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Abstract

Control of Continuum Swarm Systems via Optimal Control and Optimal Transport

Theory

by

Max Joseph Emerick

We consider problems of optimal motion control for multi-agent systems where as-

signments as well as motions have costs. In particular, we consider a demand distribution

and a distribution of resource agents, which require and provide support respectively. We

formulate a time-varying assignment problem which trades off two typically competing

costs, namely an assignment cost which depends on distances between resource and de-

mand, and a motion cost associated with moving resource agents to locations with lower

assignment costs. We use the formalism of optimal transport theory, and the Wasser-

stein distance in particular, to capture assignment cost, while motion cost is captured by

vehicular velocities over time. Both particle and continuum models for large-scale sys-

tems are considered, leading to infinite-dimensional nonlinear optimal control problems

in general. We show how in the special case of one spatial dimension, the optimal control

problem can be converted into an infinite dimensional Linear-Quadratic tracking problem

by reparameterizing in terms of quantile functions, which can then be converted into a

family of decoupled scalar Linear-Quadratic tracking problems. An analytic solution is

provided in the general case. We investigate further two special cases where the demand

distribution is static and where it is periodic in time. Explicit results and simulations

are provided in each of these cases as well.
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Introduction

Low-cost sensing, processing, and communication hardware is driving the use of au-

tonomous swarms of robotic agents in diverse settings, including emergency response,

transportation, logistics, data collection, and defense [1, 2]. Large swarms can have sig-

nificant advantages in efficiency and robustness, but as they scale in size, it becomes

increasingly difficult to plan and coordinate motion. Thus, the development of effective

motion planning and control strategies remains a problem of central importance.

A common problem setting in swarm control is that of coverage or deployment, where

a swarm is deployed within some region and must move around in order to approximate

some target distribution. These problems are well-studied in the literature [3] but have

traditionally focused on swarms of discrete agents. However, as the number of agents

grows large, it can become intractable to even store the positions of all the agents. One

solution to this issue is to model the swarm as a distribution over the domain, which

emphasizes the state of the overall swarm over the states of individual agents, providing

a significant model reduction.

Optimal transport theory has provided many useful tools towards this end, that is, for

working with distributions in a physical space. In recent years, several approaches have

been taken to swarm control using tools from optimal transport theory, including works

by Bandyopadhyay, Krishnan, Inoue, and their respective collaborators [4, 5, 6, 7, 8, 9].

However, these approaches have been limited in their treatment of the objective and
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constraints: they seek to minimize the transport distance while assuming convergence to

the target distribution. In a real-world setting, it is desirable to have a model that can

accommodate more general objectives and constraints, especially since convergence to a

target distribution is not always possible.

The necessary generalization is provided by optimal control theory. Optimal control

theory has emerged as the predominant framework in which to treat control problems

with general objectives and constraints, and has been applied to continuum swarm models

in numerous approaches, including those by Fornasier, Ferrari, Elamvazhuthi, Bonnet,

Jimenez, Burger, and their respective collaborators [10, 11, 12, 13, 14, 15]. However, most

of these approaches focus on the analytic aspects of the problem (e.g., well-posedness,

regularity), and while providing useful theoretical tools, do not suggest particular models

or algorithms for simulating real swarms.

This work aims to bridge that gap. That is, to propose a specific model that can

accommodate general objectives yet is tractable enough for a practical implementation.

In this work, I propose such a model, investigate the behavior and consequences of this

model in depth, and provide simulations to demonstrate some of these theoretical results.

The main contributions of this work are thus

� The formulation of a novel model for swarm tracking control which can accommo-

date more general objectives than existing continuum models

� Demonstration of a transformation which allows for an analytic solution in the

one-dimensional case and provides insight into the structure of the problem

� Explicit solutions, further analysis, and simulation results for the special cases

where the demand distribution is static or periodic in time

In chapter 1, I present the background necessary to support the main results. I begin

with a discussion of notation, then give an introduction to continuum swarm models,
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before developing several of some of the key results from optimal transport theory that

will be used throughout this work.

In chapter 2, I motivate and develop the proposed mathematical model. Two models

are actually presented: a general model and a specific model. The general model is

abstract and has the flexibility to accommodate different objectives, while the specific

model makes particular choices for these objectives so that the model can be solved and

analyzed.

In chapter 3, I focus on solving the specific model in the one-dimensional case. The

model is solved in two main steps. The first step is a reparameterization in terms of quan-

tile functions, which transforms the problem to an infinite-dimensional Linear-Quadratic

(LQ) tracking problem. The second step is a “decoupling” of this problem into a family

of scalar LQ tracking problems. The scalar LQ tracking problem has been studied in the

literature before [16] and admits an analytic solution which is reproduced in this work.

The cases where the demand distribution is static or time-periodic are then analyzed

further, where explicit solutions and simulation results are provided.

Permissions and Attributions

Much of the content of this work (and in particular of Chapters 2 and 3) is the

result of a collaboration with Bassam Bamieh and Stacy Patterson which has previ-

ously appeared at The 9th IFAC Conference on Networked Systems (NecSys22) and in

IFAC-PapersOnLine [17]. The material is reproduced here under the IFAC Article Shar-

ing Policy (https://www.ifac-control.org/publications/copyright-conditions),

and the original article can be accessed via its DOI (https://doi.org/10.1016/j.

ifacol.2022.07.246). To the material in that original article, I have added additional

background, proofs, figures, and simulations, so that this work is now more readable and
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mostly self-contained. I have also extended the work slightly with additional results,

interpretations of key findings, and the inclusion of the periodic case.
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Chapter 1

Background

This chapter develops the background necessary to support the main results of this work,

which are the focus of Chapters 2 and 3. We begin with a brief explanation of notation,

discuss continuum swarm models, and then present several of the key results from optimal

transport theory.

1.1 Notation

The material in this document relies heavily on measure-theoretic concepts. However,

as the intended purpose of this work is to propose a model for engineering analysis and

the main audience is largely composed of engineers, I will avoid talking about measures as

much as possible, electing to talk about distributions instead. To many in this discipline,

this is a much more intuitive concept, but the reader should be assured that this clarity

does not come at the expense of rigor. It is a misconception that distributions are

mathematically imprecise objects. For a formal development of distribution theory, see

Gelfand and Shilov [18].

While reading this material, it is helpful to be able to transition smoothly between
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thinking of functions as maps and thinking of functions as points in function space. The

notation used intends to emphasize these different perspectives in different contexts. For

example, the notations R or R(·, ·) are used interchangeably, and refer to a whole function

as an object, while notation like R(x, t) refers to the evaluation of that function at the

point (x, t). Also, notations like Rt(·) or R(·, t) are used interchangeably to suggest R

either as a parameterized curve in function space or as a spatio-temporal field.

It is also important to point out that maps can act on different objects in different

ways. For example, the flow map (1.1) can act on points by evaluation, maps by compo-

sition, or distributions by pushforward. These will all be defined later, but the important

point is that these different actions are each given their own notation as well.

One last point is that there are a few places where standard notations conflict. For

example, the star (∗) is standard both for the adjoint and for the minimizing argument

of a function. Here, star will be reserved to mean the adjoint and so an overbar (̄ ) will

be used for a minimizer instead. The following table describes all of the notation that

I have ultimately settled upon, including some special variables that have been reserved

for a particular purpose.

∂x – the partial derivative with respect to x

D – the demand distribution, considered an external input

D – the derivative of a mapping (e.g. Jacobian, Fréchet derivative)

D(Ω) – the space of normalized distributions over Ω

f, g, h – scalar-valued functions of a scalar variable

Fµ – the cumulative distribution function of a distribution µ

F – the Fourier transform of a function

I – the identity operator

J – an objective function

6
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K – a transport plan

Lpn(Ω) – Lp space of n-vector-valued functions over Ω

M – a transport map

N – the normal distribution

P – a partition

Qµ – the quantile function of a distribution µ

R – the resource distribution, considered the state

T – the final time in a time interval

u, U, v, V – velocity, considered a control input

U – the uniform distribution over unit volume [0, 1]n ⊂ Rn

Wp(µ, ν) – p-Wasserstein distance between distributions µ and ν

Wp(Ω) – the p-Wasserstein space of distributions over Ω

x, y, z – spatial variables

α – a (constant) trade-off parameter

Γ(µ, ν) – the Wasserstein geodesic between distributions µ and ν

γ – a distribution in a curve or geodesic

δ – the Dirac distribution

ζ, η – position variables

µ, ν – arbitrary distributions

ξ – a dummy variable

Πx – projection operator onto x

ϕ – a Kantorovich potential (Kantorovich dual variable)

φ, ψ – the flow of a vector field

Φ – a state-transition function

Ω – the domain, a compact convex subset of Rn

7
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∇ – the gradient operator

| · ′| – the metric derivative

◦ – the composition operator

# – the pushforward operator

| · | – the absolute value of a scalar

|| · || – the norm of a vector

× – the cartesian product

∗ – the adjoint of an operator

〈·, ·〉 – the inner product

x̄ – the minimizing argument x of an objective function

1.2 Continuum Swarm Models

Suppose we had a small swarm of k (discrete) robotic agents, labeled 1 to k, that

roamed around on some subset of n-dimensional space. For simplicity, let’s say that the

state of each agent could be fully described by its position xi, and so the state of the whole

swarm could be described by a vector X = (x1, . . . , xk), where each xi ∈ Rn. As an input,

we could specify the velocity of each agent as vi, with the dynamics being ẋi = vi, so that

the input to the whole swarm was V = (v1, . . . , vk), with dynamics given by Ẋ = V . This

all works well for small swarms, but as the number of agents k increases to be become

very large, it starts to become intractable to even store the positions of all of the agents.

In this case, we gain an enormous model simplification by representing the state of the

swarm by a distribution over the domain which describes the density of agents in each

neighborhood. This effectively discards the microscopic information about each agent
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such as its state and identity, while retaining the macroscopic information describing the

state of the swarm as a whole.

In the small-swarm case, we were able to describe the input to the swarm as the

union of the inputs to each individual agent, but we are no longer able to do that for the

large swarm, as we discarded the identities of each individual agent when we described

the swarm as a distribution. The remedy is to instead specify the velocity input as a

function of position rather than as a function of identity, so that instead of specifying

ẋi = vi for agent i, we specify ẋ(t) = v(x(t)) for the agent at location x. However, this

is confusing notation, as x is being used both as a coordinate and as a position variable.

To avoid this sort of confusing notation, we define the flow.

Definition 1.1 (Flow of a Vector Field). Let v be a vector field defined on Rn×R. The

flow of the vector field v is a map φ : Rn × R→ Rn satisfying

∂tφ(x, t) = v(φ(x, t), t)

φ(x0, 0) = x0

(1.1)

By defining the flow, we reserve x as a coordinate by using φ for the position variable.

The symbol φ(x0, t) represents the position at time t of the agent that started from x0 at

time 0. Note that although we no longer keep track of the identities of individual agents,

we can still follow individual agents over time via the flow. The flow gives us the swarm

dynamics in the so-called Lagrangian perspective of fluid mechanics (that is, following

individual agents as their position changes). There is also an expression for the swarm

dynamics in the Eulerian viewpoint, describing the time-evolution of the entire density

field. The “Eulerian” dynamics are given by the so-called transport equation (sometimes

also referred to as the advection equation or continuity equation).

9
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Definition 1.2 (Transport Equation). Let µ0 be an initial distribution defined on Rn

and v be a velocity field defined on Rn×R. The transport equation is the following partial

differential equation

∂tµt = −∇ · (vtµt). (1.2)

Lemma 1.3. Let µ0 be an initial distribution defined on Rn and v be a velocity field

defined on Rn × R that acts on particles in the distribution according to the dynamics

(1.1). The dynamics governing the resulting evolution of the distribution µ are given by

the transport equation (1.2).

Proof. This is a foundational result in continuum mechanics – see e.g. Section 5.3 in

Mase [19].

Equations (1.1) and (1.2) are the foundation of the model that we will use throughout

this work.

1.3 Optimal Transport Theory

Optimal transport theory has provided many useful tools for modeling and analyzing

the motions of distributions in a physical space. This section reviews many of the key

results from this field that we will use throughout this work. We proceed rather infor-

mally and without proof, attempting to build a little intuition rather than give a rigorous

development. Indeed, optimal transport theory can be a technical discipline and a rig-

orous development is well-outside the scope of this work. For references on the material

in this section, one can consult any of the classic texts on the subject by Santambrogio

[20], Ambrosio [21], or Villani [22, 23].

In short, the optimal transport problem seeks to find the most efficient way to trans-

form one distribution of mass into another. The situation is formalized as follows. Sup-

10



Background Chapter 1

pose that we have an initial distribution of mass µ, where µ(x) specifies the density of

mass at location x, and we wish to transform it into a target distribution ν, with a den-

sity ν(y) (we assume that the two distributions have the same total mass). One way to

do this is by specifying a map M : x 7→ y which takes the distribution µ and creates a

new distribution by taking the mass from location x and moving it to location y. This

new distribution is called the pushforward distribution and is defined as follows.

Definition 1.4 (Pushforward Distribution). Let µ be a distribution defined on some

subset of Rn and letM : Rn → Rm be a map. Then the pushforward of µ byM, denoted

M#µ, is a distribution on a subset of Rm such that

∫

A

(M#µ)(y) dy =

∫

M−1(A)

µ(x) dx (1.3)

for any measurable set A ⊂ Rm, where M−1 denotes the preimage.

Figure 1.1 shows a pictorial representation of a pushforward distribution.

µ

M#µ

M

Figure 1.1: Pictorial representation of a pushforward distribution. The function M
transforms µ into M#µ by specifying where the mass at each point gets sent to.

Perhaps the most straightforward way to formalize the optimal transport problem

is to define a function c(x, y) representing the cost of moving mass from location x to

location y, and then minimize the total cost over all mapsM that transport µ to ν. This

formulation is often referred to as the Monge Problem.

11
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Definition 1.5 (Monge Problem). Let µ and ν be two distributions defined on Ω ⊂ Rn

and c(x, y) be a cost function. The Monge Problem is to find the map of minimum cost

transporting µ to ν.

M̄ = argmin
M

∫

Ω

c (x,M(x))µ(x) dx

s.t. M#µ = ν

(1.4)

The minimizer M̄ is termed the optimal transport map and the value of the objective is

termed the transport cost and is written J .

While the Monge problem plays an important role in optimal transport theory, it

is difficult to solve. It is nonconvex, and solutions are not even guaranteed to exist1.

These issues are remedied by another formulation, the so-called Kantorovich Problem.

Instead of seeking a map between the distributions, the Kantorovich problem seeks a

more general coupling called a plan.

Definition 1.6 (Kantorovich Problem). Let µ and ν be two distributions defined on

Ω ⊂ Rn and c(x, y) be a cost function. The Kantorovich Problem is to find the plan of

minimum cost transporting µ to ν.

K̄ = argmin
K

∫

Ω×Ω

c(x, y)K(x, y) dx dy

s.t. Πx#K = µ

Πy#K = ν

(1.5)

where Πx : (x, y)→ x and Πy : (x, y)→ y are the projections onto x and y, respectively.

The minimizer K̄ is termed the optimal transport plan and the value of the objective is

again termed the transport cost and written J .

1For example, consider µ to be a Dirac distribution. Since the mass in µ can only be sent to one
location, it is obvious that there is no solution unless ν is also a Dirac distribution.
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Whereas the Monge problem specifies where the mass at each point x is transported,

the Kantorovich problem specifies how much mass is transported from each point x to

each point y. In this way, the Kantorovich problem is more general, because one is

allowed to “split mass” by sending it to multiple locations. A transport plan K can be

interpreted as a joint distribution having the source and target distributions as marginals.

A visual representation of a transport plan is shown in Figure 1.2.

x

y

R(x)

D(y)

K(x, y)

Figure 1.2: A Kantorovich transport plan between distributions R and D. The heat
map shows the density of the transport plan, which determines how much mass at
location x in R gets mapped to location y in D.

This formulation yields a number of advantages over the Monge problem. First, the

Kantorovich problem consists of a linear objective function under linear constraints and is

thus an infinite-dimensional linear program, which can be solved by established methods.

Second, solutions are always guaranteed to exist. Third, if the Monge problem is solvable,

its solutions can be recovered from the solution to the Kantorovich problem as follows.

Lemma 1.7. When µ is absolutely continuous, the optimal transport plan K̄ solving

(1.5) takes the form (I,M̄)#µ, where I is the identity map on x and M̄ is the optimal

transport map solving (1.4).

Proof. See Theorem 1.17 in Santambrogio [20].

13
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Fourth, when the cost function takes the form c(x, y) = ||y−x||pp, the resulting optimal

transport cost forms a metric on the space of distributions, called the p-Wasserstein

distance.

Definition 1.8 (p-Wasserstein Distance). Let µ, ν be two distributions defined on Ω ⊂

Rn. The p-Wasserstein distance between µ and ν, written Wp(µ, ν), is given by

Wp
p (µ, ν) := min

K

∫

Ω×Ω

||y − x||ppK(x, y) dx dy

s.t. Πx#K = µ

Πy#K = ν

(1.6)

This quantity satisfies all the requirements of a metric, and turns D(Ω), the space

of normalized distributions over Ω, into a complete metric space, which we call p-

Wasserstein space2 and denote Wp. This proves to be extremely useful, as it endows

the space of distributions with a rich geometry and provides many additional tools for

solving problems. We will describe some aspects of this geometry shortly, but first, we

introduce one more formulation of the optimal transport problem.

Since the Kantorovich problem is a linear program, it also has a dual formulation.

After applying linear duality to (1.5) and eliminating a free variable using the convex

conjugate transform, we obtain the following formulation.

2In this work, we will focus exclusively on the case p = 2.
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Definition 1.9 (Dual Problem). Let µ and ν be two distributions defined on Ω ⊂ Rn and

c(x, y) be a cost function. The Dual Problem is to find the dual variable ϕ̄ maximizing

the objective

ϕ̄ = argmax
ϕ

∫

Ω

ϕ(x)µ(x) dx +

∫

Ω

ϕc(y)ν(y) dy

s.t. |x|2/2 − ϕ(x) is convex

(1.7)

where ϕc(y) := infx c(x, y)−ϕ(x) is the convex conjugate of ϕ. The dual variables ϕ and

ϕc are often referred to as Kantorovich potentials.

Solving the problems (1.5) and (1.7) are equivalent in the following sense.

Lemma 1.10. The maximum value obtained in (1.7) is equal to the minimum value

obtained in (1.5). Furthermore, when µ is absolutely continuous and c(x, y) = ||y − x||22,

the solutions to the two problems are related by K̄ = (I,M̄)#µ where

M̄(x) = ∇
(
|x|2/2 − ϕ̄(x)

)
= x − ∇ϕ̄(x) (1.8)

where ϕ̄ is dual variable solving (1.7).

Proof. See Section 1.3.1 and Theorem 1.40 in Santambrogio [20].

In particular, notice that the optimal transport map is equal to the gradient of a

convex function. Indeed, we have the following characterization of optimal transport

maps.

Lemma 1.11. Under the assumptions in Lemma 1.10, a transport map M is optimal if

and only if M = ∇Ψ for some convex function Ψ.

Proof. See Section 1.3.1 and Theorem 1.48 in Santambrogio [20]. The key connection is

the concept of a cyclically monotone set.
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The dual formulation also allows us to obtain a formula for the derivative of the

squared 2-Wasserstein distance with respect to one of its arguments.

Lemma 1.12. Let µ and ν be two distributions defined on Ω ⊂ Rn with µ absolutely

continuous. Then the derivative of the squared 2-Wasserstein distance at µ with respect

to fixed ν is given by

DµW2
2 (µ, ν)(·) = 〈ϕ̄, · 〉 (1.9)

where ϕ̄ is the maximizing variable in the dual problem (1.7).

Proof. See Proposition 7.17 in Santambrogio [20].

Having given a brief review of the main results on the optimization side of the theory,

we now build up the geometric picture. Here, we shift our thinking from maps and plans

relating distributions to continuous curves valued in W2. Recall that the velocity of a

parameterized curve is formalized as the tangent vector to the curve.

Definition 1.13 (Tangent Vector). Let µt be a continuous curve valued in W2 and

parameterized by t. The tangent vector of µt at t = τ is defined to be

vτ := lim
s→0

µτ+s − µτ
s

(1.10)

Since such a tangent vector represents a velocity field on Rn, we will also refer to this

as a tangent velocity field. We have the following result.

16
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Lemma 1.14. Let µt be a continuous curve valued in W2 and parameterized by t. The

tangent vector (or tangent velocity field) of µt at t = τ is given by

v̄τ = argmin
vτ

∫

Ω

||vτ (x)||22 µ(x) dx

s.t. ∂tµt
∣∣
t=τ

= −∇ · (vτµτ )
(1.11)

Proof. See Theorem 5.14 in Santambrogio [20].

That is, the tangent velocity field is the velocity field of minimum norm that generates

the curve via the transport equation. The speed of the curve is formalized by the metric

derivative.

Definition 1.15 (Metric Derivative). Let µt be a continuous curve valued in W2 and

parameterized by t. Then the metric derivative of the curve at t = τ is defined to be

|µ′τ | := lim
s→0

W2(µτ , µτ+s)

|s| (1.12)

As in Euclidean space, the speed of a curve is equal to the magnitude of its velocity.

Lemma 1.16. Let µt be a continuous curve valued in W2 and parameterized by t. Then

|µ′τ |2 =

∫

Ω

||vτ (x)||22 µτ (x) dx (1.13)

where vτ is the tangent vector at t = τ .

Proof. See Theorem 5.14 in Santambrogio [20].

Also as in Euclidean space, the length of a curve is equal to the integral of its speed.

17
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Definition 1.17 (Length of a Curve). Let µt be a continuous curve valued in W2 and

parameterized by t. The length of the curve on the interval [0, T ] is defined to be

length(µ[0,T ]) :=

∫ T

0

|µ′t| dt (1.14)

A critical result is that the space W2 is a geodesic space. This means that there

exists a curve achieving a minimum length between any two distributions, and that this

minimum length is equal to the distance between the two distributions. This curve is

called a geodesic.

Definition 1.18 (Wasserstein Geodesic). The 2-Wasserstein geodesic between distribu-

tions µ and ν is defined to be the curve

Γ(µ, ν) := {γ ∈W2 :W2(µ, γ) +W2(γ, ν) =W2(µ, ν)}. (1.15)

It is known that given distributions µ and ν, the geodesic between them exists and

is unique. Also notice that since W is a metric, we know that length(Γ) < length(Θ) for

any other continuous curve Θ with endpoints µ and ν.

It is common to parameterize the Wasserstein geodesic as Γ = {γt} where t spans

some interval in R, most often [0, 1]. By abuse of terminology, γt will sometimes be

referred to as the geodesic. However, note that while the geodesic itself (that is, the set

of points) is unique, the parameterization certainly is not.

Given an optimal transport map, we know how to compute the geodesic.

18
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Lemma 1.19. Let µ and ν be two distributions defined on Rn with µ absolutely continu-

ous, and suppose M̄ is an optimal transport map transporting µ to ν. Then a constant-

speed parameterization of the Wasserstein geodesic between µ and ν is given by

γt = Mt#µ

Mt := (1− t) I + tM̄
(1.16)

for t ∈ [0, 1], where I is the identity map.

Proof. See Theorem 5.27 in Santambrogio [20].

This concludes our review of optimal transport theory.
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Chapter 2

The Proposed Model

In this chapter, we motivate and develop our proposed model, which is the first main

contribution of this work. There are actually two models we develop – a “general”

model and a “specific” model. The general model (2.11) is an abstract model which

has the flexibility to accommodate different objectives. The specific model (2.13) makes

particular choices for these objectives so that the model is fully defined and can be solved

and analyzed. We start by introducing the features which compose our model.

2.1 Problem Formulation

The key feature of our proposed problem setting is that there are two distributions,

which we refer to as demand and resource respectively. The demand can be mobile or

stationary and represents either locations, facilities, or independently-controlled mobile

robots that require supplies or services (e.g. data collection, communication). Resource

agents are mobile and are able to service the needs of multiple demand components.

Physical space is modeled as a compact convex subset Ω ⊆ Rn where n is a positive

integer (typically 1, 2, or 3). Both the demand and resource distributions are modeled
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as density functions over the domain, where discrete agents are modeled by Dirac dis-

tributions and continuum swarms are modeled by continuous distributions. In the most

general setting, our model can accommodate both. The following are the five ingredients

in our model.

(1) A demand distribution, Dt(·), defined over Ω ⊂ Rn, describing the state of the

demand at time t which is of the form

Dt(x) = d(x, t) +

Nd∑

k=1

dk(t) δ
(
x− ζk(t)

)
. (2.1)

In the purely discrete setting, the first term is zero, and the distribution represents Nd

discrete demand components, each with demand dk(t) located at position ζk(t) ∈ Ω. In

the purely continuum case, the second term is zero, and d(·, t) : Ω→ R is a non-negative

function describing the density of demand. The expression above allows for a mixture

of continuum and discrete components. The continuum model may be appropriate to

describe a very large number of components, where only the spatial distribution, rather

than the identity of each component, matters.

In classic coverage control problems, D is usually assumed to be constant in time,

but we could choose to model D as time-varying, stochastic, or even having its own

state-dependent dynamics, as in the case where the resource “satisfies” the demand and

subsequently reduces it3. Here, we focus on the static and time-varying cases, and the

stochastic and dynamically-coupled extensions will be presented elsewhere.

3 It should be noted that this latter case is considerably more complex. In particular, either or both
of the distributions may have mass that is changing in time, in which case a notion of “nonuniform
optimal transport” can be applied (see e.g. [24]) as opposed to the setup which proceeds in this work.
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(2) A resource distribution, Rt(·), also defined over Ω ⊂ Rn, describing the state of

the resource agents at time t

Rt(x) = r(x, t) +
Nr∑

k=1

rk(t) δ
(
x− ηk(t)

)
, (2.2)

with similar interpretations of each term as those given to Dt in (2.1). In this paper, we

assume that the total mass of each distribution is constant in time, and so without loss

of generality, we assume that both distributions are normalized to integrate to 1.

∫

Ω

Rt(x) dx =

∫

Ω

Dt(x) dx = 1 (2.3)

A visual representation of the two distributions is shown in Figure 2.1.

Rt

Dt

Figure 2.1: Resource distribution (red) and demand distribution (blue) over physical space.

(3) An assignment kernel, Kt(·, ·). This kernel is a non-negative, scalar-valued (or

possibly generalized) function where Kt(x, y) specifies the amount of service that resource

agent at location x provides to demand component at location y at time t. Thus in the

most general case, each resource agent can service multiple demand components, and

similarly each demand component can be serviced by multiple resource agents.

With the distributions Dt and Rt normalized, the interpretation of the two-variable

function Kt(·, ·) as assignment of demands to resources gives the following “marginaliza-
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tion property”

Rt = Πx#Kt,

Dt = Πy#Kt.
(2.4)

where Πx and Πy are the projection operators onto x and y respectively. When either Rt

or Dt contain generalized functions, then the kernel Kt will include generalized functions

as well. These two cases are shown in Figures 2.2 and 2.3.

x

y

K13

K24

q1 q2 q3 q4 q5

p1

p2

p3

D(y) =
PNd

i=1 di �(y � qi)

R(x) =

NrX

i=1

ri �(y � pi)

Figure 2.2: Example of a discrete assign-
ment kernel.

x

y

R(x)

D(y)

K(x, y)

Figure 2.3: Example of a continuous
assignment kernel.

The assignment kernel is one of the decision variables in our optimal control prob-

lem. Each assignment kernel incurs an assignment cost which will be defined shortly.

The marginalization requirements (2.4) can be thought of as constraints that any valid

assignment kernel must satisfy.

(4) A dynamic model, describing the equations of motion of the system and the role

of the input function. Motivated by the need to consider large-scale continuum models of

agents, we use the following transport equation to describe how a density moves in time

∂tR(x, t) = −
n∑

i=1

∂xi

(
vi(x, t) R(x, t)

)

= −∇ ·
(
V (x, t) R(x, t)

)
,

(2.5)
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where Vt(x) = V (x, t) := [v1(x, t) · · · vn(x, t)]∗ is a time-varying velocity field. The ve-

locity field is one of the decision variables in our optimal control problem. The optimal

velocity field “steers” the resource agents to move over optimal trajectories. We assume

that V = 0 on the boundary of Ω and that V is continuous except on sets where Rt

has vanishing mass to ensure existence and uniqueness of solutions on the support of Rt.

Notice also there there is an implicit constraint in the fact that any two particles at the

same location must move with the same velocity.

The transport equation (2.5) is used for both continuum and discrete models. Note

that this velocity field is defined as a function of space, thus the velocity of each agent

is determined by its location in space rather than its identity. Figure 2.4 shows a visual

representation of how a velocity field acts to transport a distribution.

Vt

Rt

Figure 2.4: A velocity field V (green) acting to transport a resource distribution R (red).

(5) An objective function, J , which trades off two competing cost components. The

first is an assignment cost Ca, which is a function of the assignment kernel and reflects

that assignments between agents that are further apart are more costly. An example of

such an assignment cost takes the form

Ca(Kt) = 〈Ca,Kt〉 :=

∫

Ω×Ω

Ca(x, y)Kt(x, y) dx dy, (2.6)

where Ca is a “distance-like” function, that is, a monotonically increasing function of

the “distance” between locations x and y. A mathematically convenient choice uses the
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squared Euclidean distance

Ca(x, y) := ||y − x||22. (2.7)

The definition of the assignment cost (2.6) is “location aware” in the sense that as-

signing resources to demands that are far away incurs a high cost and vice versa. One

interpretation of this is as the cost of “communication” between demand and assigned

resource agents. In a simplistic communication model with no interference, the mini-

mum transmission power required for error-free communication scales with the square of

the distance, and therefore (2.6) with the choice (2.7) could be interpreted as the total

communication power required for a given assignment Kt.

In the static case where resource and demand distributions R and D are fixed in time,

the optimal (static) assignment kernel K̄ is the one that minimizes (2.6) subject to the

marginalization constraints (2.4), i.e.

K̄ := argmin

Πx#K=R,

Πy#K=D

∫

Ω×Ω

‖y − x‖2
2 K(x, y) dx dy (2.8)

Notice that the inner product structure of this cost function with the linear constraints

makes this problem an infinite-dimensional linear program. When R and D are normal-

ized, then this problem is precisely the Kantorovich Problem of optimal transport theory,

where K̄ is the optimal transport plan. Furthermore, the minimum of the expression (2.8)

is the squared 2-Wasserstein distance W2
2 (R,D) between the distributions R and D.

We are interested however in a dynamic situation where both resource and demand

distributions can be time varying. Clearly, if the resource distribution can freely move,

then the optimal assignment is for the resource distribution to perfectly match the de-

mand, resulting in a zero distance W2
2 (Rt, Dt) = 0 between them. To capture the idea
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that motion has its cost, we propose a cost for the motion of the resource field as

Cm
(
Rt, Vt

)
=

∫

Ω

‖Vt(x)‖2
2Rt(x) dx. (2.9)

If we consider the resource agents to be flying drones, this quantity would be interpreted

as the total aerodynamic drag on the swarm. Over a finite-time maneuver, the total cost

of motion would be the combination of hover cost and the energetic cost of overcom-

ing drag. However, since the hover cost is independent of maneuvers, it is the cost of

overcoming drag that has the dominant effect on solutions.

We therefore propose the following combined cost function for maneuvers over a time

horizon [0, T ]

J (K, V ) :=

∫ T

0

(
Ca
(
Kt
)

+ α Cm
(
Rt, Vt

))
dt, (2.10)

where α > 0 is a “trade off” parameter. The two objectives Ca and Cm are clearly

competing. If motion cost is negligible, then the optimal solution would be to move

Rt quickly so that it matches Dt, and then Ca becomes small. However, if motion cost

is expensive (i.e. large α), then the optimal solution would tolerate a high assignment

cost while keeping motion cost small. The length of time T in which to carry out this

maneuver will also be a factor in the tradeoff between the two costs.
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2.2 Problem Statement

We finally present our model formally in its full generality.

Definition 2.1 (The General Model). The General Model is defined to be the following

problem. Given an initial resource distribution R0, demand distribution Dt, weighting

parameter α, time horizon T , and cost functions Ca and Cm, solve

{K̄, V̄ } = argmin
K,V

∫ T

0

(
Ca
(
Kt
)

+ α Cm
(
Rt, Vt

))
dt

s.t. Πx#Kt = Rt

Πx#Kt = Dt

∂tRt(x) = −∇ ·
(
Vt(x) Rt(x)

)
.

(2.11)

A solution of the problem is defined to be an optimal pair {K̄, V̄ }, and the cost is defined

to be the value of the objective and is written J .

Remark. We have not yet shown under what conditions the above model is well-posed,

that is, that solutions exist, are unique, and depend continuously on initial conditions.

Indeed, these problems can sometimes be subtle, and we have elected to leave these issues

to later work.

Figures 2.5 and 2.6 show two different representations of the general model.
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Vt

Kt
Rt

Dt

minJ

Figure 2.5: Pictorial representation of the general model. The resource distribution R
(red) is paired to the demand distribution D (blue) by the assignment kernel K (pur-
ple) and is transported by the velocity field V (green). The objective J is minimized
over the whole maneuver.

Dt

Controller ∂tRt = −∇ ·
(
Vt Rt

)Vt Rt

Figure 2.6: Block diagram representation of the general model. The controller sees
the resource and demand distributions and specifies the optimal velocity field V to
transport the resource distribution via the plant dynamics (i.e. the transport equa-
tion).

In this setting, the demand distribution Dt is considered as an external signal (which

is known apriori), the resource distribution Rt is considered as the state, and the velocity

field Vt as the control input. The assignment kernel Kt is also a decision variable, but

in the cases which we examine in this paper, it plays a different role than V since it

is an instantaneous (i.e. non-dynamic) variable4. This fact has an implication for the

minimization over K that we state next.

4We remark that certain extensions may require that Kt be coupled to the dynamics, and so (2.11)
describes the model in full generality, but we leave these extensions to later work and proceed to adapt
this model to the cases presented.
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The objective in problem (2.11) has two components, and since the motion and motion

cost are independent of the assignment K, we can split the optimization as follows

inf
V

inf
Πx#K=R,

Πy#K=D

∫ T

0

(
Ca
(
Kt
)

+ α Cm
(
Rt, Vt

))
dt

= inf
V

∫ T

0







inf
Πx#K=R,

Πy#K=D

Ca
(
Kt
)




+ α Cm
(
Rt, Vt

)



dt (2.12)

Application of (2.6) with (2.7) makes the assignment cost equal to the 2-Wasserstein

distance between Rt and Dt, and together with the choice of (2.9) for the motion cost

we obtain the following “specific” model.

Definition 2.2 (The Specific Model). The Specific Model is defined to be the following

problem. Given an initial resource distribution R0, demand distribution Dt, weighting

parameter α, and time horizon T , solve

V̄ = argmin
V

∫ T

0

(
W2

2

(
Rt, Dt

)
+ α

∫

Ω

‖Vt(x)‖2
2Rt(x) dx

)
dt

s.t. ∂tRt(x) = −∇ ·
(
Vt(x) Rt(x)

) (2.13)

A solution of the problem is defined to be an optimal velocity field V̄ , and the cost is

defined to be the value of the objective and is again written J .

Since the quantity W2
2 (Rt, Dt) is a measure of distance between the state Rt and the

value of the signal Dt, the first term in the objective can be thought of as a “tracking

error”. The second term can be interpreted as a “control cost”, which in our context is

actually the cost of motion of the resource agents.
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With the interpretations given above, the optimal control problem (2.13) is anal-

ogous to an infinite-dimensional, generally nonlinear, “servo-mechanism” problem (see

[16]). The necessary conditions for optimality for such problems lead to nonlinear two-

point boundary value differential equations, which typically need to be solved numerically.

However, at least when the spatial domain is one-dimensional, there is additional struc-

ture which allows us to simplify the problem considerably. We focus exclusively on this

special case for the remainder of this work, while the higher-dimensional case will be

presented elsewhere.
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The One-Dimensional Problem

In this chapter, we solve the specific model in the case where the domain is a subset of R.

We first provide some additional background for this case, then demonstrate two main

results which simplify the problem considerably, before solving this simplified problem.

In addition, two special cases are investigated: that where the demand is static, and that

where the demand is periodic in time. Simulation results are included to support the

analysis and to help provide visual intuition.

3.1 Transformation and Decoupling

The assignment cost component in (2.13) is expressed in terms of the 2-Wasserstein

distance between two distributions. In general, there is not an explicit expression for

this distance in terms of the distributions themselves. Rather, it must be found as

the minimum of an optimization problem like (2.8). The problem (2.8) is an infinite-

dimensional linear program, and some properties of the 2-Wasserstein distance can be

obtained from this linear program and its dual. However, in the one-dimensional case

(i.e. when Ω ⊂ R), there is an explicit expression forW2
2 (Rt, Dt) in terms of the quantile
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functions associated with these distributions. In this section, we show how to reformulate

the problem (2.13) in the one-dimensional case using quantile functions as the state

and external signals. It is interesting to note that with this reformulation, the infinite

dimensional nonlinear optimal control problem (2.13) becomes a decoupled set of scalar

Linear-Quadratic servomechanism problems, for which analytic solutions can be derived.

We begin with a well-known result about the 2-Wasserstein distance for distributions

over one-dimensional space. First, recall the cumulative distribution function and the

quantile function of a distribution.

Definition 3.1. Let µ be a distribution defined over Ω ⊂ R with mass 1. The cumulative

distribution function (CDF) Fµ : Ω → [0, 1] and quantile function Qµ : [0, 1] → Ω of µ

are defined by

Fµ(x) :=

∫ x

inf(Ω)

µ(ξ) dξ, (3.1)

Qµ(z) := inf{x : Fµ(x) ≥ z}. (3.2)

Recall that Fµ and Qµ are equivalent representations for the distribution µ, in that

the associations are all 1-1. Recall also that in the case where Fµ is strictly increasing, the

quantile function Qµ is the inverse function of Fµ. We also have the additional relation

Fµ(x, t) = sup {z : Qµ(z, t) ≤ x}. (3.3)

Figures 3.1 and 3.2 show graphically the relationship between the three objects.
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Figure 3.1: The CDF is the integral of
the distribution.
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Figure 3.2: The quantile function is
the inverse function of the CDF.

There is an explicit form for the Wasserstein distance in one dimension in terms of

the quantile functions of the two distributions.

Lemma 3.2. Let µ and ν be any two normalized distributions over Ω ⊂ R. The 2-

Wasserstein distance between them is given by

W2
2 (µ, ν) =

∫ 1

0

(Qν(z)−Qµ(z))2 dz (3.4)

where Qµ, Qν : [0, 1]→ R are the quantile functions of the distributions µ and ν respec-

tively.

Proof. The formula is well-known in the literature – see e.g. Proposition 2.17 in Santam-

brogio [20]. The critical fact is that the optimal assignment in 1D is monotone.

Thus, in the one-dimensional case, the 2-Wasserstein distance between the distribu-

tions is exactly the L2 distance between the respective quantile functions. Note that this

implies that the space of normalized distributions on R equipped with W2 is isometric

to the set of monotone nondecreasing functions on [0, 1] equipped with the L2 distance5.

5 However, this has strong implications (such as an inherited notion of projection) which are central
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This gives a rather simple and familiar expression for the assignment cost in (2.13) in

terms of quantile functions. The next natural question is whether the dynamics (i.e. the

transport equation) also have a simple expression in terms of quantile functions. The

answer is affirmative as we show next. First, we establish the evolution of the CDF.

Lemma 3.3. Consider a one-dimensional distribution µ advected by (2.5). Its cumulative

distribution Fµ evolves according to the non-uniform transport equation

∂tFµ(x, t) = V (x, t) ∂xFµ(x, t), Fµ(inf(Ω), t) = 0. (3.5)

Proof. First, we have the property that µ(x, t) = ∂xFµ(x, t). Substituting this into (2.5)

yields

∂t∂xFµ(x, t) = ∂x
(
V (x, t) ∂xFµ(x, t)

)
.

Integrating over x provides

∂t

∫ x

inf(Ω)

∂ξFµ(ξ, t) dξ =

∫ x

inf(Ω)

∂ξ
(
V (ξ, t) ∂ξFµ(ξ, t)

)
dξ

and the fundamental theorem of calculus together with Fµ(inf(Ω), t) = 0 gives

∂tFµ(x, t) = V (x, t) ∂xFµ(x, t).

Note that the derivatives are all taken in the distributional sense.

It turns out that the “bilinear dynamics” of R (2.5) and its CDF FR (3.5) transform

into linear additive dynamics of the quantile function QR. We state this precisely with

the next definition and theorem.

to the special structure of the 1D case. This makes the geometry in 1D very different from the geometry
in higher dimensions.
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Definition 3.4 (Transformed Model). The Transformed Model is defined to be the fol-

lowing problem. Given an initial state QR,0, signal QD,t, weighting parameter α, and

time horizon T , solve

Ū = min
U

∫ T

0

∫ 1

0

((
QD(z, t)−QR(z, t)

)2
+ αU2(z, t)

)
dz dt

s.t. ∂tQR(z, t) = U(z, t),

∂zQR(z, t) = 0 ⇒ ∂zU(z, t) = 0,

(3.6)

A solution of the problem is defined to be an optimal input Ū , and the cost is defined to

be the value of the objective and is again written J .

The name “transformed model” as well as the suggestive choice of notation are jus-

tified by the following theorem.

Theorem 3.5. The specific model (2.13) over one spatial dimension and the transformed

model (3.6) are equivalent in that the solutions are 1-1 and attain the same cost. Specif-

ically, the solutions are related by the equations

U(z, t) = V
(
QR(z, t), t

)
(3.7)

V (x, t) = U
(
FR(x, t), t

)
. (3.8)

where FR, FD, and QR, QD are the CDFs and quantile functions of R, D respectively.

Proof. First, we wish to establish that z = FR(φ(x, t), t) is constant, where φ is the flow

of the vector field V . The defining property of the transport equation (2.5) is that it

preserves the total mass of any transported volume element. More precisely, the total
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mass in any set A is preserved as A is transported by φ

∫

φ(A,t)

R(x, t) dx =

∫

A

R(x, 0) dx.

In one dimension, the CDF value FR(x, t) is the total mass within the set [inf(Ω), x].

Such sets are transported as [inf(Ω), φ(x, t)] by the flow, and we can therefore conclude

that z = FR(φ(x, t), t) = constant.

Now suppose that V satisfies the constraint in (2.13). Then we know

∂tφ(x, t) = V (φ(x, t), t).

Since z = FR(φ(x, t), t) is constant, and QR and FR are inverse functions, we have

QR(z, t) = QR(FR(φ(x, t), t), t) = φ(x, t)

and therefore

∂tQR(z, t) = V (QR(z, t), t) =: U(z, t).

For the converse, the reasoning is almost the same, except that we require U(z1, t) =

U(z2, t) if QR(z1, t) = Q(z2, t) so that V (QR(z, t), t) is single-valued. Then V satisfies the

constraint in (2.13) if and only if U satisfies the constraints in (3.6), and the solutions

are 1-1.

To see that the costs are the same, first observe that (3.4) provides

W2
2 (Rt, Dt) =

∫ 1

0

(
QD(z, t)−QR(z, t)

)2
dz
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and so it only remains to show that

∫

Ω

V 2(x, t)R(x, t) dx =

∫ 1

0

U2(z, t) dz.

Applying the change of variables z = FR(x, t), x = QR(z, t) to the instantaneous motion

cost gives us

∫

Ω

V 2(x, t)R(x, t) dx =

∫ 1

0

V 2
(
QR(z, t), t

)
R
(
QR(z, t), t

)∂x
∂z

dz

and using U(z, t) := V (QR(z, t), t) together with

∂x

∂z
=

1
∂z
∂x

=
1

∂xFR(x, t)
=

1

R(x, t)
=

1

R
(
QR(z, t), t

)

we have ∫

Ω

V 2(x, t)R(x, t) dx =

∫ 1

0

U2(z, t) dz.

Thus the costs are identical, completing the proof. Again, note that the derivatives are

taken in the distributional sense.

The problem above is a distributed control problem with QR,t : [0, 1]→ R as the state,

and the signal Ut : [0, 1]→ R as the new control input. The first constraint expresses the

equivalent dynamics of the transformed model. Recall that in the original dynamics (2.5)

there was an implicit constraint that particles at the same location had to move with the

same velocity. This implicit constraint has now become explicit in the transformed model

as the second constraint. A graphical representation of this transformation is shown in

Figure 3.3.
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Figure 3.3: Equivalent dynamics for a distribution, the CDF, and quantile function.
Whereas the state and dynamics of the specific model are akin to the top figure, those
of the transformed model are akin to the bottom.

The distributed optimal control problem in Definition 3.4 has the following special

features that greatly simplify its solution.

� The dynamics in (3.6) act pointwise in z, and are thus “decoupled” in z.

� The second constraint in (3.6) implies that U should be constant over regions in z

where QR,t is constant. This, together with the dynamics, implies that if the initial

condition QR,0 is constant over some set S ⊆ [0, 1], then it remains constant over

that set for all time. The control input U over S is also constant, and thus the

solution can be parameterized by a single scalar for each set S.

The above observations together with the fact that the objective is an integral in

z imply that the distributed optimal control problem decouples into a family of scalar

optimal control problems. There is a distinction between the regions where QR,0 is

constant versus the regions where it is strictly increasing. It is obvious for example, that

when QR,0 is strictly increasing, the problem (3.6) decouples into an infinite number of
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scalar Linear-Quadratic (LQ) tracking problems, one for each value of z. The case where

QR,0 is piecewise constant occurs when the resource distribution is composed of discrete

agents. We present a unified solution to these problems below. We begin first with a

definition.

Definition 3.6 (Partition According to Level Sets). Given a function Q : A → R, a

partition of A according to level sets of Q is a set P of sets Pi such that

A =
⋃

i

Pi (3.9)

Pi ∩ Pj = ∅ ∀ i 6= j (3.10)

Q(Pi) = constant ∀ i (3.11)

Q(Pi) = Q(Pj) ⇔ i = j (3.12)

Note that {i} may be uncountable, but since the codomain of Q is R, {i} can always

be well-ordered.

Definition 3.7 (Decoupled Model). The Decoupled Model is defined to be the following

problem. Given an initial state QR,0, signal QD,t, weighting parameter α, and time

horizon T , first partition [0, 1] according to level sets of QR,0. Then, for each element Pi
in the partition, solve

ūi = argmin
ui

∫ T

0

((
ζi(t)− ηi(t)

)2
+ αu2

i (t)
)
dt

s.t. η̇i(t) = ui(t)

(3.13)

where ηi,0 := QR,0(Pi) and ζi(t) := avgPi(QD,t). The solution is the set of all optimal
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inputs {ūi} and the total cost is defined by the integral

J ′ :=

∫ 1

0

∫ T

0

((
ζ(z, t)− η(z, t)

)2
+ αu2(z, t)

)
dt dz (3.14)

where ζ(z, t) = ζi(t) for z ∈ Pi and similarly for η and u.

The decoupled model (3.13) is equivalent to the transformed model (3.6) (and by

extension the specific model (2.13)) in the following sense.

Theorem 3.8. The problem (3.13) is equivalent to problem (3.6) in that the solutions

are 1-1 on some subset which includes the optima and have costs differing by a constant

depending only on QR,0 and QD,t. Specifically, the two solutions are related by U(z, t) =

ui(t) for z ∈ Pi.

Proof. To see that the solutions are 1-1 on some subset including the optimum, first

observe that the dynamics are identical. Since the dynamics are the only constraint

in (3.13), clearly any solution U to (3.6) forms a feasible solution {ui} to (3.13) by

partitioning according to level sets of QR,0. Clearly any solution {ui} to (3.13) satisfies

the dynamics to (3.6) as well, and so it only remains to show that at least the optimal {ūi}

satisfies the second constraint. Clearly the partition P is defined to satisfy this constraint

within each element of the partition, but it still remains to be shown that the constraint

is satisfied between elements of the partition. However, we assert that this is true while

delaying the completion of the proof until Section 3.2. (We make no assumptions at

this point and proceed to find that the unconstrained optimum takes the form (3.17) -

(3.22). With this form, observe that QR(z1, 0) < QR(z2, 0) ⇒ z1 < z2 ⇒ ζ(z1, t) ≤

ζ(z2, t) ⇒ g(z1, t) ≤ g(z2, t). Define a new variable β(t) := η(z2, t) − η(z1, t) and find

its dynamics to be

β̇ = − f(t)β/α −
(
g(z2, t)− g(z1, t)

)
/α.
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We apply g(z1, t) ≤ g(z2, t) and solve the remaining equation by separation of variables

to find

β(t) ≥ β(0) exp

(
1

α

∫ t

0

f(τ) dτ

)

from which we conclude that β(t) > 0 or that η(z2, t) > η(z1, t). This ensures that the

second constraint of (3.6) is satisfied between elements of the partition P , completing

the first part of the proof.)

To show equivalence of the objectives, first observe that on each set Pi the demand

signal QD can be written in terms of an average and remainder component as

QD(z, t) = avgPi(QD,t) + remainder =: ζi(t) + ζ̃(z, t)

Notice that the remainder is by definition zero-mean, that is,

∫

Pi
ζ̃(z, t) dz = 0.

Then we can split the assignment cost component as follows

∫

Pi

(
QD(z, t)−Qr(z, t)

)2
dz =

∫

Pi

(
ζi(t) + ζ̃(z, t)− ηi(t)

)2
dz

=

∫

Pi

(
ζi(t)− ηi(t)

)2
+ ζ̃(z, t)

(
ζi(t)− ηi(t)

)

+ ζ̃2(z, t) dz

=

∫

Pi

(
ζi(t)− ηi(t)

)2
dz +

∫

Pi
ζ̃(z, t)

(
ζi(t)− ηi(t)

)
dz

+

∫

Pi
ζ̃2(z, t) dz

=

∫

Pi

(
ζi(t)− ηi(t)

)2
dz + 0 + ci(t)

where ci(t) is a constant depending only on QD (and the partition P). Integrating over
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t and z we obtain

∫ 1

0

∫ T

0

(
QD(z, t)−Qr(z, t)

)2
dt dz =

∫ 1

0

∫ T

0

(
ζ(z, t)− η(z, t)

)2
dt dz + C

where C is a constant depending only on QD and the partition P . Then we can write

∫ T

0

∫ 1

0

((
QD(z, t)−QR(z, t)

)2
+ αU2(z, t)

)
dz dt

=

∫ 1

0

∫ T

0

((
ζ(z, t)− η(z, t)

)2
+ αu2(z, t)

)
dt dz + C (3.15)

or that J = J ′ + C, where C is a constant depending only on QD and the partition P ,

and thus only on QD and QR,0, completing the proof.

The problem (3.13) is made up of a family of decoupled scalar LQ-tracking problems

with the signals ζi as the reference signals. These problems can be solved independently

of each other, and the optimal solution reconstructed from the independent solutions.

Figure 3.4 shows this decoupling graphically.

The next section details the solution of a single one of these scalar LQ-tracking

problems.
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Figure 3.4: Decoupled model example. Each discrete agent corresponds to a constant
region in the quantile function. The vertical dotted lines show the separation of these
constant regions via partitioning. A single scalar LQ problem can then be written for
each member of the partition.

3.2 The Scalar LQ Tracking Problem

We begin with a formal definition.

Definition 3.9 (Scalar LQ Tracking Problem). The scalar Linear-Quadratic (LQ) track-

ing problem is defined to be the following problem. Given an initial state η0, signal ζt,

weighting parameter α, and time horizon T , solve

ū = min
u

∫ T

0

(
ζ(t)− η(t)

)2
+ αu2(t) dt

s.t. η̇ = u

(3.16)

The solution of the problem is defined to be the optimal input ū and the cost is the value

of the objective and is written J ′.
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Figures 3.5 and 3.6 show two pictorial representations of the scalar LQ-tracking prob-

lem, as well as its relation to the overall problem we wish to solve.

ut
ηt ζt

Figure 3.5: A single scalar LQ-tracking problem is written for two elements in the
original distributions. The variables ηt and ζt represent the positions of the resource
agent and demand component respectively and ut represents the velocity of the re-
source agent.

ζt

Controller η̇ = u
ut ηt

Figure 3.6: Block diagram representation of the scalar LQ-tracking problem. The
variable η is considered as the state, ζ as the reference signal, and u as the control
input.

This problem has been studied in the literature before (see e.g. [16]), but we reproduce

its solution here. The optimal solution has two components, a feedback and feedforward

term

u(t) = − f(t) η(t)/α − g(t)/α, (3.17)

where f solves a differential Riccati equation and g is the output of a linear time-varying

system driven by the “reference signal” ζ

ḟ(t) = f 2(t)/α− 1, f(T ) = 0, (3.18)

ġ(t) = f(t) g(t)/α + ζ(t), g(T ) = 0. (3.19)

As usual, the feedback gain arises out of a differential equation with a final condition,
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and can be computed ahead of time. The same is true for the feedforward term, which

requires that in this problem setting, the demand signal must be known ahead of time.

Figure 3.7 shows the structure of the optimal controller.

+
−

ζt
ġ = fg/α+ ζ

gt
f/α

ut
η̇ = u

ηt

Controller

−1/f

Figure 3.7: Structure of the optimal controller. The variable f is a feedback gain that
arises out of a differential Riccati equation and g is an internal controller state. Note
that the equation for g is solved backwards in time and so ζ must be known ahead of
time. In other words, the optimal controller is noncausal.

The differential Riccati equation (3.18) can be solved analytically by separation of

variables to give

f(t) =
√
α tanh

(
(T − t)/√α

)
. (3.20)

The differential equation (3.19) for g can in principle be solved backwards using its state

transition function Φg (which is in turn determined by f/α)

g(t) =

∫ t

T

Φg(t, τ) ζ(τ) dτ (3.21)

where an explicit form for Φg can be derived from (3.20)

Φg(t, τ) = cosh
(
(T − τ)/

√
α
)
· sech

(
(T − t)/√α

)
. (3.22)

This is as much as we can say in the general case. We remark once again that the form

of (3.21) requires the entire demand signal to be known ahead of time, and so this is a

noncausal controller. However, there are at least two cases where this could reasonably
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be assumed. The first case is that where the demand is static, and the second is where

the demand is periodic in time. In both these cases, we can use past measurements to

infer the future state of the signal. The next two sections are dedicated to investigating

each of these scenarios.

3.3 The Static Case

In the special case where ζ(t) = ζ is constant in time, we can obtain more explicit

expressions for the optimal control and trajectory. First, the integral (3.21) evaluates to

g(t) = − ζ√α tanh
(
(T − t)/√α

)
. (3.23)

Combining this with (3.20) gives the optimal control (3.17) in the following “error feed-

back” form

u(t) =
(
ζ − η(t)

)
tanh

(
(T − t)/√α

)
/
√
α (3.24)

which provides a feedback control law. With this control law, we obtain the trajectory

η(t) = Φ(t, 0) η0 + (1− Φ(t, 0)) ζ (3.25)

and can find the open-loop velocity solving (3.16) as

ū(t) = − Φ̇(t, 0) (ζ − η0) (3.26)
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where

Φ(t, τ) := cosh
(
(T − t)/√α

)
· sech

(
(T − τ)/

√
α
)

(3.27)

Φ̇(t, τ) = − sinh
(
(T − t)/√α

)
· sech

(
(T − τ)/

√
α
)
/
√
α. (3.28)

Furthermore, the optimal solution obtains a cost of

J ′(η0, ζ;α;T ) = (ζ − η0)2
√
α tanh

(
T/
√
α
)
/ 2. (3.29)

Notice that Φ(t, 0) decreases monotonically from 1 towards 0 in the limiting case

where T → ∞, so the trajectory (3.25) is an interpolation between η0 and ζ. This

implies a rather nice form for the overall solution to (2.13): the solution moves along the

Wasserstein geodesic between R0 and some distribution R∗, which turns out to be the

nearest reachable distribution to D in the W2 sense. We formalize this in the following

theorem.

47



The One-Dimensional Problem Chapter 3

Theorem 3.10. Let R0 be an initial resource distribution, D a static demand distribu-

tion, α a weighting parameter, and T a time horizon. Let FR,t, FD and QR,t, QD be the

CDFs and quantile functions of Rt, D respectively. Now let ΠP be the L2 projection oper-

ator onto the subspace of functions which are constant on sets Pi where QR,0 is constant.

Define R∗ to be the distribution and FR∗ the CDF of the quantile function QR∗ := ΠPQD.

Then the optimal velocity is given in closed-loop form by

V̄t =
(
QR∗ ◦ FR,t − I

)
tanh

(
(T − t)/√α

)
/
√
α (3.30)

or in open-loop form by

V̄t = − Φ̇t

[
(QR∗ −QR,0) ◦ FR,t

]
(3.31)

solving (2.13) and resulting in the trajectory

Rt =
[
Φt I + (1− Φt)

(
QR∗ ◦ FR,0

)]
#
R0 (3.32)

where

Φt := cosh
(
(T − t)/√α

)
· sech

(
T/
√
α
)

(3.33)

Φ̇t = − sinh
(
(T − t)/√α

)
· sech

(
T/
√
α
)
/
√
α. (3.34)

Furthermore, the solution obtains the cost

J (R0, D;α;T ) = W2
2 (R0, D)

√
α tanh(T/

√
α) / 2. (3.35)

48



The One-Dimensional Problem Chapter 3

Proof. First, we have the velocity solving (3.17) given in closed-loop form by (3.24). By

applying Theorem 3.8, we know the solution to (3.6) is given by

Ūt =
(
QR∗ −QR,t

)
tanh

(
(T − t)/√α

)
/
√
α.

Then by applying Theorem 3.5, we have

V̄t = Ut ◦ FR,t

=
(
QR∗ ◦ FR,t −QR,t ◦ FR,t

)
tanh

(
(T − t)/√α

)
/
√
α

=
(
QR∗ ◦ FR,t − I

)
tanh

(
(T − t)/√α

)
/
√
α.

Similarly, for the open-loop form, by applying Theorems 3.8 and 3.5 to (3.26), we

obtain

Ūt = − Φ̇t

(
QR∗ −QR,0

)
,

V̄t = − Φ̇t

[
(QR∗ −QR,0) ◦ FR,t

]
.

To find the trajectory Rt, recall that Rt = φt#R0 where φ is the flow generated by

V̄ . Using the identity

φ(x, t) = QR(FR(x, 0), t)

from the proof of 3.5 together with the solution

QR,t = ΦtQR,0 + (1− Φt)QR∗

yields

Rt =
[
Φt I + (1− Φt)

(
QR∗ ◦ FR,0

)]
#
R0.
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To find the cost, we apply Theorem 3.8 and integrate (3.29) over z to find

J ′ =
∥∥ζ −QR,0

∥∥2

2

√
α tanh(T/

√
α) / 2

so that

J =
∥∥QD −QR,0

∥∥2

2

√
α tanh(T/

√
α) / 2

and by applying Theorem 3.5 we have

J = W2
2 (R0, D)

√
α tanh(T/

√
α) / 2,

completing the proof.

This surprisingly straightforward solution can be attributed to the consequences of

the isometry between the set of quantile functions and the space of distributions described

in Footnote 5. First, the isometry with L2 provides an inherited notion of projection for

distributions over R. Second, the isometry ensures that geodesics in L2 (i.e. straight

lines) map to geodesics in W2 and vice versa. Figure 3.8 shows the situation pictorially.

Lastly, we remark also that the optimal cost function (3.35) solves the Hamilton-

Jacobi-Bellman equation for this system. This concludes our analysis of the static case.
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L2 W2

Isometry

QR,0

QR∗

R0

R∗

QD D

Reachable
Set

Figure 3.8: Consequences of isometry in the 1D case. We can obtain the solution of
the transformed problem via projection in L2 and then pull the solution back into
Wasserstein space. Since the solution in L2 is a straight line, the resulting solution in
Wasserstein space is a Wasserstein geodesic.

3.3.1 Simulations

We simulated a simple example with a discrete resource distribution and continuous

demand distribution. The resource distribution consists of ten agents with equal weight,

initialized evenly between 0 and 0.9. The demand distribution is given by a relatively ar-

bitrary static bimodal distribution. We used the time horizon T = 10 and the parameter

α = 2. Figures 3.9 - 3.11 show the results.

Theorem 3.10 tells us that changing the parameters α and T does not change the

path that the resource distribution takes, only the rate at which it traverses that path.

We know that this simulation used a relatively large value for T/
√
α since the final

distribution appears to converge to R∗. However, if we had used a much smaller value

for T/
√
α then the resource distribution would have moved much more slowly, and the

final condition at t = T may have looked more similar to Figure 3.10.
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Figure 3.9: Initial conditions of the distributions R0 (red), D (blue), and the cor-
responding CDFs and quantile functions. The vertical dotted lines on the quantile
function plot separate members of the partition P of Definition 3.4.
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Figure 3.10: Intermediate conditions of the distributions R0, D, their CDFs, and
quantile functions at t ≈ 1.2.
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Figure 3.11: Final conditions of the distributions R0, D, their CDFs, and quantile
functions. Notice how the distribution R appears to converge to the distribution R∗,
the closest reachable distribution to D.

3.4 The Periodic Case

Here, we are interested in the steady-state response of the system in the infinite-

horizon case where the demand is periodic in time. In this case, we find that

f(t) → √
α, (3.36)

ġ(t) → g(t)/
√
α + ζ(t), (3.37)

η̇(t) → − η(t)/
√
α − g(t)/α. (3.38)

This is a forced linear system and so we can solve for the overall transfer function. We

find the frequency response to be

F(η)

F(ζ)
=

−1/α

(jω)2 − 1/α
=

1/α

ω2 + 1/α
(3.39)
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where F denotes the Fourier transform. Note that this looks like a low-pass filter with

cutoff frequency 1/
√
α. Also note that the phase response is identically zero, so that

the state is perfectly in-phase with the reference signal. While this is expected for the

optimal behavior, it also reaffirms that the optimal controller is noncausal, as we would

expect any causal low-pass filter to have some amount of delay. We also remark that

there are two roots of the transfer function: one in the right half plane (which stable

solving backward for g) and one in the left half plane (which is stable solving forwards

for η).

3.4.1 Simulations

We simulated an example with a discrete resource distribution and continuous demand

distribution. The resource distribution again consists of ten discrete agents with equal

weight, and the demand distribution is given by two periodically alternating Gaussian

distributions. The equation for the demand distribution is given by

d(x, t) = (1 + sin(2πt))N (2.5, 1) + (1− sin(2πt))N (7.5, 1) (3.40)

where N (x, σ2) denotes the normal distribution with mean x and variance σ2. A time-

series of the demand distribution is shown in Figure 3.12, and the resulting tracking

signals ζi are shown in Figure 3.13. Notice that even though the distribution is sinu-

soidally time-varying, the quantile function (and thus the tracking signals) have higher

harmonics.

We ran simulations with three different values of α to demonstrate behavior in three

different regimes. Figures 3.14 - 3.19 show the results.
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Figure 3.12: Demand signal D con-
sisting of two periodically alternating
Gaussian distributions.
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Figure 3.13: Resulting reference sig-
nals ζi for periodic demand field.
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Figure 3.14: Trajectory of resource dis-
tribution in small-α case. Notice that
since α is small, motion is penalized
very little, and the optimal trajectory
follows the demand field closely.
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Figure 3.15: Positions ηi for ten re-
source agents in small-α case. Notice
that since α is small, almost all the
frequencies in the reference signals are
passed by the filter.
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Figure 3.16: Trajectory of resource dis-
tribution in moderate-α case. Notice
that since α is moderate, motion is
penalized somewhat, and the optimal
trajectory follows the demand field,
but less closely.
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Figure 3.17: Positions ηi for ten
resource agents in moderate-α case.
Since α was chosen to be about twice
the base frequency of the demand field,
some of the frequencies in the reference
signals are passed by the filter while
some are attenuated.
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Figure 3.18: Trajectory of resource dis-
tribution in large-α case. Notice that
since α is large, motion is penalized
heavily, and the optimal trajectory is
to move very little.
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Figure 3.19: Positions ηi for ten re-
source agents in large-α case. Notice
that since α is large, almost all the fre-
quencies in the reference signals are at-
tenuated by the filter.

56



Conclusion

In this work, I formulated and analyzed a novel model for control of large swarms of

autonomous agents. I first provided some background, then motivated and developed

the proposed model. Two models were introduced: a general model which was abstract

and able to accommodate different objectives, and a specific model which made particular

choices for the objectives so that the model was fully defined. I then solved the specific

model in the case of one spatial dimension by means of a transformation and then a

decoupling, which reduced the problem to a well-understood form. An analytic solution

was reproduced in the general case. Then, the cases where the demand distribution was

static and time-periodic were analyzer further, where explicit solutions and simulation

results were provided.

Main Contributions

The main contributions of this work are several definitions and theorems which de-

scribe the proposed model, its structure, solution, and provide new perspectives and

techniques for solving these types of problems. Specifically:

� Definitions 2.1 and 2.2 propose two new models for large-scale swarm control
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� Definitions 3.4 and 3.7 and Theorems 3.5 and 3.8 provide new tools for solving

these types of problems and lend insight into the structure of the proposed model

in one spatial dimension

� Analytic solutions to the general case, static case, and time-periodic case in 1D are

presented in Sections 3.2 - 3.4, characterizing optimal swarm behavior and demon-

strating that the proposed model is analytically tractable and that the Wasserstein

distance cooperates well with the framework of optimal control

� Simulation results are provided for the static case and the time-periodic case in

Subsections 3.3.1 and 3.4.1, helping support the theory in addition to providing

visual intuition

There are many practical merits to this approach to swarm control as well. The frame-

work is relatively abstract and could be applied to a wide range of swarm control sce-

narios, including, for example, drone delivery, autonomous taxi services, data collection,

attacker/defender scenarios, and emergency response. The ability to treat general objec-

tives and constraints is also desirable for many of these real-world applications. Optimal

control also allows swarm behavior to be tuned by an operator through high-level param-

eters without knowledge of the underlying mathematics. For these reasons, this seems

to be a compelling model for many types of real-world swarm control problems.

Limitations and Future Work

The foremost limitation of this work is that the control strategy developed is cen-

tralized as opposed to distributed. For large-scale swarms in the real world, a centralized

controller will suffer from the same drawbacks that motivated the continuum model in

the first place. Namely, it is infeasible for a single controller to communicate with and
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plan motion for every agent. Thus, the control strategy employed on any large-scale real-

world swarm will need to be distributed. It is not immediately clear if this work could be

extended to distributed controllers, and exploring this is the first main thrust for future

work. However, even as is, these results may still be used in a motion planning phase to

find a trajectory which could then be followed by a distributed controller. Additionally,

this work characterizes best-possible performance both qualitatively and quantitatively

by providing behavior objectives for distributed controllers and a metric by which to

compare them. Thus, the work does ultimately provide useful tools for developing better

distributed controllers regardless of whether it can produce them directly.

The second limitation of this work is that the control strategy developed is noncausal,

that is, the entire demand signal needs to be known ahead of time in order to use this

framework. The two cases where this is a reasonable assumption are where the demand

is static and where it is periodic in time, since in both of these cases, information about

the future signal can be inferred from past measurements. However, this limitation can

be overcome by treating the problem within the framework of robust control. Developing

a version of the controller which can handle unknown time-varying signals is the second

main thrust for future work.

The third main thrust is the development of a model that can treat the case where

the demand is dynamically coupled to the resource, as in the case where the resource

“satisfies” the demand and subsequently reduces it. As mentioned earlier in Footnote 3,

this is a more interesting (albeit much more complex) problem, and can be treated using

the notion of “nonuniform optimal transport” [24].

The last main thrust we mention is of course exploration of the higher-dimensional

case. The degree to which these results may generalize to higher dimensions is still un-

clear. In particular, it is known that the Wasserstein distance does not admit a general

closed-form solution in higher dimensions, and it is not immediately obvious what ana-
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logue might be used in place of the quantile function in order to transform the problem

(nor whether there exists a similar isometry). Nevertheless, even if these properties do not

generalize, certain analysis and optimization techniques may still make optimal control

based on the Wasserstein distance compelling. Further investigation must be done.
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