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ABSTRACT OF THE DISSERTATION

Strong correlation effects in itinerant systems and space-time symmetry in
dynamical condensed matter systems

by

Shenglong Xu

Doctor of Philosophy in Physics

University of California, San Diego, 2017

Professor Congjun Wu, Chair

One of the central goals of condensed matter theory is to understand the behavior

of electrons under various circumstances. This dissertation focuses on the some relatively

unexplored effects brought by lattices, in a general setting.

One ingredient that lattices introduce is the orbital degrees of freedom, resulting

from the interaction between electrons and background ions. We have non-perturbatively

studied a strongly coupled multi-orbital electron liquid, which has a fully polarized

ground state. Both Hund’s coupling and electron itinerancy are essential to building up

the global spin coherence. At finite temperature, the system exhibits both Curie-Weiss

xiv



type spin susceptibility and finite compressibility, demonstrating the coexistence of spin

coherence and charge incoherence. At low temperature, the single particle excitation

extends over the entire Brillouin zone rather than the vicinity of the Fermi surface due to

the spin fluctuation.

Another dramatic effect of lattices on electrons is the formation of Mott insulators.

We consider a special type of Mott insulators occurring at non-integer fillings, which has

a finite single-particle gap but strong local charge fluctuation. As an example, we studied

1D Hubbard model with SU(N) symmetry at half-filling. The systems are insulating for

all values of N, but the filling is half-integer when N is odd. We demonstrate that the

systems with N even and N odd exhibit distinct energy scales of charge and spin gaps. In

the case of odd N, the local charge fluctuation leads to spin gap much greater than the

super exchange energy scale. The difference between the systems with opposite parity of

N is gradually smeared out as N increases.

The symmetry of lattices can also enforce band touchings and band crossing,

leading to nodal-line and nodal-point semi-metals. We explore the symmetry constraints

on electrons imposed by generalized lattices with space-time mixing periodicities. which

include the Floquet lattice systems as a special case. Compared to space and magnetic

groups, the symmetry group of such systems is augmented by “time-screw” rotations and

“time-glide” reflections involving fractional time translations. A complete classification

of the 13 space-time groups in 1+1D and 275 space-time groups in 2+1D are performed.

Kramers-type degeneracy can arise from space-time symmetries without the half-integer

spinor structure, which constrains the winding number patterns of spectral dispersions.

In 2+1D, non-symmorphic space-time symmetries enforce spectral degeneracies, leading

to protected Floquet semi-metal states.
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Chapter 1

Introduction

Condensed matter theory is a subject to study collective phenomena from the

microscopic degrees of freedom. One of the central goals is to understand the behavior of

electrons as much as possible, motivated by the following fundamental phenomena found

in electronic materials: metal, insulator, magnetism, superconductivity and quantum Hall.

Enormous efforts have been made to explain these phenomena, and various paradigms

have been established.

Among all these phenomena, the metallic behavior of electrons is special because

of the vanishing single particle gap. The current understanding of metal is based on

Landau’s Fermi liquid (FL) theory, which is one of the most successful paradigms of

interacting electrons [1]. It states that interacting fermions are adiabatically connected to

noninteracting fermions, and the Fermi surfaces are robust against interaction. The role

of interaction is to reduce the quasi-particle weight Z from 1, the value of free fermions.

Using this picture of quasi-particle, one can explain the thermodynamic properties

and transport properties, such as the temperature dependence of heat capacities, spin

susceptibilities, and conductivities, observed in a wide variety of metals.

Since Fermi surfaces are so robust in electrons systems, it is natural to ask what

1
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conditions can dramatic change this picture. There are quite a few possibilities, including

considering attractive interactions[2], magnetic field[3], coupling the electrons to bosonic

degrees of freedom[4], disorder[5], lattice, etc. This dissertation will be mainly focused

on the effects of lattice symmetries.

In materials, electrons are moving in the crystals formed by ions. The orbital

degrees of freedom arise due to the Coulomb attraction between the electrons and ions.

In the atomic limit, the orbitals are labeled by the angular moments, whereas in the

presence of the crystal field, the orbitals are labeled by the irreducible representations

(irrep) of local point group symmetry, i.e. T2g, and Eg and so on. As promised by the

symmetry, orbitals within one irrep are degenerate. These degenerate orbitals do not

simply lead to multi copies of Fermi liquid, but significantly affect both the dispersion

and the interaction. First, due to the shapes of orbitals, the kinetic term is not isotropic

anymore and neither the Fermi surface. In principle, there are also hybridization between

orbitals, if allowed by the symmetry, and the Fermi surface can carry orbital texture.

Second, the inter-orbital interaction, especially the Hund’s rule coupling, is not considered

within the framework of FL theory, which was developed to describe liquid Helium. The

Hund’s coupling favors that local spins in different orbitals point to the same direction.

Since the kinetic energy usually favors unpolarized state, the local polarization may not

be sufficient to induce fully polarized state. In this case, the electron systems remain

paramagnetic, and what the Hund’s coupling does is suppressing charge coherence and

reduce the quasi-particle weight [6]. On the other hand, if under certain conditions, the

ground state of the system becomes polarized because of the local polarization, then the

Hund’s coupling is simply zero in the sub Hilbert space of the fully polarized states, and

the quasi-particle weight is restored. In Chapter 2, we study a particular model where

the Hund’s coupling does lead to global polarization. We demonstrate that the collective

effect of Hund’s coupling, orbital anisotropy, electron itineracy and strong correlation
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gives rise to the fully polarized state. We further study the thermodynamic behavior

of the resulting orbital-active itinerant ferromagnet non-perturbatively using Quantum

Monte Carlo.

Another effect of lattices is to gap out the charge excitation in the Fermi Liquid,

leading to insulating states, which can be classified into band insulators and Mott insu-

lators. The Mott insulators are the consequences of interaction and can be understood

in the atomic limit. Consider the simplest case that each atom only contains one orbital

which is filled with one electron [7]. Then one electron needs to overcome a barrier due

to Coulomb repulsion to move to its neighboring site, and it also takes a finite amount

of energy to put one extra electron into the system. Therefore the system is an insulator

but would be metallic if the interaction is turned off. This seemly oversimplified picture

of atomic Mott insulator is the starting point to understand magnetic properties of many

materials. One can perform second order perturbation theory on all the degenerate states

of different spin configurations and obtain an effective Hamiltonian, the Heisenberg

model. It describes the antiferromagnetic interaction between neighboring spin with the

super exchange energy J = 4t2/U where t is energy scale on the order of the Fermi energy

and U is on the order of single particle charge gap. Mott insulator can also happen at the

weak coupling limit due to Fermi surface nesting, such as in square lattice at half-filling

with nearest neighboring hopping. In this situation, the system is an antiferromagnetic

Mott insulator for any positive repulsion. The Mott insulator in the weakly coupling limit

is adiabatically connected to the strong Mott insulator in the atomic limit, as confirmed

by Quantum Monte Carlo study [8]. There are also other cases where Mott insulators

occur at non-integer fillings [9, 10] and therefore are not adiabatically connected to the

atomic Mott insulator. The Mott insulators with non-integer fillings exhibit strong local

charge fluctuations even in the strong coupling limit, and the usual approach to analyze

the magnetic properties by thinking about virtual hopping fails. In chapter 3, we study
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one example of such non-integer filling Mott insulators and demonstrate that in that case,

the energy scale in the spin channel is proportional to the Fermi energy, much higher

than the super exchange energy.

The lattice symmetry can also significantly affects the shape of the Fermi surface

and even change its dimensionality, leading to nodal-line and nodal-point semi-metals.

For example, nonsymmorphic symmetries, which are combinations of fractional transla-

tions and point group symmetries, can enforce band degeneracies at high symmetry points

in the Brillouin zone. The reason is that the wave functions at these specific points are

in the projective representation of the point group symmetries that leave the momentum

invariant, and projective representation is alway more than one dimension [11]. The

nonsymmorphic symmetry also enforces crossing of two bands if they carry different

eigenvalues of the symmetry operation, resulting in nodal points or nodal lines but not

necessary at high symmetry K point [12]. Furthermore, point group symmetry alone

can also protect nodal point on certain kinds of lattices. For example, the single-particle

wave functions on honeycomb lattice at A and B sublattices with momentum K are the

two-dimensional representation of the C3v point group symmetry of the lattice and thus

have to be degenerate. Inspired by these interesting effect of lattice symmetry, we gener-

alize the space group symmetry to the space-time group symmetry and investigate the

constraints of these exotic symmetries on the behavior of electrons subjected to periodic

driving force. This part is included in Chapter 4.

These effects of lattices are not independent but interplay with each other. There

are multi-orbital Mott insulators with orbital orders, for example, see [13], and even

more exotic spin-orbit coupled Mott insulators. In some lattices, flat bands appear in

the spectrum, giving rise to ferromagnetism [14] and Mott insulators with enlarged unit

cell [10], stabilized by interactions. The strain field in lattices mimics magnetic field

and simulates Landau levels. The idea of topology that was originally applied in the
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field quantum Hall has been used to further classify band insulators, Mott insulators,

semi-metals [15]. The presence of nodal structure in the Fermi surface modifies the usual

partial wave analysis of the pairing symmetry in superconductors due to topological

property of nodal points [16] or nodal lines. All the different aspects of the collective

behavior of electron entangle together and constitute the current vivid understanding of

electrons, and there is still enormous unknown territory to explore.

We have explained the motivation for the works presented in this dissertation and

their relation to previous research. In the following, we summarize the main results of

these works.

In chapter 2, we present a comprehensive study of a strongly coupled Curie-Weiss

metal, which exhibits ferromagnetic ground state and unusual finite temperature proper-

ties. The microscopic mechanism of itinerant ferromagnetism is a long-standing problem

due to the lack of non-perturbative methods to handle strong magnetic fluctuations of

itinerant electrons. We have non-pertubatively studied thermodynamic properties and

magnetic phase transitions of a two-dimensional multi-orbital Hubbard model exhibiting

ferromagnetic ground states. Quantum Monte-Carlo simulations are employed, which are

proved in a wide density region free of the sign problem usually suffered by simulations

for fermions. Both Hund’s coupling and electron itinerancy are essential for establishing

the ferromagnetic coherence. No local magnetic moments exist in the system as a priori,

nevertheless, the spin channel remains incoherent showing the Curie-Weiss type spin

magnetic susceptibility down to very low temperatures at which the charge channel is al-

ready coherent exhibiting a weakly temperature-dependent compressibility. For the SU(2)

invariant systems, the spin susceptibility further grows exponentially as approaching zero

temperature in two dimensions. In the paramagnetic phase close to the Curie temperature,

the momentum space Fermi distributions exhibit strong resemblance to those in the fully

polarized state. The long-range ferromagnetic ordering appears when the symmetry is
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reduced to the Ising class, and the Curie temperature is accurately determined. These

simulations provide helpful guidance to searching for novel ferromagnetic materials in

both strongly correlated d-orbital transition metal oxide layers and the p-orbital ultra-cold

atom optical lattice systems.

In chapter 3, we study the strong correlation effects for Mott insulating states,

especially insulating states with non-integer fillings. We argue that due to the residue

local charge fluctuation, the energy scale in the spin channel is higher than the super

exchange energy scale. The simplest example is the SU(N) symmetric Hubbard chains at

half filling (N/2 particles per site on average). Weak interaction analysis [9] tells that the

systems are insulating for all values of N, although the filling is half-integer when N is

odd. We systematically study the effects of the large symmetry on the non-integer Mott

insulators and compare them with their close relatives, the SU(N) Hubbard chains with N

even. As N increases, the density per component stays the same, and the large-N physics

is fundamentally different from 1/N filling. The difference between even-N and odd-N

systems is most pronounced for small values of N and strong interactions, affecting both

charge and spin channels. The odd-N chains, which are Mott insulators at half-integer

filling, exhibit a strong tendency to dimerization at the temperature comparable to the

Fermi energy due to the local charge fluctuation. As N increases, the interaction effects

are suppressed and the boundary between the two sets of Hubbard chains is smeared out

by the large symmetry.

In chapter 4, we focus on the space-time symmetry of dynamic condensed matter

system. Crystal structures and the Bloch theorem play a fundamental role in condensed

matter physics. The lattice symmetries significantly affects the the properties of the

Fermi surface, leading to band insulators, nodal point semi-metals and nodal line semi-

metals. We propose “space-time” crystals exhibiting the general intertwined space-time

periodicities in D+1 dimensions, which include the Floquet lattice systems as a special
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case. Their crystal symmetry structures are described by “space-time” groups. The full

discrete space-time symmetries of space-time crystals form groups – dubbed “space-

time” groups, which are generalizations of space groups for static crystals by including

“time-screw” and “time-glide” operations. A complete classification of the 13 space-time

groups in 1+1 D, and 275 space-time groups in 2+1 D are performed. We demonstrate

that the non-symmorphic space-time symmetry operations, similar to their static space-

group counterparts, lead to spectral degeneracies for periodically driven systems, even

when the instantaneous spectra are gapped at any given time t.



Chapter 2

Strongly-coupled itinerant systems:

Curie-Weiss metal and the role of

Hund’s coupling

2.1 Introduction

Itinerant ferromagnetism (FM) is one of the central topics of condensed matter

physics [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38, 39]. It has also become a research focus both experimental and theoretical of ultra-

cold atom physics [40, 41, 42, 43, 44, 45, 46, 47]. The mechanism of itinerant FM has

been a long-standing problem. Stoner proposed the exchange interaction among electrons

with parallel spins as the driving force for itinerant FM [17]. Along this direction, the

local density approximation (LDA) of the density functional theory has achieved great

success [48, 49]. For example, the ground state magnetic moments of FM metals can

be calculated accurately [50]. The implementation of correlation effects in LDA has

also been improved by the methods of LDA+U [51], LDA+DMFT(dynamical mean-field

8
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theory) [52, 53, 54], and LDA+GP (Gutzwiller projection) [55, 56, 57].

Nevertheless, itinerant FM systems are also strongly correlated, and their physics

is often non-perturbative. Usually repulsive interactions need to be sufficiently strong

to overcome the kinetic energy cost of polarizing electron spins, and thus itinerant FM

has no well-controlled weak-coupling starting point. The Stoner criterion overlooks

correlation effects among electrons with opposite spins [39]: Electrons can delicately

organize their wavefunctions to reduce repulsions and still remain unpolarized even in

the presence of strong interactions. For example, the Lieb-Mattis theorem proves that the

ground state of a rigorously one-dimensional (1D) system is a spin singlet no matter how

strong the interaction is [21].

It is more appropriate to start with electron orbitals to construct lattice model

Hamiltonians to address the strong correlation aspect of itinerant FM. Exact theorems

establishing FM, which are usually based on lattice models, are indispensable to provide

reference points for further investigations. Well-known examples include the Nagaoka

theorem [22, 58, 59, 60, 61, 62], which applies to the infinite U Hubbard models in two

and above dimensions with doping a single hole on the half-filled background, and the

“flat-band” FM in certain lattices with dispersionless band structures [14, 29]. In the

former case, FM arises because the spin polarized background maximally facilitates the

hole’s coherent hopping, while in the latter case, the band flatness reduces the kinetic

energy cost for polarizing spin to zero.

One central issue of itinerant FM is the role of orbital degeneracy which widely

exists in FM metals. Hund’s coupling is a prominent feature in multi-orbital systems,

which favors electrons on the same site to align their spins. However, Hund’s coupling is

local physics which usually cannot polarize itinerant electrons in the absence of local

moments. Under what precise conditions Hund’s coupling can lead to the global FM

coherence in itinerant systems is still an open question.
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The difficulty in achieving unambiguous FM ground states is only one side of

the story of strongly-correlated itinerant FM, the finite-temperature thermodynamic

properties are another challenge [63, 26, 64, 7]. At first looking, it might not look so

striking: the ferromagnetic susceptibilities show the standard mean-field Curie-Weiss

(CW) law in the off-critical region as

χ(T ) =
C

T −T0
, (2.1)

where C is the Curie constant [65] and T0 is the Curie temperature at the mean-field level.

The CW law manifests spin incoherence, which is common in the paramagnetic state

based on local moments. But it is difficult to understand in itinerant FM metals still

possessing Fermi surfaces. For example, the transport and the charge channel properties,

such as resistance and compressibility, remain metallic, i.e., they are featured by the

Fermi surface physics.

Within the itinerant picture, the Pauli magnetic susceptibility augmented by the

random phase approximation (RPA) yields χ(T ) ∝ 1/(T 2−T 2
0 ), but it is not commonly

observed in experiments [26, 64, 7]. In fact, the CW law in FM metals applies to a

wide range of temperatures Tf � T > T0 (Tf is the Fermi temperature) which shows

spin-incoherence well below Tf . The reason is that RPA treats the paramagnetic phase

as a weakly correlated Fermi liquid state with slightly thermally broadened Fermi dis-

tributions. Actually, this phase is rather complicated: Dynamic FM domains strongly

fluctuate, which is beyond the RPA description and is difficult to handle analytically. The

paramagnetic state of itinerant FM exhibits much higher entropy capacity than the usual

weakly correlated paramagnetic Fermi liquid state, which significantly suppresses the

genuine Curie temperature Tc, or, the renormalized one, away from the mean-field value

T0. Consequently, Tc is often significantly overestimated by weak coupling approaches
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[26, 64, 7].

A key question is how itinerant systems can exhibit the CW law and further

develop FM purely based on itinerant electrons without involving local moments such

that the charge channel remains coherent? Significant efforts have been made, including

the self-consistent renormalization theory including spin mode coupling [25, 63, 26], the

direct exchange from the Coulomb integral [27, 66], spin incoherence due to Hund’s

coupling [67], and the orbital-selective Mott transition [68, 69]. An important progress is

that the CW law can be obtained from the combined method of LDA+DMFT [70] away

from the critical region. However, none of these methods are non-perturbative in nature.

Another issue is the nature of the FM phase transitions in FM metals, which has

been been widely studied but is still under intensive debates [24, 30, 32, 34, 35, 33].

Compared to the superconducting phase transitions in which the fermion degree of

freedom is gapped below transition temperatures, the FM phase transitions are more

involved because systems remain gapless across transitions due to the existence of Fermi

surfaces. The FM domain fluctuations combined with the Landau damping of particle-

hole excitations around Fermi surfaces complicates FM transitions. It would be important

to perform a non-perturbative study.

Recently, the ground states of a multi-orbital Hubbard model have been proved

fully spin polarized in the strong coupling regime in the 2D square and 3D cubic lattices

[37]. It is showed that inter-orbital Hund’s coupling combined with electron itinerancy in

the quasi-1D band structure drive the FM ground states. Compared to the Nagaoka FM,

this new theorem proves a stable FM phase with nodeless ground state wavefunctions

over the entire electron density region 0 < n < 2, where n is the occupation number per

site, thus it sets up a solid starting point for further studying the strong correlation aspect

of itinerant FM. It also opens up the possibility of performing sign-problem free quantum

Monte Carlo (QMC) simulations away from half-filling by employing the bases under
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which the many-body Hamiltonians satisfy the Perron-Frobenius condition.

Although this theorem only sets up the ground state properties, it establishes an

unambiguous FM phase as a starting point for further studying both thermodynamic

properties and magnetic phase transitions over a wide region of electron density. In

order to handle the strong magnetic fluctuations, QMC simulations would be the ideal

method, however, they usually suffer the notorious sign problem for fermions and thus

are generally speaking inapplicable for itinerant FM. Remarkably, we prove that for the

systems in which the ground state FM theorem mentioned above [37] applies, the fermion

sign problem can be eliminated in the entire electron density region. This provides a

new opportunity to study the finite temperature thermodynamic properties and magnetic

phase transitions in an asymptotically exact way.

For later convenience, we briefly discuss the FM critical fluctuations which are

particularly important in two-dimensions. According to the Landau-Ginzburg-Wilson

paradigm of critical phenomena, Tc is suppressed from T0 but remains finite in 3D. As T

is lowered from T0 and approaches Tc, the system crosses over from the mean-field region

to the critical region, and χ(T ) ∝ (T −Tc)
−γ due to non-Gaussian fluctuations and γ is

the critical exponent. In 2D, Tc remains finite if the system symmetry is reduced to the

Ising class, or, the easy axis class. However, for the isotropic class, thermal fluctuations

suppress Tc to zero according to the Mermin-Wagner theorem [71]. Nevertheless, even

in this case the mean-field T0 is still an important temperature scale below which the

FM order develops its magnitude. However, the orientation fluctuations of the FM order

suppress the long-rang-order. In other words, this region is characterized by fluctuating

FM domains and the correlation length increases exponentially as lowering temperatures.

Consequently, the FM susceptibility deviates from the CW law and crosses over into an

exponential growth.

In this article, we will present a systematic non-perturbative study on thermo-
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dynamic properties and magnetic phase transitions of itinerant FM by performing the

sign-problem free QMC simulations. Our results show that itinerant FM can indeed

exhibit both spin incoherence and charge coherence simultaneously without forming local

moments. In other words, the system exhibits the feature of the CW metal as a combined

effect of Hund’s coupling and electron itinerancy. The model we simulate can be realized

in both d-orbital transition metal oxide layer and p-orbital ultra-cold atom optical lattices,

which do not contain local moments as a priori. The spin magnetic susceptibility exhibits

the CW law as a signature of spin incoherence, while, the compressibility weakly depends

on temperature as a consequence of itinerancy. The mean-field Curie temperature T0 is

extracted based on the CW law in the off-critical region, which is much lower than the

temperature scale of charge coherence Tch. The filling dependence of T0 is calculated

and the maximal T0 reaches one tenth of the hopping integral. The Fermi distribution

functions in momentum space are calculated in the strongly correlated paramagnetic

phase. The fermion occupation numbers are strongly suppressed from the saturated value

even for wavevectors close to the center of the Brillouin zone. When entering the critical

region, for the SU(2) symmetric models, χ(T ) grows exponentially. The true FM long

range order is achieved by reducing the model symmetry to the Ising class and the FM

critical temperature Tc is determined accurately by the finite size and critical scaling.

2.2 The Model Hamiltonian and the absence of the sign

problem

In this section, we present the model Hamiltonians, whose ground states were

proved to be ferromagnetic [37]. Furthermore, we also explain that the QMC sign-

problem is absent, and thus, this model provides an ideal preliminary to study the

thermodynamic properties and magnetic phase transitions of strongly-correlated itinerant
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FM in a controllable way.

2.2.1 The model Hamiltonians

We consider the case of the 2D square lattice: On each site there are two orthog-

onal orbitals forming a quasi-1D band structure. For simplicity, below we use the 2D

p-orbital system as an example, and the physics is also valid for the dxz and dyz-orbitals

systems in 2D. The relevance of this model to the current experiment efforts of searching

for novel itinerant FM systems will be discussed in Sect. 2.7. For the band structure, we

only keep the σ-bonding t‖ term, i.e., electrons in the px(y)-orbital only move longitudi-

nally along the x(y)-direction, respectively. The following Hamiltonian is defined in the

square lattice as

Hkin,‖ = −t‖∑
~r,σ

{
p†

xσ(~r+ êx)pxσ(~r)+ p†
yσ(~r+ êy)

× pyσ(~r)+h.c.
}
−µ∑

~r
n(~r), (2.2)

in which we neglect the small transverse bonding t⊥-term. For realistic p-orbital systems,

the sign of t‖ is negative due to the odd parity of p-orbital Wannier wavefunctions.

Nevertheless, for the bipartite lattice such as the square lattice, the sign of t‖ can be

flipped by a gauge transformation. Without loss of generality, t‖ is scaled to 1 below,

which serves as the unit for all other quantities carrying energy unit in this article.

The interaction part Hint contains the standard multi-orbital Hubbard interaction



15

[72, 73, 74, 75] as

Hint = U ∑
~r,a=x,y

na,↑(~r)na,↓(~r)+V ∑
~r

nx(~r)ny(~r)

− J ∑
~r

{
~Sx(~r) ·~Sy(~r)−

1
4

nx(~r)ny(~r)
}

+ ∆∑
~r

{
p†

x↑(~r)p†
x↓(~r)py↓(~r)py↑(~r)+h.c.

}
, (2.3)

where a = x,y referring to the orbital index; na,σ = p†
a,σ pa,σ and na = na,↑+na,↓; ~Sa =

p†
a,α~σαβ pa,β is the spin operator of the a-orbital. The U and V -terms describe the intra-

and inter-orbital Hubbard interactions, respectively; the J-term is Hund’s coupling and

J > 0 represents its FM nature; the ∆-term describes the pairing hopping process between

two orthogonal orbitals.

In order to gain an intuitive understanding of the interaction parameters, let us

consider a single site problem. There are in total six states which can be classified as a

set of spin triplet states and three different spin singlet states. The triplet states are with

energy V , defined as

p†
x,↑p

†
y,↑|0〉,

1√
2
(p†

x,↑p
†
y,↓+ p†

x,↓p
†
y,↑)|0〉, p†

x,↓p
†
y,↓|0〉, (2.4)

respectively, where |0〉 is the vacuum state. The other three spin singlet states are

1√
2
(p†

x,↑p
†
y,↓− p†

x,↓p
†
y,↑)|0〉, p†

x,↑p
†
x,↓|0〉, p†

y,↑p
†
y,↓|0〉, (2.5)

among which the first one involves both orbitals and its energy is V + J; the other two

singlets only occupy the same orbital with the average energy U and the hybridization

matrix element between them is ∆. In the limit of U →+∞, the states of p†
x,↑p

†
x,↓|0〉, and

p†
y,↑p

†
y,↓|0〉 are projected out. Nevertheless, the other four doubly occupied states are kept
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in the physical Fock space, including one set of spin-triplet states and one inter-orbital

singlet state.

The ground states of the Hamiltonians Eq. 2.2 plus Eq. 2.3 are fully spin polarized

at any generic filling n for arbitrary values of V under the condition that U →+∞ and

J > 0. The detailed proof and its generalization to the 3D cubic lattice are presented in

Ref. [[37]]. Below we present an intuitive physical picture. The band structure of Eq.

2.2 is quasi-1D, consisting of orthogonal rows and columns, and electrons do not transit

among different lines. In the absence of Hund’s coupling, then the intra-chain physics

in the limit of U →+∞ would correspond to the 1D infinite-U Hubbard model whose

ground states are highly degenerate regardless of the spin configurations. Then let us turn

on J > 0, and the inter-chain Hund’s coupling lifts the degeneracy and selects the fully

polarized state as the unique ground state: When one electron in a row meets another

one in a column at the crossing site, their spins are aligned to save the energy of J. Thus

different from the usual case that Hund’s coupling can only polarize electrons on the

same site. Remarkably, in this case it does polarize electrons in the entire system [37, 36].

Although the electron band structure is quasi-1D, interactions couple electron spins in

different chains together, and thus, the FM correlations and ordering are genuinely 2D,

or, 3D.

For completeness, we also present the Hamiltonian of the inter-chain hopping

with a small value of t⊥ as

Hkin,⊥ = −t⊥∑
~r,σ

{
p†

xσ(~r+ êy)pxσ(~r)

+ p†
yσ(~r+ êx)pyσ(~r)+h.c.

}
, (2.6)

which will be used in Sect. 2.7.1. Again, in the square lattice the sign of t⊥ can be flipped

by a gauge transformation, and without loss of generality, it is assumed to be positive.
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We set t⊥ = 0 in most part of this article except in Sect. 2.7.1.

2.2.2 The absence of the QMC sign problem

The many-body Hamiltonian matrix of Eq. 2.2 plus Eq. 2.3 possesses an impor-

tant sign structure in the limit of U → +∞ under which the ground state FM theorem

applies [37]. In the coordinate representation, a convenient set of many-body bases

are defined by ordering fermions according to their real space positions along one row

by another and then along one column by another. The periodical and anti-periodical

boundary conditions are employed for each chain if the particle number in that chain is

odd and even, respectively, which is feasible because the particle number in each chain is

separately conserved. This particular choice of boundary conditions should not change

the bulk physics. Under these bases and boundary conditions, in the limit of U →+∞,

the electron hopping term and the spin-flip term from Hund’s coupling do not change

the sequence of fermion ordering. When electrons hop across the boundary, no extra

minus sign appears either due to the above boundary condition. Then the many-body

Hamiltonian matrix satisfies the prerequisite of the Perron-Frobenius theorem: All the

non-zero off-diagonal matrix elements are either−t or−J arising from the kinetic energy

term and Hund’s coupling, respectively, and thus they are semi-negative-definite. We

do not need to consider the pair hopping process which is completely suppressed in

the limit of U →+∞. Remarkably, the above sign structure of the off-diagonal matrix

elements renders the ground state many-body wavefunction nodeless, and also leads to

the disappearance of the QMC sign problem for the ground states.

For the finite temperature thermodynamic properties, we use the stochastic series

expansion (SSE) QMC method with the directed loop update algorithm [76, 77, 78, 79,

80]. This method is usually used for boson systems and 1D fermion systems. In our case,

although the band structure of Eq. 2.2 is quasi-1D like, the interaction Eq. 2.3 couples all
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the chains together. In particular, the total spin of each chain is not conserved, and thus

its magnetic properties in truly 2D. Remarkably, we find for this model the sign problem

is absent at finite temperatures in the entire electron density region 0 < n < 2. In the SSE

method, the partition function is expanded as

Z =
+∞

∑
n=0

βn

n! ∑
αn

i

n

∏
i=1
〈αn

i |−H |αn
i−1〉 , (2.7)

where H = Hkin,‖+Hint ; |αn
i 〉 runs over the set of many-body bases defined above and

|αn
n〉= |αn

0〉. A negative constant is added to the many-body Hamiltonian matrix to make

all of its diagonal matrix elements negative, and then all the matrix elements of −H

become positive. The grand canonical ensemble is employed to ensure the ergodicity of

the particle number distribution in each chain. We have carefully adjusted the chemical

potential µ according to the temperature to maintain the targeted filling factor.

The QMC sign problem does appear in the presence of the t⊥-term , i.e., Eq. 2.6,

because electrons become mobile in a two-dimensional manner. Nevertheless, the QMC

simulations can still be performed when the sign problem is not so severe, which will be

presented in Sect. 2.7.1.

2.3 Thermodynamic quantities in the off-critical region

In this section, we present the results of QMC simulations on the spin magnetic

susceptibility χ(T ) and the compressibility κ(T ) in the off-critical temperature region.

χ(T ) exhibits the celebrated CW law at temperatures well-below the kinetic energy scale

of the system, while κ(T ) typically weakly depends on temperature.
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Figure 2.1: The temperature dependence of the spin-susceptibility and the compress-
ibility for various fillings at V = 0. (a) χ−1(T ) exhibits the CW law at different values
of n. The inset shows interceptions corresponding to the mean-field value of Curie
temperature T0. (b) The compressibility κ(T ) at different values of n. The dashed lines
represent κ(T ) of 1D spinless fermions at the same densities for comparison. Values of
n in (a) and (b) are represented by the same legend. V = 0 and J = 2 for both figures.
The error bars of the QMC data are smaller than the symbols.

2.3.1 The temperature dependence of spin susceptibility χ(T ) and

compressibility κ(T )

The spin susceptibility χ and compressibility κ are two fundamental thermo-

dynamic properties in interacting fermion systems in the spin and charge channels,

respectively. In usual paramagnetic Fermi liquid states, both χ and κ at zero tempera-

ture exhibit the itinerant feature controlled by the density of states at the Fermi energy.

Furthermore, they are renormalized by interaction effects characterized by the Landau

parameters F0
a and F0

s in the spin and charge channels, respectively. At finite temperatures

much lower than the Fermi temperature, χ(T ) and κ(T ) are only weakly temperature

dependent. However, in FM metals χ(T ) and κ(T ) behave dramatically differently ex-

hibiting local-moment-like and itinerant features, respectively, which will be shown from

the QMC simulation results.
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Because the total spin is conserved, the spin magnetic susceptibility χ is repre-

sented by the equal-time correlation function as

χ(T ) = lim
L→+∞

β

L2 ∑
~r1,~r2

〈Sz(~r1)Sz(~r2)〉. (2.8)

The QMC results of χ−1(T ) at V = 0 are presented in Fig. 2.1 (a) in the off-critical

region based on the finite size scalings. For all the values of n presented, χ exhibits the

CW-law in the off-critical region. The values of T0 extracted from the linear form χ−1(T )

range from 0.01 to 0.1, which means that spin remains incoherent at temperatures well

below t‖ (scaled to 1).

It is not surprising that χ(T ) should asymptotically scale as 1/T in the high

temperature limit T � Tf where Tf is the Fermi temperature because in this limit spin

channel is completely incoherent. Nevertheless, the spin incoherence persists into a much

lower temperature scale T0 below Tf . Although T0 is a mean-field energy scale which

does not mean the FM long-range order, it remains important roughly equal to the energy

cost of flipping an individual electron spin in the ground state. Due to non-Gaussian

fluctuations, the actual FM critical temperature Tc significantly deviates from T0 defined

in Eq. 2.1. In the current SU(2) invariant case, actually Tc = 0 due to the Mermin-Wagner

theorem [71].

The compressibility κ(T ) reflects the coherence in the charge channel. Because

the total particle number is a conserved quantity, it is also defined as an equal-time

correlation function as

κ(T ) = lim
L→+∞

β

L2 ∑
~r1,~r2

〈n(~r1)n(~r2)〉. (2.9)

The QMC results of κ(T ) at V = 0 are presented in Fig. 2.1 (b). Again κ is proportional
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Figure 2.2: The temperature dependence of the spin-susceptibility and the compress-
ibility for various fillings at V = 8. (a) χ−1(T ) and (b) κ(T ) at a large value of V = 8 in
the temperature regime of 1/6 < T < 1/2. Different values of n are shown in the legend
in (b). At n = 1, the system is in the Mott-insulating state, and thus κ(T ) drops to nearly
zero at low temperatures. The error bars of the QMC data are smaller than the symbols.

to 1/T in the high temperature incoherent regime as shown in Eq. 2.9, and it saturates

at low temperatures in the metallic phase. The crossover temperature scale Tch between

these two regimes is typically the chemical potential at zero temperature. In the usual

Fermi liquid state, κ is typically the density of state at the Fermi energy renormalized

by Landau parameters. In our case, the situation is different due to the prominent FM

fluctuations. At V = 0, due to the infinite U and the 1D band structure, Tch is roughly

the Fermi temperature of spinless fermions at the same density. For most values of n

presented in Fig. 2.1 (b), Tch is at the order of t‖, and thus κ saturates in the temperature

region presented. As for the case of a low hole density n = 1.8, Tch can be estimated

around 0.1, and thus κ(T ) does not saturate yet in the simulated temperature region.

Because of the strong FM tendency, the inter-orbital interaction vanishes at V = 0 and

κ(T ) can be well fitted by that of spinless fermions as shown in Fig. 2.1 (b).

Comparing χ(T ) and κ(T ), the spin coherence temperature T0 is much lower than

the charge coherence temperature Tch. These two distinct coherence temperature scales in
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spin and charge channels are an important feature of FM metals. A common phenomeno-

logical interpretation is to divide electrons into two parts: local moments and itinerant

electrons which are responsible for the spin and charge channel behaviors, respectively.

However, this dividing is artificial for metals when all the electrons are itinerant with

equivalent band structures such as in our case. Based on the QMC simulations above, we

have shown unambiguously that the CW-law can indeed appear in strongly correlated

systems without local moment formation. A similar feature also appears in the CW metal

states [81, 82] and the 1D spin incoherent Luttinger liquids [83]. The difference is the

behavior of χ below the spin coherence temperature T0. In the case of the CW-metal, χ

saturates exhibiting the Pauli-like behavior but strongly enhanced by interactions, and in

the 1D case, antiferromagnetic correlations develops. In our case, as will be shown in

Fig. 2.6 in Sect. 2.5, χ evolves into an exponential growth as a reminiscence of the FM

long-range ordered ground state [37].

Next we consider the effects of a large inter-orbital repulsion V to χ−1(T ) and

κ(T ). The ground states remain fully spin polarized as proved in Ref. [[37]], and the

QMC results of χ−1(T ) still exhibit the CW law at all the fillings as shown in Fig. 2.2 (a).

The most prominent effect of V is the suppression of κ(T ) at the commensurate filling

of n = 1 as shown in Fig. 2.2 (b), in which the system is in the Mott-insulating state. In

this case, electrons become local moments due to the opening of charge gap. As a result,

κ(T ) is suppressed to nearly zero at 0 < T < 0.5, which is still small compared to the

charge gap at the order of V . In the Mott-insulating ground state at n = 1, the orbital

channel can develop the antiferro-orbital ordering with a staggered occupation of px and

py-orbitals. The QMC simulation results on the antiferro-orbital ordering transition are

presented in the section 2.6. As n moves away from 1, electrons become itinerant again.

Nevertheless, the values of κ(T ) at V = 8 are significantly suppressed compared to those

with the same values of n and T at V = 0.
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Figure 2.3: The density-dependence of the Curie temperature and the Curie constant.
(a) The density-dependence of the Curie temperature T0(n) at V = 0 and 8 with J = 2,
respectively. (b) The density-dependence of the reduced Curie constant: C/n v.s. n.
The lower and upper bold lines represent the limits of the spin- 1

2 and spin-1 moments,
respectively. Plots are based on the results of χ(T ) in Fig. 2.1 (a) and Fig. 2.2 (a).

2.3.2 The density dependences of T0(n) and the Curie constant C(n)

The ground state FM survives in all the filling region 0 < n < 2, nevertheless,

its robustness against thermal fluctuations varies at different densities, which reflects

through the density dependences of T0(n) and C(n).

The relation T0(n) is presented in Fig. 2.3 (a) for both cases of V = 0 and V = 8.

The FM coherence is built up due to the itinerancy of fermions [37], thus T0 approaches

zero in both limits of n→ 0 (the particle vacuum) and n→ 2 (the hole vacuum). At

V = 0, the maximal T0 appears around n = 1 where electrons are most mobile. T0(n) at

V = 0 is nearly symmetric with respect to n = 1 exhibiting an approximate particle-hole

symmetry. In contrast, it is highly asymmetric at large V . In this case, T0 is strongly

suppressed at 0 < n < 1, in which both charge and spin carriers are electrons. A large V

penalizes two electrons occupying the same site, thus the effectiveness of Hund’s rule

is suppressed. After n passes 1, a quick increase of T0 appears because extra electrons

on top of the Mott background of n = 1 can move easily to build up the FM coherence.
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T0 reaches the maximum roughly at the middle point between n = 1 and 2. As n→ 2,

T0 becomes insensitive to V . In this region, most sites are doubly occupied in the states

of spin-1 moments, and holes are itinerant but do not carry spin. Hole’s motion threads

spin moments along its trajectory and aligns their orientations, and this process is not

much affected by V . At V = 8t‖ and J = 2t‖, the maximal T0 ≈ 0.06t‖ which appears

around n≈ 1.4. In other words, at large values of V , there is an approximate particle-hole

symmetry between n = 1 to 2 on the background of one electron per site.

Next we present the results of the Curie constant C. Assuming the local moment

picture, the simple molecule field method yields C per spin moment as 1
3S(S+1) [26],

where S is the spin magnitude. In our case mostly itinerant, the magnitudes of S fluctuate:

C = 0 for the empty site, 1
4 for the singly occupied site, and 2

3 for the doubly occupied

site in the spin-1 configuration, respectively. We plot the normalized Curie constant C/n

v.s. n in Fig. 2.3 (b). C/n approaches 1
4 as n→ 0, and 1

3 as n→ 2 where most sites are

spin-1 moments. Generally, C/n lies between these two limits. At V = 0, as n increases,

the number of onsite triplets smoothly increases and so does C/n. Nevertheless, at large

V , the onsite triplet formation is strongly suppressed at 0 < n < 1, and thus C/n is stuck

at 1
4 . After n passes 1, C/n starts to increase nearly linearly toward 1/3. As n→ 2, V

hardly affects the number of onsite triplets, and thus C/n also becomes insensitive to V

as T0 does.

2.3.3 The onsite charge fluctuations and spin moments

To further clarify the nature of our system whether it is itinerant or local-moment-

like, we calculate the onsite charge fluctuations and the average spin moments below.

The onsite charge fluctuations are defined as

δ = 〈n2
i 〉−n2, (2.10)
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Figure 2.4: (a) The onsite particle number fluctuation δ defined in Eq. 2.10. (b) The
QMC results for the normalized onsite spin moment 〈S2

z 〉/n. The parameters β = 6,
J = 2 and L = 30.

where ni is the total particle number on site i. Due to the translation symmetry, δ is

independent of the site index i, and the simulation results are plotted in Fig. 2.4. At

V = 0, the charge fluctuations are significant in the entire filling region except very

close to the particle vacuum at n = 0 and the hole vacuum at n = 2. The maximum is

reached at the approximate particle-hole symmetric point of n = 1. The large onsite

charge fluctuations clearly reflect the itinerant nature of the system, which is consistent

with the compressibility results in Fig. 2.1 (b). When the inter-orbital repulsion V goes

large, charge fluctuations are greatly suppressed near the commensurate filling n = 1.

In this case, the system becomes local-moment-like, which agrees with the vanishing

compressibility shown in Fig. 2.2 (b). Nevertheless, as moving away from n = 1, the

system becomes itinerant again exhibiting significant onsite charge fluctuations.

We also calculate the square of the z-component of the onsite spin moment 〈S2
i,z〉

which equals 1
3〈~S

2
i 〉 since the SU(2) symmetry is not broken. In order to compare with the

Curie constant C/n, we plot its values normalized by the filling, i.e. 〈S2
i,z〉/n as presented

in Fig. 2.4(b), which is nearly the same as the Curie constant C/n plotted in Fig. 2.3
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Figure 2.5: The momentum space distribution nF(k) (0≤ k ≤ π) at β = 10 and n = 1,
and nF(k) of the non-interacting spinless fermion (the red dashed line) is plotted for
comparison. The system size L = 50. The parameter values are V = 0 and J = 2. The
error bars of the QMC data are smaller than the symbol.

(b). At V = 0, 〈~S2
i 〉 varies smoothly with n: the probable onsite configurations include

empty, singly occupied (spin-1
2), and doubly occupied (spin-1) states. At V = 8 and

the commensurate filling n = 1, 〈~S2
i 〉 ≈ 3

4 , which manifests the formation of the local

moment of spin-1
2 in consistent with the suppressed charge fluctuations. At 0 < n < 1,

each site is nearly either empty or singly occupied, and thus 〈~S2
i 〉 ≈ 3

4n. At 1 < n < 2, the

probable onsite configurations include the singly occupied spin-1
2 moment and doubly

occupied spin-1 moment. Thus the system remains itinerant even in at large V when

moving away from n = 1.

2.4 The momentum space fermion occupation

An important feature of the itinerant FM is the fluctuating FM domains in real

space in the paramagnetic phase close to T0. This prominent FM fluctuations also strongly

affect the momentum space fermion occupation as shown below. Basically, the fermion
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occupation functions still resemble those in the fully polarized systems with thermal

broadening.

Because the particle number of each chain is separately conserved, the mo-

mentum space distribution function is essentially 1D-like. Nevertheless, each chain

is not isolated but interacts with others through multi-orbital interactions, and thus

spin is not conserved separately in each chain. Without loss of generality, we define

nF(k) = ∑σ〈px,σ(k)px,σ(k)〉 for a horizontal x-chain. The case of n = 1 is studied below

as a representative, which is equivalent to nx = 0.5 in this x-chain. Its mean-field Curie

temperature T0 ≈ 0.08 as shown in Fig. 2.3 (a) before. The simulated results of nF(k)

are presented in Fig. 2.5 with the periodical boundary condition.

We define a reference wavevector as the Fermi wavevector k0
f =

π

2 of spinless

fermions at the same density. At a low temperature T = 1/β = 0.1 close to T0, as shown

in Fig. 2.5, nF(k) is only slightly larger than 1 even at k� k0
f . It smoothly decays to zero

with a half-width approximately equal to k0
f . nF(k) is rounded off compared to that of

spinless fermions at the same temperature. Although nF(k) does not look much different

from that of spinless fermions, it is a consequence of strong interactions because the

system is in the paramagnetic state! The system remains unpolarized with a finite FM

correlation length ξ.

The above result implies that the phase space for thermal fluctuations is not

restricted to a small region close to ±k0
f , but extends over the entire Brillouin zone

because of the spin fluctuation. This is the reason that usual approaches, such as random

phase approximation, that only deal with the degrees of freedom in the vicinity of the

Fermi surface fail. In addition, such form of momentum distribution indicates that the

entropy capacity is higher than that expected from Fermi liquid. This is a good sign for

implementing this system in ultracold atom experiments.

and thus its entropy capacity is enhanced. It is consistent with the real space
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picture of fluctuating FM domains as T approaches T0. This is highly non-perturbative

showing the power of the QMC simulations.

2.5 The low temperature critical region

So far we have discussed the FM properties in the off-critical region. In this

section we will further study the magnetic critical behavior through QMC. The FM order

parameter is a conserved quantity, and thus there are no quantum fluctuations, however,

in 2D thermal fluctuations are so strong that long-range FM ordering cannot appear at

any finite temperatures for SU(2) symmetric models [71, 84]. Nevertheless, magnetic

properties still behave qualitatively differently in the off-critical and critical regions. We

will also consider the model in the Ising class in which true FM long range ordering can

appear, and determine the renormalized Curie temperature Tc.

In spite of the quasi-1D band structure, the magnetic properties of our model are
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Figure 2.7: The FM long-range ordering of the Ising symmetric model with parameters
J⊥ = 2J‖ = 4, n = 1, and V = 0. (a) The finite size scaling of S⊥/L2. The FM critical
temperature is extracted as Tc = 1/βc = 0.134± 0.002 with βc ≈ 7.4 ∼ 7.5. (b) The
critical scaling: S⊥L−2+η v.s. T with η = 1

4 . The crossing of curves at different
values of L yields Tc ≈ 0.134. (c) The data collapse of the scaling form S⊥(0)L−2+η =
f ((T −Tc)L1/ν) fitted by the parameters of ν = 1, η = 1

4 and Tc = 0.1337.

intrinsically 2D because Hund’s interaction couples spins of different chains together

and the total spin of each chain is not separately conserved. In Fig. 2.6, we present the

crossover of χ−1(T ) from the off-critical region to the critical region based on the finite

size scaling. Although there is no distinct phase transition between the off-critical and

critical regions, the temperature dependence of χ(T ) changes qualitatively. The clear

deviation from the CW law starts from T ∼ T0 = 0.08. In the critical region, the FM

order parameter already develops a non-zero magnitude, and its directional fluctuations

are described by the O(3) non-linear σ-model. The FM correlation length increases

exponentially as approaching zero temperature. χ(T ) evolves to the exponential form

fitted by χ = Aeb T0
T [85, 86], and the result in Fig. 2.6 shows b = 3.1± 0.3 at n = 1,

V = 0, and J = 2.

In order to obtain the FM long-range order, we modify Hund’s coupling of Eq.

2.3 to reduce its symmetry from the SU(2) to the Ising class: We introduce J‖ and J⊥ for

the spin components in the xy-plane and along the z-direction, respectively, and choose

J⊥ > J‖. The z-component FM structure factor is defined as S⊥(T,L) = T χ(T,L). For

the case presented in Fig. 2.7 (a), the finite size scaling of S⊥(T,L)/L2 yields the critical
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temperature Tc ≈ 0.134. This result is also checked from the scaling in the critical region

in Fig. 2.7 (b) and (c). S⊥L−2+η v.s. T is plotted with η = 1
4 from the anomalous

dimension of the 2D Ising universal class. The crossings of curves yield the value of

Tc consistent with that of the previous scaling. Furthermore, a good data collapse is

achieved by employing the scaling form

S⊥L−2+η = f ((T −Tc)L
1
ν ) (2.11)

with ν = 1 of the 2D Ising class.

The mean-field value T0 ≈ 0.20 is extracted based on the extrapolation of the CW

behavior of the spin susceptibility. Compared to the mean-field value T0, Tc is about

67% of T0 as a result of the critical non-Gaussian fluctuations. For the 2D Ising mode

with only nearest neighbor coupling on the square lattice, the Onsager solution gives rise

to Tc = 2/ ln(
√

2+1)≈ 2.269 which is 57% of the Bragg-Williams mean-field results

T0 = 4. Thus the critical fluctuation strength of the case presented in Fig. 2.7 is weaker

compared to that in the 2D Ising model in spite of the effect of the transverse component

J‖. This is due to the itinerant nature of our model such that the effective FM coupling is

beyond two nearest neighboring sites.

2.6 The orbital ordering at the commensurate filling n=

1

Here we present the QMC simulations on the orbital ordering with a large value

of the inter-orbital repulsion V . Large V suppresses doubly occupied on-site states, and

at the commensurate filling n = 1, the ground state is in the Mott-insulating state. In this

case, fermions become local moments. At zero temperature, even though electron spins
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are fully polarized, the orbital degree of freedom enables the superexchange in the orbital

channel [13]. The orbital exchange is described by an antiferro-orbital Ising model

Hex = Jorb ∑
~r,~r′

τz(~r)τz(~r′), (2.12)

where Jorb = t2
‖/V and τz = p†

x px− p†
y py. At low temperatures, due to the prominent

FM tendency, the above orbital exchange model still applies, thus below the temperature

scale around Jorb, the antiferro-orbital ordering, i.e., the staggered occupation of px and

py-orbitals, will appear.

We define the equal-time orbital structure factor as:

Sorb(~q,τ) =
1
L2 ∑

~r1,~r2

〈morb(~r1,τ)morb(~r2,τ)〉ei~q·(~r2−~r1),

(2.13)
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Figure 2.9: The average of the fermion sign v.s. t⊥ at different values of L. The
parameters are V = 0, J = 2, n = 1, and β = 6.

where morb(~r,τ) = nx(~r,τ)−ny(~r,τ) is the on-site orbital polarization. Since the orbital

ordering occurs at the wavevector (π,π), we present the QMC simulation of the finite

scaling of Sorb(π,π)/L2 in Fig. 2.8. It indicates that the antiferro-orbital ordering appears

at low temperatures, and the critical temperature Torb/t‖ lies between 0.132 and 0.139.

2.7 Discussions on the t⊥-term and the finite U

In this section, we discuss the situations when the conditions for the absence of

sign problem are loosed, including the presence of a small transverse hopping t⊥-term as

shown in Eq. 2.6, and the case of finite values of U .

2.7.1 QMC simulations with small transverse hopping term

The presence of the t⊥-term enables electrons moving in the entire two-dimensional

lattice, thus the fermion sign problem does appear. Nevertheless, the sign problem is

not severe at small values of t⊥, such that QMC simulations can still be performed. In
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Fig. 2.9, the average of sign is calculated from t⊥ = 0 to 0.05 at small and intermediate

sample sizes with β = 6. We use the periodical boundary condition for the entire system,

which is different from the boundary condition used in previous calculations in order

to eliminate the sign problem when electrons hop across the boundary. The previous

boundary condition is feasible at t⊥ = 0 because particle number in each chain is con-

served as explained in Sect. 2.2.2. Now under the periodical boundary condition, even

at t⊥ = 0 the sign is not positive definite: when one electron hops across the boundary,

if the fermion number in that chain is an even number, the matrix element acquires an

extra sign. This boundary effect is more prominent at small sample sizes (e.g. L = 10)

but already becomes negligible at intermediate sample sizes, say, L > 20. As t⊥ deviates

from 0, the 2D motion of electrons suppresses the average sign and it drops more rapidly

at larger sample sizes.

We have simulated the spin susceptibility and presented its inverse χ−1(T ) in

Fig. 2.10 with t⊥ = 0.02. The results at t⊥ = 0 under the periodical boundary condition

are also plotted for a comparison. An intermediate sample size (L = 20) is used and
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the simulation is performed from the high to intermediate temperature regions. The

results at t⊥ = 0.02 are nearly the same as those at t⊥ = 0, which still exhibit the CW

behavior. At the lowest temperature simulated β = 6, the average sign at t⊥ = 0.02 is

already significantly below 1. Nevertheless, the difference between χ−1(T )’s at t⊥ = 0

and 0.02 remains negligible. These results show that the magnetic properties are not so

sensitive to t⊥ when t⊥/t‖� 1.

Certainly, when t⊥ reaches the same order as t‖, the band structure will become

genuinely two-dimensional. In this case, the previous ground FM theorem does not

apply, and a quantum phase transition is likely to occur from the FM to paramagnetic

ground states. Unfortunately, the sign problem will be very severe and thus reliable QMC

simulations cannot be performed. It would be interesting to further develop other analytic

and numeric methods to investigate this problem.

2.7.2 The effect of the finite U

As explained in Sect. 2.2.2, the many-body bases for simulations, which are also

used for the proof of FM ground state theorems in Ref. [37], are constructed by ordering

electrons according to their locations along one chain by another regardless of their spin

configurations. This set of bases are convenient to accommodate to the spin-flip term

of Hund’s coupling to be free of the sign problem, nevertheless, finite U does cause this

problem. If U is finite, states with doubly occupied orbitals are allowed, and electrons

with opposite spins can exchange their locations which causes the sign problem. We will

defer the QMC simulations for this case to a later publication, but briefly analyze the

physical effect below.

Basically, a large but finite U introduces an antiferromagnetic (AFM) energy

scale of JAF = 4t2
‖/U for two electrons lying in adjacent sites in the same chain. Its effect

in the low electron density region is unimportant but becomes important in the limit
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of n→ 2 in which most sites are occupied as spin-1 moments. In this region, the FM

energy scale T0(n) is suppressed because of the low density of mobile holes and finally

it becomes weaker than JAF . Consequently, we expect a ground state phase transition

at a critical density nc close to n = 2, which marks a transition from the FM ordering at

n < nc to the AFM ordering at nc < n < 2.

2.8 Experiment realizations

The QMC simulations presented above are not only of academic interests but

also provide new directions to explore new FM materials in various physical systems,

including both the ultra-cold atom optical lattices and the strongly correlated transition

metal oxides.

Recently, the study of itinerant FM states has become a research focus in ultra-

cold cold atom physics [40, 41, 42, 43, 44, 45, 46, 47]. However, so far it is still in debate

whether the experiment results based on the upper branches of the Feshbach resonances

have shown the existence of itinerant FM or not. Our work suggests a new direction for

the further experiment exploration of itinerant FM in the high orbital bands in optical

lattices. Our band Hamiltonian can be accurately implemented in the p-orbital band

in the ultra-cold atom optical lattices [87, 88, 89]. Due to the anisotropy of p-orbital

orientation, the transverse π-bonding amplitude t⊥ is usually much smaller than the

longitudinal σ-bonding t‖. The ratio of t⊥/t‖ decreases as increasing the optical potential

depth V0. As shown in Ref. [87], as V0/ER = 15 where ER is the recoil energy of the

laser forming the optical lattice, t⊥/t‖ ≈ 5%, such that we can neglect the t⊥ term in Eq.

2.2. Furthermore, the interaction strength is also tunable in optical lattices by simply

varying laser intensities, and the strong coupling regime can be reached. A variation study

based on the Gutzwiller projection also shows that the ground state FM may start from
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intermediate coupling strength [89]. Our simulations on the thermodynamic properties

provide important guidance for future experiments.

Our work is also helpful for the current effort of searching for novel FM ma-

terials in transition metal oxides, in particular, in systems with the t2g-orbital bands,

i.e., dxz,dyz, and dxy bands, with the quasi-2D layered structure. In fact, FM has been

observed experimentally in the (001) interface of 3d-orbital transition-metal oxides

such as SrTiO3/LaAlO3 [90, 91, 36, 92], which has been a recent research focus in

condensed matter physics. The dispersions of dxz and dyz-orbital bands are also highly

anisotropic,i.e., the longitudinal bonding parameter t‖ is much larger than the transverse

one t⊥, as described in Eq. 2.2 by replacing px(y) with dx(y)z. The onsite repulsive

interaction of the 3d-electrons are particularly strong, such that the projection of doubly

occupied orbitals is a good approximation.

Even though there is an additional quasi 2D-dxy-orbital band in the SrTiO3/LaAlO3

interfaces, which is presumably paramagnetic by itself, it is conceivable that the overall

system remains FM as shown in experiments and our results still apply qualitatively.

The reason is that the quasi-1D bands dx(y)z do not hybridize with the quasi-2D dxy band

by the nearest neighboring hopping due to their different parity eigenvalues under the

reflections with respect to xy, yz and zx-planes, respectively. It is a good approximation

that the particle numbers in the dxy-band and in the dx(y)z bands are separately conserved,

and they only couple through interactions. The coupling is ferromagnetic by nature

due to Hund’s rule. Since the quasi-1D bands by themselves are already FM in the

strong coupling regime, their coupling to the paramagnetic dxy-band is like to use a

permanent ferromagnet to polarize a paramagnet, and it is conceivable that in overall the

ferromagnetism is enhanced.
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2.9 Conclusions

In summary, we have non-perturbatively investigated the thermodynamic prop-

erties of an unambiguous itinerant FM system with multi-orbital structures through

the method of the SSE QMC. The simulations are proved to be sign problem free in

all the electron density region, and thus reliable numerical results can be obtained at

high numeric accuracy. Due to the nature of asymptotic exactness of our simulations,

they provide a solid reference point for the study of the strong correlation effects of

the thermodynamic properties of itinerant FM systems. There is a wide temperature

region T0 < T < Tch, in which the spin channel is incoherent without local moments

existing as a priori, while the charge channel exhibits the metallic behavior. The spin

magnetic susceptibility exhibits the CW law in the off-critical region as a result of strong

correlations. It further crosses over to the exponential growth in the critical region. The

compressibility is weakly temperature dependent and saturates to its zero temperature

value. The true FM long-range transition appears when the symmetry class is reduced

from SU(2) to Ising. The finite size scaling in the critical region gives rise to an accurate

determination of the FM transition temperature. Our work is also closely related to the

experiment efforts of searching for novel FM states of matter in both ultra-cold atom

optical lattices and in the 3d transition metal oxide materials.

This chapter contains material published by American Physical Society in: Shen-

glong Xu, Yi Li and Congjun Wu, ”Sign-Problem-Free Quantum Monte Carlo Study on

Thermodynamic Properties and Magnetic Phase Transitions in Orbital-Active Itinerant

Ferromagnets”, Physical Review X 5(2), 021032, 2015. The dissertation author was the

primary investigator and author of this paper.



Chapter 3

Mott insulators in SU(N) symmetric

Alkaline-earth fermion systems at

non-integer filling

3.1 Introduction

Mott insulators are a consequences of the interplay between the lattice structure

and strong interaction. Consider a lattice model with integer number of electrons per

site, due to Coulomb repulsion, it takes finite amount of energy which is proportional to

the repulsion strength to add one more electron into the system, resulting in an insulator.

The charge fluctuations vanish as the repulsion goes to infinite. As a paradigm to study

magnetism, the Heisenberg model is obtained by considering the virtual hopping on top

of the Mott background. The same strategy can also be applied to electronic systems

with orbital degrees of freedom. The effective spin exchange / orbital exchange model

always have energy scales proportional to J = 4 t2

U , the so-called super exchange energy

scales, where t is the hopping magnitude and U is the single-particle gap. However,

38



39

Mott insulators can also occur at non-integer fillings. For example, in Kagome lattice

or honeycomb lattice with P orbitals, the destructive interference of hopping gives rise

to localized single-particle states, and flat bands appear in the noninteracting energy

spectrum. The states are not localized to a single site but a cluster of sites. At suitable

fillings where electrons fill in non-overlapping clusters, the nearest neighboring repulsion

can stabilize Mott insulators with charge fluctuation within the cluster. Due the speciality

of the flat bands, these systems favors ferromagnetism.

An alternative way to achieve Mott insulators with non-integer fillings is enlarging

the symmetry of the Hubbard model to SU(N) with N larger than 2. The simplest example

is the SU(N) symmetric Hubbard chains at half filling (N/2 particles per site on average).

Weak interaction analysis [9] tells us that the systems are insulating for all values of N

and the filling is half-integer when N is odd.

Historically, SU(N) symmetry of spin systems was studied to systematically

approach the realistic SU(2) symmetric cases and handle the strong correlation [93, 85,

94, 95]. It is found that the larger symmetry groups enhance quantum fluctuation and

suppress Neel correlation [93, 9, 85, 96]. This stimulates intensive theoretical research

interests predicting the possibilities to realize exotic paramagnetic states, such as various

valence bond solid states and spin liquids [97, 98, 99, 100, 101, 102, 103] in systems

with large symmetries. However, the large symmetries are quite rare in conventional

solid state systems. Although the Hund’s coupling facilitates local moments with large

spin, the symmetry of the systems usually remains SU(2).

Alternatively, the ultracold atom systems open up new exciting possibilities to

physically realize these systems studied theoretically before. The key is that fermionic

atoms carry nuclear hyperfine spin larger than 1/2 and allow for the existence of larger

symmetry. For example, it is proposed that systems of spin 3
2 alkali and alkaline-earth

atoms exhibit SP(4) symmetry without fine tuning, and the symmetry can be further
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enlarged to SU(4) if the interaction is spin-independent [104, 105]. In principle, one

can achieve the symmetry as large as SU(10) with 87Sr atoms carrying 9/2 nuclear

spin. Furthermore, the interplay between the nuclear spin and electron orbital degrees of

freedom can lead to more complex systems with spin-orbital coupling [106]. Past few

years have witnessed significant experimental progress in the field. Various quantum

degenerate gases and Mott insulating states of alkaline-earth fermions with large nuclear

hyperfine spin have been realized [107, 108, 109, 110, 111, 112, 113, 114, 115, 116].

In particular, G. Pagano and co-workers [116] set up one-dimensional quantum gas of

173Yb atoms with tunable symmetry up to SU(6), providing an experimental route to

directly study the evolution of systems of SU(N) symmetry as N increases with flexible

control of the interaction strength.

Previous research on the Mott physics in SU(N) symmetric ultracold atom systems

mostly focused on integer fillings. In one dimension, both the SU(N) Hubbard chains and

Heisenberg chains have been studied at the 1/N filling (one fermion per site) in detail,

regarding their magnetic and thermal properties [117, 118, 119, 120]. The ground state

properties are also investigated for the Heisenberg chains at other fillings [121, 122].

In this work, we focus on the case of half filling, which is integer for even N and

half-integer for odd N. We systematically study the effects of the large symmetry on the

odd-N systems and compare them with their close relatives, the SU(N) Hubbard chains

with N even. As N increases, the density per component stays the same, and the large-N

physics is fundamentally different from 1/N filling. The difference between even-N

and odd-N systems is most pronounced for small values of N, affecting both charge and

spin channels. The residual charge fluctuation further suppresses the Neel correlation

in the odd-N chains, which shows a stronger tendency to dimerization comparing with

even-N chains at typical temperature in ultra-cold atom experiments. As N increases, the

boundary between the two sets of Hubbard chains is smeared out by the large symmetry.
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Furthermore, we also demonstrate that in the large coupling region, the interaction effects

are also suppressed by N. We conjecture that in the large N limit with fixed interaction

strength U , the fermionic Hubbard chains are described by the same infrared physics

independent U and the parity of N.

3.2 SU(N) Hubbard Model

We consider the 1D SU(N) Hubbard model,

H =−t ∑
〈i j〉,α

c†
i,αc j,α +

U
2 ∑

i
ni(ni−1)−µ∑

i
ni, (3.1)

where 〈〉 represents the nearest-neighboring bond; the spin index α runs from 1 to N;

ni = ∑
α

c†
i,αci,α is the total particle number at site i; t = 1 is set as the energy unit. Eq. 3.1

possesses a particle-hole symmetry at µ = N−1
2 U , which corresponds to half-filling, i.e.,

the average particle number per site equals N
2 .

We will investigate strong correlation effects at large values of N quantitatively,

in which the Hilbert space on each site grows exponentially. The typical method for 1D

systems of the density-matrix renormalization group becomes difficult to apply. Instead,

we will employ the QMC method, which is well-known to be sign-problem free in the

path-integral framework in 1D at any filling. The stochastic-series-expansion (SSE)

QMC method will be applied with the directed-loop algorithm [80], which allows us to

perform the large-scale simulations efficiently to investigate strong correlation effects at

large values of N. We will focus on the insulating states at half-filling and the system

size is set at L = 100 for all simulations below. The finite size effects have been checked

to be negligible for the quantities calculated below.
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3.3 Ground State Properties

Before presenting the numerical results, let us briefly explain the the relation and

difference between the SU(N) spin chains with N even and N odd. The ground states

of Eq. 3.1 at half filling are insulating for all values of N when U is repulsive. The

systems exhibit spontaneous dimerization with finite spin gaps except for the SU(2) case

which is algebraic antiferromagnetic ordered and gapless in the spin sector. In the weak

interacting region, the dimerization and the charge gap opening is due to the Umklapp

scattering regardless of even and odd values of N. When N > 2, the Umklapp scattering

couples the charge and spin sector and thus generates a spin gap as well. In this region,

there is no qualitative difference between systems with N even and N odd. The charge

and the spin gap increase monotonically with N.

However, in the strong coupling limit, the cases of even and odd values of N

are crucially different from each other. The average particle numbers are integers and

half-integers for even and odd N’s, respectively. In the odd-N case, every two sites

contain an odd number of fermions on average. Forming two-site singlets is inevitably

companied with local charge hopping, which saves extra kinetic energy. Hence, for the

odd-N case, there exist both strong intra-dimer charge and spin fluctuations, and both

charge and spin gaps are on the order of the hopping amplitude and independent of U .

On the other hand, for the even-N case, the dimers are mostly spin-dimers with very

small on-site charge fluctuations. The charge is on the order of U and the spin gap is

∼ t2

U from the super exchange mechanism.

These distinct behaviors for system with N odd and even gradually approach each

other as the number of flavor increases, which enhances the inter-dimer tunneling. This

picture is important for understanding all the even-odd effects that will be studied below.
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Figure 3.1: The resonating spin configurations for a two-site SU(N) s inglet in the large
U limit. The numbers of spin configurations are the same for N = 2m and N = 2m−1.
The cases of N = 3 and N = 4 are shown.

3.3.1 Two-site problem and the estimation of the spin gap and the

charge gap

In this section, we solve the two-site problem in the large-U limit for both even

and odd values of N to gain intuition. We also calculate the corresponding single-particle

gaps and the spin gaps.

In the case of even N = 2m, each site is filled with m fermions in the large-U limit.

The single particle gap is simply ∆spg =
U
2 . The size of the truncated Hilbert space of

the two-site problem is
(
(2m)!
(m!)2

)2
. The degeneracy of these states is lifted by considering

virtual hopping to high energy states. By performing second order perturbation theory,

the effective Hamiltonian within the truncated Hilbert space is

He f f ,e =
2t2

U

(
∑
α,β

Sαβ(1)Sβα(2)−
N
4

)
. (3.2)
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The ground state of Eq. (3.2) is an SU(N) singlet, denoted as |0〉, which satisfies

(Sαβ(1)+Sαβ(2)) |0〉= 0. (3.3)

Therefore the ground state energy of Eq. (3.2) is,

Eg,e(N) =
2t2

U

(
∑
α,β

−〈0|Sαβ(1)Sβα(1) |0〉−
N
4

)
(3.4)

= −J
8

N(N +2),

where J = 4t2

U is the super-exchange energy scale. The ground state contains all N fermion

components with (2m)!
(m!)2 resonating spin configurations, as shown in Fig. 3.1. The first

excited state belongs to the SU(N) adjoint representation. To obtain the spin gap, one can

change one fermion component and calculate the energy difference. The two fermions

with the same flavor occupy two different sites are inert in the virtual hopping process,

which effectively reduces the fermions number to N−2. Therefore, the lowest energy

in this sector is the same as the ground state energy Eg for the case of N′ = N−2. In

consequence, the spin gap ∆s = Eg,e(N−2)−Eg,e(N) = J
2N.

In the case of odd N = 2m−1, each site contains either m or m−1 fermions in

the large-U limit at half-filling. The size of the Hilbert space is still
(
(2m)!
(m!)2

)2
. Unlike the

even-N case, these states are connected through real hoppings. The effective Hamiltonian

is

He f f ,o =−tP
(

∑
α

c†
α,1cα,2

)
P+h.c., (3.5)

where P is the projection operator into the above physical Hilbert space. The ground state

is also an SU(N) singlet. With the filling constraint, one can construct two singlet states

|0〉a and |0〉b. The former has m−1 and m fermions on site 1 and 2, respectively, and the

latter switches the occupations of these two sites. The ground state is the superposition
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of these two as

|0〉=
√

2
2

(|0〉a + |0〉b). (3.6)

The number of the resonating spin configurations is in total (2m)!
(m!)2 , the same as the case of

N = 2m as shown in Fig. 3.1. To calculate the ground state energy, actually it is easier to

compute the expectation value of H2 with respect to 〈H2〉, and then take the square root.

The expression of H2
e f f ,o is

H2
e f f ,o =−t2

(
∑
α,β

Sαβ(1)Sβα(2)+
N2−1

4N

)
. (3.7)

Therefore,

Eg,o = −
√
〈0|H2

e f f ,o |0〉

= −t

(
∑
α,β

〈0|Sαβ(1)Sβα(1) |0〉+
(N +1)2

4N

)1/2

= −N +1
2

t. (3.8)

For the second line, we have used Eq. (3.3) again.

We now discuss the single particle gap and the spin gap of the odd-N systems.

After adding an extra fermion to the system, the real hopping processes are completely

forbidden by the filling constraint imposed by the strong Hubbard U , and the energy

is zero. Therefore, the single particle gap ∆spg = t
2(N + 1). Similar to the even-N

case, the spin gap can be obtained by changing one fermion’s flavor and calculate the

energy difference. The two fermions with the same flavor occupy the two sites, not

participating in hopping processes. As a result, the lowest energy in this sector is the

ground state energy for the case of N′ = N − 2, Consequently, the spin gap can be
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Figure 3.2: The N-dependence of the single particle gap ∆spg (a) and the spin gap ∆s (b)
of the two-site problem. The parameter value is U/t = 20. As N increases, the different
energy scales of ∆spg and ∆s between even and odd-N cases gradually merge together.

obtained as ∆s = Eg,o(N−2)−Eg,o(N) = t.

To summarize, we have,

N even odd

∆spg
U
2

t
2(N +1)

∆s
J
2N t

(3.9)

The above analysis works in the strong interaction region U/t� N, where the even-N

systems and odd-N systems exhibit distinct energy scales. Using exact diagonalization,

we demonstrate that increasing N with fixed U reduces the difference, and the two kinds

of systems approach the same limit, as shown in Fig. 3.2, where the N dependences of

both ∆spg and ∆s are presented.
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Figure 3.3: The normalized kinetic energy scale Ẽk as a function of N for U varying
from 0.5t to 15t. Ẽk equals 1 for the noninteracting limit and equals 0 when the charge
degrees of freedom complete freeze. (a) The case of even N. In the weak coupling
regime, Ẽk decreases with N, while in the strong coupling regime, Ẽk increases with N.
The crossover of the two regimes occurs at U ∼ 2.5t. (b) The case of odd N. The weak
coupling behavior is similar to the even-N case. In the strong coupling regime, Ẽk first
decreases and then increases with N, because of the two competing effects of enlarging
the symmetry.

3.3.2 Kinetic energy scale

In the charge channel, the interaction effects can be characterized by the kinetic

energy scale per flavor, EK = 1
LN | ∑

k,α
2cosk 〈c†

k,αck,α〉 |. In Fig. 3.3, the N dependence of

the normalized kinetic energy scale EK/E0
K is plotted for U ranging from 0.5 to 15, where

E0
K is the noninteracting value. In both even N and odd N cases, the curves do not cross

simply because U suppresses the kinetic energy scale. For small U , ground states are

already insulating but with a small charge gap. Therefore, the single-particle correlation

length is still long comparing with the lattice spacing and the itinerant picture holds. As

increasing N, each particle experiences stronger impedance from other particles, and Ek

decreases monotonically. This argument holds equally well for both even and odd N

systems, and they show similar behavior indeed.

Conversely, dramatic even-odd effects appear in the strong coupling regime.
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The systems with N odd overall have larger kinetic energy scale due to the residue

charge fluctuation. When N is even, Ek increases roughly linearly with N, whereas

non-monotonic behavior is observed in the odd-N case. The behavior of even N can

be simply understood by considering the virtual hopping on the background of a Mott

insulator where the charge fluctuation is completely frozen. The total number of virtual

hopping processes scale as N2, leading to the linear N dependence of the kinetic energy

scale per flavor. Therefore, the interaction effect is reduced by increasing the number of

components here. On the other hand, for odd N cases, increasing N has two competing

effects. The first is to reduce the intra-dimer charge fluctuation as well as Ek; the second

is to enhance the inter-dimer tunneling, which tends to increase Ek, similar to the even N

systems. The first effect is more notable in the regime of small N but overcome by the

second one when N is large enough. The minimal position of Ek roughly scales as U/t.

When N passes the turnover point, the interaction effect is reduced, and the disparity

between even N and odd N originated from the filling is diminished by the amplification

of charge fluctuation, as expected from the large-N picture.

Remarkably, in the even N cases, numerical data suggests the kinetic energy is

independent of N when U is 2∼ 3t. The corresponding curve is labeled red in Fig. 3.3(a).

This curve clearly separates the weak coupling and strong coupling regime. In both cases,

as N increases, the kinetic energy gradually approaches this curve, but from opposite

direction. The situation is the same for odd N, as long as EK passes the minimum. Based

on this observation, we conjecture that Ek is independent of the coupling magnitude in

the large N limit, as long as U is finite.

3.3.3 Momentum distribution

The kinetic energy is directly related to the momentum distribution function

n(k) = 1
N ∑α c†

α,kc
α,k, which is the standard quantity to measure in the ultracold atom
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Figure 3.4: The momentum distribution functions n(k) at U = 11t. For all values of
N, n(π/2) = 1/2 because of the combination of the particle-hole and the inversion
symmetries. (a) In the case of even N, increasing N enhances local charge fluctuation
and drives n(k) to the side of weak coupling regime. (b) In the case of odd N, n(k)
instead exhibits non monotonic behavior. This observation is consistent with the kinetic
energy scale Ẽk

experiment via the time of flight method. We present the momentum distribution function

for both even and odd cases in the strong coupling regime, say U = 10t. Due to both

inversion symmetry and particle hole symmetry, all the curves cross at 1/2 for k = π/2.

In sharp contrast with monotonic broadening of n(k) as increasing N, which is observed

in 1D quantum gases [116], here, n(k) has rather different behavior because of the Mott

physics. In the even N cases, instead, n(k) is sharpened by increasing N, because of the

enhanced charged fluctuation above the Mott background. In odd N cases, similar to their

kinetic energy, n(k) exhibits non monotonic behavior. These phenomena are consistent

with the analysis of the kinetic energy scale EK above. We note that in the weak coupling

regime, the usual monotonic broadening is observed.
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3.3.4 The relation between SU(2m) and SU(2m−1) in the spin chan-

nel

In this section, we elucidate the connection between the systems with SU(2m)

and SU(2m−1) symmetry in the strong coupling limit. When N = 2m, the strong on-site

repulsion suppresses charge fluctuation, and each site have m fermions. The Heisenberg

term resulting from the second order perturbation favors two-site singlet state, subjected

to the particle number constraint. The dimer-state reads, up to a normalization factor,

|0〉2m = ε
α1...α2m

m

∏
k=1

c†
αk,i

2m

∏
k=m+1

c†
αk, j |vac〉 (3.10)

with εα1...α2m the total antisymmetric tensor. The repeated indices αi are summed over all

N flavors

On the other hand, when N = 2m− 1, the strong repulsion U requires that the

on-site particle number is either m or m−1. Therefore local charge fluctuation is still

allowed even in the infinite coupling limit. Different from the even N case, there are two

two-site singlet states. The hopping terms favors the following particular combination,

|0〉2m−1 = ε
α1...α2m−1(

m−1

∏
k=1

c†
i,αk

N

∏
k=m

c†
j,αk

+

m

∏
k=1

c†
i,αk

N

∏
k=m+1

c†
j,αk

) |vac〉
(3.11)

There is a way to unify these two very different pictures. We note that there is

one to one correspondence between the states in the truncated Hilbert space for N = 2m

and N = 2m−1. In the latter case, we introduce a fermionic operator c†
∗, which creates

a fermion with an extra artificial flavor. For on-site states with m− 1 particles, we

assume that they also contain the fermion with this extra flavor and have total m fermions.
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Now the on-site particle number constraint becomes ∑
α

c†
α,icα,i = m. The operator ∑

i
c†
∗c∗

measures the number of holes in the N = 2m− 1 systems. With the extra fermionic

operator, we can write the two-site singlet state as:

|0〉2m−1 = ε
α1...α2m

m

∏
k=1

c†
αk,i

2m

∏
k=m+1

c†
αk, j |vac〉 (3.12)

The repeated indices αi are not only summed over the original 2m−1 flavors, but also

the extra flavor ∗. This special combination of the two singlet states has the exact the

same form of Eq. 3.10, and manifestly exhibits hidden SU(2m) symmetry. It follows

directly that any spin-spin correlator measured from the two-site singlet states gives the

same value for N = 2m and N = 2m−1, as long as the correlator does not involve the

extra flavor ∗. This explains the similarity of the spin structure factor between the two

cases demonstrated in Fig. 3.5.

3.3.5 Effective spin model for system with N odd

Furthermore, we can derive an effective spin model for systems with N odd in the

infinite U limit. In the Hilbert space with the extra flavor ∗, the net effect of the original

hopping term c†
α,icα, j +h.c is exchanging the real flavor α and the artificial flavor ∗. The

effective spin Hamiltonian thus reads:

He f f = t ∑
〈i, j〉,α 6=∗

S∗α,iSα∗, j +h.c.

= t ∑
〈i, j〉

(
∑
αβ

Sβα,iSαβ, j− ∑
α&β 6=∗

Sβα,iSαβ, j−S∗∗,iS∗∗, j

) (3.13)

The first term has emergent SU(2m) symmetry, which is explicit broken by the second

term. The whole Hamiltonian has SU(2m−1)⊗ U(1) symmetry, as expected. Comparing

with usual SU(2m) Heisenberg model, this model is more frustrated due to the sign of the
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second term. This explains that in the strong coupling regime, the spin structure factor

Sspin(π) with N = 2m surpasses that with N = 2m−1.

Dramatically different from the SU(2m) Heisenberg model, where the spin energy

scale is t2

U , here the spin energy scale is t. Although the dimer order does not persist

at finite temperature, the correlation length already starts to grow exponentially when

the temperature reaches to the scale of the hopping energy, whereas in the even N case,

this happens when the temperature reaches exchange energy scale, which is much lower.

Since cooling the temperature down to the exchange energy scale of the spin system is

the most severe obstacle in the ultracold atom community, this discovery provides a new

perspective to realize spin models and measure the ground state property in experiments.

3.3.6 Spin structure factor

We now present the two-site spin-spin correlation function defined as

Cspin(i, j) =
1

2C(N) ∑
i j,αβ

〈Sαβ(ri)Sβα(r j)〉. (3.14)

Where Sαβ(ri) is the on-site generator of the SU(N) symmetry, Sαβ(ri) = c†
i,αci,β− ni

N δαβ.

The normalization factor C(N) is the Casimir for 1N/2 representation when N is even

and 1(N+1)/2 representation when N is odd. It reads N(N+1)
8 and (N+1)2(N−1)

8N for even

and odd N, respectively. With this convention, the onsite correlation function Cspin(i, i)

approaches one in the large U limit for all values of N. Furthermore, the correlation

functions Cspin(i, j) of maximal Neel ordered states are also independent of N. Therefore

the spin structure factor Sspin(k = π), the Fourier transformation of Cspin(i, j) evaluated

at π is used as criteria for comparing the antiferromagnetic correlation for systems with

different values of N. In our simulation, due to the SU(N) symmetry, Sk can be reduced to

the average over only diagonal generators (α = β), for the purpose of simpler numerical
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implementation.

In Fig. 3.5 (a), we present the N dependence of Sspin(π) in the strong coupling

region U = 15t at fairly low temperature β = 30. The spin structure factor decreases

rapidly with N, since the large symmetry enhances quantum fluctuation and suppresses

the antiferromagnetic correlation. It is also affected by the parity of N. Although, the spin

channel properties of N = 2m and N = 2m−1 are closely related, Fig. 3.5 (a) clearly

demonstrates that systems with N = 2m−1 have relatively weaker Neel correlation. The

charge fluctuation in the systems with odd-N further suppresses the antiferromagnetic

correlation and favors dimerized states over Neel states. The reason is that in the ideal

Neel states, the charge degrees of freedom are frozen whereas the dimerized states still

allow for charge fluctuation.

We also study the interaction effects on the spin structure factor. We plot Sspin(π)

for even N and interaction strength U ranging from 0.5t to 15t in Fig. 3.5 (b). Similar

to the kinetic energy scale, as U increases, Sspin(π) exhibits opposite behavior in the

weak and strong coupling regime. As N increases, the difference between the weak

coupling regime and the strong coupling regime decreases rapidly, another evidence that

the interaction effect is reduced by the large symmetry. The U dependence of Sspin(π)

for odd-N systems has the similar behavior and thus is omitted here.

3.4 Finite entropy and dimer-dimer correlation length

Now we discuss the experimental realization of the even-odd effects discussed

before. In ultracold atom experiment, because of the extreme small tunneling amplitude

or the Fermi energy scale (∼ K), it is usually difficult to cool the system down to the

ground state or even the exchange energy scale. Currently, the lowest entropy realizable

is ∼ 0.6kB per particle for the fermionic Hubbard model in the Mott state. In the center
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Figure 3.5: The N-dependence of the spin structure factor. (a) The N dependence of
the spin structure factor Sspin(π) in the strong coupling regime, where U = 15t. As N
increases, Sspin(π) drops rapidly, a signature that the large symmetry suppresses Neel
correlation. Comparing the systems with opposite parity of N, Sspin(π) for odd N is
smaller because of the local charge fluctuation. (b) Similar to the kinetic energy scale,
Sspin(π) exhibits opposite N dependence in the weak and strong coupling regime for
even-N. The case of odd-N is similar and is omitted here. The crossover happens around
U = 2.5t, consistent with Ek shown in Fig. 3.3 (a).

of the harmonic trap, the entropy per particle is slightly lower, but the corresponding

temperature is still above the super exchange energy scale t2/U . However, as explained

before, the dimerization of the SU(N) chains with N odd does not rely on super exchange

but rather local charge fluctuation and the corresponding spin gap is on the order of the

tunneling amplitude, which is one order larger than the super exchange energy scale.

Therefore, we propose that the systems with N odd are better experimental candidates

to observe the dimerization. This advantage of odd N is more prominent for small Ns

(N = 3,5,7) which are experimental accessible using 173 Yb and 87Sr atoms.

To illustrate the point, we first study the the evolution of temperatures of the

systems as one adiabatically turn on the interaction. The temperature dependence of

specific entropy (entropy per particle) S(T ) is obtained from the thermodynamic relation
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as,

S(T ) = ln4+
E(T )

T
−

∫
∞

T
dT

E(T )
T 2 , (3.15)

where ln4 is the entropy at the infinite temperature limit and E(T ) is the internal energy

per particle. The entropy-temperature relations are shown for U ranging from t to 13t and

N ranging from 3 to 8 in Fig. 3.6. Comparing the case of N = 3 and N = 4, the S −T for

N = 4 displays a plateau around S = 0.6kB that is missing in the odd N case. The reason

is that in the even N, when the temperature is much smaller than the single-particle gap

U/2 but much higher than the super exchange energy scale, S mostly comes from the

spin degrees of freedom that are basically free in the temperature region, and therefore

has a weak temperature dependence. As N increases, the difference between even and

odd N’s diminishes.

We present the isoentropy curves in the T -U plane for different values of N in

Fig. 3.7(a) for different values of N, considering a specific entropy below but close

to the experimental availability, say, S = 0.3. The corresponding temperatures vary

but remain at the order of 0.1t. An overall trend is that temperature T decreases as

increasing U for all values of N as a reminiscence of the celebrated Pomeranchuk effect

[119, 123, 124, 125]. Increasing U drives the system more local-moment like, and

thus temperature drops to keep the entropy invariant. Remarkably, these curves behave

dramatically different for even and odd values of N. This is in sharp contrast to the case

of 1/N-filling investigated before [119, 120], in which T monotonically decreases as

increasing N simply because of the lnN scaling of the specific entropy. At half-filling

and in the large U region, fermions in the even N case are much more local-moment-like

than that in the odd N case, and thus possess higher entropy capacity. As a result, the

temperatures of even-N curves fall lower than those of the odd-N’s. The temperature T of
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Figure 3.6: The temperature-entropy relation of N from 3 up to 8 and U/t = 1,5,9,13
obtained by numerical integration of the energy from temperature as high as 1000t (not
shown in the figure). The lowest T shown here is 0.1t.
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Figure 3.7: Isoentropy curves at fixed specific entropy S = 0.3 and the entropy-
dependence of the dimer correlation length. (a) Isoentropy curves in the T -U plane
at a fixed specific entropy S = 0.3. As adiabatically turning on the interaction to the
strong coupling regime, the final temperature increases with N for even N but decreases
with N for odd N. The isoentropy curves merge together in the large-N limit regardless
of the parity of N. (b) The dimer correlation length increases rapidly as the entropy
decreases. The odd-N systems overall exhibit stronger tendency to the dimerized phase
than even-N systems. In the inset, the real space correlation function Cdimer(i, j) is
shown for N = 7 and N = 8 at S = 0.2kB for comparison.
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the odd-N curves tend to saturate in the large-U limit. This is consistent with the picture

that every two sites form a dimer where finite charge fluctuation persists. Furthermore,

as shown in previous studies [124, 123], increasing N enhances charge fluctuations when

N is even, which softens the Mott gap and drives the system less local-moment-like. This

reduces the entropy capacity and thus temperatures increase as N increases. In contrast,

there are still significant local charge fluctuations in the odd N case even in the large

U limit. Increasing N further enhances the collision among fermions, and reduces the

fermion itinerary, which increases the entropy capacity and reduces the temperature.

After adiabatically turning on the interaction, as shown in Fig. 3.7(a), the final

temperatures are well-below the ordering energy scale of odd N but above the super ex-

change energy. Strictly speaking, the fermionic chains cannot order at finite temperature,

but the systems with N odd should develop longer correlation length ξdimer. To confirm

this, we calculate the kinetic energy correlation functions,

Cdimer(ri− r j) =
1
N ∑

α

〈Kα,riKα,r j〉, (3.16)

where Ki = c†
α,icα,i+1 +h.c.. The dimer correlation lengths are extracted from the corre-

lation function and plotted in Fig. 3.7(b) as a function of the specific entropy. We are

interested in the strong coupling regime and thus set the interaction strength to 15t. As

expected, the odd-N systems overall exhibit longer correlation lengths. As S decreases,

ξdimer grows much faster in the odd N case. The real space correlation functions of

N = 7 and N = 8 are shown in the inset for comparison. The dimer correlation is visible

∼ 30 lattice spacing away for N = 7. This indicates that systems with N odd are better

candidates for detecting the dimer order. Experimentally, the dimer ordering can be

detected using the double-well technique.
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3.5 Conclusion

We have non-perturbatively studied the one-dimensional SU(N) fermion lattice

systems at half-filling. In the strong interaction region, the odd-N systems exhibit

stronger charge fluctuations and dimerization than the even N. As N reaches the level of

U/t, the virtual hopping processes dominate in both even and odd N systems, and the

interaction effects are weakened as increasing N. Whereas from the weak interaction

limit, increasing N enhances particle collisions and strengthens the interaction effect.

These two distinct behaviors approach a crossover region around U ∼ 2.5t from opposite

directions, as demonstrated in experimentally measurable quantities including the kinetic

energy scale, the momentum distribution functions and spin structure factors. The above

features of how interaction effects scale with N are expected to be qualitatively valid in

two and higher dimensions as well, which will be deferred to a future study.

This chapter contains material from the following preprint being prepared for

submission for publication: Shenglong Xu, Julio Barreiro, Yu Wang, and Congjun Wu.

”Interaction effects from the parity of N in SU(N) symmetric fermion lattice systems.”

arXiv:1707.01463 (2017). The dissertation author was the primary investigator and

author of this paper.



Chapter 4

Electrons in the lattices with mixing

space-time symmetry

4.1 Introduction

The fundamental concept of energy bands in crystals based on the Bloch theorem

lays the foundation of modern condensed matter physics. In the past decade, studies on

band structure symmetry and topology lead to important discoveries of the topological

insulating state, topological superconductivity, and the Weyl semi-metal state [126,

127, 15]. More recently, periodically driven systems have also attracted increasing

interests. Periodic driving provides a new route to engineer topological states in systems

originally topologically trivial in the absence of driving. Such possibilities have been

explored in various systems, including the irradiated graphene [128, 129], semiconducting

quantum wells [130], dynamically modulated cold atom optical lattices [131], and

photonic systems [132, 133]. For driven systems with a temporal period T , Bloch bands

are replaced by Bloch-Floquet bands, which are periodic in energy space since the quasi-

energy is only conserved module 2π/T . This feature further enriches topological band

60



61

structures [134, 135, 136]. For non-interacting systems, this extra periodicity leads to

the dynamically generated Majorana modes in 1D [137], and anomalous edge states

with zero Chern number in 2D [138]. Topological classifications for interacting Floquet

systems have also been investigated [139, 140, 141, 142, 143].

Symmetry plays a fundamental role in analyzing topological properties of period-

ically driven systems. However, previous studies mostly treat the temporal periodicity

separated from the spatial one. In fact, the driven system can exhibit much richer symme-

try structures than a simple direct product of symmetries in space and time domains. In

particular, a temporal translation at a fractional period can be combined with space group

symmetries to form novel space-time intertwined symmetries, which, to the best of our

knowledge, have not yet been fully explored. For static lattices, the intrinsic connections

between the space-group symmetries and physical properties, especially the topological

phases, have been extensively studied [144, 145, 12, 146, 147]. Therefore, it is expected

that the intertwined space-time symmetries could also protect novel trivial properties of

the driven system, regardless of microscopic details.

In this article, we generalize the concept of Floquet-Bloch lattices to space-

time crystals, which exhibit intertwined space-time symmetries. Space-time crystals

exhibit the periodicities characterized by D+1 linearly independent basis vectors, which

are space-time mixed in general. The usual Floquet-Bloch systems are a special case

exhibiting separate spatial and temporal periodicities. The full discrete space-time

symmetries of space-time crystals form groups – dubbed “space-time” groups, which

are generalizations of space groups for static crystals by including “time-screw” and

“time-glide” operations. A complete classification of the 13 space-time groups in 1+1

D is performed, and their constraints on band structure winding numbers are studied.

In 2+1 D, the non-symmorphic space-time symmetry operations, similar to their static

space-group counterparts, lead to spectral degeneracies for periodically driven systems,
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even when the instantaneous spectra are gapped at any given time t.

4.2 Space-time lattice

We consider the time-dependent Hamiltonian H = P2/(2m)+V (r, t) in the D+1

dimensional space-time. V (r, t) exhibits the intertwined discrete space-time translational

symmetry as

V (r, t) =V (r+ui, t + τ
i), i = 1,2, ...,D+1, (4.1)

where (ui,τi) = ai is the primitive basis vector of the space-time lattice. Eq. 4.1 extends

the usual Floquet-Bloch lattice with the separated spatial and temporal periodicities to the

more general case with space-time mixed primitive vectors. In general, the space-time

primitive unit cell is not a direct product between spatial and temporal domains. There

may not even exist spatial translational symmetry at any given time t, nor temporal

translational symmetry at any spatial location r. Consequently, the frequently used time-

evolution operator U(T ) of one period for the Floquet problem generally does not apply.

The reciprocal lattice is spanned by the momentum-energy basis vectors bi = (Gi,Ωi)

defined through bi ·a j = ∑
D
m=1 Gi

mu j
m−Ωiτ j = 2πδi j. The D+1 dimensional momentum-

energy Brillouin zone (MEBZ) may also be momentum-energy mixed.

We generalize the Floquet-Bloch theorem for the time-dependent Schrödinger

equation i~∂tψ(r, t) = H(r, t)ψ(r, t). Due to the space-time translation symmetry, the

lattice momentum-energy vector κ = (k,ω) is conserved. Only the κ vectors inside the

first MEBZ are non-equivalent, and the κ vectors outside are equivalent to those inside

up to integer reciprocal lattice vectors. The states characterized by κ take the form of

ψκ,m(r, t) = ei(k·r−ωmt)um(r, t), (4.2)
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Figure 4.1: Folding the band dispersions of the 1+1 D space-time crystal into the 1st
rhombic MEBZ in the weak lattice limit. The momentum-energy reciprocal lattice
vectors of nonzero VB’s are represented by dashed lines. The low-energy part of the
free dispersion curve evolves to closed loops. (a) Two loops with the winding numbers
wr = (1,0) (red) and wb = (0,1) (blue). (b) An extra nonzero VG connects two loops in
(a) forming a new one with w = wr +wb.

where m marks different states sharing the common κ. um(r, t) processes the same space-

time periodicity as H(r, t), and is expanded as um = ∑B cm,Bei(G·r−Ωt) with B = (G,Ω)

taking all the momentum-energy reciprocal lattice vectors. The eigen-frequency ωm is

determined through the eigenvalue problem defined as

∑
B′
{[−Ω + ε0(k+G)]δB,B′+VB−B′}cm,B′

= ωmcm,B, (4.3)

where ε0(k) is the free dispersion, and VB is the momentum-energy Fourier component

of the space-time lattice potential V (r, t). The dispersion based on Eq. 4.3 is represented

by a D-dimensional surface in the MEBZ which is a D+1 dimensional torus.

4.2.1 1+1 D

The energy band structures of the space-time lattice exhibit novel features differ-

ent from those with separated spatial and temporal periodicities. For simplicity, below

we use the 1+1 D case to investigate the symmetry and topological properties of the
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space-time crystal.

The dispersion relation ω(k) forms closed loops in the 2D toroidal MEBZ, each of

which is characterized by a pair of winding numbers w= (w1,w2). Compared to the static

lattice case in which the band dispersion only winds around the momentum direction,

here ω(k) is typically not single-valued and its winding patterns are much richer. The

dispersions in the limit of a weak space-time potential V (x, t) with a rhombic MEBZ

are illustrated in Fig. 4.1 (a) and (b). When folded into the MEBZ, the free dispersion

curve ε(k) can cross at general points not just on high symmetry ones. A crossing point

corresponds to two equivalent momentum-energy points related by a reciprocal vector G

before folding. When VG 6= 0, the crossing is avoided by forming a gap at the magnitude

of 2|VG|. The winding directions of the dispersion loops are generally momentum-energy

mixed. Furthermore, different momentum-energy reciprocal lattice vectors can cross

each other, leading to composite loops winding around the MEBZ along both directions

as shown in Fig. 4.1 (b). The total number of states at each k is invariant with lattice

potential, then crossing can only split along the ω-direction and dω/dk is always finite.

Consequently, trivial loops with the winding numbers (0,0) are forbidden, while all other

patterns (w1,w2) are possible in general.

The intertwined space-time lattice symmetries besides translations can protect

crossings and impose further constraints on band structures. Consider a 1+1 D crystal

structure with the space-time unit cell as the direct product of spatial and temporal

periods λ and T , respectively. Its first MEBZ is also a direct-product as [−π/λ,π/λ]⊗

[−π/T,π/T ]. We further assume the system is invariant under a combined time-reversal

transformation followed by the translation of a half spatial period. This operation denoted

as gt can be viewed as a “glide time-reflection” defined as gt(x, t) = (x+ 1
2λ,−t). Its

operation on the Hamiltonian is defined as g−1
t Hgt = H∗(gt(x, t)). The corresponding

transformation Mgt on the Bloch-Floquet wavefunction ψκ(x, t) of Eq. 4.2 is anti-unitary
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Figure 4.2: The glide time-reflection symmetry leads to the double-degeneracy in the
spectrum. (a) The Floquet-Bloch band spectrum with the space-time lattice potential
possessing the glide time-reflection symmetry gt . When applied to the states with
κx = π/λ, gt becomes a Kramers symmetry protecting the double-degeneracy. (b)
Lifting the Kramers degeneracy by adding a glide time-reflection symmetry breaking
term.

.

defined as Mgt ψκ = ψ∗κ(g
−1
t (x, t)). The glide time-reflection leaves the line of κx = π/λ

in the MEBZ invariant. Mgt becomes a Kramers symmetry for states along this line,

M2
gt

ψκ = ψκ(x−λ, t) = e−iκxλ
ψκ =−ψκ, (4.4)

which arises purely from the space-time crystal symmetry without involving the half-

integer spinor structure. It protects the double degeneracy of the momentum-energy

quantum numbers of ψκ and Mgt ψκ. Hence the crossing at κx = π/λ cannot be avoided

and the dispersion winding numbers along the momentum direction must be even.

As a concrete example, we study a crystal potential with the above spatial and

temporal periodicities, V (x, t) = V0
(

sin 2π

T t cos 2π

λ
x+ cos 2π

T t
)
. Except the glide time-

reflection symmetry, it does not possess other space-time symmetries. Its Bloch-Floquet

spectrum is calculated based on Eq. 4.3, and a representative dispersion loop is plotted in
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Figure 4.3: A specific model demonstrates that the time-screw rotation protects spec-
trum degeneracy at high symmetric points. (a) The 2+1 D space-time lattice structure
of the Hamiltonian Eq. 4.6. The bond directions are marked as ~e1,3 = ±1

2(x̂+ ŷ),
~e2,4 =∓1

2(x̂− ŷ). (b) The time-dependent hopping pattern rotates 90◦ every one quarter
period. The bonding strengths wei(t) of the R, B, G and Y bonds equal 0.2, 3, −3.2,
and 0.5, respectively. (c) The momentum Brillouin zone with high symmetry points
Γ = (0,0), M = (±π,±π), and X = (0,±π) and (±π,0). (d) The dispersions along the
cuts from Γ to X to M to Γ. Two-fold degeneracies appear at X and M.

the MEBZ shown in Fig. 4.2 (a). The crossing at κx = π/λ is protected by the glide time-

reflection symmetry giving rise to a pair of Kramers doublet. As a result, the winding

number of this loop is w = (wx,wt) = (2,0). If a glide time-reflection symmetry breaking

term δV =V ′0 cos(2π

λ
x) is added into the crystal potential, the crossing is avoided due to

the Kramers symmetry breaking as shown in Fig. 4.2 (b). Consequently, the dispersion

splits into two loops, both of which exhibit the winding number (1,0).
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4.2.2 2+1 D

Below we show that the space-time group operations protect robust spectrum

degeneracies and lead to the Floquet semi-metal state by using a 2+1D example. Consider

the case that the space-time little group of the momentum k contains two non-symmorphic

space-time group operations g1,2 satisfying

g1g2 = T (u)g2g1, and, k ·u = 2πp/q, (4.5)

where T (u) is a space translation of integer lattice vectors, and p and q coprime. We

find that the Bloch-Floquet wavefunctions exhibit a q-fold degeneracy at the momentum-

energy vector κ = (k,ω) proved as follows. Since g1 belongs to the little group, ψκ(r, t)

can be chosen to satisfy Mg1ψκ,1 = µψκ,1, then ψκ,Mg2ψκ,M2
g2

ψκ, ....,M
q−1
g2 ψκ are the

common Bloch-Floquet eigenstates sharing the same κ but exhibiting a set of different

eigenvalues of g1 as η,µη,µη2, ...,µηq−1 with η = eiπp/q. Then they are orthogonal to

each other forming a q-fold degeneracy. Compared to the case of non-symmorphic space

group protected degeneracy [145, 12, 147], here g1,2 are space-time operations for a

dynamic space-time crystal.

We employ a 2+1 D tight-binding space-time model as an example to illustrate

the above protected degeneracy. A snap shot of the lattice is depicted in Fig. 4.3 (a),

which consists of two sublattices: The A-type sites are with integer coordinates (i, j), and

each A-site emits four bonds along~ei to its four neighboring B sites at (i± 1
2 , j± 1

2). The

space-time Hamiltonian within the period T is

H(t) =− ∑
~r∈A, ~r+ a

2~ei∈B

{
w~ei(t)c

†
~r d~r+ a

2~ei +h.c.,
}
, (4.6)

where a is the distance between two nearest A sites, and w~ei(t)’s are hopping amplitudes
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with different strengths. Their time-dependence is illustrated in Fig. 4.3 (b): Within

each quarter period, w~ei does not vary, and their pattern rotates 90◦ after every T/4.

At each given time, the lattice possesses a simple 2D space group symmetry p2111,

which only includes two-fold rotations around the AB-bond centers without reflection

and glide-plane symmetries. For example, the rotation Rπ around (a
4 ,

a
4) transforms the

coordinate (x,y, t)→ (a
2 + x, a

2 + y, t). In addition, there exist “time-screw” operations,

say, an operation S defined as a rotation around an A-site (0,0) at 90◦ followed by a time-

translation at T/4, which transforms (x,y, t)→ (y,−x, t + T
4 ). Rπ and S are generators

of the space-time group for Eq. 4.6. Since S is a time-screw rotation, this space-time

group is non-symmorphic. It is isomorphic to the 3D space-group I41, while its 2D

space subgroup p2111 is symmorphic. We have checked that, for a static Hamiltonian

taking any of the bond configuration in Fig. 4.3 (b), the energy spectra are fully gapped.

However, the non-symmorphic space-time group gives rise to spectral degeneracies. Its

momentum Brillouin zone is depicted in Fig. 4.3 (c). The space-time little group of the

M-point (π,π) contains both R and S satisfying RS = T (aŷ)SR = −SR. Similarly, the

X-point (π,0) is invariant under both R and S2 satisfying RS2 = T (ax̂+aŷ)S2R =−S2R.

Hence, the Floquet eigen-energies are doubly degenerate at M and X-points as shown in

Fig. 4.3 (d), showing a semi-metal structure.

4.3 Space-time group

4.3.1 General descriptions and the classification scheme

We propose the concept of “space-time” group for a full description of the

symmetry properties of the D+1 dimensional space-time crystal structures. It not only

includes space group and magnetic group transformations in the D-spatial dimensions,

but also is extended to include operations involving fractional translations along the
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time-direction. Since space and time are non-equivalent in the Schrödinger equation,

space-time rotations are not allowed except the 2-fold case. For a symmetry operation Γ

of the space-time crystal, its operation on (r, t) is defined as,

Γ(r, t) = (Rr+u,st + τ), (4.7)

where R is a D-dimensional point group operation, s =±1 and s =−1 indicates time-

reflection, i.e., time-reversal, and (u,τ) = ∑i miai represents a space-time translation with

mi either integers or fractions. At τ = 0, Γ is reduced to a space group or magnetic group

operation according to s =±1, respectively. At τ 6= 0, when (u,τ) contains fractions of ai,

new symmetry operations arise due to the dynamic nature of the crystal potential, includ-

ing the “time-screw” rotation and “time-glide” reflection, which are a spatial rotation or

a reflection followed by a fractional time translation, respectively. The operation of Γ on

the Hamiltonian is defined as Γ−1H(r, t)Γ = H(Γ(r, t)), or, Γ−1H(r, t)Γ = H∗(Γ(r, t))

for s =±1, respectively. Correspondingly, the transformation MΓ on the Bloch-Floquet

wavefunctions ψκ(r, t) is MΓψκ = ψκ(Γ
−1(r, t)), or, ψ∗κ(Γ

−1(r, t)) for s = ±1, respec-

tively.

The space-time groups in d +1 dimensions G(d,1) are discrete subgroups of the

Euclidean group Ed⊗E1. Each space-time group is constructed from a Bravais lattice M

constituted of d +1 space-time mixing discrete translations, and a magnetic point groups

(MPG) in d dimensions Gm(d) that leaves M invariant. The hierarchal classification

scheme of the space-time groups starts with crystal systems, which are labeled by a set of

Bravais lattices {M} sharing the same magnetic point group symmetry and a set of MPGs

{Gm} that only leaves Bravais lattices in {M} invariant. One crystal system contains

all the space-time groups constructed from Bravais lattices in {M} and MPGs in {Gm}.

Each crystal system contains several geometry crystal classes (GCC). Space-time groups
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belong to the same GCC if they are constructed from the same MPG. Each GCC can

be further classified into different arithmetic crystal classes (ACC). Each ACC contains

all the space-time groups constructed from the same Bravais lattice and the same MPG.

It is worth noting that, in some cases, the ACC also depends on the relative orientation

between the Bravais lattice and the MPG. Such hierarchy is in parallel to the conventional

classification scheme[148].

Given an ACC labeled by M and Gm, the classification of all the space-time

groups can be done using group cohomology theory, similar to the classification of the

space groups [149]. A space-time group G is the group extension of an abelian discrete

translation group of M by the magnetic point group Gm, described by the following exact

sequence,

1→M→ G→ Gm→ 1 (4.8)

Such group extension can be constructed by associating each element g in Gm(d) a

fractional translation c(g) ∈ T (d + 1)/M, where T (d + 1) is the group of continuous

translations in d +1 dimensions. The map c needs to satisfy

c(1) = 0, c(g1g2) = c(g1)+g1c(g2), (4.9)

so that the elements (c(g),g) form a group. In order to classify all the space-time groups

within the ACC, a key observation is that all maps c’s themselves form an abelian group.

Given two distinct assignments c1 and c2, one can check that their product c1 ·c2, defined

as,

c1 · c2(g) = c1(g)+ c2(g) (4.10)

satisfies Eq. 4.9 as well. This group is denoted as Z1(Gm,T/M). However, not all

the elements in Z1(Gm,T/M) are corresponding to distinct types of space-time groups.
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Without specifying the equivalence relations, the group Z1(Gm,T/M) is not finite. An

obvious condition is that space groups that related by origin shifting are of the same type.

This is to say that the map with the following form,

cu(g) = gu−u (4.11)

for any origin shifting vector u ∈ T/M, should be identified with the trivial map c(g) = 0.

The map with the structure in Eq. 4.11 also form a group B1(Gm,T/M). We are inter-

ested in the quotient group Z1(Gm,T/M)/B1(Gm,T/M), which is the one-dimensional

cohomology group of Gm with coefficients in T/M, denoted as H1(Gm,T/M).

Each element of H1(Gm,T/M) is corresponding to a type of space-time groups.

Since H1(Gm,T/M) is finite, we have a finite list of space-time groups within the ACC.

The trivial element of H1(Gm,T/M) is that c(g) = 1 for all g in the MPG, and the

corresponding space-time group is the semi-direct product of the Bravais lattice M and

the MPG Gm(d), called symmorphic space-time group. Each ACC only contains one

symmorphic space-time group. The other elements in H1(Gm,T/M) are corresponding

to the nonsymmorphic space-time groups in which there is not a single site that the whole

symmetry group Gm can be realized.

However, not all the elements of the cohomology group H1(Gm,T/M) lead to dis-

tinct type of the space-time groups neither. For example, two elements in H1(Gm,T/M)

related by global rotation should be identified. Here we invoke the second equivalence

relation, which generalizes the one used in classifying space group. All elements in

H1(Gm,T/M) related by linear transformations ρ are identified, where ρ leaves all the

MPGs within the given crystal system unchanged. According to the definition, the second

equivalent relation depending on the crystal system that contains the ACC.
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4.3.2 Classification in 1+1 dimensions

As a concrete example, we present a complete classification of the space-time

groups for 1+1 D space-time crystal structures. Due to the non-equivalence between

spatial and temporal directions, there are no square and hexagonal space-time crystal

systems. The point-group like operations are isomorphic to D2, including reflection mx,

time reversal mt , and their combination mxmt , i.e., the 2-fold space-time rotation. Conse-

quently, only two space-time crystal systems are allowed – oblique and orthorhombic. In

addition to gt , symmetries involving fractional translations also include the “time glide

reflection” gx - spatial reflection followed by a fractional time-translation. The space-time

crystal structures marked with mx and mt , or those with gx and gt , should be different,

respectively.

The above 1+1 D space-time symmetries give rise to 13 space-time groups

in contrast to the 17 wallpaper space groups characterizing the 2D static lattices. The

oblique Bravais lattice is simply monoclinic, while the orthorhombic ones include both the

primitive and centered Bravais lattices. The monoclinic lattice gives rise to two different

crystal structures with and without the 2-fold space-time axes, whose space-time groups

are denoted by P1,2, respectively, as shown in Fig. 4.4 (a). For the primitive orthorhombic

lattices, the associated crystal structures can exhibit the point-group symmetries mx and

mt , and the space-time symmetries gt and gx. Their combinations give rise to crystal

structures with 8 space-time group symmetries denoted as Pmx, Pmt , P2mxmt , Pgx,

Pgt , P2gxgt , P2mxgt , P2gxmt , respectively, as shown in Fig. 4.4 (b). Four of them

possess the 2-fold space-time axes as indicated by “2” in their symbols. For the centered

orthorhombic Bravais lattices, 3 crystal structures exist with space-time groups denoted

as Cmx, Cmy, and C2mxmt , respectively, as shown in Fig. 4.4 (c). They all exhibit

glide-reflection symmetries, and the last one possesses the 2-fold space-time axes as well.

Two unit cells are plotted for the centered lattices to show the full symmetries explicitly,
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Figure 4.4: The classification of 13 space-time groups in 1+1D and the associated lattice
configurations. The solid oval marks the 2-fold space-time axis, and the parallelogram
means the 2-fold axis without reflection symmetries. The thick solid and dashed lines
represent reflection and glide-reflection axes, respectively. Configurations of triangles
and the diamond denote the local symmetries under reflections. (a) The oblique lattices
with and without 2-fold axes. Their basis vectors are generally space-time mixed. The
primitive (b) and centered (c) orthorhombic lattices: According to their reflection and
glide reflection symmetries, they are classified to 8 groups in (b), and 3 groups in (c).
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and their primitive basis vectors are actually space-time mixed.

4.3.3 Classification of 2+1D space-time groups

Table 4.1: The magnetic point groups in 2 dimensions and their relations to the usual
10 2-dimensional point groups. In the third column, the symmetry generator for each
MGP is listed. The symmetry operation mt stands for the time reversal, Rθ represents
rotation in the x− y plane through the angle θ, mx is the reflection in the x direction and
my is the reflection along the y direction.

Point Group Gm(2) Generators

C1
1

11′ mt

C2

2 Rπ

21′ Rπ,mt

2′ Rπmt

C3
3 R2π/3

31′ R2π/3,mt

C4

4 Rπ/2

41′ Rπ/2,mt

4′ Rπ/2mt

C6

6 Rπ/3

61′ Rπ/3,mt

6′ Rπ/3mt

Point Group Gm(2) Generators

D1

m mx

m1′ mx,mt

m′ mxmt

D2

mm2 mx,my

mm21′ mx,my,mt

m′m2′ mxmt ,my

m′m′2 mxmt ,mymt

D3

3m R2π/3,mx

3m1′ R2π/3,mx,mt

3m′ R2π/3,mxmt

D4

4mm Rπ/2,mx

4mm1′ Rπ/2,mx,mt

4′m′m Rπ/2mt ,mx

4m′m′ Rπ/2,mxmt

D6

6mm Rπ/3,mx

6mm1′ Rπ/3,mx,mt

6′m′m Rπ/3mt ,mx

6m′m′ Rπ/3,mxmt

In this section, we focus on the case of d = 2. The case of d = 3 is left for future

study. In 2 dimensions, the conventional 10 crystallographic point groups, combining

with the time reversal symmetry, can be enriched to 31 MPGs listed in Table. 4.1. By

combining the MPGs with three independent discrete translations in T (3), we obtain 7

crystal systems, 14 Bravais lattices and 275 space-time groups. The relation between
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Table 4.2: Summary of the space-group classification in 2+1 dimensions. There are 7
space-time crystal systems and 14 space-time Bravais lattices (The primitive trigonal
lattice is the same as the primitive hexagonal lattice). The 31 magnetic point groups are
uniquely assigned to the 7 crystal systems, as listed in the third column. In the fourth
and fifth column, we list the number of arithmetical crystal classes and the space-time
groups within each Bravais lattice.

Crystal System Bravais Lattice MP Group ACC G(2,1)

Triclinic Primitive 1,2′ 2 2

T-Monoclinic
Primitive

11′,2,21′
3 8

Centered 3 5

R-Monoclinic
Primitive

m,m′,m′m2′
3 8

Centered 3 5

Orthorhombic

Primitive

mm2,m′m′2
mm21′,m1′

4 68

T-Base-Centered 4 15

R-Base-Centered 5 22

Face-Centered 4 7

Body-Centered 4 15

Tetragonal
Primitive 4,41′,4′

4mm,4mm1′

4′m′m,4m′m′

8 49

Body-Centered 8 19

Trigonal
Primitive 3,6′,3m

3m′,6′m′m
8 18

Rhombohedral 5 7

Hexagonal Primitive
6,61′,31′

6mm,6m′m′

6mm1′,3m1′
8 27



76

Figure 4.5: The two kinds of monoclinic crystal systems in the space-time group
classification. (a) The t-monoclinic lattice. One lattice basis vector is along the temporal
direction and perpendicular to the other two basis vectors which are not orthogonal. The
angle γ is not π/2. The maximal MPG is 21′. (b) The r-monoclinic lattice. One lattice
basis vector is along purely spatial direction and perpendicular to the other two basis
vectors which are not orthogonal. The maximal MPG is m′m2.

space-time crystal systems, MPGs, Bravais lattices and space-time lattices are summa-

rized in Table 4.2. We adopt the terminology mostly from 3D crystallography [150] when

it is possible.

Before going into the details of each space-time group, we emphasize that the

classification of the space-time group G(2,1) is different from the usual space group G(3)

[150]. The differences already appear on the level of crystal systems. The familiar cubic

crystal system from space group classification is absent in 2+1 D, because its symmetry

operation necessarily involves four-fold space-time rotation, which is not an isometry in

E2⊗E1. On the other hand, there are two crystal systems, r-monoclinic and t-monoclinic,

respectively, corresponding to the 3D monoclinic crystal system. The primitive unit cell

of the two lattice are plotted in Fig. 4.5. The maximal MPG of the two crystal systems

are inequivalent. The first case is 21′, generated by spatial rotation Rπ and time reversal

mt , while the second case is m′m2 generated by mymt ,mx. The space-time crystals in

each crystal system are further classified according to their Bravais lattices. The main

difference from the 3D cases occurs in the orthogonal space-time crystal systems, which
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Figure 4.6: The two kinds of base-centered Bravais lattices in the space-time orthorhom-
bic crystal system. (a) The t-base-centered lattice. The additional point is at the center
of the spatial face. (b) The r-base-centered lattice. The additional point is at the center
of the face containing temporal axis.

contains 5 Bravais lattices rather than 4 in its static counterpart. As illustrated in Fig.

4.6, there are two base-centered lattices. In the t-base-centered lattice, the additional

point locates at the center of the face in the x− y plane, while the additional point in

r-base-centered lattice is at the center of the face in the y− t plane.

In the following, we will discuss the space-time group classification of each

crystal system in detail and enumerate all the space-time groups G(2,1).

4.3.4 Triclinic Crystal System

The triclinic crystal system contains the simplest space-time lattice. There is no

constraint on the 3 lattice basis vectors a1 ∼ a3 and thus only Bravais lattice is involved

in this crystal system. The maximal symmetry of the lattices in this crystal system is

described by the MGP 2′, generated by the space-time inversion Rπmt . There are two

MGPs assigned to crystal system, the trivial one 1 and the MPG 2′. The combination

of each of two MPGs and the primitive lattice leads to two ACCs. Both of the first

cohomology groups of two ACCs are identities, indicating that there is no non-trivial

group extension of the primitive triclinic lattice by MPGs. In consequence, each ACC
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only contains one type of space-time group, and there is no nonsymmorphic space-time

group in the triclinic crystal system. Physically, the combination of Rπmt with any

translations is also space-time inversion but with a shifted origin. The two types of

space-time groups are listed in Table. 4.3.

Table 4.3: Space-time groups in 2+1 dimensions for oblique lattices.

Primitive Triclinic
ACC NO. 1: 1P

Gm(2) = 1, H1(1,T (3)/P) = I
P1 1

ACC NO. 2: 2′P
Gm(2) = 2′, H1(2′,T (3)/P) = I
P1̄ Rπmt 1

4.3.5 T-Monoclinic and R-Monoclinic Crystal Systems

Before classifying the space-time groups in the monoclinic crystal systems, we

briefly review the conventional monoclinic lattice here. In 3 dimensions, the monoclinic

lattice has a unique direction that either is a twofold rotation axis or perpendicular to a

mirror plane. There are two kinds of Bravais lattices. The first is the primitive monoclinic,

hosting 8 space groups. The second is the base-centered monoclinic with an addition

point at the center of the face parallel to the unique direction. There are 5 space groups

in the base-centered monoclinic lattice.

In the dynamic space-time lattices considered here, however, there are two types

of monoclinic lattices. This arises from the speciality of the time direction, which requires

that the unique direction in the monoclinic lattice is either purely temporal or purely

spatial, corresponding to the t-monoclinic crystal system and the r-monoclinic crystal

system, respectively. Each of them contains two Bravais lattices and 13 space-time

groups.
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In the t-monoclinic crystal system, the unique direction coincides with the tempo-

ral direction. The maximal symmetry of a general t-monoclinic lattice is described by

the MGP 21′ generated by the spatial two-fold rotation Rπ and time reversal mt . Three

MGP, 2, 11′ and 21′, are assigned to this crystal system, and therefore the t-monoclinic

crystal system contains three GCCs. Although the MPG 2′ also leave the lattices in this

crystal system invariant, it also acts on the triclinic lattices with lower symmetry and thus

is excluded here.

The primitive lattice basis vectors are

aP
1 = (x1,y1,0)

aP
2 = (x2,y2,0)

aP
3 = (0,0, t0).

(4.12)

Among the three vectors, a1 and a2 generally mix space and time, while a3 is purely

temporal. The combination of the three MGPs and the primitive Bravais lattice leads to

three ACCs. Unlike the 2 ACCs in the triclinic crystal system, here we have nontrivial

group extension of the lattice by the MGPs, and each ACC contains more than one

space-time group. For example, let us look at the ACC No. 3 2P and consider the

interplay between the MGP 2 ({I,Rπ}) and the translations in Eq. 4.12. There are

two space-time groups P112 and P1121 in this arithmetic crystal class. The space-time

group P112 is the semi-direct product of the MGP and the lattice described by Eq. 4.12.

The space-time group P1121 extends P112 by replacing the 2-fold rotational symmetry

Rπ with the 2-fold time-screw rotational symmetry RπT 1/2
t . The space-time group is

nonsymmorphic because RπT 1/2
t does not fix any space-time coordinate. Mathematically,

the first cohomology group of the ACC 2P is isomorphic to Z2 with the following
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generator,

c(3)1 (Rπ) =
1
2

aP
3 (4.13)

where the superscript of c stands for the ACC id and the subscript of c labels the generator

of the cohomology group. This result indicates that there are two space-time groups

within the ACC 2P.

On the other hand, H1(11′,T (3)/P) is Z2
2 with the generators,

c(4)1 (mt) =
1
2

aP
1

c(4)2 (mt) =
1
2

aP
2

(4.14)

There are four elements in this cohomology group, in principle corresponding to four

types of space-time groups. However, it turns out that c1, c2 and c1 · c2 can be related

each other under the second equivalence relation, and there are only two distinct types of

space-time groups. Physically, the symmetry operation of the time reversal with gliding

along aP
1 , aP

2 and aP
1 +aP

2 are identified. For the ACC 21′P, the first cohomology group is

Z3
2, and the three generators are

c(5)1 (Rπ) = aP
3/2, c(5)1 (mt) = 0

c(5)2 (Rπ) = 0, c(5)1 (mt) =
1
2

aP
1

c(5)3 (Rπ) = 0, c(5)3 (mt) =
1
2

aP
2

(4.15)

There are eight group elements, but only four of them are inequivalent due to the

similar reason as before. The total 8 types of the space-time groups within the primitive

monoclinic lattice is listed in Table. 4.4.
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Table 4.4: Space-time groups in 2+1 dimensions for primitive t-monoclinic lattices.
The action of the glide refection gt on the coordinate is gt(x,y, t) = (x,y,−t)+ap

1/2, and
T 1/n

t is the temporal fractional translation so that T 1/n
t (x,y, t) = (x,y, t)+ap

3/n, where
ap

1 ∼ ap
3 are the primitive lattice basis for the t-monoclinic crystal system defined in Eq.

4.12.

Primitive T-Monoclinic
ACC NO. 3: 2P, Gm(2) = 2, H1(2,T (3)/P) = Z2

P112 Rπ 1

P1121 RπT 1/2
t c1

ACC NO. 4: 11′P, Gm(2) = 11′, H1(11′,T (3)/P) = Z2
2

P11m mt 1

P11c gt c1

ACC NO. 5: 21′P, Gm(2) = 21′, H1(21′,T (3)/P) = Z3
2

P112/m Rπ,mt 1

P1121/m RπT 1/2
t ,mt c1

P112/c Rπ,gt c2

P1121/c RπT 1/2
t ,gt c1 · c2

For the base-centered Bravais lattice, a1 ∼ a3 are

aB
1 = (x1,y1,0)

aB
2 = (x2,y2,0)

aB
3 =

1
2
(x1,y1, t0).

(4.16)

Combining the Bravais lattice with the same set of MPGs leads to 3 ACCs but 5 space-

time groups listed in Table. 4.5. The key difference between the base-centered Bravais

lattice and the primitive one is that, in the formal case, the combination of space-time

inversion Rπ with temporal translation of aP
3/2 is equivalent to the usual space-time

reflection with a shifted origin. As a result, the first cohomology group of the ACC

2C is trivial and that of the ACC 21′C downgrades to Z2
2, resulting in fewer types of

space-time groups in these two ACCs, while the case of the ACC 11′C is unchanged from
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the primitive one. The 5 types of space-time groups are listed in Table. 4.5.

Table 4.5: Space-times group in 2+1 dimensions for base-centered t-monoclinic lattices.
The action of the glide refection gt on the coordinate is gt(x,y, t) = (x,y,−t)+ aP

1/2,
where ap

1 ∼ ap
3 are the primitive lattice basis for the t-monoclinic crystal system defined

in Eq. 4.12.

Base-Centered T-Monoclinic
ACC NO. 6: 2C, Gm(2) = 2, H1(2,T (3)/C) = I
C112 Rπ 1

ACC NO. 7: 11′C, Gm(2) = 11′, H1(11′,T (3)/C) = Z2
2

C11m mt 1

C11c gt c1

ACC NO. 8: 21′C, Gm(2) = 21′, H1(21′,T (3)/C) = Z2
2

C112/m Rπ,mt 1

C112/c Rπ,gt c1

As to the r-monoclinic crystal system, the unique direction is purely spatial,

taken to be the x axis. Two symmetry operations mx and mymt leave the lattice invariant

and generates the maximal MGP m′m2. As a result, three MGPs, m′, m and m′m2, are

assigned to this crystal system. This crystal system also has two Bravais lattices. The

lattice basis for the primitive one is

aP
1 = (0,y1, t1)

aP
2 = (0,y2, t2)

aP
3 = (x0,0,0),

(4.17)

and the basis for the based-centered one is

aB
1 = (0,y1, t1)

aB
2 = (0,y2, t2)

aB
3 =

1
2
(x0,y1, t2).

(4.18)
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The classification of the space-time groups for the r-monoclinic crystal system

is completely in parallel with the t-monoclinic crystal system, and is not repeated here.

The resulting 6 ACCs, the corresponding cohomology groups and 15 distinct types of

space-time groups are listed in Table. 4.6 for the primitive lattice and Table. 4.7 for the

centered lattice.

Table 4.6: Space-time groups in 2+1 dimensions for the primitive r-monoclinic crystal
system. The action of the glide refection gx on the coordinate is gx(x,y, t) = (−x,y, t)+
ap

1/2, and T 1/n
x is the spatial fractional translation so that T 1/n

x (x,y, t) = (x,y, t)+ap
3/n,

where ap
1 ∼ ap

3 are the primitive lattice lattice basis for r-monoclinic crystal system
defined in Eq. 4.17.

Primitive R-Monoclinic
ACC NO. 9: m′P, Gm(2) = m′, H1(m′,T (3)/P) = Z2

P211 mymt 1

P2111 mymtT
1/2

x c1

ACC NO. 10: mP, Gm(2) = m, H1(m,T (3)/P) = Z2
2

Pm11 mx 1

Pc11 gx c1

ACC NO. 11: m′m2′P, Gm(2) = m′m2′, H1(m′m2′,T (3)/P) = Z3
2

P2/m11 mx,mymt 1

P21/m11 mx,mymtT
1/2

x c1

P2/c11 gx,mymt c2

P21/c11 gx,mymtT
1/2

x c1 · c2

4.3.6 Orthorhombic Crystal System

The space-time orthorhombic crystal system has at least two reflection/glide

planes, and therefore requires three mutually orthogonal primitive lattice basis vectors.

The fact that the space-time group is subgroup of E2⊗E1 requires that one of the three

axises is purely temporal. The relevant symmetries are three reflections, mx, my and mt .

The maximal symmetry of a general lattice within this crystal system is described by
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Table 4.7: Space-time groups in 2+1 dimensions for base-centered r-monoclinic lattices.
The action of the glide refection gx on the coordinate is gx(x,y, t) = (−x,y, t)+ap

1/2,
where ap

1 ∼ ap
3 are the primitive lattice lattice basis for r-monoclinic crystal system

defined in Eq. 4.17.

Base-Centered R-Monoclinic
ACC NO. 12: m′C, Gm(2) = m′, H1(m′,T (3)/C) = I
C211 mymt 1

ACC NO. 13: mC, Gm(2) = m, H1(m,T (3)/C) = Z2
2

Cm11 mx 1

Cc11 gx c1

ACC NO. 14: m′m2′C, Gm(2) = m′m2′, H1(m′m2′C,T (3)/C) = Z2
2

C2/m11 mx,mymt 1

C2/c11 gx,mymt c1

the MPG mm21′. Four MGPs, m′m′2, mm2, m1′ and mm21′, are assigned to this crystal

system. In order to preserve all the MPGs, the linear map ρ in the second equivalence

relation is restricted in the x− y plane.

The lattice basis vectors of the primitive Bravais lattice are along the three

orthogonal axises,

aP
1 = (x0,0,0)

aP
2 = (0,y0,0)

aP
3 = (0,0, t0)

(4.19)

The combination of the Bravais lattice and the 4 MPGs leads to 4 ACCs and 68 distinct

space-time groups listed in Table. 4.8 and Table. 4.10.

The first cohomology group of the ACC m′m′2P is Z3
2 with the following 3

generators,

c(15)
1 (mxmt) =

1
2

aP
3 , c(15)

1 (mymt) = 0

c(15)
2 (mxmt) =

1
2

aP
2 , c(15)

2 (mymt) = 0

c(15)
3 (mxmt) = 0, c(15)

3 (mymt) =
1
2

aP
1

(4.20)
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Table 4.8: Space-time groups in 2+1 dimensions for primitive orthorhombic lattice
(1). The fractional translation T 1/n

x,y,z acting on the coordinate as T 1/n
x,y,z(x,y,z) = (x,y,z)+

aP
1,2,3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for space-time orthorhombic

crystal system defined in Eq. 4.19.

Primitive Orthorhombic (1)
ACC No.15 : m′m′2P, Gm(2): m′m′2, H1(m′m′2,T (3)/P) = Z3

2
P222 mymt ,mxmt 1
P2221 mymt ,mxmtT

1/2
t c1

P2122 mymtT
1/2

x ,mxmt c2

P21212 mymtT
1/2

x ,mxmtT
1/2

y c2 · c3

P21221 mymtT
1/2

x ,mxmtT
1/2

t c1 · c2

P212121 mymtT
1/2

x ,mxmtT
1/2

y T 1/2
t c1 · c2 · c3

ACC No.16 : mm2P, Gm(2): mm2, H1(mm2,T (3)/P) = Z4
2

Pmm2 mx,my 1
Pmc21 mx,myT 1/2

t c3

Pma2 mx,myT 1/2
x c4

Pcc2 mxT 1/2
t ,myT 1/2

t c2 · c3

Pca21 mxT 1/2
t ,myT 1/2

x c2 · c4

Pmn21 mx,myT 1/2
x T 1/2

t c3 · c4

Pba2 mxT 1/2
y ,myT 1/2

x c1 · c4

Pnc2 mxT 1/2
y T 1/2

t ,myT 1/2
t c1 · c2 · c3

Pna21 mxT 1/2
y T 1/2

t , myT 1/2
x c1 · c2 · c4

Pnn2 mxT 1/2
y T 1/2

t ,myT 1/2
x T 1/2

t
4
∏
i=1

ci

ACC No.17 : m1′P, Gm(2): m1′, H1(m1′,T (3)/P) = Z4
2

P2mm my,mt 1
P21ma my,mtT

1/2
x c1

P21am myT 1/2
x ,mt c2

P2mb my,mtT
1/2

y c3

P2cm myT 1/2
t ,mt c4

P2aa myT 1/2
x ,mtT

1/2
x c1 · c2

P21ab myT 1/2
x ,mtT

1/2
y c2 · c3

P21ca myT 1/2
t ,mtT

1/2
x c1 · c4

P21mn my,mtT
1/2

x T 1/2
y c1 · c3

P21nm myT 1/2
x T 1/2

t ,mt c2 · c4

P2cb myT 1/2
t ,mtT

1/2
y c3 · c4
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Table 4.9: Space-time groups in 2+1 dimensions for primitive orthorhombic lattice (2).

Primitive Orthorhombic (2)
ACC No.17 (cont.): m1′P, Gm(2): m1′, H1(m1′,T (3)/P) = Z4

2

P2na myT 1/2
x T 1/2

t ,mtT
1/2

x c1 · c2 · c4

P2an myT 1/2
x ,mtT

1/2
x T 1/2

y c1 · c2 · c3

P21nb myT 1/2
x T 1/2

t ,mtT
1/2

y c2 · c3 · c4

P21cn myT 1/2
t ,mtT

1/2
x T 1/2

y c1 · c3 · c4

P2nn myT 1/2
x T 1/2

t ,mtT
1/2

x T 1/2
y

4
∏
i=1

ci

ACC No.18: mm21′P, Gm(2): mm21′, H1(mm21′,T (3)/P) = Z6
2

Pmmm mx,my,mt 1

Pmma mx,my,mtT
1/2

x c5

Pbmm mxT 1/2
y ,my,mt c1

Pcmm mxT 1/2
t ,my,mt c2

Pbam mxT 1/2
y ,myT 1/2

x ,mt c2 · c4

Pmcb mx,myT 1/2
t ,mtT

1/2
y c3 · c6

Pccm mxT 1/2
t ,myT 1/2

t ,mt c2 · c3

Pmaa mx,myT 1/2
x ,mtT

1/2
x c4 · c5

Pbcm mxT 1/2
y ,myT 1/2

t ,mt c1 · c2

Pmca mx,myT 1/2
t ,mtT

1/2
x c3 · c5

Pmab mx,myT 1/2
x ,mtT

1/2
b c4 · c6

Pmmn mx,my,mtT
1/2

x T 1/2
y c5 · c6

Pnmm mxT 1/2
y T 1/2

t ,my,mt c1 · c2
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Table 4.10: Space-time groups in 2+1 dimensions for primitive orthorhombic lattice
(3).

Primitive Orthorhombic (3)
ACC No.18 (cont. ): mm21′P, Gm(2): mm21′, H1(mm21′,T (3)/P) = Z6

2

Pmna mx,myT 1/2
x T 1/2

t ,mtT
1/2

x c3 · c4 · c5

Pbmn mxT 1/2
y ,my,mtT

1/2
x T 1/2

y c1 · c5 · c6

Pncm mxT 1/2
y T 1/2

t ,myT 1/2
t ,mt c1 · c2 · c3

Pcca mxT 1/2
t ,myT 1/2

t ,mtT
1/2

x c2 · c3 · c5

Pbaa mxT 1/2
y ,myT 1/2

x ,mtT
1/2

x c2 · c4 · c5

Pbcb mxT 1/2
y ,myT 1/2

t ,mtT
1/2

y c2 · c3 · c6

Pbca mxT 1/2
y , myT 1/2

t , mtT
1/2

x c1 · c3 · c5

Pnma mxT 1/2
y T 1/2

t ,my,mtT
1/2

x c1 · c2 · c5

Pbnm mxT 1/2
y ,myT 1/2

x T 1/2
t ,mt c1 · c3 · c4

Pmcn mx,myT 1/2
t ,mtT

1/2
x T 1/2

y c3 · c5 · c6

Pban mxT 1/2
y ,myT 1/2

x ,mtT
1/2

x T 1/2
y c1 · c4 · c5

Pncb mxT 1/2
x T 1/2

y ,myT 1/2
t ,mtT

1/2
y c1 · c2 · c3 · c6

Pccn mxT 1/2
t ,myT 1/2

t ,mtT
1/2

x T 1/2
y c2 · c3 · c5 · c6

Pnaa mxT 1/2
y T 1/2

t ,myT 1/2
x ,mtT

1/2
x c1 · c2 · c4 · c5

Pnnm mxT 1/2
y T 1/2

t ,myT 1/2
x T 1/2

t ,mt c1 · c2 · c3 · c4

Pmnn mx,myT 1/2
x T 1/2

t ,mtT
1/2

x T 1/2
y c3 · c4 · c5 · c6

Pbcn mxT 1/2
y , myT 1/2

t , mtT
1/2

x T 1/2
y c1 · c3 · c5 · c6

Pnca mxT 1/2
y T 1/2

t , myT 1/2
t , mtT

1/2
x c1 · c2 · c3 · c5

Pnab mxT 1/2
y T 1/2

t , myT 1/2
x , mtT

1/2
y c1 · c2 · c4 · c6

Pnna mxT 1/2
y T 1/2

t ,myT 1/2
x T 1/2

t ,mtT
1/2

x c1 · c2 · c3 · c4 · c5

Pbnn mxT 1/2
y ,myT 1/2

x T 1/2
t ,mtT

1/2
x T 1/2

y c1 · c3 · c4 · c5 · c6

Pcnn mxT 1/2
t ,myT 1/2

x T 1/2
t ,mtT

1/2
x T 1/2

y c2 · c3 · c4 · c5 · c6

Pnnn mxT 1/2
y T 1/2

t , myT 1/2
x T 1/2

t ,mtT
1/2

x T 1/2
y

6
∏
i=1

ci
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Since c2 and c3 are related by ρ = Rπ/2, 6 of total 8 group elements are inequivalent as

space-time group types, listed in the third column of Table. 4.8. For the ACC mm2P,

H1(mm2,T (3)/P) = Z4
2 with the 4 generators reading,

c(16)
1 (mx) =

1
2

aP
2 , c(16)

1 (my) = 0

c(16)
2 (mx) =

1
2

aP
3 , c(16)

2 (my) = 0

c(16)
3 (mx) = 0, c(16)

3 (my) =
1
2

aP
3

c(16)
4 (mx) = 0, c(16)

4 (my) =
1
2

aP
1

(4.21)

Given the equivalence condition ρ, c1 is related to c4, and c2 is related c3. Therefore the

total 16 group elements give rise to 10 distinct types of space-time groups.

For the ACC m1′P, H1(mm2,T (3)/P) is also Z4
2 with the 4 generators reading,

c(17)
1 (my) =

1
2

aP
3 , c(17)

1 (mt) = 0

c(17)
2 (my) =

1
2

aP
1 , c(17)

2 (my) = 0

c(17)
3 (my) = 0, c(17)

3 (mt) =
1
2

aP
1

c(17)
4 (my) = 0, c(17)

4 (mt) =
1
2

aP
2

(4.22)

None of these generators are related and there are 16 distinct types for space-groups for

this ACC.

For the ACC mm21′P with the largest symmetry in this crystal system, the
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cohomology group is isomorphic to Z6
2. The 6 generators read

c(18)
1 (mx) =

1
2

aP
2 , c(18)

1 (my) = 0, c(18)
1 (mt) = 0

c(18)
2 (mx) =

1
2

aP
3 , c(18)

2 (my) = 0, c(18)
2 (mt) = 0

c(18)
3 (mx) = 0, c(18)

3 (my) =
1
2

aP
3 , c(18)

3 (mt) = 0

c(18)
4 (mx) = 0, c(18)

4 (my) =
1
2

aP
1 , c(18)

4 (mt) = 0

c(18)
5 (mx) = 0, c(18)

5 (my) =
1
2

aP
3 , c(18)

5 (mt) =
1
2

aP
1

c(18)
6 (mx) = 0, c(18)

6 (my) =
1
2

aP
1 , c(18)

6 (mt) =
1
2

aP
2

(4.23)

Under the equivalence relation, c1 ∼ c4, c2 ∼ c3 and c5 ∼ c6, and there are 36 distinct

types of the space-time groups out of the 64 group elements.

Now we consider the base-centered Bravais lattice. As explained in Fig. 4.6,

different from the static counterpart, there are two base-centered Bravais lattices, t-

base-centered and r-base-centered, in the space-time group classification depending on

whether the base face perpendicular to the time axis or not. The lattice basis vectors of

the t-base-centered Bravais lattice are

atB
1 =

1
2
(x0,y0,0)

atB
2 =

1
2
(x0,−y0,0)

atB
3 = (0,0, t0)

(4.24)

The combination of the lattice and 4 MPGs leads to 4 ACCs and 15 space-time groups

listed in Table. 4.11. The first cohomology group of ACC m′m′2C is Z2 with the

generator,

c(19)
1 (mxmt) =

1
2

aP
3 ,c

(19)
1 (mymt) = 0. (4.25)

There are two types of space-time group within this ACC, c1 and the symmorphic one.
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For the ACC mm2C, H1(mm2,T (3)/C) = Z2
2 with the two generators,

c(20)
1 (mx) =

1
2

aP
3 , c(20)

1 (my) = 0

c(20)
2 (mx) = 0, c(20)

2 (my) =
1
2

aP
3

(4.26)

Under the equivalent condition, c1 ∼ c2 and there are three space-time types within this

ACC. For the ACC m1′C, H1(m1′,T (3)/C) = Z2
2 with the two generators,

c(21)
1 (mx) =

1
2

aP
3 , c(21)

1 (mt) = 0

c(21)
2 (mx) = 0, c(21)

2 (mt) =
1
2

aP
1

(4.27)

These two generators are not related and constitute 4 space-time group types. For the

ACC mm21′C, H1(mm21′,T (3)/C) = Z3
2 with the three generators,

c(22)
1 (mx) = aP

3/2,c(22)
1 (my) = 0,c(22)

1 (mt) = 0

c(22)
1 (mx) = 0, c(22)

1 (my) = aP
3/2,c(22)

1 (mt) = 0

c(22)
1 (mx) = 0, c(22)

1 (my) = 0,c(22)
1 (mt) = aP

1/2

(4.28)

The generator c1 is related to c2 by Rπ, and the three generators lead 6 types of space-time

groups.

On the other hand, the lattice basis vectors of r-base-centered Bravais lattice take

the following form,

arB
1 = (x0,0,0)

arB
2 =

1
2
(0,y0, t0)

arB
3 =

1
2
(0,−y0, t0)

(4.29)

There are 5 ACCs and 22 space-time groups, as listed in Table. 4.12. The MPG m1′ has

two different ways acting on the lattice, depending on the orientation of the reflection



91

Table 4.11: Space-time groups in 2+1 dimensions for t-base-centered orthorhombic
lattice. The fractional translation T 1/n

x,y,z acts on the coordinate as T 1/n
x,y,t (x,y, t) = (x,y, t)+

aP
1,2,3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time orthorhombic

crystal system defined in Eq. 4.19.

T-Base-Centered Orthorhombic
ACC No.19: m′m′2C, Gm(2): m′m′2, H1(m′m′2,T (3)/C) = Z2

C222 mxmt ,mymt 1

C2221 mxmtT
1/2

t ,mymt c1

ACC No.20 : mm2C, Gm(2): mm2, H1(mm2,T (3)/C) = Z2
2

Cmm2 mx,my 1

Cmc21 mx,myT 1/2
t c1

Ccc2 mxT 1/2
t ,myT 1/2

t c1 · c2

ACC No. 21 : m1′C, Gm(2): m1′, H1(m1′,T (3)/C) = Z2
2

Cm2m mx,mt 1

Cm2a mx,mtT
1/2

x c1

Cc2m mxT 1/2
t ,mt c2

Cc2a mxT 1/2
t ,T 1/2

x mt c1 · c2

ACC No.22 : mm21′C, mm21′, H1(mm21′,T (3)/C) = Z3
2

Cmmm mx,my,mt 1

Cmcm mx,myT 1/2
t ,mt c2

Cmme mx,my,T
1/2

x mt c3

Cmca mx,myT 1/2
t ,mtT

1/2
x c2 · c3

Cccm mxT 1/2
t ,myT 1/2

t ,mt c1 · c2

Ccce mxT 1/2
t ,myT 1/2

t ,mtT
1/2

x c1 · c2 · c3
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planes and the base face. In the ACC mx1′A, the base face is within the reflection plane,

while it is not in my1′A. In the r-base-centered Bravais lattice, x and y direction is not

equivalent. In consequence, for each of the 5 ACCs, none of the generators of the first

cohomology group are equivalent, and the number of space-time group within each ACC

is the same as the order of H1(Gm,T (3)/A). The generators of each H1(Gm,T/A) are

already listed in Table. 4.12 and not repeated here.

The face-centered orthorhombic lattice is obtained by including lattice points on

each face of the primitive lattice, and the lattice basis are,

aF
1 =

1
2
(x0,y0,0)

aF
2 =

1
2
(x0,0, t0)

aF
3 =

1
2
(0,y0, t0)

(4.30)

The 4 ACCs and 7 space-time groups obtained by combining the translations generated by

Eq. 4.30 and the 4 MPGs are listed in Table. 4.13. Each generators of the 4 cohomology

groups are nonequivalent.

The body-centered orthorhombic lattice has one additional lattice point located at

the center of the primitive Bravais lattice, and the corresponding lattice basis vectors are,

aI
1 =

1
2
(−x0,y0, t0)

aI
2 =

1
2
(x0,−y0, t0)

aI
3 =

1
2
(x0,y0,−t0)

(4.31)

The 4 ACCs and 16 space-time groups are listed in Table. 4.14. For the ACC mm2I, the
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Table 4.12: Space-time group in 2+1 dimension for r-base-centered orthorhombic lattice.
The fractional translation T 1/n

x,y,z acting on the coordinate as T 1/n
x,y,z(x,y,z) = (x,y,z) +

aP
1,2,3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the orthorhombic crystal

system defined in Eq. 4.19.

R-Base-Centered Orthorhombic
ACC No.23: m′m′2A, Gm(2): m′m′2, H1(m′m′2,T (3)/A) = Z2

A222 mymt ,mxmt 1

A2122 mymt ,T
1/2

x mxmt c1

ACC No.24 : my1′A, Gm(2): m1′, H1(m1′,T (3)/A) = Z2
2

A2mm my, mt 1

A21ma my,mtT
1/2

x c2

A21am myT 1/2
x ,mt c1

A2aa myT 1/2
x ,mtT

1/2
x c1 · c2

ACC No.25 : mx1′A, Gm(2): m1′, H1(m1′,T (3)/A) = Z2
2

Am2m mx,mt 1

Ab2m mxT 1/2
y ,mt c1

Am2a mx,mtT
1/2

x c2

Ac2a mxT 1/2
t ,mtT

1/2
x c1 · c2

ACC No.26 : mm2A, Gm(2): mm2, H1(mm2A,T (3)/A) = Z2
2

Amm2 mx,my 1

Abm2 mxT 1/2
y ,my c1

Ama2 mx,myT 1/2
x c2

Aba2 mxT 1/2
y ,myT 1/2

x , c1 · c2

ACC No.27 : mm21′A, Gm(2): mm21′, H1(mm21′A,T (3)/A) = Z3
2

Ammm mx,my,mt 1

Aemm mxT 1/2
y ,my,mt c1

Amam mx,myT 1/2
x ,mt c2

Amma mx,my,mtT
1/2

x c3

Abma mxT 1/2
y ,my,mtT

1/2
x c1 · c3

Abam mxT 1/2
y ,myT 1/2

x ,mt c1 · c2

Amaa mx,myT 1/2
x ,mtT

1/2
x c2 · c3

Aeaa mxT 1/2
y ,myT 1/2

x ,mtT
1/2

x c1 · c2 · c3
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Table 4.13: Space-time groups in 2+1 dimensions for face-centered orthorhombic
lattices. The fractional translation T 1/n

x,y,t acting on the coordinate as T 1/n
x,y,t (x,y, t) =

(x,y, t) + aP
1,2,3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time

orthorhombic crystal class defined in Eq. 4.19.

Face-Centered Orthorhombic
ACC No.28 : m′m′2F , Gm(2): mm2F , H1(m′m′2,T (3)/F) = I
F222 mxmt ,mymt 1

ACC No.29 : mm2F , Gm(2): mm2, H1(mm2,T (3)/F) = Z2

Fmm2 mx,my 1

Fdd2 mxT 1/4
y T 1/4

t ,myT 1/4
x T 1/4

t c1

ACC No.30 : m1′F , Gm(2): m1′, H1(m1′,T (3)/F) = Z2

F2mm my,mt 1

F2dd myT 1/4
x T 1/4

t ,mtT
1/4

x T 1/4
y c1

ACC No.31 : mm21′F , Gm(2): mm21′, H1(mm21′,T (3)/F) = Z2

Fmmm mx,my,mt 1

Fddd mxT 1/4
y T 1/4

t ,myT 1/4
x T 1/4

t ,mtT
1/4

x T 1/4
y c1

cohomology group is Z2
2 with the two generators

c(33)
1 (mx) = aP

2/2,c(33)
1 (my) = 0

c(33)
2 (mx) = 0,c(33)

2 (my) = aP
1/2

(4.32)

Under the equivalent relation, c1 is related to c2 and there are 3 space-time types. For the

ACC mm21′I, the cohomology group is Z2
2. The three generators are

c(35)
1 (mx) = aP

2/2,c(35)
1 (my) = 0,c(35)

1 (mt) = 0

c(35)
2 (mx) = 0,c(35)

2 (my) = aP
1/2,c(35)

2 (mt) = 0

c(35)
3 (mx) = 0,c(35)

3 (my) = 0,c(35)
3 (mt) = aP

1/2.

(4.33)

Among the three generators, c1 ∼ c2, and there are 6 types of space-groups.
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Table 4.14: Space-time groups in 2+1 dimensions for body-centered orthorhombic
lattices. The fractional translations T 1/n

x,y,t act on the coordinate as T 1/n
x,y,t (x,y, t) = (x,y, t)+

aP
1,2,3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time orthorhombic

crystal system defined in Eq. 4.19.

Body-Centered Orthorhombic
ACC No.32 : m′m′2I, Gm(2): m′m′2, H1(m′m′2,T (3)/I) = Z2

I222 mxmt ,mymt 1

I212121 mxmtT
1/2

y T 1/2
t ,mymtT

1/2
x T 1/2

y c1

ACC No.33 : mm2I, Gm(2): mm2, H1(mm2,T (3)/I) = Z2
2

Imm2 mx,my 1

Ima2 mx,myT 1/2
x c1

Iba2 mxT 1/2
y ,myT 1/2

x c1 · c2

ACC No.34 : m1′I, Gm(2): m1′, H1(mm2,T (3)/I) = Z2
2

I2mm my,mt 1

I2mb my,mtT
1/2

y c2

I2cm myT 1/2
t ,mt c1

I2bc myT 1/2
t ,mtT

1/2
y c1 · c2

ACC No.35 : mm21′I, Gm(2): mm21′, H1(mm21′,T (3)/I) = Z3
2

Immm mx,my,mt 1

Imma mx,my,mtT
1/2

x c3

Ibmm mxT 1/2
y ,my,mt c1

Ibam mxT 1/2
y ,myT 1/2

x ,mt c1 · c2

Imcb mx,myT 1/2
t ,mtT

1/2
y c2 · c3

Ibca mxT 1/2
y ,myT 1/2

t ,mtT
1/2

x c1 · c2 · c3
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4.3.7 Tetragonal Crystal System

The tetragonal crystal system has 4-fold rotational symmetry. In the space-time

group classification, due to the absence of the rotational symmetry mixing space and

time, the rotation plane has to be purely spatial. In consequence, there is one to one

correspondence between the space groups and space-time groups in this crystal system.

The relevant MPG symmetry operations are 4-fold rotation Rπ/2, spatial reflection mx and

time reversal mt . Seven MPGs constructed from these symmetry operations are assigned

to this crystal system. They are 4, 4′, 41′, 4mm, 4mm1′, 4′m′m and 4m′m′.

There are two Bravais lattices. The primitive one has the following the basis

vectors,

aP
1 = (u,0,0)

aP
2 = (0,u,0)

aP
3 = (0,0, t0)

(4.34)

The semi-direct products of the 7 MGPs and the translation generated by Eq. 4.34 lead to

8 arithmetic crystal classes and total 49 space-time groups listed in Table. 4.15 and 4.17.

The reason 7 MGPs lead to 8 arithmetic crystal class is that the MGP 4′m′m

can act on the Bravais lattice in two different ways depending on the direction of the

reflection line. In the first case, the reflection line is parallel to aP
1 or aP

2 , and the matrix

representations of the two generators Rπ/2mt and m, in term of the three lattice vectors,

are

D1(Rπ/2mt) =


0 −1 0

1 0 0

0 0 −1

 ,D1(m) =


−1 0 0

0 1 0

0 0 1

 . (4.35)

In the second case, the reflection is parallel to aP
1 ±aP

2 , and the matrix representation of
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the reflection is different from the first case,

D2(Rπ/2mt) =


0 −1 0

1 0 0

0 0 −1

 ,D2(m) =


0 1 0

1 0 0

0 0 1

 . (4.36)

These two cases actually belong to the same geometry crystal class but different arithmetic

crystal classes.

The body-centered Bravais lattice is obtained by adding one more lattice point at

the body center of the primitive lattice with the following basis vectors

aI
1 =

1
2
(−u,u, t0)

aI
2 =

1
2
(u,−u, t0)

aI
3 =

1
2
(u,u,−t0),

(4.37)

Due to the same reason for the primitive lattice, there are also 8 arithmetic crystal classes,

which is constituted of 19 space-time groups, as listed in Table. 4.18.

For all ACCs within the tetragonal crystal system, all the elements of the coho-

mology group are one-to-one corresponding to distinct space-time group types. All the

generators are indicated in Table. 4.15, 4.17 and 4.18.

4.3.8 Trigonal Crystal System

The symmetry operation of the trigonal crystal system contains 3-fold rotation.

Since rotations mixing space and time is forbidden, the plane of the 3-fold rotation is

spatial. In consequence, the space-time groups in this crystal system have one to one

correspondence to the 3D trigonal space groups.

There are two Bravais lattices, the primitive trigonal lattice and the rhombohedral
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Table 4.15: Space-time groups in 2+1 dimensions for primitive tetragonal lattices
(1). The fractional translation T 1/n

x,y,t acting on the coordinate as T 1/n
x,y,t (x,y, t) = (x,y, t)+

aP
1,2,3/n, where aP

1 ∼ aP
3 are the lattice basis for the space-time tetragonal crystal system

defined in Eq. 4.34.

Primitive Tetragonal
ACC No.36 : 4P, Gm(2) : 4, H1(4,T (3)/P) = Z4

P4 Rπ/2 1

P41 Rπ/2T 1/4
t c1

P42 Rπ/2T 1/2
t c2

1

P43 Rπ/2T 3/4
t c3

1

ACC No.37 : 4′P, Gm(2) : 4, H1(4′,T (3)/P) = I
P4̄ Rπ/2mt 1

ACC No.38 : 41′P, Gm(2) : 41′, H1(41′,T (3)/P) = Z2
2

P4/m Rπ/2,mt 1

P42/m Rπ/2T 1/2
t ,mt c1

P4/n Rπ/2,mtT
1/2

x T 1/2
y c2

P42/n Rπ/2T 1/2
t ,mtT

1/2
x T 1/2

y c1 · c2

ACC No.39 : 4m′m′P, Gm(2) : 4m′m′, H1(4m′m′,T (3)/P) = Z4⊗Z2

P422 Rπ/2,mxmt 1

P4212 Rπ/2,mxmtT
1/2

x T 1/2
y c1

P4122 Rπ/2T 1/4
t ,mxmt c2

P4222 Rπ/2T 1/2
t ,mxmt c2

2

P4322 Rπ/2T 3/4
t ,mxmt c3

2

P41212 Rπ/2T 1/4
t ,mxmtT

1/2
x T 1/2

y c1 · c2

P42212 Rπ/2T 1/2
t ,mxmtT

1/2
x T 1/2

y c1 · c2
2

P43212 Rπ/2T 3/4
t ,mxmtT

1/2
x T 1/2

y c1 · c3
2



99

Table 4.16: Space-time groups in 2+1 dimensions for primitive tetragonal lattices (2).
The fractional translation T 1/n

x,y,t act on the coordinate as T 1/n
x,y,t (x,y, t) = (x,y, t)+aP

1,2,3/n,
where aP

1 ∼ aP
3 are the primitive lattice basis for the tetragonal crystal system defined in

Eq. 4.34.

Primitive Tetragonal (cont.)
ACC No.40 : 4mmP, Gm(2) : 4mm, H1(4mm,T (3)/P) = Z3

2

P4mm Rπ/2,mx 1

P42mc Rπ/2T 1/2
t ,mx c1

P4bm Rπ/2,mxT 1/2
x T 1/2

y c2

P4cc Rπ/2,mxT 1/2
t c3

P42cm Rπ/2T 1/2
t ,mxT 1/2

t c1 · c3

P4nc Rπ/2,mxT 1/2
x T 1/2

y T 1/2
t c2 · c3

P42bc Rπ/2T 1/2
t ,mxT 1/2

x T 1/2
y c1 · c2

P42nm Rπ/2T 1/2
t ,mxT 1/2

x T 1/2
y T 1/2

t c1 · c2 · c3

ACC No.41 : 4′m′mP, Gm(2) : 4′m′m, H1(4′m′m,T (3)/P) = Z2
2

P4̄2m Rπ/2mt ,mxmt 1

P4̄2c Rπ/2mt ,mxmtT
1/2

t c1

P4̄21m Rπ/2mt ,mxmtT
1/2

x T 1/2
y c2

P4̄21c Rπ/2mt ,mxmtT
1/2

x T 1/2
y T 1/2

t c1 · c2

ACC No.42: 4′mm′P, Gm(2) : 4′mm′, H1(4′m′m,T (3)/P) = Z2
2

P4̄m2 Rπ/2mt ,mx 1

P4̄c2 Rπ/2mt ,mxT 1/2
t c1

P4̄b2 Rπ/2mt ,mxT 1/2
x T 1/2

y c2

P4̄n2 Rπ/2mt ,mxT 1/2
x T 1/2

y T 1/2
t c1 · c2
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Table 4.17: Space-time groups in 2+1 dimensions for primitive tetragonal lattices (3).
The fractional translation T 1/n

x,y,t act on the coordinate as T 1/n
x,y,t (x,y, t) = (x,y, t)+aP

1,2,3/n,
where aP

1 ∼ aP
3 are the primitive lattice basis for the tetragonal crystal system defined in

Eq. 4.34.

Primitive Tetragonal (cont.)
ACC No.43 : 4mm1′P, Gm(2) : 4mm1′, H1(4mm1′,T (3)/P) = Z4

2

P4/mmm Rπ/2,mx,mt 1

P42/mmc Rπ/2T 1/2
t ,mx,mt c1

P4/mbm Rπ/2,mxT 1/2
x T 1/2

y ,mt c2

P4/mcc Rπ/2,mxT 1/2
t ,mt c3

P4/nmm Rπ/2,mx,mtT
1/2

x T 1/2
y c4

P4/nbm Rπ/2,mxT 1/2
x T 1/2

y ,mtT
1/2

x T 1/2
y c2 · c4

P4/mnc Rπ/2,mxT 1/2
x T 1/2

y T 1/2
t ,mt c2 · c3

P4/ncc Rπ/2,mxT 1/2
t ,mtT

1/2
x T 1/2

y c3 · c4

P42/nmc Rπ/2T 1/2
t ,mx,mtT

1/2
x T 1/2

y c1 · c4

P42/mcm Rπ/2T 1/2
t ,mxT 1/2

t ,mt c1 · c3

P42/mbc Rπ/2T 1/2
t ,mxT 1/2

x T 1/2
y ,mt c1 · c2

P42/nbc Rπ/2T 1/2
t ,mxT 1/2

x T 1/2
y ,T 1/2

x T 1/2
y mt c1 · c2 · c4

P4/nnc Rπ/2,mxT 1/2
x T 1/2

y T 1/2
t ,mtT

1/2
x T 1/2

y c2 · c3 · c4

P42/mnm Rπ/2T 1/2
t ,mxT 1/2

x T 1/2
y T 1/2

t ,mt c1 · c2 · c3

P42/ncm Rπ/2T 1/2
t ,mxT 1/2

t ,mtT
1/2

x T 1/2
y c1 · c3 · c4

P42/nnm Rπ/2T 1/2
t ,mxT 1/2

x T 1/2
y T 1/2

t ,T 1/2
x T 1/2

y mt
4
∏
i=1

ci
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Table 4.18: Space-time groups in 2+1 dimensions for body-centered-tetragonal lattices.
The fractional translation T 1/n

x,y,z act on the coordinate as T 1/n
x,y,t (x,y, t) = (x,y, t)+aP

1,2,3/n,
where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time tetragonal crystal system

defined in Eq. 4.34.

Body-Centered Tetragonal
ACC No.44 : 4I, Gm(2) : 4, H1(4,T (3)/I) = Z2

I4 Rπ/2 1

I41 Rπ/2T 1/4
t c1

ACC No.45 : 4′I, Gm(2) : 4′, H1(4′,T (3)/I) = I
I4̄ Rπ/2mt 1

ACC No.46 : 41′I, Gm(2) : 41′, H1(41′,T (3)/I) = Z2

I4/m Rπ/2,mt 1

I41/a Rπ/2T 1/4
t ,mtT

1/2
x c1

ACC No.47 : 4m′m′I, Gm(2) : 4m′m′, H1(4m′m′,T (3)/I) = Z2

I422 Rπ/2,mxmt 1

I4122 Rπ/2T 1/4
t ,mxmt c1

ACC No.48 : 4mmI, Gm(2) : 4mm, H1(4mm,T (3)/I) = Z2
2

I4mm Rπ/2,mx 1

I4cm Rπ/2,mxT 1/2
t c2

I41cd Rπ/2T 1/4
t ,mxT 1/2

y c1

I41md Rπ/2T 1/4
t ,mxT 1/2

y T 1/2
t c1 · c2

ACC No.49 : 4′mm′I, Gm(2) : 4′mm′, H1(4′mm′,T (3)/I) = Z2

I4̄m2 Rπ/2mt ,mx 1

I4̄c2 Rπ/2mt ,mxT 1/2
t c1

ACC No.50 : 4′mm′I, Gm(2) : 4′mm′, H1(4′mm′,T (3)/I) = Z2

I4̄2m Rπ/2mt ,mxmt 1

I4̄2d Rπ/2mt ,mxmtT
1/2

x T 1/4
t c1

ACC No.51 : 4mm1′I, Gm(2) : 4mm1′, H1(4mm1′,T (3)/I) = Z2
2

I4/mmm Rπ/2,mx,mt 1

I4/mcm Rπ/2,mxT 1/2
t ,mt c2

I41/amd Rπ/2T 1/4
t ,mxT 1/2

x ,mtT
1/2

x c1

I41/acd Rπ/2T 1/4
t ,mxT 1/2

x T 1/2
t ,mtT

1/2
x c1 · c2
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lattice. The primitive lattice basis vectors are

aP
1 = (u,0,0)

aP
2 = (−1

2
u,

√
3

2
u,0)

aP
3 = (0,0, t0).

(4.38)

The rhombohedral lattice is obtained by including two additional lattice points trisecting

the body diagonal of the primitive unit cell, with the lattice basis vectors

aR
1 = (−u

2
,−
√

3u
6

,
t0
3
)

aR
2 = (

u
2
,−
√

3u
6

,
t0
3
)

aR
3 = (0,

√
3u
3

,
t0
3
).

(4.39)

There are 5 MPGs, 3, 6′, 3m, 3m′ and 6′m′m, leaving both the primitive lattice and the

rhombohedra lattice invariant and therefore assigned to the trigonal crystal system.

The combination of the 5 MPGs and the primitive lattice defined in Eq. 4.38 gives

rise to 8 arithmetic crystal classes because the three among the 5 MGPs, 3m, 3m′ and

6′m′m, have two inequivalent ways acting on the lattice according to the orientation of

the reflection plane. There are 18 space-time groups falling into the 8 arithmetic crystal

classes for the primitive trigonal lattice.

On the other hand, there are only 5 arithmetic crystal classes for the rhombohedra

lattice as there is no ambiguity on how the MGPs act on lattice basis in Eq. 4.39. There

are total 6 space-time groups defined on the rhombohedra lattice, as listed in Table. 4.20.

All the generators of the first cohomology groups for each of the 13 ACCs are

independent, and are listed in Table. 4.19 and 4.20.
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Table 4.19: Space-time groups in 2+1 dimensions for primitive trigonal lattices. The
fractional temporal translation T 1/n

t acts on coordinate as T 1/n
t (x,y,z) = (x,y,z)+aP

3/n,
where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time trigonal crystal system

defined in Eq. 4.38.

Primitive Trigonal
ACC No.52 : 3P, Gm(2) : 3, H1(3,T (3)/P) = Z3

P3 R2π/3 1

P31 R2π/3T 1/3
t c1

P32 R2π/3T 2/3
t c2

1

ACC No.53 : 6′P, Gm(2) : 6′, H1(6′,T (3)/P) = Z2

P3̄ Rπ/3mt 1

ACC No.54 : 312P, Gm(2) : 3m′, H1(3m′,T (3)/P) = Z3

P312 R2π/3,mxmt 1

P3112 R2π/3T 1/3
t ,mxmt c1

P3212 R2π/3T 2/3
t ,mxmt c2

1

ACC No.55 : 321P, Gm(2) : 3m′, H1(3m′,T (3)/P) = Z3

P321 R2π/3,mymt 1

P3121 R2π/3T 1/3
t ,mymt c1

P3221 R2π/3T 2/3
t ,mymt c2

1

ACC No.56 : 3m1P, Gm(2) : 3m, H1(3m,T (3)/P) = Z2

P3m1 R2π/3,mx 1

P3c1 R2π/3,mxT 1/2
t c1

ACC No.57 : 31mP, Gm(2) : 3m, H1(3m,T (3)/P) = Z2

P31m R2π/3,my 1

P31c R2π/3,myT 1/2
t c1

ACC No.58 : 6′m′mP, Gm(2) : 6′m′m, H1(6′m′m,T (3)/P) = Z2

P3̄1m Rπ/3mt ,my 1

P3̄1c Rπ/3mt ,myT 1/2
t c1

ACC No.59 : 6′mm′P, Gm(2) : 6′m′m, H1(6′m′m,T (3)/P) = Z2

P3̄m1 Rπ/3mt ,mx 1

P3̄c1 Rπ/3mt ,mxT 1/2
t c1
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Table 4.20: Space-time groups in 2+1 dimensions for rhombohedral lattices. The
fractional temporal translation T 1/n

t acts on the space-time coordinate as T 1/n
t (x,y, t) =

(x,y, t)+ aP
3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the trigonal crystal

system defined in Eq. 4.38.

Rhombohedral
ACC No.60 : 3R, Gm(2) : 3, H1(3,T (3)/R) = I
R3 R2π/3 1

ACC No.61 : 6′R, Gm(2) : 6′, H1(6′,T (3)/R) = I
R3̄ Rπ/3mt 1

ACC No.62 : 3m′R, Gm(2) : 3m′, H1(3m′,T (3)/R) = I
R32 R2π/3,mxmt 1

ACC No.63 : 3mR, Gm(2) : 3m, H1(3m,T (3)/R) = Z2

R3m R2π/3,mx 1

R3c R2π/3,mxT 1/2
t c1

ACC No.64 : 6′m′mR, Gm(2) : 6′m′m, H1(6′m′m,T (3)/R) = Z2

R3̄m Rπ/3mt ,mx 1

R3̄c Rπ/3mt ,mxT 1/2
t c1

4.3.9 Hexagonal Crystal System

The symmetry of hexagonal crystal system involves 6-fold rotation. The rotation

plane is purely spatial. This crystal system only contains the primitive Bravais lattice,

generated by the following vectors

aP
1 = (u,0,0)

aP
2 = (−1

2
u,

√
3

2
u,0)

aP
3 = (0,0, t0).

(4.40)

There are 7 MGPs, 6, 61′, 31′, 6mm, 6m′m′, 6mm1′ and 3m1′, leaving the lattice invariant

and assigned to the hexagonal crystal system. It is worth noting that the primitive

hexagonal lattice is the same as the primitive trigonal lattice in Eq. 4.38. But the 7 MGPs
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assigned to the hexagonal crystal system only act on the primitive lattice, while the 5

MPGs assigned to the trigonal crystal system are the symmetry groups of both primitive

lattice and rhombohedral lattice. The 7 MGPs act on the primitive lattice unambiguously

except 3m1′ which has two inequivalent ways acting on the primitive lattice, giving rise

to 8 ACCs. All the generators of the first cohomology groups for each of the 8 ACCs are

independent, resulting in 27 space-time group types listed in Table. 4.22.

4.4 Conclusion

we have studied a novel class of D+1 dimensional crystal structures exhibiting

the general space-time periodicities. Their momentum-energy Brillouin zones are D+1

dimensional torus and are typically momentum-energy entangled. The band dispersions

exhibit non-trivial windings around the momentum-energy Brillouin zones. The space-

time crystal structures are classified by the “space-time” symmetry groups, which extend

the space group for static crystal structures by incorporating “time-screw” rotations and

“time-glide” reflections. In 1+1D, a complete classification of the 13 space-time groups is

performed. Space-time symmetries give rise to novel Kramers degeneracy independent

of the half-integer spinor structure. The non-symmorphic space-time group operations

lead to protected spectral degeneracies for the 2+1 D space-time lattices.

This chapter contains material from the following preprint being prepared for

submission for publication: Shenglong Xu, Congjun Wu, ”Space-time crystal and space-

time group symmetry”, arXiv:1703.03388 (2017). The dissertation author was the

primary investigator and author of this paper.
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Table 4.21: Space-time groups in 2+1 dimensions for primitive hexagonal lattices. The
fractional temporal translation T 1/n

t acts on the coordinate as T 1/n
t (x,y, t) = (x,y, t)+

aP
3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time hexagonal crystal

class defined in Eq. 4.40.

Primitive Hexagonal
ACC No.65 : 6P, Gm(2) : 6, H1(6,T (3)/P) = Z6

P6 Rπ/3 1

P61 Rπ/3T 1/6
t c1

P62 Rπ/3T 1/3
t c2

1

P63 Rπ/3T 1/2
t c3

1

P64 Rπ/3T 2/3
t c4

1

P65 Rπ/3T 5/6
t c5

1

ACC No.66 : 31′P, Gm(2) : 31′, H1(31′,T (3)/P) = I
P6̄ R2π/3,mt 1

ACC No.67 : 61′P, Gm(2) : 61′, H1(61′,T (3)/P) = Z2

P6/m Rπ/3,mt 1

P63/m Rπ/3T 1/2
t ,mt c1

ACC No.68 : 6m′m′P, Gm(2) : 6m′m′, H1(6m′m′,T (3)/P) = Z6

P6222 Rπ/3,mxmt 1

P61222 Rπ/3T 1/6
t ,mxmt c1

P62222 Rπ/3T 1/3
t ,mxmt c2

1

P63222 Rπ/3T 1/2
t ,mxmt c3

1

P64222 Rπ/3T 2/3
t ,mxmt c4

1

P65222 Rπ/3T 5/6
t ,mxmt c5

1

ACC No.69 : 6mmP, Gm(2) : 6mm, H1(6mm,T (3)/P) = Z2
2

P6mm Rπ/3,mx 1

P63mc Rπ/3T 1/2
t ,mx c1

P6cc Rπ/3,mxT 1/2
t c2

P63cm Rπ/3T 1/2
t ,mxT 1/2

t c1 · c2
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Table 4.22: Space-time groups in 2+1 dimensions for primitive hexagonal lattices
(cont.). The fractional temporal translation T 1/n

t acts on the coordinate as T 1/n
t (x,y, t) =

(x,y, t)+aP
3/n, where aP

1 ∼ aP
3 are the primitive lattice basis for the space-time hexagonal

crystal class defined in Eq. 4.40.

Primitive Hexagonal (cont. )

ACC No.70 : 3mx1′P, Gm(2) : 3m1′, H1(3m′,T (3)/P) = Z2

P6̄m2 R2π/3,mx,mt 1

P6̄c2 R2π/3,mxT 1/2
t ,mt c1

ACC No.71 : 3my1′P, Gm(2) : 3m1′, H1(3m′,T (3)/P) = Z2

P6̄2m R2π/3,my,mt 1

P6̄2c R2π/3,myT 1/2
t ,mt c1

ACC No.72 : 6mm1′P, Gm(2) : 6mm1′, H1(6mm1′,T (3)/P) = Z2
2

P6/mmm Rπ/3,mx,mt 1

P63/mcm Rπ/3T 1/2
t ,mxT 1/2

t ,mt c1

P63/mmc Rπ/3T 1/2
t ,mx,mt c2

P6/mcc Rπ/3,mxT 1/2
t ,mt c1 · c2
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