by extension, we can find b |= tp(a/acleq(e))
with b |̂ a

acleq(e)
a in Meq. Note that also f(b) = e. Since acleq(a) ∩ acleq(b) = acleq(e), by

intersecting with M, we obtain acl(a) ∩ acl(b) = C, that is, a |̂ a
C
b.

Let a, b be given as in the claim. If e is definable over C, we are done. If e is not
definable over C, there is e′ |= tp(e/C) with e′ 6= e and we can find c′, d′ |= q with c′ |̂ a

C
d′

and f(c′) = f(d′) = e′, again by the claim. As c′ |̂ a
C
d′ we may, by extension, choose

c ≡Cd′ c′ with c |̂ aC ad
′. In particular, this gives c |̂ a

C
a and f(c) 6= f(a).

As a, c |= q we have a ≡C c. Moreover, we have a |̂ a
C
b and c |̂ a

C
a so there is a∗ |=

tp(a/Cb)∪ tp(c/Ca) by the independence theorem (Theorem 6.3.12). Then we have f(a∗) =
f(b) = f(a) 6= f(a∗), a contradiction.

Remark 6.3.23. T ∅L does not eliminate imaginaries, since it does not even code unordered
pairs. That is, there is no definable binary function f(x, y) such that f(a, b) = f(c, d) if
and only if {a, b} = {c, d}. To see this, note that, by quantifier elimination, every definable
function is defined piecewise by terms. Let F2 be the L-structure freely generated over 〈∅〉
(the substructure generated by the constants) by two elements, a and b. Then if t is a
term, considered in the variable context {x, y}, such that t(a, b) = t(b, a), then t does not
mention the variables, i.e. t evaluates to an element of 〈∅〉. For any copy of F2 embedded
in M, tp(a, b) = tp(b, a), since the automorphism of F2 swapping a and b extends to an
automorphism of M. So any function f coding unordered pairs must be defined by the same
term t on (a, b) and on (b, a). Then t(a, b) = t(b, a) ∈ 〈∅〉. But this is a contradiction, since
there are automorphisms of M which do not fix {a, b} setwise.
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6.4 Generic expansion and Skolemization

The theories TSk and TL′

Definition 6.4.1. Given a language L, define the language LSk by adding to L, for each
formula ϕ(x; y) with l(x) = 1, an l(y)-ary function symbol fϕ. The Skolem expansion of T
is the LSk-theory T+ defined by

T+ = T ∪ {∀y (∃xϕ(x; y)→ ϕ(fϕ(y); y)) | ϕ(x; y) ∈ L, l(x) = 1}.

Note that the Skolem expansion of T contains Skolem functions for every formula of L,
but does not contain Skolem functions for every formula of LSk.

Fact 6.4.2. Suppose T is a model complete theory in the language L that eliminates the
quantifier ∃∞.

1. The Skolem expansion T+ of T has a model completion TSk [Win75, Theorem 2]. We
will refer to the theory TSk as the generic Skolemization of T .

2. For any language L′ containing L, T , considered as an L′-theory, has a model compan-
ion TL′ [Win75, Theorem 5]. We will refer to the theory TL′ as the generic L′-expansion
of T .

Fact 6.4.3. [Win75, Corollary 3 to Theorem 4] Under the hypotheses of Fact 6.4.2, TSk also
eliminates the quantifier ∃∞.

Preservation of NSOP1

In this subsection, suppose T is a fixed model complete theory in the language L that
eliminates the quantifier ∃∞, and let L′ be an arbitrary language containing L. We may
choose monster models MSk |= TSk and ML′ |= TL′ . We may assume that both monster
models have a common reduct to a monster model M |= T . Note that we do not assume T
is complete, so reasoning in M amounts to working in an arbitrary completion of T .

Definition 6.4.4. Let M∗ denote either MSk or ML′ and let L∗ denote the corresponding
language, either LSk or L′. For a, b ∈M∗ and M ≺L∗ M∗, define

a
∗
|̂
M

b ⇐⇒ aclL∗(Ma)
K

|̂
M

aclL∗(Mb) in M.

Theorem 6.4.5. Let M∗ denote either MSk or ML′ and let L∗ denote the corresponding
language, either LSk or L′. If T is NSOP1, then |̂ ∗ satisfies the independence theorem.

Proof. We’re given M ≺M∗ and tuples a, a′, b, c, with a |̂ ∗
M
b, a′ |̂ ∗

M
c, b |̂ ∗

M
c, and a ≡M

a′. Let xM be a tuple enumeratingM , let xa, xa′ , xb and xc be tuples enumerating aclL∗(Ma)\
M , aclL∗(Ma′)\M , aclL∗(Mb)\M , and aclL∗(Mc)\M , respectively, and let xab, xa′c, and xbc
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be tuples enumerating aclL∗(Mab) \Mxaxb, aclL∗(Ma′c) \Mxa′xc, and aclL∗(Mbc) \Mxbxc,
respectively.

We have xa |̂ KM xb, xa′ |̂ KM xc, and xb |̂ KM xc in M. By the algebraically reasonable
independence theorem in T , we can find xa′′ in M such that xa′′ ≡LMxb

xa, xa′′ ≡LMxc
xa′ ,

xa′′ |̂ KM xbxc, and further xa′′ |̂ aMxb
xc, xa′′ |̂ aMxc

xb, and xb |̂ aMxa′′
xc. By algebraically

reasonable extension, at the expense of moving xa′′ by an automorphism in Aut(M/Mxbxc),
we may assume that xa′′ |̂ KM xbxcxbc and xa′′ |̂ aMxbxc

xbc.
Pick an automorphism σ ∈ Aut(M/Mxb) moving xa to xa′′ , and set xa′′b = σ(xab), so

xa′′xa′′b ≡LMxb
xaxab. Similarly, pick an automorphism σ′ ∈ Aut(M/Mxc) moving xa′ to xa′′ ,

and set xa′′c = σ′(xa′c), so xa′′xa′′c ≡LMxc
xa′xa′c. Now there are subtuples ya′′b ⊆ xa′′b and

ya′′c ⊆ xa′′c enumerating aclL(Mxa′′xb) \Mxa′′xb and aclL(Mxa′′xc) \Mxa′′xc, respectively.
The algebraic independencies obtained so far imply that the tuples xM , xa′′ , xb, xc, ya′′b,
ya′′c, and xbc are pairwise disjoint.

By two applications of extension for algebraic independence over algebraically closed
bases, we can find tuples za′′b and za′′c such that za′′b ≡LMxa′′xbya′′b

xa′′b and za′′c ≡LMxa′′xcya′′c
xa′′c, and so that the tuples xM , xa′′ , xb, xc, za′′b, za′′c, and xbc are pairwise disjoint.

Let M̂ ≺ M be a small model of T containing all these tuples. We will expand M̂
to an L∗-structure, in order to embed it in M∗. Let pa′′b = diagf (aclL∗(Mab)), pa′′c =
diagf (aclL∗(Ma′c)), and pbc = diagf (aclL∗(Mbc)). We define interpretations of the relations,
functions, and constants of L∗ according to

pa′′b(xM , xa′′ , xb, za′′b) ∪ pa′′c(xM , xa′′ , xc, za′′c) ∪ pbc(xM , xb, xc, xbc),

for the tuples that these diagrams refer to. This is consistent, since pa′′b, pa′′c, and pbc agree
on diagf (aclL∗(Ma)) = diagf (aclL∗(Ma′)) (allowing xa′′ to enumerate both aclL∗(Ma) \M
and aclL∗(Ma′) \M), diagf (aclL∗(Mb)), and diagf (aclL∗(Mc)). In the case that L∗ = LSk,
we observe that the values of the functions specified by these diagrams really give Skolem
functions, since we have preserved the underlying L-types of all the tuples. For tuples not
referred to by these diagrams, we define the interpretations of the relations and functions
arbitrarily, taking care in the case that L∗ = LSk to satisfy the Skolem axioms (this is always
possible, since M̂ is a model).

Having expanded M̂ to an L∗-structure, we can embed it in M∗ by i : M̂ →M∗. Further,
we may assume that i is the identity on (xM , xb, xc, xbc), since

qftpL
∗

M̂
(xM , xb, xc, xbc) = qftpL

∗

M∗(xM , xb, xc, xbc).

Let a′′ be the subtuple of i(xM , xa′′) corresponding to the subtuple of (xM , xa) enumerating
a.

Now qftp(xM , i(xa′′), xb, i(za′′b)) = qftp(xM , xa, xb, xab), so a′′ ≡Mb a, and similarly

qftp(xM , i(xa′′), xc, i(za′′c)) = qftp(xM , xa′ , xc, xa′c),

so a′′ ≡Mc a
′. And a′′ |̂ ∗

M
bc, since i(xa′′) (which enumerates aclL∗(Ma′′) \ M) is Kim-

independent over M from xbxcxbc (which enumerates aclL∗(Mbc) \M).
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Corollary 6.4.6. Suppose T is NSOP1 Then:

1. TSk is NSOP1, and |̂ K = |̂ ∗.

2. TL′ is NSOP1, and |̂ K = |̂ ∗.

Proof. We use Theorem 6.2.4. By Theorem 6.4.5, |̂ ∗ satisfies the independence theorem.
Existence over models, monotonicity, and symmetry follow immediately from the definition
and the corresponding properties of |̂ K in the reduct.

Now suppose a 6 |̂ [∗]Mb, witnessed by a′ ∈ aclL∗(Ma) and b′ ∈ aclL∗(Mb) such that
a′ 6 |̂ [K]Mb

′ in the reduct. Let ϕ(x′; b′,m) be the L-formula given strong finite charac-
ter for |̂ K in the reduct. Let χ(x′, a,m1) isolate tpL∗(a

′/Ma), and let ψ(y′, b,m2) isolate
tpL∗(b

′/Mb). Then the formula ϕ′(x; b,m,m1,m2) given by ∃x′ ∃y′ (χ(x′, x,m1)∧ψ(y′, b,m2)∧
ϕ(x′, y′,m)) gives strong finite character for |̂ ∗. Similarly, if ϕ gives witnessing for |̂ K in
the reduct, the same formula ϕ′ gives witnessing for |̂ ∗.

Remark 6.4.7. By [Nüb04, Lemma 3.1], TSk will never be a simple theory.

Iterating to get built-in Skolem functions

Definition 6.4.8. An L-theory T has built-in Skolem functions if, for every formula ϕ(x; y) ∈
L with l(x) = 1, there is a definable l(y)-ary function fϕ so that

T |= ∀y (∃xϕ(x; y)→ ϕ(fϕ(y); y)).

Corollary 6.4.9. Any NSOP1 theory T which eliminates ∃∞ has an expansion to an NSOP1

theory T∞Sk in a language L∞Sk with built-in Skolem functions. Moreover, if M∞Sk is a monster
model for T∞Sk , and M is its reduct to L, then for every M ≺M∞Sk and tuples a and b,

a
K

|̂
M

b in M∞Sk ⇐⇒ aclL∞Sk(Ma)
K

|̂
M

aclL∞Sk(Mb) in M.

Proof. We define T∞Sk by induction. Let T0 be the Morleyization of T in the expanded
language L0, so T0 is model complete. Given Tn, which we may assume by induction to be
a model complete NSOP1 theory which eliminates ∃∞, let Ln+1 = (Ln)Sk, and let Tn+1 =
(Tn)Sk. Then, by Fact 6.4.3 and Theorem 6.4.5, Tn+1 is again a model complete NSOP1

theory which eliminates ∃∞ and has Skolem function for formulas in the language of Tn.
And by Theorem 6.4.5 and induction, if Mn+1 is a monster model for Tn+1, and M is its
reduct to L,

a
K

|̂
M

b in Mn+1 ⇐⇒ aclLn+1(Ma)
K

|̂
M

aclLn+1(Mb) in Mn

⇐⇒ aclLn+1(Ma)
K

|̂
M

aclLn+1(Mb) in M,
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since a set which is aclLn+1-closed is also aclLn-closed.
Then the theory T∞Sk =

⋃
n<ω Tn is NSOP1 and has built-in Skolem functions. It remains

to lift the characterization of Kim-independence to this theory.
If ϕ(x; b) is a formula in L∞Sk, possibly with parameters in M , there is some n so that

ϕ(x; y) ∈ Ln. Let I = (bi)<ω be an M -finitely satisfiable sequence in tpL∞Sk(b/M). Then I

is also an M -finitely satisfiable sequence in tpLn(b/M). By Kim’s lemma for Kim-dividing
Theorem III.3.15, ϕ(x; b) Kim-divides over M if and only if {ϕ(x; bi) | i < ω} is consistent,
hence ϕ(x; b) Kim-divides over M in Mn if and only if ϕ(x; b) Kim-divides over M in M∞Sk.
It follows that a |̂ K

M
b in M∞Sk if and only if a |̂ K

M
b in Mn for all n.

Now we show a |̂ K
M
b in M∞Sk if and only if aclL∞Sk(Ma) |̂ K

M
aclL∞Sk(Mb) in M. If

aclL∞Sk(Ma)
K

6 |̂
M

aclL∞Sk(Mb)

in M, then there is n so that aclLn(Ma) 6 |̂ K
M
aclLn(Mb) hence there is some formula ϕ(x; b) ∈

tpLn(a/Mb) that Kim-divides over M in Mn. This formula witnesses a 6 |̂ K
M
b in M∞Sk. Con-

versely, if a 6 |̂ K
M
b in M∞Sk, then there is some formula ϕ(x; b) ∈ tpL∞Sk(a/Mb) witnessing

this. Then for some n, ϕ(x; b) ∈ tpLn(a/Mb) and this formula witnesses a 6 |̂ K
M
b in Mn. It

follows that aclLn(Ma) 6 |̂ K
M
aclLn(Mb) in M, and therefore aclL∞Sk(Ma) 6 |̂ K

M
aclL∞Sk(Mb) by

monotonicity.
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Chapter 7

SOP1 and SOP2 in PAC fields

Theories of fields have provided a fertile testing ground for many notions in abstract model
theory and, among fields, the pseudo-algebraically closed fields were especially significant
examples for simplicity theory and beyond. A field K is pseudo-algebraically closed (PAC)
if every absolutely irreducible variety defined over K has a K-rational point. This class of
fields was isolated by Ax in his celebrated characterization of pseudo-finite fields. Ax showed
that an infinite field K is a model of the theory of finite fields if and only if K is perfect, the
absolute Galois group of K is Ẑ, and K is PAC. Cherlin, van den Dries, and Macintyre gave a
comprehensive study of PAC fields, characterizing the completions of the completions of the
theory of PAC fields and giving a description of types [CvdDM80]. The central observation
underlying their work was that definable sets are controlled by algebraic data, encoded by
sets definable in the stable separable or algebraic closure, together with first-order properties
of the inverse system of the absolute Galois group.

Duret had observed that a PAC field which is not separably closed has the independence
property and therefore is not stable, and a graph-coding construction of Cherlin, van Den
Dries, and Macintyre had showed that theories of PAC fields can, in general, be as wild as
possible. In subsequent developments, much attention was given to the problem of finding
meaningful descriptions of the tame theories of PAC fields and connections were found be-
tween classification-theoretic properties of a PAC field and properties of its absolute Galois
group. For example, one of the most satisfying results in this vein is the characterization of
simple PAC fields. A field is called bounded if it has finitely many extensions of degree n for
all n. Hrushovski showed that a perfect bounded PAC field has simple (in fact, supersimple)
theory [Hru91] and later Chatzidakis and Pillay extended this result, establishing the sim-
plicity of possibly imperfect bounded PAC fields [CP98]. Chatzidakis later proved that an
unbounded PAC field has the tree property of the second kind, hence a PAC field is simple
if and only if it is bounded [Cha99].

A remarkable theorem of Chatzidakis provides a powerful engine for proving theorems
of this kind. She shows that, in a precise sense, independent amalgamation in a PAC field
is completely controlled by independent amalgamation in the Galois group [Cha17]. Many
of the important classification-theoretic dividing lines between simplicity and NSOP can be
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understood as describing the constraints on amalgamation within a given theory and, she
shows, for n ≥ 3, that if the theory of the inverse system of the absolute Galois group of a
PAC field is NSOPn then so is the field. The SOPn hierarchy as initially defined by Shelah
begins at n = 3 but Džamonja and Shelah later introduced SOP1 and SOP2, which are
defined in a very different way from the rest of the hierarchy. Consequently, a new argument
was needed to extend Chatzidakis’s result to handle SOP1 and SOP2 (also known as TP1).
In this short chapter, we explain how to use the results of this thesis to handle these cases.

To show that a PAC field with NSOP1 Galois group (in the inverse system language) has
NSOP1 theory, we show that Kim-independence in the field can be characterized in terms
of Kim-independence in the Galois group. In the NSOP2 case, a theory of independence
is not available but we can instead make use of strongly indiscernible trees to reduce the
analysis of possible witnesses to SOP2 to concrete amalgamation problems, which in turn
reduce to amalgamation problems in the Galois group. In both cases, the work we do here
amounts to reformulating the problem of showing a field is NSOPn to one that Chatzidakis’s
amalgamation theorem shows how to solve.

7.1 Preliminaries

Model theory

The properties we will be interested in are SOP1 and SOP2:

Definition 7.1.1. A formula ϕ(x; y) has SOP1 if there is a collection of tuples (aη)η∈2<ω

satisfying the following:

• For all η ∈ 2ω, {ϕ(x; aη|n) : n < ω} is consistent.

• For all η, ν ∈ 2<ω, if (η ∧ ν) _ 〈0〉E η and (η ∧ ν) _ 〈1〉 = ν, then {ϕ(x; aη), ϕ(x; aν)}
is inconsistent.

A theory T has SOP1 if some formula has SOP1 modulo T . We say T is NSOP1 if does not
have SOP1.

Definition 7.1.2. A formula ϕ(x; y) has SOP2 if there is a collection of tuples (aη)η∈2<ω

satisfying the following:

• For all η ∈ 2ω, {ϕ(x; aη|n) : n < ω} is consistent.

• For all η ⊥ ν ∈ 2<ω, {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

A theory T has SOP2 if some formula has SOP2 modulo T . We say T is NSOP2 if does not
have SOP2.

We will also make use of generalized indiscernibles. For a detailed treatment, see Chapter
1.



CHAPTER 7. SOP1 AND SOP2 IN PAC FIELDS 180

Definition 7.1.3. Suppose I is an L′-structure, where L′ is some language.

1. We say (ai : i ∈ I) is a set of I-indexed indiscernibles if whenever

(s0, . . . , sn−1), (t0, . . . , tn−1) are tuples from I with

qftpL′(s0, . . . , sn−1) = qftpL′(t0, . . . , tn−1),

then we have
tp(as0 , . . . , asn−1) = tp(at0 , . . . , atn−1).

2. In the case that L′ = 〈E, <lex,∧〉 and I = κ<λ, viewed as an L′-structure in the natural
way, then an I-indexed indiscernible is called a strongly indiscernible tree.

3. We say that I-indexed indiscernibles have themodeling property if, given any (ai : i ∈ I)
from M, there is an I-indexed indiscernible (bi : i ∈ I) in M locally based on (ai : i ∈ I)
– i.e., given any finite set of formulas ∆ from L and a finite tuple (t0, . . . , tn−1) from
I, there is a tuple (s0, . . . , sn−1) from I so that

qftpL′(t0, . . . , tn−1) = qftpL′(s0, . . . , sn−1)

and also
tp∆(bt0 , . . . , btn−1) = tp∆(as0 , . . . , asn−1).

The following was shown in Chapter 1:

Fact 7.1.4. If ϕ(x, y) has SOP2, then there is a strongly indiscernible tree (aη)η∈2<ω wit-
nessing this.

Fields

Definition 7.1.5. Suppose F is a field. We say F is pseudo-algebraically closed (PAC) if
every absolutely irreducible variety over F has an F -rational point.

Definition 7.1.6. Suppose G is a profinite group. Let N (G) be the collection of open
normal subgroups of G. We define

S(G) =
∐

N∈N (G)

G/N.

Let LG the language with a sort Xn for each n ∈ Z+, two binary relation symbols ≤, C, and
a ternary relation P . We regard S(G) as an LG-structure in the following way:

• The coset gN is in sort Xn if and only if [G : N ] ≤ n.

• gN ≤ hM if and only if N ⊆M
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• C(gN, hM) ⇐⇒ N ⊆M and gM = hM .

• P (g1N1, g2N2, g3N3) ⇐⇒ N1 = N2 = N3 and g1g2N1 = g3N1.

Note that we do not require that the sorts be disjoint (see [Cha98, Section 1] for a discussion
on the syntax of this structure).

If K is a field, we write Ks for the separable closure of K, Kalg for the algebraic closure
of K, and we write G(K) for the absolute Galois group of K. Interpretability of S(G(F ))
in (F alg, F ) is proved in [Cha02, Proposition 5.5]. The “moreover” clause is clear from the
proof.

Fact 7.1.7. Both F and S(G(F )) are interpretable in (K,F ) where K is any algebraically
closed field containing F . Call the interpretation π. Moreover, if L ⊆ F is a subfield so that
F is a regular extension of L, then the restriction of π to (K,L) produces an interpretation
of S(G(L)), contained in S(G(F )) in a natural way.

Lemma 7.1.8. Let F be a large sufficiently saturated and homogeneous field (i.e. a monster
model of its theory) and M ≺ F a small elementary substructure. Suppose A = acl(A),
B = acl(B) are subsets of F with M ⊆ A ∩B.

1. If A ≡M B in F , then S(G(A)) ≡S(G(M)) S(G(B)).

2. If (Ai)i∈I is an I-indexed indiscernible over M in tp(A/M), then (S(G(Ai)))i∈I is an
I-indexed indiscernible over S(G(M)).

3. If A |̂ u
M
B in F , then S(G(A)) |̂ uS(G(B))

S(G(B)) in S(G(M)).

Proof. (1) If A ≡M B in F , then there is an automorphism σ ∈ Aut(F/M) with σ(A) = B.
The map σ has an extension σ̃ to F alg which is, then, an automorphism of the pair (F alg, F )
taking A to B and fixing M pointwise. It follows A ≡M B in the pair (F alg, F ). Since
A = acl(A) and B = acl(B), we know F is a regular extension of A and of B (see, e.g., [Cha99,
Section 1.17]). By Fact 7.1.7, we have S(G(A)) ≡S(G(M)) S(G(B)).

(2) Suppose (Ai)i∈I is an I-indexed indiscernible overM , given two k-tuples i = (i0, . . . , ik−1)
and j = (j0, . . . , jk−1) from I with qftp(i) = qftp(j), we know Ai0 . . . Aik−1

≡M Aj0 . . . Ajk−1

so acl(Ai0 . . . Aik−1
) ≡M acl(Aj0 . . . Ajk−1

). Then by (1) S(G(acl(Ai0 . . . Aik−1
))) ≡S(G(M))

S(G(acl(Aj0 . . . Ajk−1
))), which implies (S(G(Ai)))i∈I is an I-indexed indiscernible over S(G(M)).

(3) In any theory, if π is an interpretation of the structure X in the structure Y , and
A |̂ u

C
B in Y , then π(A) |̂ u

π(C)
π(B). It follows that ifA |̂ u

M
B in F , then S(G(A)) |̂ uS(G(M))

S(G(B))

by Fact 7.1.7.
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A theorem of Chatzidakis

Theorem 7.1.9. [Cha17] Let F be a PAC field, E ≺ F , and A, B, C1, and C2 be alge-
braically closed subsets of F , with E contained in A, B, C1, and C2. Assume that A∩B = E,
that A |̂ SCF

E
C1, B |̂ SCF

E
C2. Assume further that there is an Es-isomorphism ϕ : Cs

1 → Cs
2

such that ϕ(C1) = C2, and that there is S0 ⊆ S(G(F )) and LG-elementary isomorphisms

SΨ1 : 〈S(G(C1)), S(G(A))〉 → 〈S0, S(G(A))〉
SΨ2 : 〈S(G(C2)), S(G(B))〉 → 〈S0, S(G(B))〉.

such that

1. SΨ1 is the identity on S(G(A)), SΨ2 is the identity on S(G(B)), SΨi(S(G(Ci))) = S0

for i = 1, 2,

2. If SΦ : S(G(C1))→ S(G(C2)) is the morphism double dual to ϕ, then

SΨ2SΦ = SΨ1|S(G(C1)).

Then, in some elementary extension F ∗ of F , there is C with S(G(C)) = S0 such that
C ≡A C1, C ≡B C2 and C |̂ SCF

E
AB.

What we will use in the following arguments is actually a consequence of this theorem,
which may easily be deduced from it: suppose F is a sufficiently saturated PAC field and
E ≺ F is an elementary submodel. Suppose further that A, B, C1, and C2 be algebraically
closed subsets of F , with E contained in A, B, C1, and C2. Assume that A ∩ B = E,
that A |̂ SCF

E
C1, B |̂ SCF

E
C2, and C1 ≡E C2. Then if in Th(S(G(F ))), there is S0 with

S0 ≡S(G(A)) S(G(C1)) and S0 ≡S(G(B)) S(G(C2))), then there is C with S(G(C)) = S0 such
that C ≡A C1, C ≡B C2 and C |̂ SCF

E
AB.

7.2 SOP1 and SOP2

SOP1

To begin, we will recall the definitions and main facts for Kim-independence. These are
given a detailed treatment in Chapter 3.

Definition 7.2.1. Suppose q(y) is an A-invariant global type. The formula ϕ(x; y) q-divides
over A if for some (equivalently, any) Morley sequence 〈bi : i < ω〉 in q over A, {ϕ(x; bi) :
i < ω} is inconsistent.

Definition 7.2.2. We say that a formula ϕ(x; b) Kim-divides over A if there is some A-
invariant global type q ⊇ tp(b/A) so that ϕ(x; y) q-divides. The formula ϕ(x; b) Kim-forks
over A if ϕ(x; b) `

∨
i<k ψi(x; ci) and each ψi(x; ci) Kim-divides over A. A type Kim-forks if

it implies a formula which does. If tp(a/Ab) does not Kim-fork over A, we write a |̂ K
A
b.
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Theorem 7.2.3. [Theorem III.8.1] The following are equivalent for the complete theory T :

1. T is NSOP1

2. Kim’s lemma for Kim-dividing: For every model M |= T and ϕ(x; b), if ϕ(x; y) q-
divides for some global M-invariant q ⊇ tp(b/M), then ϕ(x; y) q-divides for every
global M-invariant q ⊇ tp(b/M).

3. Symmetry over models: for every M |= T , then a |̂ K
M
b if and only if b |̂ K

M
a.

4. Independence theorem over models: ifM |= T , a ≡M a′, a |̂ K
M
b, a′ |̂ K

M
c, and b |̂ K

M
c,

then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂ K

M
bc.

The following definition of an independence relation will be our candidate for Kim-
independence in a PAC field with NSOP1 absolute Galois group. It is the conjunction
of non-forking indepenence in the ambient separably closed field and Kim-independence in
the sense of the Galois group.

Definition 7.2.4. Suppose F is a field and Th(S(G(F ))) is NSOP1. If a, b are tuples in
some elementary extension of F , we say a and b are weakly independent over F if, letting
A = acl(aF ) and B = acl(bF ),

1. A |̂ SCF
F

B

2. S(G(A)) |̂ KS(G(F ))
S(G(B)).

Remark 7.2.5. This differs from the definition given by Chatzidakis [Cha17] in the context
of Th(S(G(F ))) having simple theory, as we use Kim-independence and Chatzidakis used
non-forking independence in the definition of weak independence. If the base is a model,
these definitions agree, and the definition we give here is well-behaved in the broader context
of NSOP1 Galois groups.

Theorem 7.2.6. Suppose F is a PAC field and Th(S(G(F ))) is NSOP1. Then given L |=
Th(F ), a |̂ K

L
b if and only if a and b are weakly independent over L.

Proof. Let A = acl(aL) and B = acl(bL).
First, assume A |̂ K

L
B and we will show A and B are weakly independent over L. Let

(Bi)i<ω be a Morley sequence in a global type finitely satisfiable in L extending tp(B/L).
As A |̂ K

M
B, we may assume (Bi)i<ω is A-indiscernible. Then by Kim’s lemma in the sta-

ble theory SCF, we know A |̂ SCF
L

B. Also (S(G(Bi)))i<ω is a Morley sequence in a global
type finitely satisfiable in S(G(L)) which is moreover S(G(A))-indiscernible. This implies
S(G(A)) |̂ KS(G(L))

S(G(B)). As Th(S(G(F )) is NSOP1, this implies S(G(A)) |̂ KS(G(F ))
S(G(B))

by Kim’s lemma for Kim-dividing. In other words, A and B are weakly independent over L.
Now assume A and B are weakly independent over L and we will show A |̂ K

L
B. Let

(Bi)i<ω be an L-finitely satisfiable Morley sequence over L with B0 = B. Put Cn,0 =
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acl(B0, . . . , B2n−1) and Cn,1 = acl(B2n , . . . , B2n+1−1). Note that Cn,1 |̂ uLCn,0 and Cn,0 ≡L
Cn,1 for all n < ω. By induction on n, we will choose An so that A0 = A and for all n ≥ 1
the following conditions are satisfied:

1. An+1 ≡Cn,0,Cn,1 An.

2. An is weakly independent from acl(Cn,0, Cn,1) = Cn+1,0 over L.

3. AnCn,0 ≡L AnCn,1.

Suppose we are at stage n ≥ 1 of the induction. Pick A′n so that AnCn+1,0 ≡L A′nCn+1,1.
Then, in particular, S(G(An)) ≡S(G(L)) S(G(A′n)), S(G(An)) |̂ K

S(G(L))
S(G(Cn+1,0)), and S(G(A′n)) |̂ K

S(G(L))
S(G(Cn+1,1)).

Moreover, because Cn+1,1 |̂ uLCn+1,0, we have S(G(Cn+1,1)) |̂ K
S(G(L))

S(G(Cn+1,0)). As Th(S(G(F )))

is NSOP1, we may apply the independence theorem for |̂ K to obtain S so that S ≡S(G(Cn+1,0))

S(G(An)), S ≡S(G(Cn+1,1)) S(G(A′n)) and S |̂ K
S(G(L))

S(G(Cn+1,0))S(G(Cn+1,1)). Note that
S(G(Cn+2,0)) ⊇ S(G(Cn+1,0))S(G(Cn+1,1)) so, by extension, we may assume S has been cho-
sen so that S |̂ K

S(G(L))
S(G(Cn+2,0)). By Theorem 7.1.9, there is An+1 with An+1 ≡Cn+1,0 An,

An+1 ≡Cn+1,1 A′n, An+1 |̂ SCF
L

Cn+1,0Cn+1,1 and S(G(An+1)) = S. Note that this implies
An+1 |̂ SCF

L
Cn+2,0 because Cn+2,0 = acl(Cn+1,0Cn+1,1) and S(G(An+1)) |̂ K

S(G(L))
S(G(Cn+2,0))

by the choice of S so An+1 and Cn+2,0 are weakly independent over L. This completes the
induction.

Let p(X;B) = tp(A/B). Observe that, by construction, An |=
⋃
i<2n p(X;Bi) so

⋃
i<ω p(X;Bi)

is consistent by compactness. As the sequence 〈Bi : i < ω〉 is an arbitrary L-finitely satisfi-
able Morley sequence over L, this shows A |̂ K

L
B.

Corollary 7.2.7. If F is a PAC field such that Th(S(G(F ))) is NSOP1, then Th(F ) is
NSOP1.

Proof. A theory is NSOP1 if and only if |̂ K is symmetric by Theorem 3.8.1. If Th(S(G(F )))

is NSOP1, then |̂ K in Th(S(G(F ))) is symmetric and |̂ SCF is symmetric by stability of
the theory of separably closed fields. Therefore |̂ K is symmetric in Th(F ) by Theorem
7.2.6.

SOP2

In the SOP2 case, we do not have a theory of independence as in the SOP1 case, but we can
find amalgamation problems from strongly indiscernible trees. The basic principle we will
use is that if we have a complete type p(x; b) and a strongly indiscernible tree (bη)η∈2<ω , then
if
⋃
n<ω p(x; b0n) is consistent, then p(x; bη) ∪ p(x; bν) is consistent for any two η ⊥ ν ∈ 2<ω.

Otherwise, by compactness and indiscernibility there would be a formula in p witnessing
SOP2. This weak form of amalgamation in an NSOP2 absolute Galois group suffices to
prove that the field is also NSOP2.
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Proposition 7.2.8. Let F be a PAC field. Then Th(F ) is NSOP2 if Th(S(G(F ))) is NSOP2.

Proof. We may suppose F is a monster model of its theory and fix a Skolemization of F .
Then, formally, we work in F s with a predicate for F and these Skolem functions—in the
proof, indiscernbility will always mean with respect to this structure, though acl means
model-theoretic algebraic closure in F , as a pure field. Towards contradiction, suppose F
has SOP2 witnessed by some formula ϕ(x; y) in the language of rings. By compactness, we
may suppose ϕ(x; y) witnesses SOP2 via the parameters (bη)η∈2<ω+ω , which form a strongly
indiscernible tree. In F , choose a so that a |= {ϕ(x; b0α) : α < ω + ω}. By Ramsey,
compactness, and automorphism, we may assume (b0α)α<ω+ω is a-indiscernible.

Let E be the Skolem hull of b<ω in F . Define A = acl(aE) and set Bη = acl(Eb0ω_η) for
η ∈ 2<ω. Then (Bη)η∈2<ω is strongly indiscernible over E, (B0α)α<ω is A-indiscernible, and
(B0α)α<ω is an E-finitely satisfiable Morley sequence, enumerated in reverse. Then by Kim’s
lemma in the stable theory SCF, we have A |̂ SCF

E
B0. By strong indiscernibility, (B0α)α<ω

is also B〈1〉-indiscernible, so also B0 |̂ SCF
E

B〈1〉. Choose A′ so that A′B〈1〉 ≡E AB0.
Let q(X;S(G(B∅))) = tp(S(G(A))/S(G(B∅))). We know (S(G(Bη)))η∈2<ω is a strongly

indiscernble tree over S(G(E)) and S(G(A)) |=
⋃
n<ω q(X;S(G(B0n))) as (S(G(B0n)))n<ω

is S(G(A))-indiscernible. As Th(S(G(F ))) is NSOP2, q(X;B0) ∪ q(X;B〈1〉) is consistent.
Let S0 be a realization. Then by Theorem 7.1.9, there is A∗ with A∗ ≡B0 A, A∗ ≡B〈1〉
A′, and S(G(A∗)) = S0. By the choice of A and definition of B0 and B〈1〉, this implies
{ϕ(x; b0ω_0), ϕ(x; b0ω_〈1〉)} is consistent. This contradicts the definition of SOP2, completing
the proof.
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