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Highlights

•

Samples were divided into low and high arsenic (As) groups based on 

geochemical parameters and microbial functional structures.

•

Genes arsC, arrA, dsrA/B, ureC, amoA, hzo, mcrA, hdrB were correlated with As,

SO4
2−, NH4

+ or CH4, respectively.

•

As, TOC, SO4
2−, NH4

+, ORP and pH were important factors shaping the functional 

microbial community structure.

•

Alkaline and reducing conditions could be associated with As enrichment in 

groundwater.

•

An overall picture of functional microbial communities in high As aquifers is 

provided.

Abstract

Microbial functional potential in high arsenic (As) groundwater ecosystems remains 

largely unknown. In this study, the microbial community functional composition of 

nineteen groundwater samples was investigated using a functional gene array 

(GeoChip 5.0). Samples were divided into low and high As groups based on the 

clustering analysis of geochemical parameters and microbial functional structures. The 

results showed that As related genes (arsC, arrA), sulfate related genes 

(dsrA and dsrB), nitrogen cycling related genes (ureC, amoA, and hzo) 

and methanogen genes (mcrA, hdrB) in groundwater samples were correlated with As, 

SO4
2−, NH4

+ or CH4 concentrations, respectively. Canonical correspondence 
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analysis (CCA) results indicated that some geochemical parameters including As, total 

organic content, SO4
2−, NH4

+, oxidation-reduction potential (ORP) and pH were important 

factors shaping the functional microbial community structures. Alkaline and reducing 

conditions with relatively low SO4
2−, ORP, and high NH4

+, as well as SO4
2− and 

Fe reduction and ammonification involved in microbially-mediated geochemical 

processes could be associated with As enrichment in groundwater. This study provides 

an overall picture of functional microbial communities in high As groundwater aquifers, 

and also provides insights into the critical role of microorganisms in As biogeochemical 

cycling.
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1. Introduction

Arsenic (As) in groundwater is a serious environmental issue due to its widespread 

distribution and high toxicity, which threatens the health of millions of people in many 

countries such as Bangladesh, West Bengal, China, Cambodia, Japan, Argentina, Chile 

and USA (Pi et     al., 2017, Schaefer et     al., 2016, Michael, 2013, Rodríguez-Lado et     al., 

2013, Fendorf et     al., 2010, Chakraborti et     al., 2010, Nordstrom, 2002). Long term 

ingestion of As groundwater can result in arseniasis, which causes many chronic 

diseases including cardiovascular, respiratory diseases, and skin, lung, liver and kidney 

cancers (Chen, 2014, Chung et     al., 2013). Over the last few decades, numerous studies

focusing on hydrology, mineralogy, and geochemistry have been undertaken to detect 

As mobilization and determine transformation mechanisms in high As 

groundwater aquifers. The explanation of As generation in groundwater aquifers is not 

trivial due to the complex sets of hydrogeological conditions and biogeochemical 

processes within the aquifers. The absorbed and sequestered As on Fe 

oxides/hydroxides is one of the most common As reservoirs in some sedimentary 

basins. Reductive dissolution of the Fe oxide minerals in sediments, as well 

as reduction of As(V) to highly mobile As(III) leads to the release of bound As into the 

groundwater (Guo et     al., 2011, Kocar et     al., 2010, Deng et     al., 2009). Generation of 

HS− by sulfate reduction was proposed to promote As mobilization through HS− abiotic 

reductive dissolution of the Fe oxide minerals and formation of As-sulfur compounds in 

high HS−concentration water (Wang et     al., 2014b; Stauder et     al., 2005). In addition, 

anthropogenic activities such as agricultural irrigation which releases chemicals 

including organic matter, nitrogen, and other chemicals into groundwater systems, were 

found with important roles on As release in groundwater (Weng et     al., 2017, Gao et     al., 

2014, Neidhardt et     al., 2012, Itai et     al., 2008, Bose and Sharma, 2002). Previous 

studies showed that As mobilization and transformation could be ascribed to the 

complex interactions between microbes and geochemical processes and that microbes 

were likely to play key roles in driving the biogeochemical cycle in high As groundwater 

aquifers (Chen et     al., 2017, Zhang et     al., 2015, Ghosh and Sar, 2013, Gorra et     al., 

2012, Mumford et     al., 2012, Kocar et     al., 2010, Barringer et     al., 2010, Sutton et     al., 

2009).

Understanding microbial community structures and their associations with geochemical 

processes is one of the central topics in microbial ecology. Previous studies 

investigated microbially-mediated As transform and release mechanisms using pure 

microbial cultures under laboratorial conditions (Flynn et     al., 2014, Sutton et     al., 

https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib50
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib12
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microbial-ecology
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/microbial-community
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib50
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib50
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib1
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib24
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib35
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib16
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib16
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib14
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib66
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib5
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/biogeochemical-cycle
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib2
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib21
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib37
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib13
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib13
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib55
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib47
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib60
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib9
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib24
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib17
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reduction-chemistry
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/oxide-minerals
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sedimentary-basin
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/sedimentary-basin
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aquifer
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/geochemistry
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/mineralogy
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/hydrology
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib6
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib4
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/respiratory-disease
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib39
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib3
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib11
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib43
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib43
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib33
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib45
https://www.sciencedirect.com/science/article/pii/S0043135417305304?via%3Dihub#bib40
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/arsenic


2009, Saalfield and Bostick, 2009). Recently, with the methods 

of sequencing technologies and qPCR, some studies explored the diversity and 

structure of in situ microbial communities and functional genes of As reducing and 

oxidizing bacteria, sulfate reducing bacteria and methanogens in high As groundwater 

aquifers including Bangladesh, Cache Valley Basin Utah, Jianghan and Hetao Plain of 

China (Ye et     al., 2017, Chen et     al., 2017, Mirza et     al., 2017, Wang et     al., 2015, Wang 

et     al., 2016, Hassan et     al., 2015, Li et     al., 2014, Li et     al., 2015, Sultana et     al., 2011). 

These previous studies provided useful but limited information on the mechanisms of 

microbially-mediated As transformation and mobilization in groundwater aquifers. It is 

still not fully understood which functional microbial populations mediate As geochemical 

processes in situ. However, microbial communities in groundwater aquifers 

contaminated with high levels of As are complex and largely unknown. Therefore, there 

is an urgent need to more fully investigate the functional potential of microbial 

communities in these As contaminated aquifers. In this study, we used GeoChip 5.0, a 

powerful and high-throughput technology which targets more than 1400 functional gene 

families, and involves in geochemical cycling (N, C, S, and P), metal homeostasis, 

and organic contaminantdegradation genes (Van Nostrand et     al., 2016) to investigate 

the functional potential microbial communities in high As groundwater aquifers.

Our study area is located in Hetao Plain, an arid region with annual precipitation 140–

180 mm and evaporation from 2000 to 2500 mm. About half of the soils are saline, due 

to strong evapotranspiration (Deng et     al., 2009). It has been one of the largest irrigation 

districts using delivered Yellow River water. The groundwater for drinking is taken from 

the late Pleistocene and Holocene layer in a complex organic-rich reductive 

environment which was detected with many gases such as H2S and CH4 (Li et     al., 

2014, Tang et     al., 2017). The water chemical types were mostly Na(–Mg)–Cl(–HCO3) 

and Na–Mg–HCO3. Most high-As groundwater in the region occurs at the depth 20–

30 m. Groundwater from this area contains As concentrations up to 1.74 mg/L (Deng 

et     al., 2009), which greatly exceeds the upper limit (10 μg/L) recommended by world 

health organization guidelines (WHO, 2011).

The primary objectives of this study were to: (1) investigate the groundwater 

chemistry with respect to As and other components, characterize the high As 

groundwater geochemistry comparing to the low arsenic samples, (2) examine 

functional diversity and structure of the in situ microbial communities, (3) assess the 

metabolic potential of microbial communities, and (4) determine the relationships 

between the functional microbial community and environmental factors in As-rich 

aquifers. To achieve these objectives, a coordinated geochemical and molecular survey 
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was conducted for 19 groundwater samples in Hangjinhouqi County, Inner Mongolia, 

China. The results of this study fill a much needed knowledge gap regarding the 

relationship between the functional microbial community and geochemical processes in 

natural As aquifers and expand the current understanding of microbial ecology in these 

aquifers.

2. Materials and methods

2.1. Site description

The study site is located in the western part of the Hetao Basin (the Great Bend of 

Yellow River) Inner Mongolia, China (Fig.     1) in an area that has been seriously affected 

by As poisoning (Wei et     al., 2016, Wade et     al., 2009). The Basin was formed at the end 

of the Jurassic Period and contains fine clastic sediments. Frequent channel changes 

deposited sediments and generated oxbow lakes replete with accumulated humus and 

organic mud. The targets of this study are shallow aquifers which are composed of late 

Pleistocene and Holocene alluvial and lacustrine deposits. Groundwater is recharged by

lateral flowing groundwater from bedrocks, vertical infiltrating meteoric water, and/or by 

irrigation return flow and leakage from the Yellow River from the south. Discharge 

occurs mainly via evapotranspiration and pumping. These aquifers have been widely 

used for drinking water by local residents. Our case study was performed in 

Hangjinhouqi County (HC) in the western part of the Hetao Plain. Local residents have 

been drinking the As contaminated groundwater for over 30 years. Some of the 

residents have been affected with serious skin cancer which was caused by arseniasis 

(Wei et     al., 2016, Wade et     al., 2009).
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1. Download high-res image     (820KB)

2. Download full-size image

Fig. 1. Geographic map of Hangjinhouqi County (HC), Inner Mongolia of China. Map 
showing location of study area (HC) and the sampling sites. Numbers 1–19 refer to 
groundwater samples S1-19.

2.2. Sample collection and field measurements

Nineteen groundwater samples were collected from tube wells with a depth range of 

20–30 m in June 2013 from nine towns in Hangjinhouqi County (Fig.     1) and named S1-

19 based on As concentration. The groundwater samples consisted of one from Manhui 

(sample S1), three from Shahai (sample S2, S5 and S19), one from Sizhi (sample S3), 

five from Sandaoqiao (sample S4, S6, S15, S17 and S18), one from Shanba (sample 

S7), four from Taiyangmiao (sample S8, S9, S10 and S12), one from Shuangmiao 

(sample S11), two from Erdaoqiao (sample S13 and S14), and one from Menghai 

(sample S16) (Fig.     1). Water samples were pumped out and then filtered or acidified. 

The tubing was flushed with copious amounts of the sampling groundwater before each 

use. Water pH, electronic conductivity (EC), oxidation-reduction potential (ORP), total 

dissolved solids (TDS) and dissolved oxygen(DO) were measured in the field at the site 

of water collection using a hand-held meter (Horiba W-23X D, Japan). Concentrations 

of ammonium, sulfide, ferrous iron (FeII) and total iron were also determined in the field 

with a Hach spectrophotometer (DR850, Hach Corp., USA) according to the 

manufacturer's instructions. Samples used for laboratory measurements, 

e.g., cations, anions and dissolved organic carbon (DOC) were filtered through 0.22 μm 

mixed cellulose ester membranes and then the filtrates were collected into 50 mL acid-

washed polypropylene bottles or brown glass bottles. Water samples for cations and 

DOC were acidified with 1% v/v HNO3. AsIII (arsenite) and AsV (arsenate) species were 

separated with an anion exchange cartridges (Supelco, USA) (Li et     al., 2013). Microbial 

samples were collected by on-line filtering of 5–10 L water through 0.22-μm filters 

(Millipore). Filtered biomass-containing membranes were placed in 50 mL sterile tubes 

and immediately stored in dry ice. All microbial samples (biomass-containing 

membranes) were immediately frozen and stored on dry ice in the field and during 

transportation, and then kept at −80 °C in laboratory until further analyses.

2.3. Geochemistry measurements

Anion and As measurements were performed according to Li et     al. (2013). Briefly, pre-

separated AsIII and AsV were determined by ion chromatography-hydride generation 
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atomic fluorescence spectrometry (IC-HG-AFS-9700, Haiguang, China). Anions, 

including SO4
2−, NO3

−, NO2
− and Cl− were determined by ion chromatography (DX-120, 

Dionex, USA). Dissolved organic carton (DOC), total carbon (TC) and total nitrogen 

(TN) of the samples were determined using a TOC analyzer (Vario MICRO cube, 

Elemental, Germany), respectively. Samples for CH4 determination were collected in 

100 mL brown serum bottles without filtration, which were fully filled with no headspace 

and sealed with gas impermeable butyl rubber septum stoppers, secured with a 20-mm 

aluminum seal. Two drops of saturated mercury chloride were added to the samples to 

retard microbial activity. Samples were kept on blue ice during transportation and then 

kept in 4 °C in laboratory before analysis. The head space was created by purging with 

pure helium (99.999%) (Johnson et     al., 1990). Soluble CH4 concentrations were 

analyzed from the head space by gas chromatography(Thermo Trace Ultra) at the Third 

Institute of Oceanography, State Oceanic Administration. All samples were run in 

triplicate and then averaged.

2.4. DNA extraction and quantitation

In the laboratory, DNA extractions for all groundwater were conducted using FastDNA 

spin kits for soil (MP Bio, USA) according to the manufacturer's manual. DNA yield was 

quantified based on spectral absorbance at 260 nm, ratios of 260/280 nm and 

260/230 nm, respectively (Thermo Scientific NanoDrop, 2000), and then stored 

at −80 °C until required for PCR amplification. The final DNA concentrations were 

quantified by PicoGreen, using a FLUO star Optima instrument (BMG Labtech, Jena, 

Germany).

2.5. GeoChip analysis

The new generation of functional gene array (GeoChip 5.0) was used to analyze the 

functional potential of microbial samples. The purified DNA (500 ng) was labeled with Cy

3 as described previously (Sun et     al., 2014). Briefly, the labeled DNA was re-suspended 

in hybridization solution, and then hybridized in an Agilent hybridization oven at 67 °C 

for 24 h. After hybridization, the slides were washed with buffers to remove unbound 

DNA. The arrays were scanned with a NimbleGen MS200 Microarray Scanner (Roche 

NimbleGen, Inc., Madison, WI, USA). The images were extracted by the Agilent Feature

Extraction program. Poor quality spots with a signal-to-noise ratio of less than 2.0 were 

removed before statistical analysis. The positive signals were normalized within each 

sample and across all samples.

2.6. Statistical analysis
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Pre-processed GeoChip data were further analyzed by the Vegan package in R 3.1.1 

(http://www.r-project.org/) unless otherwise stated. Hierarchical clustering was 

performed with CLUSTER 3.0 using uncentered correlations and the complete average 

linkage for both genes and environmental variables, and trees were visualized in 

TREEVIEW (de Hoon et     al., 2004). Functional gene diversity was calculated using 

Simpson's 1/D, Shannon-Weiner's H′ and evenness. The effects of As on 

functional microbial communities were analyzed by response ratio (RR) using the 

formula described by Zhang et     al. (2013). Based on the standard error, the 90% 

confident interval for each response variable was obtained and the statistical difference 

between the high As and low As groups was estimated. The total abundance of each 

gene category or family was simply the sum of the normalized intensity for the gene 

category or family. Three non-parametric multivariate analyses (analysis of similarities 

(ANOSIM), non-parametric multivariate analysis of variance (ADONIS) using distance 

matrices, and multi-response permutation procedure (MRPP)) were used to examine 

whether As has significant effects on microbial communities. Canonical correspondence

analysis (CCA) and partial CCA for co-variation analysis (variation partitioning analysis, 

VPA) were performed to link microbial communities to environmental variables (Low 

et     al., 2016, Zhou et     al., 2008). Selection for CCA modeling was conducted by an 

iterative procedure of eliminating redundant environmental variable based on variance 

inflation factor (VIF).

3. Results

3.1. Sample characteristics and chemical composition

The groundwater geochemical parameters were measured. Total arsenic (AsTot) 

concentrations ranged from 38.93 to 863.42 μg/L (Table     S1), and were positively 

correlated with NH4
+, TOC, CH4 and the ratio of Fe(II/III) (r = 0.917, p < 0.001; r = 0.785, 

p < 0.001; r = 0.807, p < 0.001; r = 0.582, p < 0.01, respectively) (Fig.     2, Table     S2). 

Negative correlations were observed between AsTot and sulfate and nitrate 

concentrations, and ORP (r = −0.699, p < 0.001; r = −0.669, p < 0.01; r = −0.734, 

p < 0.01, respectively) (Fig.     2, Table     S2). Hierarchical clustering analyses separated 

the geochemistry of the 19 samples into two groups (Fig.     3). The first group contained 

five samples (S1-5), which were characterized by relatively low As (38.93–92.17 μg/L), 

relatively high oxidation reductionpotential (ORP), and low TOC, FeII, and NH4
+. The 

remaining 14 samples were grouped together, and were characterized by relatively high 

As concentrations (157.71–863.42 μg/L). Most samples in this group were either neutral

or slightly alkaline in pH. Some samples in the group had a strong hydrogen 
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sulfide smell, consistent with their high sulfideconcentrations and low ORP (Table     1). 

Samples with high As concentrations generally had low concentrations of sulfate, 

negative ORP, and relatively high concentrations of AsIII, FeII, CH4, NH4
+ and TOC 

contents. These geochemical characteristics indicated that strong reducing conditions 

prevailed in the high As groundwater. The results of pairwise comparisons using 

ANOSIM (bray-cutis) also suggested that there was a significant difference in 

geochemistry between these two groups of samples (r = 0.6526, p < 0.001) (Table     1).
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Fig. 2. Variation of arsenic concentrations with (a) AsIII, SO4
2−, NO3

−and NH4
+ (b) pH and 

ORP, (c)TOC, CH4 and ratios of FeII to FeIII in the groundwater sample S1-19 from 
Inner Mongolia.
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Fig. 3. Hierarchical cluster analysis of geochemical parameters of sample S1-19 from 
Inner Mongolia. Results were generated in CLUSTER and visualized using TREEVIEW. 
Red indicates signal intensities below background, whereas blue indicates signal 
intensities above background. Brighter blue color indicates higher signal intensities. 
Sample S1-5 with lower arsenic (As) concentrations clustered together and were well 
separated from other samples S6-19 with higher As concentrations. EC: electrical 
conductivity; DO: dissolved oxygen, ORP: oxidation reduction potentials; TDS: total 
dissolved solids, AsTot: total arsenic; AsIII: arsenite; FeTot: total dissolved iron, FeII: ferrous 
iron; TOC: total organic carbon, C/N: ratio of total carbon to total nitrogen. (For 
interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

Table 1. Significance test of the overall microbial community structures and geochemical patterns 

between different sample groups using three statistical analyses. Samples S1-5 with relatively low 

concentration of arsenic were grouped together and sample S6-19 with higher arsenic were included into 

another group.
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Method Geochemical parameters a Microbial community

Statistic P-value Statistic P-value

MRPPb 0.4708 0.002 0.0469 0.018

ANOSIMc 0.6526 0.001 0.4776 0.007

Adonisd 0.3852 0.001 0.1264 0.060

Abbreviations: ANOSIM, analysis of similarity; MRPP, multi response permutation procedure. All three 

tests are non-parametric multivariate analyses based on dissimilarities among samples.

a

Geochemical parameters included DO (dissolved oxygen), ORP (oxidation reduction potentials), 

AsTot(total arsenic), AsIII (arsenite), FeTot (total dissolved iron), FeII (ferrous iron), TOC (total 

organic carbon) and etc (see Table     S1).

b

Multiple response permutation procedure.

c

Analysis of similarities.

d

Non-parametric multivariate analysis of variance (MANOVA) with the adonis function.

3.2. Functional microbial community

The functional potential of the microbial communities was measured using a high-

throughput functional gene array, GeoChip5.0. Significant differences were observed in 

functional microbial structure between low and high As groups (r = 0.4776, p = 0.007) 

(Table     1). Consistent with geochemical ordination patterns, CCA showed a 

differentiation in functional microbial structure between samples with different levels of 

As (Fig.     4). Samples were mainly divided into two groups which were characterized by 

relatively low and high As concentrations, respectively. The microbial functional 

structure of samples with low As clustered more tightly than those of the higher As 

samples (Fig.     4). Similarly, hierarchical clustering analysis showed similar clustering of 

microbial community functional structure (Figure     S1).
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Fig. 4. Canonical correspondence analysis (CCA) analysis of GeoChip data (symbols) 
and environmental variables (arrows). Environmental variables were chosen based on 
significance calculated from individual CCA results and variance inflation factors (VIFs) 
calculated during CCA. The percentage of variation explained by each axis is shown, 
and the relationship is significant (P = 0.021).

The numbers of functional gene probes detected in these 19 groundwater samples were

all in the magnitude of 105 (Table     S3). The functional gene distribution among the 

samples was variable (Figure     S1). For example, some genes involved in nitrogen 

cycling, sulfate reduction and methanogenesis from groups 9, 11 and 12 had a distinctly

higher abundance in high As samples than samples with low As. Arsenic related genes 

were mainly distributed in group 8, 11 and 12. Three complimentary non-parametric 

multivariate statistical tests including MRPP (multi response permutation procedure), 

ANOISM (analysis of similarity), and adonis further confirmed the significant differences 

of geochemical patterns and microbial communities between different sample groups 

(high and low As groups) (Table     1).

3.3. Overall functional microbial community structure in relation to geochemistry
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CCA ordination results showed that six variables, AsTot, SO4
2−, NH4

+, pH, ORP, and TOC 

were the most significant environmental variables shaping the microbial community 

structure (p = 0.021, Fig.     4). The length and direction of vectors represent the influence 

of a given geochemical vector to samples. For microbial community samples with high 

As, AsTot, TOC and NH4
+ were the most significantly correlated environmental factors, 

while ORP and SO4
2− were correlated with low As samples. To better understand the 

influence of the relative contributions from environmental variables to the microbial 

community structure, a CCA-based variation partitioning analysis was performed 

(Figure     S2) (Zhou et     al., 2008). Six environmental variables were divided into three 

group, including group 1 (SO4
2−, ORP), group 2 (AsTot, TOC and NH4

+) and group three 

(pH). Both groups 1 and 2 showed significant correlation with the functional gene 

structure of the communities. Group 1 (SO4
2−, ORP) explained 22.63% (p = 0.010), and 

group 2 (AsTot, TOC and NH4
+) explained 24.98% (p = 0.010), the pH environmental 

variable (group 3) independently explained 17.64% (p = 0.005) of the observed variation

(Figure     S2). About 58.80% of the community functional variation remained unexplained 

by the above selected variables.

3.4. Functional genes for arsenic cycling

Arsenic related genes including As-resistance (arsC/arsB), dissimilatory arsenate-

reducing (arrA), As-oxidation (aoxB) and As methylation genes (arsM) were detected in 

these samples. Compared with the other As related genes, As-

resistance arsC/arsB genes were distinctly more diverse. A total of 855 As-

resistance arsC/arsB gene sequences derived from 418 bacterial genera were detected.

Of these, 438 genes were shared among all the samples. arsC genes with percentages 

greater than 2% of the total intensity of arsC genes were 

from Rhodanobacter, Rhodococcus, Stenotrophomonas, Aurantimonas, Nitrobacter, 

Xanthobacter, Agrobacterium, Rhodococcus, Acinetobacter, Thioalkalivibrio, 

and Mycobacterium (Table     S4). arsB genes with percentages higher than 2% of the total

intensity of arsB genes were 

from Methylobacterium, Micromonospora, Ethanoligenens, Acidovorax, Methylobacteriu

m, and Oceanimonas. Thirty-nine dissimilatory arsenate-reducing arrAgenes were 

detected mainly from Azoarcus, Aromatoleum, Chlorobium, Thauera, Geobacter, 

Alkaliphilus, Desulfonatronospira, Desulfitobacterium and some uncultured bacteria 

(Table     S4). Of these, 15 genes were shared among all the samples. Thirty-nine As 

methylation genes arsM were detected and 15 genes were shared among all the 

samples. A majority (81%) of the arsM probes were derived 
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from Conexibacter, Desulfohalobium, Thiocapsa, Nitrosomonas, Cupriavidus, 

Leptonema, Halomonas and Pelotomaculum. The 96 As-oxidization 

genes, aoxB, detected were mainly 

from Vibrio, Acidiphilium, Halomonas, Variovorax and Burkholderia. Of these, 50 were 

shared among all the samples. Multiple As-related genes from the same dissimilatory 

arsenate-reducing microorganisms were detected. For 

example, arrA and arsCBM derived from the genus Geobacter were detected in the 

same sample. Similarly, multiple genes derivedfrom Aromatoleum (arrA and arsC), 

Azoarcus (arrA and arsCB), Chlorobium and Thauera (arrA and arsB), Alkaliphilus 

(arrA and arsM), and Desulfitobacterium (arrA and arsB) were also detected. The 

predominated As metabolic related populations were significantly different with those in 

high As groundwater of Cache Valley Basin Utah and Bangladesh (Mirza et     al., 

2017, Hassan et     al., 2015).

Most of the As related genes including the As detoxification genes arsC and arsB, and 

the respiratory arsenate (AsV) reductase gene arrA had higher relative abundances in 

the high As group than low As group (Fig.     5). Positive correlations were observed 

between As concentration and the number of detected As related genes arsC (r = 0.462,

p < 0.01) and arrA (r = 0.486, p < 0.01). There was no correlation between arsB, AsIII S-

adenosylmethionine methyltransferase 

gene arsM, arsenite (AsIII) oxidase gene aoxB and As concentrations. 

More arsC/arsB genes were detected than the other genes (Fig.     5), such 

as arrA (around 5–8 folds), indicating that the most common detoxification mechanism 

was reduction of AsV to AsIII rather than respiratory arsenate reduction in the high As 

groundwater aquifers, which was consistent with results based on phylogenic 

information detected with 454 (Li et     al., 2015). Similar results were observed for paddy 

soils in a previous study (Zhao et     al., 2013).
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Fig. 5. Relative abundance of the genes involved in arsenic metabolisms in the 
groundwater samples. The signal intensity for each gene was the average of the total 
signal intensity in each group. L: low arsenic group samples; H: high arsenic group 
samples.

3.5. Functional genes for sulfur cycling

Of the 1211 sulfur related genes detected in this study, most were for sulfur 

reduction (the average gene intensity for the dsrAB probes was 53.48%, and was 

25.33% for soxY). Microbial populations 

including Desulfovibrio, Desulfobulbus, Desulfohalobium, Desulfotomaculum, Chlorobiu

m, Clostridium, Geobacter, Magnetospirillum, Thiobacillus, Thioalkalivibrio, Syntrophob

acter, Pyrobaculum, and Acetobacterium were frequently detected in samples, while 

most of the detected dsrAB were from some uncultured sulfate-reducing bacteria. Both 

As related genes and sulfate reductions genes were detected 

from Desulfohalobium, Geobacter, Thioalkalivibrio, and Chlorobium. The diversity of the

sulfur reduction population in this study was much higher than that of high As 

groundwater in Bangladesh (Gorra et     al., 2012). There were positive correlations 

between As and sulfur reduction genes (dsrA and As: r = 0.455, p < 0.01; dsrB and As: 
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r = 0.327, p < 0.05). These results were consistent with our previous studies using 

qPCR (Li et     al., 2014).

3.6. Functional genes for the nitrogen cycling

Nitrogen (N) cycling, an important process in high As groundwater, is generally of 

concern for its roles of microbial activity (Kurosawa et     al., 2013, Natarajan et     al., 2009). 

Previous studies found that microbial nitrate-dependent oxidation of FeII enhances the 

immobilization of As in the anoxic environments, ammonium-N could enhance microbial 

activity, and then improve As release in a reducing condition (Weng et     al., 

2017, Kurosawa et     al., 2008). There are many genes involved in N cycling, including 

those for denitrification (narG, nirS, nirK, norB, and nosZ), nitrification (amoA and hao), 

dissimilatory N reduction (napA and nrfA, nasA and nir), ammonification (ureC, gdh), 

anammox (hzo) and N fixation (nifH). The dissimilatory N reduction gene (nasA) was 

positively correlated with As (r = 0.357, p < 0.01). The ureC gene that transforms 

organic nitrogen to NH4
+ was positively correlated with As and NH4

+ (r = 0.571, p < 0.01; 

r = 0.323, p < 0.01, respectively). The NH4
+ oxidization gene, amoA, was marginal 

negatively correlated with As (r = −0.311, p < 0.05), while the anammox gene, hzo, was 

positively correlated with As concentration (r = 0.452, p < 0.05), which implies that 

anaerobic bacterial oxidation might be a survival strategy oxidizing ammonia in high As 

groundwaters. The signal intensities were significantly different (p < 0.05) between the 

high and low As groups for the genes ureC, gdh, amoA, hzo, narG and norB (Fig.     6). 

The signal intensities of the other nitrogen related genes exhibited no significant 

correlation between As and nitrate or NH4
+ and the intensities in high and low As groups 

were not significantly different (Fig.     6).
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Fig. 6. The relative change of detected nitrogen cycling genes from the 
high arsenic group samples. The signal intensity for each gene was normalized by the 
mean signal of all detected gene sequences in the high arsenic samples. Percentages 
indicate the normalized total intensity of the functional genes. Red color indicates the 
difference in gene abundance between high and low arsenic groups was significant 
(**p < 0.01, *p < 0.05). Orange arrows indicate ammonium source processes, green 
arrows indicate ammonium utilization processes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

3.7. Methanogenesis genes

The methanogenesis genes detected (248) were mainly 

from Methanosaeta, Methanoculleus, Methanocella, Desulfatibacillum, and Moorella. 

Among these genes, 59–65% were mcrA, encoding the α subunit of 

methyl coenzyme M reductase, and hdrB,encoding cytoplasmic heterodisulfide 

reductase. Most of the methanogenesis genes were more abundant in the high As 

group samples than in the low As group. The average abundance of methanogenesis 

genes was 1.37% in the low As group and 3.06% in the high arsenic group. Positive 

correlations were observed between methanogenesis genes and arsenic (AsTot) 
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and methane concentrations (mcrA: r = 0.549, p < 0.05; r = 0.314, p < 0.05, and hdrB: 

r = 0.387, p < 0.05; r = 0.389, p < 0.05, respectively). These results indicated that 

methanogenesis might be an important metabolic process and accelerate As release 

and accumulation in high As aquifers, consistent with our previous study (Wang et     al., 

2015). The composition of methanogens in this study is totally different with high As 

groundwater in Bangladesh (Gorra et     al., 2012). Fifty two methane oxidation genes 

were detected, mainly from Methylosinus, Methylocapsa and some uncultured bacteria 

(pmoA), as well 

as Methylomonas, Citreicella, Mesorhizobium and Methylocella (mmox). There was no 

correlation between methane oxidation genes abundance and As concentrations.

3.8. Genes related to phosphorus, carbon degradation, organic remediation and mental 
resistance

There was no correlation between As concentration and the quantity of carbon 

degradation genes, although As was positive correlated with TOC contents (Fig.     2). A 

potential explanation is that dissolved organic matter, such as fulvic or humic 

acids could form stable complexes with mineral surfaces, effectively blocking As 

from adsorption onto minerals, which would improve As keeping in the aqueous phrase 

(Natarajan et     al., 2009). Similarly, no obvious changes in relative abundance across the 

nineteen samples were detected between As and phosphorus, organic remediation 

genes, or metal resistance genes (data not shown), indicating that organic remediation 

and metal resistance mechanisms contributed little to the change observed in the 

functional microbial communities.

4. Discussion

In this study, a large number of genes with a tremendous diversity of sequences were 

detected in our samples. Such functional gene information is useful for assessing the 

impacts of microbially-mediated As geochemistry. Our study highlights that the 

geochemistry is a strong driver of a microbial community's functional structure, with As 

being one of the key environmental factors contributing to the differences in the 

geochemistry and microbial community structure in groundwater. Groundwater samples 

could be divided into well-defined high and low As groups based on both geochemistry 

and the functional composition of the microbial communities. Similar results were found 

in our previous phylogeny based studies on microbial communities in this sites using 

high throughout and traditional sequencing technologies (Wang et     al., 2014a, Wang 

et     al., 2016, Li et     al., 2015, Li et     al., 2013). This could be explained by As release and 
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mobilization. Our study provides evidence for possible links between functional potential

of in situ microbial communities and As, S, N and C chemicals reduction which 

promoted As release in groundwater. The results are in agreement with previous studies

that reported As enrichment was related to nitrogen, carbon, sulfur and iron 

geochemistry, all of which are usually considerable drivers of specific metabolic 

pathways in microbes, and the composition of associated microbial communities 

(ThomasArrigo et     al., 2016, Wang et     al., 2016, Li et     al., 2015, Ghosh et     al., 2015, Wang 

et     al., 2014a, Wang et     al., 2014b, Li et     al., 2013, Nordstrom, 2002, Kocar et     al., 

2010, Xiong et     al., 2010). The current investigation supported the finding that alkaline 

and reducing conditions with relatively low ORP could be linked to natural As 

enrichment (Rodríguez-Lado et     al., 2013). Our study indicated that alkaline pH was one 

of the most important environmental variables shaping the functional microbial 

community structure in high As samples (Fig.     4 and Figure     S2). The elevated pH might 

be associated with the rise of NH4
+and TOC in high As groundwater. The pH value of 

most of the high As samples in this study were slightly alkaline (7.77–8.48). Water 

chemical types were mostly Na(–Mg)–Cl(–HCO3) and Na–Mg–HCO3. Most groundwater 

samples in our study area are unsaturated with gypsum and close to saturation with 

respect to calcite and dolomite (Deng et     al., 2009). The rise of NH4
+ increased microbial 

activities, which might in turn promote the biotic dissolution of calcite and dolomite 

minerals, and then increases pH value in groundwater. Reducing conditions associated 

with As, sulfate and iron reduction, have long been considered the prevailing 

geochemical processes in As enrichment mechanisms in many high As 

groundwater aquifers and some other anoxic natural systems (Wang et     al., 

2014a, Wang et     al., 2014b, Ehlert et     al., 2014, Kocar et     al., 2010, Razzak et     al., 

2009, Deng et     al., 2009, Stauder et     al., 2005). Reductive dissolution of Fe oxide 

minerals and the oxidation of pyriteand mineral phase transition in sediments were 

demonstrated to promote the release of bound As into the groundwater in our study 

area (Zhang et     al., 2017, Guo et     al., 2011, Guo et     al., 2016). Additionally, As(III) 

reducing, sulfate reducing and methanogenesis were proposed to promote As 

mobilization in the study sites (Dai et     al., 2016, Wang et     al., 2015, Li et     al., 2014). Our 

current study connected the reducing geochemical conditions with functional gene 

profiles including As, S, C and N related functional genes in the high As groundwater 

aquifers.

In this study our data implied that As, sulfate and iron reduction might occur in high As 

samples at the same sites (Fig.     2). In our previous study demonstrated that indigenous 

As/iron reducing bacteria from the high As aquifer could release As from sediments to 
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aqueous phase (Dai et     al., 2016). Moreover, the positive correlation 

between dsrAB gene abundance and As concentration was found in our study. Some As

and sulfate reduction genes from the same organism were also found, which was in 

agreement with previous findings that some microorganisms were capable of reducing 

both As and sulfate (Macy et     al., 2000, Newman et     al., 1997). In high As groundwater 

aquifers, arsenic, sulfur and iron often coexist and can be important for As 

transformation and mobilization (Kocar et     al., 2010, Saalfield and Bostick, 2009). 

The homeostasis of dissolved As may be controlled by biotic reduction of Fe-

(hydr)oxides and FeIII minerals and the solubility of sulfide phases (Wang et     al., 

2014a, Wang et     al., 2014b, Xiong et     al., 2010). Biotic sulfate reduction could drive 

reductive dissolution of Fe-(hydr)oxides as well as As reduction, resulting in increased 

As release and mobilization when As is not incorporated into iron sulfides (Li et     al., 

2014).

Ammonification is an important biological process providing N in high As groundwater 

by transforming organic nitrogen to inorganic nitrogen. In high As groundwater aquifers, 

NH4
+-N was found in high concentrations. The gene ureC was in relatively high 

abundance in high As groundwater samples in this study (Fig.     6). Although there is no 

direct evidence of NH4
+-N in groundwater from agriculture in our study sites, previous 

studies indicated that the NH4
+-N (mainly urea) in some other high As groundwater 

aquifers is from fertilizer in agriculture practices (Weng et     al., 2017, Uddin and 

Kurosawa, 2014, Mayorga et     al., 2013, Itai et     al., 2008). Our current evidence of 

NH4
+ accumulation in high As groundwater might be due to the higher abundance of 

genes such as ureC that transform organic nitrogen to NH4
+ and the lower abundance of

NH4
+ utilization genes (hzo and gdh) (Fig.     6). The rise in ammonium-N concentration, as 

well as elevated TOC, might enhance microbial activities, which in turn would lower 

ORP, and then enhance As reduction, microbial reduction of Fe(III) oxides/hydroxides, 

and sulfate reduction which improved As mobilization through dissolution of Fe(III) oxide

minerals or formation of As-S compounds in high HS− concentration water (Kurosawa 

et     al., 2008, Deng et     al., 2009, Wang et     al., 2014a, Wang et     al., 2014b). This might 

explain why NH4
+ was significantly correlated with As concentrations in groundwater 

aquifers. In addition, organic matter from agricultural irrigation was reported to release 

into groundwater in this study area (Gao et     al., 2014). Previous studies proposed high 

concentrations of TOC might be in favor of microbial mediated As enrichment (Uddin 

and Kurosawa, 2014, Mayorga et     al., 2013, Barringer et     al., 2010, Reza et     al., 2010). 

These results suggested again that human agriculture activities might be one of the 
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most important factors of improving microbial activities, causing As contamination in 

groundwater (Gao et     al., 2014, Neidhardt et     al., 2012).

It is worth noting that genes specific for anammox were detected, indicating 

that ammoniumand nitrite can be converted directly into nitrogen gas via anammox 

pathways in high As groundwater. Anammox can happen without requiring substantial 

amounts of organic-C, reduced iron, or mineral phase electron donors. 

Groundwater hydrology could create expanded zones suitable for anammox 

communities and widespread spatial distribution of anammox activity (Smith et     al., 

2015). Arsenic concentrations were positively correlated with anammox gene numbers, 

suggesting anammox was a survival strategy oxidizing ammoniain high As 

groundwaters. However, the importance of anammox in groundwater aquifers had not 

been considered previously. Further tracer studies of the anammox pathway in the 

groundwater might help elucidate nitrogen cycling in this ecosystem.

5. Conclusion

Our results reveal that environmental variables account for the majority of variation in 

microbial functional potential. This study provides evidence for possible links between 

As, S, N and C related microbial functional gene abundances and As geochemistry. 

Alkaline and reducing conditions as well as SO4
2− and 

Fe reduction and ammonification associated with microbially-mediated geochemical 

processes could be linked to As enrichment in groundwater in this study area. These 

results suggest that the indigenous microbial communities could have a significant role 

in As release and transformation in high As groundwater aquifers of the Hetao Basin, 

Inner Mongolia. This study expands our current understanding of microbial ecology in 

high As aquifers.
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