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Landmark-free geometric methods
in biological shape analysis

Patrice Koehl1 and Joel Hass2

1Department of Computer Science and Genome Center, and 2Department of Mathematics,
University of California Davis, Davis, CA 95616, USA

In this paper, we propose a new approach for computing a distance between

two shapes embedded in three-dimensional space. We take as input a pair of

triangulated genus zero surfaces that are topologically equivalent to spheres

with no holes or handles, and construct a discrete conformal map f between

the surfaces. The conformal map is chosen to minimize a symmetric defor-

mation energy Esd( f ) which we introduce. This measures the distance of f
from an isometry, i.e. a non-distorting correspondence. We show that the

energy of the minimizing map gives a well-behaved metric on the space

of genus zero surfaces. In contrast to most methods in this field, our

approach does not rely on any assignment of landmarks on the two surfaces.

We illustrate applications of our approach to geometric morphometrics

using three datasets representing the bones and teeth of primates. Experi-

ments on these datasets show that our approach performs remarkably

well both in shape recognition and in identifying evolutionary patterns,

with success rates similar to, and in some cases better than, those obtained

by expert observers.
1. Introduction
Geometry and topology have had increasing impact in biology over the last two

decades. The application of mathematical methods in biological studies has not

only become viable but in fact is assuming a central role, owing to the increasing

performance of computers and the improvement of the devices used for imaging

biological systems. In medicine, for example, diagnosis and treatment planning

previously relied on conventional X-ray images, recorded on an analogue film.

Today, however, more and more digital three-dimensional images, such as

those generated with computed tomography, magnetic resonance imaging, and

functional, marker-based images are acquired from patients to detect and monitor

putative pathologies. This has driven the need for software development to ana-

lyse those images, which in turn has provided a major impetus for the

development of new mathematical methods and algorithms for image processing.

With these new software tools, the three-dimensional images can be quantitat-

ively analysed and visualized, making medical diagnosis, the assessment of

therapeutic strategies, and even surgery more reliable and reproducible [1].

The comparison of images and of the shapes they represent is by no means

limited to medicine. Advances in geometry and topology, and the parallel

transformation of biology into a quantitative science, have led to a renewed

interest in applying geometric methods to representing, searching, simulating,

analysing and comparing biological systems [2]. These methods are developed

and applied in a wide range of fields, including computer vision, biological

imaging, brain mapping, target recognition and for satellite image analysis.

In molecular biology, the notion that the structure (or shape) of a protein is a

major determinant of its function has led to the development of methods for

representing, measuring and comparing protein structures [3–5]. Brain mor-

phometry, concerned with the measurement of the brain geometric structures

and the changes they undergo during development, ageing, learning, disease

and evolution, has become central in neurobiology [6–10]. Morphometrics,

the quantitative analysis of forms, has equal potential in evolutionary biology

[11–14], though its impact in this field has been somewhat obscured by the
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phenomenal success of molecular phylogenetics [15]. There is

hope however that information from both approaches can be

combined to reach a synthetic, comprehensive and quantitative

view of phylogeny (see, for example, [16,17] for successful inte-

gration in the field of palaeoanthropology). To reach this goal,

geometric morphological studies need to be automated and

standardized, starting with the determination of geometric cor-

respondence between shapes [14,18]. This paper concerns

mathematical and computational aspects of this problem.

While three-dimensional data representing a shape come in

many forms, we concentrate on the important and commonly

occurring case where the surface of the shape is available and

described with a discrete triangular mesh. Thus, we are inter-

ested in understanding the structure of surfaces situated in

our three-dimensional world. Mathematically, these objects

are two-dimensional Riemannian manifolds in the smooth

case, and piecewise-flat surfaces in the discrete setting. We

work with both descriptions. We restrict ourselves to surfaces

of genus zero. These are the surfaces that can be continuously

deformed to a sphere, or, alternatively, surfaces that have no

holes or handles.

In a chapter titled ‘The comparison of related forms’,

Thompson [19] explored how differences in the forms of

related animals can be described by means of simple math-

ematical transformations. This inspired the development of

several shape comparison techniques whose aim is to

define a map between two shapes that can be used to

measure their similarity. This is a challenging problem, as

the space of possible maps is extremely large and difficult

to characterize mathematically. In this paper, we develop

methods that generate maps between two shapes correspond-

ing to surfaces of genus zero.

The dimension of the space of maps between two shapes

can be reduced by enforcing correspondence between specific

landmarks. Ideally, these landmark points should identify

homologous structures on the surfaces of the two shapes,

should conserve their relative positions, should provide ade-

quate coverage and should be found reliably and consistently

[2]. The task of finding such landmark points is usually

performed manually by skilled morphometricians with exten-

sive training. The resulting human choices can lead to error

due to the variability and inconsistency of human input [20].

Many methods have been developed to circumvent this

inherent limitation, either through automation of the landmark

selection process or by eliminating the need to use specific

point correspondence in the process of aligning the surface

altogether. Automatically selected points may relate to distinc-

tive geometric features such as local curvature maxima [21], be

inferred from an atlas for the shape of interest [22], or be opti-

mally distributed on the surface of interest based on some

statistical criteria [23,24]. Spectral techniques, for example,

assign a signature to each vertex in the mesh, under the premise

that points with similar signatures are more likely to corre-

spond [25,26]. There is a growing interest in the concept of

semi-landmarks. These are points that characterize the outlines

of the shapes of interests. The positions of these points are opti-

mized to match the positions of corresponding points along an

outline in a reference conformation [12,27–31]. Despite the

optimization procedures, there is no guarantee that these

points are placed accurately and consistently across collections

of surfaces, unless those surfaces are highly homologous. In

addition, most of the techniques based on semi-landmarks

for three-dimensional shapes still rely on a few user-defined
landmarks [29,32]; as such, they do not fully remove

the inherent limitation of the variability of human input.

Landmark-based methods that find maps between two

shapes work on the premise that knowledge of a mapping on

a small number of correspondences can be extended to give

the full map between the two surfaces of interest [33–35]. By

contrast, landmark-free methods skip the search for landmarks

altogether. For example, Valliant & Glaunès [36] introduced a

representation of surface in the form of currents and then

imposed a Hilbert space structure on it, whose norm is used

to quantify the similarity between two surfaces. McCane [37]

developed a variational method for matching curves in two

or three dimensions by optimizing their parametrizations. In

parallel, Laga et al. [38] developed statistical models of

shapes based on the squared root velocity function that allow

for the modelling of shape variability without considering

landmarks. They recently implemented this procedure to

study the shapes of plant leaves [38].

In a groundbreaking recent paper, Boyer et al. [13] intro-

duced several distance measures that can be used to generate

fully automated correspondences between surfaces. They

tested their approaches on three datasets representing the skel-

etal anatomy of a collection of primates, showing success in

taxonomic classifications [13]. These approaches were tailored

to topological discs, as all the datasets represent surfaces

having the topology of a disc. That is, the surfaces can be

obtained from a flat disc in the plane by stretching and bend-

ing, but without tearing or gluing. We present here a new

algorithm that has a similar philosophy to their work, but

uses a very different geometric distance measure. As with

their method, our approach fully eliminates the use of

landmarks. While they measured distortion based on area-

preserving maps with a continuous Procrustes distance and

general maps with a Wasserstein distance, we work entirely

within the framework of conformal (angle-preserving) maps

and focus on finding a globally optimal conformal mapping
between two genus zero closed surfaces. We associate an

energy to any conformal map between two such surfaces.

We show that the energy of the optimal map defines a

metric on the space of surfaces of genus zero. Experiments

on the same datasets as those used by Boyer et al. [13] show

that our method outperforms their distance measures in iden-

tifying evolutionary patterns between the specimens whose

bones are included in the datasets and, indeed, performs as

well as or better than trained observers. We note that while

our algorithm was developed to compare spherical or genus

zero surfaces, it can also be used to compare disc-like surfaces.

To do so, we introduce a preliminary step where the holes of a

surface are filled in (coned) to create a closed surface. We

expect that our method would perform even better in studies

where the compared surfaces were already of genus zero.

This paper develops previous preliminary studies [39,40].

We have modified the elastic energy used to measure the dis-

tance of an optimal conformal mapping from an isometry so

that it now defines a mathematical metric on the space of

shapes. The paper is organized as follows. Section 2 provides

the mathematical background for our method: conformal geo-

metry and a metric to measure the similarity between surfaces

of genus zero. The details of its implementation on discrete sur-

faces are provided in the electronic supplementary material.

Section 3 presents and discusses the results obtained by our

algorithm on three test cases introduced by Boyer et al. [13].

We conclude the paper with a brief discussion on the
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implications of this work on using phenetics to reconstruct

phylogeny, and on future developments of the method itself.
sif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150795
2. A new distance between shapes
2.1. Optimal conformal map between genus zero

surfaces
Let F1 and F2 be two surfaces of genus zero and equal area.

By rescaling each surface, it is straightforward to arrange

for all surface areas to be equal to 1. While our method

allows us to compare surfaces of different areas, we focus

here on scale invariant shape properties. A map f from F1

to F2 defines for each point z [ F1 a corresponding point

f ðzÞ [ F2, called the image of z under f. For smooth surfaces,

one can specify the angles between two curves. Maps that

preserve these angles are called conformal. Such maps do

not need to preserve length. Examples of conformal maps

include the Mercator projection used in cartography and

the stereographic projection that maps a sphere (minus its

North Pole) onto the plane.

A conformal map preserves angles but usually distorts

distances, with isometries being the exception. This distortion

is characterized by a dilation factor, lf ðzÞ, that measures the

stretching of vectors by f at each point z in F1. This stretching

is the same in all directions.

Our objective is to find a conformal map between the two

genus zero surfaces F1 and F2 that is as close to an isometry

as possible. An isometry has two distinct local properties. It

preserves angles at each point (conformality) and it preserves

area. There is a natural choice for picking a map that is as

close to an isometry as possible. One first restricts to finding

a conformal map between the two surfaces. The uniformiza-

tion theorem ensures the existence of such a map, and indeed

of many such maps between any two surfaces of genus zero

[41]. To pick the best conformal map, it is natural to use the

second criterion of an isometry, area preservation, and

choose a conformal map that minimizes the local area distor-

tion. This is the underlying idea of our method, as described

in [39,40,42].

Following this idea, the conformal map f between F1 and

F2 can be described as the composition of three conformal

maps, C1 : F1 ! S2, m : S2 ! S2 and C�1
2 : S2 ! F2: The map

m is an element of the six-dimensional group PSLð2, CÞ that

describes all conformal maps from the round sphere S2

to itself. Figure 1a illustrates this process for two proximal

metatarsal bones of primates.

Varying m gives all conformal maps from F1 to F2.

We specify the optimal m to be the one that leads to a mini-

mum of the following symmetric distortion energy integral

energy Esd:

EsdðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

F1

ð1� lf ðzÞÞ2dA1

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið

F2

ð1� l f�1ðzÞÞ2dA2:

s
ð2:1Þ

A conformal map f is an isometry if and only if its dilation lf ðzÞ
at every point z is equal to 1. EsdðfÞ is the natural measure of how

lf ðzÞ and l f�1ðzÞ differ from 1, and therefore of how f and f�1

deviate from an isometry. Note that EsdðfÞ ¼ Esdð f�1Þ: The infi-

mum of the magnitude of EsdðfÞ as f varies over all conformal
diffeomorphisms from F1 to F2 exists [42] and is used to define

the distance between the two surfaces.

The symmetric distortion energy defined in equation (2.1)

has the following properties [42]:

(1) for any pair of genus zero surfaces, there exists a

smooth conformal diffeomorphism fmin between them

that minimizes the symmetric distortion energy,

(2) the symmetric distortion energy of a map is zero if and

only if the map is an isometry,

(3) the symmetric distortion energy of fmin defines a

metric dsd on the space of genus zero surfaces, so that

dsd satisfies the following three properties,

(i) dsdðF1, F2Þ � 0, with equality if and only if F1 and

F2 are isometric, (ii) dsdðF1, F2Þ ¼ dsdðF2, F1Þ, and

(iii) dsdðF1, F3Þ � dsdðF1, F2Þ þ dsdðF2, F3Þ:

Property (iii) of the metric dsd, the triangle inequality, is impor-

tant for applications, as it implies robustness. Namely, if the

distances dsdðF1, F01Þ and dsdðF2, F02Þ are small, this property

guarantees that dsdðF1, F2Þ is close to dsdðF01, F02Þ: Thus, the

distance measure is stable under noise and measurement errors.
2.2. Comparing discrete genus zero surfaces
In practice, the two surfaces F1 and F2 are discrete and rep-

resented by meshes M1 and M2, respectively. Meshes are

taken to be triangular, so that Mi ¼ ðVi, Ei, TiÞ, i ¼ 1, 2,

where fVi, Ei, Tig denote the vertices, edges and faces,

respectively. We do not restrict the topologies of the meshes

to be the same. The number of vertices, edges and faces of

M1 and M2 can be different. The method described above

for computing an optimal conformal map between two

smooth surfaces needs to be adapted for its applications to

their discrete counterparts. While we refer the reader to our

previous papers [39,40] and to the electronic supplementary

material for a full description of this adaptation, we

summarize here the changes that are relevant to this paper.

The total distortion for a mesh is a discrete version of the

symmetric distortion energy given by equation (2.1) and is

computed as a sum over all edges of the two surface meshes

EsdðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðvi ,vjÞ[E1

1�
lðf ðviÞ, f ðvjÞÞ

lðvi, vjÞ

� �2 Aij

3

vuut

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðvm ,vnÞ[E2

1� lð f�1ðvmÞ, f�1ðvnÞÞ
lðvm, vnÞ

� �2 Amn

3

vuut : ð2:2Þ

Here E1 and E2 denote the sets of edges in the meshes on F1

and F2, respectively. Aij is the sum of the areas of the two

triangles adjacent to the edge vi, vj and lðvi, vjÞ is the distance

between the two vertices vi and vj, namely the length of the

edge ðvi, vjÞ:
The image f ðvÞ of a vertex v of the mesh M1 is not artifi-

cially restricted to correspond to a vertex of the mesh M2:

Instead, v is mapped to an arbitrary point belonging to one

face of M2: Special care is then needed for computing dis-

tances. The distance between two vertices vi, vj forming an

edge eij of F1 is simply the length of this edge. The images

f ðviÞ and f ðvjÞmost likely do not form an edge of F2. The dis-

tance lðf ðviÞ, f ðvjÞÞ is computed using a flat Euclidean metric

on each face of the triangulation. Figure 1b illustrates the

calculation of EsdðfÞ on two edges.



f = c2
–1 o m o c1

c1

m

v

v 

f(v)

f(v )
u

u f –1(u ) 

F1

sd

f

f –1

optimizing the conformal map

baboon A lemur A

surface A

surface B

(0.16) (0.34)

(0.36) (0.11)

shape recognition and classification evolutionary tree derived from geometric distances

simiansprosimians

C
d2

11
48

7

C
d2

11
48

8

C
d2

11
48

9
C

d2
11

49
0

C
d2

11
49

3
A

a2
11

45
7

A
a2

15
05

0
Aa2

15
05

6

Aa2
15

05
4

Aa2
15059

Pu80771

PuB

PuF

Cha120386

Co52248

Cha187372

Co187392

Pu216247

Co52206
Cha27705

Cha54231Co52229Tg5
Lt150038

Lt34257

Lt269N
c102027

N
c112990

N
c212953

N
c16591

L
f1

70
75

0

L
F1

70
76

4

L
F1

70
75

5

L
f1

70
75

9

A
l1

70
46

1

Pd
11

55

Pv
17

04
71

Pv
17

04
63

Pv
17

04
74

Pv
17

04
91

Pv2
57

14
1Pv31255Tsp150414Tsp206757Tsp150448

Mm174408
Mm174423

Mm174415

Mm185630

Mm185629

Gd215180

Gd212956

Gd212958

Gd150413

Gd212957

Oc201330

Oc216244
O

c245093
O

c80800
O

c80801
O

c80238

building a conformal map

c2
–1

F2

f –1(u) 

(a) (b)

(c) (d)






 






Figure 1. An optimal conformal map and its applications. (a) The comparison of two surfaces F1 and F2 relies on the existence of a map f between these surfaces.
When the two surfaces are of genus zero, it is possible to construct f as a composition of three maps C1, m and C2, where C1 and C2 are conformal maps from the
surfaces F1 and F2 to the sphere and m is a bijective conformal map of the sphere to itself. The key to our approach is that the group of conformal self-maps of the
sphere is the well-understood group of Möbius transformations. As such, m is defined by six parameters that can be optimized to yield minimal distortion.
(b) Distortion is computed as the sum of the stretching induced by f on all edges ðv, v0Þ in the mesh describing F1, and of the stretching induced by f�1

on all edges ðu, u0Þ in the mesh describing F2. In the corresponding symmetric distortion energy Esd( f ), each edge is weighted by the areas of its adjacent
triangles. The energy of the minimizing map defines a distance dsd on the space of surfaces of genus 0. (c) Shape recognition is a natural application for the
method described here. All surfaces shown here correspond to proximal metatarsal bones from baboons and lemurs. When the surface A is mapped onto the
surfaces for baboon A and lemur A, the corresponding symmetric distortion distances dsd are 0.16 and 0.34, respectively, identifying surface A as corresponding
to a baboon. By contrast, surface B is closer to lemur A, and therefore corresponds to a lemur. Regions on the images with large stretching are coloured. (d ) The
unweighted pair group method with arithmetic mean (UPGMA) tree built from the distance matrix computed from a comprehensive comparison of all bones in
database A clearly separates those bones into two categories, those from prosimians (left) and those from simians (right). This geometry-based categorization of the
primates obtained from the metatarsal shapes can then be combined with other classifications to help understand their phylogeny. (Online version in colour.)

G

Figure 2. Coning off a surface with boundary. The method presented in this
paper is currently optimized for surfaces of genus zero. These surfaces do not
have a boundary. The meshes included in our test sets however have one bound-
ary, whose limits are somewhat arbitrary. To fill in the corresponding hole, we
detect all vertices and edges on the boundary, compute the centre of gravity G of
these vertices, and add to the mesh all the triangles formed by connecting G to
the edges of the boundary. The result is a genus zero surface with no boundary.
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We have implemented this procedure into the program

MatchSurface. A complete description of its algorithms is

given in the electronic supplementary material. For a pair of

surfaces F1 and F2 represented by meshes M1 and M2, Match-

Surface produces an approximation for the map fmin that

minimizes the symmetric distortion energy Esd over all confor-

mal maps between F1 and F2. Its output consists of the image

WmðM1Þ of M1 warped by fmin onto F2, the image W�1
m ðM2Þ

of M2 warped by f�1
min onto F1, and the distance

dsdðF1, F2Þ ¼ Esdð fminÞ: Applications of MatchSurface include,

but are not limited to, (i) comparing a surface FU of unknown

origin with a library of surfaces that are well characterized,

using the best matching surface as a template to infer properties

for FU (figure 1c) and (ii) construction of a neighbour joining

tree that captures the hierarchical geometric similarities

between a set of surfaces. This tree can then be related to



Table 1. Correlations between observer distances, cP and sd distances.

dataset no. pairs obs1/cP obs2/cP obs1/sd obs2/sd obs1/obs2

metatarsal (all) 1830 0.62 0.63 0.82 0.81 0.87

metatarsal (same species) 112 0.31 0.17 0.55 0.31 0.46

metatarsal (different species) 1718 0.57 0.58 0.79 0.78 0.85

radius (all) 990 0.28 n.a. 0.59 n.a. n.a.

radius (same species) 198 0.29 n.a. 0.40 n.a. n.a.

radius (different species) 792 0.13 n.a. 0.46 n.a. n.a.

teeth (all) 4851 0.55 n.a. 0.58 n.a. n.a.

teeth (same genus) 180 0.01 n.a. 0.63 n.a. n.a.

teeth (different genus) 4671 0.51 n.a. 0.51 n.a. n.a.

rsif.royalsocietypublishing.org
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properties of the objects it represents, such as phylogeny, as

illustrated in figure 1d.
0795
3. Results
To test the effectiveness of MatchSurface, we applied it on

three independent datasets, representing three regions of the

skeletal anatomy of a collection of primates. The first dataset

contains 61 proximal first metatarsals of prosimian primates,

New and Old World monkeys, the second dataset contains

45 distal radii of apes and humans and the third dataset

includes 116 second mandibular molars of prosimian primates

and non-primate close relatives. They were originally

assembled by Boyer et al. [13], who used them in a similar

study with different shape comparison measures based on an

‘earth mover’ metric, and on a ‘continuous Procrustes’ (cP) dis-

tance. We note that all meshes included in the three datasets

represent genus zero surfaces with one boundary. The position

of this boundary is somewhat arbitrary. Its impact on the study

by Boyer et al. was not discussed. Similarly, it will not be con-

sidered here. We did however detect and clean up those

boundaries by removing ‘dangling’ triangles, i.e. triangles

with two boundary edges (see the electronic supplementary

material for details). Our method is designed for genus zero

closed surfaces. It easily extends however to genus zero sur-

faces with boundaries by coning off the boundary curves (see

figure 2 for an illustration of this process). Using these datasets

allows us to evaluate the performances of the algorithm

implemented in MatchSurface. The evaluation is done by com-

paring the distances dsd between the surfaces included in the

three datasets with the continuous Procrustes distances pro-

vided by Boyer et al., and with the distances based on

landmarks identified by trained morphologists. The datasets

include two sets of the latter for the metatarsal dataset, referred

to as ‘observer1’ (obs1) and ‘observer2’ (obs2), and one set for

the radii dataset and the teeth dataset, ‘observer1’. We note that

the cP distance, in common with dsd, does not require prelimi-

nary selection of landmarks on the surfaces. Geometric

morphometricians on the other hand have determined land-

marks on each surface, choosing them to reflect

correspondences considered biologically and evolutionarily

meaningful (see SI Appendix, Materials of [13]). These land-

marks determine a ‘discrete’ Procrustes distance between any

two surfaces, which we refer to as dobs. Each of the three dis-

tances (dsd, dcP and dobs) defines a matrix for each dataset,
containing all pairwise distances between the surfaces

included in that dataset. To measure the effectiveness of each

distance, we compare those matrices in three different ways.

All three distances rank pairs of surfaces according to their

similarity. The relative performance of dsd and dcP with respect

to the observer distance dobs can then be computed using a

correlation analysis. Table 1 gives the corresponding coefficients.

The distances based on manual assignments of landmarks

by morphometricians may be considered as a reference, since

they are based on extensive expert knowledge, though they

are not deemed perfect. Note that there is variability between

morphometricians, though the correlations between the

results of two such observers is high. On all three datasets,

the distances based on sd match observer distances better

than the distances based on cP.

This advantage is further illustrated in figure 3.

The match between dsd and the observer distance dobs is

more consistent over the whole range of values. We note that

all three distances identify the pairs of surfaces corresponding

to specimens from the same species as being similar (red circles

in figure 3). Even on this subset of all pairs, however, dsd is

better correlated to the observer distances (table 1). The same

behaviour is observed for pairs of surfaces from specimens

that belong to the same family or to the same superfamily

(results not shown). Note that the similarities found between

the dsd distances and the observer distances are comparable

to those between the two observers.

For a second comparison of the three distance measures, we

evaluated their performance using a receiver operating charac-

teristic (ROC) analysis [43]. In this approach, a ‘gold standard’

is defined, based on a choice of level in the phylogeny of

the specimens, either species, genus, family or superfamily.

A pair of surfaces is then defined as similar, or ‘positive’, if

the corresponding specimens belong to the same taxonomic

group considered, and ‘negative’ otherwise. For varying

thresholds of the distance measure under study, all pairs of

surfaces whose distances fall below the threshold are then

assumed positive, while those above it are deemed negative.

The pairs that agree with the standard are called true positives

(TPs), while those that do not are false positives (FPs). An ROC

analysis compares the rate of TPs (also called sensitivity) to the

rate of FPs (which corresponds to 1 minus the sensitivity). It is

scored with the proportion of area under the corresponding

curve (AUC). An AUC of 1 indicates that all TPs are detected

first. This corresponds to the ideal distance measure. On the

other hand, the diagonal curve leads to an AUC of 0.5.
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Figure 3. Comparison of the observer distance with the cP distance (a), and the sd distance (b). Results are shown for the metatarsal database. Red circles cor-
respond to pairs of surfaces from specimens that belong to the same species. The distances between same species pairs are expected to be small for any of the three
distance measures. This is indeed the case, as the corresponding points are found to cluster in the lower left corner of the plots. The correlation coefficients between
dcP and dobs1 and between dsd and dobs1 over all pairs of surfaces are 0.62 and 0.82, indicating that dsd matches better with the observer1 distance, over a broader
range or values. We also compute the ratio of the range of distance values for the pairs corresponding to specimens from the same species over the range of values
for all pairs of surfaces in the dataset. A lower ratio indicates better performance, as a large ratio would indicate lower discrimination of the significant pairs. We find
ratios of 50%, 39% and 36% for the cP distance, the observer1 distance, and the sd distance, respectively.

Table 2. Area under the curve (AUC) of ROC analyses on the observer, cP and sd distances.

dataset
first metatarsal radius teeth

classification N obs1 obs2 cP sd N obs cP sd N obs cP sd

species 13 0.94 0.97 0.90 0.96 5 0.87 0.72 0.87 n.a. n.a. n.a. n.a.

genera 13 0.94 0.97 0.90 0.96 4 0.86 0.71 0.80 24 0.98 0.96 0.97

families 9 0.91 0.95 0.84 0.95 n.a. n.a. n.a. n.a. 17 0.87 0.79 0.86

superfamilies 2 0.96 0.97 0.73 0.86 n.a. n.a. n.a. n.a. 5 0.64 0.62 0.77
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In this case, TP and FP appear at the same rate, and the distance

measure contains no information.

The results of ROC analyses based on the three distances

dsd, dcP and dobs are given in table 2 and illustrated in figure 4.

Species or genera identification based on landmarks manu-

ally defined by experts is expected to perform best. Indeed, the

ROC curves derived from the observer distances illustrate

excellent classification results, with AUC values above 0.85 in

all cases, above 0.9 for the metatarsal dataset, and above 0.95

for the teeth dataset. Note that even with human expertise

included, the classification is not perfect. In addition, we

observe differences between the results obtained by two dis-

tinct experts. The two distance measures dcP and dsd alleviate

the difficulty of defining landmarks on the two surfaces to be

compared. Instead, both methods construct a map between

the two surfaces using only their geometric properties. The dis-

tances they compute reflect different geometric properties. We

find that the distance dsd introduced in this study outperforms

dcP on all three datasets, at all phylogenetic classification levels.

In fact, dsd performs as well as the observer, landmark-based

distances, with differences that are of similar magnitude to

the differences measured between distinct observers.

In such an ROC analysis, it is worth focusing on the small

distances, as those are often the most reliable ones and the
most relevant for applications. For each distance measure,

we defined S200 to be the set of 200 pairs of surfaces with

the lowest distances. Each pair was deemed to be ‘true’ or

‘false’ if the corresponding pair of specimens belonged to

the same species or not, respectively. Table 3 reports the

repartition of true and false pairs within S200 for the three

distances considered here, for the three datasets. The higher

the number of true pairs, the better. The rankings provided

by dsd are similar to those provided by the expert observers,

outperforming the cP distance on all three datasets.

The ROC analysis ranks distances between specimens and

assesses if this ranking is compatible with an existing classifi-

cation; it does not perform the classification itself. We extend

the ROC analysis to the actual problem of classification by

performing a third set of computational experiments. Each

experiment involves a dataset of surfaces/specimens, D, a

taxon, T, and a distance measure, d. We begin by randomly

dividing the sets of surfaces in D into two groups of approxi-

mately equal size. The first group serves as a training set to

define the taxa, while the second group serves as a test set.

A test surface is classified by assigning it to the taxon of its

nearest neighbour in the training set. This is much akin to the

‘threading’ method illustrated in figure 1c and used in

the protein structure prediction community [44]. The results
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Figure 4. ROC analyses of three distance measures of surface similarities. We compare the effectiveness of an observer-based distance, dobs, a continuous Procrustes
distance, dcP, and a symmetric distortion distance, dsd, to detect similarities that identify with membership of the same species in a set of 61 metatarsal surfaces (a), in
a set of 45 radius surfaces (b), and with genera in a set of 99 teeth surfaces (c). ‘True’ relationships are defined by the phylogeny of the specimens included in those
datasets. An ROC curve that falls close to the first diagonal (shown as a dashed line) reveals poor performance, while an ROC curve that first follows the y-axis, i.e.
whose area under the curve is the largest, indicates good performance. The results indicate that dsd outperforms dcP and is comparable to an observer-based distance.

Table 3. Repartition of the 200 smallest distances for the observer, cP and sd distances.

dataset
first metatarsal radius teeth

distance true (112)a false (1718) true (198) false (792) true (180) false (4671)

observer1 81 (72%) 119 (7%) 120 (60%) 80 (10.1%) 134 (74.4%) 66 (1.4%)

observer2 98 (87.5%) 102 (5.9%) n.a. n.a. n.a. n.a.

dcP 77 (68.7%) 123 (7.2%) 99 (50%) 101 (12.8%) 130 (72.2%) 70 (1.5%)

dsd 86 (76.8%) 114 (6.6%) 127 (64%) 73 (9.2%) 138 (76.7%) 62 (1.3%)
aThe distance between two surfaces is said to be true if the corresponding specimens belong to the same species, and false otherwise. The total number of
such pairs is given in parenthesis. We chose the first 200 distances in both sets to guarantee that we would include both types of distances. We note that the
best possible performance for a distance measure would find 112 true and 83 false distances for the metatarsal dataset, 198 true and 2 false for the radius
dataset, and 180 true and 20 false for the teeth dataset.
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are stored in a confusion matrix, C, whose element Cði, jÞ
reports the number of test surfaces corresponding to speci-

mens that belong to taxon i that have been classified as

belonging to taxon j. The accuracy of the classifier d is then

defined to be the ratio of the trace of the confusion matrix

over the sum of all its elements (i.e. the percentage of correctly
classified specimens). To remove the influence of the initial

division of the dataset into test and training sets, the procedure

is repeated 5000 times. We performed these experiments for the

three datasets, for the three distance measures and for different

levels in the taxonomy of the specimens. The results are

reported in table 4.



Table 4. Success rates of classification experiments, based on the observer, cP and sd distances.

dataset
first metatarsal radius teeth

classification N obs1 obs2 cP sd N obs cP sd N obs cP sd

species 13 74a 86 71 81 5 76 78 85 n.a. n.a. n.a. n.a.

genera 13 74 86 71 81 4 85 85 90 24 87 87 94

families 9 83 94 82 93 n.a. n.a. n.a. n.a. 17 91 89 93

superfamilies 2 100 100 98 100 n.a. n.a. n.a. n.a. 5 94 95 95
aPercentage of correctly classified specimens, computed over 5000 experiments.
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Classifications based on the sd distances outperform those

based on the cP distances for the three anatomical datasets, and

are similar in accuracy to those based on the observer distances,

even outperforming them for the radius and teeth datasets. We

note the significant differences between the two observers on

the first metatarsal dataset. These differences indicate the diffi-

culties in defining consistent landmarks on anatomical surfaces

even for experienced morphometricians.

A distance matrix that contains the results of an all-against-all

comparison of all specimens included in a dataset can be turned

into a tree using a variety of clustering techniques. We used

the unweighted pair group method with arithmetic mean

(UPGMA) to build trees based on the four distance measures

(dobs1, dobs2, and dsd) for the first metatarsal dataset, as

implemented in the software package PHYLIP [45]. UPGMA

constructs a tree by minimizing the net disagreement between

the matrix pairwise distances and the distances measured on

the tree. Results are shown in figure 5. We note that those are

phenetic trees, in opposition to phylogenetic trees that are built

from molecular sequencing data.

The UPGMA tree based on dsd shows a high level of agree-

ment with the actual phylogeny of the specimens considered,

both at the superfamily and at the family level. The two super-

families, simians and prosimians, are clearly separated on the

tree. In addition, nine clades with three or more branches

only include specimens from the same family, with four of

those exactly corresponding to one family, namely the Tarsii-

dae, Lemuridae, Lorisidae and Pitheciidae. We only observe

one unusual association, namely the first metatarsal of one

Galago is found to be very similar to the first metatarsal of a

Cheirogaleidae, while other members of these two families

are clearly distinguished. We note that similar, and some-

times larger, overlaps between these two families are

observed in the phylogeny trees built from the observers’ dis-

tances or from the cP distances. The tree based on observer1

distances shows even more misassociations, with members of

the Lemuridae families (in green) being spread out over the

Indridae and Cheirogaleidae families.

To quantify the differences between the trees generated

from the observers, cP and sd distance matrices computed

for the metatarsal dataset, we first rescaled those distance

matrices so that all distances ranged between 0 and 1, and

regenerated the UPGMA trees. The four trees are then com-

pared using the TreeDist program from the software package

PHYLIP. TreeDist computes the symmetric distance of

Robinson & Foulds [47] to evaluate the smilarity between two

trees. We find that the distances between the observers’ trees

and the cP and sd trees are 96 and 84, and 86 and 82, respect-

ively. While we cannot assess the meaning of the absolute
values of these distances, and the significance of the differences

between those values, we do notice that the observers’

trees resemble most the tree computed with the sd method

introduced here.
4. Discussion
Finding efficient algorithms to describe, measure and compare

shapes is a central problem in numerous disciplines that gener-

ate extensive quantitative and visual information. Among

these, biology occupies a central place. Structural biologists

studying bio-molecular structures, neurobiologists studying

the shapes of brain structures and their variations during

ageing or in diseases, as well as morphometrists who use

three-dimensional geometric morphometry are all concerned

with characterizing three-dimensional shapes and computing

distances between those shapes. In this context, we have devel-

oped a new method for automatically generating a conformal

map between two surfaces of genus zero. This new approach

leads to flexible registration of the two surfaces and accurate

measurements of their geometric dissimilarities based on an

actual metric on the space of surfaces of genus zero, without

the need for the selection of landmark points. Our use of con-

formal maps is taking advantage of a tool to reduce the

dimension of the space of correspondences down to a six-

dimensional subspace which retains geometric information

and is mathematically natural. Its implementation within the

program MatchSurface is based on fast and robust numerical

methods, making surface comparisons feasible for a wide

range of datasets. We have illustrated its use in the field of geo-

metric morphometry, using three datasets representing bones

and teeth of primates. Experiments on these datasets show

that it performs remarkably well both in shape recognition

and in identifying evolutionary patterns.

While we show successful taxon recognition based on

geometric information for one of the datasets considered (the

Metatarsal dataset, see figure 5), taxonomy is not the intended

purpose of this method. Instead, we restrict its current

applications to providing robust estimates of the distances

between three-dimensional shapes, with one finality being to

support phylogeny reconstruction. Since the advent of compu-

ters and the developments of robust and fast scientific

computing techniques to quantify phenotypes, there has

been a wealth of studies attempting to provide a quantitative

view of evolution in biology, starting with classification and

taxonomy. The concept of numerical taxonomy [48] and the

development of three-dimensional geometric morphometrics

are both part of this movement (for an excellent review on
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Figure 5. Morphology-based UPGMA trees for the specimens included in the first metatarsal database: (a,c) are derived from distances computed using landmarks
placed on each surface by experienced morphometricians, while (b,d ) are computed based on landmark-free shape comparison methods, namely cP [13] and sd
(this work). Branches of the trees are coloured according to the actual species of the specimens. The trees were computed using the program Neighbor from the
software package PHYLIP [45], and subsequently drawn using the package MEGA6 [46].
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this topic, see the recent paper by Boyer et al. [14]). The devel-

opment of genomics, however, in the last three decades has led

many to question the relevance of geometric morphometrics

for phylogenetic studies. Indeed, the assessments of genetic

variations from automated genomic analyses have greatly

improved our understanding of the relationships between the

genotype and phenotype of individuals of many species (for

a review, see [49]). Those relationships serve as the basis for

building the phylogeny of organisms, i.e. the history of their

lineages as they change through time. As a consequence, phy-

logenetics is playing a central role in the study of evolution [50].

In comparison, it is much harder to develop good models of the

genetics that underlie morphological changes [51]. It should be

noted also that genomics studies are comparatively easier than

morphometric studies, with the cost of sequencing whole
genomes being so low today, and with the analyses of the

one-dimensional information contained in a genome being sig-

nificantly simpler than the analyses of the three-dimensional

information contained in a shape. As a consequence, the utility

of morphological data in phylogenetic research has become

increasingly questioned (see, for example, Wiens [11], a com-

ment to a paper by Scotland et al. [15]). As a response to the

criticisms expressed against geometric morphometry,

MacLeod et al. [18] and more recently Boyer et al. [14] have

emphasized the need to automate and standardize

morphological studies, starting with the determination of

geometric correspondence between shapes. The method devel-

oped in this paper is one contribution towards this goal.

We have shown that it is robust and versatile, albeit currently

limited to studying shapes with surfaces of genus zero.
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The method described here extends earlier work pre-

sented in [39,40]. The earlier work used energies that did

not lead to a metric on the space of shapes. We note that

these approaches are most accurate on surfaces that have uni-

form geometry, without long protrusions or spikes [39]. The

method is constrained to finding a conformal map between

two surfaces, and, while always possible for genus zero,

this cannot in general be done for surfaces of positive

genus. The basic idea behind using conformal parametriza-

tion for surface mapping is deceptively simple and

ultimately very powerful. As genus zero surfaces can

always be mapped conformally onto the sphere, the search

for (near) isometries between them can be made more tract-

able by restricting to a search within the Möbius group,

which is parametrized with six degrees of freedom only.

Spheres can be formed from topological discs by coning

their boundaries to their centre of mass. Thus, a method for

comparing genus zero surfaces, such as MatchSurface, also

gives a method to compare surfaces having the topology of

a disc.
Finally, we note that the symmetric deformation energy of

a conformal map between two surfaces F1 and F2 defined in

equation (2.1) establishes a metric on the space of genus zero

surfaces. This property is highly desirable for surface com-

parison, as such a metric is robust and not overly sensitive

to noise and measurement errors. The applications of our

method extend beyond comparing anatomical surfaces with

fields as varied as motion capture, medical imaging and

computational biology.
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