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Abstract of Dissertation 
 

Addressing Common Covariate Modeling Issues in Latent Class Analysis Models 
 

by 
Marieke A. Visser 

 
Doctor of Philosophy in Quantitative Methods, Measurement, and Statistics  

 
University of California, Merced, 2022 

Professor Sarah Depaoli, Chair  
 
This dissertation is organized into two studies investigating common modeling issues that 
occur when including a covariate in a latent class analysis (LCA) model. When estimating a 
conditional LCA model, applied researchers must make decisions about the estimation 
strategy (one-step vs. three-step), the handling of incomplete covariate data, and 
specification of covariate relationships. Study 1 examined the performance of different 
methods for handling incomplete covariate data when using a three-step approach to 
estimation. The simulation results found that Bayesian estimation with informative normal 
priors correctly centered on the regression coefficient population values produced the most 
consistent and accurate regression coefficient estimates, regardless of the covariate 
distribution, strength, and missing data pattern. However, informative priors centered on the 
wrong population values produced some of the most biased regression coefficients. In most 
modeling conditions, full information maximum likelihood (FIML) and multiple imputation 
(MI) still worked well. When estimating a conditional LCA model, applied researchers must 
also make decisions about how to specify the covariate relations with the LCA measurement 
model. Specifically, applied researcher must decide if the covariate only has an indirect effect 
on the observed indicators via the latent class variable or if the covariate is related to one or 
more of the observed indicator variables. The goal of Study 2 was to explore the utility of 
using small-variance priors to help evaluate covariate relationships. Specifically, small-
variance normal priors centered on zero were specified for the direct effects between the 
covariate and the latent class indicators for a series of population models with varying 
covariate relationships. Results from the Study 2 simulation indicate small-variance priors 
can be a useful tool for detecting covariate misspecifications, depending on the number of 
direct effects, sample size, and class sizes. Overall, findings from Study 1 and Study 2 
highlight how Bayesian estimation can be especially helpful for handling common modeling 
issues in conditional LCA models.
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Chapter 1: Overview of Dissertation 
 
 Latent class analysis (LCA; Goodman, 1974; Lazarfeld & Henry, 1968) is a popular 
method for creating measurement models in the social sciences. For many LCA applications, 
applied researchers are interested in using the LCA measurement model as part of a larger 
structural equation model (SEM) that includes covariates (Brewsaugh, Masyn, & Salloum, 
2018; Herman, Prewett, Eddy, Savala, & Reinke, 2020; Nasiopoulou, Williams, Sheridan, & 
Hansen, 2019). When and how to include these covariates has become a central issue in the 
methodological literature, where two different estimation approaches have been introduced 
for handling covariables: a one-step and a three-step approach. The one-step approach 
simultaneously estimates the LCA measurement model and regresses the latent class variable 
on the covariate (Vermunt, 2010). In contrast, the three-step approach uses a stepwise 
estimation approach in which the LCA measurement model is established independently of 
the covariate before regressing the latent class variable on the covariate (Bakk, Tekle, & 
Vermunt, 2013; Vermunt, 2010). Despite recent methodological advances in estimating 
conditional LCA models, there are still gaps in the literature for how to handle common 
covariate modeling issues (e.g., incomplete covariates, covariate misspecifications). This 
dissertation will address these gaps. 
 The dissertation is organized into two different studies. The first study is entitled 
“Addressing Missing Data in Latent Class Analysis When Using Three-Step Approach.” This 
study aims to provide recommendations for how best to deal with incomplete covariates 
when using a three-step approach. Currently, mixture modeling statistical software defaults 
to listwise deletion of incomplete covariates. However, several alternative techniques are 
available, including full information maximum likelihood (FIML), switching to Bayesian 
estimation in the third step, and multiple imputation (MI). Study 1 investigates the 
performance of these methods under different covariate missing conditions (e.g., proportion 
missing, missing mechanism) and covariate distributions (e.g., standard normal, binomial). 
Results from this study will be valuable to applied researchers seeking to address incomplete 
covariates while using a three-step approach to estimation. 
 The second dissertation study is entitled “Using Small-Variance Priors to Detect 
Covariate Misspecifications in Latent Class Analysis Models.” The aim of this study is to 
illustrate how informative, small-variance priors can be used to detect covariate 
misspecifications in conditional LCA models. The most common way of including a 
covariate is to regress the latent class variable on the covariate. Still, there are many ways the 
covariate could be related to the measurement model (e.g., the covariate could be directly 
related to one or more of the class indicators; Nylund-Gibson & Masyn, 2016). One method 
that may be effective for detecting these types of covariate misspecifications is a restrictive 
prior strategy, which involves the use of informative, small-variance priors on parameters 
that are typically constrained to zero (i.e., direct effects from the covariate to class 
indicators). Study 2 aims to provide a new analytical framework for methodological and 
applied researchers seeking to detect direct effects in conditional LCA models. 
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Chapter 2: General Methodology 
 
 Mixture modeling has become an increasingly popular analytical method for 
describing and explaining heterogeneity in an unobserved population. Mixture modeling is 
used to describe the overall population distribution of a set of class indicators using a finite 
mixture of unobserved subpopulations. Each subpopulation (i.e., latent class) has its own 
multivariate distribution of the observed indicator variables. Mixture modeling techniques 
can be applied to both cross-sectional data (e.g., latent class analysis and latent profile 
analysis) and longitudinal data (e.g., latent transition analysis and growth mixture modeling). 
In all mixture modeling applications, at least one multinomial latent class variable is 
estimated, which divides the unobserved population into a finite number of mutually 
exclusive and exhaustive latent classes. The aim of these analyses is to identify substantively 
meaningful groups of individuals who responded similarly to the indicator variables 
(Muthén, 2004).  
 The most basic finite mixture model is the cross-sectional latent class analysis (LCA) 
model (Lazarsfeld & Henry, 1968; Goodman 1974; McCutcheon, 1987; Magidson & 
Vermunt, 2004), which traditionally uses binary latent class indicator variables. The LCA 
model has been extended to include class indicators of various scales: ordinal, interval, or 
ratio. In addition, LCA can be applied to indicator variables of all the same scale or of mixed 
scales (e.g., binary class indicators and ratio class indicators can be used in the same analysis). 
However, the parameterization of the LCA model becomes increasingly complex with the 
addition of mixed scale class indicators.  

LCA has been used in a variety of substantive settings, including the classification of 
adolescent smoking subgroups (Henry & Muthén, 2010), alcohol dependence subgroups 
(Moss, Chen, & Yi, 2007), internet gambling subgroups (Llyod et al., 2010), adolescent 
obesity subgroups (Huh et al., 2011), and peer victimization subgroups (Nylund, Bellmore, 
Nishina, & Graham, 2007). As another example, Quirk, Nylund-Gibson, and Furlong used 
the LCA measurement model to help explain the heterogeneity kindergarten readiness based 
on a set of readiness indicators that had previously been identified. In the following sections, 
the parameterization of the unconditional LCA model will be discussed. Next, the LCA 
model will be extended to include covariates (i.e., predictor variables). Finally, different 
approaches to estimating the conditional LCA model will be presented. 
2.1 Latent Class Analysis  

In the LCA model, there are two types of parameters of interest: measurement and 
structural parameters. The measurement parameters describe the relationship between the 
observed latent class indicators and the latent class variables (i.e., the class-specific item 
endorsements probabilities, which are the distribution of the binary class indicators 
conditional on the latent class variable). In contrast, the structural parameters describe the 
multinomial distribution of the latent class variable (i.e., the proportion of cases in each 
latent class). The parameterization of the LCA model with binary indicators is detailed 
below, with notation first presented in Nylund-Gibson and Masyn (2016) and Masyn (2017).  
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Figure 1. The unconditional LCA model with 𝑀 binary 
latent class indicators. The latent class indicators are 
represented with 𝑢!, 𝑢#, … , 𝑢& , and 𝑐 represents the 
underlying multinomial latent class variable. 

 
 Figure 1 provides a visual representation of the unconditional LCA model. In Figure 
1, each latent class indicator is observed on 𝑛 individuals with 𝑢'( representing individual 𝑖’s 
response to class indicator 𝑚. The latent class variable has 𝐾 classes where 𝑐( = 𝑘 when 
individual 𝑖 belongs to Class 𝑘. The latent classes are mutually exclusive; therefore, individual 
𝑖 can only be assigned to one of 𝐾 classes. The relationship between the observed class 
indicator variables and the latent class variable can be formulated with: 
 

Pr(𝑢!( , 𝑢#( , … , 𝑢&() = :[𝜋) ∙ Pr(𝑢!( , 𝑢#( , … , 𝑢&(|𝑐( = 𝑘)],
*

)+!

 (1) 

where 𝜋) is a structural parameter representing the prevalence of individuals in Class 𝑘 (i.e., 
class proportions). Considering the latent classes are mutually exclusive, ∑𝜋) = 1. 
  The measurement model for the latent class variable can be parameterized as the 
relationship between the observed class indicators 𝑢!, 𝑢#, … , 𝑢& and the latent class variable 
𝑐, which can be formulated with: 
 

Pr(𝑢' = 1|𝑐 = 𝑘) =
1

1 + exp(𝜏'))
, (2) 

where 𝜏') is the negative log odds of endorsing class indicator 𝑢' given membership to 
latent class 𝑘. In other words, 𝜏') is equal to −logit(E[𝑢'|𝑐 = 𝑘]). The class-specific item 
response probabilities suggest how likely an individual is to endorse a particular item given 
latent class membership. 
 For the structural model, the unconditional distribution of the multinomial latent 
class variable, 𝑐, can be parameterized with a multinomial logistic regression formulation. 
Specifically, the 𝜋) parameters can be defined as intercepts on the inverse multinomial logit 
scale, such that:  
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𝜋) = Pr(𝑐 = 𝑘) =
exp(𝛾))

∑ exp(𝛾,)*
,+!

. (3) 

 
The 𝛾) represents the log odds of membership in class 𝑘, given membership in either class 𝑘 
or 𝐾. For identification purposes, 𝛾-* is constrained to 0.  
 The LCA model assumes local independence, which suggests the 𝑀 binary latent 
class indicators are uncorrelated conditional on class membership. In other words, latent 
class membership fully explains any correlations between observed class indicators. Software 
capable of LCA imposes the local independence assumption by default. By making the local 
independence assumption, Equation (1) is further simplified to: 
 

Pr(𝑢!( , 𝑢#( , … , 𝑢&() = :M𝜋) ∙ NOPr	(𝑢'(|𝑐( = 𝑘)
&

'+!

PQ .
*

)+!

 (4) 

 
Violating the local independence assumption can impact parameter estimates and 

model fit indices (Albert & Dodd, 2004; Asparouhov & Muthén, 2011; Lee et al., 2020; 
Torranc-Rynard & Walter, 1998; Vacek, 1985). In applied settings, the local independence 
assumption should be evaluated because it is possible to relax the assumption (i.e., allowing 
residual correlations between two or more latent class indicators in one or more latent 
classes), if necessary. For a detailed explanation of how to evaluate and relax the local 
independence assumption in popular mixture modeling software, see Visser and Depaoli 
(2022). 

When estimating an LCA model, users must select the number of latent classes in the 
population. Applied users often lack prior knowledge about the number of latent classes. A 
statistical analysis procedure (i.e., class enumeration) can aid applied users in selecting the 
number of classes. During class enumeration, an iterative procedure is used to estimate 
several LCA models with a different number of specified classes. The best-fitting LCA 
model is then selected based on model fit and comparison indices, see Nylund, Asparohov, 
and Muthén (2007) for a detailed explanation of class enumeration. 
2.2 Latent Class Analysis with Covariates 

In many practical applications of LCA, the LCA measurement model is used as part 
of a larger structural equation model (SEM). These models often include observed 
explanatory variables (i.e., covariates, predictors, independent variables, external variables, or 
concomitant variables1) that predict the latent class variable. For example, Quirk et al., (2013) 
extended their LCA model for kindergarten readiness to include several predictors (e.g., 
student’s prior preschool experiences, age, language skills, and gender). The addition of these 
covariates allows researchers to explore research questions about why an individual was 
assigned to a particular latent class. A visual example of the latent class model with a 
covariate (i.e., conditional LCA model) can be seen in Figure 2. The covariate, 𝑥!, can be 
categorical (Clogg, 1985; Goodman, 1974; Haberman, 1979; Hagenaars, 1990; Hagenaars, 
1993; Vermunt, 1997) or continuous (Bandeen-Roche, Zeger, & Rathouz, 1997; Dayton & 
Macready, 1988; Kamakura Wedel, & Agrawal, 1994; Yamaguchi, 2000).  

 
1 A concomitant variable is a variable that is not the focus of the study, but the variable may influence variables 
of interest to the study (e.g., the dependent variable). 
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Figure 2. The conditional LCA model with 𝑀 binary 
latent class indicators and a single covariate, 𝑥!. The 
latent class indicators are represented with 
𝑢!, 𝑢#, … , 𝑢& , and 𝑐 represents the underlying 
multinomial latent class variable. 
 

To include a covariate, the latent class model is combined with the latent class 
regression model into a joint model, which is typically estimated with the maximum-
likelihood (ML) estimator. This approach is often referred to as the one-step approach in the 
methodological literature because the measurement model and structural model (i.e., the 
logistic regression in which the latent classes are related to the covariates) are simultaneously 
estimated in a single step (Asparouhov & Muthén, 2014; Bandeen-Roche et al., 1997; Dayton 
& Macready, 1998; Vermunt, 2010). More specifically, the latent class variable is regressed on 
the covariate using multinomial logistic regression parametrization (Nylund-Gibson & 
Masyn, 2016). Using notation first presented in Nylund-Gibson & Masyn (2016), the 
relationship between the LCA model and covariate 𝑥( can be expressed as a multinomial 
logistic regression model: 

 

Pr(𝑐( = 𝑘|𝑥() =
exp(𝛾-) + 𝛾!) 	𝑥()

∑ exp(𝛾-, + 𝛾!, 	𝑥()*
,+!

, (5) 

 
where 𝛾-* = 𝛾!* = 0 for model identification. In Equation (5), the latent class indicator 
variables are considered independent of the covariate conditional on class membership. 
Therefore, Equation (4) can be adapted to include covariate	𝑥( such that 
 

Pr(𝑢!( , 𝑢#( , … , 𝑢&(|𝑥() = :MPr(𝑐( = 𝑘|𝑥() ∙ NOPr	(𝑢'(|𝑐( = 𝑘)
&

'+!

PQ .
*

)+!

 (6) 

 
 When 𝐾 number of classes have correctly been identified, the exclusion of 	𝑥( from 
the model has no impact on the point estimates (i.e., 𝜏')) for each class indicator (i.e., 
𝑢!, 𝑢#, … , 𝑢&). In other words, latent class membership will depend on 	𝑥( , but the class 
indicator responses should only depend on class membership. Thus, the covariate only has 
an indirect effect on the latent class indicators via the latent class variable. 
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The one-step approach may appear straightforward enough, but several drawbacks 
have been noted in the methodological literature. Specifically, Vermunt (2010) notes that the 
one-step approach is impractical when using many covariates, as is typical for exploratory 
studies. With each additional covariate, the LCA measurement model and the structural 
model must be estimated again. In addition, Vermunt (2010) highlights the model-building 
issues surrounding the inclusion of covariates. Applied users must decide whether to pick 
the number of latent classes before or after including covariates. Although covariates can 
help aid class enumeration when properly specified (Li & Hser, 2011; Lubke & Muthén, 
2007; Muthén, 2002), applied researchers are unlikely to properly specify the covariates in 
the model without prior knowledge. Misspecifying the covariate relationships with the LCA 
measurement model can impact the class enumeration procedure, resulting in an over-
extraction of the number of classes (Nylund-Gibson & Masyn, 2016). Therefore, several 
methodological studies suggest the number of latent classes should be established prior to 
including covariates (Collins & Lanza, 2010; Masyn, 2013; Petras & Masyn, 2010). Vermunt 
(2010) also notes that applied researchers do not find the joint model to be intuitive because 
they often wish to introduce covariates after classifying individuals. In addition, the applied 
researcher who establishes the latent class measurement model may not be the same 
researcher who is building the structural model. 
 To address some of the drawbacks of the one-step approach, methodologists have 
proposed a stepwise approach to estimation (Vermunt, 2010; Asparouhov & Muthén, 2014), 
where the latent class model and the relationship between the latent class variable and 
covariate are independently evaluated. By using a stepwise approach, the measurement 
model and structural models are decoupled, which can resolve many of the issues with the 
one-step approach. In the following section, the procedures for using a typical stepwise 
approach will be discussed in detail. 
2.2.1 Stepwise Approaches 
 The conditional LCA methodological literature has been in flux in recent years. More 
recently, methodologists have recommended the use of a stepwise approach when building 
SEMs that include auxiliary variables (e.g., covariates, distal outcomes). When using a 
stepwise approach to estimation, the LCA measurement model is established prior to the 
inclusion of auxiliary variables. The general procedure for implementing a typical stepwise 
approach is as follows: 

1. The LCA measurement model is built. During this step, applied researchers must 
decide how many class indicators should be included in the LCA measurement 
model and how many classes should be specified. In addition, the local independence 
assumption should be evaluated during this step. 

2. Using the parameter estimates from the LCA measurement model in Step 1, cases 
are assigned to the different latent classes based on their posterior membership 
probabilities.  

3. The standard multinomial logistic regression is estimated, using the class 
membership assignment from Step 2 as an observed indicator of the latent class 
variable. 

The described stepwise approach consistently underestimates the relationship between 
the covariate and latent class (Bolck, Croon, & Hagenaars, 2004). As the classification error 
in Step 2 increases, the relationship between the covariate and the latent class variable is 
attenuated. In response to these findings, several new methods have been proposed to 
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address the measurement error issue in Step 2. One such method is the maximum likelihood 
(ML) three-step approach, which was developed by Vermunt (2010) and expanded upon by 
Bolck et al. (2004).  

The three-step approach is suitable for exploring the relationship between the LCA 
measurement model and covariate(s). We follow Asparouhov and Muthén (2014) in 
describing the procedure for the ML three-step approach. First, the unconditional LCA 
model is estimated using only the observed class indicators. In the second step, the most 
likely class variable, 𝑀, is created using the latent class posterior distribution, which was 
produced during the estimation of the unconditional LCA model. The most likely class 
variable is a nominal variable and for each observation, 𝑀 is set to the class for which 
Pr(𝑐 = 𝑘|𝒖) is the largest (Asparouhov & Muthén, 2014); 𝒖 represents the latent class 
indicators and 𝑐 is the latent class variable. The classification uncertainty rate for 𝑀 can be 
calculated with the following equation: 

 
𝑝.!,." = Pr(𝑐 = 𝑐#|𝑀 = 𝑐!) =

!
&#!

∑ Pr	(𝑐( = 𝑐#|𝒖()&$+.! , (7) 
 
where 𝑀.! is the number of cases assigned to class 𝑐! by the most likely class variable 𝑀, 𝑀( 
is the most likely class variable for the 𝑖th observation, 𝑐( is the true latent class variable for 
the 𝑖th observation, and 𝒖( represents the class indicator variables for the 𝑖th observation. 
The probability Pr(𝑐( = 𝑐#|𝒖() can be computed with the estimated unconditional LCA 
model from the first step.2 After calculating the classification uncertainty with Equation (7), 
it is possible to calculate the classification measurement error with: 
 

𝑞.!,." = 	𝑃(𝑀 = 𝑐!|𝑐 = 𝑐#) = 	
0#!,#"1#!
∑ 0#,#"# 1#

, (8) 

 
where 𝑁. is the number of observations classified in class 𝑐 by the most likely class variable 
𝑀. In this way, the most likely class variable can be treated as an imperfect measurement of 
𝑐 with measurement error 𝑞.!,." . The measurement error can then be transformed into logits 
using log(	𝑞.!,." 	𝑞*,."⁄ ), where 𝐾 is used as a reference class. In the third step, the latent 
class variable is regressed on 𝑥 while taking into account the measurement error. Specifically, 
the most likely class variable 𝑀 is used as a single, nominal class indicator of the latent class 
variable 𝑐. The logits are used as fixed parameter values that describe the direct relationship 
between the latent class variable and the most likely class variable. The multinomial 
regression of 𝑐 on predictor 𝑥 is freely estimated. A visual representation of the three-step 
approach can be seen in Figure 3, which was adapted from Asparouhov and Muthén (2014).  
 

 
2 The conditional probabilities for the class assignment given true latent class membership are automatically 
computed by Mplus when estimating an LCA model. These conditional probabilities can be found in the 
Results section under the title “Classification Probabilities for the Most Likely Latent Class Membership (Row) 
by Latent Class (Column).” See Asparouhov and Muthén (2014) and Vermunt (2010) for more details on how 
to compute the conditional probabilities for the ML three-step approach. In the Vermunt (2010) article, the 
ML three-step approach is referred to as Modal ML. 
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Figure 3. A visual of the ML three-step approach.  
The latent class variable 𝑐 is regressed on covariate 𝑥. The 
most likely class variable, 𝑀, is used as a single class 
indicator of the latent class variable 𝑐. The relationship 
between 𝑀 and 𝑐 is fixed, and the relationship between 𝑥 
and 𝑐 is freely estimated. 

 
Ample simulation research has explored the performance of the ML three-step 

approach under different modeling conditions (e.g., Asparouhov & Muthén, 2014; Bakk, 
Tekle, & Vermunt, 2013; Nylund-Gibson et al., 2019; Vermunt, 2010). Results from these 
simulation studies suggest the three-step approach can produce unbiased parameter 
estimates if the LCA measurement model has sufficient class separation. In mixture 
modeling, class separation refers to how distinct the latent classes are from one another. 
When class separation is poor, it can be trickier to properly assign cases to latent classes, 
resulting in increased measurement error in the latent class variable.  

Statistical software capable of mixture modeling (e.g., Mplus, Latent GOLD) has 
largely automated the three-step approach, allowing applied researchers to implement the 
procedure much more easily. Although this automation can be helpful, the automation limits 
the user’s ability to adjust how the model is estimated. Specifically, the automation limits the 
user’s ability to address missing data and the estimator is limited to ML. When “manually” 
implementing the three-step approach instead, the user has a greater ability to adjust how the 
model is estimated. For example, the user can address the missing data in the covariate and 
the user can switch to a Bayesian estimation framework in the third step. 
2.3 Bayesian Conditional Latent Class Models 
 The previous section discussed estimation strategies available for the conditional 
LCA models in the frequentist framework (e.g., one-step approach, three-step approach). An 
alternative method for estimating LCA models is to use Bayesian estimation. In recent years, 
the Bayesian estimation framework has become increasingly popular as statistical software 
has made it more accessible to applied researchers (van de Schoot, Winter, Zondervan-
Zwijnenburg, Ryan, & Depaoli, 2017). The primary distinction between the frequentist and 
Bayesian estimation is the addition of prior distributions in the model. The prior 
distributions (or priors) represent what a parameter in the model should look like based on a 
prior belief about the relationship. For every parameter estimated in the model, it is possible 
to specify a prior distribution that describes these prior beliefs. These prior distributions are 
incorporated into the estimation process and can provide information about the parameters 
in the model.  

Depending on the certainty of a researcher's prior information, it is possible to 
specify a prior with varying degrees of informativeness. For example, if a researcher has very 
specific knowledge about the parameter, the researcher can specify a narrower prior. 
However, if the researcher is uncertain about what a parameter looks like, the researcher can 
set a less informative prior. The degree of informativeness about a prior can be set with 
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hyperparameters, the parameters that compromise a probability distribution. When a prior is 
narrow and contains specific information about the parameter, it is considered an 
informative prior. A wider, less informative prior is called a noninformative (or diffuse) 
prior. The information (or lack of information) specified within the prior is incorporated 
with the data during the estimation process. In mixture models, the ability to incorporate 
accurate prior knowledge about class-specific parameters and class proportions can greatly 
improve estimation (Depaoli, 2013, 2014; Lu, Zhang, & Lubke, 2011). Bayesian estimation 
offers several advantages when addressing model estimation issues, such as model 
assumption violations (Asparouhov & Muthén, 2011; Bauer, 2007), convergence to local 
maxima (Hipp & Bauer, 2006), and inaccurate parameter estimates (Depaoli, 2013).  

One important concept in latent class modeling is how separated the latent classes 
are from one another at the population level. When the latent classes are difficult to 
distinguish from one another (i.e., poor class separation), it can be less clear which latent 
class a particular case belongs to. In addition, it may not be obvious how many latent classes 
are present in the population. Estimating the class-specific parameters can be much more 
difficult when class separation is poor. When using Bayesian estimation, it is possible to 
incorporate prior knowledge about the latent classes, which can be a helpful tool for 
accurately estimating class-specific parameters. In contrast, in the frequentist estimation 
framework, one of the only viable options for overcoming these estimation challenges is to 
collect a much a larger sample (Depaoli, 2013, 2014; Lu et al., 2011).  

Another source of estimation issues in latent class models is the relative size of the 
latent classes. When a latent class is small relative to the other latent classes (e.g., Class 1 = 
18% vs. Class 2 = 82%), parameters specific to the minority class are much more difficult to 
estimate (Depaoli, 2013, 2014; Lu et al., 2011; Tueller & Lubke, 2010). Bayesian estimation 
can be a useful tool for incorporating prior knowledge about the relative size of the latent 
classes in the model. By incorporating accurate prior distributions about the relative size of 
the latent classes, the model is better able to identify and accurately estimate small latent 
classes (Depaoli et al., 2017). In the following section, the prior distributions relevant to class 
proportions in unconditional and conditional LCA models will be discussed in detail. 
2.3.1 Class Proportion Prior Specifications for Latent Class Models 

In an unconditional LCA model, the prior distribution for the class proportions 
typically follows the Dirichlet distribution. When assigning a Dirichlet (D) prior, the class 
proportions (𝜋!,…,𝜋.) for latent class 𝑐 can be modeled such that: 

 
(𝜋!,…,𝜋.) ~ D(𝛿!,…,𝛿.). (9) 

 
 The class proportions ∑𝜋) = 1, and each of the 𝛿 elements represent the 
hyperparameters, which control how uniform the distribution is. Depending on the statistical 
software being used, the 𝛿 elements can represent either the number of cases or proportion 
of cases that will be added to each latent class according to the prior. In the Mplus statistical 
software (Muthén & Muthén, 1998-2017), the Dirichlet prior is placed on the class 
proportion threshold, and the 𝛿 elements indicate the number of cases that should be added 
to each latent class according to the prior.  

The least informative Dirichlet prior for 2-class model would be D(1,1), which only 
has a single case representing each class and provides no information about the proportion 
of cases in each class. In contrast, a more informative version of the Dirichlet prior would 
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assign the 𝛿 elements based on prior knowledge about the size of the latent classes relative 
to the total number of participants. For example, assume a dataset has 100 participants and a 
researcher believes the class proportions should be an 82%-18% split between two classes. 
In this example, the informative Dirichlet prior could be set to D(82,18) to reflect the 
expected number of cases in each class. Past methodological research on growth mixture 
models (GMM) suggests informative, accurate priors on the class proportions can help aid 
estimation when the class proportions are unequal (Depaoli, 2012; Depaoli, 2013). Unequal 
class proportions can be challenging in mixture models, especially when one of the latent 
classes is much smaller relative to the other classes. In these situations, a more diffuse 
Dirichlet prior with equal 𝛿 elements can exacerbate the problem by making the latent 
classes appear more equal in size than they are in the population (Depaoli et al., 2017). In 
other words, when there are unequal sizes in the latent classes, and especially when the 
overall sample size is small, a “diffuse” Dirichlet prior (e.g., D(10,10)) has the potential to 
act as an informative prior that forces classes to be equal in size (Depaoli, 2013). 
 When including a covariate in a latent class measurement model, the latent class 
variable is regressed on the covariate using multinomial logistic regression parametrization. 
As a result, the latent class proportions are now a function of the intercept and slope. In 
contrast to the unconditional LCA model, it is no longer possible to specify a Dirichlet prior 
directly on the latent class proportions. Instead, prior knowledge about the relationship 
between the covariate and the latent class variable can be incorporated by specifying a prior 
distribution on the intercept and slope the logistic regression.  

The methodological research about the use of informative priors on the multinomial 
logistic regression parameters is very limited. Previous applications of Bayesian conditional 
LCA models have placed a normally distributed prior, N(𝜇, 𝜎#), on the logistic regression 
intercept and slope terms (Garrett & Zeger, 2000; Neelon, Swamy, Burgette, & Miranda, 
2011). More specifically, the mean hyperparameters (𝜇) were assigned a value of 0, and the 
variance hyperparameters (𝜎#) were assigned a value of 9/4. These values were selected 
because 95% of the distribution falls between approximately ± 3.00, which encompass the 
range of expected values for the intercept and slope of the multinomial logistic regression. 
These prior specifications result in a weakly informative prior that limits parameter space for 
the intercept and slope to more plausible values.  
2.3.2 Convergence 

Bayesian estimation is implemented with the Markov chain Monte Carlo estimation 
algorithm (MCMC). Although there are several different diagnostics available to assess 
parameter convergence within the MCMC algorithm, the potential scale reduction factor 
(PSRF, or 𝑅̀; Brooks & Gelman, 1998; Gelman & Rubin, 1992a, 1992b; Vehtari, Gelman, 
Simpson, Carpenter, & Bürkner, 2020) is one of the most common. The PSRF is a 
diagnostic based on the analysis of variance of parallel MCMC chains with different starting 
values. More specifically, the PSRF looks at the ratio of the overestimate of the target 
distribution (i.e., between-chain variance) and the underestimate of the target distribution 
(i.e., within-chain variance). Using notation first presented in Muthén and Asparouhov 
(2012), we can define the within- and between-chain variation as, 
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In Equations (10)-(13), there are 𝑛 iterations in 𝑚 chains, where 𝜋(, represents the value of 
parameter 𝜋 in iteration 𝑖 of chain 𝑗. Using the within- and between-chain variation, the 
PSRF can be calculated with, 
 

𝑃𝑆𝑅𝐹 = g𝑊 + 𝐵
𝑊 . (14) 

 
Convergence can then be assessed by interpreting the PSRF value. If the PSRF is close to 1, 
there is evidence to suggest convergence has been reached because the between-chain 
variance is equal to the within-chain variance (implying that the chains overlap and have 
converged together). If the PSRF is greater than 1.01, concerns about nonconvergence are 
warranted. In some situations, increasing the length of the MCMC chains can produce a 
more favorable PSRF value. 
2.3.3 Label Switching 
 One well known issue that commonly arises when estimating finite mixture models is 
label switching. More specifically, label switching occurs when the ordering of the latent classes 
arbitrarily changes because the order of the classes is not typically defined within the mixture 
model. When working with a single sample, label switching may not be an issue because the 
model will converge on a single solution. In simulation studies, the same analysis is repeated 
across many samples, which allows the ordering of the latent classes to change across 
replications. If the ordering of the latent classes does not remain stable across replications, 
then the statistics used to summarize parameter estimates across all replications are suspect 
(Chung, Loken, & Schafer, 2004; Tueller, Drotar, & Lubke, 2011). To avoid label switching, 
one popular solution is to introduce inequality constraints to the mixture model, which order 
the latent classes in a specific way across replications. 

Bayesian estimation introduces two additional situations in which label switching can 
occur (Celeux, Hurn, & Robert, 2000; Chung et al., 2004; Frühwirth-Schnatter, 2001). 
Bayesian estimation via the MCMC algorithm allows for between-chain and within-chain 
label switching. Between-chain label switching occurs when multiple chains are used to 
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estimate model parameters. Considering the order of the latent classes are arbitrary, each 
chain may be estimating the parameter for a different latent class. When the chains are 
averaged together for a posterior estimate, the results are meaningless because each chain is 
estimating a parameter for a different latent class. To prevent between-chain label switching, 
a single MCMC chain should be used to estimate model parameters in mixture models. 
Within-chain label switching occurs when the latent class labels are arbitrarily switched 
between latent classes within a single MCMC chain (Jasra, Holmes, & Stephens, 2005). 
Within-chain label switching is most evident when assessing convergence with trace plots. 
Specifically, the trace plots reveal dramatic jumps in the parameter estimate within a single 
chain, which suggest the MCMC algorithm has switched between latent classes. Within-chain 
label switching can be resolved by implementing inequality constraints on model 
parameter(s) that most readily distinguish the latent classes (Depaoli et al., 2016; Lu et al., 
2011). 
2.4 Common Modeling Issues in Conditional Latent Class Analysis Models  
 The purpose of this dissertation is to address two common issues that appear when 
including predictor variables in LCA models. In Study 1, we explore the utility of different 
methods for addressing incomplete covariate data when using the ML three-step approach. 
Results from this study will help applied researchers in make informed decisions on how to 
handle incomplete covariate data. In Study 2, we explore the performance of small-variance 
priors in detecting direct effects between the covariate and latent class indicators. Detecting 
direct effects between the covariate and latent class indicator can be tricky. Study 2 results 
may give credence to the use of small-variance priors as another method available for 
detecting non-zero direct effects. Taken together, these studies will help aid applied 
researchers using conditional LCA models in their own research and highlight potential 
benefits of Bayesian estimation. 
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Chapter 3: Study 1 – Addressing Missing Data in Latent Class Analysis When 
Using Three-Step Approach 
 
3.1 Introduction 
 Missing data occurs in most empirical datasets, regardless of efforts by substantive 
researchers to minimize missingness. Ignoring missing values can be problematic for two key 
reasons. First, partially complete cases could be substantively different from complete cases, 
and these differences need to be adjusted to prevent bias in parameter estimates. Second, 
partially complete cases are often removed from statistical analyses. The reduction in sample 
size can lead to estimation problems and poor statistical power (Collins & Lanza, 2010). 
Therefore, methodologists strongly recommend applied researchers address missing data in 
their analyses. 

The methodological literature has identified three missing-data mechanisms (Little & 
Rubin, 2002; Rubin, 1976; Schafer, 1997; Schafer & Graham, 2002). Data can be missing not 
at random (MNAR), missing completely at random (MCAR), or missing at random (MAR).  
Data are considered MNAR when the probability of having incomplete data on variable Y is 
related to the values of Y itself, despite controlling for observed variables (Enders, 2010). 
When the probability of incomplete data on 𝑌 depends on another observed variable in the 
analysis model and not the values of 𝑌 itself, the data are considered MAR). Data is 
considered MCAR when the probability of incomplete 𝑌 data is not related to another 
observed variable or the values of 𝑌 itself. MNAR is the most problematic because there is a 
systematic reason for the missing cases, but there is no way to account for that reason. The 
parameter estimates cannot be adjusted for the unknown variable and will be biased. MCAR 
and MAR are considered ignorable missingness because modern missing data techniques are 
available to handles these types of missing data (Collins & Lanza, 2010). 
 In latent class models, missing cases in the class indicator variables can be easily 
addressed if the missing data mechanism is MCAR or MAR (Collins & Lanza, 2010; Kolb & 
Dayton, 1996). Software packages capable of fitting LCA models are typically equipped to 
address missing latent class indicators rigorously. SEM software (e.g., Mplus) often defaults 
to model-based missing data procedures without additional syntax from the user. More 
specifically, Mplus computes the parameter estimates with all the available information (i.e., 
using the MAR assumption). These software defaults allow missing class indicators to be 
addressed without much consideration from applied researchers. Unfortunately, including a 
grouping variable (i.e., covariate, predictor, independent variable) can complicate the 
situation. When estimating an LCA model that includes covariates, the user must decide on 
the estimation strategy (one-step vs. stepwise) and develop their own analysis plan for 
addressing incomplete covariates.  
 More recently, methodologists have begun to recommend a stepwise approach to 
estimating conditional LCA models (Vermunt, 2010; Asparouhov & Muthén, 2014). The 
primary reason for this recommendation is that applied researchers often wish to establish 
the LCA measurement model independently of the covariate(s). One way to achieve this aim 
is to use the ML three-step approach (Vermunt, 2010). The ML three-step approach uses the 
following general steps: 

1. The best-fitting unconditional LCA model is identified. 
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2. A most likely class variable, 𝑀, is created using the latent class posterior distribution 
from Step 1. The conditional probabilities for the class assignment given true latent 
class membership are also computed. These computed quantities will be used as the 
estimated classification errors in class assignment.  

3. The structural model is estimated, allowing for the inclusion of predictors of the 
latent class variable. 𝑀 is used as a single, nominal indicator of the latent class 
variable. The computed quantities are used as fixed parameter values that describe 
the direct relationship between the latent class variable and 𝑀.  

The analysis process for the ML three-step approach can be very cumbersome. Statistical 
software has helped make the method more accessible to applied researchers by automating 
many or all the estimation steps. Unfortunately, this automation can make for an inflexible 
modeling experience in which users cannot adapt the model specification. The inflexibility of 
the automatic method can be especially problematic when addressing incomplete covariates 
because the software defaults to listwise deletion, which deletes cases with any incomplete 
covariate data in the analysis.  
 Statistical software defaults to listwise deletion for incomplete covariates (and not for 
incomplete latent class indicators) because covariates are exogenous variables in the larger 
SEM. The outcome (i.e., the latent class variable) is conditional on the covariate, which has 
no distributional assumptions. Therefore, the covariate is assumed to be fixed and fully 
observed in a conditional mixture model (Sterba, 2014). The listwise deletion of exogenous 
covariates is not unique to conditional mixture models; conditional non-mixture models 
often specify covariates as exogenous variables (Sterba, 2014). The unique issue here is the 
common practice of using an automated stepwise approach that does not allow users to 
adapt model specifications to address the incomplete covariates. When users rely on the 
automatic ML three-step approach, all the available data are used when estimating the 
unconditional LCA model in the first step, but individuals with incomplete covariates will be 
removed from the analysis in the third step. Applied users may be caught off-guard by the 
reduced sample size caused by the listwise deletion of cases with incomplete covariates. A 
different method is preferred because listwise deletion decreases statistical power and biases 
parameter estimates under the missing-at-random (MAR) assumption (Little, 1992; Little & 
Zhang, 2011).  
3.1.1 Methods for Addressing Incomplete Covariates in LCA Models 

Three alternative methods have been identified to address incomplete covariates 
when using a manual ML three-step approach. The first method analyzes the data from 
individuals with complete and partially complete data together, and the model estimates are 
adjusted based on the information provided. The second method uses Bayesian estimation 
to internally impute incomplete covariate values using all available information. The third 
method imputes plausible values in place of missing values across many datasets, analyzes 
each dataset, and pools the parameter estimates from each analysis. Each of these methods 
will be described in detail in the following subsections. 
3.1.1.1 FIML.  

One state-of-the-art method for addressing missing data is full information maximum 
likelihood (FIML), which utilizes ML estimation to handle missing values. ML estimation 
involves the repeated audition of different combinations of population parameter values 
until a specific combination of values obtains the highest log-likelihood, which then 
represents the best fit of the model to data (Enders, 2010). FIML can address the missing 
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values by altering the individual log-likelihood combinations to account for an unequal 
number of observations across participants. In addition, adjustments are made to the 
standard error (SE) computations. These computations often require the use of an iterative 
optimization algorithm such as the expectation-maximization (EM) algorithm. For a detailed 
explanation of calculating the missing data log-likelihood and SEs, see Enders (2010). In the 
methodological literature, FIML has earned state-of-the-art status because it yields unbiased 
parameter estimates under MCAR and MAR data (Schafer & Graham, 2002).  

When using the ML estimator, statistical software often automatically addresses 
missing values in endogenous variables. For example, the ML three-step approach 
automatically handles missing latent class indicators via FIML during the first estimation 
step. To address incomplete covariates with FIML, a relatively straightforward programming 
trick is required. In the third step, the user must specify model parameters specific to the 
covariates (e.g., means, variances, and covariances) in addition to the conditional LCA 
model. By estimating covariate parameters, the software treats the covariates as dependent 
variables and applies a normality assumption. The EM algorithm will then address the 
missing values by maximizing the joint likelihood (Sterba, 2014). Significantly, this 
programming trick does not change the interpretation of model parameters (e.g., the 
regression coefficient for “𝑐 on 𝑥” maintains the same meaning). Past simulation research 
suggests the EM algorithm effectively addresses incomplete covariates when using a one-
step approach to estimation (Sterba, 2014). One drawback of this approach is that the EM 
algorithm can be computationally intensive when addressing missing data for several 
covariates in a single model. For each additional covariate with missing data, increasingly 
heavy numerical integration computations are required, which increases how long the 
analysis takes (Asparouhov & Muthén, 2021). Although the heavy numerical integration 
issue has primarily been discussed anecdotally (Asparouhov & Muthén, 2021), it does 
suggest there is reason to explore alternative strategies that may yield unbiased parameter 
estimates in a shorter time. 
3.1.1.2 Bayesian Third Step.  

An alternative strategy for addressing missing data is to use Bayesian estimation. In 
contrast to the ML estimator, the Bayesian estimator handles missing values with an internal 
imputation process (Asparouhov & Muthén, 2021). In Mplus, Bayesian estimation is 
implemented with a MCMC estimation algorithm. There are multiple samplers available for 
use with MCMC methods, but we focus here on the Gibbs sampler (Gelman et al., 2014).  
The Gibbs sampler iteratively generates a sequence of model parameters, latent variables, 
and missing observations, which can be used to construct the posterior distribution upon 
convergence (Asparouhov & Muthén, 2010). The Bayesian estimator is considered a full-
information estimator and typically produces similar results to the ML estimator with 
missing data (i.e., FIML; Asparouhov & Muthén, 2021). When using the ML three-step 
approach, the user can switch the estimator in the third step (i.e., Bayesian third step) and 
estimate parameters related to the incomplete covariate (e.g., means, variances, and 
covariances). The missing values are then modeled and imputed internally using an 
unrestricted model (Asparouhov & Muthén, 2021). Correlating the covariates is helpful 
because an observed covariate may help impute the missing values in the other covariate.  

Perhaps the most significant advantage of using the Bayesian third step is that the 
method allows for the specification of priors on parameters of substantive interest (e.g., 
regression coefficients). Past methodological research suggests the stepwise approaches yield 
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biased structural parameter estimates when the latent classes are not very distinct (Bakk & 
Vermunt, 2016; Nylund-Gibson, Grimm, & Masyn, 2019; Vermunt, 2010). Depending on 
the prior specification for the covariate effect, Bayesian estimation may improve the accuracy 
of the parameter estimate, especially under poor class separation. Although no previous 
simulation studies have explored the potential benefits of a Bayesian third step, previous 
mixture modeling research suggests Bayesian estimation can aid estimation for latent class 
models (Depaoli, 2013, 2014; Lu et al., 2011); therefore, it follows that Bayesian estimation 
may be helpful in this situation. Another advantage of the Bayesian estimator is computation 
speed, which can sometimes be much quicker than the numerical integration required by the 
EM algorithm (Asparouhov & Muthén, 2021). This is most evident when the analysis has 
many predictor variables with missing values, which requires heavier numerical integration. 
Despite these potential advantages, the Bayesian third step does have disadvantages in 
certain modeling situations. One critical limitation of the Bayesian third step in Mplus is that 
the covariates are assumed to be normally distributed (Asparouhov & Muthén, 2021). In 
other words, the Bayesian third step may produce biased results when applied to a 
categorical covariate. 
3.1.1.3 Multiple Imputation.  

A final option for addressing missing data is another state-of-art method called 
multiple imputation (MI). MI consists of three distinct steps: the imputation phase, the analysis 
phase, and the pooling phase. During the imputation phase, 𝑚 copies of the original dataset 
are created. Each copy contains plausible values for the missing values in the original dataset. 
During the analysis step, each of the 𝑚 datasets is analyzed using the same statistical 
procedure that would have been performed had the original dataset been complete. 
Considering the analysis phase results in 𝑚 parameter estimates and SEs, the results need to 
be pooled together into a single set of results during the pooling phase. For a detailed 
explanation of each of the three MI steps, see Enders (2010). In the context of the ML 
three-step approach, MI can either be performed before or after the first estimation step 
(Asaprouhov & Muthén, 2021). Using MI prior to the first estimation step may be useful if 
the researchers wish to include direct effects between the covariate and latent class 
indicators. In contrast, using MI after the first estimation step presents a more simplified 
strategy for addressing incomplete covariate data. 

One factor that can further improve the accuracy of MI parameter estimates is the 
addition of auxiliary variables (AVs). AVs are ancillary variables that are not part of the 
primary analysis but are possibly correlated with missingness or the incomplete analysis 
model variables (Enders, 2010; Schafer, 1997). Although AVs are not of substantive interest, 
they can increase power and reduce bias in parameter estimates (Enders, 2010). The 
omission of an important AV can convert an analysis from MAR to MNAR because a 
variable is not explaining the missingness in the analysis. Even in modeling situations that are 
firmly MCAR or MAR, the addition of AVs can improve power and reduce bias with almost 
no downside (Collins, Schafer, & Kam, 2001; Graham, 2003; Schafer & Graham, 2002); 
therefore, methodologists strongly recommend an inclusive analysis strategy. MI can be 
implemented following the first analysis step when using the ML three-step approach. After 
estimating the unconditional LCA model, the user can impute the incomplete covariate 
values by specifying an imputation model for the incomplete covariates, which should 
include variables that are possibly correlated with the missingness (e.g., covariates, latent 
class indicators, AVs). After the imputation phase, each complete dataset is analyzed with a 
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conditional LCA model. The parameter estimates are then pooled. Statistical software 
packages have automated much of the MI process, but the user still needs to make 
important decisions concerning the number of datasets and how convergence will be 
assessed. In addition, users should include AVs that can help predict missingness during the 
imputation phase (Enders, 2010).  

Perhaps the biggest advantage of MI is the ability to specify the distribution of the 
incomplete covariate during the imputation phase. Both FIML and the Bayesian third step 
impose normality assumptions on the covariate, whereas MI allows the user to specify the 
covariate distribution. In practical settings with more trivial the missing data, the assumption 
violation introduced by FIML and the Bayesian third step may not be as problematic 
(Asparouhov & Muthén, 2021). One issue that should be considered is the past 
methodological work, which strongly recommends against the MI of covariates in mixture 
models because it can lead to substantial parameter bias (Enders & Gottschall, 2011). MI 
produces biased parameter estimates because covariate relations can vary across classes, 
making it highly unlikely that the imputation model will be specified correctly in applied 
settings (Enders & Gottschall, 2011; Sterba, 2014; Sterba, 2017). Although there is good 
reason to be wary of MI in mixture modeling, there are situations with non-normal 
covariates (e.g., binary covariate) that may benefit.  
3.1.2 Overview of the Current Study 

There is some evidence suggesting each of the described alternative methods could 
effectively address incomplete covariates. The aim of the present simulation study is to 
investigate the performance of four methods (listwise deletion, FIML, Bayesian third step, 
and MI) for handling incomplete covariates in LCA models. To achieve this aim, we varied 
the missing data mechanism (MAR and MCAR), percentage of missing data (15%, 35%, and 
55%), covariate distribution (binomial and standard normal), and the strength of the 
covariate effect (weak, moderate, and strong). The simulation study consisted of 288 cells, 
and each cell had 500 replications. Previous studies using conditional LCA models have 
found 500 replications to be sufficient (Di Mari & Bakk, 2018; Janssen et al., 2019; Kim et 
al., 2016; Nylund-Gibson & Masyn, 2016). 
3.2 Design 

To investigate the performance of each of the missing data methods (i.e., listwise 
deletion, FIML, Bayesian third step, and MI), datasets were generated in Mplus using a 
conditional LCA model specification. The population model for this study was divided into 
two parts: the measurement part of the model and the structural part of the model. The 
measurement part of the model consisted of the unconditional latent class model. The 
structural part of the model related the covariates to the latent class variable. A visual 
representation of the population model is displayed in Figure 4, where 𝑢! − 𝑢$ are the 
binary observed class indicators, 𝑐 is the categorical latent class variable, and 𝑥! and 𝑥# are 
the observed covariates predicting the latent class variable. The observed variables, 𝑥! and 
𝑥#, are predictors of the latent class variable. The regression coefficient for the effect of 𝑥! 
on 𝑐 is labeled, 𝛾!!, and the regression coefficient for the effect of 𝑥# on 𝑐 is labeled, 𝛾#!. 
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Figure 4. The population model for Study 2.  

 
3.2.1 Measurement Model 

The measurement model consisted of two classes (𝐾 = 2) of equal size (𝜋! =
0.5, 𝜋# = 0.5) with five binary class indicator variables. All population models had moderate 
class separation, which was achieved by setting the item thresholds in Class 1 to 𝜏 = −1.25 
and the item thresholds in Class 2 to 𝜏 = 1.25. Similar population values have been used in 
other simulation studies with conditional LCA models (Nylund-Gibson & Masyn, 2016; 
Masyn, 2013). These item threshold specifications corresponded to a conditional item-
response probability (for all items) of 0.78 for Class 1 and 0.22 for Class 2. The sample size 
was fixed at 𝑛 = 500 across conditions.3  
3.2.2 Structural Model 

The structural model of interest was a binomial logistic regression in which the latent 
class variable, 𝑐, was regressed on two covariates, 𝑥! and 𝑥#. The 𝑥! variable was fully 
observed (i.e., no missing data) and followed a standard normal distribution. The effect of 𝑥! 
on 𝑐 was held constant at 𝛾!! = −1 across conditions. In contrast, 𝑥# varied across 
conditions. The structural model varied on the following factors: the strength of the effect of 
𝑥# on 𝑐, the distribution of 𝑥#, percentage of missing data on 𝑥#, and the missing data 
mechanism. 
3.2.2.1 Strength of the Covariate Effect.  

The strength of the covariate effect of 𝑥# on 𝑐 was set to be either weak (𝛾#! =
0.5), moderate (𝛾#! = 1), or strong (𝛾#! = 1.5). These regression coefficient specifications 
correspond to an odds ratio of 1.65, 2.72, and 4.48, respectively. Previous simulation studies 
on conditional LCA models have used similar regression coefficient values (Bakk, Obserski, 
& Verumnt, 2014; Nylund-Gibson & Masyn, 2016; Vermunt & Magidson, 2021). 
Manipulating the strength of the regression coefficient may be an important factor for 
illustrating the pitfalls of the automatic ML three-step approach, which results in listwise 
deletion. Even strong effects can be lost to reduced statistical power from listwise deletion. 
3.2.2.2 Distribution of the Covariate.  

One factor that is likely to impact the performance of the methods for addressing 
incomplete covariates is the distribution of covariate 𝑥#. Therefore, 𝑥# will either follow a 

 
3 Sterba et al., (2014) found 𝑛 = 500 to be a common sample size in mixture model studies in the social 
sciences. In addition, Nylund-Gibson and Masyn (2016) uses 𝑛 = 500 for a smaller sample size condition in 
their simulation study with an LCA model with a continuous covariate. 
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standard normal distribution (like 𝑥!) or a binomial distribution. For conditions with a 
binary 𝑥#, the logit threshold was set to 0, which equates to a response probability of 0.5. To 
our knowledge, no previous simulation study has explored missing binary covariates in 
conditional LCA models, but it is likely missing binary covariates will pose a greater 
estimation challenge (Asparouhov & Muthén, 2021). 
3.2.3 Missing Data Conditions 

Missing data were generated on 𝑥# according to six different missing conditions. 
Specifically, missing data were generated under two different missing mechanisms: MAR and 
MCAR. In addition, the percentage of missing data on 𝑥# was generated as 15%, 35%, or 
55%. These missing data conditions are in line with the limited methodological research on 
incomplete covariates in conditional mixture models (Sterba, 2014). Past research suggests 
listwise deletion can produce unbiased estimates under MCAR assumptions, but estimation 
efficiency and statistical power are reduced (Little, 1992; Little & Zhang, 2011; Skrondal & 
Rabe-Hesketh, 2014). In contrast, listwise deletion produces biased estimates under MAR 
assumptions. One way to illustrate the consequences of using an automatic ML three-step 
approach (i.e., listwise deletion) is to include MAR and MCAR missing mechanisms. The 
missing percentages selected (15% and 35%) represent realistic missing data situations in 
practice (Enders & Bandalos, 2001; Merkle, 2011; Wothke, 2000), and the 55% condition 
represents a worst-case scenario.  
3.2.3.1 Missing Data Generation.  

Missing data were generated in Mplus using the MISSING option in the Montecarlo 
command, which allows the user to specify a logistic regression model to generate the 
missing data for one or more variables (i.e., 𝑥#). More specifically, the logistic regression 
model was used to derive the intercept (𝛼) and slope (𝛽) parameters from the regression of a 
missing data indicator (𝑅) on one of the latent class indicators (𝑢!): 

 

𝑝(𝑅 = 1|𝑢!) =
exp(𝛼 + 𝛽𝑢!)

1 + exp(𝛼 + 𝛽𝑢!)
. 

 

(15) 
 

In Equation (15), the missing data indicator (𝑅) is a binary dependent variable that is scored 
as 0 for not missing and scored as 1 for missing on the dependent variables in the data 
generation model (i.e., 𝑥#).  The latent class indicator 𝑢! is considered a covariate (or 
predictor) of missingness in the model. Depending on the values selected for the intercept 
and slope of the logistic regression model, the probability of missingness, 𝑝(𝑅 = 1|𝑢!), 
changes.  

For conditions with MCAR missing data on 𝑥#, the slope of 𝑢! was set to 0, 
suggesting the missingness was unrelated. Depending on the desired percent missing on 𝑥# 
(i.e., 15%, 35%, and 55%), different values for the logistic regression intercept were used 
(i.e., -1.734, -0.619, and 0.201) to achieve the desired probability of missingness (i.e., 0.15, 
0.35, and 0.55). For conditions with MAR missing data, the slope of 𝑢! was set to 1.48. The 
slope selected produced a squared correlation of 0.40, which is in line with Enders and 
Mansolf (2018). The selected slope value indicates a moderately strong relationship between 
the cause of missingness (𝑢!) and the underlying latent probability of missing data. In 
addition to setting the slope to 1.48, different values for the logistic regression intercept were 
used (i.e., -2.66, -1.445, and -0.51) to achieve the desired probability of missingness (i.e., 0.15, 
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0.35, and 0.55). Table 1 summarizes the population values used to generate missing data 
conditions. 
 
Table 1. The population values for generating 
missing data conditions.  

 𝛼 𝛽 
Missing Assumption MAR MCAR MAR MCAR 
Missing %     
15 -2.66 -1.734 1.48 0 
35 -1.445 -0.619 1.48 0 
55 -0.51 0.201 1.48 0 

 
3.2.4 Analysis Models 
  In accordance with the manual ML three-step approach procedure in Mplus, each 
generated dataset was analyzed with a 2-class unconditional LCA model.4 Model constraints 
were applied to prevent label-switching across replications. After completing the first 
estimation step, the measurement part of the model needed to be combined with the 
structural part of the model as part of a larger SEM while addressing the missingness on the 
covariate 𝑥#. Four methods were implemented to address the incomplete covariates: listwise 
deletion, FIML, Bayesian third step, and MI. The first three methods were implemented 
during the third estimation step, whereas MI was implemented prior to the third estimation 
step. All analyses were performed in Mplus, and the process was automated using the Mplus 
Automation package (Hallquist & Wiley, 2018) in R (R Core Team, 2019). In the following 
sections, the implementation of each of the methods will be described. 
3.2.4.1 Listwise Deletion.  

The listwise deletion method only required the specification of a conditional LCA 
model with a single latent class indicator, 𝑀, and two covariates, 𝑥! and 𝑥#. With this model 
specification, covariates were considered exogenous variables in the SEM and were listwise 
deleted from the analysis during the third estimation step. Notably, this model specification 
is equivalent to using the automatic ML three-step approach.  
3.2.4.2 FIML.  

To address missing data in the third step with FIML, a conditional LCA model with 
a single latent class indicator, 𝑀, and two covariates, 𝑥! and 𝑥# was specified. In addition, 
the means, variances, and covariance of 𝑥! and 𝑥# were specified. By also estimating 
parameters specific to the covariates, 𝑥! and 𝑥# were treated as dependent variables by the 
Mplus software. All missingness on 𝑥# was automatically addressed during model estimation 
by maximizing the joint likelihood, and an assumption is made that 𝑥# is normally 

 
4 The first step of the manual ML three-step approach requires the user to estimate an unconditional LCA. The 
most likely class variable, 𝑀, is saved using the SAVEDATA option and including the statements 
“FILE=Step3.dat” and “SAVE=CPROB”. 4 In addition, 𝑥& and 𝑥' are saved in the new dataset by including 
these variables in the auxiliary statement. The new dataset contains 𝑢& − 𝑢(, 𝑥&, 𝑥', the individual posterior 
probabilities for each latent class, and 𝑀. During the third estimation step, the new dataset is used to specify 
the structural model “c on 𝑥& 𝑥'”, and 𝑀 is fixed in each class using the logits from the “Logits for the 
Classification Probabilities the Most Likely Latent Class Membership (Column) by Latent Class (Row)” section 
of the output from the first step. These logits are used to take into account measurement error in 𝑀. 
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distributed. Numerical integration was required to estimate the joint likelihood; therefore, 
the Monte Carlo integration algorithm was applied.  
3.2.4.3 Bayesian Third Step.  

To implement Bayesian estimation in the third step, the estimator was switched from 
ML to Bayesian. In addition, a conditional LCA model with a single latent class indicator, 𝑀, 
and two covariates, 𝑥! and 𝑥# was specified. As was the case for FIML, the means, 
variances, and covariance of 𝑥! and 𝑥# were also specified in the model. By switching 
estimators and estimating parameters specific to the covariates (i.e., means, variances, 
covariances), the missing values on 𝑥# were imputed internally, and an assumption was made 
that 𝑥# was normally distributed.  

To investigate the impact of prior specifications (or misspecifications), five prior 
conditions were considered for coefficients, 𝛾!! and 𝛾#!. The five prior specifications 
included the default prior in Mplus for regression coefficients, N(0,5), which is considered 
diffuse. In addition, priors correctly centered on the population value (i.e., correct priors) and 
priors that are centered on a wrong value (i.e., wrong priors) were also considered. For both 
the correct and wrong prior conditions, the degree of informativeness was varied (i.e., 
informative vs. weakly informative). The combination of these prior means and variances 
produced four additional prior conditions: correct-informative, correct-weakly informative, 
wrong-informative, and wrong-weakly informative. Figure 5 provides a visual of the five 
prior conditions utilized for both 𝛾!! and 𝛾#!. Notably, the prior specifications change for 
𝛾#! depending on the strength of the covariate effect (e.g., 0.5, 1.0, or 1.5) with correct 
priors centered on 0.5, 1.0, or 1.5 and wrong priors centered on 1.0, 1.5, or 2.0, respectively. 
The variance hyperparameter was set to 0.04 in informative conditions and 0.16 in weakly-
informative conditions. Figure 5 Panels A, B, and C provide the prior specifications for each 
𝛾#! condition, respectively. In contrast, 𝛾!! is held constant at -1.0 across conditions, and all 
five prior conditions can be seen in Figure 2 Panel D.  A single MCMC chain was utilized for 
parameter estimation to prevent between-chain label switching. The number of iterations 
was set to 30,000 for all analyses, and the first 15,000 iterations were discarded as burn-in. 
Convergence was assessed via careful examination of trace plots and autocorrelation plots 
and monitoring the PSRF. 
 
Panel A (𝛾#! = 0.5) 

 

Panel B (𝛾#! = 1.0) 
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Panel C (𝛾#! = 1.5) 

 

Panel D (𝛾!! = −1.0) 

 
Figure 5. Prior conditions for the regression coefficients in the Bayesian third step.  
Panels A, B, and C show the prior specifications for 𝛾#!, which have a different 
population value depending on the condition. Panel D shows the prior specification 
for 𝛾!!, which is held constant across conditions. 

 
3.2.4.4 Multiple Imputation.  

The procedure for implementing MI was quite different from the previous three 
methods discussed. A manual ML three-step approach was still required, but missing data 
were imputed after the first estimation instead of proceeding directly to the final estimation 
step. The missing values on 𝑥# were imputed using the “Data Imputation” option in Mplus, 
which helps automate the MI process. To aid the imputation process, 𝑥! and 𝑢! − 𝑢$ were 
included in the imputation model. Depending on the distribution of 𝑥# (e.g., normal or 
binomial) in the condition, 𝑥# was either imputed as a normally distributed variable or a 
categorical variable. In other words, the imputation model was never misspecified. The 
number of imputations per replication was set to 20, which is in line with previous 
simulation studies using MI (Enders & Mansolf, 2018; Vera & Enders, 2021). Chain 
convergence was assessed using the Mplus default criteria (e.g., the PSRF is close to 1 for 
each parameter). After the imputation step was complete, the structural model of interest 
(i.e., “c on 𝑥! 𝑥#”) was estimated using the ML estimator for each imputed dataset, which 
had no missing data. Parameter estimates were then averaged across the imputed datasets.  
3.3 Results 
 The primary results of interest in this study pertain to the following parameters: 𝛾!!, 
𝛾#!, 𝛾-!, which represent the regression coefficients (i.e., “c on 𝑥!” and “c on 𝑥#”) and the 
intercept of the binomial logistic regression, respectively. Bias for each parameter was 
calculated by subtracting the population value from the mean parameter estimate in the cell. 
In addition, the mean square error (MSE) was calculated by adding the variance of the 
estimates across the replications to the squared parameter bias. 
3.3.1 Convergence 
 To prevent within-chain label switching across replications of the simulation study, a 
model constraint was included on the latent class indicator 𝑢! during the first estimation step 
such that the values adhered to the following order: Class 2 > Class 1. Overall, each cell in 
the simulation with a continuous covariate converged without issue and a set of stable 
estimates for the model parameters was obtained, regardless of the estimation strategy in the 
third step. In conditions using ML estimation (implemented via the EM algorithm) in the 
third step, Mplus defaults were utilized, which specifies 20 sets of random starts in the initial 
stage and 4 final stage optimizations. In each replication, the log-likelihood was replicated 
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indicating convergence. In conditions with Bayesian estimation in the third estimation step, 
convergence was assessed using PSRF. If PSRF values were less than 1.01, a replication was 
considered converged. According to this criterion, all replications using Bayesian estimation 
converged. 
3.3.2 How to Read the Tables 
 Tables 2-4 display the bias and MSE results for population models with a continuous 
𝑥# covariate and the regression coefficient 𝛾#! set to 0.5, 1.0, and 1.5, respectively. Tables 5-
7 display the bias and MSE results for population model models with a binary 𝑥# covariate 
and the regression coefficient 𝛾#! set to 0.5, 1.0, and 1.5, respectively. Each method of 
addressing missing data in in 𝑥# are listed on the left side of the tables (i.e., Listwise 
Deletion, FIML, MI, and Bayes). For conditions that utilize Bayesian estimation, five prior 
specifications were included (i.e., Bayes-Correct Informative, Bayes-Correct Weakly 
Informative, Bayes-Wrong Informative, Bayes-Wrong Weakly Informative, and Bayes-
Diffuse). The six different patterns of missing data are presented at the top of the table. 
Specifically, there is a combination of missing mechanism (MAR vs. MCAR) and missing 
percentage (15%, 35%, vs. 55%). For each parameter of interest (i.e., 𝛾!!, 𝛾#!, 𝛾-!) the bias 
and MSE was calculated in each condition. To help illustrate the pattern of results, 
conditions with ±0.1 bias are bolded in Tables 2-7. 
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3.3.3 Continuous Covariate with Missing Data 
3.3.3.1 Bias 

Tables 2-4 provide the bias for the regression coefficients, 𝛾!! and 𝛾#!, and the 
intercept, 𝛾-!. Across all three levels of covariate strength (i.e., 0.5, 1.0, 1.5), several 
important patterns of results emerged. Listwise Deletion produced unbiased regression 
coefficient estimates, regardless of condition. However, the intercept, 𝛾-!, was consistently 
biased when the missing data mechanism was MAR. Using FIML to address the missing 𝑥# 
data resulted in unbiased regression coefficients and intercepts, regardless of the missing data 
pattern and the strength of the regression coefficient. Similarly, MI produced unbiased 
parameter estimates for 𝛾!! and 𝛾-! estimates, across all conditions. When the 𝛾#! 
regression coefficient strength was weak or moderate (i.e., 𝛾#! = 0.5 and 𝛾#! = 1.0), MI 
also produced unbiased 𝛾#! estimates. However, there were several conditions with a strong 
regression coefficient (i.e., 𝛾#! = 1.5) that had biased 𝛾#! estimates. As evidenced by Table 
4, the 𝛾#! regression coefficient was biased when using MI in conditions with 55% missing 
data. In addition, 𝛾#! was biased when using MI when 35% missing data when the missing 
data mechanism was MAR. 

When using Bayesian estimation in the third step, prior specification impacted results 
for the regression coefficients, 𝛾!! and 𝛾#!. Informative and weakly informative priors 
centered on the correct regression coefficient population value produced unbiased parameter 
estimates, regardless of the missing data pattern and regression coefficient strength. In 
contrast, informative and weakly informative priors centered on the wrong value biased the 
regression coefficient estimates. Diffuse priors always resulted in unbiased regression 
coefficients when the missing data percentage was 15%. However, diffuse priors biased 𝛾#! 
parameter estimates when the percentage of missing data increased (i.e., 35% and 55%) and 
the strength of the regression coefficient increased (1.0 and 1.5), regardless of the missing 
data mechanism. The only exception to this trend was when the missing percentage was 35% 
and 𝛾#! = 1.0. Notably, 𝛾!! was also biased when the missing percentage was 55% and 
𝛾#! = 1.5.  
3.3.3.2 Mean Square Error 

Tables 2-4 display the MSE for the regression coefficients, 𝛾!! and 𝛾#!, and the 
intercept, 𝛾-!. The pattern of MSE results were similar across all three levels of covariate 
strength (i.e., 0.5, 1.0, 1.5); however, the MSE values tended to be higher when 𝛾#! = 1.5. 
Regardless of the condition, similar MSE values were obtained for the regression 
coefficients, 𝛾!! and 𝛾#!, when using Listwise Deletion, FIML, and MI. Across these three 
methods for addressing missing 𝑥# data, the MSE tended to increase as the percentage of 
missing data increase from 15% to 55%. Despite the similarities in the regression coefficient 
results, Listwise Deletion had inflated MSE values for the intercept, 𝛾-!, when the missing 
data mechanism was MAR. In contrast, FIML and MI had lower MSE values for the 
intercept. 

When using Bayesian estimation, the MSE for the regression coefficients were largely 
dependent on the prior specifications. Across all conditions with a continuous 𝑥#, addressing 
missing data with a Bayesian third step using informative priors correctly centered on the 
population value resulted in the lowest MSE in the regression coefficients, 𝛾!! and 𝛾#!. In 
contrast, the highest MSE values for the regression coefficients were seen in conditions with 
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informative priors centered on the wrong population value, regardless of the regression 
coefficient strength and missing data pattern. Weakly informative priors correctly centered 
on the population value were comparable to FIML and MI, whereas diffuse priors and 
weakly informative priors centered on the wrong value tended to have higher MSE than 
FIML and MI. For the regression coefficients, diffuse priors produced comparable MSE 
values to FIML and MI when 𝛾#! = 0.5, but the MSE values were higher than FIML and 
MI when 𝛾#! = 1.0 and 𝛾#! = 1.5. Overall, the Bayesian estimator has the potential to 
produce the lowest and highest MSE for 𝛾!! and 𝛾#!, depending on the prior specifications.   
3.3.4 Categorical Covariate with Missing Data 
3.3.4.1 Bias 

Tables 5-7 provide the bias for the regression coefficients, 𝛾!! and 𝛾#!, and the 
intercept, 𝛾-!. The patterns of bias in the binary 𝑥# conditions were similar to the patterns 
seen in the continuous 𝑥# conditions. Regardless of the simulation condition, Listwise 
Deletion produced unbiased parameter estimates for the regression coefficients. However, 
Listwise Deletion severely biased the intercept parameter when the missing data mechanism 
was MAR. As the percentage of missing data increased, the intercept became increasingly 
biased when using Listwise Deletion. Both FIML and MI produced unbiased 𝛾!! and 𝛾-! 
estimates, across simulation condition. Despite these similarities, FIML produced unbiased 
𝛾#! estimates, whereas MI had some conditions with biased 𝛾#! parameters. As seen in 
Table 7, MI introduced bias to the 𝛾#! parameter when the missing data percentage was 55% 
and 𝛾#! = 1.5, regardless of the missing data mechanism.  
 The patterns of bias in the binary 𝑥# conditions were highly influenced by the prior 
specifications when using the Bayesian third step. Informative and weakly informative priors 
centered on the correct population value produced unbiased estimates for the regression 
coefficients and intercept, regardless of the simulation condition. Diffuse priors also 
produced unbiased parameter estimates. In contrast, informative and weakly informative 
priors centered on the wrong value biased the regression coefficients, 𝛾!! and 𝛾#!. Notably, 
using priors centered on the wrong value for the regression coefficients also biased the 
intercept, 𝛾-!, when the missing percentage was 55%.  
3.3.4.2 Mean Square Error 

Tables 5-7 provide the MSE for the regression coefficients, 𝛾!! and 𝛾#!, and the 
intercept, 𝛾-!. Listwise Deletion, MI, and FIML tended to have similar MSE values for the 
regression coefficients in conditions with a binary 𝑥#, regardless of the covariate strength 
(i.e., 0.5, 1.0, 1.5) and missing data pattern. In contrast, Listwise Deletion had some the 
highest MSE values for the intercept. When using Listwise Deletion, the combination of a 
higher percentage of missing 𝑥# data and the MAR missing data mechanism resulted in the 
highest MSE values for the intercept, 𝛾-!.  
 When using Bayesian estimation, the MSE values for the regression coefficients was 
highly dependent on the prior specifications. The lowest MSE values for the regression 
coefficients were seen in conditions using informative priors that were correctly centered on 
the population values. The MSE was much lower in these conditions than FIML and MI. 
However, informative priors centered on the wrong population values tended to inflate the 
MSE for the regression coefficients. Weakly-informative priors correctly centered on the 
population value also produced lower MSE values for the regression coefficients when 
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compared to FIML and MI. In contrast, weakly informative priors centered on the wrong 
population value tended to have similar MSE values for the regression coefficients when 
compared to FIML and MI. When using diffuse priors for the regression coefficients and 
intercept, Bayesian estimation produced MSE values that were comparable to FIML and MI. 
Thus, the advantages of Bayesian estimator were lost when using more diffuse priors. 
3.3.5 Additional Points for Discussion 
 Regardless of whether the 𝑥# variable was continuous or binary, Bayesian estimation 
with correct informative prior specifications produced unbiased estimates and the lowest 
MSE values for the regression coefficients, 𝛾!! and 𝛾#!. When the 𝑥# variable was 
continuous, the MSE values for the intercept, 𝛾-!, tended to be equivalent for FIML, MI, 
and Bayesian estimation with informative priors correctly centered on the population value. 
In contrast, when the 𝑥# variable was binary, Bayesian estimation with informative priors 
correctly centered on the population value had the lowest MSE values for the intercept. One 
possible (and likely) explanation for the Bayesian third step not always having the lowest 
MSE values for the intercept is that a diffuse prior was used on the intercept for Bayesian 
analysis models. If a more informative prior correctly centered on the intercept population 
value was used, it is likely Bayesian estimation would produce the lowest MSE values for the 
intercept, regardless of condition. When using the ML three-step approach, the user would 
have information about the intercept from class enumeration in the first estimation step that 
could be used to help specify a prior in the third estimation step. 
3.4 Discussion 
 The primary aim of this simulation study was to explore the performance of available 
methods for addressing incomplete covariate data when using the ML three-step approach. 
To accomplish this aim, we generated data with different missing data mechanisms (MAR 
and MCAR), percentages of missing data (15%, 35%, and 55%), covariate distributions 
(binomial and standard normal), and strengths of the covariate effect (weak, moderate, and 
strong). Next, we analyzed the datasets with four different methods for addressing the 
incomplete covariate data: Listwise Deletion, FIML, MI, and Bayesian estimation. When 
using Bayesian estimation, a variety of prior specifications were considered. No prior 
simulation study has compared these methods for addressing incomplete covariate data 
when using the ML three-step approach.  

Statistical software such as Mplus defaults to Listwise Deletion when using the ML 
three-step approach. Previous methodological research suggests Listwise Deletion is a poor 
method for addressing missing data because it reduces sample size and power (Little, 1992; 
Little & Zhang, 2011). In addition, Listwise Deletion can bias parameter estimates when the 
missing data mechanism MAR (Little, 1992; Little & Zhang, 2011; Rabe-Hesketh & 
Skrondal, 2014). The results from the current study illustrate this point; Listwise deletion 
introduced bias into the intercept, 𝛾-!, when the missing data mechanism was MAR. This is 
especially problematic because bias in the intercept suggests the latent class measurement 
model is not remaining intact during the third estimation step. For this reason, Listwise 
Deletion is the worst option for addressing incomplete covariate data when using the ML 
three-step approach. 

In contrast to Listwise Deletion, FIML consistently produced unbiased parameter 
estimates, regardless of the missing data mechanism and the percentage of missing data. 
Despite misspecifying the categorical 𝑥# as continuous, FIML still produced unbiased 
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parameter estimates for the regression coefficients. For this reason, we would recommend 
using FIML in modeling situation with a single covariate with missing data. If the user 
includes several covariates with missing data in the model, FIML may not be the best option 
because computation time increases with each additional covariate, see Asparouhov and 
Muthén (2021) for more details. Another important factor to consider when using FIML is 
the variability in the estimator. Although FIML provided unbiased parameter estimates, 
there was more variability in the estimator than Bayesian estimation with informative and 
weakly-informative priors. This trend was especially evident in conditions with a categorical 
𝑥# variable.  
 The MI results were somewhat surprising. MI produced unbiased parameter 
estimates in all conditions with a covariate strength of 𝛾#! = 0.5 and 𝛾#! = 1.0. However, 
MI underestimated the 𝛾#! regression coefficient in conditions with high percentage of 
missing data when the covariate strength was 𝛾#! = 1.5. In conditions with a continuous 𝑥#, 
MI underestimated 𝛾#! when 55% of the 𝑥# data was missing and when 35% of the 𝑥# data 
was MAR. In conditions with a binary 𝑥#, MI underestimated 𝛾#! when 55% of the 𝑥# data 
was missing. One possible explanation for why MI produced biased regression coefficients 
in conditions with higher percentages of missing data is the number of imputations used. 
Specifically, we set the number imputations across conditions to 20, which is considered 
standard in simulation research (Enders & Mansolf, 2018; Vera & Enders, 2021). However, 
some past methodological research suggests the optimal number of imputations should 
reflect the percentage of missing data (e.g., 55 imputations for 55% missingness; Von 
Hippel, 2009; White, Royston, & Wood, 2011). Future methodological research should 
consider whether a greater number of imputations would improve the performance of MI. 
Another factor to consider is the variability in the estimator. When the 𝑥# variable was 
categorical, MI had much greater variability in the estimator than Bayesian estimation with 
informative and weakly-informative priors. Based on these findings, MI may not be the best 
choice when there is a high percentage of incomplete covariate data. Alternative methods 
(e.g., FIML and Bayesian estimation) provide unbiased 𝛾#! estimates under similar 
conditions. 
 Bayesian estimation has the potential to be the best or worst method for addressing 
incomplete covariate data in the third step, depending on the prior specification. When using 
informative priors correctly centered on the population value of the regression coefficient, 
the parameter estimates were consistently unbiased and the variability in the estimator was 
very low, regardless of the strength of the covariate, distribution of the covariate, and the 
missing data pattern. Similarly, weakly-informative priors correctly centered on the 
population value produced unbiased parameter estimates, across conditions. However, when 
using informative or weakly informative priors that are centered on the wrong value, we see 
some of the highest levels of bias in the regression coefficients. For this reason, we would 
recommend the use of informative and weakly-informative priors in the third estimation step 
if a priori knowledge about the relationship between the covariate and latent class variable is 
available. When using Bayesian estimation in applied settings, it is important to always 
perform a prior sensitivity analysis. For an example of how to implement a prior sensitivity 
analysis, see Depaoli, Winter, and Visser (2020). 
 Considering wrong priors can have a dramatic impact on model results, applied users 
may be tempted to use diffuse priors for the regression coefficients in the third estimation 
step. When using diffuse priors for all parameters, Bayesian estimation tended to produce 
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unbiased estimates in most conditions. The primary exception to this trend is when the 
incomplete covariate data is continuous, the strength of the covariate is either 1 or 1.5, and 
the missing percentage is high 55%. The reason these conditions tended to be trickier for 
diffuse priors is that the diffuse prior is centered on zero, whereas the population value was 
higher (i.e., 1 or 1.5). Although diffuse priors may be appealing to applied researchers who 
do not have much knowledge about the relationship between the covariate and the latent 
class variable, most of the advantages of Bayesian estimation disappear when using diffuse 
priors. An applied researcher would be as well off using FIML or MI in these situations. 
Regardless of the prior specifications on the regression coefficients, all Bayesian estimation 
conditions had a diffuse prior on the latent class intercept. It is likely the Bayesian estimator 
would have lower variability in the intercept if more informative priors were specified. In 
applied settings, the user can incorporate prior information about the class proportions by 
specifying more informative priors on the latent class intercept and regression coefficients. 
 The current study was not without limitations. The simulation study only explored 
the performance of the methods for addressing incomplete covariate data in conditions with 
moderate class separation and equal class proportions. These factors can have a dramatic 
impact on the performance of the ML three-step approach and may also influence the 
performance of the methods for addressing missing data. Bayesian estimation may be 
especially helpful in situations with poor class separation or a minority latent class (Depaoli, 
2012; Depaoli, 2013; Kim, 2014; Lu et al., 2011; Nylund et al., 2007; Tueller & Lubke, 2010). 
Future research should examine the possible benefits of the Bayesian third step in these 
modeling situations. The current study was also limited to the conditional LCA model. These 
results may not be applicable for addressing incomplete covariate data in GMMs and 
mixture CFA models. MI worked well for many conditions in the simulation study, but 
previous research suggests MI does not typically work well in mixture models (Enders & 
Gottschall, 2011; Sterba, 2014; Sterba, 2017). 
 Overall, results from the current study suggest a variety of methods can be used to 
address the incomplete covariate data when using the ML three-step approach. Based on our 
findings, we would recommend the use of Bayesian estimation when it is possible to use 
informative or weakly-informative priors on the regression coefficients. In situations where 
informative priors are not possible, FIML works well when the missing data is limited to a 
single covariate, and MI works well when the missing data percentage is limited to 15% or 
35%. Listwise deletion should be avoided whenever possible. 
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Chapter 4: Study 2 – Using Small-Variance Priors to Detect Covariate 
Misspecifications in Latent Class Analysis Models 
 
4.1 Introduction 

LCA is a modeling technique that allows for the identification of an underlying 
categorical latent variable from a set of observed latent class indicators. The LCA model is 
considered a measurement model because the categorical latent variable represents the 
different subgroups identified in the population. Recent methodological advances have 
primarily focused on expanding the LCA measurement model to include external variables 
(e.g., predictors, distal outcomes) as part of a larger structural model. Traditionally, LCA 
models with external variables were estimated using a one-step approach with the ML 
estimator (McCutcheon, 1987; Vermunt, 2010). The primary issue with the one-step 
approach is that each alternation to the external variables in the model results in the 
reidentification of the model, which can change the interpretation of the latent classes 
(Asparouhov & Muthén, 2014; Bakk & Kuha, 2018; Bolck, Croon, & Hagenaars, 2004; 
Vermunt, 2010). An alternative strategy to the one-step approach is to use a stepwise 
approach to estimation, where the LCA measurement model is established independently of 
the structural model (Asparouhov & Muthén, 2014; Vermunt, 2010).  

Regardless of the estimation strategy being pursued (i.e., one-step vs. stepwise 
approach), the inclusion of external variables in the LCA model presents an opportunity for 
model misspecifications. For example, one of the most common external variables to include 
in LCA is a latent class-predicting covariate. By including a latent class-predicting covariate, 
researchers can explore variables that explain the clustering in the LCA measurement model. 
One way of adding a covariate to an LCA model is to regress the latent class variable on the 
covariate (Nylund-Gibson & Masyn, 2016). By specifying the conditional LCA model this 
way, an assumption is being made that the relationship between the covariate and observed 
latent class indicators is fully explained by the indirect effect of the covariate on the latent 
class variable. In other words, the direct effect of the covariate on each class indicator would 
be fixed to zero during model estimation. Unfortunately, this assumption does not always 
hold true in practice. Often, there are direct covariate effects on the observed class indicator 
variables in applied settings. 
4.1.1 Covariate Misspecifications 
 Several previous methodological studies have explored the consequences of 
misspecifying covariate effects in LCA models (Collins & Lanza, 2010; Masyn, 2013; 
Nylund-Gibson et al., 2016; Petras & Masyn, 2010). For example, one simulation study 
found that the misspecification of covariate effects leads to the over-extraction of the 
number of latent classes during class enumeration (Nylund-Gibson et al., 2016). For this 
reason, a growing body of methodological research that suggests class enumeration should 
take place before modeling external variables (Collins & Lanza, 2010; Nylund-Gibson et al., 
2016; Masyn, 2013; Petras & Masyn, 2010). Although covariates may provide additional 
information that aids class enumeration (Li & Hser, 2011; Lubke & Muthén, 2007; Muthén, 
2002), covariates should only be included during class enumeration when the covariate 
relationships are known a priori (Petras & Masyn, 2010). Researchers are unlikely to know the 
covariate relationships in most applied settings in advance. 
 A seemingly well-fitting unconditional LCA measurement model can become a 
poorly fitting conditional LCA model when the covariate is misspecified, regardless of the 



 46 

estimation approach used. When using the one-step approach, ignoring direct effects 
between the covariate and latent class indicators can bias structural parameters (Janssen et 
al., 2019). Covariate misspecifications bias structural parameters even more under poor class 
separation (Janssen et al., 2019). In theory, the stepwise approach to estimation should 
safeguard the measurement model against covariate misspecifications. However, excluding 
direct effects still biases structural parameters even when using a stepwise approach to 
analysis (Asparohouv & Muthén, 2014; Janssen et al., 2019). In other words, failure to model 
direct effects between the covariate and latent class indicators can compromise the LCA 
model. Notably, recent methodological advances have been made on modeling direct 
covariate effects when using a stepwise approach. More specifically, Vermunt and Magidson 
(2021) demonstrate how the ML three-step approach can be modified to include direct 
effects during the first estimation step. The direct effects must first be detected to be 
accommodated in the procedure described in Vermunt and Magidson (2021). The following 
section discusses techniques available for detecting direct covariate effects in LCA models.  
4.1.2 Methods for Detecting Covariate Misspecifications 

The methodological research on detecting direct effects in conditional LCA models 
is limited to one previous simulation study (Janssen et al., 2019). The authors illustrated how 
both residual and fit statistics could be used to identify direct effects in the ML estimation 
framework. Residual statistics can test for potentially problematic restrictions in the model. 
For example, residual statistics could be used to test whether the correlation between a pair 
of class indicators should be freed. In addition, residual statistics can be used to determine 
whether the path between the covariate and a class indicator should be freed. For a detailed 
explanation of implementing residual statistics in Mplus and Latent GOLD, see Visser and 
Depaoli (2022). Alternatively, an inferential method (e.g., Wald Test) could also be used to 
test whether the inclusion of a direct effect improves model fit. According to Janssen et al., 
(2019), the effectiveness of the residual and fit statistics at detecting direct effects largely 
depends on the number of direct effects present, the size of the direct effects, and whether 
the direct effects were class-specific. Although the detection methods in Janssen et al. (2019) 
were promising, the methods struggled to detect multiple direct effects.  

Another study proposed the use of multiple indicator multiple cause (MIMIC) 
modeling procedures that are commonly used in the item-response theory (IRT) framework 
to detect differential item functioning (DIF) in conditional LCA models (Masyn, 2017). In 
the context of LCA models with a class-predicting covariate, DIF occurs in two main ways 
(Nylund-Gibson et al., 2016). First, the latent class indicator could function differently for 
individuals with different covariate values. Second, the probability of endorsing the latent 
class indicator could correspond to a particular difference in the covariate for an individual 
in a specific latent class. The second type of DIF would occur when there is a class-varying 
direct effect. An abundance of past methodological work suggests the MIMIC modeling 
procedure to detecting DIF in factor analysis models is effective (Finch, 2005; Muthén, 
1985; Wang, Shih, & Yang, 2009; Willse & Goodman, 2008; Woods, 2009; Woods & 
Grimm, 2011). Masyn (2017) expanded on this methodological work to develop a similar 
MIMIC modeling procedure for LCA. The proposed LCA MIMIC modeling procedure is an 
iterative procedure that could be used in conjunction with a stepwise approach to estimation; 
see Masyn (2017) for a detailed explanation of how to implement the proposed LCA MIMIC 
modeling procedure. This new LCA MIMIC modeling procedure's performance has yet to 
be evaluated in a simulation study. However, Masyn (2017) points out that there may be 
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Type I error inflation due to the iterative testing procedure used to test each possible direct 
effect.  
4.1.3 Small-Variance Priors 

An alternative strategy for detecting non-zero direct effects in conditional LCA 
models that may be effective for a broader range of situations is Bayesian structural equation 
modeling (BSEM). BSEM allows for a very flexible modeling experience, where it is possible 
to relax model assumptions in restrictive models. Ample methodological research has 
demonstrated the value of using BSEM to relax model assumptions for confirmatory factor 
analysis (CFA) models (Muthén & Asparouhov, 2012; Stromeyer et al., 2015; Xiao, Liu, & 
Hau, 2019). For example, BSEM has been used to relax model assumptions about cross-
loadings in CFA, residual correlations in CFA, and measurement non-invariance in MIMIC 
modeling (Muthén & Asparouhov, 2012). In addition, BSEM has been used to relax 
assumptions about measurement invariance in CFA models (Hoijtink & van de Schoot, 
2018; Sedding & Leitgöb, 2018; Winter & Depaoli, 2020). The Bayesian methodology allows 
us to relax model assumptions by implementing approximate-zero priors, which are near-zero 
priors centered on zero with very small variances. By applying approximate-zero priors to 
parameters that are typically constrained to zero in the ML estimation framework, a less 
restrictive version of the model can be estimated, improving model fit and interpretation 
(Depaoli, 2021). 

Approximate-zero priors can also help detect non-zero direct effects. For example, 
BSEM has handled direct effects between a covariate and factor indicator variables in CFA 
models (Muthén & Asparouhov, 2012). In traditional CFA models, the direct effects 
between covariates and the factor indicators are typically fixed to zero, introducing 
problematic model misspecifications. Using small-variance, normal priors centered at zero 
for all direct effects between the covariate and the factor indicators, it is possible to relax this 
strict assumption and say the direct effects are approximately zero. The near-zero priors will 
allow some “wiggle” room surrounding the cross-loadings, but the substantive meaning 
remains (e.g., the cross-loadings are minor and unimportant). If a cross-loading is truly non-
zero, the data should conflict with the near-zero priors, resulting in a non-zero estimate for 
the cross-loading. The approximate-zero strategy can improve model fit and aid researchers 
in detecting non-zero cross-loadings (Muthén & Asparouhov, 2012).  
 Previous applications of approximate-zero priors in LCA models have been limited 
to relaxing assumptions about local independence between latent class indicators 
(Asparouhov & Muthén, 2011; Lee et al., 2020). More specifically, near-zero priors can help 
detect non-zero residual correlations between latent class indicators in LCA models. For a 
detailed guide for detecting and modeling conditional dependence in LCA, see Visser and 
Depaoli (2022). The current study seeks to expand approximate-zero priors’ application to 
include direct effects between a continuous covariate and latent class indicators. Considering 
the approximate-zero strategy is effective for direct effects in CFA models (Muthén & 
Asparouhov, 2012), we anticipate similar benefits will be seen in LCA models. 
4.2 Design 
 Random samples were generated from six different population models with known 
covariate relationships to investigate the utility of the approximate-zero strategy. This study 
aimed to illustrate how small-variance priors can effectively identify and model non-zero 
direct effects that commonly occur in applied settings. All data were generated using Mplus. 
All population models were generated with two latent classes (𝐾 = 2), five binary class 
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indicator variables (𝑢! − 𝑢$), and one standard normal covariate (𝑥). For each population 
model, sample size (N = 500 and N = 1,000) and class proportions (equal and unequal) were 
varied. Each generated dataset was analyzed with several Bayesian conditional LCA models 
with different prior specifications. To explore the impact of prior specifications (or 
misspecifications), we included different prior conditions on 𝛾! (i.e., 𝑥 predicting 𝑐) and the 
direct effects (i.e., 𝑥 predicting 𝑢! − 𝑢$). The prior specifications for each population are 
discussed in detail below. There were 324 cells in this simulation study, and each cell had 500 
replications. Previous studies using conditional LCA models have found 500 replications to 
be sufficient (Di Mari & Bakk, 2018; Janssen et al., 2019; Kim et al., 2016; Nylund-Gibson & 
Masyn, 2016). 
4.2.1 Class Proportions 

Data were generated according to two different class proportion conditions (equal 
vs. unequal). For the equal class proportion condition, the classes had a 50%-50% split 
(𝜋! =	𝜋# = 0.5). For the unequal class proportion condition, the classes had an 82%-18% 
split (𝜋! = 0.82, 𝜋# = 0.18). Considering unequal class sizes pose a greater estimation 
challenge in mixture models (Kim, 2014; Lubke & Tueller, 2010; Nylund, Asparouhov, & 
Muthén, 2007), this factor could be important for illustrating the value of informative prior 
specifications for the binomial logistic regression slope. The population values selected were 
equivalent to a previous simulation study that used conditional LCA models (Nylund-
Gibson & Masyn, 2016). 
4.2.2 Sample Size 
 Two levels of sample size were considered in the current study (N = 500 vs. N = 
1,000). The N = 500 is a common sample size for mixture models in applied settings (Sterba 
et al., 2014), whereas N = 1,000 represents an ideal scenario. These sample sizes have 
previously been used in a simulation study using conditional LCA models (Nylund-Gibson 
& Masyn, 2016). 
4.2.3 Population Models 
 Datasets were generated from different LCA population models with known 
covariate relations that commonly occur in applied research. As seen in Figure 6, LCA 
population models with six known covariate effect specifications for 𝑥 were considered 
(population models 1-6, labeled P1-P6). Across the population models, there were two 
pathways through which the covariate 𝑥 could influence an observed latent class indicator. 
The first pathway is indirect via the latent class variable 𝑐, as seen in the P1-P4 population 
models. The second pathway is a direct pathway that bypasses 𝑐, as seen in P2-P6 population 
models. Some population models have indirect and direct effects, whereas others have only 
indirect or direct effects.  
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Figure 6. Conditional LCA population models in the current study (P1-P6).  
The paths from 𝑥 to 𝑐 represent the indirect effects of the covariate on the class 
indicators (i.e., 𝑢!-𝑢$) via the latent class variable, 𝑐. Each path from 𝑥 to an 
observed class indicator (e.g., 𝑢") represents a direct effect. In P4, the arrow 
pointing from 𝑐 to the direct effect path indicates a class-varying direct effect. 

 
4.2.3.1 Indirect Effects 
 P1, the first covariate effect specification in Figure 6, represents the most common 
conditional LCA model, with only an indirect effect on the latent class indicators via the 
latent class variable 𝑐 (Nylund-Gibson & Masyn, 2016). The relationship between 𝑥 and 𝑐 
can be represented with a single regression path (i.e., 𝛾!). In the P2, P3, and P4 population 
models, 𝑥 was also specified to have an indirect effect on the latent class indicators via the 
latent class variable 𝑐. For population models P1-P4, the effect of 𝑥 on 𝑐 (i.e., specified as “𝑐 
on 𝑥” in Mplus language) was fixed to 𝛾! = 1, which corresponds to an odds ratio of 2.72 
for membership in Class 1 compared to Class 2 for a 1 standard deviation (SD) increase in 𝑥. 
The fifth and sixth covariate effect specifications in Figure 6, P5 and P6, differ from the 
other population models because there was no relationship between 𝑥 and 𝑐 (i.e., 𝛾! = 0). 
4.2.3.2 Direct Effects 

The P2-P6 population models also have direct effects between 𝑥 and one or more 
latent class indicators. Expressly, P2 and P5 were specified to have a single direct effect 
between 𝑥 and 𝑢", whereas P3 and P6 were specified to have direct effects between 𝑥 and 
𝑢" as well as 𝑥 and 𝑢$. P4 was very similar to the P2 population model with a single direct 
effect between 𝑥 and 𝑢". However, in the P4 covariate specification, the path between 𝑥 and 
𝑢" was class-varying. The class-varying effect is represented in Figure 6 with the arrow 
pointing from 𝑐 to the path between 𝑥 and 𝑢". All the population models (excluding P1) 
have a direct effect of  𝑥 on 𝑢", which can be represented with the regression coefficient 𝛽". 
Across population models, 𝛽" = 1, which corresponds to an odds ratio of 2.72 for item 
endorsement of 𝑢" for a 1 SD increase in 𝑥, given latent class membership. In population 
model P4, the class-varying direct effect of 𝑥 on 𝑢" was specified such that the Class 1 direct 
effect was fixed to 𝛽"! = 0.5, and the Class 2 direct effect was fixed to 𝛽"# = 1.5. 
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Population models P3 and P6 also had a direct effect of 𝑥 on 𝑢$, which was set to 𝛽$ = 1. 
Notably, both P3 and P6 represent a violation of the local independence assumption because 
covariate 𝑥 was a shared antecedent of 𝑢" and 𝑢$ above and beyond the latent class variable.  
4.2.4 Analysis Models 
 This study assumes that the 2-class unconditional LCA model has already been 
correctly selected during class enumeration. Our primary aim is to accurately model the 
covariate relations with the measurement model (e.g., latent class variable and class 
indicators). For each replication from each population model in Figure 4, we estimated a 
series of LCA analysis models with different covariate effects and prior specifications. We 
varied the prior specifications for 𝛾! and the direct effects (e.g., 𝛽!-𝛽$). The levels for the 𝛾! 
prior specifications and the direct effect prior specifications depended on the population 
model used for data generation. All analyses were performed in Mplus using the Bayesian 
estimator with a single MCMC chain per parameter. Each analysis model used 30,000 
iterations, and the first 15,000 iterations were discarded as burn-in. Convergence was 
assessed by carefully examining trace plots and autocorrelation plots and monitoring the 
PSRF. The Mplus default priors were utilized for all other parameters in the analysis models. 
More specifically, the default prior specifications implement a normal prior ~𝑁(0,5) for the 
individual item thresholds and the intercept of the latent class variable. 
4.2.4.1 𝛄𝟏 Prior Specifications 
 Depending on the population model used for data generation, there may or may not 
be an indirect effect. For population models with an indirect effect (e.g., P1-P4), three levels 
of normal priors (informative-correct, informative-wrong, and diffuse) were considered for 
𝛾!. Figure 7 provides a visual representation of the three levels of priors used for 𝛾! in P1-
P4. The informative-correct conditions assigned a normal prior ~𝑁(1,0.04) for 𝛾!, which is an 
informative prior correctly centered on 1. The informative-wrong conditions assigned a normal 
prior ~𝑁(0.5,0.04) for 𝛾!, which is an informative prior incorrectly centered on 0.5. The 
diffuse conditions assigned a ~𝑁(0,5) for 𝛾!, which is the Mplus default prior.  

 
Figure 7. The prior specification levels (informative-correct, 
informative-wrong, and diffuse) for 𝛾! in population models 
P1-P4.  
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For population models without an indirect effect (i.e., P5 and P6), we explored the 
impact of misspecifying 𝛾! in the analysis model. More specifically, we considered three 
different specifications for 𝛾! (not specified, informative misspecification, and diffuse 
misspecification). The 𝛾! parameter was not included in the analysis model in the not specified 
conditions, and no prior was assigned. For the 𝛾! misspecification conditions, the normal 
prior ~𝑁(0.5,0.04) was assigned for the informative misspecification condition and the Mplus 
default prior was used for the ~𝑁(0,5) diffuse misspecification condition. 
4.2.4.2 Direct Effect Prior Specifications 

All population models were analyzed with two levels of small-variance priors (overall 
and class-specific) for the direct effects of 𝑢! − 𝑢$ on 𝑥, which can be represented with 
regression coefficients 𝛽!-𝛽$. For the small-variance overall prior level, 𝛽!-𝛽$ were assigned a 
normal prior ~𝑁(0.0,0.0025). For the small-variance class-specific prior level, the direct 
effects were estimated as class-varying effects (i.e., Class 1 = 𝛽!!-𝛽$!; Class 2 =	𝛽!#-𝛽$#), 
and each regression coefficient was assigned a normal prior ~𝑁(0.0,0.0025). Conditions 
utilizing the small-variance overall (SVO) priors will likely have fewer estimation problems 
(Nylund-Gibson & Masyn, 2016); however, the small-variance class-specific (SVCS) priors 
are essential for detecting class-varying effects such as 𝛽"! and 𝛽"# in P4. The small-variance 
prior conditions aim to determine if the approximate-zero strategy effectively detects non-
zero direct effects. We would expect the regression coefficients that are truly zero in the 
population model to be estimated close to zero and the regression coefficients that are non-
zero in each population model to “escape” the restrictive small-variance prior (especially 
when sample sizes are relatively higher). In addition to the two levels of small-variance 
priors, the P2-P6 population models had three additional levels of direct effect priors 
(informative-correct, informative-wrong, and diffuse). These three additional levels illustrate 
how a more parsimonious model can be estimated after detecting the non-zero direct effects 
with the small-variance priors. For these three levels of priors, only truly non-zero direct 
effects were included in the analysis models.  

Population models P2, P3, P5, and P6 included the direct effect 𝛽", and population 
models P3 and P6 also had direct effect 𝛽$. The informative-correct prior level assigned 
~𝑁(1.0,0.04) to each non-zero direct effect. In contrast, informative-wrong prior level 
assigned ~𝑁(0.5,0.04) to each non-zero direct effect. The informative-correct prior is likely 
to be effective because it will be centered on the population value; however, this level of 
accuracy in the prior is unlikely to occur in practice. Therefore, we included an informative-
wrong prior condition where the prior is centered on a wrong value (i.e., 0.5). The wrong 
value represents a weaker direct effect, which may be tempting because the estimated direct 
effect will be pulled towards zero under a small-variance prior. It is important to understand 
the impact of wrong informative prior specifications because, in most applications, the 
researcher is likely to be off from the “truth” (i.e., population value). The proposed wrong 
prior level mimics a situation that is likely to occur in applied research. In cases where the 
researcher does not want to include informative priors (e.g., no previous knowledge 
available, exploratory analysis), a common practice is to use the default prior in the software. 
To assess the viability of this estimation strategy, we included the direct effect diffuse prior 
level, which is the Mplus default prior ~𝑁(0,5). Figure 8 provides a visual representation of 
the five levels of direct effect priors (SVO, SVCS, informative-correct, informative-wrong, 
and diffuse) for population models P2, P3, P5, and P6.  
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Figure 8. The prior specification levels (SVO, SVCS, informative-
correct, informative-wrong, and diffuse) for the direct effects 
(e.g., 𝛽") in population models P2, P3, P5, and P6. 

 
The P4 population model is unique because it has a class-varying direct effect (𝛽"! =

0.5 and 𝛽"# = 1.5). To adjust for the class-varying direct effect in the analysis models, the 
informative-correct prior level was adapted to estimate the class-specific direct effect of 𝑥 on 𝑢". 
The Class 1 (C1) regression coefficient 𝛽"! was assigned ~𝑁(0.5,0.04), and the Class 2 (C2) 
regression coefficient was assigned ~𝑁(1.5,0.04). Figure 9 illustrates the adapted 
informative-correct prior condition.  

 

 
Figure 9. The direct effect prior specifications for the 
informative-correct conditions (C1 informative-correct, C2 
informative-correct) in population model P4. 
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4.3 Results 
4.3.1 Convergence 
 To prevent within-chain label switching across replications of the simulation study, a 
model constraint was included on the latent class indicator 𝑢! such that the values adhered 
to the following order: Class 2 > Class 1. A single MCMC chain was utilized for parameter 
estimation to prevent between-chain label switching. The number of iterations was set to 
30,000 for all analyses, and the first 15,000 iterations were discarded as burn-in. Each cell in 
the simulation study converged without issue and a set of stable estimates for the model 
parameters was obtained. Convergence for each replication was assessed using PSRF. If 
PSRF values were less than 1.01, a replication was considered converged. According to this 
criterion, all replications converged as expected.  
4.3.2 Detecting Direct Effects with Small-Variance Priors 
 In this section, we examine the power of small-variance priors to detect non-zero 
direct effects between the covariate and the latent class indicators. If a non-zero direct effect 
escapes the small-variance prior that is centered on zero, there is evidence to suggest a direct 
effect may need to be included when estimating the relationship between 𝑥 and 𝑐. If the 
direct effect is truly zero, it should be held to “approximately zero” by the small-variance 
prior. Small-variance priors were specified on the 𝛽! − 𝛽$ parameters for each of the six 
population models (P1-P6). P1 results were included to illustrate whether an inflated Type I 
error is likely to occur when there is no direct effect in the population model. P2 and P3 
results explored whether the performance of the small-variance priors was impacted by the 
number of direct effects (one vs. two). P4 results were included to determine whether a 
class-varying direct effect can be detected with small-variance priors. P5 and P6 were 
included to examine the impact of misspecifiying 𝛾! when detecting direct effects with small-
variance priors. Factors such as sample size and class sizes could impact the power to detect 
the direct effects when using small-variance prior. 

Results from P1-P6 are presented in Tables 8-13, respectively; see Figure 6 for a 
visual representation of the population models. For each population model, two types of 
small-variance priors (SVO vs. SVCS) were applied to the direct effects of 𝑢% − 𝑢$  on 𝑥, 
which can be denoted as 𝛽% − 𝛽$. The SVO prior represents a small-variance prior applied 
to the overall direct effect, whereas the SVCS prior is a class-specific small-variance prior. In 
addition to the small-variance priors for the direct effect, three different levels of priors 
(informative-correct, informative-wrong, and diffuse) were applied to 𝛾!.  

Results presented in Tables 8-13 include the average parameter estimates for three of 
the direct effects for each latent class (i.e., 𝛽% − 𝛽$) and 𝛾!. In addition, the tables display the 
percentage of replications in which the null hypothesis (e.g., 𝛽$ = 0) is rejected.  When the 
population value is non-zero, this percentage represents an estimate of power for a single 
parameter (i.e., the probability of rejecting the null hypothesis when it is false). A cut-off of 
80% was used as the standard for power. When the population value is truly zero, this 
percentage represents an estimate of the Type I error (i.e., the probability of rejecting the 
null hypothesis when it is true). We would expect a Type I error (i.e., false positive) rate of 
5% or less when a population parameter equals zero. 
 



 
54

 

T
ab

le
 8

. T
he

 a
ve

ra
ge

 p
ar

am
et

er
 e

st
im

at
es

 a
nd

 %
 o

f s
ig

ni
fic

an
t c

oe
ff

ic
ie

nt
s f

or
 P

1 
pa

ra
m

et
er

s w
he

n 
us

in
g 

tw
o 

le
ve

ls 
of

 
sm

al
l v

ar
ia

nc
e 

pr
io

rs
 (S

V
O

 a
nd

 S
V

C
S)

 o
n 
𝛽 !

-𝛽
" 

an
d 

th
re

e 
le

ve
ls 

of
 p

rio
rs

 (d
iff

us
e,

 in
fo

rm
at

iv
e-

co
rr

ec
t, 

an
d 

in
fo

rm
at

iv
e-

w
ro

ng
) o

n 
𝛾 #

. 
                         

Sa
m

pl
e 

Si
ze

 
𝑁
=
50
0 

𝑁
=
1,
00
0 

𝑁
=
50
0 

𝑁
=
1,
00
0 

C
la

ss
 P

ro
p.

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 

Pa
ra

m
et

er
 

Po
p.

 
V

al
ue

 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
𝐶1
:	𝛽

* 
0 

.0
00

 
0 

.0
01

 
0 

.0
00

 
0 

.0
00

 
0 

.0
01

 
0 

-.0
05

 
0 

.0
01

 
0 

-.0
09

 
0 

				
			𝛽

+ 
0 

.0
00

 
0 

.0
01

 
0 

-.0
01

 
0 

-.0
01

 
0 

.0
00

 
0 

-.0
05

 
0 

-.0
01

 
0 

-.0
10

 
0 

				
		𝛽

( 
0 

.0
01

 
0 

.0
01

 
0 

.0
01

 
0 

.0
00

 
0 

.0
00

 
0 

-.0
05

 
0 

-.0
01

 
0 

-.0
10

 
0 

𝐶2
:𝛽

* 
0 

.0
00

 
0 

.0
01

 
0 

.0
00

 
0 

.0
00

 
0 

-.0
02

 
0 

.0
06

 
0 

-.0
01

 
0 

.0
13

 
0 

				
			𝛽

+ 
0 

.0
00

 
0 

.0
01

 
0 

-.0
01

 
0 

-.0
01

 
0 

-.0
01

 
0 

.0
08

 
0 

.0
00

 
0 

.0
14

 
0 

				
			𝛽

( 
0 

.0
01

 
0 

.0
01

 
0 

.0
01

 
0 

.0
00

 
0 

-.0
01

 
0 

.0
07

 
0 

.0
02

 
0 

.0
16

 
0 

𝛾 &
 

1 
1.

02
0 

10
0 

1.
01

1 
10

0 
1.

00
8 

10
0 

1.
00

3 
10

0 
1.

01
2 

10
0 

1.
01

1 
10

0 
1.

00
8 

10
0 

1.
00

2 
10

0 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
𝐶1
:	𝛽

* 
0 

.0
00

 
0 

.0
01

 
0 

.0
00

 
0 

.0
00

 
0 

.0
01

 
0 

-.0
05

 
0 

.0
01

 
0 

-.0
09

 
0 

				
			𝛽

+ 
0 

.0
00

 
0 

.0
01

 
0 

-.0
01

 
0 

-.0
01

 
0 

.0
00

 
0 

-.0
05

 
0 

-.0
01

 
0 

-.0
10

 
1 

				
		𝛽

( 
0 

.0
01

 
0 

.0
01

 
0 

.0
01

 
0 

.0
00

 
0 

.0
00

 
0 

-.0
05

 
0 

.0
00

 
0 

-.0
10

 
0 

𝐶2
:𝛽

* 
0 

.0
00

 
0 

.0
01

 
0 

.0
00

 
0 

.0
00

 
0 

-.0
02

 
0 

.0
07

 
0 

-.0
01

 
0 

.0
13

 
0 

				
			𝛽

+ 
0 

.0
00

 
0 

.0
01

 
0 

-.0
01

 
0 

-.0
01

 
0 

-.0
01

 
0 

.0
08

 
0 

.0
00

 
0 

.0
14

 
0 

				
			𝛽

( 
0 

.0
01

 
0 

.0
01

 
0 

.0
01

 
0 

.0
00

 
0 

.0
01

 
0 

.0
07

 
0 

.0
02

 
0 

.0
14

 
0 

𝛾 &
 

1 
1.

01
2 

10
0 

1.
00

5 
10

0 
1.

00
6 

10
0 

1.
00

3 
10

0 
1.

01
3 

10
0 

1.
00

5 
10

0 
1.

00
6 

10
0 

1.
00

1 
10

0 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

(S
V

C
S)

 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

𝐶1
:	𝛽

* 
0 

.0
03

 
0 

.0
04

 
0 

.0
03

 
0 

.0
03

 
1 

.0
04

 
0 

-.0
03

 
0 

.0
03

 
0 

-.0
07

 
0 

				
			𝛽

+ 
0 

.0
03

 
0 

.0
04

 
0 

.0
02

 
0 

.0
03

 
0 

.0
02

 
0 

-.0
03

 
0 

.0
01

 
0 

-.0
08

 
0 

				
		𝛽

( 
0 

.0
05

 
0 

.0
04

 
0 

.0
04

 
1 

.0
03

 
0 

.0
02

 
0 

-.0
03

 
0 

.0
01

 
0 

-.0
08

 
0 

𝐶2
:𝛽

* 
0 

.0
03

 
0 

.0
04

 
0 

.0
03

 
0 

.0
03

 
1 

.0
00

 
0 

.0
08

 
0 

.0
01

 
0 

.0
14

 
0 

				
			𝛽

+ 
0 

.0
03

 
0 

.0
04

 
0 

.0
02

 
0 

.0
03

 
0 

.0
01

 
0 

.0
09

 
0 

.0
02

 
0 

.0
15

 
0 

				
			𝛽

( 
0 

.0
05

 
0 

.0
04

 
0 

.0
04

 
1 

.0
03

 
0 

.0
03

 
0 

.0
09

 
0 

.0
04

 
0 

.0
16

 
0 

𝛾 &
 

1 
.8

72
 

10
0 

.8
32

 
10

0 
.9

22
 

10
0 

.8
95

 
10

0 
.8

73
 

10
0 

.8
33

 
10

0 
.9

23
 

10
0 

.8
95

 
10

0 



 
55

 

T
ab

le
 9

. T
he

 a
ve

ra
ge

 p
ar

am
et

er
 e

st
im

at
es

 a
nd

 %
 o

f s
ig

ni
fic

an
t c

oe
ff

ic
ie

nt
s f

or
 P

2 
pa

ra
m

et
er

s w
he

n 
us

in
g 

tw
o 

le
ve

ls 
of

 sm
al

l 
va

ria
nc

e 
pr

io
rs

 (S
V

O
 a

nd
 S

V
C

S)
 o

n 
𝛽 !

-𝛽
" 

an
d 

th
re

e 
le

ve
ls 

of
 p

rio
rs

 (d
iff

us
e,

 in
fo

rm
at

iv
e-

co
rr

ec
t, 

an
d 

in
fo

rm
at

iv
e-

w
ro

ng
) o

n 
𝛾 #

. 

 

Sa
m

pl
e 

Si
ze

 
𝑁
=
50
0 

𝑁
=
1,
00
0 

𝑁
=
50
0 

𝑁
=
1,
00
0 

C
la

ss
 P

ro
p.

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 

Pa
ra

m
et

er
 

Po
p.

 
V

al
ue

 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
𝐶1
:	𝛽

* 
0 

-.0
20

 
0 

-.0
16

 
0 

-.0
26

 
2 

-.0
20

 
1 

-.0
13

 
0 

-.0
22

 
0 

-.0
20

 
0 

-.0
32

 
3 

				
			𝛽

+ 
1 

.1
96

 
10

0 
.2

19
 

10
0 

.3
20

 
10

0 
.3

51
 

10
0 

.1
10

 
80

 
.1

85
 

10
0 

.1
97

 
10

0 
.3

03
 

10
0 

				
		𝛽

( 
0 

-.0
20

 
0 

-.0
14

 
0 

-.0
24

 
3 

-.0
17

 
1 

-.0
12

 
0 

-.0
20

 
0 

-.0
18

 
0 

-.0
29

 
3 

𝐶2
:𝛽

* 
0 

-.0
20

 
0 

-.0
16

 
0 

-.0
26

 
2 

-.0
20

 
1 

-.0
13

 
0 

.0
04

 
0 

-.0
20

 
0 

.0
09

 
0 

				
			𝛽

+ 
1 

.1
96

 
10

0 
.2

19
 

10
0 

.3
20

 
10

0 
.3

51
 

10
0 

.1
11

 
82

 
.0

50
 

1 
.1

97
 

10
0 

.0
98

 
54

 
				
			𝛽

( 
0 

-.0
20

 
0 

-.0
14

 
0 

-.0
24

 
3 

-.0
17

 
1 

-.0
13

 
0 

.0
04

 
0 

-.0
19

 
0 

.0
10

 
0 

𝛾 &
 

1 
1.

18
3 

10
0 

1.
19

2 
10

0 
1.

14
2 

10
0 

1.
14

8 
10

0 
1.

20
9 

10
0 

1.
22

8 
10

0 
1.

17
4 

10
0 

1.
19

0 
10

0 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
𝐶1
:	𝛽

* 
0 

-.0
19

 
0 

-.0
14

 
0 

-.0
25

 
2 

-.0
19

 
1 

-.0
12

 
0 

-.0
21

 
0 

-.0
19

 
0 

-.0
31

 
3 

				
			𝛽

+ 
1 

.1
98

 
10

0 
.2

22
 

10
0 

.3
22

 
10

0 
.3

53
 

10
0 

.1
12

 
82

 
.1

88
 

10
0 

.1
98

 
10

0 
.3

05
 

10
0 

				
		𝛽

( 
0 

-.0
18

 
0 

-.0
13

 
0 

-.0
23

 
3 

-.0
16

 
2 

-.0
11

 
0 

-.0
19

 
0 

-.0
18

 
0 

-.0
28

 
3 

𝐶2
:𝛽

* 
0 

-.0
19

 
0 

-.0
14

 
0 

-.0
25

 
2 

-.0
19

 
1 

-.0
13

 
0 

.0
05

 
0 

-.0
20

 
0 

.0
09

 
0 

				
			𝛽

+ 
1 

.1
98

 
10

0 
.2

22
 

10
0 

.3
22

 
10

0 
.3

53
 

10
0 

.1
13

 
86

 
.0

52
 

1 
.1

99
 

10
0 

.0
99

 
56

 
				
			𝛽

( 
0 

-.0
18

 
0 

-.0
13

 
0 

-.0
23

 
3 

-.0
16

 
2 

-.0
12

 
0 

.0
05

 
0 

-.0
19

 
0 

.0
10

 
0 

𝛾 &
 

1 
1.

12
0 

10
0 

1.
10

9 
10

0 
1.

11
3 

10
0 

1.
11

0 
10

0 
1.

13
6 

10
0 

1.
12

9 
10

0 
1.

13
9 

10
0 

1.
14

1 
10

0 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

(S
V

C
S)

 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

𝐶1
:	𝛽

* 
0 

-.0
15

 
0 

-.0
11

 
0 

-.0
21

 
2 

-.0
15

 
1 

-.0
10

 
0 

-.0
18

 
0 

-.0
17

 
0 

-.0
28

 
2 

				
			𝛽

+ 
1 

.2
03

 
10

0 
.2

27
 

10
0 

.3
26

 
10

0 
.3

57
 

10
0 

.1
12

 
88

 
.1

92
 

10
0 

.2
02

 
10

0 
.3

08
 

10
0 

				
		𝛽

( 
0 

-.0
14

 
0 

-.0
09

 
0 

-.0
20

 
2 

-.0
13

 
1 

-.0
09

 
0 

-.0
16

 
0 

-.0
16

 
0 

-.0
26

 
2 

𝐶2
:𝛽

* 
0 

-.0
15

 
0 

-.0
11

 
0 

-.0
21

 
2 

-.0
15

 
1 

-.0
11

 
0 

.0
06

 
0 

-.0
17

 
0 

.0
11

 
0 

				
			𝛽

+ 
1 

.2
03

 
10

0 
.2

27
 

10
0 

.3
26

 
10

0 
.3

57
 

10
0 

.1
16

 
89

 
.0

54
 

1 
.2

02
 

10
0 

.1
02

 
63

 
				
			𝛽

( 
0 

-.0
14

 
0 

-.0
09

 
0 

-.0
20

 
2 

-.0
13

 
1 

-.0
11

 
0 

.0
06

 
0 

-.0
17

 
0 

.0
11

 
0 

𝛾 &
 

1 
.9

65
 

10
0 

.9
23

 
10

0 
1.

01
9 

10
0 

.9
93

 
10

0 
.9

80
 

10
0 

.9
41

 
10

0 
1.

04
3 

10
0 

1.
02

2 
10

0 



 
56

 

T
ab

le
 1

0.
 T

he
 a

ve
ra

ge
 p

ar
am

et
er

 e
st

im
at

es
 a

nd
 %

 o
f s

ig
ni

fic
an

t c
oe

ff
ic

ie
nt

s f
or

 P
3 

pa
ra

m
et

er
s w

he
n 

us
in

g 
tw

o 
le

ve
ls 

of
 sm

al
l 

va
ria

nc
e 

pr
io

rs
 (S

V
O

 a
nd

 S
V

C
S)

 o
n 
𝛽 !

-𝛽
" 

an
d 

th
re

e 
le

ve
ls 

of
 p

rio
rs

 (d
iff

us
e,

 in
fo

rm
at

iv
e-

co
rr

ec
t, 

an
d 

in
fo

rm
at

iv
e-

w
ro

ng
) o

n 
𝛾 #

.  

 

Sa
m

pl
e 

Si
ze

 
𝑁
=
50
0 

𝑁
=
1,
00
0 

𝑁
=
50
0 

𝑁
=
1,
00
0 

C
la

ss
 P

ro
p.

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 

Pa
ra

m
et

er
 

Po
p.

 
V

al
ue

 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
𝐶1
:	𝛽

* 
0 

-.0
42

 
3 

-.0
38

 
2 

-.0
59

 
27

 
-.0

52
 

18
 

-.0
25

 
0 

-.0
33

 
0 

-.0
42

 
3 

-.0
57

 
17

 
				
			𝛽

+ 
1 

.1
45

 
99

 
.1

60
 

98
 

.2
55

 
10

0 
.2

92
 

10
0 

.0
77

 
18

 
.1

16
 

78
 

.1
43

 
99

 
.2

22
 

10
0 

				
		𝛽

( 
1 

.1
46

 
99

 
.1

59
 

98
 

.2
57

 
10

0 
.2

93
 

10
0 

.0
76

 
17

 
.1

14
 

71
 

.1
43

 
99

 
.2

22
 

10
0 

𝐶2
:𝛽

* 
0 

-.0
42

 
3 

-.0
38

 
2 

-.0
59

 
27

 
-.0

52
 

18
 

-.0
26

 
0 

-.0
10

 
0 

-.0
42

 
3 

-.0
09

 
0 

				
			𝛽

+ 
1 

.1
45

 
99

 
.1

60
 

98
 

.2
55

 
10

0 
.2

92
 

10
0 

.0
78

 
20

 
.0

49
 

0 
.1

44
 

98
 

.0
96

 
52

 
				
			𝛽

( 
1 

.1
46

 
99

 
.1

59
 

98
 

.2
57

 
10

0 
.2

93
 

10
0 

.0
80

 
25

 
.0

50
 

0 
.1

46
 

99
 

.0
97

 
56

 
𝛾 &

 
1 

1.
51

1 
10

0 
1.

67
3 

10
0 

1.
42

1 
10

0 
1.

47
2 

10
0 

1.
57

0 
10

0 
1.

76
4 

10
0 

1.
52

 
10

0 
1.

59
3 

10
0 

 
 

(S
V

O
) 𝛽

&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
𝐶1
:	𝛽

* 
0 

-.0
40

 
2 

-.0
35

 
1 

-.0
57

 
23

 
-.0

49
 

16
 

-.0
24

 
0 

-.0
34

 
0 

-.0
41

 
3 

-.0
56

 
17

 
				
			𝛽

+ 
1 

.1
53

 
10

0 
.1

76
 

10
0 

.2
63

 
10

0 
.3

02
 

10
0 

.0
81

 
26

 
.1

31
 

90
 

.1
48

 
99

 
.2

37
 

10
0 

				
		𝛽

( 
1 

.1
54

 
10

0 
.1

75
 

10
0 

.2
64

 
10

0 
.3

03
 

10
0 

.0
81

 
25

 
.1

29
 

89
 

.1
48

 
99

 
.2

37
 

10
0 

𝐶2
:𝛽

* 
0 

-.0
40

 
2 

-.0
35

 
1 

-.0
57

 
23

 
-.0

49
 

16
 

-.0
25

 
0 

-.0
06

 
0 

-.0
41

 
3 

-.0
04

 
0 

				
			𝛽

+ 
1 

.1
53

 
10

0 
.1

76
 

10
0 

.2
63

 
10

0 
.3

02
 

10
0 

.0
82

 
26

 
.0

52
 

0 
.1

49
 

10
0 

.0
98

 
55

 
				
			𝛽

( 
1 

.1
54

 
10

0 
.1

75
 

10
0 

.2
64

 
10

0 
.3

03
 

10
0 

.0
84

 
34

 
.0

53
 

0 
.1

52
 

10
0 

.0
99

 
59

 
𝛾 &

 
1 

1.
30

3 
10

0 
1.

32
7 

10
0 

1.
31

3 
10

0 
1.

31
6 

10
0 

1.
33

8 
10

0 
1.

36
7 

10
0 

1.
38

4 
10

0 
1.

38
2 

10
0 

 
 

(S
V

O
) 𝛽

&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

(S
V

C
S)

 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

𝐶1
:	𝛽

* 
0 

-.0
37

 
1 

-.0
32

 
1 

-.0
53

 
21

 
-.0

45
 

11
 

-.0
23

 
0 

-.0
33

 
0 

-.0
39

 
2 

-.0
55

 
16

 
				
			𝛽

+ 
1 

.1
61

 
10

0 
.1

86
 

10
0 

.2
70

 
10

0 
.3

11
 

10
0 

.0
85

 
35

 
.1

42
 

94
 

.1
53

 
99

 
.2

48
 

10
0 

				
		𝛽

( 
1 

.1
62

 
10

0 
.1

85
 

10
0 

.2
72

 
10

0 
.3

12
 

10
0 

.0
85

 
32

 
.1

40
 

93
 

.1
53

 
10

0 
.2

48
 

10
0 

𝐶2
:𝛽

* 
0 

-.0
37

 
1 

-.0
32

 
1 

-.0
53

 
21

 
-.0

45
 

11
 

-.0
23

 
0 

-.0
04

 
0 

-.0
39

 
2 

.0
00

 
0 

				
			𝛽

+ 
1 

.1
61

 
10

0 
.1

86
 

10
0 

.2
70

 
10

0 
.3

11
 

10
0 

.0
86

 
36

 
.0

53
 

0 
.1

54
 

10
0 

.0
98

 
54

 
				
			𝛽

( 
1 

.1
62

 
10

0 
.1

85
 

10
0 

.2
72

 
10

0 
.3

12
 

10
0 

.0
88

 
41

 
.0

54
 

0 
.1

56
 

10
0 

.0
99

 
59

 
𝛾 &

 
1 

1.
12

5 
10

0 
1.

11
1 

10
0 

1.
19

7 
10

0 
1.

17
4 

10
0 

1.
16

1 
10

0 
1.

14
7 

10
0 

1.
26

6 
10

0 
1.

23
3 

10
0 



 
57

 

T
ab

le
 1

1.
 T

he
 a

ve
ra

ge
 p

ar
am

et
er

 e
st

im
at

es
 a

nd
 %

 o
f s

ig
ni

fic
an

t c
oe

ff
ic

ie
nt

s f
or

 P
4 

pa
ra

m
et

er
s w

he
n 

us
in

g 
tw

o 
le

ve
ls 

of
 

sm
al

l v
ar

ia
nc

e 
pr

io
rs

 (S
V

O
 a

nd
 S

V
C

S)
 o

n 
𝛽 !

-𝛽
" 

an
d 

th
re

e 
le

ve
ls 

of
 p

rio
rs

 (d
iff

us
e,

 in
fo

rm
at

iv
e-

co
rr

ec
t, 

an
d 

in
fo

rm
at

iv
e-

w
ro

ng
) o

n 
𝛾 #

.  
Sa

m
pl

e 
Si

ze
 

𝑁
=
50
0 

𝑁
=
1,
00
0 

𝑁
=
50
0 

𝑁
=
1,
00
0 

C
la

ss
 P

ro
p.

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 

Pa
ra

m
et

er
 

Po
p.

 
V

al
ue

 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
𝐶1
:	𝛽

* 
0 

-.0
19

 
0 

-.0
13

 
0 

-.0
24

 
2 

-.0
18

 
1 

-.0
09

 
0 

-.0
18

 
0 

-.0
13

 
0 

-.0
26

 
2 

				
			𝛽

+ 
0.

5 
.1

84
 

10
0 

.1
49

 
10

0 
.2

99
 

10
0 

.2
37

 
10

0 
.0

75
 

17
 

.1
11

 
86

 
.1

33
 

99
 

.1
79

 
10

0 
				
		𝛽

( 
0 

-.0
18

 
0 

-.0
12

 
0 

-.0
22

 
2 

-.0
15

 
1 

-.0
09

 
0 

-.0
16

 
0 

-.0
12

 
0 

-.0
24

 
2 

𝐶2
:𝛽

* 
0 

-.0
19

 
0 

-.0
13

 
0 

-.0
24

 
2 

-.0
18

 
1 

-.0
14

 
0 

.0
03

 
0 

-.0
22

 
0 

.0
05

 
0 

				
			𝛽

+ 
1.

5 
.1

84
 

10
0 

.1
49

 
10

0 
.2

99
 

10
0 

.2
37

 
10

0 
.1

34
 

94
 

.0
52

 
1 

.2
38

 
10

0 
.1

02
 

59
 

				
			𝛽

( 
0 

-.0
18

 
0 

-.0
12

 
0 

-.0
22

 
2 

-.0
15

 
1 

-.0
14

 
0 

.0
03

 
0 

-.0
22

 
0 

.0
06

 
0 

𝛾 &
 

1 
1.

17
2 

10
0 

1.
18

3 
10

0 
1.

13
1 

10
0 

1.
15

0 
10

0 
1.

19
1 

10
0 

1.
21

0 
10

0 
1.

15
4 

10
0 

1.
18

3 
10

0 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

  
𝐶1
:	𝛽

* 
0 

-.0
17

 
0 

-.0
12

 
0 

-.0
23

 
2 

-.0
17

 
1 

-.0
09

 
0 

-.0
17

 
0 

-.0
13

 
0 

-.0
25

 
2 

				
			𝛽

+ 
0.

5 
.1

86
 

10
0 

.1
51

 
10

0 
.3

00
 

10
0 

.2
39

 
10

0 
.0

76
 

19
 

.1
12

 
88

 
.1

34
 

99
 

.1
81

 
10

0 
				
		𝛽

( 
0 

-.0
16

 
0 

-.0
11

 
0 

-.0
21

 
1 

-.0
14

 
1 

-.0
08

 
0 

-.0
15

 
0 

-.0
11

 
0 

-.0
23

 
2 

𝐶2
:𝛽

* 
0 

-.0
17

 
0 

-.0
12

 
0 

-.0
23

 
2 

-.0
17

 
1 

-.0
14

 
0 

.0
03

 
0 

-.0
22

 
0 

.0
05

 
0 

				
			𝛽

+ 
1.

5 
.1

86
 

10
0 

.1
51

 
10

0 
.3

00
 

10
0 

.2
39

 
10

0 
.1

36
 

95
 

.0
54

 
1 

.2
40

 
10

0 
.1

03
 

63
 

				
			𝛽

( 
0 

-.0
16

 
0 

-.0
11

 
0 

-.0
21

 
1 

-.0
14

 
1 

-.0
14

 
0 

.0
03

 
0 

-.0
21

 
0 

.0
06

 
0 

𝛾 &
 

1 
1.

11
1 

10
0 

1.
10

5 
10

0 
1.

10
4 

10
0 

1.
11

2 
10

0 
1.

12
4 

10
0 

1.
12

0 
10

0 
1.

12
3 

10
0 

1.
13

5 
10

0 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

(S
V

C
S)

 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
.5

,0
.0

4)
 

𝐶1
:	𝛽

* 
0 

-.0
14

 
0 

-.0
09

 
0 

-.0
19

 
1 

-.0
14

 
1 

-.0
07

 
0 

-.0
15

 
0 

-.0
11

 
0 

-.0
23

 
1 

				
			𝛽

+ 
0.

5 
.1

91
 

10
0 

.1
56

 
10

0 
.3

05
 

10
0 

.2
43

 
10

0 
.0

78
 

23
 

.1
15

 
90

 
.1

36
 

99
 

.1
83

 
10

0 
				
		𝛽

( 
0 

-.0
13

 
0 

-.0
08

 
0 

-.0
17

 
1 

-.0
11

 
1 

-.0
06

 
0 

-.0
13

 
0 

-.0
09

 
0 

-.0
21

 
1 

𝐶2
:𝛽

* 
0 

-.0
14

 
0 

-.0
09

 
0 

-.0
19

 
1 

-.0
14

 
1 

-.0
12

 
0 

.0
04

 
0 

-.0
20

 
0 

.0
06

 
0 

				
			𝛽

+ 
1.

5 
.1

91
 

10
0 

.1
56

 
10

0 
.3

05
 

10
0 

.2
43

 
10

0 
.1

41
 

97
 

.0
58

 
1 

.2
44

 
10

0 
.1

07
 

69
 

				
			𝛽

( 
0 

-.0
13

 
0 

-.0
08

 
0 

-.0
17

 
1 

-.0
11

 
1 

-.0
12

 
0 

.0
04

 
0 

-.0
19

 
0 

.0
07

 
0 

𝛾 &
 

1 
.9

57
 

10
0 

.9
19

 
10

0 
1.

01
0 

10
0 

.9
95

 
10

0 
.9

69
 

10
0 

.9
33

 
10

0 
1.

02
8 

10
0 

1.
01

6 
10

0 



 
58

 

T
ab

le
 1

2.
 T

he
 a

ve
ra

ge
 p

ar
am

et
er

 e
st

im
at

es
 a

nd
 %

 o
f s

ig
ni

fic
an

t c
oe

ff
ic

ie
nt

s f
or

 P
5 

pa
ra

m
et

er
s w

he
n 

us
in

g 
tw

o 
le

ve
ls 

of
 sm

al
l 

va
ria

nc
e 

pr
io

rs
 (S

V
O

 a
nd

 S
V

C
S)

 o
n 
𝛽 !

-𝛽
" 

w
ith

 th
re

e 
le

ve
ls 

of
 p

rio
r s

pe
ci

fic
at

io
ns

 (i
.e

., 
no

 p
rio

r, 
in

fo
rm

at
iv

e 
m

iss
pe

ci
fic

at
io

n,
 a

nd
 

di
ff

us
e 

m
iss

pe
ci

fic
at

io
n)

 fo
r 𝛾

!.
 

  

Sa
m

pl
e 

Si
ze

 
𝑁
=
50
0 

𝑁
=
1,
00
0 

𝑁
=
50
0 

𝑁
=
1,
00
0 

C
la

ss
 P

ro
p.

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 

Pa
ra

m
et

er
 

Po
p.

 
V

al
ue

 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 

(S
V

C
S)

 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 

𝐶1
:	𝛽

* 
0 

-.0
16

 
0 

-.0
12

 
0 

-.0
20

 
2 

-.0
14

 
1 

-.0
11

 
0 

-.0
11

 
0 

-.0
16

 
0 

-.0
15

 
1 

				
			𝛽

+ 
1 

.2
75

 
10

0 
.2

78
 

10
0 

.4
12

 
10

0 
.4

16
 

10
0 

.1
67

 
10

0 
.2

43
 

10
0 

.2
75

 
10

0 
.3

74
 

10
0 

				
		𝛽

( 
0 

-.0
15

 
1 

-.0
11

 
0 

-.0
18

 
3 

-.0
11

 
2 

-.0
09

 
0 

-.0
09

 
0 

-.0
14

 
0 

-.0
12

 
1 

𝐶2
:𝛽

* 
0 

-.0
16

 
0 

-.0
12

 
0 

-.0
20

 
2 

-.0
14

 
1 

-.0
11

 
0 

-.0
04

 
0 

-.0
16

 
0 

-.0
06

 
0 

				
			𝛽

+ 
1 

.2
75

 
10

0 
.2

78
 

10
0 

.4
12

 
10

0 
.4

16
 

10
0 

.1
69

 
10

0 
.0

71
 

8 
.2

76
 

10
0 

.1
30

 
99

 
				
			𝛽

( 
0 

-.0
15

 
1 

-.0
11

 
0 

-.0
18

 
3 

-.0
11

 
2 

-.0
12

 
0 

-.0
05

 
0 

-.0
16

 
0 

-.0
06

 
0 

 
 

(S
V

O
) 𝛽

&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
𝐶1
:	𝛽

* 
0 

-.0
24

 
0 

-.0
19

 
0 

-.0
28

 
4 

-.0
22

 
2 

-.0
16

 
0 

-.0
17

 
0 

-.0
21

 
0 

-.0
22

 
2 

				
			𝛽

+ 
1 

.2
70

 
10

0 
.2

73
 

10
0 

.4
07

 
10

0 
.4

11
 

10
0 

.1
64

 
10

0 
.2

41
 

10
0 

.2
72

 
10

0 
.3

71
 

10
0 

				
		𝛽

( 
0 

-.0
22

 
1 

-.0
17

 
1 

-.0
27

 
5 

-.0
19

 
4 

-.0
13

 
0 

-.0
15

 
0 

-.0
19

 
0 

-.0
19

 
2 

𝐶2
:𝛽

* 
0 

-.0
24

 
0 

-.0
19

 
0 

-.0
28

 
4 

-.0
22

 
2 

-.0
15

 
0 

-.0
06

 
0 

-.0
22

 
0 

-.0
09

 
0 

				
			𝛽

+ 
1 

.2
70

 
10

0 
.2

73
 

10
0 

.4
07

 
10

0 
.4

11
 

10
0 

.1
66

 
10

0 
.0

66
 

2 
.2

73
 

10
0 

.1
24

 
97

 
				
			𝛽

( 
0 

-.0
22

 
1 

-.0
17

 
1 

-.0
27

 
5 

-.0
19

 
4 

-.0
16

 
0 

-.0
07

 
0 

-.0
22

 
0 

-.0
10

 
0 

𝛾 &
 

0 
.1

66
 

47
 

.2
27

 
52

 
.1

18
 

42
 

.1
59

 
45

 
.1

72
 

50
 

.2
38

 
56

 
.1

27
 

48
 

.1
76

 
52

 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
𝐶1
:	𝛽

* 
0 

-.0
20

 
0 

-.0
15

 
0 

-.0
25

 
3 

-.0
18

 
1 

-.0
13

 
0 

-.0
14

 
0 

-.0
19

 
0 

-.0
19

 
1 

				
			𝛽

+ 
1 

.2
73

 
10

0 
.2

76
 

10
0 

.4
09

 
10

0 
.4

13
 

10
0 

.1
65

 
10

0 
.2

43
 

10
0 

.2
73

 
10

0 
.3

73
 

10
0 

				
		𝛽

( 
0 

-.0
19

 
1 

-.0
14

 
1 

-.0
23

 
3 

-.0
15

 
2 

-.0
11

 
0 

-.0
12

 
0 

-.0
17

 
0 

-.0
16

 
2 

𝐶2
:𝛽

* 
0 

-.0
20

 
0 

-.0
15

 
0 

-.0
25

 
3 

-.0
18

 
1 

-.0
13

 
0 

-.0
05

 
0 

-.0
19

 
0 

-.0
08

 
0 

				
			𝛽

+ 
1 

.2
73

 
10

0 
.2

76
 

10
0 

.4
09

 
10

0 
.4

13
 

10
0 

.1
68

 
10

0 
.0

67
 

3 
.2

74
 

10
0 

.1
25

 
97

 
				
			𝛽

( 
0 

-.0
19

 
1 

-.0
14

 
1 

-.0
23

 
3 

-.0
15

 
2 

-.0
14

 
0 

-.0
06

 
0 

-.0
19

 
0 

-.0
08

 
0 

𝛾 &
 

0 
.0

81
 

14
 

.0
13

 
15

 
.0

69
 

17
 

.0
82

 
15

 
-.0

90
 

17
 

.1
18

 
16

 
.0

80
 

22
 

.1
02

 
21

 



 
59

 

T
ab

le
 1

3.
 T

he
 a

ve
ra

ge
 p

ar
am

et
er

 e
st

im
at

es
 a

nd
 %

 o
f s

ig
ni

fic
an

t c
oe

ff
ic

ie
nt

s f
or

 P
6 

pa
ra

m
et

er
s w

he
n 

us
in

g 
tw

o 
le

ve
ls 

of
 sm

al
l 

va
ria

nc
e 

pr
io

rs
 (S

V
O

 a
nd

 S
V

C
S)

 o
n 
𝛽 !

-𝛽
" 

w
ith

 th
re

e 
le

ve
ls 

of
 p

rio
r s

pe
ci

fic
at

io
ns

 (i
.e

., 
no

 p
rio

r, 
in

fo
rm

at
iv

e 
m

iss
pe

ci
fic

at
io

n,
 

an
d 

di
ff

us
e 

m
iss

pe
ci

fic
at

io
n)

 fo
r 𝛾

!.
  

 

Sa
m

pl
e 

Si
ze

 
𝑁
=
50
0 

𝑁
=
1,
00
0 

𝑁
=
50
0 

𝑁
=
1,
00
0 

C
la

ss
 P

ro
p.

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 
50

%
/5

0%
 

82
%

/1
8%

 

Pa
ra

m
et

er
 

Po
p.

 
V

al
ue

 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
E

st
. 

%
 

Si
g 

E
st

. 
%

 
Si

g 
 

 
(S

V
O

) 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 

(S
V

C
S)

 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 

𝐶1
:	𝛽

* 
0 

-.0
47

 
6 

-.0
33

 
2 

-.0
58

 
28

 
-.0

38
 

10
 

-.0
33

 
0 

-.0
33

 
2 

-.0
47

 
5 

-.0
44

 
12

 
				
			𝛽

+ 
1 

.2
57

 
10

0 
.2

66
 

10
0 

.3
89

 
10

0 
.4

02
 

10
0 

.1
55

 
10

0 
.2

34
 

10
0 

.2
57

 
10

0 
.3

62
 

10
0 

				
		𝛽

( 
1 

.2
57

 
10

0 
.2

66
 

10
0 

.3
91

 
10

0 
.4

03
 

10
0 

.1
54

 
99

 
.2

33
 

10
0 

.2
58

 
10

0 
.3

63
 

10
0 

𝐶2
:𝛽

* 
0 

-.0
47

 
6 

-.0
33

 
2 

-.0
58

 
28

 
-.0

38
 

10
 

-.0
31

 
0 

-.0
09

 
0 

-.0
46

 
5 

-.0
12

 
0 

				
			𝛽

+ 
1 

.2
57

 
10

0 
.2

66
 

10
0 

.3
89

 
10

0 
.4

02
 

10
0 

.1
53

 
10

0 
.0

61
 

1 
.2

56
 

10
0 

.1
11

 
80

 
				
			𝛽

( 
1 

.2
57

 
10

0 
.2

66
 

10
0 

.3
91

 
10

0 
.4

03
 

10
0 

.1
55

 
10

0 
.0

62
 

3 
.2

58
 

10
0 

.1
11

 
79

 

 
 

(S
V

O
) 𝛽

&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(1
,0

.0
4)

 
𝐶1
:	𝛽

* 
0 

-.0
71

 
32

 
-.0

64
 

27
 

-.0
87

 
70

 
-.0

66
 

40
 

-.0
49

 
3 

-.0
50

 
6 

-.0
69

 
27

 
-.0

71
 

44
 

				
			𝛽

+ 
1 

.2
37

 
10

0 
.2

26
 

99
 

.3
69

 
10

0 
.3

82
 

10
0 

.1
38

 
94

 
.1

72
 

75
 

.2
40

 
10

0 
.3

29
 

99
 

				
		𝛽

( 
1 

.2
38

 
10

0 
.2

25
 

99
 

.3
71

 
10

0 
.3

83
 

10
0 

.1
38

 
94

 
.1

72
 

77
 

.2
40

 
10

0 
.3

30
 

99
 

𝐶2
:𝛽

* 
0 

-.0
71

 
32

 
-.0

64
 

27
 

-.0
87

 
70

 
-.0

66
 

40
 

-.0
49

 
4 

-.0
32

 
4 

-.0
69

 
25

 
-.0

25
 

4 
				
			𝛽

+ 
1 

.2
37

 
10

0 
.2

26
 

99
 

.3
69

 
10

0 
.3

82
 

10
0 

.1
37

 
95

 
.0

60
 

3 
.2

39
 

10
0 

.1
04

 
62

 
				
			𝛽

( 
1 

.2
38

 
10

0 
.2

25
 

99
 

.3
71

 
10

0 
.3

83
 

10
0 

.1
38

 
95

 
.0

61
 

3 
.2

41
 

10
0 

.1
05

 
62

 
𝛾 &

 
0 

.3
45

 
90

 
.5

33
 

92
 

.2
72

 
96

 
.3

42
 

93
 

.3
95

 
93

 
.6

25
 

94
 

.3
20

 
99

 
.4

39
 

97
 

 
 

(S
V

O
) 𝛽

&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
(S

V
C

S)
 𝛽
&-
𝛽 (

~
N

(0
,0

.0
02

5)
 &

 𝛾
&~
N

(0
,5

) 
𝐶1
:	𝛽

* 
0 

-.0
68

 
25

 
-.0

67
 

31
 

-.0
83

 
66

 
-.0

63
 

35
 

-.0
48

 
2 

-.0
47

 
5 

-.0
67

 
23

 
-.0

69
 

39
 

				
			𝛽

+ 
1 

.2
34

 
10

0 
.2

06
 

90
 

.3
72

 
10

0 
.3

81
 

10
0 

.1
39

 
93

 
.1

42
 

56
 

.2
41

 
10

0 
.3

17
 

96
 

				
		𝛽

( 
1 

.2
40

 
10

0 
.2

07
 

91
 

.3
74

 
10

0 
.3

82
 

10
0 

.1
29

 
93

 
.1

42
 

55
 

.2
42

 
10

0 
.3

18
 

96
 

𝐶2
:𝛽

* 
0 

-.0
68

 
25

 
-.0

67
 

31
 

-.0
83

 
66

 
-.0

63
 

35
 

-.0
47

 
3 

-.0
41

 
6 

-.0
67

 
23

 
-.0

30
 

8 
				
			𝛽

+ 
1 

.2
34

 
10

0 
.2

06
 

90
 

.3
72

 
10

0 
.3

81
 

10
0 

.1
37

 
95

 
.0

58
 

1 
.2

40
 

10
0 

.1
04

 
64

 
				
			𝛽

( 
1 

.2
40

 
10

0 
.2

07
 

91
 

.3
74

 
10

0 
.3

82
 

10
0 

.1
39

 
94

 
.0

58
 

2 
.2

42
 

10
0 

.1
05

 
64

 
𝛾 &

 
0 

.2
95

 
71

 
.6

83
 

70
 

.2
35

 
85

 
.3

11
 

71
 

.3
64

 
79

 
.8

91
 

77
 

.2
90

 
93

 
.4

74
 

86
 



 60 

4.3.2.1 P1 – No Direct Effects 
Table 8 displays the mean coefficient estimate and percentage of replications with a 

significant coefficient in each condition in population model P1, which has an indirect effect 
and no direct effects. The left side of the table contains the results for SVO priors, and the 
right side of the table has results for SVCS. Table 8 includes two different sample size 
conditions (𝑁 = 500 vs.	𝑁 = 1,000) and two different class sizes (equal vs. unequal). The 
aim of including the P1 population model was to demonstrate that small-variance priors do 
not result in an inflated Type I error rate for the truly zero direct effects. As expected, the 
small-variance priors (SVO and SVCS) consistently produced approximately zero estimates 
for the truly zero direct effects, regardless of the sample size, class sizes, and prior 
specification. The number of false positives was acceptable (<5%) for the truly zero direct 
effects, regardless of condition. The 𝛾! regression coefficient was unbiased in conditions 
with an informative-correct prior or diffuse prior on 𝛾!. In contrast, the informative-wrong 
prior on 𝛾! resulted in underestimation on the direct effect. 
4.3.2.2 P2 – One Direct Effect 

Table 9 provides the mean coefficient estimate and percentage of replications with a 
significant coefficient in each condition in population model P2, which has an indirect effect 
and one direct effect 𝛽". The left side of the table contains the results for SVO priors, and 
the right side of the table has results for SVCS. Table 9 includes two different sample size 
conditions (𝑁 = 500 vs.	𝑁 = 1,000) and two different class sizes (equal vs. unequal). The 
P2 population model represents an ideal modeling situation with a single direct effect. 

When using SVO priors, the non-zero direct effect 𝛽" was consistently detected as 
non-zero, regardless of the sample size, class size, and the 𝛾!	prior. Although 𝛽" was 
underestimated, there was enough power to overcome the restrictive SVO prior, as 
evidenced by 100% of the replications having a significant coefficient. The truly zero direct 
effects, 𝛽% and 𝛽$, had an acceptable level of false positives (<5%). When using the SVCS 
priors, the situation was more complicated. In conditions with equal class sizes, both latent 
classes had an acceptable level of power to detect 𝛽". In conditions with unequal class sizes, 
the non-zero direct effect was consistently detected in the majority class (C1), but there was 
inadequate power (<80%) to detect the direct effect in the minority class (C2). Across small-
variance prior conditions (SVO vs. SVCS), there was adequate power to detect 𝛾!.  
4.3.2.3 P3 – Two Direct Effects 

Table 10 provides the mean coefficient estimate and percentage of replications with 
a significant coefficient in each condition in population model P3, which has an indirect 
effect and two direct effects, 𝛽" and 𝛽$. The left side of the table contains the results for 
SVO priors, and the right side of the table has results for SVCS. Table 10 includes two 
different sample size conditions (𝑁 = 500 vs.	𝑁 = 1,000) and two different class sizes 
(equal vs. unequal). The P3 population model includes a local independence assumption 
violation because the latent class indicators 𝑢" and 𝑢$ are related via the covariate 𝑥. 
 The local independence assumption violation introduces complications when using 
small-variance priors. When using the SVO priors, there was enough power to detect the 
non-zero direct effects (𝛽" and 𝛽$), regardless of sample size, class sizes, and 𝛾!prior 
specification. However, in conditions with 𝑁 = 1,000, there was an inflated Type I error 
rate (>5%) for the truly zero direct effects. As the sample size increased, the SVO prior 
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struggled to hold truly zero direct effects to approximately zero when there was a local 
independence assumption violation. According to the right side of Table 10, the SVCS priors 
further complicated results. When 𝑁 = 1,000 with equal class sizes, there was enough 
power to detect the non-zero direct effects, and there was an acceptable number of false 
positives (<5%) for the truly zero direct effects. When class sizes are unequal, there was 
enough power (>80%) to detect the non-zero direct effects in the majority class (C1). The 
only exception to this trend was when  𝑁 = 500, and a diffuse prior was used for the 𝛾!. A 
small sample size 𝑁 = 500 with equal class sizes had limited power to detect the non-zero 
direct effects when using SVCS priors. 

Across SVO and SVCS priors, there was enough power to detect 𝛾!, regardless of 
condition and prior specification. However, 𝛾! was grossly overestimated in conditions with 
diffuse and informative-correct priors on 𝛾!, whereas the informative-wrong prior tended to 
produce a less biased estimate. Overall, the 𝛾! parameter estimates illustrate the impact a 
local independence assumption violation can have on conditional LCA models. When latent 
class indicators are related to one another via a covariate, the relationship between the 
covariate and the latent class variable can be inflated. 
4.3.2.4 P4 – Class-Varying Direct Effect 

Table 11 provides the mean coefficient estimate and percentage of replications with 
a significant coefficient in each condition in population model P4, which has an indirect 
effect	and a class-varying direct effect, 𝛽". The left side of the table contains the results for 
SVO priors, and the right side of the table contains results for SVCS. Table 11 includes two 
different sample size conditions (𝑁 = 500 vs.	𝑁 = 1,000) and two different class sizes 
(equal vs. unequal). The P4 population model represents a tricky modeling situation in which 
the direct effect in stronger in C2 (𝛽" = 1.5) than in C1 (𝛽" = 0.5).  
 The SVO priors were effective at detecting the presence of the non-zero direct effect 
𝛽", regardless of sample size, class size, and 𝛾!	priors. Although the SVO prior is not 
capable, of detecting the class-varying aspect of the direct effect, it was effective at flagging 
the non-zero direct effect 𝛽" while constraining truly zero direct effects (i.e., 𝛽% and 𝛽$) to 
be approximately zero.  There truly zero direct effects rarely lead to false positives when 
using the SVO prior. The overall pattern of results for the SVO prior was akin to what was 
seen in Table 9 with the P2 population model, which also had a single direct effect. 

The SVCS priors are important for identifying the class-varying aspect of the direct 
effect because the direct effect parameters are no longer held constant across classes. As 
seen on the right side of Table 11, the SVCS priors complicated the situation. The only 
condition in which the SVCS prior had enough power to detect the class-varying direct 
effect in each latent class was when 𝑁 = 1,000 and the classes were equal in size. In 
contrast, when 𝑁 = 1,000 with unequal class sizes, there was only enough power to detect 
the direct effect in the majority class (C1) but not the minority class (C2). When 𝑁 = 500 
with equal class sizes, there was enough power to detect the direct effect in C2 but not C1 
because the direct effect is stronger in C2 than C1. When 𝑁 = 500 with unequal class sizes, 
there was enough power to detect the direct effect in the majority class (C1) but not the 
minority class (C2). 
4.3.2.5 P5 – No Indirect Effect with One Direct Effect 

Table 12 provides the mean coefficient estimate and percentage of replications with 
a significant coefficient in each condition in population model P5, which has a single direct 
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effect 𝛽" and no indirect effect. The left side of the table contains the results for SVO priors, 
and the right side of the table contains results for SVCS. In Table 12, the 𝛾! regression 
coefficient is either correctly not specified (top panel), misspecified with an informative prior 
(middle panel), or misspecified with a diffuse prior (bottom panel). Table 12 includes two 
sample size conditions (𝑁 = 500 vs.	𝑁 = 1,000) and two class sizes (equal vs. unequal). 
The P5 population model is a situation where a single latent class indicator 𝑢" is related to 
the covariate 𝑥, but the latent class variable 𝑐 is unrelated to the covariate. Often researchers 
are unaware of the covariate relationships a priori; therefore, the P5 population model 
represents a realistic situation in which the indirect effect does not exist. 
 The SVO priors were effective at detecting the non-zero direct effect 𝛽", regardless 
of the 𝛾!	specification, sample size, and class proportions. The SVCS priors were also able to 
effectively detect the non-zero direct effect 𝛽" in most conditions. The only exception was in 
conditions with 𝑁 = 500 and unequal class sizes, where there was not enough power to 
detect the direct effect in the minority class (C2). Across small-variance prior conditions 
(SVO and SVCS), the truly zero direct effects were held to approximately zero and had an 
acceptable level of false positive (<5%). Notably, in conditions with a misspecified 𝛾!there 
was an inflated Type I error rate (>5%) for 𝛾!. The misspecification with an informative 
prior on 𝛾! resulted in a higher number of false positives compared to the misspecification 
with a diffuse prior.  
4.3.2.6 P6 – No Indirect Effect with Two Direct Effects 

Table 13 provides the mean coefficient estimate and percentage of replications with 
a significant coefficient in each condition in population model P6, which has two direct 
effects (𝛽" and 𝛽$) and no indirect effect. The left side of the table contains the results for 
SVO priors, and the right side of the table contains results for SVCS. In Table 13, 𝛾! is 
either correctly not specified (top panel), misspecified with an informative prior (middle 
panel), or misspecified with a diffuse prior (bottom panel). Table 13 includes two different 
sample size conditions (𝑁 = 500 vs.	𝑁 = 1,000) and two different class sizes (equal vs. 
unequal). The P6 population model represents a very challenging modeling situation in 
which a local independence assumption violation is present without an indirect effect. 
Specifically, the covariate 𝑥 is related to two latent class indicators, 𝑢" and 𝑢$, but is 
unrelated to the latent class variable 𝑐. 
 There was enough power to detect the non-zero direct effects with SVO priors, 
regardless of the 𝛾! specification (or misspecification), sample size, and class proportions. 
However, the SVO prior did not always hold the truly zero direct effects to be 
approximately zero. Specifically, there was inflated number of false positives in most 
conditions. The only condition with an acceptable level of false positives (<5%) for the truly 
zero direct effect had a sample size of 𝑁 = 500, unequal class sizes, and 𝛾! was not 
specified.  

When using SVCS priors, there was enough power to detect non-zero direct effects 
when there were equal class sizes. When the class sizes are unequal, there was not enough 
power to detect the direct effect in the minority class (C2). The only condition with unequal 
class sizes that could detect the direct effect in the minority class had a sample size of 𝑁 =
1,000 and 𝛾! was not specified. Notably, there was an unacceptable level of false positives 
(>5%) for the truly zero direct effects when the sample size was 𝑁 = 1,000. Additionally, 
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when the sample size was 𝑁 = 500 with unequal class sizes, conditions with a misspecified 
𝛾!	also resulted in a higher level of false positives. 
 When using small-variance priors, the local independence assumption violation 
results in a dramatic inflation in the Type I error rate for 𝛾!. Misspecifying 𝛾! resulted in a 
high number of false positives for 𝛾!, regardless of whether an informative or diffuse prior 
was utilized. The P6 population model results highlight how unreliable the 𝛾!	parameter 
estimate is when using small-variance priors in the presence of a local independence 
assumption violation. 
4.3.3 Modeling Direct Effects with Bayesian Estimation 
 After the non-zero direct effect(s) have been detected, a more parsimonious 
conditional LCA model can be specified that only includes the non-zero direct effects 
(instead of all possible direct effects) and 𝛾!. In this section of results, we explore how 
robust the direct effect and 𝛾! parameter estimates are to different prior specifications, using 
the datasets generated from the P2 population model.5 Specifically, three levels of priors 
were specified on the direct effect (informative-correct, informative-wrong, and diffuse) and 
three levels of priors were used on 𝛾! (informative-correct, informative-wrong, and diffuse) 
for each condition. Figure 10 provides the relative bias in the 𝛽" direct effect, whereas Figure 
11 displays the relative bias in 𝛾!. 
 Figure 10 reveals the direct effect parameter estimate was robust to different prior 
specification on the direct effect and 𝛾!. Regardless of sample size, class size, and prior 
specifications, minimal bias was produced for the 𝛽" parameter estimate. In contrast, Figure 
11 reveals the 𝛾! parameter estimates was affected by 𝛾! prior specification, but not the 
direct prior specification. When using an informative-wrong prior on the 𝛾! regression 
coefficient, the 𝛾! parameter tended to be underestimated. However, the informative-correct 
prior and the diffuse prior resulted in an unbiased 𝛾!, regardless of sample size, class size, 
and the prior specification on the direct effect. Overall, Figures 10 and 11 demonstrate that 
the conditional LCA model results are relatively robust to different prior specifications. 
4.3.4 Modeling Class-Varying Direct Effects 
 In some conditional LCA modeling situations, the relationship between the covariate 
and a latent class indicator can be class-varying. To assess the impact of prior specification 
on model parameter estimates, we analyzed the data generated from the P4 population 
model with a variety of priors on the direct effect (informative-correct, informative-wrong, 
and diffuse) and 𝛾! (informative-correct, informative-wrong, and diffuse). The informative-
correct prior on the direct effect was the only condition that allowed for the estimation of a 
class-varying direct effect, whereas the diffuse and informative-wrong prior constrained the 
direct effect to be equal across classes. Considering 𝛾! is typically of greater substantive 
interest, it is important to understand the impact of direct effect prior specification on the 𝛾! 
parameter estimate. 
 Figures 12 and 13 display the relative bias in the 𝛽"! and 𝛽"# parameters, 
respectively. Unsurprisingly, specifying informative-wrong and diffuse priors biased the 𝛽"! 
and 𝛽"# parameters. The 𝛽"! tended to be overestimated, especially in conditions with equal 

 
5 The pattern of results for the P3 population model were very similar to the pattern of results for the P2 
population model; therefore, the P3 population model results are stored in Appendix A. 
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class sizes. In contrast, the 𝛽"# parameter was underestimated, regardless of class sizes. The 
direct effect results were robust to the prior specification of 𝛾!. Figure 14 provides the 
relative bias in the 𝛾! parameter. When an informative-wrong prior is specified on 𝛾!, the 𝛾! 
was biased in conditions with a sample size of 𝑁 = 500, but not conditions with 𝑁 =
1,000. The 𝛾! parameter had minimal bias when a diffuse or informative-correct prior was 
specified on 𝛾!, regardless of sample size and class size. Notably, the direct effect prior 
specification did not bias 𝛾!.  
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4.3.5 Misspecification of 𝜸𝟏 
Applied researchers often assume the presence of an indirect effect when including a 

covariate variable in the LCA model. In the P5 population model, 𝛾! was fixed to zero and 
there was single direct effect. To explore the impact of misspecifying 𝛾!	on parameter 
estimates under different prior conditions, we analyzed the data generated from the P5 
population model with three levels of priors on the direct effects (informative-correct, 
informative-wrong, and diffuse) and two levels of priors on the misspecified 𝛾! (informative 
misspecificiation, diffuse misspecification).6 Table 14 displays the parameter bias and 
percentage of replications with a significant coefficient under two sample size conditions 
(𝑁 = 500 vs.	𝑁 = 1,000) two class size conditions (equal vs. unequal), and six 
combinations of prior specifications. 

Table 14 shows the results for the P5 population model, which has a single direct 
effect and no indirect effect. The direct effect 𝛽" was unbiased in all conditions, regardless of 
sample size, class size, and prior specification. When the truly zero 𝛾!	was misspecified with 
informative priors, 𝛾! was typically overestimated in the 𝑁 = 500 conditions. Despite 𝛾! 
often being unbiased, there was alarming number of false positives. The 𝛾! parameter tended 
to have an inflated Type I error rate (>5%). The most problematic conditions utilized an 
informative prior on the misspecified 𝛾!. When comparing sample size (𝑁 = 500 vs.	𝑁 =
1,000), conditions with a smaller sample size produced more false positives. The 
combination of a smaller sample size and unequal class sizes produced the greatest number 
of false positives.  
4.4 Discussion 
 The primary goal of this study was to explore the performance of Bayesian SEM 
when modeling direct effects in conditional LCA models. The use of small-variance priors to 
detect non-zero direct effects between covariates and latent class indicators is a novel 
application of Bayesian SEM. In the conditions we investigated, small-variance priors on the 
overall direct effects had the power to detect non-zero direct effects in all population 
models, regardless of sample size and class sizes. Notably, this includes conditions with a 
single direct effect, two direct effects (i.e., local independence assumption violation), a class-
varying direct effect, and a misspecified 𝛾!. However, the small-variance priors tended to 
produce a high number of false positives for truly zero direct effects in conditions with a 
local independence assumption violation, especially when the sample size was large. In 
addition, conditions with local independence assumption violations and no indirect effect 
(i.e., population model P6) tended to produce a high number of false positives for 𝛾! when it 
was misspecified. These findings illustrate how problematic local independence assumption 
violations can be in LCA models. 

 
6 The P6 population model, which has no indirect effect and two direct effects (i.e., local independence 
assumption violation), had a very similar pattern of results; therefore, the results from the P6 population model 
are in Appendix A. 
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 In addition to exploring the performance of small-variance priors on the overall 
direct effects, we also examined the power of small-variance priors on the class-specific 
direct effects. The aim of a small-variance prior on the class-specific direct effect is to 
explore the possibility of a class-varying direct effect. Class-specific direct effects are much 
more difficult to estimate. The primary finding was that the overall sample size and the class 
size had to be large to detect a class-varying direct effect with small-variance priors. In 
situations where the class-varying direct effect is not of substantive interest to applied 
researchers and the sample size is limited, only estimating the overall direct effect may be a 
better strategy. 
 The small-variance prior simulations were not without limitations. First, the small-
variance prior conditions set the variance hyperparameter to 0.0025, across conditions. 
Simulation results may be different when a wider (or narrower) prior is specified on the 
direct effects. A second limitation of the study is how we generated the data for each 
population model. To examine the performance of small-variance priors on direct effects, 
we generated data from population models with a relatively strong direct effect between the 
covariate and latent class variable. The strength of the direct effect would impact the power 
available to detect the non-zero direct effects. In addition, the covariate was normally 
distributed with no missing data, which could impact results. Future simulation studies 
should consider a wider variety of small-variance prior specifications and population models. 

Another avenue for future methodological research is model fit. Methodologists 
should investigate the power of PPP to detect covariate misspecifications in conditional 
LCA models with small-variance priors. Past research on CFA models suggests PPP lacks 
power to detect model misspecifications unless the small-variance priors were very 
restrictive, and the sample size and misspecification are large (Jorgensen, Garnier-Villareal, 
Pornprasermanit, & Lee, 2019). Methodologists should also compare the performance of 
Bayesian SEM with other methods available for detecting direct effects such as the LCA 
MIMIC modeling procedure proposed by Masyn (2017) and the residual and fit statistics 
discussed in Janssen et al., (2019). Each of these procedures for detecting direct effects have 
their own limitations and should be explored via simulation research. 
 In addition to examining small-variance priors, this study also explored how robust 
the conditional LCA model results are to different combinations of prior specifications 
(informative-correct, informative-wrong, and diffuse) on 𝛽" and 𝛾!. Specifically, we 
examined the bias in the 𝛽" and 𝛾! parameters. Regardless of the prior specification, the 
parameter estimates for 𝛽" and 𝛾!	were robust. The 𝛾!	regression coefficient was most 
impacted by the prior specification on 𝛾!. Despite these findings, applied researchers should 
use a prior sensitivity to explore different combinations of priors on the direct effects and 
𝛾!	when modeling a conditional LCA model. For an example of how to implement a prior 
sensitivity analysis, see Depaoli et al., (2020). 
 In some modeling situations, the direct effect is not equal in both classes. Based on 
the small-variance prior results from this study, we know that detecting a class-varying direct 
effect that is unknown a priori is difficult. In addition to a larger sample size requirement, the 
number of cases assigned to each latent class and the strength of the direct effect in each 
class impacts our power to detect the direct effect. Considering how challenging class-
varying direct effects can be, it was important to understand the impact of misspecifying the 
class-varying direct effect as an overall direct effect instead. As expected, this 
misspecification biased the class-specific direct effect parameter estimates. However, the 
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misspecification of the direct effect did not impact the 𝛾!	parameter estimates. Therefore, it 
may not be necessary for applied researchers with limited sample sizes or class sizes to 
consider the class-varying component of the direct effect, if the primary focus of the 
research is 𝛾!	. The accuracy of the 𝛾!	parameter estimates was most influenced by the 
𝛾!	prior specification. 
 The effect of 𝑥 on 𝑐 is often the primary interest of applied researchers using 
conditional LCA models. The effect of 𝑥 on 𝑐 allows researchers to answer questions about 
why a case was assigned to a particular latent class. Often researchers explore the 
relationship between demographic variables and the latent class assignment. In some 
situations, applied researchers may inadvertently assume a covariate is related to the latent 
class variable (𝑐) when the covariate is only related to a latent class indicator (𝑢'). This 
would be a misspecification of 𝛾!. When using an informative prior on 𝛾!, the Type I error 
rate for 𝛾! is inflated. Smaller sample sizes and unequal class sizes tended to increase the 
probability of a false positive, but the Type I error remained inflated in all conditions. A 
more diffuse prior distribution held the Type I error rate to 0.05-0.07, which is still 
somewhat inflated. A prior sensitivity analysis on 𝛾!	would be helpful in this situation 
because it would demonstrate how influential the prior specification is on 𝛾!. 
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Chapter 5: Discussion 
 

The intent of this dissertation was to address gaps in the methodological literature on 
handling common covariate modeling issues (e.g., incomplete covariates, covariate 
misspecifications) in LCA models. The findings from this dissertation were used to make 
recommendations to applied researchers. Study 1 examined the performance of different 
methods available for addressing incomplete covariate data when using the ML three-step 
approach. Results from Study 1 allowed us to make recommendations on which method to 
use, depending on the modeling conditions (e.g., sample size, covariate distribution, strength 
of covariate effect). Study 2 explored the utility of using small-variance priors to identify 
non-zero direct effect between the covariate and latent class indicator. Results from Study 2 
suggest small-variance priors can be a useful tool for detecting covariate misspecifications, 
depending on the number of direct effects, sample size, and class sizes. Overall, findings 
from Study 1 and Study 2 highlight how Bayesian estimation can be especially helpful for 
handling common modeling issues in conditional LCA models.  

Study 1 results highlighted the potential benefits of using Bayesian estimation in the 
third step of ML three-step approach. Specifically, Bayesian estimation with informative and 
weakly-informative normal priors correctly centered on the regression coefficient population 
values resulted in unbiased parameter estimates, regardless of the distribution of the 
covariate, missing data patterns, and the strength of the covariate effect. The advantages of 
using Bayesian estimation were most easily seen when the distribution of the covariate was 
categorical. Alternative strategies (i.e., FIML and MI) had greater variability in the estimator 
than Bayesian estimation with informative priors. However, the potential advantages of 
Bayesian estimation were diminished or lost entirely when using diffuse priors on the 
regression coefficients. If applied researchers lack the knowledge to specify tighter priors on 
the regression coefficients, then FIML or MI work as well as Bayesian estimation. One pitfall 
of using Bayesian estimation was the possibility of specifying inaccurate priors on the 
regression coefficients. In conditions with inaccurate priors (informative and weakly 
informative), the regression coefficients were biased, which illustrates the importance of 
using accurate priors in the third estimation step. An important element of using Bayesian 
estimation in the third step is the elicitation of accurate priors. 

One limitation of Study 1 is that it only explored methods for handling incomplete 
covariate data in conditional LCA models. There is reason to believe the findings in this 
dissertation may not be applicable to all finite mixture models. Specifically, the MI method 
of handling incomplete covariate data worked well in most conditions. However, past 
methodological research suggests MI can bias parameter estimates in other types of fine 
mixture models (e.g., factor mixture model) because of the class-varying effect of the 
covariate (Enders & Gottschall, 2011). One explanation for this outcome is that conditional 
LCA models cannot have a class-varying covariate effect because this would result in a non-
recursive model, see Asparouhov (2016) for further details. In situations where a class-
varying covariate effect is possible (e.g., factor mixture model), applied researchers may be 
better off using alternative strategies for addressing missing data such as FIML or Bayesian 
estimation. 

Study 2 estimated the conditional LCA model using a one-step approach with 
Bayesian estimation. The primary aim of Study 2 was to examine the performance of small-
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variance normal priors in detecting non-zero direct effects between the covariate and the 
latent class indicator variables. A variety of modeling conditions were explored including 
situations with a single direct effect, two direct effects (i.e., local independence assumption 
violation), a class-varying direct effect, and a misspecified effect of 𝑥 on 𝑐. In all conditions 
investigated, small-variance priors on the overall direct effects had the power to detect non-
zero direct effects, regardless of sample size and class sizes. However, there were an alarming 
number of false positives for the truly zero direct effect when there was a local 
independence assumption violation. Small-variance priors on the class-specific direct effects 
only had the power to detect a class-varying direct effect when the sample size and class 
sizes were large. Future research should consider different variances for the small-variance 
priors to see if the number of false positives can be reduced. In Study 2, the variance of the 
small-variance priors was set to 0.0025 across conditions, but slightly tighter or looser priors 
may impact the number of false positives and quality of results. Based on the results from 
Study 2, small-variance priors could be used as an additional tool for detecting non-zero 
direct effects. Other tools currently available include the LCA MIMIC modeling procedure 
proposed by Masyn (2017) and the residual and fit statistics discussed in Janssen et al., 
(2019). After applied researchers have identified non-zero direct effects, it is possible to 
incorporate these direct effects into a more parsimonious model using either a one-step or 
three-step approach to estimation. For recommendations on how to incorporate direct 
effects into the LCA model when using a three-step approach, see Vermunt and Magidson 
(2021). 

One factor that could have a significant impact on the results in both studies is the 
quality of the measurement model. A high-quality measurement model will have distinct, 
meaningful latent classes that can be easily identified. In applied settings, poor quality 
measurement models are a common issue. Previous methodological research suggests the 
separation of the latent classes has a significant impact on model results, regardless of 
whether the one- or three-step approach to estimation was utilized (Asparohouv & Muthén, 
2014; Janssen et al., 2019). For the purposes of this dissertation, the measurement models in 
both studies were set to have moderate class separation. Future research should explore the 
possible advantages of using Bayesian estimation to address common covariate modeling 
issues when the latent classes are poorly separated. 

Several avenues are available for future methodological research involving the 
inclusion of auxiliary variables in mixture models. Presently, there has been relatively limited 
research on the misspecification of auxiliary variables in mixture models (Collins & Lanza, 
2010; Masyn, 2013; Nylund-Gibson et al., 2016; Petras & Masyn, 2010). Much of the past 
research has focused on covariate misspecifications, which has the potential to impact the 
latent class measurement model. However, a misspecified distal outcome may also bias 
measurement and structural parameters in the conditional LCA model. Therefore, methods 
of detecting distal outcome misspecification should be further explored. Another avenue of 
research that has not yet been fully explored is how missing data impacts our ability to detect 
model misspecifications. In this dissertation, Study 1 focused on handling missing data when 
using the ML three-step approach, whereas Study 2 focused on identifying covariate 
misspecifications using small-variance priors. One situation that was not considered in these 
studies is how missing data and the methods used to address it may impact our ability to 
detect covariate misspecifications. Missing data is a tricky issue that should be further 
considered in future methodological research involving mixture models. 
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Overall, this dissertation provides evidence that Bayesian estimation can help aid 
applied researchers in addressing common modeling issues in conditional LCA models. 
However, Bayesian estimation is not without limitations. In Study 1, using inaccurate priors 
on the regression coefficients resulted in biased parameter estimates, which highlights the 
importance of identifying accurate priors in applied settings. In Study 2, Bayesian estimation 
could not resolve the issues that occur when the local independence assumption has been 
violated, which further suggests conditional dependence is an especially tricky issue to solve. 
Even when a covariate has been identified (and modeled) that explains the relationship 
between a pair of latent class indicators, there are still problems in LCA models with 
conditional dependence. Applied researchers should seek to use Bayesian estimation as a 
tool for addressing modeling issues, but it is important to keep in mind that there are some 
modeling situations that Bayesian estimation will not be able to resolve. 
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Appendix A: Additional Tables for Study 2 
 

Appendix A contains the remaining tables and figures for Study 2. Figures 15-17 
contain the relative bias in 𝛽", 𝛽$, 𝛾! from the P3 population model when using three levels 
of priors on the 𝛾!  and three levels of priors on the direct effect. Table 15 contains the 
relative bias and percentage of significant coefficients for P6 parameters when using three 
levels of priors on 𝛽$ and 𝛽" and two levels of prior misspecifications on 𝛾#. 
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