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■ INTRODUCTION
Reticular chemistry, the science of constructing extended
crystalline structures from molecular building blocks, gives
scientists a unique playground for material design and
discovery as it gives access to a practically infinite-dimensional
design space across many length scales: One can architect
the pore, functionalize the building blocks, or even encode
chemical sequences across unit cells.1 These possibilities made
reticular chemistry one of the most active fields of modern
chemistry with more than 100000 structures collected in
experimental databases.2 It is not possible to explore this entire
design space by mere trial-and-error using brute-force
computational screenings and iterative experimental testing.
Similar to many other scientific domains,3−5 this realization
gave rise to the notion of digital reticular chemistry,6 and in
particular to the use of data-intensive research to aid the
discovery and design of new reticular materials for any given
application by learning predictive models from data.7,8 Thus
far, machine-learning approaches have�among others�been
used to predict gas adsorption properties,9 colors,10 oxidation
states,11 electronic properties,12,13 heat capacities,14 or syn-
thesis conditions15 as well as (water) stability of metal−organic
frameworks (MOFs).16−18

This work is motivated by the observation that the full
potential of data science in this field has not yet been achieved.
In fact, we argue that some critical bottlenecks limit our
progress. Even though all works operate on the same class of
materials and often use related machine-learning approaches,
these works are hardly comparable or replicable and only
implementable by experienced groups. This impediment is
present across all stages of the machine-learning workflow.
Researchers use different data sets to train and test their models�
as we show, sometimes with significant data leakage19�preventing
direct comparison of modeling approaches. Further down the
modeling pipeline, practitioners often use different implementa-
tions of the same technique to convert structures into feature

vectors�or do not attempt to try different strategies due to
implementation challenges. At the end of the modeling process,
models need to be validated. However, also there, researchers use
different protocols, and�as we discuss�not always the most
meaningful ones. Together with the lack of platforms that compile
the results obtained with different approaches, these bottlenecks
make machine learning for reticular chemistry still more an art
than a science.

For many machine learning applications, it has been
observed that these problems can be overcome by providing
a proper scientific ecosystem for the field: providing the basic
building blocks for all the relevant steps in an easily accessible
form.20 If such a software ecosystem is in place, users can
radically accelerate the pace of innovation (as they can use
interoperable building blocks and reuse others’ work) while
ensuring that their work contributes to the advancement of the
field. In this work, we report such a software ecosystem that
aims to achieve this goal.

Our ecosystem provides machine learning-ready data sets,
along with more than 40 reported and novel featurization
approaches, under a consistent application programming inter-
face (API) that enables rapid experimentation and makes those
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tools accessible to nonexperts. Moreover, to facilitate consistent
and meaningful evaluations of machine learning approaches, we
also provide data splitters, as well as benchmarking tools that
allow submission to a public leaderboard that is automatically
updated upon submission.

Using materials design case studies, we illustrate the
importance of these best practices; negligence of which can,
in some cases, lead to the selection of models with much worse
generalization performance.

Importantly, while our tools are optimized to address the
challenges and opportunities of reticular chemistry, most, if not
all, of them can also be applied to other material classes. This
applies also to our case studies, such as the one about the
impact of data leakage.

■ RESULTS AND DISCUSSION
Machine learning studies typically need to go through multiple,
often iterative stages, all supported by our mofdscribe
software library.

① Collecting a data set. For machine learning efforts to be
comparable, consistent data sets, along with measures
that mitigate data leakage, are needed.

In mofdscribe, we provide a consistent interface
to multiple commonly used data sets2,21−24 as well as a
completely new data set of adsorption properties,
complementing the QMOF database.12,13 Additionally,
we implement measures to mitigate the effects of data
leakage.

② Featurizing a material. Most machine learning models
only accept inputs of fixed shape. Therefore, structures
(which generally have varying numbers of atoms) need
to be converted into fixed-sized arrays. However, since
for some of these strategies, there are no reusable open-
source implementations, or existing ones are hard to
combine, researchers seldom explore different featuriza-
tion approaches.

To address this, we implemented more than 40
different such featurization strategies that have been
used in the literature as well as completely new ones.

③ Splitting the data sets. To estimate the generalization
performance of a model, it needs to be evaluated on data
it has not seen before (i.e., is independent of the training
data) and, ideally, mimics the distribution of data the
model will be used on.19,25 For this, one typically splits
the data set collected in step ① into multiple parts.
However, as we show, the chosen strategy can have an
important impact on model selection and interpretation
of the results.

Therefore, mofdscribe implements multiple reported
as well as novel splitting strategies to ensure stringent model
evaluation.

④ Evaluating performance. Moreover, to compare and
evaluate models, we need to compute metrics.26 However,
as we argue below, practitioners tend to report commonly
used metrics instead of ones that are actually relevant for
the application.

We showcase such a more relevant metric and
implement it along with others in the mofdscribe
package.

⑤ Comparing the performance with the state-of-the-art. For
science to make progress, it is important to be able to
compare with and build on top of others’ results. In the

current state of digital reticular chemistry, this is not
possible. To address this, mofdscribe implements
benchmarking tools that allow direct submission to task-
specific leaderboards. Furthermore, the design of our
benchmarking tool requires users to also share their
hyperparameter optimization strategies.

Structure Data Sets. Many machine learning practitioners
recognize benchmark sets as drivers of progress. For instance,
researchers in image classification can easily compare the
performance of competing approaches, as they can compare
model performance on the same tasks on the same data set
(e.g., ImageNet27).28 Over the last few years, similar
benchmark data sets have been reported for generative models
for molecules29 or quantum machine learning.30−34 However,
there is currently no widely used reference set for machine
learning on metal−organic frameworks (even though the
QMOF data set12,13 makes important steps toward this goal).
As a first step toward more comparable machine learning for
MOFs, our package implements a consistent interface for col-
lections of structures, along with some corresponding proper-
ties (e.g., gas adsorption or electronic properties) with which
all data sets can be used via the same interface. Our package
implements reference data sets based on the QMOF database,12,12

the ARC database,22 the BW database,21,35,36 the ARABG
database,37 as well as on a subset of the CoRE-MOF database.23,24

A challenge with the currently existing data sets is that
different properties are computed for different structures.
However, for many learning applications, it can be useful to
have multiple properties for the same structure. To address
this, we used reproducible computational workflows38 to
compute diverse gas separation properties (CO2, CH4, H2, N2,
O2 isotherms; H2S, H2O, Kr, Xe Henry coefficient as well as
parasitic energy for carbon capture from natural gas and a coal-
fired power plant39,40) for nearly seven thousand materials
from the QMOF database (which contains many nonporous
materials) and make them accessible via our mofdscribe
package. This makes it, to the best of our knowledge, the first
database of some gas adsorption properties that are collected
alongside many other properties (e.g., bandgap computed with
different functionals) of the same structure. We intend to
update the database in parallel with the QMOF database.
Data Leakage. A pitfall for machine learning studies is data

leakage, which means information from the test set is leaked
into the training.19 Often this can happen if, for instance,
hyperparameters are tuned based on metrics computed on the
holdout test set. However, data leakage can be much more
subtle. For example, slight variations of the same structure
might occur multiple times in one data set. Machine learning
based on data extracted from experimental crystallographic
databases [such as the Cambridge Structural Database
(CSD)41 or the Open Crystallographic Database (COD)]42

is particularly prone to this kind of data leakage as one
structure can appear multiple times under different identifiers
in the database. This can, for instance, be the case because
there are different refinements for the same structure or
because the measurement was performed at different temper-
atures. The presence of duplicates in MOF databases has been
reported before43,44 but is seldom taken into account in
machine learning studies. In the Appendix (Case Study 1), we
illustrate that for MOFs data leakage is indeed a severe and
perhaps underestimated problem.

To address this problem, mofdscribe implements
computationally efficient heuristics that help with the
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deduplication of data sets. Those heuristics are based on the
computation of hash strings of the periodic structure graph
(so-called quotient graph),45 which describes the connectivity
of the atoms in the crystal (vertices being the atom positions
and edges being the bonds). Since the structure graph does not
directly depend on the exact atomic positions, structures with
slightly different atomic positions (e.g., conformers) will share
the same structure graph. While a check for graph-iso-
morphism would be the formally exact way to check for
duplicated structure graphs, this can be computationally
intensive, or even prohibitive, for large structure graphs as
they are common for MOFs. Therefore, we use Weisfeiller-
Lehman46 hashes of different versions of the structure graphs
(Figure 1), corresponding to increasingly tight definitions of

duplication. We want to emphasize that while this deduplication
strategy is a good default for most applications, it might be too
strict for others as, for instance, open and closed forms of a
framework will be counted as duplicates. Hence, this automatic
deduplication can be disabled and customized in mofdscribe.
Featurizing Reticular Materials. Before using the data

sets to train a model, one typically needs to convert the
structures into fixed-length feature vectors. This is required
because most machine learning algorithms can only operate on
fixed-sized inputs. For instance, we can envision that we want
to predict the gravimetric gas uptake of a MOF�a property
that should be the same regardless of whether we create a
supercell, translate, or rotate the unit cell. That is, we need a
function with which the cells of different sizes, or ordering of

atoms, are mapped to the same feature vector. This example
already illustrates that such a conversion of a structure into a
feature vector is not unique and is always connected to certain,
often hidden, assumptions. Ideally, those assumptions reflect a
physical or chemical understanding of the system and act as so-
called inductive biases that help the learning algorithm.49 But
any approximation always limits the expressivity of the model,
and many featurization approaches neglect�by design�
certain aspects of a given system. Additionally, there are
always certain design choices (such as the numbers that are
used to encode chemical elements) that are not ideal for all
applications. In mofdscribe we propagate those approx-
imations (such as elemental encodings or aggregations) to the
user and therefore also allow tuning those parameters to
increase predictive performance.

A key design aspect for featurizers is the length scale they
operate on (Figure 2). In mofdscribe, we distinguish
featurizers operating on the local, atom-centered neighbor-
hoods, the building units (BU), and the full, global structure.
Depending on the learning tasks, different scales will be more
relevant. For instance, for gas separations, we need to describe
the textural properties of the pore (global) along with the
chemistry of the building unit (BU/atom-centered). Therefore,
it is important that featurizers operating on different scales can
easily be combined. In mofdscribe, all featurizers can
be used in the same way and combined as needed, thereby
enabling rapid experimentation. To make this possible,
mofdscribe uses the featurizer design pattern popularized
by the matminer package (see Scheme 1 in which we
compute a feature vector for a MOF by combining featurizers
from all scopes). This design pattern, which bears similarities
to the sklearn API,51 ensures consistency across how
different featurizers are used and, in this way, enables
composability and also makes them accessible to nonexperts.
By building on top of the matminer building blocks,
mofdscribe is also fully interoperable with the featurizers
implemented in the matminer library. For instance, featurizers
such as the matminer’s SiteStatsFingerprint can
be seamlessly used to separately featurize framework and guest
molecules using the HostGuestFeaturizer imple-
mented in mofdscribe.

Locality Approximation. In machine learning for chemistry
and materials, the most commonly used assumption is the
locality approximation. In practice, this assumes that a property
does not depend on the entire crystal but that the main
contributions are from the local environment (which can be
justified based on the principle of “nearsightness of electronic
matter”52). For example, in our model for the oxidation state
of the metal in a MOF,11 the features are computed for the
metal and the atoms of the linkers surrounding the metal.
By reducing the learning problem to local environments, the
locality approximation allows a model trained on small
fragments to generalize to large structures (which are harder
to sample as there are combinatorially more of them).53 For
reticular materials, this approximation is widely used as part of
the feature set (which is often supplemented with global
features, see below) via revised autocorrelation functions
(RACs),21,54 smooth overlap of atomic positions (SOAP)
fingerprints,55 local geometry descriptors,11,56 or the average
mean distance descriptor by Widdowson et al.57 For all those
atom-centered descriptors, one can compute N descriptors for
a structure with N atoms. Since different materials will have
different numbers of atoms N in their unit cells, one typically

Figure 1. Levels of structure graph abstraction. (a) The (decorated)
structure graph considers all atoms, bonds, and atomic numbers as
“coloring” of the graph. Therefore, structures with slightly different
geometries (e.g., experimental vs DFT-optimized) but the same
connectivity will be considered equivalent. (We recently used this
definition to find duplicated structures in the Cambridge Crystallo-
graphic Database (CSD) when matching structures with their
isotherms.47) (b) To find structures with the same connectivity but
different coloring (e.g., Mg-MOF-74 and Ni-MOF-74), we can use
the undecorated graph. (c) A harsher measure of structural similarity
can be obtained by only considering the scaffold. Here we form the
scaffold by breaking all so-called bridges. Bridges are edges (i.e.,
bonds) whose breakage leads to an increase in the number of
connected components. Practically, those are usually coordinated
solvents, hydrogen atoms, functional groups, or other terminal atoms.
Note that this definition of scaffold is different from the one that has
been used for (Bemis-Murcko) scaffold analysis of molecules.48

Therefore, fluorine, chlorine, or amine-functionalized structures
would all be treated equally. (d) Also, here, we can remove the
coloring to make, for instance, Ni-MOF-74-NH2 equivalent to
Mg-MOF-74-NH2. To simplify the identification of duplicates, we
use the Weisfeiler-Lehmann test to convert graphs into a hash string.
While this test does not guarantee isomorphism, we found the
resulting computational advances drastically outweigh the lack of
theoretical guarantees.
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needs to perform an aggregation operation, such as computing
the arithmetic mean of all the atom-centered feature vectors,
to construct a fixed-length descriptor that is permutation
invariant. The latter is important since we do not want our
descriptors to change when we change the (arbitrary) numbering
of atoms (that is only an artifact of digitally encoding materials).
Of course, there is not one ideal choice for the aggregation
operation. One might benefit from additional expressivity by
using multiple aggregations, for instance, the standard deviation
alongside the arithmetic mean or other Pythagorean means or
robust measures (e.g., trimean, mean absolute deviation).
Therefore, in our library, the user can�where applicable�
simply provide all aggregation combinations of interest (see
Scheme 2 for an example) and mofdscribe will compute
them all. As shown in the Supporting Information, this
generalization of established descriptors (such as the AMD
proposed by Widdowson et al.57) can lead to large (>20%)

improvements in predictive performance on material property
prediction tasks. By exposing all these options, mofdscribe
makes these approximations visible to the users and allows users
to tune them for better predictive performance.

Since models do not know the periodic table, the nature of
the element types in a given structure needs to be encoded
numerically. Often, as in the case of RACs, this is done using
element properties such as atomic number or electronegativity.
However, it is well-known that some encodings such as atomic
numbers lose the clustering of elements according to their
periodic properties, which can be an important inductive bias
for a machine-learning model. Therefore, mofdscribe
allows users to flexibly choose from a wide variety of elemental
properties in addition to other encodings such as the
(modified) Pettifor scales that have been shown to better
capture similarities of elements across the periodic table.58−60

For instance, Pettifor scales can be thought of as the “optimal

Figure 2. Overview of featurizer types implemented in mofdscribe. We distinguish three scopes on which featurizers operate: atom-centered,
building unit (BU-)centered, and global features. Note that mofdscribe is interoperable with matminer, wherefore featurizers implemented
in matminer can be used with those implemented in mofdscribe.50 For a full overview of implemented featurizers, see Overview of
Implemented Featurizers list.
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one-dimensional periodic table”:60 similar elements are neighbor-
ing in this representation (in the original scale with the goal to
achieve an optimal map of the stability of AB compounds). The
impact the choice of encoding can have is shown in Figure 3,
where we find improvements of over 50% by using the modified
Pettifor scale60 for encoding elements in revised autocorrelation
functions (in contrast to using the electronegativity). Also here,
mofdscribe exposes these encoding options on all featurizers
where they apply. This makes this approximation visible and
allows users to tune the encodings to increase the predictive
performance or interpretability of their models.

Building Unit Centered Descriptors. The defining feature
of reticular chemistry is the tinker-toy principle, i.e., the
construction of extensive crystal structures from small
molecular building blocks. Interestingly, this principle is
seldom exploited in machine learning studies for reticular
materials such as MOFs. One possible explanation for this is
that it is not trivial to extract the building blocks from a crystal

structure into a form such that they can be used with
featurizers that are conventionally used for molecules (e.g., as
the ones implemented in the RDKit program62). To facilitate
the use of BU-centered featurization we implement an adaptor
that can convert any featurization function that accepts a
molecule object from the RDKit library (that can easily be
generated from a SMILES string) into one that can be used
along with all other mofdscribe featurizers. Importantly, to
allow the decomposition of MOFs into their building blocks,
we also release a library, called moffragmentor, that
analyses the structure graph to decompose MOF structures
into their building blocks (i.e., metal cluster(s) and linker(s)
and possible bound/unbound solvent, algorithm described in
the Supporting Information). In contrast to existing tools such
as mofid43 and mBUD,63 moffragmentor makes them
accessible from an object-oriented interface. If a user provides
a MOF structure into a featurizer for molecules (e.g., a
conformer counter), mofdscribe by default fragments the
MOF into building blocks and computes the features
separately for each building block. The importance of this
step is that once a MOF is decomposed into building blocks,
we can also generate descriptors that further characterize these
building blocks, for example, descriptors related to the
flexibility of the linker such as the number of accessible
conformers.64 This is an example of a descriptor that could not
be easily accessed otherwise but might help digital reticular
chemists address questions (e.g., about crystallization) that
they could not easily address before. Importantly, all featurizers,
e.g., also the SOAP fingerprint, can be used in this setting to
compute more meaningful aggregations (in contrast to averages
over the full structure). In this process, we do not enforce the use
of our moffragmentor library as users can bypass this step
by providing their own building blocks. For example, users can
provide pymatgen65 Molecule objects that they obtain by
deconstructing MOFs with other tools such as mofid43 or
mBUD.63

Global Descriptors. In porous materials, many properties�
such as the pore size and shape or overall composition�are
not directly correlated to atomic environments or their building
blocks. Therefore, local descriptors can only implicitly, via large
cutoffs, or not at all, represent such properties.

For this reason, practitioners often use local feature sets
(e.g., RACs) along with global ones, most commonly with
scalars describing the pore geometry (e.g., pore volumes,
surface areas, accessible volumes).66,67 However, there are
additional vector-valued or count-based descriptors68,69 that
can be used to describe the pore geometry and might be more
expressive than scalar descriptors but are seldom used in
machine learning studies for reticular materials.

Describing the Shape and Chemistry: Persistent Homol-
ogy. As an alternative to the aforementioned pore geometry
descriptors, the use of topological data analysis has been
proposed to capture the shape of materials.70,71 Topological
data analysis can be used to obtain features that are invariant to
a continuous transformation of the material structure. Persistent
homology, a branch of topological data analysis, captures all the
topological information underlying a given point cloud, such as
the geometric coordinates of a material. Given a set of points
(i.e., atom positions), we can obtain a so-called filtration (e.g.,
Vietoris-Rips) by continuously increasing the radius of these
points to get a family of nested unions of spheres. Persistent
homology then tracks the appearance and disappearance of
topological features (such as channels and voids) in this

Scheme 1. Complete Featurization Usage Examplea

aThe featurizers in mofdscribe can be easily combined with the
ones implemented in matminer. All featurizers also share the same
utility methods, such as citation and feature_labels, and
can be computed for multiple structures using featurize_many.

Scheme 2. Example of Using Aggregations in
mofdscribea

aMany featurizers compute more than one feature vector per
structure, for instance, one feature vector per atom. In this case,
the data must be further processed to construct one fixed-size feature
vector per structure. To ensure that the resulting feature vectors
are permutation invariant (that is, do not depend on the arbitrary
numbering of atoms in the structure), one typically uses aggregation
functions such as the average, sum, maximum, or minimum. At every
point where aggregations are computed, we allow users to customize
the ones used. Users can simply specify the desired ones as a tuple of
strings; for example, (”median”, ”range”, ”geom_av”) would
aggregate the features using the median, range, and geometric average.
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filtration. The radius at which a feature appears is the “birth,”
while the radius at which a feature disappears is the “death.”
The persistence of a topological feature is the difference
between birth and death, which acts as a measure of how
prominent a given topological feature is. The set of all birth-
death points is called a persistence diagram. As reticular
materials have many channels and voids, persistent homology
provides a holistic approach to capturing these topological
features. Persistence diagrams are a multiset of birth-death
points in the extended plane, and each material can have a
different number of points in its persistence diagram. Since
most machine learning models operate on points in a fixed-
dimensional Euclidean space, one needs to vectorize these
diagrams into fixed-size arrays. One can accomplish this, for
instance, by computing persistence images, which can be
thought of as smoothed versions of persistence diagrams and
have been used before in materials science.72,73 A challenge
with this representation, however, is that it is often very high-
dimensional. This can, due to the curse of dimensionality,
lead to learning problems (in particular in low-data regimes).
As an alternative, we implemented a vectorization method
that approximates persistence diagrams using Gaussian
mixture models.74,75 This allows for low-dimensional
representations that can still provide approximate Wasser-
stein distances (that are conventionally used to measure
distances, i.e., a proxy for the difference between persistence
diagrams). Additionally, we also implement a simple
vectorization as a 2D histogram.

Topological data analysis captures the geometry of chemical
structures and materials, but these systems also have rich
chemical information, as they are composed of different atoms.
Thus, it is important to incorporate this chemical information
into the representation�otherwise, materials with the same
connectivity but different elements (for instance, Mg-MOF-74
vs Ni-MOF-74) would be treated the same way, and a model
would predict the same properties. To account for chemical
information in a highly flexible way, which therefore can adjust
to the amount of data available, mofdscribe allows
decomposing the structures into structures that contain only
certain elements (Figure 4). By default, for instance,

mofdscribe will perform the persistent homology analysis
on the full structure, the metal substructure, the organic
substructure, and the halogen substructure. However, users can
customize the substructures that mofdscribe considers and
tailor the featurization to the task at hand. As Figure 5 shows,
the inclusion of chemical information consistently increases
predictive performance on MOF property prediction tasks
(in our test cases by up to 20%). We use the same approach to
make the average minimum distance fingerprint proposed by
Widdowson et al.57 chemistry-aware (and observe similar
improvements on benchmark tasks there). Additionally, we
also allow users to encode chemistry using so-called weighted
alpha shapes. In this case, in addition to the coordinates, the
(atomic) radii of different elements are used for persistence
diagram construction to distinguish between different atom
types.

MOF Tomography. Some of the most successful applica-
tions of machine learning have been in computer vision.78 The
primary reason for this is that while images contain a wealth of
information, it is hard to extract good features that can then be
fed into a model (e.g., training a linear regressor on a flat
vector of all the pixel values will not work). Convolutional
neural networks (CNNs) and related architectures are trainable
feature extractors.79 That means, given some data, they can
learn to extract the most predictive features (thereby enabling
the use of techniques such as transfer learning). However, it is
not obvious how one can convert structures, which might have
a varying number of atoms and which unit cells might be
skewed, into “rectangular” image tensors of fixed size. Additionally,
one also needs to consider that one would like to also encode the
chemistry of a given material. In mofdscribe, we implement
featurizers that voxelize approximately cubic supercells of crystal
structures into 3D images (which one could then process using a
3D CNN).80,81 Also for these featurizers, we allow the users to use
aggregations of custom properties (e.g., Pettifor scale, electro-
negativities, atomic numbers) as the value for the voxels instead of
just binary indication of occupied/unoccupied. Of course, for
example, for low-data applications, our approach can also only
encode the geometry as a binary encoding, density, or using a
truncated distance function. These features will, as initial results in

Figure 3. Impact of element encodings on predictive performance. Here, we compare revised autocorrelation functions with different element
encodings as input for a gradient-boosted decision tree. We train the model on CoRE-MOF data reported by Moosavi et al.21 to predict the
logarithm of the CO2 Henry coefficient. The top row shows the number of top-100 materials we retrieve in the top-100 predictions of
20 independent runs. The bottom row shows estimated Hedge’s g effect sizes (a suitable effect size metric in the case of little data61 which can be
thought of as a normalized mean difference) with respect to the performance of the RACs using electronegativity (EN) as element encoding. This
figure also compares the performance of feature sets augmented with scalar geometric properties (pore diameters, accessible surface area, and void
fraction). We find similar very large trends using other metrics.
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the literature indicate,80−82 allow for the use of state-of-the-art
computer vision models (including self-supervised pretraining and
transfer learning) on reticular materials.

Consistent Model Evaluation and Benchmarking.
Having data sets and standard implementations of featurization
algorithms is not all that is needed to make machine learning

Figure 5. Persistent homology vectors with and without chemical information. In this plot, we use the vectorization of persistent diagrams using
Gaussian mixture models with and without chemical information (here, we consider the C−H−N-O, halogen, and metal substructures). For this
analysis, we optimize the full pipeline (including preprocessing and the model) using automated machine learning.76 The plots visualize effect sizes
in terms of Hedges’ g. The points indicate the coefficient of determination (r2 on a holdout test set, shown on the left axes) of the models trained to
predict the methane deliverable capacity (DC), Henry coefficient (KH), as well as the CO2 Henry coefficient and low pressure (l.p.) uptake. The
blue points are for the model trained with chemistry (c.) information; the green ones indicate the coefficients of determination of the models
trained without chemistry information (n.c.). To quantify the effect, we bootstrap the Hedges’ g (a suitable effect size metric in the case of little
data,61 shown on the right axes) and show it with a kernel density estimate. In all cases, the addition of chemistry shows very large effects.77
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Figure 4. Adding chemical resolution to topological descriptors. Descriptors, such as the ones derived from topological data analysis, operate on the
full structure (top row) and capture the geometry and connectivity of a material described by its atomic coordinates. In mofdscribe, we allow
users to also incorporate information from different atom types (i.e., not treat all atom types the same way). Users can customize the extent to
which they want to lift this many-to-one mapping by adding channels for different atom types. By default, for instance, the descriptors from
topological data analysis are computed for all atoms, the metallic substructure, and the organic substructure�all yielding different topological
signatures as evident from the persistent images.
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for reticular materials routine and comparable.83−85 To reach
standard practices86 for digital reticular chemistry, we also
need to address model validation and comparison.

Estimating Material Discovery Ability. Many machine
learning models are built to be useful for materials discovery.
Discovery implies predicting something unknown. However,
the common practice of using a random train/test split does
not necessarily measure the model performance in predicting
the unknown. First, a simple random train/test split cannot
account for the fact that many databases contain very similar
structures (see Appendix (Case Study 2)). As we have shown,
(hypothetical) databases often contain multiple structures that
are only different in the type or position of one functional
group. Dividing such a group of structures with identical
scaffolds across train and test sets will not give a faithful
measure of the generalization ability of the model as one of the
main assumptions of testing is violated�train and test sets are
not entirely independent of each other (one might see the
functionalized graphs as children of the same scaffold). Second,
for practical applications, there will almost always be a data
shift; that is, the data distribution the model will be used with
will be different from the distribution the model has been
trained on. For example, it is well-known that structures in
hypothetical databases do not have the same distribution (e.g.,
lower density, less metal diversity) as structures in experi-
mental databases.21,87 This has already been recognized by
others such as Meredig et al.88 who utilized leave-one-cluster-
out cross-validation to estimate extrapolation performance (or
Xiong et al.89 using k-fold forward cross-validation). A similar
approach, in which one clusters the principal components of
the data into k clusters and trains on k − 1 clusters and tests on
the cluster that was not used for training, is implemented in
mofdscribe. As each cluster has specific properties, this
method tests how well the model can extrapolate to new
properties. If we repeat this procedure for every cluster, we can
get an overall measure of the robustness and extrapolation
ability.

Additionally, we recognize that one interesting benefit of
working with experimental data is that we know when a given
structure was first reported; the data is time-stamped.90

Inspired by common practice in time-series forecasting, we
hence can ask “could we predict the performance of materials
discovered after year X if we only trained on materials
discovered before year X?” In particular, we can measure how
many of the top k materials we can recover in the top n
predictions by the model. Using mofdscribe, this question
can easily be answered.

Importantly, a time-based split is not the only feasible
splitting strategy�and, depending on the use case, might not
be the best option (or might not be applicable if no time-
stamps are available). Therefore, to further ensure that

thorough model evaluation becomes routine for digital
reticular chemistry, mofdscribe also implements, inspired
by the DeepChem library,93 a variety Splitter classes
(Figure 6, Scheme 3 for a usage example). The Splitter
classes either take a data set that users can define based on
their structures or a built-in data set and can produce splits
(holdout or k-fold cross-validation) following different
strategies.

The impact such splitting strategies can have on model
selection is shown in the Appendix (Case Study 2), where one
can see that the average generalization performance of models
significantly depends on the splitting strategy. Overall, we find
that the optimal split depends on the task at hand�but typically
is not the conventional random split. Given the redundancy in
scaffolds in MOF databases, we urge practitioners to use grouped
cross-validation.

As a utility to quantify the “difficulty” of the validation
strategy, mofdscribe also implements a helper method that
performs adversarial validation.94,95 Adversarial validation is a
technique that has been popularized in data science com-
petitions as a way to measure�with only one number�the
difference between training and test distribution but also to
identify the most relevant features for a potential difference.
For this, one simply trains a classifier to distinguish training
from test examples. If the area under the receiver-operating
curve (ROC-AUC) is close to 0.5, the classifier fails to
distinguish the two data sets. However, if it does not (i.e.,
ROC-AUC close to 1), analyzing the feature importance can
reveal the most relevant features contributing to the difference
(which one might decide to remove to improve general-
ization). An application of this concept is shown in the
Appendix (Case Study 2).

Benchmarks and Leaderboard. To foster the comparability
of models built for digital reticular chemistry, we also
implemented MOFBench classes that users can use to generate
a report of the performance of their modeling pipeline on some
benchmark tasks (Scheme 4). The MOFBench classes ensure
that all steps are performed consistently and that different
modeling strategies become comparable. They define a data set, a
splitting strategy, and a set of metrics and automatically capture
the computational environment. Via a pull request on GitHub,
these results can be easily added to the leaderboard that is
currently part of the mofdscribe documentation (mofd-
scribe.readthedocs.io). Users are additionally asked
to provide a file describing the modeling strategy and fill a model
card,19,96 which will also appear in a subsection of the leader-
board (Appendix (Case Study 3)). We hope that mofd-
scribe can help pivot reticular chemistry into the digital age
by giving the community tools to think and work in a data-driven
manner.97

■ CONCLUSIONS
While data-intensive approaches are becoming more popular in
(reticular) chemistry, they are still far from being routine and
standard; there are currently no standard practices for digital
(reticular) chemistry.86 We identified the lack of easy-to-use
featurization methods and problems with model validation and
comparison as the key limitations hampering the progress of
the field. To address those impediments, we developed a
Python package, mofdscribe, that provides utilities along
each step along the path from ideation to model publication.
The mofdscribe package provides increased accessibility
to machine learning for reticular chemistry and beyond

The lack of standardization across
all the steps of the machine
learning pipeline makes it

practically impossible to directly
compare machine learning

models and build on top of prior
results.
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without compromising rigor, especially for less experienced
users. This will allow for a closer coupling of data-driven
materials design and the synthesis and characterization of
(in silico generated) materials since it is very easy for
nonexperts to use mofdscribe to power machine-learning

models that could be used, for instance, in an active learning
workflow.98 For this, the adoption of suitable physical
workflows will be beneficial. Tools such as the χDL99 and
the ChemPU100 could leverage predictions enabled by
mofdscribe to guide an autonomous laboratory if the
predictions can be mapped to instructions that can be executed
on laboratory robots.101,102 While we intend to add new
features to the library and maintain it, we also hope to embrace
a community effort in which bugs are fixed, data are made
more reusable,103,104 and new features are added by the
community of digital chemists and materials scientists. To
facilitate this, we designed our library so that it is easy for
researchers to implement new strategies, such as featurizers, in
our library so that their work can easily be reused by other
digital chemists. We hope that, together with the open
availability of machine-actionable data,105 our developments
will systematize and accelerate machine learning for chemistry.

■ METHODS
Featurization. The details of the reimplemented featur-

izers are described in the original publications and the online
documentation.
Benchmarking using Automated Machine Learning.

For the learning curves shown in the Appendix (Case Study 1),
we trained gradient-boosted decision trees, as implemented in
the XGBoost library, on the default feature set in
mofdscribe. To mimic currently utilized settings, we ran
the experiments 100 times with a random train/test split of
0.8/0.2.

Figure 6. Illustration of some splitting approaches implemented in mofdscribe. For the validation of a machine learning model, it needs to be
tested on data it has not seen before. To create sets of such unseen data, data sets are typically split into subsets for training, testing (and
validation).7 The conventional approach is to perform this split randomly. This, however, might not be a good approximation of real-world use with
dependent/grouped data, distribution shift, or lead to problems in the case of imbalanced data. Therefore, mofdscribe implements various
splitting strategies that either operate on (structural) features or other metadata. For instance, we extracted the publication date for all structures we
could trace back to the CSD and hence allow performing a time-based split. Alternatively, one can use structural features to either ensure equal
distribution of the features in different splits (stratification) or to mimic a distribution shift/extrapolation case by forcing different groups into
different folds of a cross-validation scheme. The easiest example is to use the density; however, one can also cluster (we use k-means clustering after
PCA on features, e.g., computed using mofdscribe). Moreover, we also implement a splitting strategy inspired by the scaffold splits sometimes
used for molecules91 for reticular molecules via our hash strategies (Figure 1). This allows grouping structures with the same connectivity or
backbone into the same fold. A different strategy is using Kennard-Stone sampling,92 to ensure that the training set is maximally diverse.

Scheme 3. Example of the Use of Splittersa

aThe datasets implemented in mofdscribe already provide the
relevant information for the splitters (e.g. times, hashes, densities). If
the splitters are used on other structures, e.g. custom in-silico
assembled MOFs, this information will be computed, if possible on
the fly, or can be provided by the user. Note that the datasets, by
default, are deduplicated based on the graph hash.

Scheme 4. Example of the Use of MOFBencha

aThe benchmarking classes only need to be provided with a model
object that implements fit and predict methods. It will then use a
Splitter object from the mofdscribe package to compute cross-
validated metrics on a StructureDataset, which are part of the
report. The report also contains additional meta information such as
the timings of different steps. It can be serialized to a JavaScript
Object Notation (JSON) file that can be submitted to the leaderboard
via a pull-request template in the mofdscribe GitHub repository.

Together with the open
availability of machine-actionable

data, our developments will
systematize and accelerate

machine learning for chemistry.
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For the case study analyzing the impact of splitting
techniques, we used optimized gradient-boosted decision tree
models, as implemented in the CatBoost106 library, using

optuna107 for a maximum of 100 trials or a timeout of 10 h
using the tree of Parzen estimators108 sampling strategy. We detail
the hyperparameter grid we considered in Supporting Information.

For Figure 5, we followed the approach from the
automatminer library109 and used automated machine
learning, which automatically optimizes over various models
and model architectures within a certain computational
budget. Concretely, we use the TPOT library,110−112 which
uses genetic programming for all machine learning pipeline
steps, including feature engineering (for instance, using
principal component analysis). We used the defaults of 100
generations with a population size of 100 but also limited the
search time to 48 h and 5-fold cross-validation.

Figure 7. Duplicates across MOF databases. We show the number of duplicates as inverse cumulative histograms; i.e., the bar heights indicate how
often we find n or more times a duplicated graph type. In the columns, we show increasingly general (i.e., more structures are considered as
duplicates) definitions of duplicates. The rows show the counts for different databases: The all-solvent-removed (ASR-CSD) subset of the 2019
MOF subset of the CSD, the CoRE database, the QMOF database, and the Boyd-Woo database (BW) of hypothetical MOFs.

ACS Central Science IN FOCUS

mofdscribe can help pivot
reticular chemistry into the
digital age by giving the

community tools to think and
work in a data-driven manner.

Figure 8. Likelihood of having the same scaffold in train and test set.
Using the BW data set implemented in mofdscribe we perform 1000
random train/test split for different train/test ratios and count how often
we find an undecorated scaffold hash in both the training and test set. The
figure indicates that for commonly used train/test ratios, the majority of
scaffolds will be found in both training and test set.
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Molecular Simulations. All grand-canonical Monte Carlo
simulations for the reference data set were performed using the
RASPA code,113 describing the force-field as a rigid framework
with the UFF force field114 and a cutoff of 12 Å, whereby we
correct for the truncation using analytical tail-corrections.115

Simulations were orchestrated using the AiiDA computa-
tional infrastructure.116,117

■ APPENDIX: CASE STUDIES
Case Study 1: The impact of data leakage

One can argue that in any large data set there will be a few
errors. However, the presence of duplicates can cause serious
issues for model evaluation.19 In this case study, we show that
for reticular chemistry, this is a very serious problem.

Let us start by investigating the number of duplicates in
commonly used databases of experimental and hypothetical
MOF structures. In the case of the experimental databases, it is

important to realize that if the same structure has been refined
multiple times or measured under different temperatures or
with different unbound solvents, it will appear under multiple
CSD reference codes. From a machine learning point of view,
however, these materials are too similar to appear in both train
and test sets (as for many applications such as high-pressure
gas storage, the model could then make a very good prediction
by just remembering the appropriate training data).

Using increasingly general (i.e., more structures are
considered as duplicates) definitions of duplicates (Figure 7),
we analyze how many matching structures we find in the all-
solvents removed (ASR) subset of the CSD MOF subset
(2019), and the CoRE and QMOF databases. The inverse
cumulative histograms below plot how often we find n or
more identical hashes (e.g., at n = 10, the count represents the
number of structures with 10 or more identical hashes). The
“graph” strategy considers all structures which share the same
connectivity and atom types as identical. The “undecorated

Figure 9. Learning curves with and without duplicated identical
scaffolds. For this experiment, we trained gradient-boosted decision
trees using the default feature set (currently including histograms of
persistence diagrams, AMD, geometric properties, APRDF) imple-
mented in mofdscribe on the BW database subset used in
Moosavi et al.21 to predict the CO2 Henry coefficient (which we reuse
from Moosavi et al.21). We used a train/test/valid split of 0.7/0.2/0.1
and performed the experiment 100 times. The shaded areas indicate
95% confidence intervals around the mean.

Figure 10. Bootstrapped mean difference in mean absolute error for out-of-domain predictions as a function of the splitting strategy. We tuned
gradient boosted decision tree models using the different feature sets implemented in mofdscribe (currently including histograms of
persistence diagrams, AMD, geometric properties, APRDF) using different featurizers on the CoRE MOF data set to predict the methane
deliverable capacity and evaluate the performance on the ARABG data set. We ran every experiment around 20 times and then computed
bootstrapped effect sizes with respect to the random split performance.

Figure 11. Adversarial validation across different MOF data sets. For
this experiment, we reuse the data sets as provided by Moosavi et al.21

(i.e., using the same features and labels) and use adversarial validation
to estimate how difficult it is for a model to distinguish the data sets. a
The heatmap shows the area under the receiver-operating character-
istic curve (ROC-AUC). b Highlights the feature scopes (computed
using the Gini impurity decrease estimate) that are most important
for the model distinguishing the data sets.
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graph” (undec. graph) strategy does not consider the atom
types. The “scaffold” strategy removes all functional groups,
solvents, hydrogens, and terminal atoms from consideration
(formally, all subgraphs connected via bridges). Again, we can
also remove the atom types from consideration. As expected,
we see an increase in the larger number of duplicate counts
from left to right.

This analysis shows that, for instance, the Co-CPO-74
structure appears 114 times in the ASR CSD MOF subset.
This implies that this structure will likely appear both in the
training and test set. Importantly, this is not the only structure
with many duplicates; there are on the order of 100 structures
in which the structure graph appears more than ten times in
the CoRE MOF database�and hence do not contribute to a
meaningful measure of the generalization performance of the
model.

Analyzing a database of in-silico assembled MOF structures
(BW)36 we find notably many scaffold duplicates: Among
nearly 20000 structures we only find 1584 unique undecorated
scaffolds. Many in-silico MOF assembly approaches enumerate

all possible combinations of building blocks, nets, and
functional groups. While this approach can give a lot of
detailed insights into regions of chemical space, it will also give
rise to many very similar structures that can lead to the
violation of the assumption of independence between training
and test set. To illustrate this, we can simulate a thousand
random train/test splits (as commonly done) and measure
how often a scaffold occurs both in the training and test set.
For practical train/test ratios, the majority of scaffolds (e.g.,
55% for a train/test ratio of 0.8/0.2) will be found in both
training and test set.

To showcase the potential impact of such data leakage on
model evaluation, we computed learning curves (for CO2
Henry coefficients in the BW database as implemented in
mofdscribe) for two deduplication levels: No deduplica-
tion, and removal of identical undecorated scaffolds. If there
would not have been any data leakage, the learning curves
should be similar. However, for the deduplicated data sets we
observe that the initial learning is faster (presumably because
of a higher information density in deduplicated data sets) but
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Figure 12. Code for submission to the leaderboard and exemplary screenshot of a leaderboard page.
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much lower than for the data set containing undecorated
scaffold duplicates. The increase in performance we observe for
the data set with duplicates is most likely caused by data
leakage, and the test set contains many structures that are only
marginally different from the training set, and hence if we
remove these duplicates from our training and test, our error
worsens significantly. Depending on the strictness of the
duplicate definition (Figure 7) one might see�with the same
train and test set sizes�drastically larger errors. Moreover, it is
important to realize that in our case study, the removal of
duplicates increased the learning (steeper learning curves; in
fact, this can sometimes lead to better models) and led to a
more faithful measure of generalization performance.
Case Study 2: The impact of splitting strategies
To investigate the impact of splitting strategies, we train

models on experimental data (for which we can also perform a
time-based split) and then evaluate how well the models
generalize to hypothetical materials.

We trained the gradient boosted decision tree models using the
default feature set of CoRE data set in mofdscribe (currently
including histograms of persistence diagrams, AMD, geometric
properties, APRDF) to predict the methane deliverable capacity.
For all experiments, we remove duplicates, i.e., materials with
identical structure graphs. We then optimize hyperparameters of
gradient boosted decision trees using Bayesian optimization on the
validation set and train the model using different splitting
strategies, always keeping the train/validation/test ratios fixed.
The figure uses the random split as the control group and
computes bootstrapped mean effect sizes for the different splitting
approaches. We see that all splitting strategies lead to models with
different generalization performances (better in all cases except for
the density-based split) than the random control group.

This impact of the splitting strategy also indicates the need
to quantify the difficulty of a given validation split. As one
method to do so, mofdscribe implements adversarial
validation, which quantifies how easily a machine learning
model can distinguish the train from the test set.

In Figure 11, panel a shows the adversarial validation scores for
the data sets considered in Moosavi et al.21 For the entries on the
diagonal, we considered a random split into two equally sized
parts. Scores closer to one indicate that the data sets are easily
distinguishable. In this case, we see that a model can easily
distinguish the data sets�in particular, the experimental ones from
the in-silico assembled ones. Therefore, we cannot expect a model
to necessarily generalize in this setting. In panel b we see that the
analysis of the feature importance can reveal which features the
model used to distinguish the data sets. Removing those features
can help to mitigate data-drift features or also help to guide the
generation of new materials that can mitigate those biases (or
remove materials that are dissimilar from the target distribution, i.e.,
have a ROC-AUC score greater than 0.5). When we group
the features into scopes, as in Moosavi et al.,21 we find that the
dominating differences across databases vary. While linker feature
contributions do not play a major role in distinguishing structures
from the BW and CoRE databases, they do play an important role
in distinguishing structures from the CoRE and ARABG database.
BW denotes a database of hypothetical MOFs assembled by
Boyd and Woo,35 and ARABG abbreviates a database of
hypothetical MOFs assembled by Anderson et al.37

Case Study 3: Creating a new model and submitting it to
the leaderboard

We implement a full modeling pipeline from featurization to
benchmarking in the following code (Figure 12). Note,

however, that in practice, there will be additional steps that
tune features and model hyperparameters.

More examples, including one on an experimental data set, can
be found in in the GitHub repository (https://github.com/
kjappelbaum/mofdscribe/tree/main/examples). The examples
can be run on Google Colab (e.g., https://colab.research.
google.com/github/kjappelbaum/mofdscribe/blob/main/
examples/build_model_using_mofdscribe.ipynb).

■ ASSOCIATED CONTENT
Data Availability Statement
Data used in this work are available via the mofdscribe
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■ OVERVIEW OF IMPLEMENTED FEATURIZERS. AN
UP-TO-DATE LIST CAN ALWAYS BE FOUND IN THE
ONLINE DOCUMENTATION
AccessibleVolume accessible volume, com-

puted using the zeo++
code.66,67

AMD generalization of the aver-
age-minimum distance ap-
proach proposed by Wid-
dowson et al.57

APRDF generalization of the
atomic-property labeled
radial distribution function
proposed in Fernandez et
al.121

Asphericity shortcut for the aspheric-
ity descriptor122,123 imple-
mented in RDKit.62

AtomCenteredPH atom-centered persistent
homology. Analogous to
the approach reported by
Jiang et al.124

DiskLikeness molecular descriptors com-
puted based on principle
moment of inertia, com-
puted using RDKit.62

Descriptor proposed by
Wirth et al.125 as a measure
of ligand shape.

Eccentricity shortcut for the eccentric-
ity descriptor122,126 imple-
mented in RDKit.62

EnergyGridHistogram energy gird histograms,
computed using RASPA,113

as proposed by Bucior
et al.127

GuestCenteredAPRDF This featurizer builds on
the APRDF featurizer, but
instead of using the corre-
lations between all atoms,
it only considers the ones
between the guest and all
host atoms (within some
cutoff distance).

Henry Henry coefficient, as com-
puted using RASPA.113

InertialShapeFactor shortcut for the inertial
shape factor descrip-
tor122,126 implemented in
RDKit.62

LSOP local structure order param-
eters (LSOP), modified
approach from Zimmer-
mann and Jain56 Here we
place a site at the center of
mass and then compute the
LSOPs around this site. In
this way, we attempt to
capture the shapes of full
building blocks.

NConf20 molecular flexibility de-
scriptor based on the
number of energetically
accessible conformers.
Based on implementation
of Wicker and Cooper128

using RDKit.62,129

NPR1 shortcut for the normal-
ized principal moments
ratio 1 (= I1/I3) descrip-
tor130 in RDKit.62

NPR2 shortcut for the normal-
ized principal moments
ratio 2 (= I2/I3) descrip-
tor130 in RDKit.62

PairwiseDistanceHist histogram of pairwise dis-
tances between atoms in a
molecule/structure

PairwiseDistanceStats statistics of pairwise distan-
ces between atoms in a
molecule/structure
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PartialChargeHistogram his togram of par t ia l
charges computed with a
charge equilibration strat-
egy (EqEq).131

PartialChargeStats statistics of partial charges
computed with a charge
equil ibration strategy
(EqEq).131

PHHist (2D) histogram of persis-
tence diagrams, computed
based on developments by
Krishnapriyan et al.,72,73

using the dionysus and
diode codes (latter being
a Python binding to parts
of CGAL132).

PHImage vectorization of persistence
diagrams as persistence
image133 computed based
on developments by Krish-
napriyan et al.,72,73 using the
dionysus and diode codes
(latter being a Python bind-
ing to parts of CGAL132).

PHStats statistics of persistence dia-
grams, computed based on
developments by Krishnap-
riyan et al.,72,73 using the
dionysus and diode codes
(latter being a Python bind-
ing to parts of CGAL132).

PHVect vectorization of persistence
diagrams using Gaussian
mixture models,74,75 com-
putes using the pervect134

library.
PMI1 first principle moment of

inertia, computed with
RDKit.62

PMI2 second principle moment
of inertia, computed with
RDKit.62

PMI3 third principle moment of
inertia, computed with
RDKit.62

PoreDiameters pore radii, computed with
zeo++67

PoreSizeDistribution histogram of pore sizes,
computed with zeo++.67

Has been used in Pinheiro
et al.68

PriceLowerBound lower bound for the MOF
price based on elemental
prices (surrogate for
chemistry and useful as a
screening filter).

RACS revised autocorrelation func-
tions, as proposed by Janet
and Kulik54 and applied to
MOFs by Moosavi et al.21

RadiusOfGyration shortcut for the radius of
gyration descriptor126 im-
plemented in RDKit.62

RayTracingHistogram histograms of ray lengths
passed through the unit
cell, computed using zeo
++67 Proposed by Jones
et al.69

RodLikeness molecular descriptors com-
puted based on principle
moment of inertia, com-
puted using RDKit.62

Descriptor proposed by
Wirth et al.125 as a measure
of ligand shape.

BUMatch minimum root-mean-
squared-distance between
the connecting site struc-
ture of the building blocks
and the “ideal” one in
different nets.

SphereLikeness molecular descriptors com-
puted based on principle
moment of inertia, com-
puted using RDKit.62

Descriptor proposed by
Wirth et al.125 as a measure
of ligand shape.

SpherocityIndex shortcut for the spherocity
descriptor122 implemented
in RDKit.62

SurfaceArea (probe accessible) surface
areas, as computed using
zeo++67

VoxelGrid 3D voxel representations
of the structure. Similar to
Hung et al.80 and Cho and
Lin81
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