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Synopsis

A finite element solution for the natural frequencies and mode shapes of
free axisymmetrical vibrations and the dynamic response of arbitrary rotationally
symmetric shells is presented in this report. The stiffness for the basic
annular plate, conical and cylindrical elements are constructed by using the
static homogeneous solutions of the classical plate and shell bending theories.
The mass matrix for the snnular plate is based on the same solutions. For the
conical and the cylindrical elements the mass matrix is determined uging an
assumed displacement field., The developed solutions were programmed in
Fortran 1IV. The illustrative examples include a detsiled analysis of a
problem of a shallow spherical cap subjected to an axisymmetrical pressure
varying with time, a solution for a plate subjected to a time-dependent ring

load snd an analysis of a dynamic response of a complete sphere.



I. INTRODUCTION

Thin shells of revolution are the most important structures used in the
aero~-space industry. Much work has been done on the solution of static problems
for such shells, however, the dynsmic analysis of shells cof revolution hasg
been principally limited to the consideration of special cases. The treatment
of the general dynamic analysis of thin elastic shells according to the
bending theory has not been resolved satisfactory. Federhofer [1] in 1937 and
E. Reissner [2] in 1946 were the first people to treat the axisymmetric
vibration problem of shallow spherical shells by means of a variational method.
Naghdi and Kalmins [3], using an uncoupled system of equations equivalent to
that in [1], obtained in exact solution for the problem of axisymmetric natural
frequencies and mode shapes of free-vibration of a hemispherical shell,.
Subsequently, a general numerical analysis of the natural frequencies and
mode shape of free-vibration of rotational shells was given by Kalkins [4].
Recently Klein [5], using the matrix displacement finite slement approach, has
succeeded in treating the dynamic response problem for an arbitrary shell of
revolution. In [5], for the hasic conical element the msss and stiffness
matrix used in the equations of motion were derived from an assumed dig-~
placement field taken in polynomiszl form., The system of sguation was solved
by means of a finite difference technique to give directly the dynamic response.

The purpose of the present report is to determine the axisymmetrical
natural frequencies and mode shapes of free-vibration as well as of the

dynamic response to arbitrary axisymmetrical loading for rotationally
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symmetric shells with variocus boundary conditions. The analysis is based on
the linear bending theory of shells. Any shell studied by the proposed
procedure 1s approximated by the combination of basic shell slements of
trucated conical, cylindrical and plate segments. The stiffness matrix is

derived from the analytical solution of the homogeneous field egquations of

the static shell theory for the basic elements. These scolutions are also used
as the displacement functions to formulate the element mass matrix in a manner
similar to the Rayleigh-Ritz procedure. The eguations of motions are solved
by using normal-mode superposition approach. To carry out those solutions,
computer programs have been wirtten in Fortran 1V,

As an illustration of the developed solution, the problem of a spherical
cap subjected to a axisymmetrical pressure load varying with time is solved.
The results for dynamic response are compared with those which Klein [5]
obtained by a different method. Excellent agreement between the two solutions
is feund. 1In order to show the characteristic dynamic behavior of the shell
the natural frequencies and mode shapes are alsoc given. Furthermore, a circular
plate under time-dependent ring load is analyzed by using only two finite
elements to indicate the advantage of "exact' formulations in the proposed
solution. The results are identical with those using 20 finite elements,
Finally, to demonstrate the generality of the proposed method the dynamic

response of a complete sphere is solved by using 50 elements.



I1. HOMOGENEOUS STATIC SOLUTIONS FOR BASIC SHELL ELEMENTS

The static homogeneous solutions for axisymmetrical deformation of uni-
form thickuness basic shell elements are available in Refs. 6, 7, 10 and 11,
In this report we use these solutions as a basis for formulating the element

stiffness matrices [k] and the element mass matrices [m]. It is sdvantageous

to express these solutions in matrix form as follows:

. X(s)‘ o
* w(s) + -
and
. [(M_(s))
| e | :
S.(s)f - zw (s); = [¥. ()] {A} (2)
. s ij J
S QS(S))

where i = 1,2,3 and j = 1,2,......,6.
In these equations {d(ﬁ)} are displacement-variables which are

comprised of rotational X(s), meridiocnal v(s), and normal w(s) displacements

{S(s)} are force-variasbles which consist of meridional moments MS(s)y
meridional stress-resultants NS(S)7 and shearing stress-resultants Qs(s)a
[X(s) ] and [Y(s)] are 3 by 6 matrices whose rows represent six linearly
independent coefficients of static sclutions, { A} is a constant column
matrix which can be determined from the nodal displacements at each end

of the shell element.



The non-zerc elements functions Xij and Yij of [X(s)] and [Y(s)], for each
of the basic shell elements used in this work, are listed separately in the

following sections,

I1-1. Conical Elements

The non-zero functions Xij and Yi4 of [X(s)] and [Y(s)}] in Egs. (1) and
o
(2) for the conical element are listed as below. The symbols involved are

defined in Fig. 1.

. -1 oLy . —— : ~ -1 Sy
Xllucl(bel vy + 2y “ber' y); X12H cl(ber v 2y “bel’' y):
X . =c (kei y + 2yu1ker’ v X  =-c_(ker y -~ Zywlker’ v);
13771 ' o 147 1™ ;
) . =1

X15:~(Cot a/EtY (1/s8); XZIZCQ[(V/Q)ber y - (1+Y)y “bei' v];

v -1 vV -1 .
o= et i J L% ! 2 I = s v 5 ! :
X22 02(2 bei vy + (1+V) y ber' ¥v); XZB [2 ker y-{1+V)y "kei' v];

y -1 )

{  =c (= kei y+(1+V oy = z
X24 02(2 kel y+(1+V)y ker® yJ); XZS log (s) /Et;
X = 1 X, =c_{(ber 1 vy bei' yJ);

26~ 317 %" Y7o Y7
X, _=c.(bei y-r v bei y) X _=c.(ker y-L vy ker' y)

3279 Y=g ¥ ber ¥ 33~ Gz Eer Y5 v oRer Y
X =c_(kei y-r v kei' y): X =e S9M (1og s 4+ V) : X —-cot
3473 ym5 ¥ ¥ 357" Et -1 '3
»11:c4(ybei“y—2(lwv) (bei y+2ym1ber‘y) 3

Y12:_04(yber'yu2(lmv) (ber y~2ywlbei?y} )5

Y (ykei'y-2(1-V) (kei y+2y”1ker*y) )

137%

¥, ,=7c, (yker'y-2(1-V) (ker y-2y " ker'y) )



-1, , -1
jomnd s M jonnd 2 ' M
Y, CS(ber v-2v “bei'y); Y, 05(b61 y+2y = ber'y);

Y. . =c_(ker y - 2y = kei'y); Y, =c_{(kei y + 2yw1 ker'y);
23 5 . 24 5 ’
v =L, Y. —tc (ber y - 2y ' bei'y)
2575 317 Gt Y T Y I

- -1 .
— - 1 . Voo e - Dy e o
Y32 C6(bel vy + 2y ber'y); Y33 cg(k@x v v kei'y);
Y. =c_(kei + 27ml ker'y) ;
34%% y o+ 2y )
. 2
(N0¢ -\
here LoLoamam o ., 2cotg
1 B h2 2 Eh
2
I's] = -+ EM I's — 2 ~°2
3~ Eh a T2
1 . 1
C5 = 5 cot O C6 =z

II-2. Cylindrical Elements

The non-zero functions Xij and Yij of [X(s)] and [¥(s)] in Egs. (1) and
(2) for the cylindrical elements are listed below and the symbols involved

are defined in Fig. 2,
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I1-3. Plate Elements

The non-zero functions Xij and Yij of {X{s)] and [Y(s)] in Ege. (1) and
(2) for the plates elements are listed as below and the symbols involved are

defined in Fig. 3.
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I1I. BASIC SHELL ELEMENT STIFFNESS MATRIX

In this report the derivation of the stiffness matrix [k] for each of the
basic shell elements is based upon the static homogeneous solutions given in
Egs. (1) and (2). 1In these equations {A}v must be determined from a total
of six boundary conditions, i.e., from three conditions at each end of the

shell elements. This is done by evaluating Eg. (1) 2t s=a, and s=b. Thus:

-1
X (a) d (a)
A = | =324 e e
{2} [x ) J {d (b )
, : d (a) .
where we define the elements of the matrix S in Eg. (3) as the
shell element local displacement coordinates {d} , (see Fig. 4). On this

basis we can express the displacement and force-variables in terms of six
local displacements { d} by substituting {A} from Eq. (3) into Eq. (1),

and Eq. (2). This yields

{d (s>} - [X(s) ] [”i“%gﬂ {d} (4)

and

(s} - [y(@] [%%g%ﬁ {a} (5)

Evaluating {S(s)} in Eg. (5) at the edges of the element s=a, and

s=b, we obtain

5 (a) [ Y (a)_ X (=2)
{é“zsr}* [y () J [x (b) ] {a] (52)



To determine the element stiffness matrix, we have to find a relation
between the six local displacements {d} and the corresponding forces {S}

in the local coordinate system (see Fig. 4). By comparing Fig. 1 and Fig. 4,

i
ST o SH} ,
{S} - [ 0 | IJ {s (b) (6)

Where [I] is identity matrix and [0O] is null matrix. By substiuting Eg. (5a)
into the above equation, we can find the desired relation between the shell

element local coordinates {d} and the forces {S} in the same coordinates.

That is:
} -1
-I 37 O Y (a) X (a) )
{s} :[”6"?’?} [“&?”EB)‘“J [*2“555“} {a} e
g -1
o " ma 1] Sl 0 Y Ca) ] X (a)
From definition it follows that the matrix [ G ? I] [ ) ] [ X708 J

in Eq. (7) is the shell element stiffness matrix based on local coordinate

system {d} . Since as a final result we want to form a single structural
stiffness matrix in cooperating many elements, we transform the local element
stiffness matrix to a stiffness matrix based on the system {or global) co~-
ordinates {q} (see Fig. 5). The transformation relation between local
coordinates {d} and the system coordinates {q} can be obtained by comparing

Fig. 4 and Fig. 5. This relation can be expressed by the following equation

{di} = [7,,] {qj} (8)
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where i, j=1,2,...... , 6 and:
~ | —

1 O 0 :

i
[T] _ 0 cosQ =-singd E 0

0 sind cosQ : {(8a)

wwwwwwwwwwwwwwwww oo e s s o s s o v . o o s e s
: 1 0 )
i

0 : 0 cos -sind

|
; 0 sing COSCY

Furthermore, the relation between forces {S} in the {d} coordinate

system, and forces {:Q} in the {q} coordinate system can be expressed as:

{of = 1m0 {SJ} 9

Substituting Eq. (7) and Eg. (8) into the above equation, we have

(o) - o 34 [ 3]

X (a)
B = | mmemeie
[B] [XW)] (10a)
and:
i
I .
: -1 3 O Y {a)
= | mmemgem | ] et n 10b)
[e] (:O?I:] [Y(b)J (10b.
The desired element stiffness matrix [k] based on generalized system
coordinate {q} , on the above basis becomes:

(k] = (11" [e] (817" [7] (11)
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Since in this work [k] is derived from classical static solutions for
thin plates and shells and is not found by assuming a particular displacement
field, the stiffness matrix given by Eq. (11) is "exact"” for the selected

basic shell elements.
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IV, BASIC SHELL ELEMENT MASS MATRIX

In dynamic problems the forces and displacements are time dependent, and
the inertia of accelerating masses must be taken into consideration., In a
given coordinate system the character of the inertia force for a shell element
can be represented by 2 mass matrix. Instead of using the conventional lumped
mass technique, we constructed the mass matrix by considering the correct mass
distribution in the shell element. The technique of constructing the dis-
tributed or consistent mass matrix to associate it with the nodal rings is
similar to the well-known Reyleigh-Ritz method for individual shell elements.
The key step in this technique is to assume a displacement field for the shell
element in terms of a certasin coordinate system such as expressed by Eg. (4).
In this report we will discuss two cases with different assumed displacement
fields. 1In the first case, at a2 particular time t, the displacement field is
assumed to be the same as that which was used in Part III for formulating the
element stiffness matrix. For this purpose the time factor is introduced into

Eg. (4), yielding

{d(s,t)} = [X(s)] ‘:%%%WJ {d(t)}
(12)

il
1
e
o~
he—g
A
S
i
i
1
§o~
R
e
i
[
3
[—
7~
fel
o~
o+
e’
!

where the matrix [X(s)] is defined in Part II. We call the mass matrix,
which is obtained by using the above assumed displacement field, the "consistent

mass matrix’ for being consistent with the element stiffness matrix. In the
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second case, we assume the displacement field in the simplest possible

s . X ‘ .
polynomial form. In this case, the matrices [X(s)] and [we~§iin in BEq. (12}

X (b)
become
0 1 28 332 O 0
[X(s)] =0 O 0 0 1 s (13)
1 s 52 58 O 0
and . —
0 1 22 3a 0 0
x@ | _(° v 5 g
X (b) 1 a a a 0 0
G 1 2b 3b2 0 0 (13a)
0 0 0 0 1 b
1 b bz b3 0 0
o

We call the mass matrix, which is obtained by using the assumed polynomial dis-
placement field, the ''distributed mass matrix.'

The general procedure of constructing the mass matrix is the same for the
two cases. However, in determing the mass matrix a different meaning of
[X(s)] is assigned depending on whether the distributed or the consistent mass
matrix is desired.

The general expression for the kinetic energy T(t) of a shell element can

be written as
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2 .2 .2 .2
T(t) = = mop, X o(s,t) +m v {s,t) + mw (s5,t) ]2 n r(s) ds (14)
5 -

Where m is the mass per unit of shell surface ares, pA is the radius of
gyration of the section of a shell element, and r(s) is the transverse radius
of the shell element. For different basic shell elements see Figs. 1, 2 and 3.

Upon substituting the displacement variables involved in Eg. (12) into
Eg. (14), we obtain
T [Bwl]T

T(t) = % <a(t) > [T] L 2n [E(s)] r(s)ds [B '] [T] {é(t)} (15)

where
2

= < X ‘s)> + S < 3 g) >

[Eij(S)] LN {Xli(Sf)} ’13‘5(‘5' +m {Xzfs}} \ij(s,

+m {Xgi(s)} < X j(s) > (15a)

and

<X (s) >, <X (s} > < XSj(s) > are the row matrices identical to
the first, second and third row of the matrix [X(s)].

By comparing Eg. (15), with the ususl one for kinetic energy,

1 . . .
T(t) = 5 <4 (t) > [m] {q(t)} (16
We conclude that the element mass matrix [m] in the system coordinates is
-T -1.T v e e :
[m] = [T] [B "] U/\ 25 [E(s)] v(s) as [B™'] [T] 17y

5
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The abowe equation can be used for formulating the element mass matrix in
both cases, i.e., for the ''consistent mass matrix’ or for the 'distributed
mass matrix.' For the "consistent mass matrix,’ the matrix [X(s)] from which
the matrices [B] and [E(s)] can be obtained is defined in Articles I1II-1, 1I-2,
and 11-3, (see Eg. (10-a) and Eg. (15-a) )} for the "distributed mass matrix’

the matrix [X(s)] is defined by Eg. (13).
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V. JOINT LOAD MATRIX FOR BASIC SHELL ELEMENTS

In the finite element analysis, only the forces and displacements of
certain discrete (nodal) points of the structure are considered. At these
points the compatibility and the equilibrium condition must be fulfilled.

For this reason, any loading condition of a shell must be replaced by element
joint loads which are considered to be a system equivalent to the actual loads.
To accomplish this we assume that all of the actual load, which is distributed
in the region between the centroid and upper end of the element, is concentrated
or lumped at the upper end joint of the element, and all of the remaining load
is lumped at the lower end joint of the element. Thus we can develop an

expression for the 'approximate joint load’ {p(tj} to represent the actusl

load {p(s,t)} , (see Fig. 6), i.e.,
C .
T pla,t) 2Zar(s) ds
{p(t)} = [T} et TR (18)
b .
p{s,t) 2ar(s) ds
C

where [T] is the coordinate transformation matrix, defined by Eg. (8a) and a,
b,c are the s values for the upper end, lower end and centroid of the shell
element, respectively.

A solution using this approximate joint load” matrix has proved to be
quite satisfactory provided the size of the element is reasonably small (Ref.

3). However, if the size of the elements is made bigger, the discrepancy with
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the actual solution may become significant. In the latter cases, it may be
desirable to use the more accurste equivalent joint load matrix, which we

¥

shall call “consistent joint load matrix.” The "consistent joint load matrix”
is constructed so that the work done by the actual load is equal to the work
done by the ''consistent joint load’ due to a virtual displacement. Here we

only write down the final results of the corresponding matrix equation. Further

information on this matrix can be found in Ref. {(15).

{pu)} R f[X(S)]T {p(syt)} onr(s) ds (19)
&
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VI. THE EQUATION OF MOTION FOR THE DYNAMIC
RESPONSE OF THE COMPLETE SHELL STRUCTURE

We have already set up shell element stiffness, shell element mass matrix,
and shell element joint load matrix. We will now be able to find the relstions
between forces and displacements through structural stiffness matrix, struct-
ural mass matrix, and structural joint load matrix by means of continuity and
equilibrium conditions at the nodal points. We consider that for a particular
node, and in a particular direction, at any time the displacement of the
structure equals the displacement of any element joint at that ncode. This
continuity condition can be expressed by comparing structural displacement
coordinate {r} (Fig. 7) and element system displacement coordinate {q}

(Fig. 5) in the following equation:

{qi(t)} @ = 18T {rj(t)} (20)

where {q(t)} (n) is the element system displacement matrix for element (n),

{r(t)} is the structural displacement matrix, and [6](n) is a transformation
matrix for element (n). The latter matrix is defined as
) = (0. V1. Lo 20
1B Ty = DOg 1 Tip 1 04y (202)
Where [Oik], [Oim] are null submatrices, k= 1,2,...., 3 (n-1), m = 1,2,..... ,

3 (N-n), in which N is the total number of shell element, and [Ziﬁ] is a Bx6

identity submatrix.
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In addition, the joint load of the structure at particular node equals
the sum of the joint loads of the elements which meet at that node. Therefore,
the structural joint load matrix {p(t)} and the elements joint load matrices

{P(ti% have the following relation:
N , .
{Pj(t)} = x [aiJT {p,} (21)
) n=1 J- (n) J (n)

Where N again is the number of shell elements, {p(t)} (n) is the element Jjoint
load matrix for element n, and {P(t)} is the structural joint load matrix.
Next, considering the n-~th shell element only, we set-up the egquation of

motion for this shell element, that is:

() = [k, . St + [m, ] q.(t) 22)
{pl( } @ = Falan {9 )} m * Ml {:qg( } (n) (
where the subscript (n) indicates that the matrix corresponds to the n~th
element, and i, j =1, 2,.....,6.

Substituting Eg. (20) and Eg. (22) into Eg. (21) gives the equation of

motion of the system.

N - N
L . T U .
{Pi(t)} = 208,00y T (Bugltn {rm<t§} S V0 PR Y L

n=1 Nl

{“f (t)} (23)
o m
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where i, m = 1, 2,..... , 3 (n+1)
j, £ =1, 2,..... , 6
or
{P.(t)} - [k, ] {r (t)} oo {r <t>} (24)
i im m im m

where [K] and [M] are respectively, the shell structure assemblage stiffness

and mass matrices. These matrices are defined as follows
_ N ) ‘T
N T
Wil = 20 Byl gl ey Bagd (24b)

where i, m = 1, 2,..... , 3 (N+L)., 3, 4 =1,2,...... 6.
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VII. ANALYSIS OF THE EQUATION OF MOTION

The equation of motion as expressed by Egq. (24}, can be solved in many
different ways. But if in addition to the dynamic responses, the free vibration
characteristics of a shell are also to be determined, then it is advantageous
to adopt the normal mode method of solution., This procedure is sometimes also
called the "mode acceleration” method (see Ref. 14). The normal mode method
is characterized by the fact that the differential eguations of motion are un-
coupled, where the displacements are expressed in terms of the normal modes.
Therefore, in'a system having n-degrees of freedom, we may deal with n
independent differential equations rather than with a system of n simultaneous
differential equations.

The structural assemblage mass matrix [M], and the structural assemblage
stiffness matrix [K] in Eq. (24), are symmetrical and are positive definite.
Therefore, Eg. 24 can be uncoupled (Ref. 12). This is to say that we always

can find a matrix [¢] such that

(017 [M] [o] = [1] (25)

fi

and

[w] (26)

i

[o1" [K] [o]

where [w] is a diagonal matrix.
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To find the matrix [¢], we first solve the eigenvectors and eigenvalues

of the mass matrix [M], such that

(617 M) (8] = (&) (27)

where the columns of the matrix [5] are the normalized eigenvectors of matrix
[M], and diagonal elements of the diagonal matrix [&J are the corresponding

eigenvalues, Since [M] is a positive definite, we have real, positive values

for all &i in [w]. Thus, there always exists a real diagonal matrix [ ],
~ )
and we can define a new matrix [K] such that
- 1 —.T -
(K] = [ — 1 [e]” [K] [¢] [ — ]
JI . (28)
m &
Here again, [ﬁ] is a symmetrical, positive definite matrix. Therefore, it is
possible to find matrices [¢] and [®] such that
T - .= S
[o]" [K] [o] = [w] (29)
Where the columns of matrix [¢] are normalized eigenvectors of [K], the

diagonal elements wi of the diagonal matrix [&] are the corresponding eigen-

values, and all w,'s have non-repeated positive values, i.e.,

Furthermore, if we define a matrix [¢] such that

[o] = [8] [ =— 1 [3] (30)

w
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then matrices [¢] and [®] have the properties to satisfy Eqs. (25) and (26).
This can be proved by substituting Eqs. (30), (28) and (29) into Eg. (25),

and substituting Egs. (30) and (27) into Eq. (26). To demonstrate,

— 7 [e1" (k] [8) [ == 1 [3]
o ' NI |

i

—
< i}
—
—

(01" [K] [o]

and

(01" [m] [o]

it

=.T 1 ~ T - 1 .=
[e]" [ — 7 Lol [M] [o] [ — ] [9¢]
@ Jo

S S R S i N S DU
& Jo

- [51% (o]

= [1]

In addition, we can assert that the columns of the matrix [¢] are the normal
modes of the system, and the square root values of the diagonal elements &i
of diagonal matrix [®] are the corresponding frequencies.

The displacement vector {r(t)} can be expressed in terms of the normal

coordinates {n(t)} as

{ren} = lo] {n(t)} (31)
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and the equation of motion can be uncoupled by substituting this relation into

Eg. (24) , and pre-multiplying it by matrix [¢]T¢ Thus ,
(61" k1 Lo) {neo} + [o1" tu] (o] {iico} = (017 {ecoy

or

{‘ﬁ(t)} v [0] {nu)} - o7 {p(w} (32)

Note that the ith row of Eg. (32)is the differential equation for the ith
mode which is independent of those for all other modes. Therefore, this
equation may be integrated directly to yield the normal displacement ni(t)’
This may be repeated independently for all other modes to solve for the n
normal displacements {ni(t)} , 1= 1,2,..... n, The total displacement of

the structure {r(t)} is obtained by inserting the solved {n(t)} values

into Eq. (31).
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VIII. INTERNAL STRESS~RESULTANTS RESPONSE

Theoretically, the internal stress resultants {Q(tj} of the shell

element n may be obtained by using element stiffness [k}(n) directly. That is

o} ) = 1, s},

(63 [zs]fn) {r(t)} (333
= k], [810 [e] {no
{n) () { }

Actually, the above expression for {Q(t)} leads to highly inaccurate
results.

In using Eq. (33) to calculate the internal stress-resultant response
{Q(t)} an acceptable computational error in the displacement response {r(tj%
is greatly amplified by stiffness matrix [k]. Following the suggested
procedure given in Ref. 16, we adopt an alternative method of analysis here
so that the error due to the sensitivity of the stress resultants {Q{ti}
to computational errors can be kept small, and the degree of accuracy achieved
will be of the same order as that of the displacement response ir(t)} .

In this method the internal stress resultants are computed in two parts.
First, we apply external load {P(t)} statically, and compute the internal
forces under the assumption that all points of the system have zero acceleration.
This can be done by applying to the system the total exciting force {P(t}}

at a time t, and computing the total static internal resultants. We designate
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these internal resultants by {Q(t)} _ Then, we add to this the internal

resultants associated with the acceleration of the system. To obtain the

internal forces {Q(t)} 11 corresponding to the acceleration of the system,
' 1s . . . . . . th

we refer to the uncoupled differential equation of motion for the i mode ,

tl . s
i.e., we consider, for example, the i * row of Eq. (32)

ny (t) + @, ni(t) = Pi (t) (345

This equation can be written in the form

() = —— - (35)
@, )
i i
or
. kS
n; (O PO
- = () - (36)
D, w,
i i
P (D) .
The term -————— in Eq. (35) represents the response due to loads P. (t)
w, 8
i s
n:"L
applied to the system statically, namely for ﬁi = 0. The term - — in
@,
a

Eq. (35) represents the response dus to the acceleration ﬁi(t) of the system
C i s . L . th
when it is vibrating in its i mode .
To obtain the internal resultants {Q(ti} corresponding to the
11

PY (1)
acceleration of the system, we use Eg. (36), where all - ——— and ni(t)

En

i
have known values. For each normal mode there corresponds an external joint

load system, which when applied to the structure, will cause it to deform
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h . th
in its it mode with an amplitude of unity (ni(t) = 1). For the i mode this

joint loading is given by the following joint inertial loads:

joint load matrix = 51 [M] {@i}i (37)

tl
Where {@} i is the ith normal mode of the system, i.e., the i : column of
matrix [¢]. Using this inertia load we can compute the corresponding internal
resultants {’Q(t)} i Then these resultants are amplified by the value of the

ny (t)

. th . . ] :
i normal mode acceleration response - — , and we obtain the internal

5,
i

resultants {>Q(t)} IT corresponding to the acceleration of the system. That is

( m, (0
1Q(t)} 1= Lo {Q(t)} . (38)
] i g i

i

where {Q(t)} ; are the internal resultants corresponding to the joint inertial

th
load of the i normal mode. The total internal resultants are given by

{aw} = {ew}, + fam} (39)

Whem%ascbfﬂmxiearﬁer,{Q(t)} j Yepresent the internal resultants due to the

total external force exciting the system, when this force is applied statically.
In this approach the internal resultants {Q(t)} i1 are obtained from the
inertial joint loads associated with each joint. This procedure tends to
reduce the degree of error that may result from the discrepancies in the
inertial loads computed from Eq. (37) due to the fact that the modes { ®} i

are approximate.



28

In Eg. (39) {Q(t)} . represent the internal resultants due to all
externally applied forces exciting the system, when such forces are applied
statically. Therefore, irrespective of the number of modes considered in the
analysis, the resultants {Q(t)} p 2re accurately determined. If Eg. (33)
were used instead, the static effect of the applied force {P(t)} depends on
the number of modes considered in the analysis. Hence, if a small number of
modes is involved in the analysis, the static effect of the applied forces

{P(t)} is not completely accounted for if Eqg. (33} is used.
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IX, EXAMPLES AND CONCLUSIONS

As the first example, consider asn elastic circular plate clamped along
the outer edge subjected to a ring load as shown in Fig. 8 for which its
dynamic response 1is to be determined. The ring lecad P is applied as a step

1A

solved using the con~

function in time. This particular problem h
sistent mass matrix’ in the equation of moticn. To determine the dyramic
response of this plate by the developed method, only two elements need to be
used, since the element mass matrix [m]| is consistent with the exact element
stiffness matrix. Alternatively, an arbitrary number of slements may be
used, and 20 elements were selected to obtain a solution for comparative
purposes. The vesults of the two solutions ave plotted in Figs. 11b and
1le, Differences between the two solutions are negligible. The solution
based on the use of 20 elements actually is a little less accurate due to
the unavoidable accumulation of numerical errors. In Fig. 1lla the first
three normalized modes and the corresponding freguencies are given. Con-
sidering the rapid raise of the frequencies and the nature of the correg-
ponding mode shapes, the response due to the effect of the second and third
modes is minimal.

The second example is of the dynamic response of the shallow spherical
shell shown in Fig. 9. The data are from the Kleiun and Sylvester example
{(Ref. 5). The 26ﬂ670 sphere was analyzed as an assemblage of a 0.67°
spherical cap and 14 cones. 'Distributed mass matrix’ and “Approximate joint

loads’ were used to obtain the solution for this problem, The dynamic and
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results are shown in Fig. 12b, 12c¢ and 12d. These results are seen to be in
excellent agreement with the Klein and Sylvester solution. Alsoc presented

is a plot of the first three mode shapes and their corresponding frequencies,
Fig. 12a. 1In this problem, due to high frequencies and slow convergence, the
effect of second and third modes is as important as that of the first mode on
the response of the system. Results were also cbtained by using only the
first three modes instead of the 16 modes as above. This led to poor results.
The discrepancy between the two solutions is significant, and the solution with
three modes is unacceptable. From the experience gained in solving different
shell dynamic problems by using the developed computer program it is concluded
that for deep shell structures at least 20 modes have to be used to obtain
satisfactory results., For very shallow shells, on the other hand, 3 modes

may give resonable results. The dynamic response of the sphere shown in Fig.
10 was solved by using 50 elements. A plot of the normal displacement at a
point where the ring load P is applied is presented in Fig. 13.

The dynamic response of linear elastic shells of revolution of arbitrary
meridian shape and thickness variation can be determined using the finite
element approach. The accuracy appears to be excellent, and once a program
is developed a solution is achieved very rapidly. 1In the cases when the shell
is actually a combination of the basic shell elements used in this report, and
the dynamic loads are localized then the solution based on a mass matrix which

is consistent with the exact stiffness matrix may prove particularly advantageous.
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