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Statistical inference of OH concentrations and air mass

dilution rates from successive observations of nonmethane

hydrocarbons in single air masses

S. R. Arnold,1 J. Methven,2 M. J. Evans,1 M. P. Chipperfield,1 A. C. Lewis,3

J. R. Hopkins,3 J. B. McQuaid,1 N. Watson,3 R. M. Purvis,3,4 J. D. Lee,3 E. L. Atlas,5

D. R. Blake,6 and B. Rappenglück7

Received 31 May 2006; revised 20 December 2006; accepted 10 January 2007; published 3 May 2007.

[1] Bayesian inference has been used to determine rigorous estimates of hydroxyl radical
concentrations ( OH½ �) and air mass dilution rates (K) averaged following air masses
between linked observations of nonmethane hydrocarbons (NMHCs) spanning the
North Atlantic during the Intercontinental Transport and Chemical Transformation
(ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior)
distribution of a parameter given data related to the parameter through a model and prior
beliefs about the parameter distribution. Here, the model describes hydrocarbon loss
through OH reaction and mixing with a background concentration at rate K. The
Lagrangian experiment provides direct observations of hydrocarbons at two time points,
removing assumptions regarding composition or sources upstream of a single observation.
The estimates are sharpened by using many hydrocarbons with different reactivities
and accounting for their variability and measurement uncertainty. A novel technique is
used to construct prior background distributions of many species, described by variation of
a single parameter a. This exploits the high correlation of species, related by the first
principal component of many NMHC samples. The Bayesian method obtains posterior
estimates of OH½ �, K and a following each air mass. Median OH½ � values are typically
between 0.5 and 2.0 � 106 molecules cm�3, but are elevated to between 2.5 and
3.5 � 106 molecules cm�3, in low-level pollution. A comparison of OH½ � estimates from
absolute NMHC concentrations and NMHC ratios assuming zero background (the
‘‘photochemical clock’’ method) shows similar distributions but reveals systematic high
bias in the estimates from ratios. Estimates of K are �0.1 day�1 but show more sensitivity
to the prior distribution assumed.

Citation: Arnold, S. R., et al. (2007), Statistical inference of OH concentrations and air mass dilution rates from successive

observations of nonmethane hydrocarbons in single air masses, J. Geophys. Res., 112, D10S40, doi:10.1029/2006JD007594.

1. Introduction

[2] The hydroxyl radical (OH) is a powerful oxidant,
present ubiquitously in the daytime troposphere in small
concentrations (typically �106 molecules cm�3; <1pptv

[e.g., Bloss et al., 2005, and references therein]). It is chiefly
formed through the photodissociation of ozone (O3) in the
presence of water vapor [Levy, 1971], however other sources
include the photolysis of oxygenated hydrocarbon
compounds, particularly in the upper troposphere [Singh
et al., 1995; McKeen et al., 1997; Jaeglé et al., 2000;
Arnold et al., 2004]. Despite its small abundance, the OH
radical is responsible for the removal of the vast majority of
trace gases emitted into the atmosphere, and is the driving
force behind much of tropospheric photochemistry.
The oxidation of carbon monoxide (CO), methane and
nonmethane hydrocarbons (NMHCs) by OH produces
peroxy radical species, which catalyze the production of
ozone in the troposphere [Crutzen, 1973; Chameides and
Walker, 1973]. The atmospheric lifetime of methane is
controlled by its reaction with OH. The global distribution
and abundance of OH therefore controls the climate impacts
of methane on the Earth system. Inference of trends in OH
abundances [Prinn et al., 2001; Spivakovsky et al., 2000], and
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quantification of its sources and sinks [e.g., Jaeglé et al.,
2000] are therefore central to our understanding of tropo-
spheric chemistry, and its roles in air quality and climate.
[3] Despite small concentrations and a short lifetime

(typically <1 s), sensitive techniques have been developed
and improved over the past decade which allow direct in
situ observations of OH [e.g., Heard and Pilling, 2003, and
references therein]. Such techniques involve complex, cum-
bersome instrumentation, and this makes observations from
aircraft platforms more challenging. In addition, such obser-
vations generally carry significant uncertainties, and the short
OH lifetime means that they only probe the chemical system
at the given instant in time and space. Alternative estimates
of OH abundances can be inferred from the NMHC ‘‘pho-
tochemical clock’’ approach [e.g., Calvert, 1976; Price et al.,
2004]. This involves monitoring the change in concentra-
tions of two NMHC species with different rates of OH
reactivity. The evolution of the ratio of the two concentra-
tions over time is then used to calculate the mean concen-
tration of OH acting on the air mass over that time. This
provides a time and space-averaged OH estimate, in contrast
to direct in situ observation. However, there are significant
uncertainties in this method, including assumptions regard-
ing the mixing of the air mass with surrounding air masses,
and assumptions made regarding NMHC ratios in the air
mass upstream of the observation point (see section 2).
[4] During summer 2004, the International Consortium

for Atmospheric Research on Transport and Transformation
(ICARTT) [Fehsenfeld et al., 2006] coordinated an effort to
perform a pseudo-Lagrangian analysis of trans-Atlantic air
mass transport called the ITCT-Lagrangian-2K4 (Intercon-
tinental Transport and Chemical Transformation) experi-
ment. This involved four separate aircraft: the NASA DC8
and NOAA WP-3D stationed on the U.S. East Coast, the
FAAM BAe146 in the Azores, and the DLR Falcon in
northern France. Successful sequences of multiple aircraft
interceptions of the same air mass during the ICARTT
experiment have been independently identified from mete-
orological models, nonmethane hydrocarbon signatures and
long-lived tracer concentrations [Methven et al., 2006].
Here, we exploit this novel Lagrangian aspect of the
ICARTT experiment to statistically infer information
concerning the photochemical and physical processing of
NMHC signatures in the multiply sampled air masses. This
leads to estimates of mean OH concentrations and rates of
dilution with background air, with strong observational
constraints up and downstream in the air masses, eliminat-
ing assumptions made in many previous studies.

2. NMHC Evolution and Observations

2.1. Simple Model for NMHC Evolution

[5] Following an air mass, the rate of change of concen-
tration, ci, of an NMHC species-i, for which oxidation by
OH is the dominant chemical sink, can be represented by a
simple dilution-chemistry model:

dci

dt
¼ �K ci � Cið Þ � ki OH½ �ci ð1Þ

where Ci is the concentration in the background air which is
diluting the air mass, [OH] is the instantaneous concentra-

tion of OH in the air mass, and ki and K are respectively the
reaction rate coefficient for species i with OH, and a first-
order rate coefficient representing all mixing processes
which mix the air mass with background air.
[6] Integrating with respect to time, we can derive a

downstream NMHC concentration ci
t in the air mass, from

its upstream concentration, ci
0 and the transport time t

between the upstream and downstream points:

cti ¼
KCi

K þ k iq
þ c0i �

KCi

K þ kiq

� �
e� Kþkiqð Þt ð2Þ

where q, K and Ci represent the OH concentration, OH½ �,
mixing rate and background concentration averaged over
time interval t.
[7] The goal of this analysis is the derivation of OH½ � and

K from ci
t and ci

0. However, this can only be achieved if Ci is
known, since this affects the rate at which the parcel is
diluted with background air, and hence the balance between
the pseudo-first-order rates, K and kiq. A simplification can
be made if we assume that the background concentrations of
the NMHCs are negligible. This removes the terms depen-
dent on Ci from equation (2) By considering the ratio (ri) of
ci to a longer-lived reference species, y, and assuming that
background values Ci are negligible, the simpler evolution
equation:

rti ¼ r0i e
�k0iqt ð3Þ

is obtained where k0i = ki � ky.
[8] In log-ratio, this becomes a simple translation:

ln rti ¼ ln r0i � k 0iqt ð4Þ

[9] This allows the use of ratios of pairs of NMHC
species with different OH reactivities to determine an
estimate for OH½ �, without needing to account for K. This
is often termed the hydrocarbon ‘‘photochemical clock’’
method.
[10] Estimates of OH½ � using equation (3) were first

reported by Calvert [1976], who used NMHC whole air
samples to derive OH concentrations in the Los Angeles
urban plume. Since then, many studies have reported
estimates of OH½ � using the ‘‘photochemical clock’’
approach [e.g., Singh et al., 1981; Roberts et al., 1984;
Rudolph and Johnen, 1990; Blake et al., 1993; McKenna et
al., 1995; Volz-Thomas et al., 2000; Dillon et al., 2002;
Price et al., 2004]. In using equation (3), many of these
studies have identified and attempted to deal with the fact
that background concentrations tend to be much higher
relative to plume concentrations for the least reactive
species, resulting in a change in ratio with time associated
with mixing. This produces a bias in the estimates of OH½ �,
since it is assumed to be the only agent changing the ratio
[Parrish et al.,, 1992; McKeen and Liu, 1993; Ehhalt et al.,
1998].McKeen et al. [1990] andMcKenna [1997] investigated

the impact of a continuous source for the inference of OH½ � at
points downstream in a plume. They described the impact of
a coupling between mixing within the plume and chemical
loss, and the bias in derived OH½ � for species of different
reactivities.
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[11] In addition to uncertainties regarding mixing, uncer-
tainties are often introduced by estimating the upstream
NMHC concentrations, or their ratio, and the transport time
to the downstream observation point. In the absence of
direct NMHC observations upstream, estimates of emission
ratios for NMHC species are often used to constrain the
NMHC ratio at the point of transport from the boundary
layer [e.g., Price et al., 2004]. This approach also makes the
assumption that the sources of the NMHCs are coincident.
Air mass back trajectories are often used to determine
transport time from emission to the point of downstream
observation [e.g., Roberts et al., 1984], or local wind speed
observations can be used to infer the transport time between
two observations [e.g., Volz-Thomas et al., 2000]. Both of
these methods are subject to large uncertainties. Volz-Thomas
et al. [2000] discuss the successful use of emissions of SF6
as an inert tracer to minimize errors in tracking of the plumes
and to aid in calculation of dilution rates.
[12] Dillon et al. [2002] used a nonlinear least-squares fit

of observations of NMHCs in the Sacramento urban plume

in a simple dilution-chemistry model to infer both OH½ � and
K estimates. Fixed background concentrations were used in
the analysis, taken from NMHC observations at a rural site.
Price et al. [2004] estimated OH½ � and K values from long-
range pollution transport episodes from Asia to the U.S.
Pacific coast. They used methods based on both equations
(2) and (3), and calculated several estimates of K values
based on dilution of long-lived chemical and aerosol tracers
and from several meteorological models.
[13] Since both upstream and downstream concentrations

(ci
0 and ci

t) were directly observed for the ICARTT Lagrang-
ian match cases, we need not rely on estimates of upstream
NMHC signatures from emissions or large-scale observa-
tion sets. We also have a good constraint on the transport
time between observation points. The framework of the
Lagrangian experiment therefore provides us with a unique
opportunity to estimate OH½ � and K values consistent with
observed changes in NMHC concentrations, constrained up
and downstream on intercontinental scales. These estimates
are dependent on the assumed background concentrations
Ci, which still must be estimated.

2.2. NMHC Observations Over the Mid-Atlantic

[14] The environment with which air masses mix is not
observed directly following the air mass. During such long
time intervals an air mass comes into contact with neighbors
of differing composition. In order to estimate possible

environments that an air mass could experience over the
Atlantic, the statistics of NMHC observations from the entire
FAAM BAe146 data set were compiled. The BAe146 was
based on Faial, Azores, from 12 July to 3 August 2004 during
the ITOP (Intercontinental Transport of Ozone and Precur-
sors) experiment, the European component of ICARTT
[Lewis et al., 2007].
[15] Whole air samples were analyzed by gas chromato-

graph for concentrations of NMHCs. A detailed description
of this method is given by Hopkins et al. [2003]. The
NMHC species used in the analysis are shown in Table 1,
along with their chemical lifetimes at 273 K, 800 hPa

and OH½ � = 2 � 106 molecules cm�3. In addition to air mass
variability, each NMHC concentration has experimental
uncertainty associatedwith theGC instrument and integration
of its output. These errors represent a ‘‘top-hat’’ uncertainty
around the quoted concentration, and are related to the
concentration value by the fit:

ln Errið Þ ¼ 0:4753 ln cið Þ þ 0:2270 ð5Þ

where Erri and ci are in pptv. This relationship is derived for
the entire FAAM BAe146 data from quoted error values and
data values. These errors are mainly due to uncertainty in
calibration and peak integration of the GC output, which
becomes more uncertain as peak area diminishes with
smaller concentrations.
[16] The sample probability distribution function (PDF)

for each species is compiled in log-concentration, Xi = lnCi,
and convoluted with the instrument error top-hat function
(half-width defined by equation (5)) to obtain an ‘‘observa-
tion PDF.’’ The resulting distributions are approximately
Gaussian, with some increased spread due to the instrument
errors. Figure 1 shows the mean and standard deviation of

Table 1. Characteristics of Observed NMHC Distributions From

the FAAM BAe146 Aircraft During Flights Out of the Azores in

the Mid-Atlantic During ICARTTa

Lifetime, days Mean si Ai

C2H6 33 6.99 0.37 0.93
C2H2 9.2 4.94 0.73 0.84
C3H8 6.5 4.98 0.60 0.87
C6H6 5.0 3.65 0.93 0.84
i-C4H10 2.9 2.29 0.96 0.71
n-C4H10 2.8 2.91 0.82 0.91
n-C5H12 1.6 1.68 0.77 0.81

aMean and standard deviation are shown for lnci where ci is in pptv. Ai is
the amplitude of PC1 in the direction of the species (see text). Lifetimes are
calculated for 273 K, 800 hPa, and [OH] = 2.0 � 106 molecules cm�3.

Figure 1. Mean and standard deviation of natural
logarithms of NMHC species mixing ratios (pptv) from the
FAAM BAe146 NMHC data set, shown as a function of
species OH reactivity (solid squares). Themean and spread of
observation PDFs obtained by convoluting the sample PDFs
with top-hat errors characterized by equation (5) are shown by
diamonds. The species shown are, in order of increasing
reactivity, ethane, acetylene, propane, benzene, i-butane,
n-butane, n-pentane, n-hexane, ethene, and propene.
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the sample for each species (squares) and the mean and
standard deviation of the observation PDFs (diamonds). Air
mass variability dominates the instrument uncertainty which
is only apparent at the lower concentrations typical of the
more reactive species.
[17] The background distributions are constructed from

these observation PDFs as follows. Each PDF is standard-
ized by subtracting its mean, X i, and dividing by its
standard deviation, si. A principal component (PC) analysis
is used to examine the covariation between species in the
data set. The first principal component (PC1) explains 71%
of the variance in the data, showing that the species cannot
be considered as independent variables in the background.
Example observation PDFs for ethane and n-butane are
shown in Figure 2. These include convolution of the sample
distributions with the top-hat measurement uncertainties.
Distributions for the species constructed by projecting each
sample onto PC1 are similar to the original PDFs showing
how PC1 provides a representative contraction of the
variability in the data set.
[18] The background PDF for each species is then defined

as:

Ci;n ¼ anAisi þ X i ð6Þ

where Ai denotes the projection of PC1 in the direction of
species-i and the background parameter, an, is assumed to
be normally distributed with a mean of zero and standard
deviation of unity. This ensures that the mean of the back-
ground distribution equals the mean of the observation PDF
and the standard deviation of the background equals the
amplitude of PC1. As the background parameter an is
varied, all species concentrations vary together by an
amount determined by PC1. This allows the variation of the
background concentrations in many species using a single
parameter by linking their variations through PC1 of the
FAAM BAe146 data set for the Azores region. Inclusion
of more PCs would introduce a corresponding number of

parameters, which would introduce too many degrees of
freedom into the subsequent analysis. The mean and
standard deviations of the observation PDFs and values of
the Ai coefficients are shown in Table 1. This method allows
a range of background scenarios to be included in the
analysis, however it does not remove the need to make
assumptions regarding the background concentrations.

2.3. NMHC Observations Within
Lagrangian Windows

[19] More than 4000 whole air samples were collected on
board the NASA DC8, NOAAWP-3D, FAAM BAe146 and
DLR Falcon aircraft during flights over the northeast United
States, mid-Atlantic and European west coast during the
ICARTT intensive collaborative period 6 July to 3 August
2004. These were independently analyzed by each aircraft
group by gas chromatography for NMHCs. This extensive
NMHC data set coupled with the multiple interception
events identified by Methven et al. [2006] allows the
identification of linked pairs of NMHC concentrations,
observed upstream and downstream in the same air mass
(referred to as ‘‘Lagrangian matches’’). These linked
NMHC observations allow inference of the rates of NMHC
processing between observation platforms. Methven et al.
[2006] identified five clear Lagrangian match cases, using a
combination of Lagrangian models and NMHC ‘‘finger-
print’’ matches. We retain the nomenclature used in Table 1
of Methven et al. [2006] when referring to the five
Lagrangian cases.
[20] Several whole air samples were usually taken within

single target air masses. In practice, for most of the aircraft
groups, sampling frequency was limited by the total number
of canisters available during a flight as well as the canister
fill period. However, enough samples we taken to derive an
estimate of typical variabilities in the NMHC observations
within an air mass. Equation (5) was applied to all NMHC
data sets in the analysis, to produce estimates of instrument
error for each sample. The resulting values are used to

Figure 2. Observation PDFs of NMHC species (black) from the entire FAAM BAe146 data set, with
PDFs reconstructed from the first principal component (see text) of the data set (blue). Triangles show
mean concentrations, X i, with black horizontal bars indicating the concentrations reconstructed from
adding and subtracting the first principal component eigenvector, Aisi. Squares indicate the median
concentrations from each of the match time windows for the Lagrangian cases, from case 1 (bottom row)
to case 5 (top row).
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define half-widths of top-hat error functions in linear
concentration space, which are then convoluted with sample
distributions defined as Gaussians in log-concentration space
with means and standard deviations equal to that of the
samples within the target air mass. The resulting ‘‘observa-
tion PDFs’’ are approximately Gaussian, with some
increased spread at small concentrations due to the top-hat
function. The observed match window variability dominates
the instrument error for the species considered, as it did in the
estimation of the background PDFs (see Figure 1).

3. Estimating OH and K From NMHC Data
Using Bayesian Statistics

[21] The problem of inferring OH½ � and K values from
NMHC data sets, is suited to a Bayesian inference method
[e.g., Lee, 1997]. The aim of Bayesian inference is to
estimate the PDF of a parameter, q, given data related to
the parameter and prior beliefs about the PDF of the
parameter. The parameter is assumed to be a random
variable. Here, we describe the formulation of our statistical
inference method and how observed distributions of NMHC
concentrations can be used to infer the likely distribution of
OH½ � and K values. The following notation will be used:
[22] qj: parameter values discretized in bins, labeled j.

Here, qj is used to denote regularly spaced OH½ � values.
[23] f(qj): ‘‘probability mass function’’ of qj. For

constant bin size dq, the PDF, P(qj) = f (qj)/dq such thatP
j f (qj) =

P
jP(qj) dq = 1. Since f / P, we will refer to f as a

PDF. f (qj) also denotes the prior distribution of qj, an
estimate of the distribution of OH½ � before examining the
NMHC data.
[24] f(qjr): PDF of q given (conditional on) measured

data r. This is the posterior distribution of qj.
[25] In the Bayesian method, the posterior distribution is

inferred from the prior distribution using data which is
related to the parameter through a likelihood model:
[26] L(rjqj): the likelihood of the observed data given a

specified value of the parameter q. This function is con-
structed using a data model, in this case either equation (2)
or (3).

3.1. Hydrocarbon Concentrations Method

[27] Three parameters can be estimated using the simple
evolution model (2) and observed distributions of NMHC
concentrations upstream and downstream: q, K and a, the
OH-concentration, mixing rate and background parameter.
3.1.1. Prior Beliefs
[28] Bayesian inference relies on specifying a prior dis-

tribution for each parameter based on the state of the
knowledge and physical constraints. For example, we know
that [OH]  0 and that typical values are �106 molecules
cm�3. Here the prior for OH is specified as a gamma
distribution:

f qð Þ ¼ Aqpqp�1e�qq ð7Þ

which has mean p/q, variance p/q2 and peaks at ( p � 1)/q.
This function cannot be less than zero, and is continuous
in q. We have chosen a peak value of [OH] � 2 �
106 molecules cm�3, which is the value used to identify
matches between NMHC signatures in the Lagrangian

analysis of Methven et al. [2006]. The aim here is to refine
this overall estimate for individual cases. The prior
distribution of K is also a gamma function with a peak
at 0.1 days�1, in accordance with dilution rates inferred
from CO loss by Methven et al. [2006]. The prior for a is
Gaussian with a mean of zero and standard deviation of one
(see section 2.2).
3.1.2. Forward Model
[29] The Lagrangian match events allow us to relate

upstream and downstream concentrations, using a forward
model and values of q, K and a. The forward model for
concentration at time t relative to measurement at t = 0 is
given by equation (2). The following labeling is used for
species and the discretized prior distributions:
[30] xi = ln ci: the log-concentration of hydrocarbon

species i.
[31] f (qj): prior distribution for OH.
[32] f (Km): prior distribution for K.
[33] f (an): prior distribution for background parameter.
[34] An equation for xi

t is obtained by taking the natural
log of equation (2). The values of ki are known accurately
and will be treated as constants. t is also assumed to be
known accurately and can be positive or negative depending
on whether we are adjusting upstream or downstream
measurements respectively.
[35] Values of ki are calculated for each species using

observed temperature/pressure and standard kinetic param-
eters [Atkinson et al., 2002]. For a good Lagrangian match,
the difference between upstream and downstream potential
temperature will be small [Methven et al., 2006]. The
absolute temperature used to calculate the rate constants,
ki, in each case is derived from mean pressure and the mean
of the upstream and downstream potential temperature.
3.1.3. Likelihood Model
[36] The likelihood model is an estimate of the probabil-

ity that the hydrocarbon fingerprints of the upstream and
downstream samples are the same when adjusted to a
common reference time using the forward model. The
likelihood varies with the parameter values and is greatest
for the choice with gives the best fit between the two time
points. The PDF of the upstream observations, f (xi

u), is
defined on the basis of observed variabilities and instrument
error (see section 2.3). It is normalized such that its sum
over log-concentrations bins equals unity. It is adjusted
using the forward model to a common reference time,
to produce an ‘‘adjusted upstream distribution’’ for species i,
f (xi

u0jqj,Km,an), which also sums to unity. The same procedure
is used to obtain an adjusted downstream distribution.
[37] The likelihood that upstream and downstream air

masses are the same allowing for OH loss, mixing and
background concentrations is given by the product of the
PDFs of upstream and downstream observations, adjusted
by the forward model to a common time t:

L xti jqj;Km;an

� �
¼ f xu

0

i jqj;Km;an

� �
f xd

0

i jqj;Km;an

� �
ð8Þ

t is defined to be the midpoint of the Lagrangian match
trajectory interval. This ensures that the posterior OH½ �
values are not biased toward the upstream or downstream
observations. Note that the adjusted PDFs and the resulting
likelihood function share the same discretization over log-
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concentration values. The likelihood is obtained by
summing over log-concentration bins. The resulting
PDF is three dimensional for each species with array
indices j, m, n.
3.1.4. Bayes Formula to Obtain the Posterior
Distributions
[38] The posterior estimate of the (discrete) PDF in 3-D

parameter space, given measurements of species i is
obtained by Bayes formula:

f qj;Km;an j xti
� �

¼
f qj;Km;an

� �
L xtijqj;Km;an

� �
X

j

X
m

X
n
f qj;Km;an

� �
L xtijqj;Km;an

� �
ð9Þ

where the likelihood L(xi
tjqj, Km, an) has already been

integrated over concentration. Note that f (qj, Km, an) =
f (qj) f (Km) f (an) since the prior distributions of the three
parameters are independent.
3.1.5. Combining the Posterior Distributions
[39] The posterior distribution of parameter values depen-

dent on NMHC observations, x, is obtained by multiplying
the results from individual species together:

f qj;Km;anjx
� �

¼ Pi f qj;Km;anjxti
� �

ð10Þ

[40] Note that if the posterior estimates from each species
are similar then the combined estimate will become more
peaked and increasingly so for a larger number of species,
and will be less dependent on the prior distributions of the
variables.
[41] The resulting distribution is a 3-D joint PDF using

the data from all NMHC species. 1-D marginal distributions
for each variable are defined by summing over the other two
directions in parameter space. For OH:

f qj j x
� �

¼
X
m

X
n

f qj;Km;an j x
� �

ð11Þ

for mixing rate:

f Km j xð Þ ¼
X
j

X
n

f qj;Km;an j x
� �

ð12Þ

and for background parameter:

f an j xð Þ ¼
X
j

X
m

f qj;Km;an j x
� �

: ð13Þ

[42] These distributions are refined estimates of each
parameter given the NMHC observations and their uncer-
tainties.

3.2. Hydrocarbon Ratios Method

[43] Using ratios of observed NMHC distributions, OH½ �
can be estimated by assuming that the plume is diluted with
air containing negligible concentrations of the NMHCs such
that equation (3) is valid. The prior distribution for OH½ � is
constructed as in the concentrations method.
[44] Distributions of observed NMHC ratios up and

downstream are constructed by first applying the convolu-

tion of the top-hat error function with Gaussians constructed
using observed variabilities as in section 2.3. Then, means
and standard deviations from the resulting PDFs for two
species ln ci and ln y are combined in quadrature to produce
Gaussian distributions of NMHC ratios in log space, ln ri =
ln ci � ln y. For this method, the relevant data variable is the
log of the ratio, xi = ln ri, rather than the log of concentration.
[45] Application of the forward model for log ratios

(equation (4)), produces modified distributions of upstream
and downstream NMHC ratios, adjusted to a common time
at the center of the Lagrangian interval, by oxidation with a
given OH½ � concentration, qj. Multiplication of these adjust-
ed distributions then produces the likelihood that the adjust-
ed upstream and downstream NMHC ratio distributions are
the same allowing for OH oxidation, L(xi(

tjqj).
[46] The posterior estimate of the (discrete) PDF for

variable OH concentration q, given measurements of ratio
xi upstream and downstream, is then obtained from Bayes
formula (as equation (9)):

f qjjxti
� �

¼
f qj
� �

L xti jqj
� �

X
j

f qj
� �

L xti jqj
� � ð14Þ

where likelihood L(xijqj) has already been summed over
ratio bins. The resulting posterior distributions for each
species are then multiplied to obtain the combined posterior
distribution for each case as in equation (10).
[47] It is instructive to consider the limit t ! 0 (no OH

adjustment). L(xi
tjqj) becomes independent of qj and there-

fore:

f qjjx0i
� �

¼
f qj
� �

L x0i
� �

X
j
f qj
� �

L x0i
� � ¼ f qj

� �
X

j
f qj
� � ¼ f qj

� �
ð15Þ

[48] This means that the hydrocarbon observations could
not alter the OH½ � distribution from the prior. Therefore, in
order for both the upstream and downstream observations to
influence the OH inference, they must each be adjusted
toward the midpoint of the time interval.
[49] Moreover, it is clear that if there is insufficient time

for OH loss and mixing to take effect, that the combined
posterior distribution will be given by the prior for OH to
the power of the number of species used in the numerator of
the ratios, I. This ‘‘self-multiplied prior’’ must have a peak
located at the same OH value as the prior itself, but as more
species are combined the distribution becomes more strongly
peaked. Therefore the posterior results should always
be compared with the self-multiplied prior in order to
demonstrate that the NMHC observations have added useful
information to the PDF of OH.

4. Sensitivity of the Bayesian Method

[50] In this section the sensitivity of the inferred OH
distributions to details of the methodology is explored. The
first investigation uses upstream observations of NMHCs
and other trace gases important for photochemistry (includ-
ing O3, CO, NOx) as initial conditions for the Lagrangian
photochemical model CiTTyCAT (Cambridge Tropospheric
Trajectory model of Chemistry and Transport) [Evans et al.,
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2000; Arnold et al., 2004]. The model integrates the
chemical equations following the pressure, temperature
and humidity of the air mass trajectory to the time of the
matching downstream observations, assuming zero mixing.
The model simulates an OH concentration that is then
averaged along the trajectory to obtain OH½ �. The NMHC
ratios simulated at the downstream end of the trajectory are
combined with the observed upstream ratios as input data
and the Bayesian method for ratios is used to infer OH½ �.
Since mixing is not simulated, the ratios method should be
able to retrieve the exact OH½ � that is known from the
simulation, given sufficient data and time interval for OH
loss to affect NMHC ratios.
[51] The particular case studied is a highly polluted

biomass burning plume from forest fires over Alaska, since
it was much more polluted that its environment and had a
very distinctive hydrocarbon fingerprint. It is referred to as
Lagrangian case 2 by Methven et al. [2006]. The upstream
measurements were collected by the NASA DC8 on 18 July
in the upper troposphere near Newfoundland. These are
used as initial conditions for the CiTTyCAT model. The
downstream time is given by the interception of the plume
over France by the DLR Falcon on 23 July. The plume was
also intercepted on 20 July by the FAAM BAe146 but the
longest time interval is used to maximize the effects of OH
loss on NMHC ratios.
[52] Figure 3 shows the sensitivity of the posterior OH½ �

distribution to the number of ratios used in the inference.
Ethane is used as the species in the denominator, y, since it
is the longest lived. Ratios of species with increasing
reactivity are added in the following order: acetylene,
propane, benzene, i-butane, n-butane, n-pentane, n-hexane
and ethene. The posterior distribution becomes more
peaked, and shifts away from the prior peak with an
increasing number of species. As more species are included,
the sample size increases but in addition, as the species

become more reactive, they allow greater differentiation
between OH½ � values that provide the best fit between the
upstream and downstream ratios, allowing for OH loss. The
populated tails of the prior distribution become flattened, as
these OH½ � values are discounted by the likelihood model.
The posterior distribution increasingly converges toward the
known model OH½ � value of 0.62 � 106 molecules cm�3.
[53] Note that the shift in the peak location can only occur

through information drawn from the NMHC data. As
discussed in section 3.2, if the time interval is short
compared with the OH loss rate, the adjustment of upstream
and downstream distributions by OH reaction is small with
the effect that the posterior OH distribution inferred from
each species is almost equal to the OH prior. The posterior
obtained by combining all species is similar to the prior to
the power of the number of (numerator) species. This self-
multiplied prior must peak at the same place as the prior,
although the peak is sharper.
[54] A second investigation was conducted using the

actual data collected by the NASA DC8 upstream and the
DLR Falcon downstream. In this case OH is not known a
priori and can only be inferred from the posterior results.
Figure 3b shows the results of the ratios method. Acetylene
was used in the denominator of the ratios because the case 2
plume is much more concentrated than the background
acetylene and the ratios method assumes zero background.
In contrast, the background for ethane is much higher
relative to plume concentrations because of its longer
lifetime and is best omitted for the ratios method. The ratios
for numerator species are added progressively in the anal-
ysis in order of reactivity as for the model case. Note that
n-hexane is not added since its values are often close to
the detection limit in the ICARTT data set and many
samples report missing data for n-hexane. A similar
sharpening of the posterior is obtained for an increasing
number of species. The posterior distribution shifts away

Figure 3. Posterior distributions of OH½ � values for an increasing number of NMHC ratios for (a) a model
initialized with upstream observations simulating downstream ratios and OH½ � = 0.62� 106 molecules cm�3

and (b) the same case using ICARTTobservations of upstream and downstream NMHC ratios (but exact OH
unknown). See text for details. The prior OH½ � distribution is shown by the dashed curve. The function
P([OH]) sums to unity and is discretized with a bin size of 0.01 � 106 molecules cm�3.
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from the self-multiplied prior distribution, demonstrating
the modification of the prior estimate by the likelihood
function based on NMHC ratio observations.
[55] The posterior estimate of OH½ � inferred directly from

the NMHC data for case 2 is very similar to that simulated
by the CiTTyCAT model. This suggests that the OH½ �
inference is a physically reasonable value. In addition, it
implies that our understanding of photochemistry as repre-
sented by the CiTTyCAT model is capable of simulating
[OH]. Our confidence in the Lagrangian match events is
also reinforced, since the observed up and downstream
NMHC signatures are consistent with NMHC processing
diagnosed from a photochemical model free-running along
the trajectory linking them.
[56] On the basis of these sensitivity scenarios, we present

results for which at least 6 species were measured in the
Lagrangian match window, including at least two of n-
butane, i-butane and n-pentane. For the cases presented in
the following sections, hexane observations are unavailable
for most match windows, and alkene data is problematic,
since signatures frequently appear ‘‘younger’’ downstream
compared with the alkanes (with the exception of case 2).
Hence the range of species from ethane to n-pentane shown
in Table 1 are used for the ICARTT match cases.

5. Results From ICARTT Lagrangian Matches

5.1. Ratios Method

5.1.1. Application of the Bayesian Inference
[57] The PDFs of possible OH concentrations that could

explain the upstream and downstream NMHC measure-
ments, given their variability and uncertainty, are inferred
using the ratios method described in section 3.2. Acetylene
is used as the least reactive reference species in the
denominator, y, and the more reactive species shown in
Table 1, are used as the numerator species. Ethane is not
used as the reference species, since it has appreciable
background concentrations, and so the assumption of
negligible background concentrations implicit in the ratios
method would not be reasonable. The number of NMHC
species present for each match case is shown in Table 2,
with a maximum number of 7. This leaves a maximum
of 5 NMHC ratios (since acetylene and ethane are not
numerator species).
[58] The resulting posterior distributions of OH½ � are

summarized in Table 3 for each of the ICARTT cases
described by Methven et al. [2006], and selected posterior
distributions are plotted in Figure 4 along with the prior
OH½ � distribution.
[59] Lagrangian case 1 involved transport of anthropo-

genic pollution at low levels from the New England coast
across the Atlantic to the coast of Portugal (see Methven et
al. [2006] for detailed information on individual cases). The
median posterior OH½ � value for the shorter match window
between the NASA DC8 on day 197 and the FAAM
BAe146 on day 201 is �1.9 � 106 molecules cm�3, which
is larger than values inferred for other Lagrangian links in
case 1. This is consistent with larger [OH] in fresher
pollution nearer the U.S. East Coast. Posterior distributions
of OH½ � have shifted downward from the prior distribution,
and small and large OH½ � values in the tails of the prior have
been eliminated completely (see Figure 4). The longest time
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Table 3. The 25th, 50th, and 75th Percentile Values of Posterior OH½ � Distributions Obtained by Bayesian Inference Applied to

Observed Distributions of NMHC Ratios for Each of the ICARTT Lagrangian Match Eventsa

Case

Upstream Downstream OH½ �/106 molecules cm�3 Consistency

Aircraft Day Aircraft Day 25% 50% 75% Prior/10�2 Post/Prior

1A dc8 197.84441 faam 201.54474 1.6 1.9 2.1 1.40 1.69
1A dc8 197.84441 fa 204.53053 0.80 1.2 1.6 1.08 0.24
1B dc8 197.84639 fa 204.54443 0.91 1.3 1.8 0.89 0.15
1B dc8 197.84639 faam 207.77194 1.1 1.3 1.4 1.39 2.35
2 dc8 200.78537 faam 202.52014 0.71 0.94 1.2 1.22 1.85
2 dc8 200.78537 fa 205.54562 0.91 1.1 1.2 1.49 2.07
3 p3 202.88708 p3 203.74834 1.4 1.9 2.4 1.17 1.18
3 p3 202.88708 p3 204.72479 0.43 0.61 0.79 1.24 1.68
3 p3 202.88708 fa 207.67188 0.14 0.20 0.29 1.30 1.24
3 p3 202.88708 fa 208.71902 0.15 0.23 0.30 1.44 1.36
4A dc8 207.77319 faam 211.52438 0.77 1.0 1.3 1.36 2.39
4A p3 209.67917 faam 211.52438 1.0 1.4 1.7 1.28 1.70
4A dc8 210.79105 faam 211.52438 1.6 2.2 2.8 1.12 1.10
4A faam 211.52438 fa 213.52423 0.25 0.34 0.48 1.29 2.74
4B dc8 207.75230 faam 211.53818 0.96 1.2 1.5 1.23 1.61
5 p3 209.78229 p3 210.83926 2.5 3.1 3.8 1.03 1.10
5 p3 209.78229 faam 213.48645 2.3 2.7 3.0 1.17 1.03
5 p3 209.78229 faam 214.48874 2.0 2.5 2.9 0.96 1.24
aThe ‘‘consistency measure’’ (G) is shown for the prior OH½ � distribution and for the posterior OH½ � distribution as a ratio to the prior. See text for details.

Figure 4. Posterior OH½ � distributions obtained by applying the Bayesian inference model to NMHC
ratios (dotted) and absolute NMHC concentrations (solid) from selected ICARTT Lagrangian matches.
The prior OH½ � distribution is shown by the dashed line. Case number and upstream/downstream aircraft
and day number are shown on each panel. The function P([OH]) sums to unity and is discretized with a
bin size of 0.1 � 106 molecules cm�3.
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window between interceptions is �10 days, between the
NASA DC8 on day 197 and the FAAM BAe146 on
day 207. The posterior OH½ � distribution is sharply peaked
for this case, with a median value of �1.3 � 106 molecules
cm�3, demonstrating that even over such timescales with
very dilute NMHC signatures downstream, the method can
still retrieve a preference for a narrow range of OH½ � values.
[60] In case 2, a strongly concentrated biomass burning

plume originating from forest fires in Alaska was intercep-
ted in the upper troposphere near Newfoundland, the Azores
and France. There is evidence for slow processing in this
plume from studies of both photochemistry [Real et al., 2007]
and aerosol [Petzold et al., 2007]. Median OH½ � values
inferred for this case are �1.0 � 106 molecules cm�3, with
the posterior distributions showing a significant shift from the
prior distribution. The posterior distributions are also sharply
peaked, with a small spread, indicating that elevated concen-
trations of more reactive NMHCs has allowed the Bayesian
method to differentiate strongly between the likelihood of
different prior OH½ � values. Because of the strongly elevated
concentrations in the plume relative to the background air, the
assumptions implicit in the ratios method are likely to be
most applicable to this case.
[61] During case 3, the NOAA WP-3D sampled a plume

transported downstream of the New York urban area. Its
transport ahead of a cold front was tracked across the
Atlantic at low levels, and the same air was eventually
sampled over Europe by the DLR Falcon on days 207 and
208. An identified match between the two NOAA WP-3D
flights on days 202 and 203 produces a broad
posterior OH½ � distribution, with a similar shape to the
self-multiplied prior function (see Figure 4). The short time
interval between observations has not allowed the likelihood
model to weight parts of the prior distribution, since the
timescale is not long enough for application of different
OH½ � values in the forward model to shift the observed
NMHC ratio distributions by significantly different amounts.
This is an important limitation on using changes in NMHC
concentrations to infer the rate of photochemical processing.
The time between samples must be sufficiently long for the

change in an NMHC distribution due to one OH½ � value to be
statistically separable from that produced by a different OH½ �
value. The match between WP-3D flights on days 202 and
204 provides sufficient time for the prior to be adjusted, and
a relatively tight OH½ � distribution is produced with a median
value of 0.61 � 106 molecules cm�3. Posterior OH½ �
distributions for matches with the DLR Falcon are very
strongly peaked at small OH½ � values, with very narrow
spread. These estimates are likely hampered by downstream
NMHC signatures being ‘‘younger’’ than expected for a true
Lagrangian event, because of the influence of mixing from
more polluted parts of plume during transit across the
Atlantic.
[62] Case 4A sampled upper level export from a warm

conveyor belt, associated with a frontal system along the U.S.
East Coast. The short case 4A match interval between the
NASA DC8 on day 210 and the FAAM BAe146 on day 211,
results in a broad OH½ � distribution, dominated by the prior,
since the window is again too short for the likelihood model
to differentiate the OH½ � prior values. The case 4A and 4B
events linking the FAAM BAe146 on day 211 downstream

with the NASA DC8 on day 207 and the NOAAWP-3D on
day 209, produce remarkably similar posterior OH½ � distri-
butions. Posterior OH½ � estimates for the match event to the
DLR Falcon downstream on day 213 are strongly peaked at
small values, again indicating influence from mixing with
more polluted signatures after upstream sampling.
[63] In case 5 air was exported more slowly at low levels

ahead of the same cold front as in case 4, but originating
below and west of the warm conveyor belt. Posterior
distributions of OH½ � are shifted toward larger values,
consistent with the low-level, moist environment, which is
conducive to efficient production of OH. Largest values are
inferred for a linked event between two interceptions by the
NOAA WP-3D above the U.S. East Coast, in the fresh
polluted outflow. Median OH½ � values remain elevated well

above 2 � 106 molecules cm�3 for the subsequent
matches with the FAAM BAe146, further downstream.
For each of the events in case 5, the inference method
eliminates the possibility that OH½ � values were less than
�1.5 � 106 molecules cm�3.
5.1.2. Evaluation of the Posterior Estimates
[64] The aim of the Bayesian analysis is to refine the prior

estimate of the OH½ � distribution for each of the cases. It is
important to demonstrate that these refined posterior dis-

tributions are improved estimates of the OH½ � concentra-
tions acting in each case compared with the prior
distributions. This is achieved by comparing the output of
the forward model between upstream and downstream
aircraft using the prior and posterior OH½ � distributions,
with the observed NMHC ratio change. We use the likeli-
hood function (equation (8)), as a measure of overlap of the
adjusted upstream and downstream hydrocarbon ratio dis-
tributions for each OH½ � value. The overlap (g(q)) is defined
as the mean of the likelihoods obtained from individual
species ratios. This indicates how well each OH½ � value
reproduces the observed changes in all concentration ratios.

The overall ability of the OH½ � distributions to reproduce
the observed ratio changes is given by a sum of the overlap
function over q, weighted by the normalized self-multiplied
prior and posterior q distributions:

Gprior ¼
X
j

fPi f qj
� �

gg qj
� �

ð16Þ

Gposterior ¼
X
j

fPi f qjjxti
� �

gg qj
� �

ð17Þ

[65] The G values are a ‘‘consistency measure,’’ allowing

evaluation of how consistent the prior or posterior OH½ �
distributions are with the observed NMHC evolution and
the forward model. The prior values and posterior/prior
ratios of G are shown for each case in Table 3. The increase
in the value of the consistency measure provides an indi-
cation of the extent to which the hydrocarbon ratio obser-
vations have provided a useful constraint on the OH½ �
distribution for each case. A posterior/prior G ratio of less
than or close unity indicates that the Lagrangian match is
not good enough to infer useful information about the OH½ �
distribution. Case 1 matches with the DLR Falcon down-
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stream fall into this category, where the reliability of
matching samples between the aircraft is dubious. Also
short time window matches, such as the case 4A 1-day
match window between the NASA DC8 and BAe146, do
not allow a significant improvement to the prior distribu-
tion, since there is not enough time for the forward model to
adequately differentiate the different OH½ � values. For the
other more reliable, longer time window matches, the
posterior OH½ � distributions provide an improvement in
simulating the observed evolution of the NMHC ratios,
indicating that the NMHC observations have provided a
useful constraint on the distribution of OH½ � values for these
cases. The posterior parameter distributions are more
consistent with the observed distribution of NMHC
composition upwind and downwind and their evolution
encapsulated by the forward model.

5.2. Absolute Concentrations Method

[66] Application of the Bayesian method to observed
upstream and downstream distributions of absolute NMHC
concentrations (section 3.1) yields posterior distributions for
three parameters; OH½ � , the mixing rate, K, and background
parameter, a. This method has been applied to absolute
concentration observations from each of the ICARTT
Lagrangian events. The prior distributions for OH½ � , K and
a are shown in Figures 4, 5, and 6 respectively, and are

constructed as described in section 3.1. Posterior distributions
of the three parameters are summarized in Table 2, and are
shown for selected examples in Figures 4, 5, and 6.
5.2.1. Posterior Distributions of OH½ �
[67] Comparison of the inferred OH½ � distributions with

those inferred from the ratios method (Figure 4) demon-
strates similar estimates from the two methods for each
case. For many cases, there is evidence of a systematic shift

toward larger OH½ � values for the ratios method compared
with the concentrations method. This bias arises because of
the implicit assumption of zero background in the ratios
method, as noted by several previous studies [e.g., McKeen
et al., 1990; McKeen and Liu, 1993]. Typically, the less
reactive NMHCs have less elevated plume concentrations
relative to their background so that mixing with the back-
ground results in slower rate of loss of these species
compared with the shorter-lived species. Dilution therefore
acts to decrease ratios of short-lived to longer-lived species
in a similar fashion to OH reaction. Since the ratios method
assumes that mixing cannot change the ratios, OH½ � is
overestimated to explain the observed decrease in ratios
with time. Where the plume concentrations are large relative
to those in the background (e.g., case 2), the ratios and
concentration methods are expected to give similar results,
since the assumption of a negligible background is more
realistic. However, since more species were used as data for

Figure 5. Posterior K distributions obtained by applying the Bayesian inference model to absolute
NMHC concentrations (solid) from selected ICARTT Lagrangian matches. The prior K distribution is
shown by the dashed line. For comparison, the prior K distribution self-multiplied over the number of
species used is also shown (dotted). Case number and upstream/downstream aircraft and day number are
shown on each panel. The function P(K) sums to unity and is discretized with a bin size of 0.01 day�1.
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the concentrations method, this enables the posterior dis-
tributions to shift further from their priors.
[68] In cases where the target air mass has concentrations

downstream that are lower than the mean of the prior
background PDFs, mixing in the forward model can in-
crease concentrations in the air mass, especially at late times
because of the assumption of time-invariant background.
Hence, in these cases larger OH½ � values are inferred using
the concentrations method to account for oxidation of extra
pollution being mixed into the air masses. Examples include
case 1B and case 5 (see Figure 2), particularly for the
longest time intervals between upstream and downstream
samples (Table 2).
5.2.2. Evaluation of the Posterior Estimates
[69] Values of the consistency measure, G, are calculated

according to equations (16) and (17), weighted by the three-
dimensional self-multiplied prior and posterior PDFs
(equation (10)). These overlap values are now dependent
on all three parameters, OH½ � , K and a, and are described in
Table 2. This gives a measure of the consistency of the prior
and posterior distributions of OH½ � , K and a, with the
observed NMHC concentration changes in each case. If the
three parameters had independent effects on the NMHC
concentrations, the G values would be approximately
equal to the single-parameter ratio method G values to the

power 3. This accounts for the smaller consistency measure
values in Table 2 compared with those in Table 3.
[70] For cases 4 and 5, there is a tendency for the

posterior/prior to be increased relative to the ratios method
results (Table 3). While this may not be general behavior, it
seems to be the case for those cases that are expected to
work well because of a sufficiently long match interval and
a reliable NMHC match fingerprint. For these successful
cases, mixing is sufficiently active to be able to refine the
estimate of the background parameter (see section 5.2.3).
The absolute concentrations method is not capable of
refining the parameter estimates for the shorter time inter-
vals (<�2 days), in common with the ratios method.
Unreliable matches with the DLR Falcon in case 1 produce
posterior distributions that show no improvement on the prior
distributions, as in the ratios method. In addition, case 3
matches with the DLR Falcon show a G ratio of just less than
unity, indicating that no useful constraint on the prior
parameter distributions is provided by these matches.
5.2.3. Posterior Distributions of K and a
[71] Inferred K and a distributions are shown in Figures 5

and 6, respectively. These two parameters are intimately
linked through the mixing term. Posterior distributions for a
provide an indication of the level of background concen-
trations mixed into the air mass averaged across the
Lagrangian time interval. This is a unique aspect of the

Figure 6. Posterior a distributions obtained by applying the Bayesian inference model to absolute
NMHC concentrations (solid) from selected ICARTT Lagrangian matches. The prior a distribution is
shown by the dashed line. For comparison, the prior a distribution self-multiplied over the number of
species used is also shown (dotted). Case number and upstream/downstream aircraft and day number are
shown on each panel. The function P(a) sums to unity and is discretized with a bin size of 0.16.

D10S40 ARNOLD ET AL.: INFERENCE OF [OH] AND DILUTION RATES

12 of 15

D10S40



Bayesian method allowing the background parameter to be
treated as a variable, compared to previous methods
for estimating OH½ � and K from NMHCs, which imposed
a fixed set of best estimate background concentrations.
Shifting of the posterior a distribution from the prior
produces a modified distribution of background concentra-
tions which are more consistent with the observed NMHC
concentration changes and the dilution-chemistry model.
[72] The posterior distributions of K typically have me-

dian values close to the prior distribution peak of 0.1 day�1.
However, they are more peaked than the self-multiplied
prior indicating that the NMHC data for the Lagrangian
match has improved the estimate of mixing rate. Using a
prior peaking at K = 0.2 day�1, the posterior distributions
shift more significantly to K values between 0.1 and
0.2 day�1. Since the action of varying a prior is to drag
the posterior estimate toward it, it is clear that K = 0.2 day�1

would be a significant overestimate of mixing rate and that
0.1 day�1 is a better estimate for the prior. Nevertheless, the
posterior distributions of K are more sensitive to the choice
of prior than the OH estimates.
[73] The median posterior K values compare well with

calculated exponential loss rates of CO, based on the change
in plume CO concentration over the time between observa-
tions [Methven et al., 2006]. These loss rates only corre-
spond to the mixing rate, K, in the limit that background
CO and photochemical loss are negligible. For most of the
cases, the K inferred from NMHCs is larger than the CO loss
rate, consistent with the weak elevation of plume
CO concentrations compared with its background and
therefore much slower CO decrease than if the background
were zero. For case 2, the rates should be most comparable,
because of the strong elevation of NMHC and CO concen-
trations compared to background concentrations for the
Alaskan fire plume. Median K estimates of 0.07 and
0.10 day�1 compare well with CO dilution rates of
0.04 and 0.13 day�1. The estimates combining observations
of many NMHC species are expected to be tighter and more
robust than those obtained from a single species (CO).
[74] In most cases, the posterior distribution of a is barely

shifted relative to the prior of zero, but is more peaked than
the self-multiplied prior indicating that the NMHC data has
added information to refine the background estimate. How-
ever, a shift in background parameter does occur in three
cases. In case 4 between the BAe146 downstream on day 211
and the DC8 on day 207 (and WP-3D on day 209), the
posterior distributions of a are shifted by almost one half a
standard deviation to larger values, implying that the NMHC
data points to mixing with a more polluted background than
the prior estimates based on the mid-Atlantic ITOP data set.
This is consistent with CO observations which showed little
decrease between these links. It is known that deep convec-
tion was embedded within the warm conveyor belt over the
Eastern USA in the region flown through by the DC8 and
WP-3D and downstream of them. It is likely that some further
emissions were mixed into the air mass by convection from
below over the USA. Also, mixing within the WCB itself
would imply a more polluted background than the prior
distribution.
[75] In many cases the a-distribution is shifted to lower

values, indicating that the data is consistent with mixing to a
more dilute background than the prior estimate. This is

particularly marked for the furthest downstream matches in
case 1B and case 4A, implying that the typical conditions in
the Azores region during ICARTT were more polluted than
the environment experienced in these cases over the Eastern
Atlantic near Europe.
[76] In general, the posterior estimates for OH are tighter

and more robust to changes in the prior distributions than
the mixing rate and background parameter. This can be
understood from consideration of the forward model equa-
tion (2). The action of the OH reaction term is simply to
translate the upstream and downstream observation PDFs
toward each other in log-concentration space by a shift ki
[OH] (t � tu) and ki [OH] (t � td) respectively, without
affecting their spread. The most likely value of OH achieves
the greatest overlap in these adjusted PDFs, as quantified by
the likelihood function. However, the action of the mixing
term is to increase the spread of the downstream PDF as
well as modify the shift as it is adjusted to the reference
time. The increase in spread is determined by the term
KCi/(K + kiq) which is zero if either the mixing rate or
background concentration is zero. Therefore the spread of the
upstream PDF is much less affected because the upstream
concentrations are typically much greater than those of
the background. The effect of the spreading is to reduce
the likelihood resulting from summing the overlap over
log-concentration bins, but obtain similar likelihoods for a
wide range of K and a values. As a result, the posterior 3-D
PDF can be much broader along the K and a directions than
in the OH direction. Furthermore, the slow variation in the
likelihood with K and a implies that the posterior distribu-
tions of these parameters must be similar to the prior, as
argued below equation (15).
[77] Parrish et al. [2007] showed that the relationships

between observed NMHC ratios near the U.S. East Coast
during ICARTT can only be explained by considering
atmospheric mixing and chemical aging together. The
NMHC signature of a given air mass is determined by its
history of mixing with air masses of different ages during its
transport from source. In this sense, it is clear that the use of
a distribution of fixed background concentrations in a
simple model such as equation (2) is inadequate for treat-
ment of the NMHC evolution. By using a variable distri-
bution of background concentrations, which can be
modified by a, we are inferring the most consistent distri-
bution of background concentrations for each case. The
resulting background concentration distributions represent
the spectrum of air mass NMHC signatures which best
explain the evolution of each air mass assuming that the
forward model is correct. For example, in case 4A a shift of
the a posterior to larger concentrations suggests that the
target air mass mixed with more polluted surroundings than
implied by the prior background distribution.

6. Summary and Conclusions

[78] We have applied Bayesian inference to the problem
of retrieving OH½ � values and mean dilution rate values (K)
from successive observations of nonmethane hydrocarbons
(NMHCs) linked by Lagrangian trajectories. To our knowl-
edge, these are the first estimates of these parameters,
averaged following air masses for several days, accounting
for uncertainties in NMHCs observed upstream and down-
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stream and in background concentrations. Although we are
unable to remove weaknesses in the ‘‘photochemical clock’’
approach because of simplifications inherent in the deriva-
tion of the forward models (equations (2) and (3)), we have
presented new methods for deriving key parameters in their
formulation. We have described a method for formulating
distribution functions for observed NMHC concentrations
within air masses, based on observed variability and instru-
ment error. In addition, we have presented a novel method
for constructing a distribution of background concentrations
based on principal components of a multispecies NMHC
data set. This allows the variation of the background
concentrations in many species to be controlled using a
single parameter (a) by linking their variations through the
first principal component.
[79] The inference method has been applied to both

absolute concentrations of NMHCs, based on a dilution-
chemistry model, and to ratios of NMHCs, based on a
chemistry-only model derived from the first by assuming
dilution with a zero background (the ‘‘photochemical
clock’’ method). It is important that the change in NMHC
concentrations associated with OH loss and mixing over the
trajectory is sufficiently large that the downstream concen-
trations are significantly more dilute than the upstream
concentrations. Specifically, the shift in the peak of the
PDFs of each species with time should exceed the spread of
the PDF associated with variability within air masses and
measurement uncertainty. To achieve this, it is necessary to
include more reactive NMHCs (butanes, pentanes, alkenes)
and to ensure the time interval between observations is of
sufficient length (typically > 1 day) to produce differential

oxidation of NMHCs by OH½ �.
[80] The consistency of the prior and posterior distribu-

tions of OH½ �, K and a with the observed NMHC ratio and
concentration changes have been compared quantitatively
using a weighted overlap of observed NMHCs upstream
and downstream, adjusted by the forward models. These
comparisons indicate that in most cases the Bayesian
inference produces improved posterior estimates of the
parameter distributions. For a small number of cases,
unreliability of the Lagrangian match does not allow a good
constraint to be placed on the prior estimates. In addition,
the lack of time for forward model adjustment of NMHCs
during short matches means posterior distributions are not a
significant improvement on the prior estimates.
[81] The posterior OH½ � distribution derived from NMHC

ratios in a strongly concentrated biomass burning plume
(case 2) is very similar to the OH½ � simulated by a
photochemical model initialized upstream in the plume.
This suggests that the inference method produces physically
reasonable estimates of OH½ �, and implies that the repre-
sentation of photochemistry in the photochemical model can
successfully simulate [OH]. This gives us confidence that
the photochemical model is a sufficient representation of
reality for further studies to be carried out using the
ICARTT Lagrangian match events. Future work will inves-
tigate the sensitivities of ozone photochemistry in the
plumes to model and observation uncertainties, using the
same observation-model framework.
[82] Posterior OH½ � distributions from the NMHC ratios

and absolute concentrations are similar, with values
typically between 0.5 and 2.0 � 106 molecules cm�3.

Median values for case 5 are elevated to between 2.5 and
3.5 � 106 molecules cm�3, consistent with advection of
the plume at low levels in the warm, moist air just ahead
of a cold front. In cases where the downstream samples
are still more concentrated than the prior background with
which it is assumed to mix, the concentrations method
obtains lower estimates for OH than the ratios method.
This is because typically long-lived species are less ele-
vated relative to the background than shorter-lived ones so
that mixing results in a decrease of NMHC ratios with
time (the longest lived species is in the denominator),
similar to the effect of OH reaction. The ratios method
assumes that the decrease in ratio is only associated with
OH reaction and therefore overestimates OH in order to
account for the observed decrease in ratios.
[83] Median posterior K distributions are typically

�0.1 day�1, and are similar in magnitude to estimates of
CO dilution rates by Methven et al. [2006]. In general, the
posterior estimates for K are less tight than for OH and are
less independent of the prior distribution assumed. This
occurs because the OH reaction term in the rate equation for
the NMHCs simply results in a translation of the PDF of
log-concentration without affecting its spread, while the
mixing term increases the spread of the downstream PDF
as it is adjusted backward in time toward the midpoint of the
Lagrangian interval. The result is that the likelihood that
the upstream and downstream data match when shifted to
the midtime varies much less with K than with OH.
Consequently, the posterior estimate for K is broader and
more strongly bound to the prior.
[84] An important aspect of our method is the treatment

of the background parameter, a, as a variable in the
Bayesian inference. For example, the background PDF
shifts to higher values if the upstream and downstream
samples can be better linked by assuming dilution with a
more polluted background from the prior. In a case of
pollution exported from the U.S. East Coast in a warm
conveyor belt, the posterior a distribution suggests an
optimal mixing background significantly more polluted than
the prior estimate constructed from the mid-Atlantic NMHC
data set. Conversely, in cases where the downstream sam-
ples are close to the European western seaboard the a
distribution is shifted to lower values indicating that mixing
is more likely to have occurred with a background that is
more dilute than the prior (averaged over the trajectory).
Generally, the posterior background is less readily changed
from its prior than for OH, for the same reason as the
mixing rate distribution discussed above. However, in this
example the prior is based on a large data set collected in the
mid-Atlantic during the same period and represents a
reasonable estimate of the environment experienced by air
masses averaged along their trajectories between the USA
and Europe.
[85] Despite the lack of information on the history of air

masses between Lagrangian-match samples and the uncer-
tainty inherent in the veracity of those matches, it has been
demonstrated that it is possible to infer the distribution of
mean OH concentrations and dilution rates that could
explain the observed NMHC evolution. It was necessary
to consider carefully the uncertainties arising from the
measurement technique, variability within the plume and
the composition of neighboring air masses with which the
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plume mixes. Despite this careful treatment, large uncer-
tainties remain in the posterior estimates, and the impact of
uncertainties in background concentrations are especially
problematic, particularly for retrieval of K values.
These results have important implications for previous
OH½ � and K estimates derived from less well-constrained
NMHC concentration changes, and ad hoc choices of
constant background concentrations.
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