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Abstract We extend the construction of a global square sequence in extender mod-
els from Zeman [8] to a construction of coherent non-threadable sequences and give
a characterization of stationary reflection at inaccessibles similar to Jensen’s charac-
terization in L.

Keywords Global quare sequence · Fine structure · Extender model ·
Weakly compact cardinal · Stationary reflection

AMS Subject Classification 03E05 · 03E45 · 03E55

This note presents a fine structural construction of a so-called �(κ, A) sequence for
certain stationary subsets A of an inaccessible cardinal κ as well as a characterization
of weakly compact cardinals in fine structural extender models in terms of station-
ary reflection. These results extend analogous results of Jensen for the constructible
universe that originate in [3] and are described in more detail in [1]. Although the
characterization of weakly compact cardinals in an extender model turns out to be
exactly the same as in L, the proof requires a significant amount of extra work. Also,
the author believes that the proof presented in this paper is more straightforward than
that described in [3] and [1].

The exposition in this paper is based on extender models with Jensen’s λ-indexing
of extenders introduced in [4]; see [7] as a reference. The paper builds on previous
work on fine structural square sequences in extender models, in particular on [5,6] and
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826 M. Zeman

[8]. We will frequently refer to [8]. However, no detailed knowledge of arguments in
[8] is necessary, as we will only need certain lemmata from that paper which can be
used as black boxes. In particular, all references concerning protomice will be hidden
in black boxes.

Theorem 0.1 (Main Theorem) Working in a fine-structural Jensen-style extender
model L[E], assume κ is an inaccessible cardinal that is not weakly compact and
A ⊆ κ is stationary. Then there is a stationary A′ ⊆ A and a sequence 〈Cτ | τ < κ〉
satisfying the following conditions.

(a) Cτ is a closed unbounded subset of τ .
(b) Cτ̄ = Cτ ∩ τ̄ whenever τ̄ ∈ lim(Cτ ).
(c) A′ ∩ lim(Cτ ) = ∅.

A sequence satisfying (a)–(c) in the above Theorem is called a �(κ, A′)-sequence.
Any such sequence is a �(κ)-sequence, that is, it cannot be threaded: if C ⊆ κ is a
closed unbounded set then C ∩ α �= Cα for some limit point α of C . From the above
Theorem we obtain the following corollaries, the first of which is immediate.

Corollary 0.2 Let L[E] be a Jensen-style extender model. The following dichotomy
is true in L[E] of any inaccessible cardinal κ .

• κ is weakly compact �⇒ every stationary subset of κ reflects at some κ̄ < κ .
• κ is not weakly compact �⇒ nonreflecting stationary subsets of κ are dense.

Here “dense” means that every stationary subset of κ contains a nonreflecting sta-
tionary subset.

In particular, an inaccessible cardinal κ is weakly compact just in case that every
stationary subset of κ reflects at some κ̄ < κ .

The first clause in the above corollary is, of course, a ZFC consequence. It should
be noted that reflection points of stationary subsets whose existence is guaranteed by
weak compactness are regular. Not only the argument that is used to obtain reflection
points produces regular (in fact inaccessible) reflection points; the fact that we have a
global square sequence on singular cardinals in L[E] guarantees that reflection points
of densely many stationary subsets of an inaccessible cardinal κ must be regular, up
to non-stationarily many. This can be seen by the standard argument for obtaining
non-reflection from squares. Given a stationary A ⊆ κ where κ is inaccessible, it is
sufficient to focus on the case where A consists of singular cardinals, as otherwise one
can easily prove in ZFC that every reflection point of A must be regular. Using the
Fodor’s Theorem we can fix the order types of clubs on the global square sequence on
some stationary A′ ⊆ A. Letting C be the set of all limit points of A′, it is a routine to
check that any δ ∈ C that is a reflection point of A′ must be regular. The property that
every stationary subset of κ reflects at some singular ordinal κ̄ < κ or at an ordinal
of fixed uncountable cofinality, if consistent with ZFC, must have high consistency
strength; however the exact result here is not known. Even at small regular cardinals,
the requirement that every stationary set reflects at some ordinal of small cofinality
implies the consistency of measurable cardinals of high Mitchell order; see [2].
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More fine structural global square sequences 827

Corollary 0.3 Let V = L[E] be a Jensen-style extender model. Then for any regular
cardinal κ that is not weakly compact there is a Suslin κ-tree.

This follows from Jensen’s construction of higher Suslin trees in [3]. For successor
cardinals κ = µ+ where µ is not subcompact one uses ♦κ(A) and �(κ, A) for a suit-
able stationary A ⊆ κ; here the �(κ, A)-sequence is obtained from a �µ-sequence
whose existence is guaranteed by [6]. If µ is subcompact then µ is inaccessible, so
GCH in L[E] makes it possible to construct a Suslin κ-tree “naively” by using only
a ♦κ(Sκµ)-sequence1 to seal off large antichains at limit stages of cofinality κ in the
construction, and adding all possible branches at limit stages of cofinality smaller
than κ . For inaccessible κ one constructs a Suslin κ-tree using ♦κ(A) and �(κ, A) as
above; this time the existence of a �(κ, A)-sequence is guaranteed by Theorem 0.1.

1 The construction

We will work in a fixed model L[E] where E is a Jensen-style extender sequence, that
is, an extender sequence with λ-indexing of extenders. The predicate E is thus also
fixed. Throughout the construction we will use the Condensation Lemma for premice;
this is Lemma 2.2 in [8] or Lemma 9 in [7]. We will often make use of the following
simple consequence of the Condensation Lemma.

Proposition 1.1 Assume that σ : M̄ → M is a �0-preserving embedding where M
is an L[E]-level and M̄ = 〈J Ē

ᾱ , Ēωα〉 is an acceptable J -structure. Let τ = cr(σ )

and δ = τ+M̄ ; here we allow the option that δ = ht(M̄) if τ is the largest cardinal in
M̄. If τ is a limit cardinal in M̄ then Ē � δ = E � δ.

From now on assume that κ is an inaccessible cardinal that is not weakly com-
pact. As it is typical with constructions of �-like principles, we begin with identifying
canonical structures assigned to ordinals τ < κ . As κ is not weakly compact, there is
a κ-tree on κ without a cofinal branch; we fix the <E -least one. Thus

T = the <E -least κ-tree on κ without a cofinal branch. (1)

Obviously, T ∈ J E
κ+ and (1) defines T inside J E

κ+ . We will write T � τ to denote the
restriction of T to τ , that is, T � τ is the tree on τ with tree ordering <T ∩(τ × τ).

Lemma 1.2 There is a closed unbounded set of cardinals C ⊆ κ and a map τ �→
δτ < τ+ such that for every τ ∈ C we have

• τ is the largest cardinal in J E
δτ

and is inaccessible in J E
δτ

.

• T � τ is a τ -tree in J E
τ with no cofinal branch in J E

δτ
.

• T � τ is an initial segment of T , that is, for all ξ ∈ T � τ and all ζ ∈ T we have
ζ <T ξ ⇒ ζ ∈ T � τ .

1 Sκµ = {ξ < κ | cf(ξ) = µ}
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828 M. Zeman

Proof Let 〈Xξ | ξ < κ〉 be a continuous chain of elementary substuctures of J E
κ+

such that each Xξ is of size τξ = Xξ ∩ κ ∈ κ . Clearly T ∈ Xξ for all ξ < κ , as T is
definable in J E

κ+ . By Proposition 1.1, each Xξ collapses to some J E
δ(ξ). The fact that

Xξ ≺ J E
κ+ guarantees that τξ is the largest cardinal in J E

δ(ξ), is inaccessible in J E
δ(ξ)

and the tree T collapses to T � τξ ∈ J E
δ(ξ) that has no cofinal branch in J E

δ(ξ). So we
can let C = {τξ | ξ < κ} and δτξ = δ(ξ).

To see that T � τξ is an initial segment of T it suffices to show that the α-th level of
T � τξ agrees with the α-th level of T for all α < τξ . Fix such an α. By elementarity,
there is a bijection fα : θα → Tα in Xξ where Tα is the α-th level of T and θα is its
size. Since T is a κ-tree, θα < κ so θα < τξ . Then Tα = rng( fα) ⊆ Xξ , as θα ⊆ Xξ .


�
Let τ ∈ C. Since T � τ is an initial segment of T and T has height κ , the tree T � τ

has a cofinal branch in L[E]. For τ ∈ C we let

δ′τ = the maximal δ such that T � τ has no cofinal branch in J E
δ .

By the above proposition, δ′τ ≥ δτ . We would like to pick L[E] || δ′τ as our canonical
structure, but the fact that τ may be collapsed inside L[E] || δ′τ or even definably col-
lapsed over L[E] || δ′τ does not allow to make this choice for each τ ∈ C. If a cofinal
branch of T � τ is introduced later or at the same time when τ is singularized, τ
will be treated the same way as in the construction of a global square sequence. This
motivates our choice of the canonical structure. We define

• C0 = the set of all τ ∈ C such that τ is singular in J E
δ′τ+1.

• C1 = C − C0.

and

• Nτ = the singularizing level of L[E] for τ if τ ∈ C0.
• Nτ = L[E] || δ′τ = 〈J E

δ′τ
, Eωδ′τ 〉 if τ ∈ C1.

Notice that even if τ ∈ C0 we have ht(Nτ ) ≥ δτ , so T � τ ∈ Nτ for all τ ∈ C.
We first define the sets Cτ witnessing Theorem 0.1 for τ ∈ lim(C). We will treat the

cases τ ∈ Ci , i = 0, 1 separately and show that the two constructions do not interfere.
We begin with C0, as here we can use the global square sequence of [8].

Let 〈C ′
τ | τ ∈ S ∩ κ〉 denote the global square sequence from [8]2 where S is the

class of all singular cardinals. So each C ′
τ is a closed subset of τ that is unbounded

whenever τ has uncountable cofinality, the sequence of sets C ′
τ is fully coherent and

otp(C ′
τ ) < τ for each τ ∈ S. The class S is divided into two disjoint classes S0 and S1

and the sets C ′
τ satisfy the inclusions C ′

τ ⊆ Si whenever τ ∈ Si for i = 0, 1. We first
make the following observation.

Lemma 1.3 If τ ∈ lim(C) ∩ C0 and cf(τ ) > ω then there is some γ < τ such that
C ′
τ ∩ C − γ ⊆ C0.

2 This is the sequence which is denoted by 〈Cτ | τ ∈ S〉 in [8]; here we write C ′
τ instead of Cτ , as Cτ will

be the final sequence produced in this paper.
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More fine structural global square sequences 829

Proof Obviously, C ′
τ ∩ C is unbounded in τ . As τ ∈ C0, the canonical structure Nτ

is the singularizing L[E]-level for τ . Let τ̄ ∈ C ′
τ and N̄ be the singularizing L[E]-

level for τ̄ . By the construction in [8], there is a �0-preserving map στ̄ ,τ such that
στ̄ ,τ : N̄ → Nτ if τ ∈ S0 and στ̄ ,τ : M̄ → Mτ if τ ∈ S1; here M̄ and Mτ are the
canonical protomice assigned to τ̄ and τ . In our situation we have T � τ ∈ Nτ , as
τ ∈ C. First assume τ ∈ S0. If τ̄ ∈ C ′

τ ∩ C is large enough that T � τ ∈ rng(στ̄ ,τ )
then T � τ̄ ∈ N̄ , στ̄ ,τ (T � τ̄ ) = T � τ and T � τ̄ has no cofinal branch in Nτ̄ .
These conclusions are consequences of the �0-elementarity of the map; the former
two follow by an argument similar to that in proof of Lemma 1.2 and the latter one
follows from the fact that the nonexistence of a cofinal branch can be expressed as a

1-statement, so it is preserved backward under στ̄ ,τ . Hence that T � τ̄ has no cofinal
branch in the singularizing structure for τ̄ , and consequently Nτ̄ = N̄ . Now assume
τ ∈ S1. The conclusion then follows from the fact that Mτ and Nτ compute the car-
dinal successor of τ the same way and they agree below this common successor, and
the same is true of the structures M̄ and N̄ and cardinal τ̄ to which they are assigned.
The same argument as above can be then used with the map στ̄ ,τ which is now a map
between two protomice. As before we conclude that N̄ = Nτ̄ . It follows that τ̄ ∈ C0

and the same conclusion can be made for any τ ′ such that τ̄ ≤ τ ′ < τ , so it suffices
to let γ = τ̄ . 
�

For τ ∈ lim(C) ∩ C0 we let

γτ = the least γ ≤ τ such that C ′
τ ∩ C − γ ⊆ C0

and define C∗
τ as follows.

• If C ′
τ ∩ C − γτ is unbounded in τ we let C∗

τ = C ′
τ ∩ C − γτ ;

• otherwise C∗
τ is the <E -least sequence of order type ω converging to τ .

Lemma 1.3 together with the properties of the sets C ′
τ guarantee that this definition

makes sense, each C∗
τ is a closed unbounded subset of τ and C ∗̄

τ = C∗
τ ∩ τ̄ whenever

τ̄ ∈ lim(C∗
τ ). Thus, for τ ∈ lim(C) ∩ C0, (a) and (b) in Theorem 0.1 hold with C∗

τ in
place of Cτ .

We next define sets C∗
τ for τ ∈ lim(C) ∩ C1. The definition of the sets C∗

τ is based
on the following observation, which is a direct consequence of the fact that τ ∈ C1.
Recall that for an acceptable structure N , the standard parameter is denoted by pN .

τ ∩ h̃n+1
Nτ
(α ∪ {pNτ }) is bounded in τ whenever α < τ and n ∈ ω. (2)

The sets C∗
τ are defined as follows.

• C∗
τ is the set of all τ̄ ∈ τ ∩ C1 satisfying: Nτ̄ is a premouse of the same type as

Nτ and there is a �∗-preserving embedding στ̄ ,τ such that:
(i) τ̄ = cr(τ ) and στ̄ ,τ (τ̄ ) = τ .

(ii) στ̄ ,τ (pNτ̄ ) = pNτ .
(iii) στ̄ ,τ (T � τ̄ ) = T � τ .

123



830 M. Zeman

Clause (iii) in the above definition is superfluous: By the construction of the set C,
if τ ∈ C then J E

δτ
satisfies the statement “T � τ is the <E -least τ -tree on τ with-

out a cofinal branch”. Moreover, J E
δτ

is a ZFC−-model since it can be elementarily

embedded into J E
κ+ , so Nτ is a proper extension of J E

δτ
. So the map στ̄ ,τ is sufficiently

elementary to satisfy (iii) even if we did not require it explicitly. We include it as a part
of the definition in order to simplify the matters. Clearly, the map στ̄ ,τ is the unique
�∗-preserving map σ : Nτ̄ → Nτ satisfying (i) and (ii).

Lemma 1.4 If τ ∈ lim(C) ∩ C1 and cf(τ ) > ω then C∗
τ is unbounded in τ .

Proof Given some τ ∗ < τ we find τ̄ ∈ C∗
τ such that τ ∗ ≤ τ̄ . As is typical for con-

structions of square sequences, we will look for the right kind of hulls. Recall that if
N is an acceptable structure, p ∈ N is a finite set of ordinals and ν is an ordinal then
W ν,p

N is the standard witness for p with respect to the ordinal ν and structure N . Let

• n ∈ ω be such that ω�n+1
Nτ

≤ τ < ω�n
Nτ

;

Such an n exists, as there is a cofinal branch through T � τ in J E
δ′τ+1 − J E

δ′τ
and such a

branch, being a subset of τ , is �∗-definable over J E
δ′τ+1 || δ′τ = Nτ . Let x ∈ [τ ]<ω be

such that T � τ ∈ h̃n+1
Nτ
(x ∪{pNτ }),W ν,pτ

Nτ
∈ h̃n+1

Nτ
(x ∪{pNτ })whenever ν ∈ pNτ , and

some cofinal branch through T � τ is �(n)1 (Nτ )-definable from x and pNτ . Such an x
exists, as these tasks require only a finite amount of information. Define a sequence
〈τk, Xk | k ∈ ω〉 of ordinals below τ and hulls as follows.

τ0 = max(x ∪ {τ ∗})+ 1

Xk =
⋃

�∈ω
h̃�+1

Nτ
(τk ∪ {pNτ })

τ ′
k+1 = sup(τ ∩ Xk)

τk+1 = min(C − τ ′
k+1)+ 1

By (2), each τ ∩ h̃�+1
Nτ
(τκ ∪ {pNτ }) is smaller than τ , granting that τk < τ . Since τ

has uncountable cofinality, also τk+1 < τ , which enables us to run induction on k and
then conclude that also τ̄ = sup({τk | k ∈ ω}) is below τ . Letting X = ⋃

k∈ω Xk we
have τ ∩ X = τ̄ . In the following we show that τ̄ ∈ C∗

τ .
Notice first that since the ordinals τk are strictly increasing and each interval

(τk, τk+1) has nonempty intersection with C, the supremum τ̄ is a limit point of C, so
τ̄ ∈ C. We next observe:

X = h̃n+1
Nτ
(τ̄ ∪ {pNτ }). (3)

By construction, each z ∈ X is of the form h̃�+1
Nτ
(i, 〈z̄, pNτ 〉) for some � ≥ n, i ∈ ω

and z̄ ∈ [τ̄ ]<ω. Assume � > n. The function h̃�+1
Nτ
(u, 〈v, pNτ 〉) can be expressed as

a composition h̃n+1
Nτ
((u)20, 〈h((u)21, v), pNτ 〉) where h : ω × J E

τ → J E
τ is a partial

good�(�)1 -function; see [7], Sect. 1.8 for details. Here (u)2i is the i-th component of u
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More fine structural global square sequences 831

under the Gödel pairing function for i = 0, 1. If z̄ ∈ [τk]<ω then h((u)21, z̄) ∈ J E
τ ′

k
, and

since there is a uniformly �1-definable surjection of [τ ′
k]<ω onto J E

τ ′
k

we can replace

the above value of h with some finite z′ ∈ [τ ′
k]<ω. So there is some j < ω such that

z = h̃n+1
Nτ
( j, 〈z′, pNτ 〉). This proves (3).

Let N̄ be the transitive collapse of X and σ : N̄ → Nτ be the inverse to the
Mostowski collapsing isomorphism. Then τ̄ = cr(σ ) and σ(τ̄ ) = τ . Moreover, it
follows from (3) and the construction of X that

X = h̃�+1
Nτ
(τ̄ ∪ {pNτ }) whenever � ≥ n, (4)

so the map σ is �(�)1 -preserving for all such � hence �∗-preserving. Here (3) directly
yields the inclusion “⊆”; from the construction of X we obtain the converse. As
x, T � τ ∈ X , we have x, T � τ̄ ∈ N̄ and σ(x, T � τ̄ ) = (x, T � τ). For x this
is immediate, for T � τ this follows from the fact that T � τ ∈ rng(σ ) by an argu-
ment similar to that in the proof of Lemma 1.2. Since pτ ∈ X we have some p̄ ∈ N̄
such that σ( p̄) = pτ . From (3) we obtain N̄ = h̃n+1

N̄
(τ̄ ∪ { p̄}) which implies that

ω�n+1
N̄

≤ τ̄ and p̄ ∈ Rn+1
N̄

.3 By construction τ̄ is a limit cardinal in L[E], so actually

ω�ω
N̄

= ω�n+1
N̄

= τ . The structure N̄ is a premouse of the same type as N ; this follows
from the �∗-elementarity of σ .

An application of the Condensation Lemma to the map σ : N̄ → Nτ then yields
that N̄ is a solid premouse. The choice of the set x at the beginning of the construction
guarantees that for each ν ∈ pτ the standard witness W ν,pτ

Nτ
is an element of X , so

its preimage Qν under σ is a generalized witness for ν̄ = σ−1(ν) ∈ p̄ with respect
to M and p̄.4 So p̄ = pN̄ and N̄ is sound above τ̄ by [7], Lemma 1.12.5. One more
application of the Condensation Lemma to the map σ : N̄ → N then gives us the
following options: (a) N̄ = core(N ), (b) N̄ is a proper initial segment of N , (c) N̄ is
an ultrapower of an initial segment N ′ of N with critical point equal to the cardinal
predecessor of τ̄ in N ′ and (d) N̄ is a proper initial segment of Ult(N , Eτ̄ ). Here option
(a) is impossible as N̄ and N have different ultimate projecta and options (c) and (d)
are impossible as τ̄ is a limit cardinal in N̄ . Thus, N̄ is a proper initial segment of Nτ
and thereby an initial segment of L[E].

So far we have obtained an initial segment N̄ of L[E] and a �∗-preserving map
σ : N̄ → Nτ such that τ ∗ < τ̄ = cr(σ ) is inaccessible in N̄ and σ(τ̄ , pN̄ , T � τ̄ ) =
(τ, pτ , T � τ). Obviously, T � τ̄ has no cofinal branch in N̄ , as T � τ has no cofinal
branch in Nτ and σ is sufficiently elementary. In order to verify that τ̄ ∈ C∗

τ we have
to verify that τ̄ ∈ C1 which amounts to showing that N̄ = Nτ̄ . This is equivalent
to saying that τ̄ is regular in J E

β+1 and T � τ̄ has a cofinal branch in J E
β+1 where

β = ht(Nτ̄ ). The former follows immediately from the construction of X , as the �∗-
elementarity of σ implies that h̃�+1

N̄
(τk ∪ {pN̄ }) is bounded in τ̄ for all k, � ∈ ω. As

any function f : τ̄ → τ̄ that is an element of J E
β+1 is definable over N̄ and therefore

3 See [7], Sect. 1.5
4 See ([7]), Sect. 1.12 or ([8])
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832 M. Zeman

can be expressed in the form h̃�+1
N̄
(− ∪ {q ∪ pN̄ }) for some � ∈ ω and q ∈ [τ̄ ]<ω,

such function cannot singularize τ̄ .
To see that J E

β+1 contains a cofinal branch through T � τ̄ it suffices to show that

such a branch is �∗-definable over N̄ . Let b ∈ J E
δ′τ+1 be a cofinal branch through

T � τ . Similarly as with f above, it follows that b is �(�)1 (Nτ )-definable from pNτ

and some q ∈ [τ ]<ω for some � ∈ ω. Let ϕ(u, v) be a �(�)1 -formula that defines b,
that is, for each ξ < τ we have

ξ ∈ b ⇐⇒ Nτ |� ϕ(ξ, q ∪ pNτ ).

We may without loss of generality assume that � ≥ n. We first observe that q can be
taken from [τ̄ ]<ω. This is the case, as the statement “the set of all ξ < τ satisfying
Nτ |� ϕ(ξ, q ∪ pNτ ) determines a cofinal branch through T � τ” can be expressed in
a 
(�+2)

1 -manner, namely as the conjunction of

(∀ξ�+1, ζ �+1)
[(
ϕ(ξ�+1, q ∪ pNτ ) & ϕ(ζ �+1, q ∪ pNτ )

)

−→
(
ξ�+1 <T ζ

�+1 ∨ ζ �+1 <T ξ
�+1

)]

and

(∀ξ�+2)(∃ζ �+1)
(
ζ �+1 > ξ�+2 & ϕ(ζ �+2, q ∪ pNτ )

)
.

The former expresses that b determines a branch through T � τ and the latter expresses
that the branch is cofinal. Recall that T � τ consists of ordinals smaller than τ and we
chose n so that ω�n

Nτ
≤ τ . Since τ is an L[E]-cardinal by Lemma 1.2, we actually

haveω�n
Nτ

= τ = ω�ωNτ . This allows us to use variables ξ�+1 and ξ�+1 in the formulae
above. The conjunction of these formulae is a statement about q and pNτ ; denote it by
ψ(q, pNτ ). As q witnesses that Nτ |� (∃z�+3)ψ(z, pNτ ) and X is closed under good
�∗-functions (again, the variable z�+3 can be used for the same reason as explained
above), there also must be a witness q̄ ∈ X . Then q̄ ∈ [τ̄ ]<ω and N̄ |� ψ(q̄, pN̄ ). It
follows that

{
ξ < τ̄ | N̄ |� ϕ(ξ, q̄ ∪ pN̄ )

}
determines a cofinal branch through T � τ̄ .

Such a branch is�(�)1 -definable over N̄ in parameters. This completes the proof of the
fact that τ̄ ∈ C1 and thereby the proof of the lemma. 
�
Lemma 1.5 If τ ∈ lim(C) ∩ C1 then C∗

τ is closed.

Proof Let τ̄ be a limit point of C∗
τ . We show that τ̄ ∈ C∗

τ . As in the previous lemma,
let

• n be such that ω�n+1
Nτ

≤ τ < ω�n
Nτ

.

We first observe that if τ ∗ ∈ C∗
τ then ω�n+1

Nτ∗ ≤ τ̄ < ω�n
Nτ∗ . The inequality on the

right follows from the fact that Nτ satisfies the �(n)1 -statement (∃ξn)(τ < ξn) and
this statement is preserved under σ . The inequality on the left follows from the fact
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More fine structural global square sequences 833

that h̃n+1
Nτ
(τ ∪ {pNτ }) = Nτ and σ preserves �(n)1 -statements. Consider the diagram

〈Nτ∗ , στ∗,τ ′ | τ ∗ ≤ τ ′ ∈ τ̄ ∩ C∗
τ 〉; let 〈N̄ , στ∗ | τ ∗ ∈ τ̄ ∈ C∗

τ 〉 be its direct limit
with the direct limit maps στ∗ : Nτ∗ → N̄ and let σ̄ : N̄ → Nτ be the canoni-
cal embedding of the direct limit N̄ into Nτ satisfying σ̄ ◦ στ∗ = στ∗,τ . Standard
considerations yield that N̄ can be viewed as a premouse of the same type as Nτ
and all Nτ∗ , all maps στ∗ and σ̄ are �∗-preserving and ω�n+1

N̄
≤ τ̄ < ω�n

N̄
. If p̄ is

the common value of στ∗(pNτ∗ ) then obviously σ̄ ( p̄) = pNτ . By the properties of
n recorded above, h̃n+1

Nτ
(τ ∪ {pNτ }) = Nτ so h̃n+1

N̄
(τ̄ ∪ { p̄}) = N̄ , as follows from

preservation properties of σ̄ . An application of the Condensation Lemma to the map
σ̄ : N̄ → Nτ yields that N̄ is solid. Since each Nτ∗ , being a proper initial segment of
L[E], is sound, for each ν ∈ pNτ∗ the standard witness W

ν,pNτ∗
Nτ∗ is an element of Nτ∗

and its image under στ∗ is a generalized witness for στ∗(ν)with respect to N̄ and p̄, as
στ∗ is sufficiently elementary. This way we conclude that for each element of p̄ there
is in N̄ a generalized witness with respect to N̄ and p̄, and exactly as in the proof of
Lemma 1.4 then conclude that N̄ is sound and p̄ = pN̄ . One more application of the
Condensation Lemma then yields, exactly as in Lemma 1.4 that N̄ is an initial segment
of Nτ . Obviously τ̄ = cr(σ ), σ (τ̄ , pN̄ ) = τ, pNτ , the cardinal τ̄ is inaccessible in N̄
and N̄ , being a limit point of C∗

τ , is a limit point of C hence τ̄ ∈ C. It remains to prove
that τ̄ ∈ C1. As σ is�∗-preserving, this follows exactly as in the proof of Lemma 1.4.5


�
Lemma 1.6 If τ ∈ lim(C) ∩ C1 and τ̄ ∈ lim(C∗

τ ) then τ̄ ∈ lim(C) ∩ C1 and C ∗̄
τ =

C∗
τ ∩ τ̄ .

Proof Since τ ∈ lim(C)∩ C1, the condition τ̄ ∈ lim(C∗
τ ) implies τ̄ ∈ lim(C)∩ C1, so

C∗
τ and C ∗̄

τ are defined in the same way. If τ ∗ ∈ Cτ̄ then τ ∗ ∈ C1 and we have the map
στ∗,τ̄ : Nτ∗ → Nτ̄ witnessing the membership of τ ∗ to C ∗̄

τ . But then στ̄ ,τ ◦ στ∗,τ̄ :
Nτ∗ → Nτ witnesses the membership of τ ∗ to Cτ . Conversely, if τ ∗ ∈ C∗

τ ∩ τ̄ then
τ ∗ ∈ C1 and there is a map στ∗,τ witnessing the membership of τ ∗ to Cτ . Since both
στ∗,τ and στ̄ ,τ are �∗-preserving and τ ∗ < τ̄ we have

rng(στ∗,τ ) =
⋃

�∈ω
h̃�+1

Nτ
(τ ∗ ∪ {pNτ }) ⊆

⋃

�∈ω
h̃�+1

Nτ
(τ̄ ∪ {pNτ }) = rng(στ̄ ,τ ),

so (στ̄ ,τ )−1 ◦ στ∗,τ : Nτ∗ → Nτ̄ witnesses the membership of τ ∗ to C ∗̄
τ . 
�

So far we have constructed sets C∗
τ for τ ∈ lim(C) such that (a) and (b) in Theo-

rem 0.1 hold with C∗
τ in place of Cτ . Given a stationary set A ⊆ κ , we find a stationary

A′ ⊆ A and refine C∗
τ into Cτ that will satisfy all conclusions of the Theorem. We let

• A′ = the set of all τ ∈ C for which there are an L[E]-level P = J E
β and a

parameter a ∈ P such that:

5 Alternatively, one can consider a definition of a cofinal branch of T � τ∗ over Nτ∗ from parameters pNτ∗
and q ∈ [τ∗]<ω for some/any τ∗ ∈ C∗

τ ∩ τ̄ and show that the same definition over N̄ defines a cofinal
branch through T � τ̄ from pN̄ and q. This works, as στ∗ is �∗-preserving.
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(a) P |� ZFC−, τ is the largest cardinal in P , is inaccessible in P and T � τ
has no cofinal branch in P .

(b) For every X ≺ P satisfying X ∩ τ ∈ τ and p ∈ X we have X ∩ τ /∈ A.

The same proof as that of [8, Theorem 3.21] shows that the set A′ is stationary in κ .
Notice that the only difference between A′ in this paper and A′ in [8] is the additional
requirement in (a) above that T � τ has no cofinal branch in P and the restriction of
the set A′ to elements of the closed unbounded set C.

Lemma 1.7 Let τ ∈ lim(C). If τ̄ ∈ lim(C∗
τ )∩ A′ then there is some τ ∗ ∈ C∗

τ ∩ τ̄ such
that A is disjoint with C∗

τ ∩ (τ ∗, τ̄ ).

Proof For τ ∈ C0 this was proved in [8], Lemma 3.22. For τ ∈ C1 the same argument
goes through. If there is a pair (P, a) ∈ Nτ̄ witnessing the membership of τ̄ to A′ the
argument can be literally repeated: Given τ ′ ∈ C∗

τ ∩ τ̄ large enough that (P, a) is in
the range of στ ′,τ̄ , let P ′ ∈ Nτ ′ be such that στ ′,τ̄ (P ′) = P; then X = στ ′,τ̄ [P ′] ≺ P
and a ∈ X , so τ ′ = X ∩ τ̄ /∈ A. In the remaining case we conclude that P = J E

δ ′̄τ
where

recall that δ ′̄τ = ht(Nτ̄ ). This is the case, as T � τ̄ has a cofinal branch in J E
δ ′̄τ+1

. As

P |� ZFC− and Nτ̄ projects to τ̄ , necessarily E Nτ̄
top is an extender with λ(E Nτ̄

top) = τ̄ .

Since στ ′,τ̄ is �∗-preserving, E
Nτ ′
top is an extender with λ(E

Nτ ′
top ) = τ ′ and the two

extenders have the same critical point µ < τ ′. Moreover, since both τ ′ and τ̄ are
limit cardinals, both Nτ ′ and Nτ̄ compute the cardinal successor of µ the same way
as L[E]; denote this common successor by ϑ . As both these premice are coherent

structures, J E
δ′
τ ′

= Ult(J E
ϑ , E

Nτ ′
top ), J E

δ ′̄τ
= Ult(J E

ϑ , E Nτ̄
top) and it follows immediately

that στ ′,τ̄ : π ′( f )(α) �→ π̄( f )(στ ′,τ̄ (α)) and therefore is fully elementary. Hence if
a ∈ rng(στ ′,τ̄ ) then X = rng(στ ′,τ̄ ) ≺ P . It follows that τ ′ = X ∩ τ̄ /∈ A. 
�

For τ ∈ lim(C) we can now define sets Cτ as in [8]. We first let

δτ = the least δ ≤ τ such that A ∩ C∗
τ − δ = ∅.

We then let

Cτ = C∗
τ −

⋃ {
(δτ̄ , τ̄ ) | τ̄ ∈ lim(C∗

τ ) ∩ A′} .

Then the sets Cτ are obviously closed. If A′ ∩ lim(C∗
τ ) is bounded in τ then Cτ is

clearly unbounded; otherwise Cτ is unbounded because it follows from its definition
that A′ ∩ lim(C∗

τ ) ⊆ Cτ . The coherency of the sets Cτ follows from the coherency of
the sets C∗

τ and the uniformity of the definition of Cτ . Finally lim(Cτ ) ∩ A′ = ∅, as
every element of A′ is a successor point of Cτ .

It remains to define the sets Cτ for τ /∈ lim(C). Notice that A′ ⊆ C, which simplifies
the matters. The complement of lim(C) can be written as the union of disjoint open
intervals that are bounded in κ . We assume that these intervals are maximal. Let (α, β)
be such an interval. Then α, β ∈ lim(C) by maximality. The set Cβ is defined above,
and it has no limit points in the interval (α, β). For each τ ∈ (α, β) we can thus let
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Cτ = τ − (α + 1). Obviously, this definition does not collide with the definition in
the case where τ ∈ lim(C) and satisfies (a)–(c) in Theorem 0.1. This completes the
entire construction.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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