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Abstract

Optical Phase Space Measurements and Applications to 3D Imaging and Light Scattering

by

Hsiou-Yuan Liu

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laura Waller, Chair

4D phase space descriptions of light capture wave-optical and angular information, en-
abling digitally refocusing, 3D reconstructions and aberration removal. The wave-optical
theory includes di�raction and interference e�ects, making phase space applicable to scales
near the wavelength of light (e.g. in microscopy); however, at the cost of making phase space
functions more complicated than their ray optics counterparts (light �elds). In this thesis,
we aim at bridging the gap between the abstract high-dimensional phase space and actual
experiments upon which the reconstruction of unknown objects relies. We achieve the aim
by 1) providing practical methods of measuring phase-space functions with good resolution
in all 4D and 2) developing phase-space theories that we use to computationally mitigate
scattering in experimental situations. We extend phase-space measurement schemes from
from lenslet arrays to a scanning-based coded aperture method in order to improve infor-
mation throughput. Theory and experiment for designed coded apertures is proposed that
can e�ciently capture the entire 4D phase space. Next, we develop a phase-space theory for
imaging through scattering and apply it to experimentally imaging point sources through
scattering and tracking neural activity in a scattering environment, such as mouse brain
tissue. The method utilizes the dimension mismatch between 3D object and 4D phase-space
measurements, along with a sparsity prior, to ensure robustness and allow 3D localization of
point sources relatively deep into scattering tissue. We develop theory and verify the math-
ematical phase-space scattering operator, then study how light interacts with scatterers and
propose a fast wave-equation solver. This method uses an accelerated gradient descent solver
and expands the solution to the wave equation as a series of the gradient solver updates.
The method outperforms the �rst Born approximation and the Rytov approximation in
predicting the scattered �eld as well as in reconstructing the scatterer distributions.
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Chapter 1

Introduction

Light is arguably the most useful way for human to perceive this world and to transmit
information. Each moment of the world can be captured by light thanks to its tremendous
speed and its straight-line propagation. For example, lighthouse keepers use light to inform
far ships that the shore is within their reach. The straight-line propagation is of great
importance as it is the primitive way for humans to obtain information from light. With
the image captured by our eyes and the straight-line propagation nature, we can trace the
image back to where the light comes from. Our eyes play an important role as the intensity
and direction detectors of light. However, when the situation becomes complicated, the
information obtained from our bare eyes may not be su�cient. As in the lighthouse example,
if the shore is �lled with fog, a light ray originating from the lighthouse does not travel in a
straight line but rather is scattered in multiple directions. Some prior works aimed at �ltering
out the unscattered components in the measurement [185, 58], discarding a signi�cant portion
of the light. On the contrary, we want to utilize the scattered light to enhance the light signal
for the inverse process. When scattering happens, we observe that a light ray is smeared
into multiple directions around the original direction. Hence the knowledge of directional
distributions of light sheds light on undoing the scattering.

To address imaging through scattering has led us to study the phase space of light.
Phase space is a broad term in physics which describes the states of a physics system. The
dimension of phase space can be higher than 3D, making it abstract. In optics, a similar
entity is called a 4D light �eld, which describes the distribution of light rays over position and
direction coordinates. Here we focus on the Wigner function [184] of stationary and quasi-
monochromatic light as our phase space function. It incorporates the wave optical e�ects
and completely describes stationary light outside quantum mechanics. This completeness
is useful, for example, in analyzing the information captured by an imaging system [173].
Since coherence functions of light also describe the statistical property of light completely,
the link between the coherence function and Wigner function can be established [173]. We
will show that this connection helps the phase space analysis. One remark about the wave-
optical phase space is that it uni�es the treatment of coherent and partially coherent beams.
For example, the propagation is a shearing operation in the phase space regardless of the
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coherence property of the light. In this thesis, we study various aspects of the phase space of
light, from its measurements to applications to 3D imaging theory and imaging in scattering
environments. We aim at bridging the gap between the abstract high-dimensional phase
space and actual experiments which the reconstruction of objects relies upon. We achieve
our goal by 1) providing several means of measuring Wigner functions to make it easy to
access and 2) developing phase space theories for experiments to demonstrate its usefulness.

One of our main contributions is to measure the phase space with coded apertures, along
with an e�cient code design that is able to fully reconstruct the phase space. The acquisition
of the abstract phase space requires more than a direct imaging system. Previously, inserting
a physical component, a lenslet array, can enable an imaging system to measure the phase
space [176]. This method is, however, limited by the pixel counts of a 2D sensor. Spreading
a 4D quantity onto a 2D sensor with � 1 Megapixels results in unacceptably low resolution.
In order to release this limitation for sampling a high-dimensional phase space, we turn to
computational imaging methods. A general introduction to them is given in the following
section. In addition, due to wave optical interference, directly extending the lenlet array
measurement to capture N images of N angular directions would not capture the full wave-
optical phase space. Utilizing the equivalence between phase space and coherence functions,
one naive way to capture the wave-optical phase space is to measure pairwise coherence,
i.e. mutual intensity, of all pairs of points in either real space or angular space, resulting in
O(N2) measurements. We re�ne this method by using coded aperture measurements. Our
coded aperture approach, which has O(N) codes, is able to both capture the wave e�ects
and retain low measurement complexity. The phase space captured by our e�cient method
will help researchers study light by performing physics operations in a digital computer.

Our other contribution is to combine both the theory and the measurements of the phase
space into imaging point light sources through scattering. Other than the measurements,
theories built upon phase space provide insights to the imaging system and to the light from
the objects. For example, The information captured by an imaging system can be visualized
in the phase space theory. Using phase space to describe light enables us to formulate our
intuition of volumetric scattering as multiple Gaussian blur operators on angular coordinates.
With the model developed from this operator, the measured scattered light becomes a signal
instead of unwanted noise. Our measurements contain the angular information of the light,
which, together with the theory, enhances imaging through scattering. We perform two
inverse scattering experiments to demonstrate our goal. Moreover, materializing an idea of
physics as a phase-space operator, together with phase-space analysis, is a powerful tool to
help researchers design and examine an optical system. The method mentioned above will
serve as one such example. This approach for inverse scattering has been applied in [146]
and we expect it to be broadly used to solve other problems in the future.

To understand the scattering to a greater degree, we further study how light scat-
ters/interacts with objects. The complicated interaction is present only if there is a nonuni-
form distribution of refractive index. Therefore the wave scattering theories for nonuniform
media, such as Born and Rytov approximations, are reviewed, and we propose a method
that is able to compute the scattered electric �eld given the distribution and to reconstruct
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= =

(a) traditional imaging (b) computational imaging

x inverse problem x

Figure 1.1: An example linear measurement for comparison between direct and compu-
tational imaging. The sensing matrix A converts the object we want to observe to an
camera-captured image or images. In direct imaging, the images are close to the object in
appearance while there is an inverse problem to solve in computational imaging. The matrix
A for computational imaging mixes the object information from di�erent pixels but needs
not be fully populated.

the distribution from measured scattered �elds.

1.1 Computational Imaging

Computational imaging (CI) is a methodology to reconstruct labeled, or high dimensional,
images through a jointly designed measurement device and its associated computational
reconstruction. The images here are de�ned as a 2D spatial distribution of physical quan-
tities of interest so some measurements are not considered CI, for example measuring the
temperature at a point with a digital thermometer, regardless of how much computation is
involved in the process. The labeling is redundant if only a single image is reconstructed, but
through labels such as a depth index or angular indexes, 3D imaging and light �eld imaging
are included in this de�nition. To explain how CI works and how it distinguishes itself from
traditional imaging, we show an example linear imaging scheme in Fig. 1.1.

There are many reasons to apply CI [129]. For example, it can be applied in order
to satisfy constraints of applications, to reveal more information in 3D, to make it easier
to perceive information than direct imaging, or simply because there is no direct method
to capture an abstract physics quantity. Di�userCam [5], which uses a di�user instead of
lenses to \focus" the light onto the camera, is an example for satisfying the constraints
of an application. It release the length constraint for image formation under conventional
lenses and collects unrecognizable and seemingly informationless images. The collected data
then require an extra algorithm that has the knowledge of the di�user to reconstruct the
human-recognizable image. Another example is Fourier ptychography [195, 175], which is
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a fast, high information-throughput CI method. Contrary to high-resolution �eld-scanning
microscopy, Fourier ptychography scans illumination angles and uses a low resolution ob-
jective with a large �eld of view to collect the light from an (absorptive) phase object. It
speeds up the measurement because the scanning happens in illumination electronics instead
of mechanically scanning the object. On the other hand, it still retains the resolution in the
reconstruction as the high-resolution information is contained in multiple low-resolution im-
ages from the multiple illuminations. The reconstruction algorithm, illumination pattern
and the optical system are jointly designed to carry out Fourier ptychography. There are
many other examples of applying CI such as compressed sensing magnetic resonance imag-
ing [125] where shorter measurement time is desirable, computed tomography scan where
multiple X-ray projections are used to form a 3D image [81], etc.

CI requires its designers to formulate forward problems for their cases, i.e. the rela-
tions between the measurements and the quantities of interest, in order for the follow-up
computation to reconstruct. As shown in the examples, the computation is as important
as the measurement because of the need to process the raw data. The forward problem
formulation makes CI exible such that it can be adapted for physical quantities measurable
only indirectly, e.g. phase retrieval [62, 61]. Some metrics [6] may be used to judge the
forward model for whether the measured data contain enough information for computation
to reconstruct the unknown. The designers then solve a mathematical inverse problem to
obtain the quantities of interest once the measurements are done. However, the inverse prob-
lem is not always easy to solve. Depending on the math of the forward model, the inverse
problem, cast as an optimization problem, can have multiple local optima that are not close
to the unknown ground truth [175, 191]. Fortunately, the inverse problem solving is able
to incorporate prior knowledge of the measurements or unknowns, e.g. noise statistics or
sparsity of the unknown, to help the solving. The prior knowledge can enhance CI methods
to tackle the ill-posed inverse problem or some tough imaging conditions, such as using the
Total Variation regularization for image formation [156] or Compressed Sensing with sparsity
prior for limited measurement time [36, 125]. The above properties make CI an appealing
approach to many problems and it will be used through out this thesis work.

1.2 Dissertation Overview

We combine our experimental and theoretical studies of phase space to image through scat-
tering. By doing so, we show how the framework of phase space helps in a challenging
imaging condition, hoping to bridge the gap between abstract phase space and actual exper-
iments. In addition, scattering phenomenon is further studied outside of the scope of phase
space. The rest of the thesis is organized as follows.

� Chapter 2 provides the necessary mathematical background for phase space and the de�-
nitions of notation and functions used throughout the thesis.
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� Chapter 3 discusses a scanning method of measuring phase space. It is a direct extension
of lenslet array light-�eld measurements and it samples the phase space much more densely
than the former. The sample counts here are not limited by the pixels on a sensor but
rather by the number of those pixels multiplied with the number of scanning positions.

� Chapter 4 discusses a multiplexed phase-space measurement and its application to 3D
incoherent sources. We show that the random multiplex codes can achieve di�raction lim-
ited resolution of the 3D incoherent sources while avoiding reconstructing the tremendous
4D phase space. The multiplexing scheme incorporates the compressed sensing smoothly
and can be further utilized to work with priors other than sparsity.

� Chapter 5 describes a coded aperture method to measure the phase space of samples of
arbitrary coherence. We address here the code design problem opened by the random
design in previous chapter. The mutual intensity is introduced in detail and heavily used
for analyzing the code design as it graphically reveals the information of a measurement.
Also, the mutual intensity is equivalent to the Wigner function. Hence, by capturing the
mutual intensity, we show that the system and the designed codes are able to reconstruct
the desired phase space.

� Chapter 6 applies the phase space theory to analyze scattering. The phase space itself is
also measured and shown to be resistant to the scattering-induced blurring. The phase
space theory is useful for formulating our intuition about scattering into mathematical
formulae. The reconstruction of point sources and neural activity, both under volumetric
scattering, have been experimentally performed successfully.

� Chapter 7 moves the study of scattering from the phase space of light to how the light
interacts with scatterers. We propose an algorithm that expands the scattered �eld as
a series of optimization solver update steps. This algorithm is also capable of providing
the gradient update for estimating the scatterers if the scatterer is the unknown and
the scattered �eld is measured. Experimental veri�cation as well as comparisons to the
analytical forms of some cases are provided. A total variation regularizer is used in the
inverse problem solving for the scatterers, which enables substantial measurement data
reduction.
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Chapter 2

Background of Phase Space

In this chapter, we will review the concept of phase space briey and introduce the math-
ematics and convention that we use to describe the phase space of light. As the discussion
unrolls, we need to distinguish 1) coordinate vectors in physics and 2) matrices and vectors
used in inverse problems. We use an italic bold font for coordinate vectors, such as x for
the spatial dimensions, e.g. coordinates (x; y; z) for 3D cases and (x; y) for 2D cases, r for
2D transverse coordinates (x; y), and u for 2D spatial frequency coordinates (ux; uy). The
matrices and vectors for computation are denoted in bold fonts. Some examples are: A, G,
I for matrices and x, f , u for vectors.

2.1 Electric Field Convention

Throughout this thesis, we deal with a scalar electric �eld in phasor notation.1 We assume the
light to be statistically stationary and quasi-monochromatic, and when multiple frequencies
exist, we consider the center frequency for an average behavior or repeat the outcomes of
discussions in this work for each wavelength. The electric �eld is a function of 3D space x
and time t

<fE(x)e�j2�ftg (2.1)

where < is taking the real part of the expression, f is the temporal frequency of the �eld, j is
the imaginary unit, and E(x) is the complex-valued phasor electric �eld (in Chapter 7, u(x)
is used in place of E(x)). Since the phasor is a complex quantity, the complex conjugate
of a phasor E is denoted by symbol E�. The symbol � is used to denote the wavelength of
the �eld in vacuum and equals to speed of light in vacuum divided by f . For simplicity, the
time dependence is dropped in further discussion.

1Static electric �elds are not discussed here.
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Figure 2.1: Propagation angle is related to the spatial frequency of monochromatic light that
is locally approximated as a plane wave. (a) Ray optics models light as nondiverging beams,
each of which is parametrized by a propagation direction and a point it passes through. In
wave optics, light is modeled as an electric �eld which does not possess those parameters.
(b) If we locally approximate an electric �eld as a plane wave and ignore its di�raction, we
can de�ne the propagation wavenumber vector as the propagation angles. Three points on
the oscillation peaks of the approximated plane wave are marked, where the distance is �
along the propagation direction and (�= sin �) along the transverse direction. The spatial
frequency is the inverse of the period, which is (sin �=�) along the transverse direction, and
is approximately proportional to � when � is small.

2.2 From Phase Space in Physics to That of Light

In physics, phase space describes all possible states of a dynamic system. Consider the
dynamics of a ball. It can be described by the ball’s position and momentum in 3D space
(ignoring rotation). A ball with a particular momentum and position is represented in the 6D
phase space as a delta function. In addition, multiple balls are represented as a superposition
of the phase space functions of individual balls. Integrating over this 6D space will give the
number of delta functions, that is, the number of balls. Furthermore, if we consider each
ball as a density distribution, each delta function will become a distribution with integrated
value equal 1, indicating the \conservation" of the number of balls.

The phase space of light we refer to is a 4D function that describes the spatial and angular
distributions of light [8, 173]. Like the ball example above, a light ray under ray optics can
be described by 3 positional coordinates and 3 directional coordinates. However, when
only forward propagating light is present, e.g. propagating in free space, the phase-space
description can be reduced to 4D with two transverse spatial coordinates and two angular
coordinates [173] because the 3D electric �eld (and intensity) can be determined uniquely
from the 2D electric �eld at any plane. Examples of this are radiance in radiometry [184]
and light �elds which describe both position and angle of each ray. The measurement of
phase-space enables digital refocusing, aberration removal and 3D reconstruction [140, 116].
To include phase and di�raction e�ects, a more general wave-optics descriptor of phase space
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Figure 2.2: Phase space illustrations for coherent and partially coherent light. (a) A coherent
light beam and its phase-space representation. (b) A partially coherent light beam, which
�lls up more of phase space.

(e.g. Wigner functions [184]) must be used and propagation angles are generalized to spatial
frequencies [194, 4] (see Fig. 2.1). This function can further describe coherent and partially
coherent light [130, 188, 173] in an intuitive way, since the local correlation length is inversely
proportional to the width of the local spatial spectrum. One can think of partial coherence
as the wavefront containing multiple directions at each point in space; the more directions,
the less coherence. Hence a coherent beam usually has a narrow band in phase space while
a partially coherent beam possesses a larger area (see Fig. 2.2).

2.3 The Wigner Function and Connections of
Phase-Space Functions

We choose theWigner function [184] as the phase-space description to use in this work
because of its wave-optical nature, ability to describe coherent and partially coherent beams
in a uni�ed fashion, and its intuitive framework. We will also use its mathematical equivalent
functions for some application. The 4D Wigner functionW(r ; u ) has two transverse spatial
coordinates and two spatial frequency coordinates which relate to propagation angles (� x ; � y)
by (sin � x ; sin� y) = � u=nr (nr is the refractive index of background medium). It is de�ned
as [8, 173]

W(r ; u ) ,
ZZ �

~E �

�
u �

� u
2

�
~E

�
u +

� u
2

��
ej2� r �� u d2(� u ) (2.2)

=
ZZ �

E �

�
r �

� r
2

�
E

�
r +

� r
2

��
e� j2� u �� r d2(� r ); (2.3)

whereE is a partially coherent, stationary quasi-monochromatic electric �eld, the tilde~� de-
notes Fourier transform, andh�i denotes the ensemble average for multiple coherence modes
if they exist. The ensemble average allows representation of both coherent and partially (spa-
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Figure 2.3: Examples of Wigner functions and their projections (Intensity and angular spec-
trum) for some sample 1D electric �eld distributions. (a) Plane-wave illuminated double
slits. (b) An oblique Gaussian beam. (c) The double slits with a defocus. (d) Two incoher-
ent point sources. The top plot of each sub�gure is the electric �eld, the central square part
is the Wigner function, the bottom plot is the intensity, and the right plot is the angular
spectrum.



CHAPTER 2. BACKGROUND OF PHASE SPACE 10

tially) coherent light. It is straightforward to prove that Eqs. (2.2) and (2.3) are equivalent
by substituting

~E(u 0) =
ZZ

E(r 0)e� j2� r 0�u 0
d2r 0;

and a change of variables. Derivation details are provided in Appendix A. Areal-space
image, i.e. a conventional 2D intensity image, is a projection of the Wigner function over
all spatial frequencies,

Intensity( r ) = hE � (r )E(r )i =
ZZ

W(r ; u ) d2u; (2.4)

and an angular spectrum is given by projecting along spatial coordinates

Spectrum(u) = h~E � (u ) ~E(u)i =
ZZ

W(r ; u ) d2r : (2.5)

See Fig. 2.3 for examples of Wigner functions and their corresponding intensity images and
angular spectra.

The Wigner function handles the interference but still retains the geometric optics picture.
The interference is manifested through negative values of the Wigner function [54]. From
the de�nition Eq. (2.2), the complex conjugate of a Wigner function equals to itself so it
is real-valued. However, it is not guaranteed to be positive de�nite and is considered a
quasi-probability (quasi-intensity) distribution [85]. Dragoman [54] domonstrated that the
negative values are a result of interference and di�raction. On the other hand, in macroscopic
scale as the wavelength of the light becomes negligible relative to the size scales of interest, a
Wigner function is locally averaged and as a result, those negative values are washed out and
the Wigner function becomes a light �eld [194]. We further show in Sec. 2.4 that the shearing
operation of digital refocusing in the light �eld [140] is also valid for Wigner functions.

In addition to describing the distribution of light rays, the Wigner function has a strong
connection to coherence. As mentioned earlier, the Wigner function describes the local coher-
ence in the spatial frequency (angular) content of the location. A more rigorous connection
is seen in its de�nition, Eqs. (2.2) and (2.3). The quantities with the angled brackets are
coordinate-transformedMutual Intensities (a.k.a. Mutual-Coherence functions):

~�(� u ; u ) ,
�

~E �

�
u �

� u
2

�
~E

�
u +

� u
2

��
(2.6)

�( r ; � r ) ,
�

E �

�
r �

� r
2

�
E

�
r +

� r
2

��
(2.7)

They record the coherence of each pair of points in the coordinates and are equivalent to
the Wigner function since all of them are connected by Fourier transforms [173]. In this
work, we do not study the coherence in depth but rather use these functions to analyze
the phase space. Figure 2.4 summarizes the connections of Wigner functions to other phase
space functions. The ambiguity function shown here is for a complete diagram and is out of
the scope of this thesis. Interested readers can refer to [30] and [173] for more information
about ambiguity functions.
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Figure 2.4: Connections of phase space functions. The light �eld is connected to the Wigner
function by extending from geometrical optics to wave optics, indicated by the dashed arrow.
A solid segment indicates a Fourier transform on one of the coordinates of the phase space
functions while a double segment means two Fourier transforms on both of the coordinates.
The two mutual-intensity functions are connected to the Wigner function through Fourier
transforming one of its coordinates while the ambiguity function is connected through Fourier
transforming both.

2.4 Propagation in Phase Space

One of the most appealing reasons for using the phase-space framework is that propagation
becomes a geometric shearing operation, independent of the coherence properties of the
light [173, 8]. Writing the propagation operator asP� z, we describe light propagation of
distance � z using the Wigner function:

P� zW(r ; u ) =
ZZ

W(r 0; u )� (r � r 0 � � � zu=nr ) d2r 0; (2.8)

wherenr is the refractive index of the material and� is the Dirac delta function. Its proof
is provided in Appendix A. This is analogous to the shift-and-add approach for digital
refocusing of light-�eld data [140] but the Wigner function further accounts for wave-optical
e�ects.

Moreover, describing a physical event (here it is propagation) as an operator inspires us
to devise another phase-space operator for light interacting with scattering medium, which
will be discussed in Chapter 6.

2.5 Equations for Phase-Space Measurements

Our work focuses on applying codes to the Fourier plane of the unknown electric �eld, it
makes the mathematical derivations in following chapters short to introduce some common
equations in this background chapter. The measured quantity is the intensity inr and the
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phase space function we want to connect to the measurement is the Fourier-space mutual
intensity ~�(� u ; u ), which can be converted to the Wigner function when it is suitable.

We mainly use a 4f system to access the Fourier plane on which a code is applied.
The code is represented asM (r m) where r m is the spatial coordinate of the code in the
experimental setup. The functionM may have extra indexes for indexing the experimental
code sequence. In addition, the coordinatesr m is related to the frequency coordinateu of
the electric �eld by r m = �f u where f is the front (between the object and the Fourier
plane) focal length of the 4f system [72].

A real-space imageI measured with a Fourier-space codeM is represented as the follow-
ing,

I (r ) =

* �
�
�
�

ZZ
~E(u 0)M (�f u 0)ej2� u 0�r d2u 0

�
�
�
�

2
+

(2.9)

=
� ZZ

~E(u 0)M (�f u 0)ej2� u 0�r d2u 0
ZZ

~E � (u 00)M � (�f u 00)e� j2� u 00�r d2u 00

�
(2.10)

=
ZZZZ D

~E(u 0) ~E � (u 00)
E

M (�f u 0)M � (�f u 00)ej2� (u 0� u 00)�r d2u 0d2u 00 (2.11)

=
ZZZZ

~�(� u ; u )M
�

�f (u +
� u
2

)
�

M �

�
�f (u �

� u
2

)
�

ej2� � u �r d2ud2(� u ):

(2.12)

Here u = ( u 0+ u 00)=2 and � u = u 0� u 00. Eqs. (2.9) to (2.12) will serve as the basis for the
derivation in the following chapters.
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Chapter 3

Fourier Spectrogram:
Densely-Sampled Phase Space

A light �eld describes phase space in the geometrical optics regime where light is considered
as rays. A popular way of measuring light �elds is to use lenslet arrays [139], which capture
both spatial and angular information about light rays in a single shot. Each of the lenlets
converges local light to di�erent point according to the light's direction. Those converged
points, together with the locations of the lenslets, de�nes the 4D light-�eld coordinates.
The intensity measured at those converged points are the light-�eld data. Though it is
su�cient to use the light �eld information to compose a photograph, it su�ers from low
pixel counts and di�raction at the micrometer scale, which are important for microscopy
applications. Hence we turn to a multishot method to improve the number of data counts
and to include the wave-optical e�ect into our formulation. The measured quantity in this
work is the Fourier Spectrogram, the Wigner function of light convolved with the 4D kernel
of an aperture in spatial frequency space.

In previous work [183], an optical spectrogram system was developed for high-resolution
phase-space imaging, by applying a windowing aperture in thex space and capturingux -
space intensity images that correspond to the local spatial spectra information. A spatial
light modulator (SLM) was programmed to act as a recon�gurable aperture inx space,
blocking all light except a small local region. This aperture was then scanned acrossx space
while capturing ux -space intensity sequentially. The result is not the WDF of the beam, but
rather a spectrogram, which is a 4D convolution of the beam's WDF with the aperture's
WDF [7]. The choice of window function shape and size is important [29], as one must
trade o� spatial resolution for spatial frequency resolution. This measurement scheme can
be compared to previous work in measuring coherence functions through interferometric or
tomographic means [131, 65, 29, 153]. When the incoming light has a strong DC or other
spatial frequency component, the spectrogram su�ers from a dynamic range issue. Hence, we
propose to switchx and ux spaces, applying apertures inux space while capturing intensity
images inx space. The resulting sequence is a Fourier spectrogram.

Both the spectrogram and the Fourier spectrogram systems are able to achieve 10004 pixel
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data sets, without the requirement of inverting such a large matrix. However, the scanning
of the aperture and relative low light e�ciency required long acquisition times. Indeed, the
capture time for a full 4D data with high resolution (pixel counts) in all four dimensions will
be formidably time consuming, since it must be done with a 2D sensor and the �nal result
will involve � 1 Terabyte of information (n4, where n = 1000 is the number of pixels in a
single dimension). Therefore in the proposed setup, we speed up the measurement through
synchronization of hardware and the use of a fast digital micromirror device.

3.1 Fourier Spectrograms

The Fourier spectrogram, measured by putting a scanning aperture in the Fourier space of
the light, is not directly the Wigner function of the light but its smoothed version [194].
The reason to measure the Fourier spectrogram is that it is relatively simple to measure
and also more practical than measuring the Wigner function since the Wigner function can
contain negative values while the Fourier spectrogram cannot. Nevertheless, the Fourier
spectrogram, like the Wigner function, is a 4D function where the position of the scanning
aperture gives the frequency coordinates. We will show that, similar to the spectrogram [7],
the smoothing is done by a 4D convolution of the Wigner function of light with the 4D kernel
of the aperture.

We let the aperture be square. Starting with Eqs. (2.9) to (2.12), the shifting aperture
introduces a parameteru sh for shifting to the function M , resulting in

M (�f u ; u sh) = rect
�

�f (u � u sh)
a

�
; (3.1)

where a is the side length of the square aperture andu sh is the shift vector in the spatial
frequency. Hence the measured intensity corresponding tou sh is represented as

I (r ; u sh) =

* �
�
�
�

ZZ
~E(u 0)rect

�
�f (u 0 � u sh)

a

�
ej2� u 0�r d2u 0

�
�
�
�

2
+

: (3.2)

Following Eq. (2.12), we have

I (r ; u sh) =
ZZZZ

~�(� u ; u )rect

 
�f (u + � u

2 � u sh)
a

!

rect�
 

�f (u � � u
2 � u sh)

a

!

�

ej2� � u �r d2ud2(� u ): (3.3)

Substituting with the ~�- W connection,~�(� u ; u ) =
RR

W(r 0; u )e� j2� r 0�� u d2r 0 and massag-
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ing the formula a little, we have

I (r ; u sh) =
ZZZZ

d2r 0d2u W(r 0; u )
ZZ

rect

 
�f (u + � u

2 � u sh)
a

!

�

rect�
 

�f (u � � u
2 � u sh)

a

!

ej2� � u �(r � r 0) d2(� u ): (3.4)

If we de�ne the Wigner function representation of the optical system with the aperture as

Wa(r ; u ; w) =
ZZ

rect

 
u + � u

2

w

!

rect�
 

u � � u
2

w

!

ej2� � u �r d2(� u ); (3.5)

Eq. (3.4) becomes

I (r ; u sh) =
ZZZZ

d2r 0d2u W(r 0; u )Wa(r � r 0; u � u sh; a=�f )

=
ZZZZ

d2r 0d2u W(r 0; u )Wa(r � r 0; u sh � u ; a=�f ): (3.6)

Here in the last step we apply the fact that the rect function is real-valued and even. As
shown in Eq. (3.6), a Fourier spectrogram is the result of a Wigner function convolving with
the optical system's Wigner representation. For this reason, the spectrogram is often called
a smoothed Wigner function [194].

3.2 Digital Micromirror Devices in Phase-Space
Imaging

In this chapter we use a digital micromirror device (DMD) for our spatial light modulator.
In previous work [183], the SLM was a liquid crystal on silicon (LCOS), which operates much
slower (� 60 Hz max frame rate) than the DMD (� kHz max frame rate). In addition, the
LCOS reduced light e�ciency due to its polarization selectivity, which required pre-�ltering
of the input light into the correct polarization. Since exposure time is a key limiting factor in
our acquisition speed, any improvement in light e�ciency also helps with acquisition speed.
The DMD array is polarization insensitive, which not only improves light e�ciency, but also
makes the system more general for various applications. A larger problem with the LCOS
SLM is that the polarization selectivity is imperfect. One must place crossed polarizers at
the input and output of the SLM in order to block the unmodulated light. However, even
with expensive high-quality polarization optics, a small percentage of light leaks through the
crossed polarizers in the black parts of the coded image. This would normally create only
minimal artifacts, but due to the nature of the imaging system collecting the light in the
Fourier space, a large part of this unwanted leaked light shows up on the low-frequency part
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Figure 3.1: The Fourier spectrogram measurement setup for microscopic objects. The mag-
nifying 4f system is formed by a 20x/0.4NA objective lens and a tube lens of focal length
200 mm. The lens in front of the DMD has a focal length of 225 mm and the one between
DMD and camera has a focal length of 175 mm.

of the ux space image, creating an unwanted streaking artifact near the DC term which can
be seen on the right side of Fig. 3.2. In a DMD device, there is no leaked light, since `o�'
pixels are fully reected out of the imaging pathway, and so the result is much cleaner.

A further advantage of switching to a DMD SLM is in improving the speed of capture. To
take advantage of the DMD's extremely fast switching rates, it is synchronized with a camera
via on-board circuitry, which avoids a computer in the loop. We use the board controlling
the DMD to generate a voltage signal each time it starts a new frame. This signal is fed to
the trigger input of the camera directly. By this setting, the synchronization is accomplished
through hardware entirely and is limited only by the required exposure time, giving speed
improvements of several orders of magnitude over the setup in [183].

Our experimental setup is shown in Fig. 3.1. Laser light passes through a rotating
di�user, which makes it partially coherent (with Gaussian statistics, FWHM 5� ). The object
is illuminated entirely, and the scattered light is collected by a microscope objective. A 4f
system acting as a microscope is used to magnify the image. Then a 2f system transforms the
object light to Fourier space, where our DMD SLM is mounted. The light is then patterned
by the DMD according to our desired coding scheme (in this case a scanned window function)
and the �ltered light further passes through another 2f system, turning into intensity images
collected by the camera inx-space.

In Fig. 3.2 we show the result of an in-focus image illuminated by a partially coherent
beam in our experimental setup, as compared to the results of [183]. The object here is a
three-bar pattern, which is one dimensional. The object is illuminated by a partially coherent
light source, created by inserting a rotating di�user into the illumination pathway. One can
see that theux axis information displays a notable spread, due to the �nite coherence length
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Figure 3.2: Experimental results for phase-space measurements of three-bar test pattern with
partially coherent light, as compared to the results of [183]. Results are much cleaner due
to elimination of polarization leakage, with no low-frequency artifacts present. Scan speeds
are also signi�cantly increased in the new scheme. Plots at top and side of each phase-space
�gure represent the projections ontox and ux space, respectively.

of the illuminating light. We can see three strips in the plot of WDF that are in-focus, since
they are vertical, without any tilt.

Further improvement in the quality of the phase-space image over our previous design
comes from the modi�cation of placing the scanning aperture in Fourier (ux ) space, rather
than x space. While it is not guaranteed, we expect this scheme to have better performance
than windowing in x-space because most signals are largely composed of low frequency
information. We take the phase-space component images inx space; since our camera has a
higher resolution than our DMD, we will always have high qualityx space images thanux

space, which is likely preferred visually. Moreover, theux -space scanning can be e�cient by
paying more attention on lower frequency parts, while thex-space scanning requires going
through every pixel. This leads to improved ability to test new coded aperture strategies
which pattern the ux space to have more than one pixel on at a time, further increasing the
light throughput (See Chapters 4 and 5).

3.3 Fourier Spectrogram Experiments for Point
Sources and Scattering

In the previous case, we use a rotating di�user in front of a laser to reduce the optical
coherence of the light source. Let us consider a di�erent case that the sources are spatially
incoherent, that is, point-like sources. They raise much interest as the uorophores are
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Figure 3.3: Fourier spectrogram setup for phase-space measurement experiments to 3D lo-
calize three point emitters. (a) The pictures of one LED on a ruler in order to show the
dimensions of the LED used. The LED has a spectrum centered around 633� m. (b) The
Fourier spectrogram imaging setup with the LEDs around the front focal plane of the sys-
tem. The lens in front of the DMD has a focal length of 225 mm and the one between DMD
and camera has a focal length of 175 mm. The axial position of the three LEDs relative to
the focal plane is: (from left to right) -58 mm, 0.91 mm and 120 mm. The scanning window
width on the DMD is 1740.8� m.

point sources and vastly used in biological studies. We use light emitting diodes (LEDs) as
our point sources in this case and modify the setup to image millimeter scale objects (see
Fig. 3.3). With this new scene, we can illustrate the property of the phase space of point
sources, which reveals the position information of the points. Furthermore, a light scattering
environment is emulated. The Fourier spectrogram retains structures about the sources and
can be further utilized to counter the scattering in imaging.

As shown in the upper part of Fig. 3.4, the LEDs at di�erent depths show as lines with
di�erent slopes in the Fourier spectrogram. This gives us a cue for defocused amounts which
is explained in Sec. 2.4. The line structure in the Fourier spectrogram is also resistant to
scattering. We inserted rotating di�users in-between the point sources to simulate volumetric
scattering and the measured Fourier spectrogram still retains three linear structures although
they are widened (lower part of Fig. 3.4). As a comparison, the information of the point
sources is not inferrable from the traditional image, shown in the center column of the �gure.
This comparison shows that Fourier spectrogram imaging has a better chance to reconstruct
scenes behind scattering than traditional imaging. The reconstruction is further improved
by considering how the widening relates to the scattering situation of the sample. A detailed
model discussing this widening is provided in Chapter 6.
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Figure 3.4: One slice of measured Fourier spectrogram for experiments with three point
emitters at di�erent 3D positions. The upper part shows the result in clear medium and
the lower part in scatterers. The left column shows the object, the middle column shows
the traditional intensity images taken without Fourier space modi�cation, and the right
column shows the Fourier spectrogram and its projection, the intensity. The cutlines in the
middle column indicates they slice from which the Fourier spectrogram is built (from the
corresponding slice in aperture scanned images).

3.4 Limitation of the DMD Device

Though the use of the DMD in this chapter speeds up the measurements, the blazed grating
of the DMD may cause dispersion problems in applications to nonmonochromatic light. If
the application images the DMD, such as a DMD-based projector where the image of DMD
is displayed on the screen, the dispersion caused by the DMD is insigni�cant because the
dispersed light will be refocused back to the same pixel after the imaging system. However,
in our setup, we put the DMD in the Fourier space and image the light in the real space.
The light dispersed by the blazed grating of the DMD will then arrive at di�erent points on
the sensor.

The grating of a LCOS SLM does not cause severe dispersion because the LCOS SLM
is designed to reect the light o� perpendicularly to its plane. The beam we use in such
setup is the zeroth order beam, which does not change its direction among all colors. On
the other hand, in a DMD SLM setup, we use high-order beams where the blazed grating
of DMD enhances their light e�ciency. These beams changes directions more rapidly than
lower order beams when their color changes. For example, the DMD we used causes a red




