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Abstract

Photoplethysmography (PPG) is a ubiquitous physiological measurement that detects beat-to-

beat pulsatile blood volume changes and hence has a potential for monitoring cardiovascular 

conditions, particularly in ambulatory settings. A PPG dataset that is created for a particular use 

case is often imbalanced, due to a low prevalence of the pathological condition it targets to predict 

and the paroxysmal nature of the condition as well. To tackle this problem, we propose log-

spectral matching GAN (LSM-GAN), a generative model that can be used as a data augmentation 

technique to alleviate the class imbalance in a PPG dataset to train a classifier. LSM-GAN utilizes 

a novel generator that generates a synthetic signal without a up-sampling process of input white 

noises, as well as adds the mismatch between real and synthetic signals in frequency domain to 

the conventional adversarial loss. In this study, experiments are designed focusing on examining 

how the influence of LSM-GAN as a data augmentation technique on one specific classification 

task - atrial fibrillation (AF) detection using PPG. We show that by taking spectral information 

into consideration, LSM-GAN as a data augmentation solution can generate more realistic PPG 

signals.

I. INTRODUCTION

The currently estimated prevalence of AF in adults is between 2% and 4% , and a 

significant rise is expected owing to extended longevity in the general population and 

intensifying search for undiagnosed AF [1]. If left untreated, AF confers various significant 
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health risks. AF is linked to a 5-fold increase in the risk of ischemic stroke, a 3-fold 

increase in the risk of heart failure, and a 2-fold increase in the risk of mortality 

from heart disease [2]. Therefore, it marks great clinical and economic significance to 

have an affordable, portable, and continuous AF screening tool that patients with AF 

can access at scale. In the past, AF detection has been mainly relying on analysis and 

interpretation of electrocardiogram (ECG). Recent advancement in wearable technologies, 

such as fitness bands and smartwatches, offers convenient and continuous recordings of 

photoplethysmography (PPG), which demonstrates to be a potential alternative to ECG for 

AF detection [3], [4]. Current wearables with continuous monitoring of PPG offer many 

benefits, such as friendly user interface, low cost, and portability, making it a promising 

platform to achieve an AF screening tool accessible to the general population. Therefore, 

PPG garnered tremendous research interest in recent years for a reliable and accurate AF 

detection solution. For PPG-based AF detection, it has been shown that deep learning 

(DL) algorithms achieve better results than traditional machine learning algorithms [5]–[8]. 

Recent studies benefit from a balanced sample setup between AF and non-AF classes that 

offer promising AF detection performance [6]–[11]. Abundant data can be obtained through 

either in-hospital settings or from free-living subjects outside of the hospital. However, it 

remains a challenge to obtain a balanced dataset with a large number of samples in both 

classes, owing to the low prevalence of AF in the general population [5].

Data augmentation has become a standard approach to handle the sample-imbalance issue 

in machine learning, particularly in image classification tasks. Not only can it help mitigate 

overfitting when training supervised learning models [12]–[14], but also can it increase the 

sample size by generating synthetic samples from real ones so that machine learning models 

can be developed based on a dataset of limited sample size. However, not many studies have 

investigated the implementation of data augmentation on PPG data. Gotlibovych et al. [15] 

applied data augmentation by random selection of raw PPG segments, performing signal 

processing with scaling and additive shifts, and finally including the augmented segments 

into training samples to train an AF detection model. The majority of the data in the study 

were recorded during sleep, so it warrants further validation on how the model performs 

in ambulatory settings, where PPG signals are more susceptible to artifact. The study only 

investigated the effect of data augmentation on the model training process and showed that 

augmented data could help smooth the change of training loss over epochs. However, the 

impact of data augmentation on the testing performance still needs to be further explored. 

Another study, PlethAugment [16], implemented a more advanced technique, generative 

adversarial network (GAN) [17], for PPG data augmentation. Three different conditional 

GANs were tested on various public datasets for different classification tasks, showing that 

GAN can help generate realistic PPG signals and improve the performance of PPG-based 

models. This study also sheds light on the effect of synthetic data on class imbalance and 

the influence of different ratios of real-world to artificial training data on classification 

performance. However, the performance comparison of GANs with traditional augmentation 

techniques, such as shifting and cropping, was not conducted in the study, which is a 

missed opportunity to inform whether the optimal choice of data augmentation solutions is 

task-specific. Furthermore, the tasks investigated in the study did not include AF detection.
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To investigate suitable augmentation techniques for the PPG-based AF detection task, the 

present study started with various popular GAN constructs, including deep convolutional 

GAN (DCGAN) [18], Wasserstein DCGAN (W-DCGAN) [19]. However, we quickly 

realized that these off-the-shelf techniques do not work well for PPG-based AF detection as 

they show a very limited amount of improvement over simple data augmentation techniques. 

Therefore, we propose a new GAN to generate synthetic PPG signals. In this new GAN, 

we adopted a different generator architecture as well as a new loss function that measures 

how close a synthetic signal is to a PPG in the frequency domain. The objective of this new 

GAN is to generate synthetic PPGs with a power spectrum close to the real ones. Therefore, 

we call this GAN Log-Spectral matching (LSM)-GAN and the new loss function LSM-loss, 

as shown in Fig. 1. Our results show that the LSM-GAN generates synthetic AF signals 

with a distribution closest to the real ones and achieves the greatest performance gain in 

AF detection, compared to the other two GANs and two conventional data augmentation 

techniques. The main contributions of this paper include:

• To our knowledge, this is the first work that incorporates spectral information 

into the loss function for data augmentation of PPG signals. And we are the 

first to consider using GAN to generate synthetic PPG data for the task of AF 

detection.

• A weighting mechanism is implemented to balance the LSM-loss and adversarial 

loss, and an algorithm to automatically search for the optimal weighting 

parameter is proposed.

• Besides testing on the internal dataset, we evaluate trained models from 

each augmentation method on two public PPG datasets, which validates the 

generalizability of the proposed LSM-GAN.

The rest of this paper is organized as follows: section 2 describes prior related works on 

AF detection and physiological signal augmentation. Details of our experiments, including 

datasets and training procedures, as well as our proposed method, are provided in Section 3. 

Experiments are presented in Section 4, followed by a Result section 5, then discussion and 

summary of our work in Section 6.

II. RELATED WORK

A. Traditional data augmentation techniques for PPG

To realize its full potential for PPG-based AF detection, deep learning algorithms as 

reviewed above require a large amount of training data. Because the available datasets 

are not always enough in quantity and diversity, various data augmentation methods are 

explored to tackle the data shortage problem. Soonil et al. [9] implemented a 20-second 

overlap between consecutive PPG segments when splitting the continuous PPG recording, 

which can be considered as a basic data augmentation method. Although it enlarges the 

training sample size, no new information is introduced into the training data. Similar to the 

work [15], Cheng et al. [22] adopted three traditional data augmentation methods: scaling, 

adding Gaussian noise, randomly changing the amplitude, and random combinations of 

these three methods are applied to the PPG signal to enlarge the training sample size. These 
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methods might either disrupt the signal continuity, introduce non-physiologic patterns into 

the waveform, or even alter the waveform into the opposite class, which will introduce 

additional label noise into the training set and compromise the model performance. Andrius 

et al. [23] developed a model to simulate AF-PPG signals from ECG. The model takes the 

RR intervals calculated from ECG as input and characterizes pulse width, amplitude, and 

scale of PPG signals through a linear combination of one log-normal and two Gaussian 

functions. Therefore, the model is capable of simulating PPG signals during AF or with 

premature beats. Although results demonstrate that the synthetic PPG is close to the real 

PPG morphologically, it remains to be studied whether those synthetic PPGs are helpful for 

downstream tasks such as AF detection. Another study [25] managed to model the PPG with 

modeling the finite element method and monte carlo. However it can only generate single 

pulse, the change of interval between consecutive pulses can not be modeled. Mazumder 

et al. [27] propose a physical model of the cardiac system to generate synthetic PPG, 

which considers pathophysiological features. They also conduct the comparison experiment 

with DCGAN [18] and claims the GANs is less effective to help improve the downstream 

classification task. Qunfeng et al. [28] develop a matlab toolbot to generate synthetic PPG 

template with regular, irregular, fast rhythm and motion artifacts.

B. GAN based PPG synthesis

Besides the traditional augmentation techniques mentioned above, several studies have 

developed GANs to generate synthetic PPG signals. Heean et al. [24] introduced a GAN to 

generate high-quality PPG signal from the simultaneously recorded ECG. The architecture 

contains a Bi-LSTM based generator and 1D-CNN based discriminator. However, the 

proposed GAN can only take 1-second ECG and generate 1-second PPG at a time. One 

has to stitch consecutive one-second of PPGs in order to get a longer duration signal. In 

SynSigGAN [29], a GAN model was proposed to generate four kinds of physiological 

signals (electrocardiogram (ECG), electroencephalogram (EEG), electromyography (EMG), 

PPG). In the preprocessing stage, each signal goes through a discrete wavelet transformation 

and an inverse discrete wavelet transformation, and the signal denoising process takes 

place in between. As the last part of preprocessing, automatic segmentation is applied to 

set the length for each type of physiological signal from GAN. Again, no downstream 

use case is investigated to evaluate the efficacy of the synthetic signals. Seyed et al. [30] 

proposed a cycleGAN [31] based approach to generate PPG signal for respiratory rate (RR) 

estimation. A novel loss function was introduced, which takes the RR of synthetic signal 

into account. Results showed that, by adding the synthetic PPG signals, the accuracy of 

RR estimation outperformed other state-of-the-art methods using an identical experiment 

setting and dataset. The study suggests that introducing task-related information into the loss 

function is a promising solution to improve many GAN-based tasks.

III. METHODS

A. Data Sets

Training data: Continuous fingertip PPG (fPPG) recordings were collected with pulse 

oximeters from 126 in-hospital patients aged between 18 and 95 years (median 63) who 

were admitted to UCLA Medical Center between April 2010 and March 2013. AF episodes 
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were annotated by one board-certified cardiac electrophysiologist by marking the start and 

end of each episode based on co-registered ECG recordings. In the training data, 104 of 

126 patients (83%) had recordings with Non-AF rhythms, 14 of 126 patients (11%) had 

recordings with persistent AF rhythms, and 8 of 126 (6%) patients had recordings with 

mixed (AF and non-AF) rhythms. Continuous PPG recordings were divided into consecutive 

non-overlapping 30-second records. Each record was labeled “AF” or “non-AF” depending 

on if it was extracted within or outside an AF marked episode, respectively. The IRB 

authorized the retrospective use of this dataset for this investigation with a waiver of patient 

permission (IRB approval number: 16-18764).

Testing data—A set of continuous PPG data were collected from wearable devices 

(Empatica E4) worn by 13 acute stroke patients admitted into the neurological intensive care 

unit (NICU) of UCSF Medical Center between October 2016 and January 2018. Patients’ 

age was between 19 to 91 (median = 73.5). Within these patients, 8 of the 13 (61%) patients 

had recordings with AF episodes. The collected PPG recordings lasted between 3h and 22h 

(median = 10.5h). With the same method used in the training data, the continuous signals 

in the test set were segmented into consecutive non-overlapping 30-second segments (5831 

in total). A subset of the test set (2683 out of 5831 segments) with signal quality labels was 

built where a congruent agreement was obtained among three annotators who labeled the 

records with respect to signal quality (good vs. bad). The details on signal quality annotation 

can be found in the work [34]. Table 1 shows the distribution of AF and Non-AF segments 

in the training and testing sets. The protocol to collect the test set was approved by UCSF 

IRB, and written informed consent was obtained from all patients.

Artifact segmentation: Each 30-second record from the test set was annotated to identify 

onset and offset of each artifactual region following the protocol described in the work [34]. 

The proportion of artifacts was calculated by summing up the duration of all segments in a 

PPG record that were considered artifacts and divided by the total length (30 seconds) of the 

signal. Artifacts within 30-sec PPG signals were highlighted in examples shown in Figure 2.

AF Annotation: The testing set was annotated with respect to AF presence by seven 

clinicians as described in a previous study [34]. Guided by 7-lead ECG recordings, 

simultaneously recorded PPG signals were labeled ”AF”, ”Not AF”, or ”Not Sure” if 

they were respectively identified to contain AF rhythm, other rhythms other than AF, or 

ambiguous/unidentifiable rhythms. Figure 3 shows the distributions of the number of records 

with respect to artifact proportions for AF and Non-AF conditions.

B. Baseline data augmentation methods

Data-copying: As the most straightforward data augmentation method, data-copying 

simply duplicates randomly selected signals and then adds them into the training set.

Permutation: A 30-second PPG signal is divided into five equal-length sub-segments, then 

all five sub-segments are rearranged by randomly permuting their orders and concatenated to 

form a new 30-second signal.
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Deep convolutional generative adversarial network (DCGAN) and DCGAN with 
Wasserstein distance (W-DCGAN): GAN has two components [16]: a generator 

network G and a discriminator network D, as shown in Fig. 1. G receives a random signal 

z and generates a ’fake’ PPG signal. D is a binary classifier to determine whether the input 

signal is a real or fake PPG. The training process of GAN is a zero-sum game, where 

generator and discriminator aim to minimize the objective function:

min
G

max
D

V D, G = Ex ∼ pdata x D x + Ez ∼ pz z log 1 − D G z

(1)

where x is the real PPG signal and G(z) is the synthetic data generated from random signal 

z. D(x) and D(G(z)) are the discriminator’s estimates of the probability of x and G(z) being 

real, respectively.

Convolutional neural network (CNN) based models are capable of learning good feature 

representations of the input data, leading to state-of-the-art performance in many 

classification tasks. Compared to vanilla GAN, DCGAN adopts the structure of deep CNN 

to improve the quality of generated signal and accelerate the converging process.

The Wasserstein deep convolutional generative adversarial network (W-DCGAN) is a further 

extension of DCGAN. In DCGAN, we only change the model structure and keep the same 

cost function as vanilla GAN. By introducing the Wasserstein distance, W-DCGAN not only 

improves the training stability but also has a cost function that is related to the quality of the 

generated signal. The new cost function is

min
G

max
D

LW GAN D, G = − Ex ∼ pdata x D x + Ez ∼ pz z D G z

(2)

C. Proposed Architecture

Integrating additional loss into the cost function of the generator has been proven to 

be helpful for generating synthetic biomedical signals [29]. Also, in the speech signal 

area, introducing information from spectral-domain has brought significant improvement in 

speech recognition and speech waveform generation tasks [32], [33]. In the present study, 

we propose to include spectral information from PPG waveforms into the cost function for 

GAN. The hallmark of AF compared to normal sinus rhythm lies in the irregular irregularity 

in the rhythm. Therefore, synthetic signals that retain spectral characteristics of real ones 

will likely improve the model performance. Additionally, because our AF detector and most 

reported deep neural network approaches process PPG signals in time domain, matching 

in spectral domain still allows randomness in the phases of synthetic signals and hence 

enriches training data in a profound way. We hypothesize that such randomness will be 

beneficial for training AF detectors.

GAN is composed of two neural networks: generator(G) and discriminator(D), the 

generator takes random noise as input to generate synthetic signals. However, the length 
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of the input noise is an arbitrary choice and few studies have investigated its influence. In 

the present study, instead of following a conventional choice – 100 – as the dimension of 

random noise, we choose an identical length to the output dimension as the input (1200 

in this study). To achieve this, we build a new architecture for the generator which is able 

to generate the synthetic signal with an identical length as input. The comparison of two 

different generators is shown in Fig.4 . To better distinguish GANs with different generator 

architectures, we use DCGAN-100 and DCGAN-1200 to name two baseline methods with 

different input dimensions in later sections

D. LSM-Loss

We divide a PPG strip into successive blocks and calculate the periodogram of each 

block separately. To achieve this, we define two distances: matching distance M and self-

consistency distance C. Matching distance is designed to measure the difference between 

blocks in real and synthetic signals with the same index. Self-consistency distance measures 

the difference between blocks within one synthetic signal. Two distances are defined as:

Mi = ‖log psd bi − log(psd(b i))‖
2

(3)

Ci, j = ‖log(psd(b i)) − log(psd(b j))‖
2, i < j

(4)

where b i and bj represent i-th block from synthetic and real PPG, respectively. At the same 

time, b i and b j are the two different blocks within one synthetic PPG, i, j∈ {1, 2, 3, …, N} 

and N is the number of blocks for one PPG. psd (•) is the function that returns the magnitude 

of spectrum for the input time sequence. As illustrated in Fig 5 , the matching distance is 

calculated by the L2 norm between the spectra of a matched real and a synthetic PPG signal 

block. Self-consistency distance is calculated by measuring the L2 norm among different 

blocks of a synthetic PPG signal itself. LSM-loss also considers aggregating M and C for 

blocks in one PPG through a weighted paradigm. However, directly averaging may not be 

the best approach to aggregate each block. For example, irregular pulses can exist anywhere 

in one AF-PPG segment, and the spectral value of blocks having irregular pulses would be 

significantly different from other blocks. But averaging all blocks will dilute the contribution 

from those irregular pulses. To avoid this situation, we utilize the aggregation function F 
∈ {Mean, Max} as a hyperparameter to accommodate signals from AF or Non-AF. The 

adversarial loss is defined as,

Ladv G, D = Ez ∼ N 0, 1 , x ∼ p data 1 − D G Z 2 ,

(5)

where z represents the input noise, and G(z) is the synthetic signal. The final LSM-loss is 

defined as the linear combination of three losses described above,
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Llsm = Ladv G, D + λ1 × F M1, ….., MN + λ2 × F C1, 2, C1, 3, … .

(6)

Where N represents number of blocks for one PPG, λ1 and λ2 are the hyperparameters 

balancing the three losses, and F is either Mean or Max function, in order to better aggregate 

losses from each block

E. Hyperparameters selection

There are three hyperparameters in equation 4 that need to be optimized including λ1 and λ2

and F. We design the loss function in this flexible way because we anticipate the different 

choices of hyperparameters in this loss function would be needed to accommodate training 

different GAN to generate AF vs Non-AF signals. For an AF PPG, self-consistency loss 

would be less important but the matching of spectra at a block level would be critical. On the 

other hand, for a non-AF PPG (most of which correspond to sinus rhythm), self-consistency 

would be needed to ensure a more realistic artificial signal Different from many other studies 

which set the weights manually,

Algorithm 1

Hyperparameter selection process for LSM-GAN. We select k = 300 samples from each 

signal set. Least distance = infinity, Best set = {}

 forλ1 in [0,3] with step size 0.1 do

   forλ2 [0,3] with step size 0.1 do

     for F in {Mean, Max} do

    • Sample k signal x1, …, xk from data generating distribution pdata(x)

    • Sample k noise samples z1, …, zk from noise prior pg (z)

    • Generate x1, …, xk
 synthetic signals with trained LSM-GAN G (z) with λ1 , λ2 , F

    • Calculate the MMD Distance

     current = 1
k ∑i = 1

k

      MMD [autocorrelation (xi), autocorrelation (xi
)]

    • Best set = λ1 , λ2 , F  if current < Least distance

     end for

   end for

 end for

 Return the Best Set.

we select the three hyper-parameters λ1, λ2 and F by optimizing a guided grid search process, 

as shown in algorithm 1. First, we choose a large range of [0, 3] for λ1 and λ2 with a step 

size of 0.1, and Mean, Max for F. Second, for each combination of [λ1, λ2 ,F], a set of 300 

synthetic PPG signals from LSM-GAN will be generated. Another set of 300 real signals 

will be randomly selected from the training set. Third, autocorrelations are calculated for 

both real and synthetic signals, then the maximum mean discrepancy (MMD) distances 
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of autocorrelations. between the real signal set and each of the synthetic signal sets are 

calculated. Lastly, the best combination of [λ1, λ2,F] will be chosen based on the shortest 

MMD distance between synthetic signals and real signals.

F. Preprocessing and Training

Raw PPG signals collected in this study are at 240 sampling frequencies, we first down-

sampling the PPG signals to a sampling rate of 40 Hz. Then, we apply a band-pass FIR filter 

with a pass-band frequency of 0.9 Hz and stop-band frequency of 5 Hz on the PPG signals. 

Finally, the min-max normalization is performed on PPG segments to ensure all signals are 

in the same scale.

The proposed LSM-GAN and other GANs are trained from scratch on AF signals and 

Non-AF signal separately. We use 200 as the batch size and then train the GANs for epochs 

at a learning rate of 0.001. The learning rate decays 0.0001 for each epoch. Early stopping is 

performed when the loss on validation does not improve in 6 epochs. In this study, we used 

10% of the training data as validation set, and the augmented training data are also included. 

We trained each classifier 5 times and made sure that the PPG signals in validation sets are 

not overlapped for each time.

The Adam optimization algorithm and cross-entropy loss function are used to train the 

ResNet-50 with 512 mini-batch size, 50 epochs, and a learning rate of 0.001. To avoid 

overfitting, we also employed an early stopping procedure which stops the training 

procedure if the validation loss does not improve in 6 epochs. The GANs are implemented 

using Pytorch and Resnet-50 is implemented in Keras using TensorFlow backend, and the 

experiments were performed on a workstation with one NVIDIA RTX 1080Ti GPU and 64 

GB memory.

IV. EXPERIMENT DESIGN

Three experiments are designed to evaluate the proposed LSM-GAN against baseline 

methods. Each experiment tests a specific aspect of practical relevance when considering 

a GAN-based data augmentation strategy, including inter-class balancing, resilience to 

artifacts and the training sample size. Resnet-50 is used here as the classifier for all the 

experiments.

Experiment 1:

A well-justified use of GAN is to focus on augmenting data from minority classes to balance 

the numbers of samples across different classes. In our application, the original training 

data is highly unbalanced, in which AF is the minority class and Non-AF is the majority 

class. The ratio between AF sample size and that of Non-AF is approximately 1:7. To 

investigate whether a more balanced training data would help improve the final classification 

accuracy, we augmented only the AF cases by 6 folds to achieve the inter-class balance in 

the first experiment. The proposed LSM-GAN and baseline models are all trained based 

on the same set of AF data in the training set and then the resultant models are used to 

generate 212,423 synthetic AF-PPG strips per each model to augment the training data. 

Various performance metrics, including accuracy, sensitivity, specificity, positive prediction 
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value (PPV) and negative prediction value (NPV), are used to compare the classifiers that 

are trained with the augmented dataset from different data augmentation approaches.

Experiment 2:

The issue of signal quality cannot be overlooked for PPG-based studies, which is 

especially true in ambulatory settings. Therefore, we dedicate this experiment to evaluating 

the performance of different augmentation techniques at various levels of artifacts by 

investigating the relationship between F1 scores and the proportion of artifacts within 

the PPG signals. We split the testing set into four groups based on the percentage of 

artifacts: clean (0%), (0% - 20%), [21%–60%) and [60%–100%]. Then we pick models from 

experiment 1 for each augmentation method and test them on those four groups separately.

Experiment 3:

From the results of experiment 1, we observe that an AF detector benefits from a balanced 

training set. However, another factor, the total number of training samples, has not been 

investigated. To test the effect of training sample size, we constructed a series of balanced 

training sets with an increasing sample size from 300,000 to 2,000,000. For each training 

set, if the number of required cases (e.g., 15,000 AF cases are needed for the total sample 

size of 30,000) is less than the original cases, then they are randomly selected within the 

existing data. When the required case exceeds the original size, additional samples will be 

generated by different augmentation methods for both AF and non-AF cases. All the trained 

models are tested on the same four signal quality groups as in experiment 2.

V. RESULTS

A. Experiment 1: Performance comparison between data augmentation methods

Table 2 summarizes the performance of AF detection for different combinations of original 

and augmented data sets. A cutoff probability threshold of 0.5 was used to calculate different 

performance metrics.

Compared to training with the original dataset, a balanced training set by simply duplicating 

all the AF cases 6 times through data-copying would increase 11% of accuracy and 25% 

of sensitivity. Permutation, DCGAN and W-DCGAN achieve similar performance gain to 

data-copying, while the proposed LSM-GAN offers the most performance improvement, 

with a 24% gain in accuracy and 32% in sensitivity with around 1% reductions in specificity 

and PPV. We notice that traditional data augmentation methods and basic GAN models 

with conventional generator achieve similar performance, which all arrive at an accuracy 

of around 93%. With the new architecture design for the generator, DCGAN-1200 and 

WDCGAN-1200 both perform better than the ones with the conventional generator. Built 

on top of the new architecture of the generator, the proposed LSM-GAN integrates the 

LSM-loss component and offers an additional 3% improvement in accuracy and 5% in 

sensitivity over other GANs.

Table 3 summarizes the hyper-parameters selected by the guided grid search. For AF signal, 

match-loss and self-consistency loss share the same weight of 1.5. This result indicates that 
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two losses play a similar role when generating realistic AF signals. For Non-AF signals, 

self-consistency loss weights more than the other two losses, which is expected since the 

key characteristic of non-AF (Sinus rhythm most of the time) signals is periodicity. And the 

weight of 0.8 indicates the matching-loss is less important than the other two loss terms. In 

terms of F, results show that selecting the block with maximum loss value can help generate 

more realistic non-AF signals, while taking the average of all blocks is better for generating 

AF signals

Table 4 reports the performance for classifiers trained on augmented data generated 

from LSM-GAN under different hyperparameters. Two different hyperparameter set are 

investigated, {1,1,Mean} and {2.2,0.6,Max}. {1,1,Mean} represents no weight mechanism 

which three loss terms are treated equally, and {2.2,0.6,Max} is selected by the largest 

MMD distance calculated according to Algorithm 1. Results show that synthetic signals 

generated from LSM-GAN with optimized hyperparameters will help increase 1.5% 

accuracy compared to LSM-GAN without weight mechanism is introduced and help 

increase 3% in accuracy compared to LSM-GAN with the worst hyperparameter set.

B. Experiment 2: Resilience to artifacts

In addition to overall performance gain, the second experiment investigates the relationship 

between signal quality and the performance of different augmentation methods. Fig. 6 

compares each method’s performance across the presence of different proportions of 

artifacts in PPG signals. F1 score is used because AF and Non-AF classes become 

unbalanced within each signal quality group.

It can be seen that all methods perform poorly in the poor-quality group (more than 60% of 

artifacts), although substantial performance improvement can still be observed by different 

augmentation methods compared to the original dataset. On the other hand, all methods can 

achieve over 90% F1 score for the excellent quality group (0% of artifacts), especially for 

LSM-GAN which achieves 99% F1 score (Sensitivity : 0.98%; Specificity : 0.99%; PPV : 

0.99%; NPV : 0.98%).

We can observe that F1 score decreases with the increasing artifacts portion in PPG, except 

Permutation, it achieves a F1 score of 96% in signal group (0-20%] which is better than 

95% in the perfect signal quality group. Also, model trained on the original dataset has 

the least performance at each signal quality group, with F1 scores of 91%, 76%, 73% 

and 38%. At the same time, LSM-GAN achieves 99%, 96%, 90% and 72% separately in 

each signal quality group, which improves 8.%, 26%, 23% and 89%, respectively. Other 

baseline methods also show improvement but not as significantly as LSM-GAN. However, 

Permutation achieves 75% of F1 score in the signal quality group (60-100%], which is 

higher than 73% obtained by LSM-GAN. Also, Permutation has better F1 score compared to 

baseline GANs except in the signal quality group (20%-60%].

C. Experiment 3: Data augmentation at different sample sizes

To evaluate the effect of training sample size on the model performance, experiment 3 

is conducted. A series of training sets with an increasing sample size from 300,000 to 

2,000,000 is constituted. The same Resnet-50 is trained based on each training set separately 
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and tested on the same four signal quality groups as experiment 2. This process is repeated 

for all augmentation methods. Fig. 7 compares the F1 score from models trained with data 

of different sample sizes that are generated with different data augmentation methods. We 

can observe that in Fig. 7a when the signal quality is perfect, all the methods have a clear 

increasing trend with the added number of training samples except Data-copying. However, 

when the signal quality gets worse, in Fig. 7b, only WGAN-1200 and LSM-GAN still keep 

the increasing trend. Moreover, only LSM-GAN shows the steady uptrend in Fig.7c and 7d, 

where the signal quality is even worse and baseline methods have no positive relationship 

with added sample size. Another interesting observation is Permutation (orange curve). In 

Fig. 7a, Permutation has the least F1 score most of the time. While in Fig. 7(b)–(d), when 

there are artifacts in PPG signals, Permutation shows great resilience to artifacts and keeps 

the leading performance along with LSM-GAN.

D. External validation

A public dataset (DeepBeat dataset) released in 2020 [20] with both signal quality and 

AF annotations was adopted to test the generalizability of the proposed approach. A data 

harmonization process was designed in the study, given the following three differences 

between our data and the DeepBeat data. First, the DeepBeat data is collected from wrist-

type watches, while our data is collected from fingertips in the ICU setting. Second, the 

signal length of one segment is 25 seconds with a sampling rate of 32 Hz for DeepBeat, 

while ours is 30 seconds with a sampling rate of 240 Hz. Third, the preprocessing details 

were not reported clearly in the original paper and may differ from ours. Based on the above 

discrepancies in data, we first extended the 25-second segment to 30-second by stitching the 

first five seconds to the end of each signal (which may cause phase discontinuity). We then 

upsampled the signal length in the DeepBeat test set to the same as ours and adopted the 

min-max normalization on the data. Models from experiment 3 for each data augmentation 

method were selected to test on the DeepBeat dataset. A summary of performance can 

be found in Fig.8 (a). Among our models, the proposed LSM-GAN consistently shows 

a leading performance in terms of F1 score, which is improved by 15% compared to 

data-copying.

The second external dataset was shared with us by authors in the work [35]. They selected 

around 60 hours of PPG and synchronized ECG from 60 patients (containing both AF and 

non-AF patients) in the MIMIC-III waveform database. All the PPG signals were annotated 

by cardiologists from Guilin Medical University. However, PPG signals were segmented into 

10-second strips in the study. To accommodate the dataset to our model, we repeat each 10-

second signal two times, producing 30-second signals. Then same models from experiment 3 

are tested on this dataset, results are reported in Fig 8 (b). Although the proposed LSM-GAN 

does not lead at the early stage, it presents a consistently increasing trend with added 

samples and eventually arrives at the best F1 score across all data augmentation techniques.

E. Visualization

To further characterize signals generated from different GANs, an additional experiment was 

conducted to visualize the distribution of the synthetic data generated by different GANs 

for both AF and Non-AF cases. We first randomly select 300 real signals and 300 synthetic 
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signals from each GAN, then use Pairwise Controlled Manifold Approximation Projection 

(PaCMAP) [36] to visualize the real signals together with synthetic signals in a 2D fashion. 

Fig. 9 presents the distribution of real and synthetic signals through PaCMAP calculated 

from signal amplitudes for both AF and Non-AF. Four sub-plots in each row contain the 

same dots, and each sub-plot only highlights dots from the related category.

Compared to the distribution of real AF signals, DCGAN and W-DCGAN only capture part 

of the distribution of real AF signals, and they do not share much overlap. On the other 

hand, the proposed LSM-GAN generates signals with similar distribution as real AF signals. 

Similar pattern can be observed in the Non-AF situation, DCGAN and WGAN only learned 

partial distribution of real Non-AF signals, while signals generated from LSM-GAN are 

more dispersed and distribute in a way similar to real ones.

VI. DISCUSSION

We proposed a novel GAN-based data augmentation technique, LSM-GAN, that offers 

several innovations in the architecture design and achieves the best data augmentation 

effect. First, LSM-GAN integrates spectral information from the PPG waveform into the 

loss function to train generator in addition to the commonly used cross-entropy loss. 

Second, LSM-GAN uses a new architecture of generator which avoids up-sampling and 

aims to mimic a more well-understood filtering process to transform a white-noise into 

a narrow band signal like PPG. With such a design, LSM-GAN aims to generate PPG 

signals that possess main characteristics of real PPG at the population level and truly enrich 

training data to train PPG-based AF detection algorithms. The performance of LSM-GAN 

for AF detection was compared with six baseline data augmentation methods, including 

two traditional approaches: data-copying and permutation, and four other GAN-based 

approaches: DCGAN, W-DCGAN and their variants with the new generator architecture. 

Three experiments were conducted to probe various key factors in the PPG-based AF 

detection task, including inter-class sample balance, resilience to noise, and training sample 

size. The generalizability to the external test sets is also evaluated to further establish the 

efficacy of LSM-GAN. The analysis of the results is discussed as follows:

A. Introducing spectral information in generated samples improves the AF detection 
accuracy

Among all the data augmentation models reported in table 2, the proposed LSM-GAN 

achieves the best performance in accuracy and sensitivity with less than 1% reduction on 

specificity and PPV. One plausible reason is that PPG signal is only considered in time 

domain in previous reported networks, including our AF model. The randomness of phases 

of synthetic signals is allowed when matching in the spectral domain. Such randomness will 

enrich the training data and hence is beneficial for training AF models. This hypothesis can 

be partly supported by the PaCMAP visualization of generated signals from different data 

augmentation techniques in Fig. 9, which reveals the PPG signals generated with LSM-GAN 

present a more similar distribution to the real signals than the other two GANs.
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B. Increasing the dimension of random noise for GAN helps improve the AF detection 
accuracy

Instead of directly adopting a conventional choice of the input length (100) for the generator 

of GAN, we proposed a new generator architecture, which outputs the same length of the 

signal as the input (1200 in this study). To evaluate the effect of the new architecture, we 

added two more models: DCGAN-1200 and W-DCGAN-1200, which only changed the 

generator compared to the original DCGAN and W-DCGAN. Results from Experiment 1 

(see Table 2) show that the new architecture does provide performance gain, as evidenced 

by the performance improvement from DCGAN-100 to DCGAN-1200 and W-DCGAN-100 

to W-DCGAN-1200. The key differentiator between the conventional architecture and the 

proposed architecture is whether an extra upsampling step is needed to ensure the length of a 

synthetic signal to be equal to a desired value. Learning GAN is essentially learning a series 

of transformations that convert random input noise into realistic synthetic data. In this study, 

when the generator does not alter the length of the input noise, the learned transformations 

can be better explained by a more well-understood filtering process. However, interpreting 

deep networks is still an ongoing effort and it remains interesting to uncover characteristics 

of the filters that are learned by LSM-GAN.

C. Performance of data augmentation versus signal quality

As reported in Fig. 6, the increasing artifacts in PPG signals have a negative influence on the 

AF detection performance. Because the AF model we used in this study – Resnet-50, is a 

generic model and we did not add any specific modification to handle poor quality signals. 

Because our training dataset also contains imperfect PPG signal strips that are from both AF 

and non-AF classes, it is likely that the trained classifier will be confused when the artifacts 

in the signal are learned as a pattern to be randomly associated with either AF or non-AF. 

However, the performance reduction can be alleviated through data augmentation methods. 

One plausible reason is because we only augmented good quality AF signals, in which the 

AF pattern is clear. Through data augmentation, real and clear AF patterns can be enhanced 

in the training data which reduce the negative influence of artifacts.

D. LSM-GAN maintains superiority on external datasets

In Fig. 8, after evaluating our classifiers on two external datasets, we observe that our 

proposed LSM-GAN helps improve performance compared to using original data to train 

the model, and we can also observe the superiority of LSM-GAN compared to other 

data augmentation methods. However, there is a performance reduction on these datasets 

compared to results reported in the original publications.Exact reasons for this difference 

cannot be established and they are not the focus of this study. However, because our study 

shows that performance of a generic deep neural network architecture as used in this study 

is particularly sensitive to the quality of a PPG signal, we speculate that DeepBeat database 

may contain large portion of poor quality PPG. Furthermore, DeepBeat algorithm explicitly 

incorporates PPG signal quality into AF detection and is expected to perform better on 

imperfect PPG signals. The original algorithm that was developed and tested on the MIMIC 

dataset did not consider PPG signal quality but it was developed to process 10-second PPG 
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strips while our network was designed for processing 30-second PPG strips, which may be 

the likely reason for differences in performances.

E. Limitations and future works

Both AF and Non-AF PPG samples generated from LSM-GAN have a more similar 

distribution to that of real signals than samples generated from other data augmentation 

methods, which in turn helps improve the performance of downstream AF classification 

tasks. However, what an adequate amount of data to train an effective GAN is not 

investigated. We only test the effectiveness of LSM-GAN on the AF detection task, it 

remains interesting to test LSM-GAN on other tasks.

The present study focuses on the comparison of different DA techniques, so the same 

deep learning architecture, i.e., Resnet-50, is adopted to achieve a fair comparison. This 

goal prevents us from exploring various deep learning models and customizations that may 

further improve the classification performance.

Moreover, we can observe that from experiment 3 and external validation, although 

LSM-GAN boosts the performance, it still reaches a plateau of performance after one 

million training samples. This phenomenon indicates the limitation of current LSM-GAN, 

which warrants future work that integrates other AF characteristics into the loss design 

for improvement. In parallel to the proposed GAN-based approach, another plausible 

future direction worth exploring is through a model-based approach that models various 

characteristics of AF signals, such as slopes, amplitude fluctuations and their changes 

corresponding to the change of pulse rate to synthesize AF signals. The limitation of 

LSM-GAN is also lead from the small size of patient cohort (126 patients in this study), 

which indicates that more real-world data is necessary to further improve the performance.

VII. CONCLUSION

In the field of AI health, it remains difficult to obtain both large and well-annotated datasets. 

Data shortage and class-imbalance issues are standing challenges to properly train high-

performing machine learning algorithms. In this study, we showed that properly designed 

GAN can potentially be used to augment and re-balance training data and improve classifiers 

solely trained on the original dataset that is imbalanced and contains fewer samples.
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Fig. 1: 
The overall workflow of LSM-GAN. LSM-loss is integrated with adversarial loss in a 

weighting paradigm. The weight parameter is selected by the shortest MMD distance 

between the autocorrelation of real and synthetic signals.
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Fig. 2: 
PPG segments with artifacts marked in purple.
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Fig. 3: 
Distributions of the number of records with respect to artifact proportions for AF and 

Non-AF conditions in the testing set. The test set are divided into four signal quality groups: 

0%, (0 - 20%], (20% - 60%] and (60% - 100%].
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Fig. 4: 
The network architecture: discriminator and generators with conventional and new 

architectures.
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Fig. 5: 
The proposed two distances: matching distance (M) and self-consistency distance (C). 

Matching distance is designed to measure the difference between blocks in real and 

synthetic signals with same index. Self-consistency distance measures the difference 

between blocks within one synthetic signal.
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Fig. 6: 
Performance tested on PPG records with different percentage artifact level
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Fig. 7: 
Comparison of F1 score for different training sample sizes on different signal quality groups. 

Four subplots have different scales for Y-axis in order to demonstrate the results in a better 

resolution.
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Fig. 8: 
External validation of models from Experiment 3
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Fig. 9: 
Visualization of distribution for real and synthetic AF signal.
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TABLE I:

The number of records in the training and test sets

Training Set Test Set

Center UCLA Medical Center UCSF Neuro

Number of Patients 126 13

Age 18 to 95 years (median 63) 19 to 91 (median = 73.5)

Number of records AF NonAF AF NonAF

36855 248278 1216 1467

Total 276133 2683

percentage 15.24% 84.75% 45.32% 54.68%
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TABLE III:

The selected optimal hyper-parameters for LSM-GAN data augmentation model

λ1 λ2 F

Af 1.5 1.5 Mean

Non AF 0.8 3.0 Max
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