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Layout and Parameters (V. Morozov)

Quadrupole 

Element

Magnetic 

length [m]

Inner 

radius [cm]

Outer 

Radius [cm]

Good Field 

Radius [cm]

Field Gradient 

Normal / Skew [T/m]

G x Rinner

[T]

iQDS1a 2.25 9.2 23.1 4 -37.2 / -1.23 3.4

iQDS1b 2.25 12.3 31.0 4 -37.2 /   0.0 4.6

iQDS2 4.5 17.7 44.4 4 26.0 /    0.0 4.6

200 GeV/c protons

10 GeV/c electrons
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IR Quadrupole Design References

RHIC (130 mm, 48 T/m, 4.5K) LHC MQXC (120 mm, 118 T/m, 1.9K) 

HL-LHC MQXF (150 mm, 143 T/m, 1.9K) LHC MQXA (70 mm, 205 T/m, 1.9K)

Nb3Sn

LHC MQXB (70 mm, 205 T/m, 1.9K)

AHF-2 (634 mm, 10.1 T/m, 1.9K) 

Note: diameters refer to the coil winding
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Cos(nθ) θ) θ) θ) Coil Layout

• The cos(nθ) coil layout with keystone Rutherford cable has dominated 

the accelerator applications to date

• The extension to iQDS1a appears to be relatively straightforward 

(although aperture is significantly larger than in design references)

• Combination of very large aperture, gradient, and limited radial/axial 

space budget in iQDS1b/2 may require a modified approach
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A Preliminary Design for iQDS1a

Goals:

• Perform a first-pass magnetic analysis and optimization

• Obtain a preliminary design and performance parameters: cable 

and coil geometry, operating current, margin to quench, fringe 

field, magnetic length and field quality 

• Iterate as needed, get feedback to/from AP

Coil and yoke geometry:

• Single layer coil with 15 mm width

• Two coil blocks (one wedge) for control of geometric harmonics   

• Inner coil radius at 9.19 cm (increase ~8 mm for inner vessel) 

• Radial space reserved for collars: 23 mm

• Outer yoke radius 23.1 cm (decrease ~6 mm for outer vessel)

Superconductor and cable:

• NbTi superconductor at 4.5K

• MQXC inner cable (same as LHC dipole inner cable)

• Alternative options: MQXC outer cable (same as LHC dipole 

outer cable, LHC arc quadrupole); MQXB inner cable
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Design and Performance Parameters 

Operating Parameters (2D) Unit Value

Current kA 9.5

Field Gradient T/m 38.0

Peak field in the coil (*) T 4.3

Lorentz force (azimuthal) MN 0.38

Coil stress (azimuthal) MPa 25

Superconducting strand Unit Value

Strand diameter mm 1.065

Critical current density (*) kA/mm2 2.85

Copper/non-copper ratio 1.65

Cable and coil geometry Unit Value

Number of strands 28

Cable width mm 15.1

Cable thickness (min) mm 1.736

Cable thickness (max) mm 2.064

Number of turns (B1+B2) 17+6

(*) 5T, 4.2K

(*) Includes strand self-field
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Short Sample and Margin to Quench

Short sample parameters (*) Unit Value

Current kA 14.9

Peak field T 6.75

Gradient T/m 59.6

Margins to quench (*) Unit Value

Operating point on the load line % 63.7

Fraction of critical current at Iop % 32.4

Temperature margin at Iop K 1.85

(*) based on a linear extrapolation of the peak field load line
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Fringe Field at the electron beamline

B along a 90 degree arc at R=240 mmMagnetic field (By) along the x-axis

• At the operating gradient, the iron yoke 

thickness at the magnetic mid-plane is 

sufficient to return all the magnetic flux

• Fringe field field outside yoke is below 0.002 

T at the magnetic mid-plane, and further 

decreasing to < 0.001 T at the pole

• Note however that this case does not include 

radial space for He vessel/beam pipe and yoke 

geometry optimization to control saturation

By (y=0) detail outside the iron yoke

< 0.002 T

mmmm

mm

deg
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Field Quality (2D)

• Field quality optimization carried out and reported at 60 mm radius (~2/3 of aperture)

• Good field radius required by beam is 40 mm: significant benefit for higher orders

• Harmonics at nominal current can be optimized to << 1 “unit” (10-4 of quadrupole)

• However, b6 saturation is several units (R=60 mm) in the absence of yoke optimization

• Yoke optimization for saturation control will increase the fringe field: is it needed?

• Random errors calculated for radial/azimuthal block displacements with ±100 µm range

• Persistent current and ramp rate effects not yet analyzed – generally dominated by dipoles

9.5 kA

Saturation effect on b6 (R=60 mm)

Saturated region

Non-saturated region

Random errors (1 sigma) for 100 µµµµm block displacements

2x16 independent variables
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Field Quality (3D)

• Large negative contribution to b6, b10 in the ends

• Due to conductor blocks lifting away from the mid-plane 

as they turn around the pole 

• b6: -280 units peak, or -43.3 units integrated over a magnetic 

length (straight section equivalent) of 406.3 mm

• b10: -30 units peak, or -3.1 units integrated over 406.3 mm

• Integral can be corrected by body-end compensation or by end 

optimization – with different advantages and disadvantages

• Need AP evaluation and feedback for different options

+b6, +b10
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Coil End Optimization

• Negative b6, b10 due to turns lifting away from the mid-plane can be compensated by increasing 

the length of straight section for these turns. Here we increase the straight section length of the 

entire lower block to avoid introducing additional spacers  

• b6:  ∆z (B1)= 53 mm results in two peaks of ± 250 units which integrate to essentially zero 

• Additional spacers would be required to compensate b10, or to further lower the b6/b10 peaks

• Spacers are also effective to control the peak field in the ends (iron needs to cover entire length 

to avoid a large fringe field) but will increase the magnet length requirements

+53 mm

+53 mm
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Magnet Length Requirements

• Longitudinal space budget is one of the main challenges for the JLEIC IRs

• Requires a global optimization to meet both AP requirements and technology constraints:

• Selection of operating parameters, coil design, acceptable fringe field, field quality (with 

implications on corrector needs), end mechanical support, leads and splices, integration of 

cold mass in cryostat and integration of different magnets/beamlines   

• A first-pass evaluation of the preliminary design will be useful to determine next steps

• Main question: do we need to increase the central gradient (with potential implications for 

coil design, operating temperature/margins, fringe field, forces etc.) to decrease length

Longitudinal efficiency:

Baseline (compact) end:

• Coil half-length in the model: 

450 mm 

• Magnetic length: 406.3 mm

With additional spacer:

• Physical length +53 mm

• Magnetic length + 44.6 mm

• Requires a 17 mm increase of 

total coil length (both ends) to 

achieve the same magnetic 

length 
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iQDS1b preliminary analysis

(*) Includes strand self-field

Margins to quench (*) Unit Value

Operating point on the load line % 72.2

Temperature margin at Iop K 1.48

(*) based on 2D  peak field

Main features:

• Same gradient with increase aperture

• Double-layer coil with 30 mm total width

• MQXC cable with lower (1/2) keystone angle

• One wedge in each layer (probably not required)

• Radial space for “collars”: 25 mm

• Radial space for He vessel: 8mm + 8 mm

Operating Parameters (2D) Unit Value

Current kA 7.1

Copper current density kA/mm2 0.46

Field Gradient T/m 36.7

Field at coil radius (GxRin) T 4.9

Peak field in the coil (2D) (*) T 5.67

Lorentz force (Fθ 1 octant) MN/m 1.12

Coil and iron yoke geometry Unit Value

Inner coil radius cm 13.1

Outer yoke radius cm 30.2

Number of turns (L1, L2) 33, 35

B [T]
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iQDS2 preliminary analysis

Operating Parameters (2D) Unit Value

Current kA 6.5

Copper current density kA/mm2 0.42

Field Gradient T/m 26.2

Field at coil radius (GxRin) T 4.85

Peak (2D) coil field (*) T 5.86

Lorentz force (Fθ 1 octant) MN/m 1.49

Coil and iron yoke geometry Unit Value

Inner coil radius cm 18.5

Inner yoke radius cm 24.5

Outer yoke radius cm 43.4

Number of turns (L1, L2) 46, 49

Margins to quench (*) Unit Value

Operating point on the load line % 72.7

Temperature margin at Iop K 1.46

Main features:

• Double-layer coil with 30 mm total width

• MQXC cable with lower (1/2) keystone angle

• One wedge in each layer (probably not required)

• Radial space for “collars”: 30 mm

• Radial space for He vessel: 8mm + 10 mm

(*) Includes strand self-field (*) based on 2D  peak field



JLEIC CM April 2019 G. Sabbi – Design Options for the JLEIC IR Quadrupoles 15

Advanced Hydrotest Facility at LANL

50 GeV synchrotron

Firing site 2
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AHF Final Focus System Parameters

Case 1 and Case 2 Quadrupole Requirements

AHF Large Bore Quadrupole Focusing System Parameters

Case 2 coil geometry and operating field

Reference: J. Schultz et al., IEEE TASC Vol. 13,

No. 2, June 2013, pp.1343 

G x Rpipe= 2.5 T ; G x Rcoil = 3.3 T 
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AHF-2 Cable and Coil Design at MIT

2-layer cos(2θ) layout Rutherford cable in Cu channel Raised saddle end 

3 spacers in each layer 

SSC strand and cableDummy turns in outer layer 
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AHF-2 Mechanical Design at MIT

Design approach and main components: 

• The mechanical design is based on a 30 mm thick welded stainless steel shell directly surrounding 

the coil which provides preload and support against the Lorentz forces

• The (warm) iron yoke is not part of the mechanical support structure 

• The pre-load level is selected to prevent separation at the coil-pole interface up to full field

• A Titanium pole is required to increase pre-load at cool-down and decrease the warm pre-load

• Cable is encased in a copper channel is to cope with the high pre-load and Lorentz forces/stresses   

Results of mechanical analysis:

• Stresses for Ti pole are within material limits

• Warm pre-loaded stage is the most critical

Comments/next steps:

• New approach to address the specific design 

challenges, but outside established experience

• Many questions: need to study in more detail, and 

discuss with MIT colleagues who may provide 

additional insights or experimental information

Range: 

140-260 MPa

Compute stress in cable conduit after pre-load (with Ti pole)
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Shell-based structure option

• The LBNL shell-based structure has replaced the 
traditional collars in high field/force/stress magnets

• Based on an aluminum shell over iron yoke

• Assembly preload provided by water-pressurized 
bladders and interference keys

• Significant pre-load increase at cool-down due to 
differential thermal contraction

Main elements of the mechanical structure:

• Shell-Yoke sub-assembly
o Aluminum shell
o Iron yoke 

• Coil-pack subassembly
o Nb3Sn Coils
o Aluminum Collars
o Load pads

• Master Key assembly
o Slots for pressurized bladders
o Load keys, alignment keys

• Axial rods for longitudinal pre-load

HL-LHC (MQXF) IR Quadrupole

Note however that radial space requirements for shell and bladder assembly features will 

further constrain the yoke optimization relative to a traditional collar-based structure   
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Shell structure test results 

Demonstrated performance in the range of interest: force and stress levels, fine 

control of pre-load, low pre-load at warm, large diameter (fabrication and test) 

TQS quadrupole (LBNL/LARP) FRESCA2 dipole (CERN)
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AHF-2 Design Study at Fermilab

Design drivers and approach:

• Traditional shell type coil will suffer from stress 

accumulation at the mid-plane and conductor 

displacements during excitation

• Split in mechanically decoupled blocks, for 

stress management and individual positioning 

and support

• NbTi and Nb3Sn options considered

• Active shielding of fringe field

• Reference: V. Kashikhin et al., PAC 2003 
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iQDS1b fringe field

B along a 90 degree arc at R=310 mmMagnetic field (By) [T] along the x-axis By (y=0) detail outside the iron yoke

• Fringe field is ~0.25 T

• Evaluate correction options

• Integrate the design of electron and ion 

quadrupoles and beamlines
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iQDS2 Fringe Field

• Fringe field is 0.1-0.15 T

• Evaluate correction options

• Integrate the design of electron and ion 

quadrupoles and beamlines

B along a 90 degree arc at R=240 mmMagnetic field (By) along the x-axis By (y=0) detail outside the iron yoke
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Summary

• A preliminary analysis of the JELIC large aperture IR quadrupoles was performed

• Parameters of first quadrupole (iQDS1a) are within established technology envelopes

• Design can be based on traditional cos2θ approach: superconducting wire and 

cable, NbTi coil fabrication and collar-based mechanical support

• Initial parameters were provided and can be used as a starting point for further 

optimization (e.g. cable dimensions, operating current, collar thickness etc.)

• Field quality estimates were provided including 2D random errors, saturation 

effects, 3D end harmonics, and correction options

• Main issue is longitudinal space budget and optimization

• iQDS1a would be a good candidate for preliminary AP feedback on field quality 

and a detailed engineering exercise to establish longitudinal requirements for coil 

ends/transitions, current leads and splices, axial mechanical support, cooling, He 

contsinment and cryostat design. Results will be also useful for other magnets

• The second and third quadrupoles (iQDS1b and iQDS2) require a significant 

extrapolation from past experience due to a combination of aperture, field gradient, 

radial and longitudinal space constraints

• Initial work should focus on conceptual design studies and selection of promising 

approach for conductor, cable, coil fabrication and mechanical structure

• Prototype fabrication and test will be required to validate the proposed design

• Current radial allowances do not include any radiation shielding in the bore 
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Additional slides
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iQDS1a with reduced radial envelope

• In order to provide radial space for the inner 

and outer LHe containment and beam pipe, the 

inner coil radius is increased by 8 mm and the 

outer yoke radius is decreased by 6 mm

• No change in cable parameters (15.1 mm width)

• Added two turns in B1 and adjusted angles

• Radial space for collars: 20 mm (-3 mm)

• Margin on the load line decreases by 4.2%

• Lorentz force and stress increases by ~24%

Operating Parameters (2D) Unit Value

Current kA 9.9

Field Gradient T/m 37.6

Peak field in the coil (*) T 4.63

Lorentz force (azimuthal) MN 0.47

Coil stress (azimuthal) MPa 31.1

Coil and iron yoke geometry Unit Value

Inner coil radius cm 10.0

Outer yoke radius cm 22.5

Number of turns (B1+B2) 19+6

(*) Includes strand self-field

Margins to quench (*) Unit Value

Operating point on the load line % 67.9

Fraction of critical current at Iop % 36.7

Temperature margin at Iop K 1.65

(*) based on a linear extrapolation of the peak field load line

B [T]
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Fringe field at the electron beamline

• Fringe field is 0.02-0.04 T

• Expect further increase if yoke is optimized for low 

saturation

• Evaluate correction needs and options:

• Passive correction e.g. with iron surrounding the 

electron beamline

• Active correction by tuning the design of the electron 

quadrupoles, or with a small dipole coil 

B along a 90 degree arc at R=240 mmMagnetic field (By) along the x-axis By (y=0) detail outside the iron yoke




