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ABSTRACT
Legacy and current-use contaminants enter 
into and accumulate throughout the San 
Francisco Bay−Delta (Bay−Delta), and are 
present at concentrations with known effects 
on species important to this diverse watershed. 
There remains major uncertainty and a lack of 
focused research able to address and provide 
understanding of effects across multiple biological 
scales, despite previous and ongoing emphasis 
on the need for it. These needs are challenging 
specifically because of the established regulatory 
programs that often monitor on a chemical-
by-chemical basis, or in which decisions are 
grounded in lethality-based endpoints. To best 
address issues of contaminants in the Bay−Delta, 
monitoring efforts should consider effects of 
environmentally relevant mixtures and sub-
lethal impacts that can affect ecosystem health. 
These efforts need to consider the complex 
environment in the Bay−Delta, including variable 
abiotic (e.g., temperature, salinity) and biotic 
(e.g., pathogens) factors. This calls for controlled 
and focused research, and the development of a 
multi-disciplinary contaminant monitoring and 
assessment program that provides information 
across biological scales. Information gained in 
this manner will contribute toward evaluating 
parameters that could alleviate ecologically 
detrimental outcomes. This review is a result of 
a Special Symposium convened at the University 
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of California−Davis (UCD) on January 31, 20171 
to address critical information needed on how 
contaminants affect the Bay−Delta. The UCD 
Symposium focused on new tools and approaches 
for assessing multiple stressor effects to 
freshwater and estuarine systems. Our approach 
is similar to the recently proposed framework laid 
out by the U.S. Environmental Protection Agency 
(USEPA) that uses weight of evidence to scale 
toxicological responses to chemical contaminants 
in a laboratory, and to guide the conservation of 
priority species and habitats. As such, we also 
aimed to recommend multiple endpoints that 
could be used to promote a multi-disciplinary 
understanding of contaminant risks in Bay−Delta 
while supporting management needs. 

INTRODUCTION
A recent decadal synthesis of contaminant 
research in the San Francisco Bay−Delta 
(Bay−Delta; Fong et al. 2016) concluded that 
contaminants are present at concentrations that 
can cause both acute lethality as well as sub-
lethal toxicity to aquatic organisms. Chemical 
pollution is therefore likely to play a significant 
role in the currently degraded state of the Bay−
Delta ecosystem (Healey et al. 2016). As an 
indication of risk to delicate food webs, acute 
toxicity has been documented in both tributaries 
and mainstem rivers of the Delta (Deanovic 
et al. 2014; Hasenbein et al. 2014; Weston et 
al. 2014; Weston and Lydy 2014; Weston et al. 
2015a; Deanovic et al. 2018; Weston et al. 2018). 
Moreover, environmental surveillance efforts 
have measured a diversity of contaminants in 
Bay−Delta habitats at concentrations known 
to negatively affect the health of fish and 
invertebrates (Fong et al. 2016; Healey et al. 2016; 
Jabusch et al. 2018). Collectively, this has raised 
concerns that poor water quality conditions are 
limiting the recovery of Delta Smelt and other 
high-priority species for conservation (Hobbs 
et al. 2017). Previous reviews have repeatedly 
emphasized that contaminants have been an 
area of critical uncertainty that needed focused 
research (CALFED 2000; SBDS 2008; Johnson et 
al. 2010; Brooks et al. 2012; Mount et al. 2012; 

1 https://marinescience.ucdavis.edu/engagement/past-events 

Scholz et al. 2012; NRC 2013; IEP MAST 2015; 
Luoma et al. 2015). Nevertheless, despite previous 
needs assessments, much remains unknown about 
the presence and fate of contaminants in the 
Bay−Delta, as well as their effects across broad 
scales of biological organization (Fong et al. 2016; 
Healey et al. 2016). This review:

1. highlights current challenges that limit our 
understanding of contaminant effects in the 
Bay−Delta,

2. outlines key developments in toxicological 
tools and approaches for effect-based analyses 
as discussed in the Special Symposium, 
convened at the University of California−
Davis (UCD) on January 31, 2017,

3. details advances in the field of analytical 
chemistry, and

4. provides recommendations for incorporation 
into contaminant monitoring efforts.

CHALLENGES IN REGULATORY FRAMEWORKS
Regulatory toxicology uses data from standard 
endpoints to determine risk associated with a 
given chemical exposure. Standardized acute 
toxicity tests, such as those used for National 
Pollutant Discharge Elimination System (NPDES) 
permitting programs, for example, incorporate 
an initial battery of screening tests that use 
organisms across three trophic levels (i.e., 
they incorporate algae in addition to fish and 
invertebrates; USEPA 1994, 2002). If toxicity is 
detected, then more in-depth tests are conducted 
toward characterizing a sample’s toxicity. These 
data are traditionally derived from acute toxicity 
assays for mortality (various model species), 
growth, or reproduction (fish and invertebrates), 
and inhibitory concentration (IC50) for growth 
(vascular plants and algae) (Code of Federal 
Regulations − 40CFR Part 158: Subpart G 158.630 
and 158.660). Most notably, median lethal or 
effect concentrations (LC50s, EC50s) have been 
the standard toxicological metrics for decades, 
and they are usually based on continuous 
exposures that last 24, 48, or 96 hours. 
Toxicants in the environment, however, more 

https://marinescience.ucdavis.edu/engagement/past-events
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commonly occur at sub-lethal concentrations; 
i.e., at concentrations that don’t kill organisms 
outright, but may present intermittent or chronic 
exposures. While traditional laboratory-derived 
LC50s and EC50s are good tools to assess 
comparative toxicity of different contaminants 
or toxicity between different species, they may 
have little to no ecological relevance to conditions 
in nature—beyond providing a conservative 
threshold when used for risk assessment 
purposes. Ecological risk assessments for the 
purpose of regulatory decision-making typically 
focus on individual chemicals, with few water 
quality objectives (described below) that include 
interactive effects between chemicals in mixtures 
(i.e., synergism, additivity, antagonism; Figure 1) 
or the possible influence of other environmental 
stressors (e.g., temperature, salinity, hypoxia). 

Interactions between contaminants and other 
components of aquatic systems are often highly 
complex, necessitating a multi-disciplinary 
monitoring and assessment approach (e.g., 
Macneale et al. 2010; Nilsen et al. 2019). 
Moreover, while field methods to assess biological 
integrity continue to evolve (e.g., in estuarine 
and coastal systems; Borja et al. 2008), it remains 
challenging to attribute observed declines in 
the abundance and diversity of taxa to specific 
stressor categories. Stressors include habitat 
attributes that may be chemical (e.g., toxicants), 
physical (e.g., temperature), or biological (e.g., 
pathogens) in nature, or multiple combinations of 
these. This points to the importance of controlled 
studies to delineate causal drivers for species 
losses, as well as technological advances that 
are making it increasingly possible to identify 
cause-and-effect relationships for common 
stressors and stressor combinations. Interactions 
between contaminants and multiple other biotic 
and abiotic stressors are, more often than not, 
likely to result in habitat compression (Gustafson 
et al. 2015; Hasenbein et al. 2018); i.e., an 
increased loss of suitable habitat as a result 
of a species’ inability to contend with further 
environmental change. Furthermore, in the light 
of global climate change, the use and dispersion 
of pesticides is predicted to increase, to combat 
the forecasted increase in the distribution of 
insect pests and weeds (McDonald et al. 2009; 

Kattwinkel et al. 2011). This will further affect 
organisms, populations, and ecosystems, as well 
as complicate contaminant concentration or effect 
monitoring—and suggests that current regulatory 
practices greatly underestimate ecosystem effects. 

Contaminant monitoring efforts conventionally 
involve laboratory analyses of field-collected 
water, sediment, or tissue samples. Historically, 
this approach has worked particularly well 
to identify environmentally persistent 
and bioaccumulative chemicals such as 
polychlorinated biphenyls (PCBs; e.g., Greenfield 
and Allen 2013), dichlorodiphenyltrichloroethane 
(DDT) and other chlorinated pesticides (e.g., 
Connor et al. 2007), and polybrominated diphenyl 
ethers (PBDEs; e.g., Sutton et al. 2015). Mercury 
similarly persists in Bay−Delta food webs and 
remains at high concentrations in several 
economically important sport fish, creating an 
enduring concern for the health of humans and 
piscivorous wildlife (see Davis et al. 2012a; Davis 
et al. 2012b). Focused chemical monitoring efforts 
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Figure 1 Isobologram depicting potential synergistic, additive 
and antagonistic effects resulting from the interaction of 
contaminants (e.g., pesticides) and environmental stressors 
(e.g., temperature). Highest values on the X and Y axes 
correspond to equivalent responses (e.g., equal percentage 
mortality) resulting from exposure to each respective 
stressors. These points are connected by lines that represent 
equal effect; isoboles, depicting their interaction.
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in the Bay−Delta have successfully detected 
mercury, PCBs, and dioxins, which have been 
classified as contaminants of high concern (SFEI 
2013; SFEI 2015). Elevated concentrations of 
selenium—sourced from agricultural drainage and 
effluents from oil refineries, which accumulate 
through the food web—are known to affect 
reproduction, growth, and development in fishes 
(Stewart et al. 2004; Linares−Casenave et al. 
2015). Outside of this so-called “legacy pollution,” 
urbanization and increasing human populations 
have led to increases in water pollution caused 
by chemicals of emerging concern (CECs): 
chemicals that are increasingly being detected 
in surface waters at low concentrations, and for 
which there is concern about their detrimental 
effects on aquatic life: e.g., pharmaceuticals and 
personal care products. Heavy metals continue 
to pose a threat to aquatic life, and are detected 
at concentrations that affect the functioning of 
fishes’ nervous systems, affecting behavior and 
olfaction, and risk of predation (Brooks et al. 
2012; Grossman 2016); responses to exposure are 
known to be altered by exposure temperature, 
as well as prior thermal acclimation history of 
aquatic species (Hallman and Brooks, 2015). 
The introduction of novel stressors such as 
microplastics and synthetic fibers act as new 
vectors for many pollutants, and present their 
own direct physical and chemical effects once 
ingested (Sutton et al. 2016; Maruya et al. 2018). 
With an ever-changing and growing list of 
threats to aquatic systems, monitoring strategies 
must also change.

New contaminants appear on the market faster 
than toxicologists are able to evaluate their 
ecological effects. Researchers continuously play 
catch up on a seemingly never-ending treadmill; 
referred to here as a “pesticycle.” We use the 
term pesticycle to describe the dynamic nature 
of required pesticide assessments; as pesticides 
change, their toxicity needs to be evaluated—and 
technological approaches to evaluate them need 
to be developed as well. (These are sometimes 
multi-decadal cycles). Evaluations attempt to 
determine if — and if so, which replacement 
products, or pesticide active ingredients — are 
likely to have the greatest ecological effect, 
since restrictions are imposed on those that have 

been established to cause environmental harm. 
Pesticides, after registration, are required by 
California law to be continuously evaluated for 
actual or potential significant adverse effects 
to the environment, as more toxicological and 
environmental data become available (CDPR 
2017). A primary emphasis put forward by the 
European Union—such as the Registration, 
Evaluation, Authorisation and Restriction of 
Chemical substances (REACH)2 and the Water 
Framework Directive (WFD)3—is that applied 
ecotoxicology needs to become more proactive, 
rather than reactive testing being conducted, 
i.e., following a precautionary principle (Miller 
2019). Post-registration monitoring is required 
to establish environmental relevance and protect 
species of conservation concern (Vijver et al. 
2017). Monitoring (collecting field data), however, 
is by definition a reactive (or retrospective) 
approach, as contaminants must already be in the 
system to be detectable (Vijver 2019). A proactive 
(or prospective) approach that involves extensive 
lab testing of a chemical, with significant 
ecological relevance, is needed before it is used 
and introduced into the environment. This, 
however, is a seemingly impossible task, because 
of the number of synthetic chemicals that enter 
the market each year.

EFFECT-BASED TOOLS FOR USE IN  
MONITORING FRAMEWORKS
Agencies are beginning to recognize the 
limitations of some regulatory frameworks, 
especially in the light of the challenges 
highlighted above. For example, the Water 
Quality Control Plan (Basin Plan) for the Central 
Valley Water Quality Control Board4, for example, 
attempts to address issues regarding the presence 
of multiple contaminants, stating that evaluations 
should determine “additive or synergistic effects 
of multiple pollutants.” The Basin Plan provides 
guidance on how to determine additivity of 
limited chemical concentrations, but little 

2 http://ec.europa.eu/environment/chemicals/reach/reach_en.htm 

3 http://ec.europa.eu/environment/water/water-framework/index_
en.html 

4 https://www.waterboards.ca.gov/centralvalley/water_issues/basin_
plans/sacsjr_201805.pdf

http://ec.europa.eu/environment/chemicals/reach/reach_en.htm
http://ec.europa.eu/environment/water/water-framework/index_en.html
https://www.waterboards.ca.gov/centralvalley/water_issues/basin_plans/sacsjr_201805.pdf
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guidance on interpreting effects analyses that 
include dozens to hundreds of chemicals acting 
on an organism. During the 50 years since René 
Truhaut coined the word “ecotoxicology” (1969, 
detailed in Truhaut 1977), a multitude of scientific 
advances have worked toward understanding 
contaminant effects beyond mortality. Advances 
include high throughput, non-targeted analytic 
techniques and approaches to determine effect-
based toxicity. Here, effect-based evaluations lend 
themselves to weight of evidence and validation 
of the correlations between exposure and effect, 
better than a systematic monitoring of the 
effect on a contaminant-by-contaminant basis. 
Evaluation and management of contaminants 
are hoped to integrate the latest state-of-the-
art approaches toward establishing monitoring 
programs to evaluate complex contaminant 
mixtures, and potential synergistic, additive — or 
antagonistic — effects on populations, 
communities, and ecosystems as a whole. 
Establishing comprehensive monitoring systems, 
combined with hypotheses-driven research, are 
needed to determine the sources and magnitude of 
anthropogenic effects on aquatic biota, which will 
be critical in informing management decisions 
and conservation efforts. Below, we highlight 
several advancements and important studies 
that could lend themselves to building a more 
comprehensive plan.

High Throughput Screening for Chemical 
Prioritization
New and emerging contaminants of concern 
are continuously driving new monitoring 
efforts worldwide (Brack et al. 2017). Regulatory 
processes have historically addressed the acute 
toxicity of contaminants as determined using 
low-throughput approaches, at high costs; not 
population-level effects. Millions of dollars 
are spent on evaluations per single chemical, 
and it takes years for the needed regulatory 
information to be gathered, resulting in only 
a small fraction of new compounds ever being 
tested for their toxicity (Krewski et al. 2010). With 
few exceptions, these regulations do not consider 
knowledge of action mechanisms, which modern 
effect-based techniques are able to provide. 
This calls for utilizing existing state-of-the-art 
technology, and promoting further development, 

advancing the way in which toxicological 
assessments are being conducted. This, in fact, 
has been the aim of the Toxicity Testing in the 
21st Century (Tox21) strategy established in 
2007 (Krewski et al. 2010). Tox21 is a US federal 
collaboration among Environmental Protection 
Agency (EPA), National Institutes of Health (NIH), 
the National Institute of Environmental Health 
Sciences (NIEHS), including National Center for 
Advancing Translational Sciences (NCATS) and 
the National Toxicology Program (NTP), as well 
as the Food and Drug Administration (FDA). 
Tox21 efforts share their mission with that of 
European Union partners, such as EU-ToxRisk, 
an integrated program that drives mechanism-
based toxicity testing and risk assessment for 
the 21st century (Daneshian et al. 2016). The 
concept is to move away from single toxicity 
tests toward high-throughput screening, which 
allow for the rapid execution of multiple toxicity 
assessments that incorporate in vitro and/or in 
vivo screening (e.g., using cell lines and/or fish 
embryo tests), with an understanding of toxicity 
pathways. High-throughput screening also 
incorporates computational toxicology to either 
prioritize screening or predict adverse outcomes 
that connect effects at various biological scales5,6. 
At a minimum, the priority should be to establish 
a hierarchy of testing that first uses high-
throughput screening, to then prioritize fewer 
chemicals which may need additional scrutiny 
(e.g., life cycle testing) and assessment across 
biological scales (e.g., Brander et al. 2015). Then, 
data obtained from such testing can be used 
to discern what environmental conditions may 
alleviate observed detrimental outcomes. The 
Tox21 committee states that prioritization should 
be based on risk assessment needs, i.e. testing 
should be based on chemical use and likelihood 
of exposure and geared toward science-policy 
decisions. They further indicate that while 
thorough testing on all chemicals is impractical, 
emerging tools and approaches hold great promise 
for rapid screening of a multitude of chemicals. 
As to strategies, Tox21 highlights that these will 
need to be evaluated relative to the value of 

5 https://www.epa.gov/chemical-research/toxicology-testing-21st-
century-tox21

6 http://www.eu-toxrisk.eu/page/en/about-eu-toxrisk.php

https://doi.org/10.15447/sfews.2018v17iss4art2
https://www.epa.gov/chemical-research/toxicology-testing-21st-century-tox21
http://www.eu-toxrisk.eu/page/en/about-eu-toxrisk.php
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knowledge provided, in terms of depth, breadth, 
animal welfare, and conservation (Krewski et al. 
2010). It is important to show linkages between 
the in vitro assays and in vivo endpoints to be 
able to use these technologies to assess risk.

More thorough, proactive testing could include 
an evaluation of the proposed products’ uses to 
determine what other chemicals would likely be 
found concurrently and at what concentrations. 
This should not be limited to pesticides and 
their so-called inert ingredients (i.e., active 
ingredient and formulations), and if possible, 
should include toxicity evaluations at ecologically 
relevant temperatures. Appropriate, sensitive 
species should be determined based on the 
chemical’s proposed application method (e.g., 
spray vs. granule), mode of action, and types 
of species that would be potentially exposed. 
This information would be combined to devise a 
suite of laboratory tests to be performed before 
the chemical is used — and therefore before it 
is introduced into the environment. These tests 
should include evaluation of sub-lethal effects on 
biological indicator performance beyond growth 
and reproduction (e.g., behavior) (Nilsen et al. 
2019). Contaminants need to be evaluated as 
a syndrome; as symptoms that occur together, 
rather than isolated from biotic and abiotic 
interactions, so as not to underestimate their 
ecological effect (Vijver 2019). 

Adverse Outcome Pathways and Systems 
Biology
Mechanistic analyses can be evaluated and 
confirmed through integration of endpoints 
measured across levels of biological organization, 
from cellular-level to whole organism-level 
effects, with implications for population-level 
effects (Figure 2). This integration can be 
achieved through the adverse outcome pathway 
(AOP) framework (Figure 3), defined as 

“a conceptual construct that portrays 
existing knowledge concerning the linkage 
between a direct molecular initiating event 
(e.g., a molecular interaction between a 
xenobiotic [a chemical that is foreign to 
the body] and a specific biomolecule) and 
an adverse outcome at a biological level of 

organization relevant to risk assessment” 
(Ankley et al. 2010). 

This framework establishes a basis upon which 
to test multiple hypotheses that offer greater 
environmental relevance. This construct 
can use data from a multitude of studies to 
evaluate outcomes reported at different levels of 
biological organization. This, in turn, serves to 
determine specific endpoints for the evaluation 
of contaminants, where the effect upon a species 
of concern may need to be further confirmed. By 
adopting a systems biology approach, information 
gained in this manner can be expanded to 
evaluate the effect upon an ecosystem as a whole. 
Systems biology is a multi-disciplinary approach 
that integrates biology, bioinformatics, chemistry, 
and toxicology, among other fields, providing 
tools to integrally infer, link, and quantify 
how systems (populations, communities, and 
ecosystems) change in response to environmental 
alterations (Garcia−Reyero and Murphy 2018). 
In this approach, interacting networks that 
respond to perturbations are assessed to discover, 
understand, and predict the emerging properties 
of the system (Weston and Hood 2004; Garcia−
Reyero and Perkins 2011), through examining 
the dynamics of cellular to organismal functions, 
rather than their individual components (Kitano 
2001; Kitano 2002; Garcia−Reyero and Murphy 
2018). Effects on reproductive systems determined 
at the cellular level (e.g., induction or inhibition 
of vitellogenin, testosterone, and/or estrogen), 
can, for example, be mathematically modeled 
as surrogates of fecundity so effects at higher 
levels of biological organization (e.g., reproductive 
output) and population consequences can be 
inferred (Perkins et al. 2011; White et al. 2017). In 
fact, endocrine disruption-related AOPs are some 
of the best understood and validated evaluation 
processes (e.g., Miller et al. 2007). It has been 
proposed that AOPs be incorporated into the 
USEPA’s Endocrine Disruptor Screening Program 
(EDSP), which evaluates potential contaminant 
action via estrogenic, androgenic, and thyroid 
hormone pathways (Browne et al. 2017). This 
program is based on a tiered approach by 
which in vitro hormonal tests provide an initial 
screening; in vivo assays then confirm hormonal 
disruption and subsequent effects on development 
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Figure 2 The sensitivity and ecological relevance of toxicological assessments vary depending on the level of biological 
organization at which tests are conducted. Evaluation of links across multiple levels of biological organization provide for a 
comprehensive effect-based assessment of perturbations within an ecosystem.

Figure 3 Adverse Outcome Pathways (AOP): Exemplar schematic representation of causally linked events at multiple levels of 
biological organization (adapted from Ankley et al. 2010)

https://doi.org/10.15447/sfews.2018v17iss4art2
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and reproduction. Thus, AOPs directly 
complement and integrate a systems biology 
approach, and by understanding differential 
sensitivities of species within a particular habitat, 
detrimental effects on community and ecosystem 
properties can be evaluated. 

Progress in Effect-Based Analyses
Numerous studies have used these endpoints to 
evaluate how contaminants affect individuals 
and populations (Hellou, 2011; Melvin and Wilson 
2013; Hasenbein et al. 2015; Johnson and Sumpter 
2016), highlighting direct relevance, for example, 
between impaired behavior and predation risks 
(e.g., fish with an impaired nervous system 
are as good as dead; Bertucci et al. 2018) or 
contaminant effects on development and resulting 
sex ratios (e.g., how many males vs. females 
does a population need; White et al. 2017). 
Beside mortality (acute toxicity), morphology 
(development), behavior, and reproduction are 
easily understood effect-based endpoints. In 
fact, developmental deformities and impaired 
behavior have been highlighted as important 
population–relevant endpoints in determining 
adverse effects that follow exposure to endocrine-
mimicking compounds (Marty et al. 2017). 
Advances in image analysis software allow for 
detailed morphological and behavioral evaluations 
(as reviewed in: Teixidó et al. 2018; Xia et al. 
2018). What is less understood is how different 
contaminant classes affect development, behavior, 
and reproduction (i.e., by which mechanisms do 
contaminants alter organismal health). To support 
not only chemical regulations (e.g., pesticide-
use regulations) but also ecosystem-management 
efforts (Kiani et al. 2016; Gouveia et al. 2019), 
the mechanisms that underlie organismal 
sensitivity (or tolerance) to contaminants must 
be understood. In fact, one of the core missions 
of the field of ecotoxicology is to understand 
the mechanisms by which contaminants perturb 
normal organismal performance (as reviewed in 
Connon et al. 2012). To help drive this mission, 
future research should focus on the development 
of rapid throughput assays for a wide list of 
molecular targets, to define mechanisms and 
build predictive models that describe potential 
organismal or population-level outcomes. Using 
multi-endpoint, ideally high-throughput, effect-

based assays — that also incorporate the need for 
a mechanistic evaluation of how contaminants 
perturb normal performance — can provide the 
weight of evidence needed to more adequately 
characterize risk. 

’Omic Techniques
’Omic approaches allow us to better understand 
what sensitivity differences mean, and the 
mechanisms by which contaminants may 
contribute to population declines over single or 
multiple generations (Connon et al. 2012; Connon 
et al. 2018). The use and application of ’Omics 
as high-throughput screening approaches have 
rapidly increased in recent years (reviewed in 
Martyniuk and Simmons 2016). They are broad 
spectrum, interrogative, and non-biased ways to 
detect tolerance to — or changes in — responses 
of exposed individuals at the level of the 
genes (genomics and epigenomics), messenger 
RNA transcripts (Transcriptomics), proteins 
(proteomics), and metabolites (metabolomics) 
(Figure 4). Together, these describe the 
phenotype of the organism, resulting from 
interactions with the environment in which 
they live. Thus, alterations in phenotype can be 
evaluated at the ’Omic level, following carefully 
designed exposure studies. Transcriptome-
wide approaches can now be applied to species 
where no prior genomic sequence information 
is available, allowing for direct, comparative 
studies to be performed across multiple species 
of conservation concern, since there is a high 
level of gene conservation across taxa. Similarly, 
other approaches and tools such as large-scale 
proteomics have expanded in ecotoxicological 
research for nearly 2 decades, having originated 
with biological assays such as western blotting 
and enzyme-linked immunosorbent assays 
ELISAs, and enzyme activity or receptor 
binding assays (e.g., Martyniuk and Denslow 
2009; Martyniuk et al. 2012; Halden et al. 
2015). Evaluation of metabolic outcomes, i.e., 
endogenous metabolites detected within a 
biological sample, are now conducted in large-
scale metabolomics studies, usually evaluating the 
outcome of transcription and protein activities. 
Metabolites, however, are often produced through 
biotransformation processes by Phase I (oxidation 
reduction and hydrolysis) and Phase II (increased 
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solubility and elimination) enzymes that occur in 
the absence of modulation of transcription and 
translation (Martyniuk and Simmons 2016). The 
increased use of such technologies is seen across 
many facets of research. The ’Omics movement 
is now beginning to probe the epigenome 
(Vandegehuchte and Janssen 2011; Head et al. 
2012; Brander et al. 2017) and the whole genome 
through re-sequencing methods (Bentley 2006), 
enabling investigators to better understand multi-
generational effects and sensitivity differences 
between populations, which are described below 
in more detail. As with all ’Omics techniques, the 
costs of these assessments are rapidly decreasing, 
and such approaches are highly valuable both 
to generate detailed mechanism-based, adverse-
outcome pathways, and to develop biomarkers 
of effect, for use in contaminant monitoring and 
risk assessments (Monsinjon and Knigge 2007; 
Martyniuk and Simmons 2016) in laboratory or 
field settings (Perkins et al. 2017). 

Given the number of new chemicals that arrive 
on the market each year, and the associated 
pesticycle, researchers should aim, when 
possible, to evaluate larger numbers of chemicals 
using high-throughput approaches such as fish 
embryo toxicity (FET) tests (Roper and Tanguay 
2018). However, in recent years, it has become 
evident that responses measured from short-

term exposures are not necessarily informative 
over the longer term, especially in terms of 
transgenerational effects that result from either 
indirect exposure (e.g., maternal transfer) or 
epigenetic change. One of the earliest examples 
of transgenerational effects studies, conducted by 
(Anway et al. 2005), demonstrated how pesticide-
exposed pregnant rats produced male offspring 
with lower sperm number and viability—an effect 
that persisted to the 4th generation in unexposed 
organisms. More recently, transgenerational 
effects have been demonstrated in Zebrafish 
(Danio rerio), Medaka (Oryzias latipes), and Inland 
Silversides (Menidia beryllina) (DeCourten and 
Brander 2017; Alfonso et al. 2019; Cleary et al. 
2019). These generational effects may be related 
to changes in the epigenome (information placed 
on top of the genome) representing epigenomics. 
Epigenomics is a relatively new component of 
the ’Omics tool-box, and, as such, still requires 
validation for use in regulation. Epigenomics 
evaluates the heritability of genetic changes 
that do not involve alterations in the DNA 
sequence but rather modifications to the genetic 
expression capacity, thus playing a pivotal role 
in controlling the expression of genes (Head et 
al. 2012; Brander et al. 2017). Epigenetic tags, 
such as methyl or acetyl groups, are laid down 
on top of DNA or the histones around which 
DNA is wrapped. Epigenetic modifications 

Figure 4 Simplified representation of information that can be gathered at different ’Omic levels. While each ’Omic technique can 
provide specific information about mechanisms by which contaminant exposure can affect an organism, bioinformatics analyses 
and integration of these approaches can provide extensive knowledge on the capacity of an organism to contend with contaminant 
exposures and resulting mechanisms of action as defined by the phenotype. 
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are vital during embryonic development for 
cellular differentiation, but epigenetic modifiers 
also respond to environmental stressors 
(Vandegehuchte and Janssen 2011; Head et 
al. 2012; Brander et al. 2017). As such, the 
methylation status of cytosines in DNA regulatory 
regions, as well as methyl or acetyl groups 
added to the lysine tails of histones, mediate 
how transcription factors interact with the DNA, 
because they control how tightly the DNA is 
configured. 

Recently published research highlights the 
importance of epigenetic tags in evaluating 
responses to aquatic pollutants, and demonstrates 
that epigenetic mechanisms are important both 
within the lifetime of an organism, as well 
as in subsequent generations, since epigenetic 
modifications to gametes can be inherited 
through multiple generations (Corrales et al. 
2014; Head 2014; Bhandari 2016; Voisin et al. 
2016). The number of epigenome-focused studies 
is rapidly growing in the field of ecotoxicology 
(Head et al. 2012; Brander et al. 2017). Recent 
studies have shown increased methylation on 
genes specific to development and reproduction. 
For example, in a study using Zebrafish exposed 
to the polycyclic aromatic hydrocarbon benzo(a)
pyrene during embryonic development, Gao et 
al. (2018) reported a high level of methylation of 
genes involved in the brain−pituitary−gonadal 
axis, corresponding significantly with suppressed 
ovarian development and reproductive capability. 
Similarly, reproductive failure was associated 
with DNA hyper-methylation in Chironomus 
riparius after exposure to the endocrine-
disrupting compound, Bisphenol A (BPA) (Lee et 
al. 2018). 

In addition to epigenetic mechanisms, multi-
generational effects may also be observed as a 
result of evolutionary changes, when some highly 
adaptable species are able to evolve tolerance 
to particular contaminants (Medina et al. 2007; 
Whitehead et al. 2017). This results in differences 
in sensitivity to contaminants across populations 
(Brady et al. 2017), and potentially leads to 
decreased genetic diversity and fitness costs in 
the adapted populations (Oziolor et al. 2017; Major 
et al. 2018). Evolutionary toxicology is a discrete 

field aimed at evaluating the effects of chemical 
pollutants on the genetics of natural populations, 
which is critical when species of conservation 
concern are evaluated (Bickham 2011). Several 
examples now exist of adaptation to pollution 
(Amiard−Triquet 2011; Reid et al. 2016), 
including within the Bay−Delta (e.g., resistance 
to pesticides in the crustacean Hyalella azteca 
[Weston et al. 2013; Major et al. 2018]). However, 
these selection events may influence organism 
fitness (Meyer and Di Giulio 2003; Janssens et 
al. 2014; Heim et al. 2018), and overall genetic 
diversity (Bickham et al. 2000). Other population-
level effects to mutation rate and gene flow 
can erode the capacity of the population to 
contend with other environmental stressors 
(i.e., phenotypic plasticity), resulting in either 
adaptation or extirpation. In addition, adaptation 
of contaminant exposure in one species is highly 
correlated with other community-wide effects 
(Klerks 2002), suggesting that when one species is 
rescued through evolution, there are likely many 
other species within the same community that are 
not able to adapt, and their populations decline. 
Identifying the presence of a pesticide-resistant 
population (discussed later, see "Resistance as an 
Indication of Impairment"), without knowing that 
it is resistant, for example, may suggest a lack 
of effect, thus negatively affecting monitoring 
efforts. 

Because genetic changes in evolutionary 
toxicology often arise in critical proteins and in 
target sites for the chemical pollutants, studying 
the genetic differences in adapted populations 
may also uncover the molecular initiating events 
of contaminants and help inform AOPs. As in 
other examples above, ’Omics tools are highly 
applicable to the field of evolutionary toxicology. 
RADseq (Restriction site Associated DNA 
Sequencing) has been developed as a powerful 
tool for interrogating a genome and identifying 
large numbers of genetic variations in natural 
populations (Catchen et al. 2017; McKinney 
et al. 2017); however, RADseq data alone may 
miss many loci under selection in studies of 
local adaptation. Genome-wide evaluations are 
better able to detect these subtle changes (Lowry 
et al. 2017; Therkildsen and Palumbi 2017). In 
addition, applying transcriptomics alongside 
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genome-wide scans for genetic differences can 
detect fitness trade-offs by highlighting altered 
biological pathways that result from genetic 
changes in adapted populations (Ozioler et al. 
2017). By exposing the effects of contaminants 
on populations over evolutionary time-scales, 
evolutionary toxicology and technologies 
such as RADseq, genome re-sequencing, and 
transcriptomics have great potential to identify 
affected areas and inform regulations (Lowry et 
al. 2017; Oziolor et al. 2017). Resources applied 
to evaluating the effects of contaminants on 
evolutionary fitness could inform long-term 
effects upon aquatic ecosystems populations. 
As highlighted by Dobzhansky (1973) “nothing 
in biology makes sense except in the light of 
evolution.”

’Omic Tools and Data Sets of Direct Relevance  
to the Bay−Delta
A legacy of conventional toxicology is the 
reliance on a few, well-studied, model (or sentinel) 
species in determining chemical toxicity. While 
it is important to use model organisms from a 
regulatory perspective, and toward providing a 
broad understanding of the effects of specific 
chemicals, the field of ecotoxicology is rapidly 
expanding to incorporate species of concern. 
This is important to highlight because model 
species are used because of their ease of culture 
under laboratory conditions. This does not, in 
fact, adequately serve the goals of environmental 
risk assessment when it comes to evaluating 
effects on species of conservation concern. As 
mentioned above, multiple ’Omic approaches 
are now directly available to be applied to these 
species of concern (e.g., endemic species, or 
sport fishes), to conduct toxicological assessment 
of specific ecosystems, such as the Bay−Delta. 
Contaminant research conducted for species of 
conservation concern, such as the Delta Smelt 
(Hypomesus transpacificus) and Longfin Smelt 
(Spirinchus thaleichthys) has necessitated project-
specific system constructions to accommodate 
short studies, which are based on grant-to-grant 
funding sources. New model species specific to 
the Bay−Delta may be required, and advances 
in effect-based analytical technologies make 
this a viable option. Appropriate evaluation 
of contaminant effects on Bay−Delta species 

of conservation concern would, however, thus 
require an initial investment into readily 
accessible experimental facilities that could 
be modified and tailored to the experimental 
requirements of each species.

Transcriptomes and genomes of most model 
aquatic species used in ecotoxicology assessments 
have been sequenced and annotated, and are 
readily available via the following publicly 
available repositories: 

• fish—e.g., P. promelas (Saari et al. 2017; Gust 
et al. 2018); Rainbow Trout (Oncorhynchus 
mykiss, Berthelot et al. 2014)

• invertebrates—e.g., Daphnia spp. (Colbourne 
et al. 2005; Orsini et al. 2016), Hyalella azteca 
(Christie et al. 2018; Poynton et al. 2018), 
Chironomus spp. (Herrero et al. 2017; Mantilla 
et al. 2018)

• phytoplankton—e.g., Raphidocelis subcapitata 
(Suzuki et al. 2018) 

Below, we present a summary of ’Omic tools and 
data sets available for fish, invertebrates, and 
algal species associated with the Bay−Delta.

Fish Species 
Transcriptomes and genomes of several Bay−Delta 
fish species have been made available over the 
past decade, and provide a foundational resource 
for toxicological assessment studies that are 
directly ecologically relevant to their ecosystem. 
The Delta Smelt, an endemic species to the 
Bay−Delta, is protected under both Federal and 
California State Endangered Species Acts (ESAs); 
listed as threatened in 1993 (USFWS 1993) and 
as endangered in 2010 (CDFW 2018). Delta Smelt 
are very nearly extinct, and ongoing conservation 
efforts remain intensive (Hobbs et al. 2017). 
A refuge population was first established in 
1993 at the UC Davis Fish Conservation and 
Culture Laboratory. The goal was a captive and 
genetically managed broodstock that could 
(1) hedge against near-term extinction, (2) provide 
fish for controlled laboratory studies, and 
(3) eventually supplement the wild population 
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through controlled re-introductions into natural 
habitats (Lindberg et al. 2013; Finger et al. 2018). 
Delta Smelt are semi-anadromous and, as their 
name implies, confined in their range to the 
Delta (Moyle 2002; Sommer and Mejia 2013). 
Following controlled manipulations of water 
quality, transcriptome data have been analyzed 
to assess the effects of contaminants (pesticides, 
pharmaceuticals, heavy metals, ammonium, and 
unknown constituents in ambient water samples) 
as well as the physiological stress associated 
with salinity and thermal extremes (Connon 
et al. 2009; Connon et al. 2011a; Connon et al. 
2011b; Hasenbein et al. 2014; Komoroske et al. 
2014; Jeffries et al. 2015a; Komoroske et al. 2015; 
Komoroske et al. 2016). The functional response 
pathways associated with changes in gene 
expression have been used to develop suites of 
biomarkers that are associated with impairments 
to growth and development, behavior, and 
reproduction (Hook et al. 2014; Connon et al. 
2018). These ensembles of molecular health 
indicators hold promise in terms of diagnosing the 
subtle but important effects of a broad range of 
water-quality stressors for this sensitive species. 

Similarly, Longfin Smelt were also listed in 2009, 
under the California ESA as a threatened species 
(CDFW 2018). Recently, a transcriptomic approach 
was used to evaluate their critical thermal 
tolerance range (Jeffries et al. 2016). Anadromous 
Longfin Smelt are distributed from Alaska to 
California, and the Bay−Delta provides habitat 
for the southernmost distinct population segment 
for the species. Little is known about their 
habitat requirements or their vulnerability to 
contaminants. Abundance of both Delta Smelt and 
Longfin Smelt are currently at historical lows in 
the Bay−Delta (Hobbs et al. 2017). Similar to Delta 
Smelt, efforts are currently underway to establish 
a captive broodstock for Longfin Smelt, in part to 
support expanded environmental health research 
for the latter. 

The Inland Silverside (Menidia beryllina) has 
long been a focus for ecotoxicological research, 
both in the lab and in the field. A non-native 
species in the Bay−Delta, Inland Silversides 
were introduced to the San Francisco Estuary 
in the late 1960s (Moyle 2002). They have 

recently served as a useful euryhaline model 
for the study of endocrine disruption and other 
categories of sub-lethal effects in the Bay−Delta 
and beyond (Brander et al. 2013; Brander et al. 
2016a; DeCourten and Brander 2017; Mehinto 
et al. 2018). M. beryllina are part of the EPA’s 
Whole Effluent Toxicity (WET) Testing Program 
(NPDES WET; USEPA 2002) and have been 
shown to be very sensitive to toxicants compared 
to other model fish species (Clark et al. 1985), 
particularly at elevated salinities. They are found 
in estuarine and brackish habitats throughout 
coastal North America (Middaugh and Hemmer 
1992); are available commercially; and can be 
reared, spawned, and cultured through multiple 
generations in the laboratory (Middaugh et 
al. 1987; Brander et al. 2016a; DeCourten and 
Brander 2017). Furthermore, they tolerate 
fluctuating salinities and are widely distributed 
throughout the Bay−Delta. M. beryllina also have 
relatively high site fidelity (Gleason and Bengtson 
1996), and thus contaminant exposure and 
response profiles for field-collected fish are more 
likely to reflect local habitat conditions. Given 
that the bioavailability of many chemicals—and 
hence toxicity — can vary, depending on the 
salinity at which an organism is exposed (Bosker 
et al. 2017; Saranjampour et al. 2017), this is of 
great value, because exposures can be conducted 
across a salinity gradient that represents the 
entire estuary. In 2013−2014, the transcriptome 
of M. beryllina, along with two other Menidia 
species (M. audens and M. menidia), was 
sequenced at the UC Davis Genome Center 
(Jeffries et al. 2015b; Brander et al. 2016b). More 
recently (2017−2018), the M. beryllina genome was 
sequenced, assembled, and annotated at the same 
facility. Ultimately, the genome is currently being 
used to inform both RNAseq (transcriptomic) 
and DNA methylation (epigenetic) analyses. 
Researchers have documented biologically 
significant effects of endocrine-disrupting 
chemical (EDC) exposure on Menidia in laboratory 
experiments and in wild populations (Duffy et al. 
2009; Brander et al. 2012a; Brander et al. 2012b; 
Brander et al. 2013; Adeyemo et al. 2015; Mehinto 
et al. 2018). Modeling approaches in M. beryllina 
demonstrate that the production of a specific egg 
protein (choriogenin, an egg membrane protein) 
and corresponding reductions in egg fertilization, 
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as measured via spawning assays, can be linked 
to population declines. The sequenced genome 
provides information needed to evaluate responses 
at the epigenomic level. Transcriptomic and 
proteomic scale data also exists for this species 
(Brander et al. 2016a; Cole et al. 2016), and 
behavioral assays comparable to those used for 
Zebrafish have recently been validated (Frank 
et al. 2019). This allows for the development of 
high-throughput assays that evaluate a diversity 
of responses, which can be used in a species of 
concern to rapidly provide answers to a wide 
range of questions. 

Recent studies using M. beryllina indicate that 
parental exposure to environmentally detected 
concentrations of EDCs such as bifenthrin and 
ethinylestradiol, at picomolar concentrations, 
result in organism-level effects on embryonic 
development in exposed offspring (DeCourten and 
Brander 2017; Decourten et al. 2019a). Ongoing 
work will determine whether these effects are a 
result of exposure of the parents during germ 
cell migration, or whether deleterious responses 
can be attributed to changes in DNA methylation 
and/or maternal transfer. Findings from these 
initial multi-generational studies highlight 
the importance of evaluating effects across 
multiple generations, since the effects of low-
dose exposures in parents may not be observed 
until the F1 (exposed as primordial germ cells) 
or F2 generation (not directly exposed). For this 
reason, after identifying potential effects on 
hormonal systems, we should strive to acquire 
in-depth, high-coverage genomic information 
across Bay−Delta fish and invertebrate model 
species. Having accurately annotated genomes 
allows for DNA methylation to be linked back to 
the specific genes influenced by these epigenetic 
tags, and will serve to provide further knowledge 
on the effect of multiple stressors in field vs. 
laboratory-maintained species; e.g., wild vs. 
cultured Delta Smelt. Furthermore, running 
tests across multiple generations (to the F2 or F3 
generations, for example), should be a long-term 
goal of any contaminant and environmental 
stressor monitoring program. Maternal effects, 
following exposure to contaminants, were shown 
to affect Striped Bass (Morone saxatilis) (Ostrach 
et al. 2008), another species of interest in the 

Bay−Delta. These laboratory studies, conducted 
at environmentally realistic concentrations and 
exposure duration, along with field evaluations 
of sex ratios (e.g., Brander et al. 2013; White et 
al. 2017) add to the weight of evidence (Fong et 
al. 2016), indicating that this is a problem in the 
Bay−Delta.

Much toxicological research has been conducted 
on salmonid species, particularly using the 
Rainbow Trout (Oncorhynchus mykiss) model 
(USEPA 2002). The anadromous form of O. mykiss, 
Central Valley Steelhead distinct population, is 
federally ESA listed (NMFS 2006). Furthermore, 
the genomes and transcriptomes of several 
salmonids have been sequenced (e.g., Tomalty 
et al. 2015; Christensen et al. 2018; Healy et al. 
2018). To our knowledge, however, no mechanistic 
ecotoxicological studies relevant to the Bay−Delta 
have been conducted with these species. In other 
systems, such as the Fraser River watershed in 
British Columbia, Canada, transcription profiles 
were used to evaluate contaminant impacts on 
Sockeye (O. nerka) and Chinook (O. tshawytscha) 
Salmon (Veldhoen et al. 2010). One of the 
highlights of this study was the similarity of gene 
responses of true female fish with that of males 
that were sex changed as a result of contaminant 
exposure. Other studies using high-throughput 
sequencing of Coho Salmon (O. kisutch) 
determined that estrogens may alter processes 
associated with reproductive timing (Harding et 
al. 2013). The data generated from these salmonid 
studies can be used to develop biomarkers to 
evaluate how CECs affect priority species in 
the Bay−Delta, including federally endangered 
Sacramento River winter-run Chinook, threatened 
Central Valley spring-run Chinook, and 
threatened Central Valley Steelhead. 

Besides SFBD-relevant fish species listed above, 
`Omic data also exist for the Sacramento Splittail 
(Pogonichthys macrolepidotus) (Jeffries et al. 
2019; Mundy et al. 2019) and the Striped Bass 
(Reading et al. 2012; Chapman et al. 2014; Li et 
al. 2014), as well as for the federally threatened 
Green Sturgeon (Acipenser medirostris), the 
proteome of which was investigated in the context 
of selenium exposure (Silvestre et al. 2010). The 
rapid development and use of ’Omic approaches 
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for species of interest (and/or concern) within 
the Bay−Delta opens the door to broader effect-
based assessments for numerous contaminants 
and multiple stressors. This, in turn, would allow 
for better interpretation; in-depth studies of 
effects at higher levels of biological organization 
(development, behavior, reproduction); and 
subsequent risk assessment in the Bay−Delta. 

Invertebrate Species 
Not only have ’Omic approaches been used on 
Bay−Delta-relevant fish species, but invertebrate 
species, such as Hyalella azteca, have been 
extensively used to evaluate fish food sources 
affected by contaminants. The H. azteca 
transcriptome has been sequenced as a component 
of toxicological studies (e.g., Poynton et al. 
2013; Christie et al. 2018) and has been made 
publicly available. The genome sequencing for 
H. azteca has recently been completed7, and is 
also currently available, providing a foundational 
resource for toxicogenomic studies with this 
species (Poynton et al. 2018; ). The availability 
of the genome has dramatically improved 
annotations of chemically induced response 
transcripts, providing a more comprehensive 
description of the processes affected by several 
different chemical stressors (Poynton et al. 
2018). Overall, the genome enables detailed 
investigations in gene, transcript, and protein 
regulation, as well as in how chemical exposures 
influence their expression. In addition, the most 
complete set of peptide hormone targets for any 
amphipod has been predicted from the Hyalella 
transcriptome (Christie et al. 2018). These peptides 
play important roles in the amphipod endocrine 
system through hormonal neurotransmitters 
(peptidergic signaling), regulating molting, 
growth, and development. Studying their 
regulation will increase our understanding of 
endocrine disruption in H. azteca (Vandenbergh et 
al. 2003; Janer et al. 2005) and other amphipods 
(Sundelin et al. 2000; Ford et al. 2004; Ford et 
al. 2005), and provide an important study model 
for endocrine disruption in benthic communities 
caused by both aqueous- and sediment-associated 
chemicals (Hyne 2011).

7 https://www.ncbi.nlm.nih.gov/genome/16496

Extensive ’Omic approaches have been developed 
and applied using model invertebrate species such 
as Daphnia spp. (Colbourne et al. 2005; Orsini 
et al. 2016) and Chironomus spp. (Herrero et al. 
2017; Mantilla et al. 2018). A multitude of data 
exists on publicly available repositories for these 
species that have evaluated contaminants relevant 
to the Bay−Delta (Poynton et al. 2007; Shaw et al. 
2007; Connon et al. 2008; Heckmann et al. 2008; 
Orsini et al. 2016; Herrero et al. 2017; Mantilla 
et al. 2018). The advantages of using invertebrate 
species in ecotoxicological assessments include 
the diversity of animals for test systems, short 
generation times, ease of culture of some species, 
and fewer legal/conservation issues (deFur 
2004), plus they offer direct insight into how 
contaminants affect food webs. To our knowledge, 
however, no mechanistic studies that use the 
approaches described above have been conducted 
on Daphnid or Chironomid species in the context 
of the Bay−Delta. 

Phytoplakton Species
Numerous phytoplankton species have been used 
in freshwater and marine algal toxicity tests. One 
of the ecotoxicological standards for which ’Omic 
data exists (Suzuki et al. 2018) is Raphidocelis 
subcapitata (= Selenastrum capricornutum; = 
Pseudokirchneriella subcapitata). Advances in 
’Omic technologies, as detailed above, now 
provide the capacity with which to obtain 
genomic information from a multitude of species 
for which there has been no prior genomic data. 
This enhances our ability to conduct focused 
studies on multiple phytoplankton species of 
interest in the Bay−Delta, not only to assess 
contaminant effects, but also to evaluate and 
mechanistically understand how ammonia/um (a 
nutrient at adequate levels) affects phytoplankton 
growth. Phytoplankton cell membranes, for 
example, have specific transporters for specific 
nitrogen sources — e.g., ammonium transporters 
(Amt), nitrate transporters (Nrt), and urea 
transporters (Urt) — with numerous isoforms of 
each transporter within each cell type (Berg et al. 
2008). These transporters likely have differential 
affinities to each nitrogen source. Kang and 
Chang (2014) have investigated gene sequence 
diversity among phytoplankton species, which 
significantly differentiates responses between 

https://www.ncbi.nlm.nih.gov/genome/16496


15

DECEMBER 2019

https://doi.org/10.15447/sfews.2018v17iss4art2

chlorophytes and diatoms. Furthermore, Kang 
et al. (2011) have identified similar diversities 
in nitrate transporters, strongly differentiating 
a diatoms, chlorophytes, cyanobacteria, and 
haptophytes, which are likely to alter sensitivity 
between these species. These results support 
potential preferential requirements for one or 
another nitrogen source (Gonzalez−Ballester et al. 
2004). These physiological characteristics could be 
used to better understand the mechanisms behind 
preferential use of ammonium vs. nitrate across 
various algal species in the Delta, and to help 
determine postulated thresholds for ammonium 
inhibition for diatoms in the Bay−Delta (Dugdale 
et al. 2012; Glibert et al. 2014; Senn and Novick 
2014). 

’Omic approaches, applied across multiple 
phytoplankton species, can therefore help algal 
bloom occurrences, species distribution, and 
habitat requirements — as well as the impact 
of contaminants — to be better understood; for 
example, herbicides that are directly applied 
to surface waters to control invasive aquatic 
vegetation such as Brazilian waterweed (Egeria 
densa), water hyacinth (Eichhornia crassipes), and 
water primrose (Ludwigia spp.) (Ta et al. 2017) 
on primary production. Conducting mechanistic 
studies across trophic levels is of particular 
importance in a system that has been described as 
food limited (Kimmerer et al. 2018), because this 
will provide information needed to address the 
cause, rather than treating the symptom. 

IN SILICO AND META-ANALYSES: DATA-
DRIVEN BIOINFORMATICS APPLICATIONS FOR 
DETERMINING ADVERSE OUTCOMES
In silico toxicology uses computational methods 
to analyze, simulate, visualize, or predict effects 
that result from exposure to contaminants (Raies 
and Bajic 2016), thus helping predict adverse 
outcomes. The recent increase in ’Omics-driven 
research focused on understanding effects 
from contaminant exposure, along with strict 
requirements for archiving this data in publicly 
accessible repositories worldwide (e.g., Gene 

ExpressionOmnibus8, Sequence ReadArchive9) 
provides a stage for robust in silico approaches 
to predict risk. The ability to leverage these 
databases has infinite potential for using data-
driven, statistical machine-learning procedures, 
which are useful for toxicity evaluations across 
species (Berger et al. 2013; Wang et al. 2016; 
Vijver et al. 2017; Campos and Colbourne 2018; 
Connon et al. 2018). These data sets should 
be mined and meta-analyses conducted to 
help identify characteristic differences and 
commonalities in responses to particular chemical 
groups and the functional pathways affected. 
Such meta-analytical approaches can be used to 
confirm and validate effects, as well as rapidly 
identify chemicals for which further information 
is required (Raies and Bajic 2016). Furthermore, 
the use of species homologies to discern responses 
across species could guide the development and 
validation of novel toxicity tests, including 
biomarkers and systematic processes, with 
which to better evaluate adverse effects that 
affect aquatic ecosystems, thus scaling up from 
population-level effects.

An example of such an approach is presented by 
Wang et al. (2016), who describe how a meta-
analysis approach can be used to develop data-
driven bioinformatics applications to determine 
adverse outcomes. Using human connectivity 
mapping (CMap), an in silico approach developed 
for biomedical research, the researchers evaluated 
over 3,500 Zebrafish and Fathead Minnow 
(Pimephales promelas) transcriptome profiles. 
CMap determines similarities in the underlying 
mechanisms of action of chemicals by connecting 
chemicals and disease-based transcriptomic 
profiles (Sandmann et al. 2014), aiding the 
development of biomarkers focused on stressors 
of concern. Wang et al. (2016) successfully 
determined connectivity between the mode 
of action of chemicals and gene expression 
profiles across both species, associated with the 
same or similar chemicals. Using this approach, 
researchers were able to confirm the identities 
of several estrogenic chemicals, a polycyclic 
aromatic hydrocarbon, and a neurotoxin present 

8  https://www.ncbi.nlm.nih.gov/geo/

9  https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?),
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in surface waters near several wastewater 
treatment plants. 

To further confirm or develop adverse outcomes 
with ecological significance, meta-analytical 
approaches can, of course, extend beyond the 
’Omics level to incorporate and synthesize the 
multitude of published effect-based data obtained 
at multiple levels of biological organization 
(tissue, organ, whole organism, population, and 
communities). Inclusion of multiple species (non-
model species, and or species of concern) can 
offer greater ecological relevance, and provide 
risk assessments across trophic levels (Vijver 
et al. 2017). Multiple data sets also exist for a 
multitude of stressors, besides contaminants, 
and could be used to differentiate among 
effects attributable to environmental stressors, 
contaminant exposure, and their respective 
interactions. This multi-species toxicological 
approach has been described as phylogenetic 
toxicology, which uses comprehensive genomic 
data sets to gain knowledge of toxicity processes 
(Colbourne et al. 2015). The ultimate goal of 
phylotoxicity evaluations would be to make 
regulatory-relevant, experimentally derived 
predictions of toxicity, based on the underlying 
mechanistic basis of chemically induced adverse 
events. The application of high-throughput 
toxicity testing with data-rich genomics assays 
allows researchers to explore commonalities (high 
homologies) and differences in responses across 
taxa (phytoplankton, invertebrate, and vertebrate 
species) to help identify shifts in responses to 
exposure, as well as toxicity pathways and 
co-responsive molecular networks specific to 
different chemical classes. 

EVALUATING SPECIES RICHNESS
Loss of biodiversity is commonly used as a 
proxy to characterize community-level effects of 
environmental stressors (Hajibabaei et al. 2012; 
Taberlet et al. 2012). Traditional biomonitoring is 
limited by costly and time-consuming taxonomic 
identification, access to specimens, and cryptic 
species or life stages. These limitations can 
obscure the changes to ecosystem function 
and biodiversity that indicate the early stages 
of stressor effects. Genomic techniques such 

as environmental DNA (eDNA; the detection 
of a species’ genetic material present in the 
environment) and eDNA meta-barcoding (the 
characterization of eDNA from multiple species 
in a single sample) can enhance traditional 
biomonitoring techniques, and greatly expand 
our understanding of community dynamics 
and ecosystem functioning, revealing the 
site-specific meta-genomic distribution of 
biodiversity across a wide range of taxa (Mächler 
et al. 2014; Brandon−Mong et al. 2015; Deiner 
et al. 2017). Meta-barcoding is particularly 
useful to accurately identify cryptic species, 
damaged specimens, specimens at all life 
stages, and taxa present at very low densities 
(Creer et al. 2016), and can be used to identify 
a wide variety of taxa simultaneously from 
pooled tissue or environmental eDNA samples 
(Emilson et al. 2017). Such meta-data can be 
used to evaluate species richness variation 
throughout Bay−Delta regions at population 
and community levels, including across trophic 
levels — e.g., phytoplankton and invertebrate 
species distribution — and to investigate habitat 
use by various fish species. Such results could 
be contrasted with high-throughput chemical 
analyses to determine the potential contribution 
of contaminants, as well as with multiple drivers 
of environmental change. Meta-barcoding 
has also been successfully used to evaluate 
invertebrate communities and fish present in 
different habitats (e.g., Andújar et al. 2018; Stat 
et al. 2018). Studies that use DNA meta-barcoding 
are increasing rapidly, and this high-throughput, 
community-focused approach has been effectively 
incorporated into ecotoxicological studies. 
Environmental DNA samples, for example, were 
successfully used to characterize differences 
between freshwater invertebrate communities as 
driven by multiple contaminants that originated 
from different land-use types, and by using 
community data to identify primary contaminants 
responsible for toxicity (Xie et al. 2017). For 
such an approach to be effectively used in the 
Bay−Delta, however, a reference genetic database 
specific to the system would first need to be 
developed. While a multitude of genetic sequences 
exist in publicly available repositories, data for 
cryptic and unknown species would require 
sequencing; such databases should, therefore, 
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be developed in collaboration with experienced 
taxonomists (Porter and Hajibabaei 2018).

RESISTANCE AS AN INDICATION OF 
IMPAIRMENT
The presence of pesticide-resistant organisms 
in the Bay−Delta is significant evidence that 
pesticides have directly affected, and continue 
to affect, the ecosystem. As such, the detection 
of pesticide-resistant organisms can be used 
as an effect-based endpoint, likely associated 
with pesticide use in a particular location. In 
the presence of strong selective pressures, some 
organisms are able to adapt to the contaminants, 
which results in resistant populations, thus 
providing compelling evidence that contaminants 
have affected the aquatic community. Widespread 
resistance to insecticides has been documented 
in the epibenthic amphipod H. azteca throughout 
California (Weston et al. 2013, 2018; Major 
et al. 2018) with frequencies equivalent to or 
greater than the populations of insect pests the 
insecticides target directly. It follows that the 
selective pressure on aquatic invertebrates at 
least compares to that which the target insects 
experience during insecticide application. 

The resistant H. azteca populations experience 
trade-offs in the form of reduced fecundity, and 
decreased tolerance to other stressors (Weston 
et al. 2013; Heim et al. 2018). In addition, there 
is concern about bioaccumulation and trophic 
transfer of insecticides to fish predators (Corcellas 
et al. 2015; Muggelberg et al. 2017); however, the 
ecological consequences of this genetic adaptation 
likely go beyond the species level and are still 
unknown (Medina et al. 2007). The ability of 
H. azteca to be “rescued” through adaptation 
(Bell 2013) is related to its large population size, 
short generation time, and high sensitivity to 
the insecticides. For other susceptible arthropod 
species (e.g., Ephemeroptera− Plecoptera−
Tricoptera [EPT] taxa) it is completely unknown 
if they also develop resistance, or undergo 
local extinction because of their inability to 
adapt. However, it is clear that the presence of 
resistant H. azteca indicates the continual effects 
of pesticides in the Bay−Delta. The resistant 
populations also act as a unique effect-based 

monitoring tool, within an in situ context. 
When placed in impaired waterways alongside 
non-resistant animals, the survival of resistant 
H. azteca relative to non-resistant H. azteca 
can provide a “biological toxicity identification 
evaluation (TIE)” (Weston et al. 2018) that can 
identify if an insecticide is responsible for 
toxicity. Because the mechanism of resistance is 
highly specific to insecticide class, the biological 
TIE becomes an excellent indicator for causality. 
Although these characteristics are not unique to 
H. azteca, many epibenthic invertebrate species 
are not likely to be as adaptable, because of their 
longer generation times and smaller populations. 
More research is needed to understand the 
evolutionary potential of other species within the 
macroinvertebrate community of the Bay−Delta, 
which species are likely to adapt, and at what 
cost, and which are likely to decline because of 
contaminant toxicity. 

APPROACHES USED TO UNDERSTAND EFFECTS 
OF CHEMICAL MIXTURES AND INTERACTING 
STRESSORS
Mixture toxicity has been extensively studied in 
salmonids, particularly current-use insecticides 
that target acetylcholinesterase (AChE) in 
the central and peripheral nervous system. 
This enzyme hydrolyzes the neurotransmitter 
acetylcholine at synapses, and the toxic 
blockade of AChE disrupts cell−cell signaling 
and a wide range of behaviors in fish and other 
animals. Two major classes of insecticides, the 
organophosphates and the carbamates, inhibit 
AChE. Organophosphates include diazinon, 
chlorpyrifos, malathion, and ethoprop; 
carbamates include carbaryl and carbofuran. 
These and related agrochemicals are widely used 
in the Central Valley, and they are commonly 
detected in freshwater habitats (Aggarwal et al. 
2013). What is more important, they frequently 
co-occur with other insecticides that share 
the anticholinesterase mechanism of toxicity. 
Exposures to single chemicals disrupt olfactory-
mediated migratory and predator-avoidance 
behaviors in Chinook Salmon (diazinon; Scholz 
et al. 2000) as well as swimming and feeding 
in juvenile Coho Salmon (chlorpyrifos; Sandahl 
et al. 2005). Moreover, individual-based and 
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population-scale modeling has been used to link 
decreases in juvenile feeding to reduced ration, 
reduced somatic growth, smaller size at seaward 
migration, increased size-selective mortality, 
and decreases in population abundance and 
intrinsic growth rate over time (Baldwin et al. 
2009). Significantly, co-exposures to certain 
binary combinations of organophosphates and 
carbamates yielded synergistic and pronounced 
AChE inhibition in the brains of juvenile salmon 
(Laetz et al. 2009), and these synergistic effects 
on brain chemistry were subsequently extended 
to impaired swimming behavior (Laetz et al. 
2013). These effects need to be evaluated across 
multiple species to determine whether differences 
exist between salmonid species, as well as across 
other fish in the Bay−Delta. Lastly, in the context 
of interactions between chemical and non-
chemical stressors, synergistic neurobehavioral 
toxicity in salmon is exacerbated by increasing 
surface water temperature. Specifically, the 
degree of the synergistic inhibition of AChE by a 
diazinon and ethoprop mixture (each at exposure 
concentrations below a part per billion) doubled 
when water temperatures were raised from 12 °C 
to 18 °C (Laetz et al. 2014).

Mixtures of chemicals can have additive or even 
synergistic effects, not revealed with single 
chemical exposures. Within these mixtures, the 
most relevant chemicals to potentiate toxicity 
at low doses—from the standpoint of real-world 
exposure—are those that act on specific cellular 
targets. Two examples are EDCs and transporter-
interfering chemicals (TICs). EDCs can act as 
hormone mimics or antagonists, at multiple 
levels within the endocrine system (Windsor et 
al. 2018). They can have unanticipated effects by 
priming or sensitizing the organism to subsequent 
exposures, particularly when exposures occur 
during certain developmental stages. TICs are 
a more recently described class of chemicals 
that can act directly to enhance the toxicity 
of chemicals by interfering with xenobiotic 
transporters (Guseman et al. 2016; Nicklisch et 
al. 2016). This interference leads to enhanced 
uptake of chemicals within the mixture that 
would otherwise be eliminated, thus enhancing 
differences in effect response as a result of 
interactive effects. Although the complete 

molecular mechanisms that underlie additive and 
synergistic effects (Pivcevic and Zaja 2006) are 
complex, the presence of TICs could specifically 
affect the net uptake and accumulation of certain 
environmental chemicals of interest (Figure 5). 
For instance, the environmental chemicals and 
endocrine disruptors BPA, perfluorooctanoic acid 
(PFOA), and zearalenone (ZEN) have been shown 
to be transported by breast cancer resistance 
protein (BCRP) (Mazur et al. 2012; Dankers et al. 
2013; Bruyere et al. 2017) and inhibition of BCRP 
could, in turn, promote EDC and toxic substrate 
accumulation. Therefore, drug transporter 
inhibition is another key event — along with 
non-monotonic dose−response, synergism of 
single non-lethal concentrations of chemicals, 
and interaction with other environmental 
stressors — necessary to predict toxicity and 
assess the risks of environmental chemicals. The 
Bay−Delta provides a critical test case to explore 
these effects.

Exposures to environmentally relevant 
concentrations of EDCs and other stressors (e.g., 
altered temperature, hypoxia) are an established 
threat to ecological health (Kidd et al. 2007; 
Thomas et al. 2007; Brander 2013; DeCourten and 
Brander 2017; DeCourten et al. 2019b). Commonly 
encountered chemicals such as pyrethroids are 
known to interfere with endocrine function 
(Brander et al. 2016a) and such effects are 
demonstrated in a number of Bay−Delta fish 
(Connon et al. 2009; Brander et al. 2013; Jeffries 
et al. 2015a; Weston et al. 2015b; Brander et al. 
2016a). In fact, modeling approaches demonstrate 
that exposure to endocrine-active compounds 
such as bifenthrin can result in altered fecundity 
and subsequent population decline, especially 
when considered an additional stressor on top 
of the altered sex ratios already present in some 
areas of the Bay−Delta (White et al. 2017). Over 
the past decade in the Bay−Delta, studies using 
effect-based analysis for estrogenic activity 
identified a group of alkylphenol ethoxylates 
(APEs) and alkylphenols (APs)—along with the 
persistent herbicide, diuron, and the pyrethroid 
insecticide, bifenthrin (Schlenk et al. 2012). 
When the compounds were administered as 
individual compounds at concentrations observed 
in the Bay−Delta, estrogenic effects were not 
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observed in isolated hepatocytes or in whole-
fish exposures. However, when the compounds 
were combined in representative mixtures, 
significant estrogenic activity was observed in 
whole animals, suggesting a complex interaction. 
Using qualitative adverse-outcome pathways, 
attempts have been made to identify how the 
compounds interact with one another, and how 
climate change and other environmental stressors 
may enhance or diminish the endocrine responses 
in resident fish. Alkylphenol ethoxylates and 
alkylphenols enhanced the estrogenic activity 
of diuron in male Fathead Minnows (Crago et 
al. 2015). Subsequent studies in male tilapia also 
indicated the induction of cytochrome P450 by 
nonylphenol ethoxylates (NPE) and nonylphenols 
NPs, presumably enhancing the formation 
of more active metabolites of diuron such as 
3,4-dichlorophenyl-N-methylurea (DCPMU), which 
was more potent than the parent compound, 
diuron, in males and females (Felicio et al. 2016; 

Pereira et al. 2016). Anti-androgenic activity was 
also noted in males, in addition to the estrogenic 
responses that indicate multiple targets that 
result in overall feminization (Pereira et al. 
2015). Alkylphenol ethoxylates and alkylphenols 
APs also enhanced the estrogenic activity of 
bifenthrin in Fathead Minnow (Crago et al. 2015); 
however, this interaction’s mechanism is unclear. 
Recent studies in a number of fish species 
indicate that bifenthrin may alter upstream 
steroid biosynthesis through dopaminergic and 
estrogen-receptor signaling (Crago and Schlenk 
2015), although direct ligand activation of nuclear 
estrogen receptors (ERs) may not appear to be 
involved (Bertotto et al. 2018). However, the role 
of bifenthrin metabolites in activating nuclear 
ERs is still being investigated (DeGroot and 
Brander 2014). In addition, studies that evaluate 
how climate change affects this mixture reported 
that not only are alterations observed in the 
hypothalamic–pituitary–gonadal (HPG) axis, but 

Figure 5 Schematic interactions of xenobiotics, including EDCs and TICs, with common drug transporters in hepatocytes. 
Inhibition of ABC and SLC transporters can lead to higher accumulation of both the inhibiting environmental chemical and other 
toxic substrates otherwise expelled from the cells. (According to the results from Kleinow et al. 2004; Dankers et al. 2013; Nicklisch 
et al. 2016; Bruyere et al., 2017; Chedik et al. 2018)

https://doi.org/10.15447/sfews.2018v17iss4art2
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the hypothalamic–pituitary–thyroid (HPT) axis 
may also play a significant role. Tying together 
the individual AOPs for the individual compounds 
with and without APE/AP predictions can be 
made to justify in vivo mixture interactions. 
It will be important to quantitatively link key 
events to predict dose-dependent changes with 
the mixtures under the modeled climate changes 
proposed for the Bay−Delta (Figure 6). 

Transporter interfering chemicals can act through 
a variety of mechanisms to alter function of 
xenobiotic transporters, thereby affecting net 
balance of xenobiotic uptake and elimination 
(Smital et al. 2004; Epel et al. 2008). One mode 
of action for TICs is through direct binding 
to the ligand-binding domain (Nicklisch et al. 
2016) of major xenobiotic efflux pumps such 
as P-glycoprotein (aka ABCB1) and subsequent 
inhibition of the transporter’s efflux function. 
Similar TIC effects have been reported for 

interactions of environmental chemicals with 
solute-carrier transporters (Bain et al. 1997; 
Kleinow et al. 2004; Fardel et al. 2012; Bircsak 
et al. 2013). In larger species, such as Yellowfin 
Tuna, TIC lipid levels as high as 3.3 µM have 
been reported (Nicklisch et al. 2017), which is 
well within the range of individual and pollutant 
mixture IC50 values toward P-glycoprotein 
(Nicklisch et al. 2016). Chemicals that act as TICs 
include organochlorine pesticides, brominated 
flame retardants, and polychlorinated biphenyls, 
all of which have been found to accumulate 
in fish, including several species endemic to 
the Bay−Delta (Greenfield et al. 2002; Hunt et 
al. 2008), at levels that could impair transport 
function. 

Figure 6 Potential Adverse Outcome Pathway for mixtures of estrogenically active contaminants in the Sacramento River, 
California that integrate temperature and salinity.
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PROGRESS IN ANALYTICAL CHEMISTRY 
ALLOWS FOR MORE COMPREHENSIVE 
MONITORING
Chemical analysis is an important component of 
water quality assessments because toxicants must 
be identified to develop appropriate management 
actions. Traditional targeted approaches consist 
of screening for specific compounds of interest 
or concern. Monitoring data that are based on 
insufficiently low detection limits are of little 
use and can convey a false sense of safety for 
the environmental risk (Hollender et al. 2018; 
Werner and Young 2018). This approach can also 
underestimate the degree of exposure of aquatic 
organisms (Moschet et al. 2014). There are two 
strategies in place to overcome this issue and 
to obtain the required sensitivity in detection 
limits: (1) use of specific detection methods 
with enhanced sensitivity for target chemical 
classes (e.g., negative chemical ionization mass 
spectrometry for pyrethroids; Parry and Young 
2013); and (2) improving signal strength by 
sampling larger volumes or concentrating the 
compounds via adsorptive methods such as solid 
phase extraction or passive sampling (Moschet et 
al. 2014; Moschet et al. 2015).

Beyond the conventional lists of regulated 
priority pollutants and pesticides, suspect and 
non-target screening methods are increasingly 
in use to identify toxic constituents in complex 
environmental mixtures (Ruff et al. 2015; 
Singer et al. 2016; Hollender et al. 2017). A case 
example is urban stormwater runoff, which 
contains myriad chemicals that originate from 
motor vehicle tires, exhaust, brake pads, crank 
case oil, and other sources. Untreated urban 
runoff is highly toxic to Coho Salmon and 
their invertebrate prey (McIntyre et al. 2015; 
Spromberg et al. 2016) as well as to Zebrafish, 
a model for investigating developmental 
toxicology (McIntyre et al. 2014). Recently, liquid 
chromatography coupled with high-resolution 
quadrupole time-of-flight mass spectrometry 
(HRMS) was used to screen highway runoff 
and the tissues of salmon exposed to runoff, 
with the goal of identifying common chemical 
features. Several thousand distinct features were 
detected in runoff (Du et al. 2017). Subsequent 
analyses that incorporated water samples from 

urban streams where spawning Coho Salmon 
consistently die prematurely in response to toxic 
stormwater (Scholz et al. 2011) has narrowed 
the list of causal toxic agents to fewer than 100 
chemicals (Peter et al. 2018). Moreover, the HRMS 
approach revealed the presence of a family of 
(methoxymethyl) melamine compounds in urban 
waterways, the first such detections in North 
American surface waters (Peter et al. 2018). 
These contaminants were subsequently linked 
to urban stormwater-related mortality syndrome 
in Coho Salmon, until then known to be the 
causing agent. Overall, advances in analytical 
chemistry, combined with advances in effects-
based research, have considerable potential for the 
study of complex mixtures and the resolution of 
previously unidentified toxic contaminants that 
may be widely distributed in Bay−Delta habitats.

To monitor polar and non-polar organic 
pollutants such as pesticides, pharmaceuticals, 
and industrial chemicals, passive sampling has 
been shown to be an alternative to ambient 
water samples (Mills et al. 2011; Moschet et al. 
2014). Because of relatively easy handling during 
deployment and extraction, passive samplers can 
serve as a cost-effective and robust monitoring 
tool. However, for a proper quantification, 
robust sampling rates (Rs) are critical for all 
sampler types and compounds. Rs are substance-
specific, and an intense discussion is underway 
about whether or not Rs can be predicted from 
physicochemical properties. In addition, there 
is no standard calibration method yet (Mills et 
al. 2011). Moschet et al. (2015) proposed an in 
situ calibration for substances with relatively 
constant river concentrations that can be 
quantified accurately in the field if substance 
specific sampling rates (Rs) are determined. The 
substance-specific Rs can then be used in future 
monitoring studies in rivers that have similar 
environmental conditions (i.e., flow velocity, 
temperature, pH). It is important to note, however, 
that concentrations sampled by passive samplers 
are average concentrations over a certain period 
of time, whereas the traditional grab samples or 
composite samples taken at certain time-points 
represent measurement of concentrations, for 
example of short-term pulses after runoff events.

https://doi.org/10.15447/sfews.2018v17iss4art2
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Although targeted monitoring approaches are 
constantly improving in terms of compound 
coverage (e.g., 100 to 300 compounds for many 
current multi-residue methods) and sensitivity 
(low ng/L concentrations are now routine method 
detection limits for many constituents in surface 
water), this approach may underestimate exposure 
and risk toward aquatic organisms by neglecting 
unanticipated constituents, including novel 
compounds and environmental transformation 
products (Kern et al. 2009; Moschet et al. 2017). 
High-resolution mass spectrometry (HRMS), as 
described in Moschet et al. (2017), can provide 
comprehensive analytical information by 
screening for a high number of suspects (>2,000). 
High-resolution approaches such as these rely 
on databases that contain chemical formulas, 
which enable analysts to presumptively identify 
compounds without the need for analytical 
reference standards. The simultaneous use of both 
liquid and gas chromatography high-resolution 
mass spectrometry (e.g., quadrupole time of 
flight or QTOF) allows comprehensive chemical 
contaminant profiles to be determined, limited 
only by compounds missing from chemical 
libraries.

Chemical characterization alone, however, 
is in most cases not expected to provide the 
necessary data to inform management decisions 
on contaminant toxicity (Krewski et al. 2010). 
This is especially problematic since contaminants 
occur as complex mixtures with varying 
modes of action, which likely cause synergistic 
effects and can be toxic at relatively low water 
concentrations (Cedergreen 2014). Besides 
sophisticated algorithms, which require extensive 
prior chemical-by-chemical and concentration-by-
concentration knowledge of mechanisms by which 
contaminants affect biological performance, 
effect-based assessments continue to be necessary 
to determine environmental impact. 

THE WAY FORWARD
Several recommendations that address scientific 
challenges and knowledge gaps as they relate to 
the Bay−Delta were put forward by Fong et al. 
(2016). These included the need for long-term 
and comprehensive monitoring, identification 

of specific monitoring endpoints, broader 
spatial and temporal coverage, and diversified 
testing—along with greater synthesis, analyses, 
integrated monitoring efforts, and use of adaptive 
management. A key point is the need for access to 
toxicological data in a timely fashion. The authors 
specifically highlighted that a dedicated research 
program is required to evaluate the effects of 
contaminants on Bay−Delta species of concern. 
We don’t intend to repeat recommendations 
made by Fong et al. (2016), but rather to add to 
these recommendations by highlighting specific 
effect-based tools and how they could be used to 
evaluate the health of the Bay−Delta in the light 
of recent scientific development and the vast 
expertise shared by co-authors and contributors 
to the Special Symposium.

Because of the complex mixtures of contaminants, 
which not only interact with each other but 
also with multiple other anthropogenic and 
environmental stressors, we strongly emphasize 
the need for effect-based assessments as a step 
toward understanding effects upon species of 
concern. Sub-lethal effect assessments need to 
be the focus of ecotoxicological studies, because 
sub-lethal effects that affect fitness and inhibit 
behaviors essential for survival (e.g., foraging 
and predator avoidance), are among the greatest 
threats to aquatic organisms. Numerous endpoints 
are likely to be affected by chemical exposure; 
thus, without mechanistic data, modes of action 
cannot be determined. Mechanistic studies will 
provide knowledge on how specific stressors 
(chemical or environmental) may affect a species 
of concern. While mechanisms of action are 
expected to be somewhat similar across species 
(phylogenetic toxicology), specific response 
differences will determine levels of sensitivity 
needed to determine a true impact on that 
species. Vast data sets resulting from evaluations 
conducted on model species can guide endpoints 
to be evaluated in a species of concern. In many 
cases in silico analyses may be sufficient to 
determine such impact; however, these impacts 
need to be evaluated within a fundamental 
niche context, because the mode of action of 
many contaminants is likely to vary under 
different habitats or different environmental 
conditions (low vs. high temperature, salinity) 
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(e.g., Hasenbein et al. 2018). We therefore 
recommend that contaminant effects be evaluated 
under various thermal and salinity regimes, as 
applicable to the tolerance levels of the species of 
conservation concern for which these measures 
are needed. 

Because it is not feasible to directly sample all 
the places and times of interest that are required 
for comprehensive contaminant assessment 
and management, monitoring programs must 
be properly designed and the monitoring data 
generated by many monitoring programs must 
be appropriately interpreted (Wang et al. 2019). 
With limited resources, a monitoring design 
that combines long-term monitoring sites with 
survey sites will provide more information 
on the ecosystem’s overall health (Fong et al. 
2016). Long-term monitoring sites can be those 
sites that integrate pollution signals from many 
land use/source types or sites with unique 
source type, such as effluent of wastewater 
treatment. These sites could potentially be 
developed to include facilities for evaluations 
across multiple generations (particularly when 
using invertebrate species). Survey sites can 
be randomly distributed in space or a stratum 
of land use/source combination (Garrett et al. 
2017; Van Metre et al. 2017) ongoing Delta 
RPM research). The selection of long-term and 
survey sites should thus be based on statistical 
comparisons of watershed characteristics, 
such as land use and demographics. The same 
consideration of watershed characteristics applies 
to the interpretation of monitoring data that are 
intermittent and irregular in spatial/temporal 
coverage. To understand the driving forces behind 
pollution, a hybrid model that links the large 
array of watershed characteristics with historical 
and current conditions and monitored pollutant 
concentrations was proposed. Such models can 
thus interpolate or extrapolate the relationship 
between the driving forces and observed 
concentrations to other space- and time-related 
factors not directly monitored, allowing for a 
comprehensive evaluation of the system’s overall 
health (Wang et al. 2019)

When ambient water samples are evaluated, the 
use of both targeted and non-targeted chemical 

analyses alongside effect-based assessments 
is encouraged, because this will facilitate 
the identification of chemicals responsible 
for observed toxicity. Toxicity identification 
evaluation (TIE) studies would need to be 
conducted on additional samples from sites of 
interest. TIE processes are laborious and can be 
expensive; thus, for pesticide evaluations that 
incorporate species for which resistance has been 
identified (e.g., H. azteca as described above), 
they would provide weight of evidence as well as 
aiding identification evaluations. The combined 
use of clades with varying degrees of pesticide 
resistance (e.g., to organophosphate vs. pyrethroid 
insecticides), for which survival of the resistant 
species versus mortality of controls could be 
evaluated, would effectively help identify 
contaminants responsible for observed toxicity. 

For effects that take longer to manifest (e.g., 
xenobiotic-DNA adduct formation, cancer), 
and predominantly in long-lived species, 
histopathological studies have shown that it is 
possible to determine cause and effect (Myers 
et al. 2003; Schwacke et al. 2014; Smith et 
al. 2017). Studies such as these were able to 
fulfill the select criteria for causality in risk 
assessment, including: “(1) strength of association, 
(2) consistency of association, (3) specificity 
of association, (4) toxicological and biological 
plausibility, (5) temporal sequence/timing (i.e., 
exposure precedes disease, effect decreases when 
the cause is decreased or removed), (6) dose-
response or biological gradient, and (7) supportive 
experimental evidence” (Myers et al. 2003). 
Lacking life history data, it is unlikely that field-
caught organisms that are exposed to highly 
variable contaminant loadings (contaminant 
mixtures) and multiple stressors will provide 
an appropriate evaluation of short-term effects 
on species of concern. Such studies would not 
provide sufficient information to determine cause 
and effect. Effect-based studies that integrate 
multiple stressors are more suitably conducted 
either under controlled laboratory conditions 
(preferable for mechanistic evaluations), or in 
the field, by conducting either in situ (e.g., 
caged deployment), or ex situ exposures (e.g., 
river water pumped through strategically placed 
piers or riverbank-based laboratories). Such 
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effect-based studies, in combination with non-
targeted chemical analysis, could provide a 
means by which to assign probability of effect 
by a specific contaminant or contaminants. 
We suggest the integration and expansion 
of continuous monitoring technology. The 
California Department of Water Resources 
manages the water quality monitoring for the 
Interagency Ecological Program’s Environmental 
Monitoring Program (IEP EMP). The CDWR 
has numerous active continuous water quality 
monitoring sites throughout the Delta, geared 
toward providing a better understanding of 
Bay−Delta ecology, and providing information 
pertinent to the management and conservation 
of the Bay−Delta. Use of existing field stations 
as well as the development of new continuous 
monitoring stations is strongly encouraged as 
facilities in which to conduct ex situ exposures 
and sample for contaminants. Such monitoring 
stations provide the capacity to conduct real-
time water quality monitoring as well as serve as 
experimental stations for flow-through exposures, 
so the effect of multiple stressors on ecosystem 
health can be evaluated. 

Integrative field-based approaches, whereby 
assessments are conducted across different 
taxa — for example, via meta-barcoding — will 
more appropriately fill data gaps in relation to 
species distribution, habitat use, and long-term 
community and ecosystem impacts. Studies such 
as these could easily be combined with effect-
based ambient water toxicity testing, to determine 
habitat quality throughout the Bay−Delta and 
to identify potential contaminant sources. This 
would provide a framework under which much-
needed research and monitoring of agricultural 
runoff and storm drains from urban land could be 
evaluated (as reviewed in Fong et al. 2016). 

A major challenge for ecotoxicological 
assessments is trying to keep up with the 
pesticycle. It takes many years to evaluate 
the effects of pesticides and develop sensitive 
analytical chemistry approaches for their 
detection. More robust toxicological assessments 
need to be used proactively, before chemicals 
are allowed to be registered, to determine their 
potential impacts to aquatic ecosystems. The 

effects of contaminants and their interaction 
with multiple stressors need to be understood to 
determine how to reverse habitat compression 
and invest in the restoration of habitats suitable 
for species of concern. This would necessitate not 
only determining what causes adverse effects, 
but also investigating and testing what could 
potentially alleviate ecological repercussions. 
Evaluating the extent of stress relief could 
be tested, for example, in conjunction with 
cool refugia in laboratory studies, or in pools 
and riffles in the field (2019 communication 
between M. Brooks and REC, unreferenced, 
see “Notes”). Indeed, one of the contributors to 
this Special Symposium indicated that there 
is a need to question what it will take to have 
sustainable fish populations in the Bay−Delta, 
correctly pointing out that “if we can’t answer 
that, then that is where the science needs to go.” 
Scientifically and societally, however, we first 
need to acknowledge that certain chemicals are 
already eliciting adverse effects from Bay−Delta 
fish populations. Based on this knowledge, we can 
develop interdisciplinary and applied scientific 
approaches to mitigate ecological risk to these 
aquatic communities and maintain the ecological 
integrity of the Bay−Delta. 

Tools used in regulatory programs have not kept 
pace with those available to assess contaminant 
effects. Because of this, regulatory programs 
are not including relevant information in their 
assessments, which points to the lack of better 
integration and collaboration among regulatory 
body needs, legislators, and researchers. Although 
some steps have been taken to evaluate additivity 
and synergism of chemicals, broader assessments 
that include information ranging from changes 
in organism response to effects on species 
distribution are not yet being employed. This 
review serves as a summary of tools that could be 
used to advance this effort. Standardization and 
documentation of these methods could be a next 
step toward their use in regulatory programs. 
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