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Sequencing and Variant Detection of Eight Abundant
Plant-Infecting Tobamoviruses across Southern California
Wastewater

Jason A. Rothman,a Katrine L. Whitesona

aDepartment of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA

ABSTRACT Tobamoviruses are agriculturally relevant viruses that cause crop losses
and have infected plants in many regions of the world. These viruses are frequently
found in municipal wastewater, likely coming from human diet and industrial waste
across wastewater catchment areas. As part of a large wastewater-based epidemiol-
ogy study across Southern California, we analyzed RNA sequence data from 275
influent wastewater samples obtained from eight wastewater treatment plants with
a catchment area of approximately 16 million people from July 2020 to August
2021. We assembled 1,083 high-quality genomes, enumerated viral sequencing
reads, and detected thousands of single nucleotide variants from eight common
tobamoviruses: bell pepper mottle virus, cucumber green mottle mosaic virus, pep-
per mild mottle virus, tobacco mild green mosaic virus, tomato brown rugose fruit
virus, tomato mosaic virus, tomato mottle mosaic virus, and tropical soda apple
mosaic virus. We show that single nucleotide variants had amino acid-altering conse-
quences along with synonymous mutations, which represents potential evolution
with functional consequences in genomes of these viruses. Our study shows the im-
portance of wastewater sequencing to monitor the genomic diversity of these plant-
infecting viruses, and we suggest that our data could be used to continue tracking
the genomic variability of such pathogens.

IMPORTANCE Diseases caused by viruses in the genus Tobamovirus cause crop
losses around the world. As with other viruses, mutation occurring in the virus’s
genomes can have functional consequences and may alter viral infectivity. Many of
these plant-infecting viruses have been found in wastewater, likely coming from
human consumption of infected plants and produce. By sequencing RNA extracted
from influent wastewater obtained from eight wastewater treatment plants in
Southern California, we assembled high-quality viral genomes and detected thou-
sands of single nucleotide variants from eight tobamoviruses. Our study shows that
Tobamovirus genomes vary at many positions, which may have important conse-
quences when designing assays for the detection of these viruses by agricultural or
environmental scientists.

KEYWORDS metatranscriptomics, plus-strand RNA virus, tobamovirus, wastewater,
wastewater-based epidemiology

Wastewater represents a matrix of microorganisms, human waste, and water
inflow across a sewage catchment area (1). As part of the microorganismal frac-

tion of wastewater, there are often high abundances of plant-infecting positive-sense
single-stranded RNA viruses of the genus Tobamovirus, which represents important
plant pathogens causing substantial crop losses to the global agricultural industry (2
to 6). These viruses are required to be tested for before importation by the United
States Department of Agriculture, as infections have been reported both in the United
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States and internationally (7 to 10). Tobamoviruses are widespread and may be depos-
ited into wastewater through agricultural runoff and human diet, where they can resist
degradation even through wastewater and drinking water treatment (2). They are of-
ten the most abundant RNA viruses in human feces and wastewater samples (2), even
going back to the first human fecal RNA virome sequenced (11). For example, pepper
mild mottle virus is ubiquitous in wastewater and can remain infectious in effluent
even after wastewater treatment (12). As part of ongoing efforts and advances in
wastewater-based epidemiology (WBE), it is critical to monitor wastewater for the pres-
ence of tobamoviruses and their potential to infect new hosts or evade plant immunity
(13). Also, as many tobamoviruses may serve as water quality indicators and are
impactful diseases to agriculture, studies should be conducted to understand the
genomics of these viruses (2, 14).

As part of a large WBE effort across Southern California, we used metatranscrip-
tomic sequencing to investigate the genomics and single nucleotide variants (SNVs) of
eight tobamoviruses sourced from 275 samples across eight wastewater treatment
plants from July 2020 to August 2021 (3, 15). These viruses were bell pepper mottle vi-
rus (BPeMV), cucumber green mottle mosaic virus (CGMMV), pepper mild mottle virus
(PMMoV), tobacco mild green mosaic virus (TMGMV), tomato brown rugose fruit virus
(ToBRFV), tomato mosaic virus (ToMV), tomato mottle mosaic virus (ToMMV), and tropi-
cal soda apple mosaic virus (TSAMV). Through our study, we investigated several lines
of inquiry. Can we assemble high-quality Tobamovirus genomes from wastewater sam-
ples? Do we obtain acceptable sequencing coverage across viral genomes derived
from wastewater? Can we identify SNVs across tobamoviruses in Southern California’s
wastewater?

Results. We aligned 156,825,269 quality-filtered, deduplicated, matching paired-
end reads (313,650,538 individual reads) across 275 samples from eight water treat-
ment plants (average = 570,274 paired-end reads, range = 44 to 8,933,433). Of the
paired-end reads that mapped to the eight tobamoviruses, 0.34% were bell pepper
mottle virus (BPeMV), 12.90% were cucumber green mottle mosaic virus (CGMMV),
11.90% were pepper mild mottle virus (PMMoV), 1.31% were tobacco mild green
mosaic virus (TMGMV), 64.06% were tomato brown rugose fruit virus (ToBRFV), 5.6%
were tomato mosaic virus (ToMV), 1.87% were tomato mottle mosaic virus (ToMMV),
and 2.02% were tropical soda apple mosaic virus (TSAMV) (Fig. 1; Fig. S1 in the supple-
mental material).

For each virus, we report the total number, average, and range of mapped
paired-end reads, the average sequencing depth and overall genomic coverage, the
number of high-quality assembled genomes, the minimum DIAMOND alignment
percentage, and the number of single nucleotide variants (SNVs) along with the
SNVs’ mutational consequence (synonymous or nonsynonymous) in Table 1. We also
plotted the average read depth per nucleotide (Fig. S2) and the genomic position
and date of each SNV detected along with its mutational consequence for each virus
(Fig. 2). Lastly, we provide the relevant iVAR output for each sample and SNV along
with the sequences of all high-quality viral genomes on Dryad (doi.org/10.7280/
D1S69X) (16).

Discussion. Wastewater-based epidemiology (WBE) has been used to character-
ize pathogen abundances and genomics for a variety of diseases and is often
employed to detect antibiotic resistance or diseases relevant to public health (5).
We applied similar molecular and bioinformatic methods to eight agriculturally rel-
evant tobamoviruses sequenced from influent wastewater, representing a sewer
shed of approximately 16 million Southern Californians across eight wastewater
treatment plants (3, 15). These tobamoviruses were abundant and widespread
throughout our wastewater samples, comprising 8 of the top 10 viruses in our data
set (15). PMMoV may be the best known and is often regarded as the most abun-
dant virus in fecal and wastewater samples (11, 14); however, we were surprised to
find that ToBRFV was much more abundant, mirroring the results of a recent study
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from Maryland (5). Likely due to their near-ubiquity, we obtained very deep and
broad sequencing coverage across their genomes. Our samples yielded thousands
of SNVs per virus, and we assembled over 70 individual high-quality composite
genomes for each viral species except BePMV, supporting studies that have sug-
gested WBE is useful in characterizing the genomic landscape of pathogens (3, 5, 6,
17). We also recognize that our assembled genomes were from composite samples
and are likely not true whole genomes, but rather represent a consensus of the
individual genomes. Interestingly, most of the SNVs identified were synonymous
mutations, although there were thousands of putative nonsynonymous mutations
that may have consequences in host infectivity or immune escape.

FIG 1 Boxplots of the average relative abundances of mapped reads (within this study only) of each Tobamovirus
across all samples. Lines within each box represents the median relative abundance, whiskers are 1.5� the interquartile
range (IQR), and dots are values .1.5 IQR.
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As tobamoviruses are being developed for use as water-quality indicators, it is
important to have a broad pool of wastewater-sourced genomes, sequences, and
SNVs so that proper tests can be developed that reflect the diversity of each virus
(2, 14). For example, Tobamovirus testing involves careful selection of specific, vali-
dated RT-qPCR primers, which may lose specificity as viral mutations arise, making
pathogen detection unreliable without adjusting for new variants (18). Likewise, to
combat outbreaks of tobamoviruses, or the evolution of novel viruses, deep
sequence resources should be provided to the scientific and agricultural commun-
ities (13). To the best of our knowledge, our study is the first to report such a wide
diversity of Tobamovirus SNVs from wastewater, and we suggest that future
research be conducted using WBE for other agriculturally relevant diseases.
Furthermore, as water reuse is becoming widespread, studies should investigate
the ability of wastewater treatment plants to inactivate tobamoviruses to prevent
accidental infection through irrigation and to indicate expected decreases in viral
load for public health (14).

Materials and methods. We obtained raw sequencing data as FASTQ files from the
NCBI Sequence Read Archive under BioProject PRJNA729801, and we refer to Rothman
et al., 2021 (3) and Rothman et al., 2022 (15) for all sampling, RNA extraction, and
sequencing methods. We used BBTools (19) “bbduk” to remove sequencing adapters,
primers, and low-quality bases from the reads and BBTools “dedupe” to remove optical
duplicates, and removed human genome reads (hg38) with Bowtie2 (20). We then
used Bowtie2 to align the reads to the reference strains (downloaded from NCBI)
for each Tobamovirus: BPeMV (NC_009642.1), CGMMV (NC_001801.1), PMMoV
(NC_003630.1), TMGMV (NC_001556.1), ToBRFV (NC_028478.1), ToMV (NC_002692.1),
ToMMV (NC_022230.1), and TSAMV (NC_030229.1) and calculated the relative abun-
dance by dividing the number of reads that mapped to each independent virus with
reads that mapped to all eight viruses with SAMtools (21).

We used SAMtools (21) to assess sequencing depth and breadth of genomic cover-
age on the BAM files. We then used iVar (22) to identify single nucleotide variants
(SNVs) for each virus in each sample separately and plotted the SNVs and genome
depth/coverage in R (23) using “ggplot2” (24) and “patchwork” (25). We assembled
contigs within each sample with MEGAHIT (26) and assessed contig assembly quality
with checkV (27), using a cutoff of .90% completeness and 0% contamination to char-
acterize them as “high-quality genomes.” We used DIAMOND (28) to classify the “high-
quality genomes” and plotted summary statistics about each sample and virus with
“ggplot2.”

Data availability. Data used in this study are available on the NCBI Sequence Read
Archive (SRA) under BioProject accession number PRJNA729801 and on the Dryad
Digital Repository (doi.org/10.7280/D1S69X) (16). We report the individual SRA and
BioSample accession numbers and the study each sample’s’ data were obtained from
in Supplemental File 1.

TABLE 1 Sequencing results for each virus across all viruses

Virus
Mapped paired-
end reads

Avg/range mapped
reads per sample

Avg sequencing
depth per nucleotide
and breadth

No. of high-
quality
genomes

Alignment
percentage of
genomes to
reference strain SNVsa

BPeMV 526,713 1,915 (0 to 26,075) 84� 99.5% 0 NA 963: dN = 241, dS = 722
CGMMV 20,222,039 73,535 (6 to 1,248,760) 2,347�100% 144 .99.5% 1,384: dN = 397, dS = 987
PMMoV 18,663,282 67,866 (0 to 1,028,539) 2,130�100% 90 .99.3% 1,306: dN = 381, dS = 925
TMGMV 2,057,301 7,481 (0 to 116,449) 240� 100% 141 .97.6% 1,557: dN = 509, dS = 1,048
ToBRFV 100,455,804 365,294 (1 to 6,727,467) 11,854� 100% 250 .99.9% 1,075: dN = 452, dS = 623
ToMV 8,788,061 31,957 (0 to 513,129) 1,162� 99.9% 183 .99.6% 1,540: dN = 429, dS = 1,111
ToMMV 2,939,466 10,689 (0 to 120,789) 487� 99.9% 79 .98.6% 1,309: dN = 372, dS = 937
TSAMV 3,172,603 11537 (0 to 200383) 360� 100% 196 .99.4% 1,531: dN = 486, dS = 1045
aSNVs, single nucleotide variants.
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SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 2, PDF file, 0.7 MB.

ACKNOWLEDGMENTS
This research was supported by the University of California Office of the President

Research Grants Program Office (award numbers R01RG3732 and R00RG2814) awarded
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