
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Identifying Population Histories, Adaptive Genes, and Genetic Duplication from Population-
Scale Next Generation Sequencing

Permalink
https://escholarship.org/uc/item/5kp4q40k

Author
LInderoth, Tyler Philip

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5kp4q40k
https://escholarship.org
http://www.cdlib.org/


Identifying Population Histories, Adaptive Genes, and Genetic Duplication
from Population-Scale Next Generation Sequencing

by

Tyler Linderoth

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Integrative Biology

and the Designated Emphasis

in

Computational and Genomic Biology

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Rasmus Nielsen, Chair
Professor Montgomery Slatkin
Professor Erica Bree Rosenblum

Spring 2018





1

Abstract

Identifying Population Histories, Adaptive Genes, and Genetic Duplication from
Population-Scale Next Generation Sequencing

by

Tyler Linderoth

Doctor of Philosophy in Integrative Biology

University of California, Berkeley

Professor Rasmus Nielsen, Chair

The arrival of next-generation sequencing (NGS) technologies in the mid 2000s opened
the �oodgates to a massive amount of genetic data. Not only does NGS permit relatively easy
access to the genome of nearly any species, it also enables sequencing highly degraded DNA
characteristic of ancient samples and museum specimens. The representation of genomic
data across the tree of life has been spreading rapidly over the past decade owing to the
emergence of numerous methods for inexpensively sequencing entire genomes and reduced
representations of genomes based on NGS. However, without any high-quality preexisting
genomic resources, species with large, highly paralogous genomes pose a major obstacle for
NGS because accurately assembling short read data becomes extremely challenging. Fur-
thermore, reads derived from paralogs will likely map to the same locus, which can in�ate
apparent levels of diversity, obscuring accurate population genetic inference and scans for
adaptive loci. These problems can also e�ect population genetic studies using historic DNA
from museum specimens, which often face the additional challenges of high sampling vari-
ability across space and time, and DNA degradation. The research presented in this thesis
aims at overcoming these challenges using a combination of pioneering experimental and
computational approaches. First, I present a method for identifying paralogy from NGS
data, ngsParalog, that jointly leverages information from read proportions within and across
individuals and sequencing coverage in a probabilistic framework. Combining information
in this manner achieves superior power for identifying paralogy at lower false positive rates
than using paralogy signatures separately as other current methods do. It also is widely
applicable to both single and paired-end data ranging from low to high coverage. I use
ngsParalog to detect paralogy in humans, chipmunks, and stick insects, representing a broad
range of sequencing approaches. In the next chapter of the thesis I, along with colleagues,
demonstrate how transcriptome-enabled exon capture applied to populations of century-old
and modern Tamias chipmunks comprising multiple species, in conjunction with a new Ap-
proximate Bayesian Computation approach for �tting joint site frequency spectra between
time periods can be used to infer recent population histories. Knowing these population
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histories allowed for disentangling the genetic signature of demographic changes from se-
lection, which led to identifying a gene that may be helping chipmunk populations rapidly
adapt to climate-induced environmental change. In the fourth chapter, I, along with other
colleagues, employed the same exon capture technique and ngsParalog to overcome the chal-
lenge of mapping color and pattern genes in the ∼12 gigabase, highly paralogous genome
of the mimic poison frog, Ranitomeya imitator. I applied statistical divergence and admix-
ture mapping methods to di�erentR. imitator color morphs in order to identify seven out
of 13,086 examined genes that showed compelling evidence of in�uencing color and/or pat-
tern in R. imitator. These candidate genes will likely be valuable for gaining insight into
the R. imitator mimetic radiation. The combination of methods presented in this thesis
advances the utility of NGS into taxa with genomes that previously precluded gene mapping
and provides an analytical framework for identifying demographies and adaptive genes from
museum collections.
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1. Introduction

Next generation sequencing (NGS) technologies allowing for rapid generation of genetic
data via massively paralleled sequencing were introduced in 2005 [1]. Over the subsequent
years a multitude of innovative approaches to whole genome DNA sequencing, reduced
genome sequencing, and RNA sequencing have produced a wealth of data that highlight the
broad range of questions and aims that vast amounts of genetic data can address. Though
today huge amounts of NGS data can be generated reasonably fast and a�ordably, utilizing
the data to discover adaptive loci through population genetic approaches can be impended
by a lack of preexisting, high-quality genomic resources. This barrier is ampli�ed owing to
the features of genomes and analytical settings described below. The combination of new
computational methods and experimental approaches demonstrated in this thesis are in-
tended to address these challenges and extend the utility of NGS into realms that previously
posed major obstacles to population genetic inference.

The problem of paralogy

A signi�cant challenge when analyzing genomic data for any species lacking high-quality
genomic resources is paralogy, that is, the presence of homologous loci derived through
duplication within a species. A fundamental assumption for most genetic analyses is that
each analyzed unit, be it a single base pair, an extended genomic region, or a structural
variant (e.g. insertions and deletions) represents a unique region in the genome; there is a
one-to-one mapping between the data and genetic locus. Paralogy can lead to the violation
of this assumption, with grave consequences. Sequence similarity between paralogs is often
high enough that reads derived from paralogs can be assembled together and map to the
same locus. The more loci that get wrongly confused as a single locus the greater the chances
of in�ating estimates of genetic diversity, simply because you have multiple genomic regions
worth of variation in one. Collapsing loci in this way also obscures di�erences between
populations and species by increasing the apparent number of heterozygous individuals. As
an extreme example, imagine comparing two populations at a genetic site belonging to a
duplicated gene. Let's say that the site for population 1 at the �rst gene copy is �xed for
the ancestral allele, A, and the second copy is �xed for a derived allele, a. In population
2, the site at copy 1 is instead �xed for the a allele and copy 2 for the A allele. If these
paralogous regions are similar enough such that sequencing reads derived from them map to
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the same location, every individual in both populations would appear heterozygous, which
would result in a measure of genetic di�erentiation, like FST for example, to be zero (no
di�erentiation), when it should be 1 (most extreme di�erentiation)! If one was trying to map
genes underlying a particular trait by comparing allele frequencies between populations as is
common in genetic association studies, biologically these genes with �xed di�erences would
be very strong candidates, however the association would never be found. This example
with �xed opposite alleles between paralogs in population 1 versus population 2 is perhaps
unlikely, yet clearly demonstrates how paralogy can in�ate measures of genetic diversity,
decrease population di�erentiation, and lower the power to map genes. It is quite feasible
to have a derived allele that is either �xed or segregating in one gene copy in either of the
populations, in which case paralogy would have the same e�ects, including obscuring the
ability to map genes if the copy with the mutation is causal or linked to a causal locus.

Even for species with the most well-developed reference genomes paralogy and similar
sequence complexity issues that confound assembly and cause low mappability is a problem,
including in humans [2, 3]. These issues are exacerbated in non-model species lacking quality
genomic resources. In the second chapter of the thesis I present a statistical method for
detecting paralogy from NGS data that improves upon existing methods. While previous
methods use either excess heterozygosity [4], or similarly, the proportion of reads bearing
di�erent alleles within and across individuals [5], or sequencing coverage [6, 7] to detect
paralogy, my method is the only one to use all of this information jointly in a probabilistic
framework, which achieves greater true positive to false positive rates than using any of
these signals independently. Unlike methods that use paired-end read information to detect
duplications [8, 9], my method can be used for both paired-end and single-end data, and so
is useful for a broader range of experimental designs. I demonstrate the e�ectiveness of this
method by identifying regions in the human genome that show evidence for being duplicated
in addition to �nding paralogs in NGS datasets for chipmunks and stick insects, which use
di�erent sequencing approaches commonly utilized for non-model species.

Museum population genetics

Natural history museums are a trove of information for assessing genetic, phenotypic,
and demographic change through time, which provides a direct route to understanding how
species and populations respond to environmental change [10]. Museum collections have and
still do represent a challenge for genetic studies because historic specimens are not often
collected with molecular genetic analyses in mind. The �rst implication of this is that much
historic DNA is degraded making PCR ampli�cation and accurate Sanger sequencing a chal-
lenge, with special care required to avoid PCR artifacts [11, 12]. Some of the �rst genetic
data to come from sequencing museum specimens focused on PCR amplifying and sequenc-
ing < 500 bp of the mitochondrial genome [13, 14, 15], and nuclear microsatellites [16, 17,
18]. The problem of scaling up the number of sequenced loci from museum DNA was over-
come by NGS approaches since DNA library preparation involves ligating general sequencing
adapters onto the ends of the degraded fragments, allowing for ampli�cation and sequencing
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of entire genomes. Accordingly, over the past decade, there have been an increasing number
of studies focused on vastly larger regions of the genome or the entire genome from museum
specimens [12, 19, 20, 21], a�ording much greater genetic resolution for comparing popula-
tions through time. The ability to sequence entire genomes from museum specimens does not
however overcome all of the problems facing museum genetics. The data from historic DNA
sequencing is often plagued by artifacts from chemical damage such as cytosine deamination
[22], and variability in sample sizes and localities over time can make direct population com-
parisons a challenge, particularly when samples were not collected with the intention of these
types of comparisons. Nevertheless, the ability to essentially hop into a time machine and
get a precise genetic snapshot of populations collected before genetic molecular techniques
even existed is exciting and invaluable for understanding how organisms have adapted to
the rapid global climate change that has occurred over the past century. Accordingly, the
third chapter of my thesis focuses on a pioneering, multi-species, comparison of century-
old, historic to modern populations at a genomic-scale in order to understand demographic
and adaptive response to environmental change. We used transcriptome enabled sequence
capture to obtain exonic data for 303 Tamias chipmunks, representing six species, and de-
veloped an Approximate Bayesian Computation framework for �tting population histories
to joint frequency spectra between time periods. This approach a�orded us the resolution to
characterize recent demographic changes for various chipmunk populations and delineate the
genomic signatures of demography from selection in order to robustly identify potentially
adaptive genes in relation to climate-induced environmental change.

Mapping genes in large, highly duplicated genomes

The emergence of NGS has ushered in an enormous amount of progress towards mapping
genes relevant to human disease [23] and adaptation [24]. Prior to NGS, population genetic
approaches for mapping the genetic basis of traits in non-model species relied heavily on
candidate gene approaches [25]. Now, however, genome-wide scans for selection have become
increasingly common and generated many insights into the genetic mechanisms of adaption
and speciation. Some notable examples include stickleback and cichlid �shes [26], butter�ies
[27], and stick insects [28]. Even with the ease and relative low cost of genome sequencing
a�orded by NGS technologies, genomic features of some species still limit the taxonomic
breadth across which genes can be e�ciently mapped. One example of this are poison frogs
(family Dendrobatidae) for which at least some species have exceptionally large genomes sizes
due to extensive paralogy making accurate genome assembly virtually impossible using short
read sequencing. Even with a high-quality reference genome, the large genome size precludes
cost e�ective sequencing of enough individuals to attain the statistical power necessary to
con�dently map genes. The fourth chapter of my thesis is focused on overcoming these
challenges in order to identify genes underlying color and pattern in the mimic poison frog,
Ranitomeya imitator. I, along with colleagues, reduced the daunting R. imitator genome
down to the exome using a custom sequence capture system, which represented a subset of
the genome that could be assembled and that is functionally relevant. We sequenced exomes
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from 124 R. imitator representing various color morphs and used a combination of statistical
divergence and admixture mapping approaches to identify seven out of over 13,086 surveyed
genes that show evidence for in�uencing color and/or pattern in R. imitator.

Conclusion

In order to advance the applicability of next-generation sequencing for identifying adap-
tive genomic regions across a broader breadth of taxa and time series, I, along with col-
leagues, have developed a suite of methodologies and computational tools for overcoming
genetic inference challenges that are particularly pronounced in non-model species lacking
quality genomic resources. These methods enable the discovery of adaptive genes from mu-
seum collections and organisms having genomes that have previously precluded population
genetic approaches. We used these approaches to discover a gene in alpine chipmunks that
is potentially adaptive in the face of climate change and candidate genes for involvement in
a poison frog mimetic radiation.
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2. Widely applicable, probabilistic

methods for paralogy identi�cation from

population-scale, next generation

sequencing data

Tyler Linderoth, Rasmus Nielsen

2.1 Introduction

Next-generation sequencing (NGS) is a widely used approach for gathering genome-wide
data, at relatively low cost, for both model and non-model species. This most often involves
the alignment of millions to billions of short sequencing reads through the course of assembly
and mapping, which means that any two or more genomic regions with substantially similar
sequence can produce reads that will align. This can provide useful information about the
genome if recognized, but can also introduce severe bias into population genetic inference if
not addressed. On the useful side, genomic regions that produce similar reads can represent
paralogs (homologous regions of the genome derived through duplication within a species),
which have much biological signi�cance. First, these types of duplications are medically
relevant due to the role they play in diseases [29, 30], and are interesting from an evolutionary
perspective because they represent the opportunity for sub and neo functionalization. In
this regard paralogs are involved in everything from �sh coloration [31] to dosage e�ects
[32, 33]. On the negative side, if ignored in population genetic NGS datasets, paralogy can
in�ate estimates of genetic diversity, and so can obscure analyses of population divergence,
estimates of mutation rates, and scans for selection for example. Therefore, identifying
paralogous regions is desirable for both investigating biological questions related to genetic
duplication as well as a necessity for quality control.

One commonly used method for identifying paralogy is to use paired-end read informa-
tion, since the arrangement of two mapped reads supposedly derived from a single library
fragment can be informative about duplication and other structural variation. Two other
commonly used signatures in NGS data used to detect copy number variation (CNV) are
sequencing depth and excess heterozygosity. Sequencing reads derived from duplicated re-
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gions are often similar enough that they will map to a single locus, causing the coverage
within an individual to be proportional to the number of genomic copies. When allelic dif-
ferences exist among sites between the di�erent copies, collapsing sequencing reads like this
also makes individuals appear heterozygous. There are many existing methods for detecting
CNVs from sequencing depth [6, 7], excess heterozygosity [5, 4], and paired-end sequencing
information [8, 9]. Limitations of these previously listed approaches are that they are either
inapplicable to studies that use either single-end sequencing (such as is widely applied in
reduced representation restriction digest studies) or low coverage data whereby genotyping
is too inaccurate to use excess heterozygosity, or they simply do not fully utilize all of the
information available [5]. Consequently, we developed a probabilistic method for identifying
paralogy that can be used with any type of NGS data and that is highly accurate at all
sequencing depths (including very low coverage). The method �rst leverages information
from excess heterozygosity to calculate a likelihood ratio for whether or not a particular site
is duplicated. Most other methods rely on genotype calling to detect excess heterozygosity,
whereas we focus on estimating the probability that sequencing reads within an individual
are derived from multiple copies. This e�ectively incorporates within-individual read propor-
tion information that is lost when calling genotypes and is important because variability at
a duplicate copy within an individual and/or biased mapping between paralogs can obscure
genotype calling even at high sequencing coverage and decrease power to detect duplicates.
The duplication likelihood ratios from this �rst part of our method can themselves be used
to statistically identify duplicated sites. The second part of the method uses these likeli-
hood ratios in combination with sequencing coverage information in a hidden Markov model
(HMM) to infer regions of duplication that achieves high sensitivity with low false discovery.

We used our method, called ngsParalog, to identify regions in the human genome that
show evidence for duplication that are missing from the 1000 Genomes accessibility �les,
which are intended to contain such regions. These unrecognized duplicated regions are
relevant to any studies on human population genomics. We also demonstrate the utility
of ngsParalog for paralog discovery and quality control in non model species genomics by
applying it to chipmunk exon capture and stick insect single-end sequencing, genotyping-by-
sequencing (GBS) data. Our method is implemented in a very user-friendly program that
can be downloaded from https://github.com/tplinderoth/ngsParalog.

2.2 Methods

Likelihood of single site duplication

Sequencing reads derived from paralogs will often be similar enough that they will be
assembled together forming a chimeric region and then also map to this region. If a mutation
occurs in one of the copies then any individual for which the mutant allele is present will
appear to be heterozygous at the site to which the reads from both copies map. This gener-
ates an excess of heterozygotes relative to that expected under Hardy-Weinberg equilibrium

https://github.com/tplinderoth/ngsParalog
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(HWE). To determine the likelihood that a particular site in the genome is duplicated we
assume a model of duplication in which there are potentially two copies of the locus, and
for which copy 1 is �xed for the reference allele and copy 2 is either �xed for a di�erent
(alternate) allele or is biallelic. We refer to the genotype at copy 1 and 2 as G1 and G2,
respectively. For nonduplicated sites, we assume that genotypes occur at frequencies ex-
pected under HWE, and so deviation from this would indicate duplication. Leveraging this
signal of excess heterozygosity assumes accurately calling genotypes, which is not possible
with low coverage NGS data because chromosomes are sampled with replacement a variable
number of times and with appreciable levels of sequencing error. Therefore we use genotype
likelihoods to model all of these sources of genotyping error. The parameter of interest that
causes the appearance of excess heterozygosity at duplicated sites is the probability that a
sequencing read sampled at a site comes from copy 2, m. For a SNP, by assuming that copy
1 is nonvariable and copy 2 is variable, if m < 1, then the collapsed site appears variable due
to duplication, and if m = 1, all reads are derived from the variable locus and so the SNP
actually represents a single, nonduplicated site. For a site, given the observed sequencing
data D, the joint likelihood of m and the population alternate allele frequency at copy 2, f ,
is

P (D|m, f) =
n∏
j

∑
G2

P (Xj|G1 = 0, G2,m)P (G1 = 0, G2|f)

where n is the number of individuals and Xj is the sequencing data for individual j. G2 ∈
{0, 1, 2}, denoting the number of alternate alleles. Note also that we always assume that G1

is �xed for the reference allele, and so has genotype 0. Letting rj denote the number of reads
for individual j for the site in question, the genotype likelihoods are

P (D|G1, G2,m) =

rj∏
k=1

P (xjk|G1, G2,m)

The genotype likelihoods can be broken down in terms of m and the read quality scores,
which specify the probability that the identity of the associated read is a sequencing error, E .
Assuming a biallelic site where the only actual alleles are the reference, w, and alternative,
z, and uniform error rates among erroneous bases
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P (xjk = w|G1 = 0, G2 = 0) = 1− E jk
P (xjk = w|G1 = 0, G2 = 1) = (1−m)(1− E jk) +

m

2
P (xjk = w|G1 = 0, G2 = 2) = (1−m)(1− E jk) +mE jk
P (xjk = z|G1 = 0, G2 = 0) = E jk
P (xjk = z|G1 = 0, G2 = 1) = (1−m)E jk +

m

2
P (xjk = z|G1 = 0, G2 = 2) = (1−m)E jk +m(1− E jk)

Assuming that G1 is indepedent of f , the genotype priors are speci�ed by Hardy-Weinberg
expectations

P (G1 = 0, G2 = 0|f) = (1− f)2

P (G1 = 0, G2 = 1|f) = 2f(1− f 2)

P (G1 = 0, G2 = 2|f) = f 2

We use the BFGS-B algorithm to obtain maximum likelihood estimates of m and f for each
site. In the case of no duplication, m = 1, and so is nested within the duplicated case,
allowing us to specify a likelihood ratio for whether a site is duplicated

LRdup = −2 log

(
P (D|m = 1, f)

P (D|m, f)

)
LRdup is asymptotically distributed as a 50:50 mixture between a χ2

0 and χ
2
1 (Figures 2.1 &

2.2). Using LRdup one can then decide at a chosen con�dence level whether a given SNP is
paralogous.

The method for calculating per site LRdup is implemented as a freely available C++ pro-
gram, ngsParalog, available for download at https://github.com/tplinderoth/ngsParalog.
Speci�cally, the function calcLR is used for calculating LRdup using pileup format data as
input.

Hidden Markov Model for inferring duplicated regions

In order to use the likelihood that individiual sites are duplicated to infer entire regions
of duplication we use an HMM that runs over LRdup. We also use the HMM to incorporate
sequencing coverage information because sites comprised of mismapped reads from copy
number variants will tend to have coverage approximately proportional to the number of
copies (Figure 2.3).

The HMM LRdup emission probabilities under the nonduplicated state are determined
from LRdup's asymptotic distribution, which is approximately a 50:50 mixture of a χ2

0 and

https://github.com/tplinderoth/ngsParalog
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χ2
1, which we denote as ψ. The density for LRdup under the duplicated state is a noncentral

chi-square with 1 degree of freedom and noncentrality parameter Λ, Ψ(lrdup; Λ) = χ2
1,Λ.

A maximum likelihood estimate of Λ is found by jointly �tting it and pnd, the probability
that a randomly drawn site is not duplicated, to the density de�ned by

f(lrdup;pnd,Λ) = pndψ(lrdup) + (1− pnd)Ψ(lrdup;Λ)

When the number of independent observations are large, even when the simpler model (no
duplication) is true, the more complex model (duplication) is favored when the likelihoods are
compared with likelihood ratios [34]. The Bayesian information criterion, BIC, for penalizing
the LRs is based on asymptotic in�ation of Bayes factors in favor of the more complex model,
and so permits equal comparison of the models by more harshly penalizing the LRs with
increasing sample size. When wanting to be more conservative, prior to estimating Λ we
use BIC to penalize LRdup since otherwise the additional parameter in the model involving
duplication will in�ate the likelihood ratio in favor of duplication. Accordingly, k ln(n) is
subtracted from LRdup, where k in our case is 1, and n is the number of individuals.

To incorporate coverage information into the HMM we focus on the average individual
sequencing depth for a given site. The number of sequencing reads covering an individual,
R, is Poisson distributed with mean parameter λ. We let δ(r;λ) denote the density for R.
The average individual coverage at a particular site, Rn is de�ned as

Rn =
1

n

n∑
i=1

ri

λ will vary to some degree between sites based on features such as GC content, and the
position of the site along the reference sequence. Under the central limit theorem, if λ
is the same for all sites, then the average individual coverage among all sites, should be
approximately normally distributed with mean λ and variance λ

n
, where n is the number of

individuals. The variation in λ among sites increases the variance of this normal distribution.
Therefore, we consider the density for average individual coverage, φ(rn;µ, σ2, a, b), to be that
of a truncated normal distribution with mean µ, variance σ2, and minimum and maximum
values for rn of a and b, respectively. The normal distribution is truncated since the minimum
value rn can take is zero. The average individual coverage for duplicated sites, assuming two
copies, is the sum of two approximately normally distributed random variables, and so will
also be approximately normally distributed with mean 2µ. As previously mentioned, since
variation in λ among sites increases the variance among the average individual coverages, we
obtain maximum likelihood estimates for the parameters of φ(rn;µ, σ2, a, b) for nonduplicated
and duplicated sites by �tting the set of observed rn to

f(rn;pnd, µnd, σ
2
nd, σ

2
dup, adup) = pndφ(rn;µnd, σ

2
nd, 0,∞)

+ (1− pnd)φ(rn;2µnd, σ
2
dup, adup,∞)
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The left truncated normal density corresponds to nonduplicated sites (subscript nd stands for
nonduplicated), while the right-hand density is for duplicated sites (subscript dup indicates
duplicated).

The HMM observations are binned lrdup and rn pairs, {lrdup,[u,w], rn,[y,z]}, with respective
bin intervals of [u,w] and [y, z]. The two possible states comprising the state sequence, Q,
are {nonduplicated, duplicated}. We treat LRdup and Rn as conditionally independent such
that when site i is in state k, the probability of observing {lrdup,[m,n], rn,[r,s]} is

end(lrdup,[u,w], rn,[y,z]) =

{(
0.5 + 0.5

∫ w
u
χ2

1(lrdup) dlrdup
)
∗
∫ z
y
φ
(
rn;µnd, σ

2
nd, 0,∞

)
drn, m = 0

0.5
∫ w
u
χ2

1(lrdup) dlrdup ∗
∫ z
y
φ
(
rn;µnd, σ

2
nd, 0,∞

)
drn, m > 0

when the site is not duplicated, and

edup(lrdup,[u,w], rn,[y,z]) =

∫ w

u

Ψ(lrdup; Λ) dlrdup ∗
∫ z

y

φ(rn;2µnd, σ
2
dup, adup,∞) drn

when the site is duplicated. The emission probabilities are normalized to sum to one for
each state

end(vi) = end(vi)/
∑
j=1

end(vj)

edup(vi) = edup(vi)/
∑
j=1

edup(vj)

where V is the set of all possible observations.
With the emission probabilities calculated as outlined above, the Baum-Welch algorithm

is used to estimate the transition probability matrix, A, for the observed sequence, x, as

Ahl =
1

P (x)

∑
t

fh(t)ahlel(xt+1)bl(t+ 1)

and initial state distribution, π, for each h ∈ {nonduplicated, duplicated}, as

πh =
∑
h

fh(0)ahlel(x1)bl(1)

where f(t) and b(t) are the standard forward and backward variables for site t, respectively.
The Viterbi algorithm is used with A, π, and the emission probabilities estimated as

outlined above to infer the most probable states among the SNPs.
The duplication HMM method is implemented as an executable R script, dupHMM,

within the ngsParalog suite of tools (https://github.com/tplinderoth/ngsParalog). It
uses the output of ngsParalog calcLR and average individual coverage for each site as input
and outputs a position �le of regions inferred to be duplicated.

https://github.com/tplinderoth/ngsParalog
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Simulated genomic regions

We simulated NGS data in pileup format using the program ngsSimPileup https://

github.com/tplinderoth/ngsSimPileup. The average individiual coverage for each locus,
λ, was drawn from a normal distribution and then the number of sequencing reads for each
individual was drawn from a Poisson(λ). λ was treated as a random variable in order to
mimic variablity in coverage due to factors such as GC content that generate site-wise di�er-
ences in total sequencing depth. Reads for heterozygous individuals were determined with
uniform probability of sampling each allele. Given a speci�ed allele frequency, the genotype
counts at each locus were those expected under Hardy-Weinberg equilibrium. Genotype
counts were altered to account for di�erences in relative �tness, which allowed for simulating
overdominance. We assumed no inbreeding. Each sequencing read was assigned a Phred
quality score, which were distributed according to a beta distribution with alpha speci�ed
as a function of the average sequencing error rate, 0.00015, and beta=0.3 for all simulations.
Sequencing errors were then introduced according to these Phred-scaled error probabilities.
In the case of a sequencing error, the allelic identity of the read was uniformly changed to
any of the three other alleles.

For simulating data from paralogs that get collapsed into a single site, each copy was sim-
ulated as described above using the same λ for each copy. Mapping bias between paralogous
loci is possible based on the amount of sequence divergence between the copies. Therefore,
the reads from each copy were combined based on their respective, and potentially unequal
probability of mapping. ∼250,700 bp long genomic regions consisting of nonduplicated and
duplicated sites were simulated to evaluate the HMM. Speci�cally, sequences of SNP posi-
tions were generated based on a speci�ed probability that a randomly drawn site is variable,
θ, and a state assignment of duplicated or nonduplicated was assigned to each SNP based
on a an initial distribution and transition matrix. Then sequencing data for each position
was simulated with ngsSimPileup as outlined above.

One of the primary advantages of the the ngsParalog method is that it is e�ective at
very low sequencing depths for even moderate sample sizes, and so we analyzed simulated
datasets for 20, 50 and 80 individuals, each sequenced to an average depth of 2X and 4X.
For all simulations the MAF for nonduplicated sites varied uniformly between 5-50%, while
for duplicated sites copy 1 was always �xed for the reference allele, while copy 2 had an
alternate allele frequency uniformly distributed between 5-100%. Mapping bias between
duplicate copies was also simulated so that both copies either contributed reads to a site
equally (the reads covering a duplicated sites were comprised 50/50 between the two copies),
or in skewed proportions of 60/40 and 75/25 between copy 1 and copy 2, respectively. For
copies with equal contribution of reads, since all reads from both copies map to a single site,
the coverage for that site will be approximately double that of nonduplicated sites. This
in�ation of coverage decreases with greater mapping bias since only a fraction of reads from
copy 2 are mapping.

Since both paralogy and overdominance generate excess heterozygotes relative to HWE
expectations, LRdup could potentially confound regions of heterozygote advantage for dupli-

https://github.com/tplinderoth/ngsSimPileup
https://github.com/tplinderoth/ngsSimPileup
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cation. There is, however, no reason that such regions under selection should exhibit in�ated
sequencing coverage and so dupHMM, since it uses information from the duplication LRs and
coverage jointly, should be able to distinguish regions of overdominance from duplication. In
order to test this we introduced three ∼2kb long windows with selection coe�cient equal to
0.1 in favor of heterozygotes into our simulated regions. Strength of selection against both
homozygous types was the same. We then analyzed these simulated datasets the same way
as for regions without selection.

Duplication detection with Tamias chipmunk exon capture data

Virtually all NGS analyses that rely on population genetic data assume a one to one
mapping between a particular site and the data derived from that site (e.g. sequencing
reads). This can be violated when paralogy is involved as the data from genomic copies
can be collapsed together during assembly and mapping, which in�ates apparent levels of
genetic diversity, and, ultimately, biases inference. This problem is most acute for studies
involving non model organisms with lower quality reference genomes where duplication has
to be identi�ed de novo. When samples are sequenced to a high enough depth to accurately
call genotypes, duplicated SNPs can be identi�ed by testing for a signi�cant excess of het-
erozygotes relative to HWE expectations. With current analytical methods, the accuracy
and power of studies that rely on population genetic sampling often increases with more
individuals even at the cost of reduced coverage [35, 36]. That is, a desirable experimental
design is often to sample more individuals at sequencing coverage that prevents calling geno-
types. The calculation of LRdup is based on genotype likelihoods and so is able to e�ectively
identify duplicated SNPs at low sequencing depths where other methods would lack power.
To demonstrate the e�ectiveness of ngsParalog at identifying duplicated SNPs in a nonmodel
species we applied it to an alpine chipmunk, Tamias alpinus, exon capture dataset from Bi et
al.[19]. This study sequenced 20 historic museum specimens and 20 modern samples, so we
limited the current duplication analysis to only the contemporary samples. The T. alpinus
reference sequence was a de novo assembly of the exon capture data and so comprised many
small contigs (N50 = 705 bp, longest contig is 5,025 bp) representing exons and portions
of introns. Since the reference lacked large sca�olds most suited for dupHMM we limited
our analysis to the per-site duplication LRs. Using the BAM �les generated in the origi-
nal study, we identi�ed 12,154 sites with a p-value of being variable ≤ 0.05 using ANGSD
[37]. The average individual sequencing depth among the identi�ed SNPs was 15.5X. We
calculated LRdup at all of the SNPs with ngsParalog calcLR, considering only bases with a
Phred-scaled quality score ≥ 20. We identi�ed duplicated SNPs at a 0.05 sigi�cance level
after a Bonferroni correction for multiple testing by comparing LRdup to a 50:50 χ2

0 and χ2
1

distribution. We then generated the site frequency spectrum for the 20 modern individuals
with ANGSD for all sites, and for a subset of the sites that had the duplicated positions
�ltered out in order to test whether removing the putatively duplicated sites would control
the in�ation of the 50% allele frequency category in the SFS caused by paralogs.



13

Duplication detection in Timema stick insects using GBS

In order to demonstrate how ngsParalog and dupHMM can be used to identify duplicated
sites and regions in a typical population genetic study involving a nonmodel species with
a more complete reference genome, we analyzed a low-coverage, restriction digest dataset
for stick insects, Timema cristinae, generated by Lindtke et al.[28]. Using the aligned data
for the N1 population from Lindtke et al.[28], we analyzed only biallelic SNP positions
contained in the VCFs from their study found at https://datadryad.org//resource/doi:
10.5061/dryad.jt644. We analyzed all 435 N1 individuals, which had an average individual
sequencing depth of 4.9X for the analyzed SNPs. First, ngsParalog was used to calculate
LRdup for all SNPs, discarding any reads with Phred-scaled base quality < 20. SAMtools
[38] was used to obtain individual sample coverages at each site with no minimum mapping
or base quality for retaining reads, and then the average individual coverage, Rn, for each
SNP was calculated. The HMM LRdup and Rn emission density parameters were estimated
from all SNPs across all sca�olds using dupHMM, with the largest 2% of LRdup excluded to
avoid �tting to extreme values. Using these estimates for the emission density parameters,
we then ran dupHMM on each sca�old separately, �rst without a minimum Rn cuto� for
duplicated sites, and also with a semi-conservative and conservative Rn lower bound of
6X and 7.3X, which corresponds to 1 and 2 standard deviations above the mean average
individual coverage for sites with LRdup = 0. Note that these lower bounds were imposed
when estimating the coverage density parameters. Running dupHMM with the coverage
lower bound is for conservative identi�cation of duplicated regions. All duplicated region
coordinates correspond to the MSSY03 timema assembly https://www.ncbi.nlm.nih.gov/
nuccore/MSSY00000000.

Human genome analysis

We also looked for duplication in the human genome, except for the Y chromosome,
using all 2,504 unrelated individuals for the autosomes and 1,271 unrelated females for the
X chromosome represented in the Phase 3 1000 Genomes dataset. For the analyzed sites,
the average individual coverage is ∼7.29X across all chromosomes, and ranges from 6.8X for
chromosome 19 (5.3X for chromosome X with males and females) to 7.4X for chromosome 16.
There has been extensive e�ort to identify and handle structural variation and low complexity
regions with low mappability in this dataset already, including using decoy sequences during
mapping, which is outlined in the supplement of the 1000 Genomes Consortium [39].

We analyzed all of the biallelic SNPs released in the o�cial Phase 3 VCF �les found at
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/. SAMtools was used
to generate pileup input for ngsParalog from BAM �les for the analyzed SNPs. LRdup were
calculated with ngsParalog calcLR, considering only reads with a minimum Phred quality
score of 20 and requiring at least 100 individuals to have data for a site to be analyzed.
Average individual coverage was calculated from the VCF �les and this, along with the
duplication LRdup were used as input to dupHMM, which was run over each chromosome.

https://datadryad.org//resource/doi:10.5061/dryad.jt644
https://datadryad.org//resource/doi:10.5061/dryad.jt644
https://www.ncbi.nlm.nih.gov/nuccore/MSSY00000000
https://www.ncbi.nlm.nih.gov/nuccore/MSSY00000000
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
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Coverage for chromosome 12 was calculated directly from the BAM �les with Samtools
because it was not speci�ed for all analyzed SNPs in the VCF �le. All of our reported
inferred regions correspond to the hg19 human genome assembly.

2.3 Results

Duplication detection from simulated data

We simulated NGS data for 5K SNPs spanning a ∼ 250,700 bp long region for 20,
50, and 80 individuals at an average sequencing depth of 2X and 4X. In�ated sequencing
depth is commonly used to reveal duplications, and so we used receiver operator curves
(ROC) to compare the true positive to false positive rates for identifying duplicated sites
based on average sequencing depth at a site, to LRdup, and then also to dupHMM which
combines information from both the duplication LRs and sequencing depth (Figure 2.4). In
situations where both sequencing coverage and sample sizes are small, 2X and 20 individuals,
respectively, coverage and LRdup perform similarly for false positive rates under ∼5% (Figure
2.4). As allele frequencies are more accurately estimated with larger sample sizes, LRdup

outperforms sequencing coverage. Under even the most extreme circumstances of mapping
bias between paralogs, with the exception of one case where it matched LRdup, dupHMM
achieved the highest, true positive to false positive rate ratio, TPR/FPR, with maximum
false discovery rates, FDRs, under 0.05%. When the sequencing data is most sparse (2X,
n=20), dupHMM has 81-90% power for accurately identifying duplicated sites, while this
increases to 92-95% with slightly more than double the sample size, n=40.

When sequencing coverage is still low, but is increased from 2X to 4X, except for one case
where the FDR is 0.04%, dupHMM, had all FDRs of 0% and power that ranges from 96%
when there was extreme mapping bias and only 20 individuals to 100% when paralogs map
equally and with 80 sequenced individuals (Figure 2.4). When few individuals are sequenced
(n=20), a positive relationship between mapping bias and the TPR/FPR of LRdup results in
coverage performing better than LRdup when mapping is equal and vice versa when mapping
bias becomes extreme. This minimal sample size scenario is when dupHMM shows the
greatest performance advantage over coverage and LRdup under any degree of mapping bias.
When sample sizes increase to 50 and 80 individuals, LRdup primarily outperforms coverage
in all mapping scenarios, while dupHMM still has the best performance between either LRdup

or coverage.
We introduced three ∼2 kb long regions under selection in favor of heterozygotes into

our simulations to determine whether dupHMM could distinguish overdominance regions
apart from duplication. dupHMM TPR/FPR for regions involving selection and without
were primarily the same (Figure 2.5), with selection not increasing the duplication FDR.
Therefore, dupHMM was able to accurately distinguish between regions of overdominance
and duplication.
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Tamias chipmunk exon capture analysis

We estimated the SFS from exon sequencing data for 20 T. alpinus chipmunks and
found an excess of of heterozygotes (Figure 2.6), which is the telltale sign of paralogs. Under
neutrality, the number of sites belonging to allele frequency category x should be proportional
to 1/x, meaning that in this case the 50% category is expected to have approximately 0.05
as many sites as the singleton category (baring the small increase in singletons from folding
the SFS). However, there are nearly 0.25 times as many 50% frequency sites as singletons,
that is, nearly 5x the neutral expectation. This could bias the many population genetic
summary statistics and analyses based on the SFS. We applied ngsParalog to this dataset
to determine whether it could be used to identify these problematic, likely paralogous SNPs,
and improve the SFS. From the Bonferroni-corrected LRdup p-values, we found 1,707 SNPs to
likely be duplicated at a 0.05 signi�cance level. After removing these SNPs from the dataset
we estimated the SFS in the same way as before and found that there was no longer an
excess of sites with an allele frequency of 50% (Figure 2.6), and that now there were 0.052 as
many 50% frequency sites as singletons, which agrees exactly with the neutral expectation.

Timema stick insect genome analysis using GBS data

We estimated duplication levels in the stick insect genome by applying ngsParalog and
dupHMM to GBS data from 435 T. cristinae that were sequenced and mapped to the draft
reference genome by Lindtke et al.[28]. Without imposing any coverage requirements for a
site to be considered duplicated, on average 3.8% of the analyzed sites among all linkage
groups (LGs) appear to be duplicated (4% duplication including sca�olds not assigned to
LGs) (Table 2.1). Duplication was highest at 6.15% for unassigned sca�olds, followed by
LG1 with 5.78% of sites inferred to be duplicated. LG9 had the least duplication of 2.41%.
The number of duplicated regions among the 13 LGs ranged from 89 on LG12, comprised of
64 sca�olds to 660 for LG3 with 166 sca�olds. In total we found 3,602 potentially duplicated
regions among the 1,312 LG sca�olds and 1,622 possibly duplicated regions among the 536
analyzed sca�olds not assigned to any LG. The largest duplicated region was on sca�old
1157, belonging to LG1, between positions 15,980 and 91,104 (Figure 2.7).

We also analyzed the Timema data with dupHMM whereby we required duplicated sites
to have average individual coverage that was at least 1 (semi-conservative) and 2 (conserva-
tive) standard deviations above the average among sites with LRdup = 0, that is, sites that
are likely not duplicated. This provides more conservative estimates of duplication levels
and identi�es high-con�dence regions of duplication that should be masked from analyses
that can be confounded by paralogy. The average percentage of duplication among LGs for
the semi-conservative and conservative analyses were 2.3% (range 1.3-3.6%) and 1.9% (range
1.3-3.2%), respectively (Tables 2.2 & 2.3). When being most conservative we found 1,161 du-
plicated regions total among all of the LGs (36-220 regions per LG), which increases to 1,702
regions (43-325 regions per LG) with the semi-consevative coverage threshold. The largest
potential duplicated region when using the less stringent coverage threshold is a 74,792 bp
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long region on sca�old 1157 nested within the largest region identi�ed when imposing no min-
imum coverage threshold for duplicated sites. Under the most strict coverage requirements
for duplicated sites, the largest duplicated region changes to sca�old 1326 spanning posi-
tions 181,369 to 204,012. The longest duplicated region among sca�olds unassigned to LGs
stays consistent across the three coverage stringency levels, being a ∼54 kb long region on
sca�old 1017. Levels of duplication among unassigned sca�olds under the semi-conservative
and conservative coverage requirement was 3.6% and 3.2% respectively.

Duplication detection in humans from the Phase 3 1000 Genomes

dataset

To �nd duplication in the human genome we analyzed all unrelated individuals repre-
sented in the 1000 Genomes Phase 3 dataset for the autosomes and all unrelated females for
the X chromosome. ngsParalog was used to calculate LRdup for all of the biallelic SNPs in
the o�cially released Phase 3 VCFs. We ran dupHMM using LRdup and average individual
sequencing coverage in a conservative manner that identi�es sites as duplicated only when
there is high evidence for duplication from in�ated coverage and excessive heterozygosity,
which would be best suited for identifying duplications for quality control purposes. Since
the 1000 Genomes dataset has already undergone extensive �ltering for regions that are
inaccessible to next generation sequencing for reasons such as duplication, we analyzed the
human genome without any previous masking by the 1000 Genomes Project, then with the
pilot mask (intended to represent regions that are essentially unaccessible to short reads
and so should not include any duplicated sites), and then with the strict mask (representing
the most unique regions of the genome). Without any masking we found on average 0.37%
of each chromosome to be duplicated (Table 2.4), which ranged from 0.13% for chromo-
some 20 to 1.9% for chromosome 21. The largested duplicated regions for all chromosomes
spanned approximately 1 kb (chromosome 20) to 21.06 mb (chromosome 1, encompassing
the centromere), with a median maximum length of ∼11.5 kb.

The large region on chromosome 1 was identi�ed by the 1000 Genomes pilot mask. With
this mask applied we �nd on average 0.1% (range 0.05-0.4%) of each chromosome to be
duplicated such that the pilot mask removes approximately two thirds of duplicated regions
identi�ed by dupHMM (Table2.5). The largest remaining regions missed by the pilot mask
are on average 269 bp long, encompassing only a few SNPs. Coverage and LRdup distributions
for SNPs inferred to be duplicated by the HMM and that were missed by the pilot �lter show
minimal overlap and are right-shifted compared to nonduplicated SNPs (Figures 2.8 & 2.9)
suggesting that the duplicated SNPs do in fact belong to small duplicated regions.

The largest remaining conservatively-identi�ed duplicated region after the pilot �lter is
a 1.1 kb long region on the X chromosome spanning positions 452,904-454,014 (Table 2.5),
which exhibits higher-than-average sequencing depth and SNPs with excess heterozygos-
ity (Figure 2.10). This region contains multiple subregions of repeated elements according
to RepeatMasker [40] and shows some enrichment of the H3K27Me3 histone mark (UCSC



17

Genome Browser [41], hg19). When dupHMM is run with less stringent coverage require-
ments (more suitable for discovery versus data quality control), the largest duplicated region
in the pilot-masked human genome is a 1.8 kb long region on the X chromosome between
positions 1,522,669-1,524,475 (2.7). The conservative run of dupHMM also provides evidence
that this region, which spans cytokine receptor and acetylserotonin O-methyltransferase-like
genes (UCSC Genome Browser [41], hg19), is duplicated (Figure 2.11).

The 1000 Genomes strict accessibility mask is intended to represent the most unique
regions of the human genome. After applying this �lter we �nd only 0.008% of each chromo-
some on average to be duplicated (Table 2.6), implying that the strict mask removes 98% of
the potentially paralogous sites present in the unmasked data. The largest duplicated region
remaining after strict masking is 240 bp long and is located on chromosome 2, while the av-
erage length for the largest duplicated regions across all chromosomes is 77 bp. This means
that the majority of putatively duplicated regions missed by the strict mask are very small,
mostly containing a single SNP. The coverage and LRdup for duplicated sites are clearly
greater than for nonduplicated sites after the strict mask (Figures 2.12 & 2.13), supporting
that these missed sites are duplicated.

2.4 Discussion

Evaluation of duplication detection from simulations

Our probabilistic method for duplication detection involves �rst estimating the likelihood
that reads at a SNP are derived from a secondary locus. This leads to a likelihood ratio test
based on LRdup for whether or not a site is duplicated that achieves high TPR/FPR even
at low sequencing depth, e.g. 2-4X, where genotyping error would normally be too high to
reliably use deviation from HWE to detect paralogs. We �nd based on simulations that this
likelihood ratio test is superior to using sequencing depth when sample sizes are large enough
to accurately estimate allele frequencies (> 20 individuals). However, when there is mapping
bias between paralogs LRdup outperforms coverage alone even in these low sample size cases.
The second feature of our method is that we use both excess heterozygosity via LRdup and
coverage information in an HMM to infer regions of duplication. We �nd from simulation
that dupHMM achieves better TPR/FPR than using coverage or LRdup alone under nearly
all combinations of sample sizes, sequencing depth, and mapping bias between paralogs, and
shows the clearest advantage over LRdup and coverage under the worst sequencing scenarios,
20 individuals at 2-4X. In addition, dupHMM's almost 0% FDR is une�ected by fairly strong
overdominance (s=0.1)that can mimic the signal of duplication.

Duplication detection in nonmodel species

We showed how our method for identifying paralogs can be used to discover copy number
variation and obtain more reliable population genetic inference in studies using experimen-
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tal approaches that are more typical for nonmodel species lacking well developed reference
genomes. When there is not a draft genome but instead only a de novo assembly comprised
of many short contigs like for the Tamias chipmunk exon capture dataset, based on LRdup

at each SNP, we can accurately statistically identify which contigs may represent paralogs.
By removing nearly 4 fold of the sites from the 50% allele frequency category of the SFS that
were identi�ed as duplicated, we achieved a nearly perfect �t to theoretical expectations in
the portion of the spectrum that had been distorted by paralogs. Population genetic infer-
ence using the SFS before being �xed with ngsParalog would results in increased estimates
of diversity and obscure inferences of population di�erentiation and scans for balancing se-
lection.

Mapped NGS data is all that is required to estimate LRdup, and so our method can
also be used on restriction digest datasets in the same way that it was applied to the exon
capture data. In the case of studies like that of Lindtke et al. [28] where they were able
to map GBS data to a draft reference genome comprised of linkage groups and unassigned
sca�olds, dupHMM can also be used. This may be desirable as our simulations demonstrate
that dupHMM nearly always achieves improved power to false discovery rates compared
to LRdup. By analyzing the Lindtke et al.[28] data we �nd that duplication levels in the
Timema stick insect genome is conservatively around 1.9% and could very possibly be as
high as 3.8%. Inferred levels of duplicaiton were almost always highest among sca�olds
unassigned to linkage groups. It could be that some of these sca�olds are unassignable
because too much of their sequence is chimeric, representing multiple regions of the genome
or low complexity regions, and so detecting the highest amount of duplication among them
makes sense. A number of recent papers [42, 28, 43, 44] make it clear that stick insects are
becoming a very interesting species in which to address evolutionary questions, particularly
now that there is a draft reference genome. Reliable inference from Timema genomic data
will often necessitate masking potential regions of duplication, and so we provide masking
position �les at https://github.com/tplinderoth/ngsParalog_masks, which can be used
for this purpose.

The regions of duplication inferred with dupHMM for data generated using restriction
enzymes and then mapped to a longer contiguous reference should be considered more ap-
proximate than for true whole genome sequencing data because identifying where the start
and stop coordinates of duplication occur must coincide with SNP locations proximal to
restriction sites. Long regions of duplication may be inferred only because there are few
restriction sites between the start and end positions. Therefore, for GBS or RAD data
mapped to a longer contiguous sequence, it should be acknowledged that a section of du-
plication may end sooner than the inferred stop position, which becomes increasingly likely
when restriction sites are sparse within the inferred region. Certainly the region proximal
to a restriction site spanned by sequencing reads and corresponding to a start position for
an inferred duplicated region is likely to be duplicated and so speci�c restriction loci can be
masked.

https://github.com/tplinderoth/ngsParalog_masks
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Duplication detection in the human genome

Our analysis of the 1000 Genomes Phase 3 data geared towards quality control �nds
that ∼0.37% of the human genome is potentially paralogous. This estimate is primarily
limited to regions in the human reference genome that are chimeric from the assembly of
paralogous regions. Most notable is that we found 58,488 regions that are not included in
the 1000 Genomes pilot mask and that show strong evidence of being duplicated. Inclusion
of these regions in analyses could falsely in�ate estimates of diversity, thereby potentially
increasing mutation rate estimates, biasing inferrences based on the site frequency spectrum,
and generating false positives in selection scans. Therefore, it is advisable that these regions,
which primarily consist of one or a few SNPs should be removed for any analyses that would
normally apply the 1000 Genomes pilot mask. The 1000 Genomes strict �lter appears to
do a thorough job of masking putatively duplicated sites. Nevetheless, we do �nd 3,119
regions (mostly consisting of single SNPs), that show signs of duplication in terms of in�ated
coverage and excessive heterozygosity, which are not in the strict mask. Based on simulations,
when using the combination of coverage and excess heterozygosity with dupHMM, the false
discovery rate is extremely low (< 0.05%), and so it is likely that these low-coverage regions
still may represent duplications. We think it advisable for any analyses that do intend to use
only the most unique regions of the genome, to mask these regions from the inference. All of
the regions that we found showing evidence for being duplicated and that are missing from the
1000 Genomes masks are contained in region �les at https://github.com/tplinderoth/
ngsParalog_masks.
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2.6 Tables

Table 2.1. Paralogy in the Timema cristinae genome identi�ed with dupHMM using no
minimum coverage requirement for duplicated sites. The `% paralogy' is the percentage of
SNPs analyzed by dupHMM that were inferred to be duplicated. `Max region' gives the
positions on the respective sca�old that the largest duplicated region spans. The average
length and corresponding standard deviation for all of the duplicated regions found for
each sca�old are shown in the `average length' and `sd length' columns, respectively.

linkage

group sca�old

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 1157 5.782 384 75,125 15,980 - 91,104 501 4,297.09

2 95 4.694 173 10,306 30,679 - 40,984 111 862.62

3 60 3.030 660 28,602 289,588 - 318,189 226 2,004.81

4 312 3.196 544 62,523 300,500 - 363,022 248 2,863.95

5 1020 4.277 167 51,832 168,582 - 220,413 409 4,105.77

6 251 2.649 274 61,550 33,598 - 95,147 237 3,717.68

7 104 4.783 202 22,427 464,381 - 486,807 278 2,101.18

8 707 3.892 298 36,096 292,969 - 329,064 181 2,152.90

9 688 2.413 189 12,766 98,845 - 111,610 91 940.31

10 91 2.762 202 6,723 659,027 - 665,749 78 621.47

11 469 3.004 184 15,879 431,879 - 447,757 185 1,635.04

12 793 5.416 89 6,169 93,342 - 99,510 117 689.88

13 2387 3.370 236 41,675 38,748 - 80,422 309 2,878.07

NA 1071 6.153 1,622 54,059 3,316 - 57,374 494 3,198.95
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Table 2.2. Paralogy in the Timema cristinae genome identi�ed using dupHMM with the
requirement that duplicated sites have average coverage ≥ 1 standard deviation above that
for sites with LRdup = 0. The `% paralogy' is the percentage of SNPs analyzed by
dupHMM that were inferred to be duplicated. `Max region' gives the positions on the
respective sca�old that the largest duplicated region spans. The average length and
corresponding standard deviation for all of the duplicated regions found for each sca�old
are shown in the `average length' and `sd length' columns, respectively.

linkage

group sca�old

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 1157 3.573 201 74,792 16,313 - 91,104 615.11 5601.99

2 95 3.192 97 1,237 30,679 - 31,915 30.59 126.96

3 257 1.769 325 20,940 594,894 - 615,833 104.09 1179.88

4 75 1.867 248 12,068 928,173 - 940,240 126.96 928.23

5 1020 2.359 84 11,597 49,474 - 61,070 150.42 1264.15

6 10 1.618 128 108 522,335 - 522,442 17.70 24.74

7 2084 2.869 96 18,911 69,497 - 88,407 243.68 1944.53

8 565 2.264 123 848 5,148 - 5,995 30.73 90.50

9 140 1.254 85 73 917,182 - 917,254 10.87 18.47

10 91 1.647 87 6,723 659,027 - 665,749 103.20 723.36

11 469 1.869 90 15,879 431,879 - 447,757 319.36 2036.62

12 793 3.589 43 6,169 93,342 - 99,510 182.40 938.25

13 2387 1.780 95 18,213 62,210 - 80,422 271.89 1919.39

NA 1071 3.565 757 54,029 3,316 - 57,344 496.01 3300.54
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Table 2.3. Paralogy in the Timema cristinae genome identi�ed using dupHMM with the
requirement that duplicated sites have average coverage ≥ 2 standard deviations above
that for sites with LRdup = 0. The `% paralogy' is the percentage of SNPs analyzed by
dupHMM that were inferred to be duplicated. `Max region' gives the positions on the
respective sca�old that the largest duplicated region spans. The average length and
corresponding standard deviation for all of the duplicated regions found for each sca�old
are shown in the `average length' and `sd length' columns, respectively.

linkage

group sca�old

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 1326 2.738 139 22,644 181,369 - 204,012 301.96 2,266.84

2 95 2.707 60 1,237 30,679 - 31,915 42.33 159.76

3 257 1.392 220 20,940 594,894 - 615,833 144.45 1,431.88

4 75 1.475 167 12,068 928,173 - 940,240 149.75 1,057.91

5 1020 2.169 53 11,597 49,474 - 61,070 234.96 1,590.89

6 10 1.485 91 108 522,335 - 522,442 22.98 26.99

7 2084 2.673 68 18,911 69,497 - 88,407 337.15 2,308.79

8 565 1.640 76 848 5,148 - 5,995 36.91 105.85

9 140 1.132 62 73 917,182 - 917,254 14.50 20.52

10 91 1.227 57 6,723 659,027 - 665,749 150.32 892.61

11 469 1.544 60 15,879 431,879 - 447,757 474.55 2,486.59

12 1262 3.231 36 389 94,038 - 94,426 33.19 66.09

13 2387 1.618 72 18,213 62,210 - 80,422 297.96 2,155.42

NA 1071 3.171 549 54,029 3,316 - 57,344 539.47 3,660.87
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Table 2.4. Paralogy in the human genome conservatively identi�ed from the Phase 3 1000
Genomes data (no mask) using dupHMM. LRdup were BIC-penalized and the average
individual coverage lower bound for duplicated sites was set two standard deviations above
the inferred nonduplicated coverage distribution mean. The `% paralogy' is the percentage
of SNPs analyzed by dupHMM that were inferred to be duplicated. `Max region' gives the
positions on the respective chromosome that the largest duplicated region spans. The
average length and corresponding standard deviation for all of the duplicated regions found
for each chromosome are shown in the `average length' and `sd length' columns,
respectively.

chr

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 0.5832 9,505 21,055,606 121,484,721 - 142,540,326 2,338.88 215,968.70

2 0.2479 6,976 25,458 91,796,971 - 91,822,428 61.57 575.47

3 0.1442 4,438 1,934 195,435,052 - 195,436,985 24.56 94.87

4 0.2413 5,294 55,978 9,270,201 - 9,326,178 79.21 972.70

5 0.1506 4,273 16,527 34,178,620 - 34,195,146 42.49 416.08

6 0.2372 5,289 10,120 161,044,540 - 161,054,659 35.25 219.71

7 0.2771 6,880 7,075 61,187,579 - 61,194,653 30.62 192.27

8 0.2732 4,775 3,010,095 43,835,896 - 46,845,990 737.54 43,645.12

9 0.3344 5,549 9,150 66,476,878 - 66,486,027 53.79 307.14

10 0.3463 3,963 9,740 42,535,553 - 42,545,292 51.87 251.19

11 0.1450 3,321 7,050 51,585,328 - 51,592,377 21.88 180.42

12 0.1320 2,527 51,215 95,179 - 146,393 51.06 1,028.89

13 0.1484 1,602 2,889 112,962,725 - 112,965,613 28.56 120.40

14 0.4005 4,944 5,901 19,838,213 - 19,844,113 45.52 214.37

15 0.5551 3,857 11,506 20,483,492 - 20,494,997 91.04 471.94

16 0.7333 10,661 23,605 46,386,567 - 46,410,171 29.43 304.26

17 0.3117 2,998 13,929 36,358,538 - 36,372,466 64.23 509.30

18 0.1417 1,614 10,514 44,546,370 - 44,556,883 33.89 296.98

19 0.3181 2,902 26,446 36,773,503 - 36,799,948 66.94 801.39

20 0.1280 1,371 953 20,337,722 - 20,338,674 20.03 68.41

21 1.8829 3,536 51,788 9,774,635 - 9,826,422 190.70 1,241.98

22 0.3917 2,494 8,037 20,630,977 - 20,639,013 44.30 214.00

X 0.2794 4,285 29,098 114,968,488 - 114,997,585 52.38 529.50
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Table 2.5. Paralogy in the human genome conservatively identi�ed from the pilot-masked
Phase 3 1000 Genomes data using dupHMM. The 1000 Genomes Pilot mask is intended to
�lter out regions of the human genome that are not e�ectively accessible to short read
sequencing. LRdup were BIC-penalized and the average individual coverage lower bound for
duplicated sites was set two standard deviations above the inferred nonduplicated coverage
distribution mean. The `% paralogy' is the percentage of SNPs analyzed by dupHMM that
were inferred to be duplicated. `Max region' gives the positions on the respective
chromosome that the largest duplicated region spans. The average length and
corresponding standard deviation for all of the duplicated regions found for each
chromosome are shown in the `average length' and `sd length' columns, respectively.

chr

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 0.0901 3,908 311 144,925,427 - 144,925,737 10.92 22.40

2 0.0752 3,725 269 89,834,594 - 89,834,862 6.84 17.28

3 0.0581 2,272 230 195,447,513 - 195,447,742 8.57 19.72

4 0.0693 2,591 234 7,726,116 - 7,726,349 8.24 18.55

5 0.0672 2,478 244 251,917 - 252,160 7.79 18.92

6 0.1037 3,236 276 57,243,461 - 57,243,736 11.54 26.04

7 0.1309 4,113 291 158,870,000 - 158,870,290 7.63 18.67

8 0.0923 2,757 303 143,337,214 - 143,337,516 9.25 21.27

9 0.1030 2,635 215 39,059,787 - 39,060,001 7.92 18.26

10 0.1202 2,902 217 38,567,575 - 38,567,791 8.39 18.37

11 0.0678 1,972 201 11,268,184 - 11,268,384 5.78 14.30

12 0.0544 1,470 238 126,664,908 - 126,665,145 8.24 20.66

13 0.0578 937 147 114,453,782 - 114,453,928 7.61 16.38

14 0.1795 3,251 187 19,090,957 - 19,091,143 8.59 19.76

15 0.1566 2,349 300 22,488,047 - 22,488,346 14.61 29.40

16 0.4041 7,501 271 32,649,869 - 32,650,139 8.66 20.81

17 0.1313 2,127 243 34,456,117 - 34,456,359 8.82 21.18

18 0.0678 978 157 74,473,810 - 74,473,966 8.04 18.23

19 0.1566 1,825 212 16,180,151 - 16,180,362 7.60 16.77

20 0.0749 985 208 47,059,931 - 47,060,138 7.81 20.55

21 0.2053 1,532 155 9,583,843 - 9,583,997 9.31 17.66

22 0.1447 1,161 162 23,772,319 - 23,772,480 7.06 16.11

X 0.1161 1,783 1,111 452,904 - 454,014 15.04 54.32
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Table 2.6. Paralogy in the human genome conservatively identi�ed from the strict-masked
Phase 3 1000 Genomes data using dupHMM. The 1000 Genomes strict mask is intended to
identify the most unique regions of the human genome that should be most accessible to
short read sequencing. LRdup were BIC-penalized and the average individual coverage
lower bound for duplicated sites was set two standard deviations above the inferred
nonduplicated coverage distribution mean. The `% paralogy' is the percentage of SNPs
analyzed by dupHMM that were inferred to be duplicated. `Max region' gives the positions
on the respective chromosome that the largest duplicated region spans. The average length
and corresponding standard deviation for all of the duplicated regions found for each
chromosome are shown in the `average length' and `sd length' columns, respectively.

chr

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 0.0016 62 91 17,211,757 - 17,211,847 4.47 12.19

2 0.0045 184 240 113,046,093 - 113,046,332 4.31 18.53

3 0.0031 105 64 195,729,979 - 195,730,042 3.93 8.08

4 0.0017 64 36 1,634,750 - 1,634,785 2.27 5.91

5 0.0045 148 105 757,975 - 758,079 3.90 10.74

6 0.0051 162 82 275,071 - 275,152 3.50 9.36

7 0.0055 137 78 54,183 - 54,260 4.13 10.36

8 0.0045 130 133 23,011,545 - 23,011,677 4.57 14.40

9 0.0026 48 46 137,873,834 - 137,873,879 3.29 7.28

10 0.0066 149 49 39,111,408 - 39,111,456 3.45 6.34

11 0.0055 143 67 18,953,270 - 18,953,336 3.38 8.76

12 0.0041 93 42 38,114,822 - 38,114,863 3.04 6.34

13 0.0030 47 38 113,222,296 - 113,222,333 4.51 7.69

14 0.0480 698 151 106,927,706 - 106,927,856 7.91 18.38

15 0.0000 2 11 28,705,645 - 28,705,655 8.50 3.54

16 0.0166 249 122 72,103,288 - 72,103,409 5.12 12.58

17 0.0243 297 115 34,472,963 - 34,473,077 6.39 16.27

18 0.0042 60 54 76,515,070 - 76,515,123 3.48 8.87

19 0.0177 137 41 21,755,570 - 21,755,610 3.40 6.81

20 0.0032 36 37 59,748,311 - 59,748,347 2.92 6.62

21 0.0010 7 8 45,631,883 - 45,631,890 2.14 2.61

22 0.0095 54 75 23,772,319 - 23,772,393 5.19 12.33

X 0.0059 107 79 1,578,618 - 1,578,696 5.52 11.77
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Table 2.7. Paralogy in the human genome identi�ed from the pilot-masked Phase 3 1000
Genomes data using dupHMM ran in a manner most suitable for discovery. LRdup were not
penalized and the average individual coverage lower bound for duplicated sites was set
slightly more than three standard deviations below the inferred nonduplicated coverage
distribution mean. The `% paralogy' is the percentage of SNPs analyzed by dupHMM that
were inferred to be duplicated. `Max region' gives the positions on the respective
chromosome that the largest duplicated region spans. The average length and
corresponding standard deviation for all of the duplicated regions found for each
chromosome are shown in the `average length' and `sd length' columns, respectively.

chr

%

paralogy

number

of

regions

max

length

(bp) max region

average

length

(bp)

sd

length

1 1.1482 54,191 396 144,937,890 - 144,938,285 6.40 17.45

2 0.8600 45,592 500 133,117,550 - 133,118,049 5.53 15.82

3 0.8206 35,634 452 195,453,591 - 195,454,042 5.74 17.25

4 1.0635 45,207 278 125,536,276 - 125,536,553 5.36 14.62

5 0.8375 33,021 391 975,677 - 976,067 5.66 16.93

6 1.0138 34,913 495 57,277,858 - 57,278,352 7.08 21.47

7 1.1195 38,159 379 61,886,490 - 61,886,868 6.13 17.20

8 0.8537 28,196 393 2,224,643 - 2,225,035 5.96 17.14

9 1.1506 30,621 445 66,520,472 - 66,520,916 5.97 16.69

10 1.2148 34,715 355 46,960,620 - 46,960,974 5.92 16.59

11 0.9503 29,135 317 11,268,184 - 11,268,500 5.12 14.50

12 1.3440 38,752 425 132,964,460 - 132,964,884 5.59 17.10

13 1.0872 22,615 640 112,629,117 - 112,629,756 5.65 17.05

14 1.2696 23,219 394 19,052,769 - 19,053,162 7.06 19.73

15 1.3034 22,311 391 22,301,953 - 22,302,343 7.91 21.11

16 1.4487 27,494 338 15,065,313 - 15,065,650 7.76 20.61

17 1.7109 29,711 360 75,480,941 - 75,481,300 5.75 17.49

18 1.1991 20,148 321 37,381,549 - 37,381,869 5.58 16.46

19 2.1490 27,972 383 24,531,071 - 24,531,453 5.63 15.89

20 0.7946 10,929 356 29,506,031 - 29,506,386 5.64 17.52

21 1.1917 8,884 283 10,961,722 - 10,962,004 7.36 18.32

22 1.3463 10,959 319 45,964,384 - 45,964,702 5.73 15.91

X 1.1783 27,198 1,807 1,522,669 - 1,524,475 6.70 29.09
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Figure 2.1. Asymptotic distribution of LRdup. Empirical LRdup were calculated from
simulated NGS data for nonduplicated SNPs at sample sizes of 50, 100, 1000, and 10000
individuals at 8X average depth.
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Figure 2.2. Distribution of p-values for LRdup under its theoretical distribution. P-values
were obtained from data simulated under the mixed 50/50 χ2

1 and χ
2
0 distribution

(theoretical) and from LRdup calculated from simulated NGS data for 50, 100, and 1000,
individuals respectively. The p-values are uniformly distributed over the continuous part of
the distribution with a discrete mass at 0.5, corresponding to the point mass at zero.
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Figure 2.3. Depiction of dupHMM. The HMM is comprised of two states, nonduplicated
and duplicated, and uses likelihood ratios of duplication, LRdup, which are based on the
probability that the collection of sequencing reads for individuals are derived from multiple
regions in the genome, jointly with average individual sequencing coverage, Rn, as
emissions. The two bottom plots exemplify the expected di�erence in the distribution for
LRdup and average coverage between non-duplicated (aqua), and duplicated (pink) sites.
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Figure 2.4. Comparison of power and false discovery from using average individual
coverage (dashed line), LRdup (solid line), and dupHMM (points) for identifying duplicated
sites. The top row of panels is for data simulated at an average sequencing depth of 2X for
20, 50, and 80 individuals, while the bottom row shows results for data simulated at an
average sequencing depth of 4X for the same sample sizes. The di�erent colors indicate
di�erent levels of mapping bias between paralogs, where 60/40 , for example, indicates that
in the pool of reads covering a duplicated site, 60% represent copy 1 and 40% represent
copy 2 because fewer reads from copy 2 mapped.
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Figure 2.5. Comparison of dupHMM power and error rates for selectively neutral regions
(circles) and the same regions with selection for heterozygotes introduced (X). The top row
of panels is for data simulated at an average sequencing depth of 2X for 20, 50, and 80
individuals, while the bottom row shows results for data simulated at an average sequencing
depth of 4X for the same sample sizes. Di�erent mapping biases between paralogs are
represented by the colors where 60/40, for example, means that in the pool of reads
covering a duplicated site, 60% of reads are derived from copy 1 and 40% are from copy 2.
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Figure 2.6. The folded site frequency spectrum from exon capture data for 20 Tamias
alpinus chipmunks before and after sites inferred to be duplicated with ngsParalog are
removed. Paralogy e�ects the 50% allele frequency category, which is denoted in red.
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Figure 2.7. Trace of the largest paralogous region in Timema cristinae (deplicated by red
bars), which is located on linkage group 1 sca�old 1157. The top LRdup plot is a zoomed-in
version along the y-axis of the one below it to o�er better resolution of the LRdup values
for sites that were being overwhelmed by those with extremely large values. Since the data
represented by this plot is a reduced representation of the genome using the restriction
enzyme EcoRI, all SNPs fall within 100 bp of the restriction sites. Accordingly, the blue
outlined insets are a zoomed-in view of the blue outlined areas, o�ering better resolution of
the LRdup and coverage values at one restriction site. The average individual sequencing
coverage for this dataset is depicted by the horizontal green line.
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Figure 2.8. Comparison between the distributions of average individual sequencing
coverage for sites conservatively identi�ed as nonduplicated (cyan) and duplicated (pink)
by dupHMM after applying the 1000 Genomes pilot accessibility �lter. dupHMM was run
using BIC-penalized LRdup and required duplicated sites to have average individual
coverage of at least ∼9X (7X for chromosome X).
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Figure 2.9. Comparison between the distributions of LRdup for sites conservatively
identi�ed as nonduplicated (cyan) and duplicated (pink) by dupHMM after applying the
1000 Genomes pilot accessibility �lter. dupHMM was run using BIC-penalized LRdup and
required duplicated sites to have average individual coverage of at least ∼9X (7X for
chromosome X).
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Figure 2.10. Putatively duplicated region in the human genome that was missed by the
1000 Genomes pilot accessibility �lter. The ∼1.1 kb long region spanning position
452,361-454,014 on the X chromosome was identi�ed as duplicated with dupHMM run in a
conservative manner most appropriate for �ltering data (blue bars) and in a way more
suited for discovery (red bars, Table 2.7). The conservative run penalized LRdup using BIC
and set an average individual coverage lower bound for duplicated regions at 7X, while the
more exploratory run did not penalize LRdup and set a lower coverage bound for duplicated
regions at 2.5X. The top two panels show the duplicated regions identi�ed without any
accessibility �lter and after applying the strict and pilot �lters (note that results were the
same for no masking and after applying the pilot mask). The bottom two panels show
traces of LRdup calculated with ngsParalog and the average individual coverage in and
around the region identi�ed as duplicated. The horizontal green line on the coverage trace
indicates the average individual coverage for chromosome X (∼ 5.3X).
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Figure 2.11. Largest region in the human genome that is likely duplicated and missing
from the 1000 Genomes accessibility �lters. This putatively duplicated 1.8 kb long region
between positions 1,522,669 and 1,524,475 of the X chromosome span cytokine receptor
and acetylserotonin O-methyltransferase-like genes. The top three panels show regions
identi�ed as duplicated with dupHMM run in four di�erent ways. The blue regions
represent the most conservative way of running dupHMM, where LRdup are penalized using
BIC and duplicated sites must have at least ∼ 7X average individuals coverage. The cyan
region used the same coverage threshold but without penalizing LRdup. The purple region
used BIC-penalized LRdup and an average individual coverage lower bound of 2.5X for
duplicated sites, which is slightly more than three standard deviations below the overall
average sequencing depth among all sites. The red region represents dupHMM run in the
most liberal way, best suitable for discovery, in which LRdup are unpenalized and the
allowed minimum average individual coverage for duplicated sites is 2.5X (Table 2.7). The
top three panels show regions identi�ed as duplicated before applying any accessibility
�lters and after applying the pilot and strict masks. The bottom two panels are traces of
LRdup and the average individual sequencing coverage. The green horizontal bar in the
coverage trace indicates the average coverage for chromosome X (∼5.3X).
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Figure 2.12. Comparison between the distributions of average individual sequencing
coverage for sites conservatively identi�ed as nonduplicated (cyan) and duplicated (pink)
by dupHMM after applying the 1000 Genomes strict accessibility �lter. DupHMM was run
using BIC-penalized LRdup and required duplicated sites to have average individual
coverage of at least ∼9X (7X for chromosome X).
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Figure 2.13. Comparison between the distributions of LRdup for sites conservatively
identi�ed as nonduplicated (cyan) and duplicated (pink) by dupHMM after applying the
1000 Genomes strict accessibility �lter. DupHMM was run using BIC-penalized LRdup and
required duplicated sites to have average individual coverage of at least ∼9X (7X for
chromosome X).
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3.1 Introduction

Rapid environmental change threatens global biodiversity and has already led to pop-
ulation decline or extirpation of many species [45, 10, 46]. Although phenotypic plasticity
may enable populations to rapidly track changing climates, evolutionary adaptation will be
essential for the long-term persistence of many species[47]. Disentangling plasticity from evo-
lutionary responses ultimately requires resolving the genetic basis of adaptation. However,
it remains challenging to di�erentiate recent or ongoing positive selection from stochastic
genetic changes in populations that are also undergoing extreme demographic changes [48,
49]. Natural history museum collections may hold the key to overcoming many of these
di�culties by providing crucial temporal information on species distributions, phenotypes,
and population genetic variation spanning periods of recent environmental change [50, 19].
Temporal genomic contrasts have yielded powerful insights into human evolution [51, 52], but
have yet to be fully leveraged to understand more recent evolutionary responses in species
impacted by rapid anthropogenic climate change.

Using contrasts between early 20th century and modern museum surveys, Moritz and
colleagues [10] showed that the ranges of many high elevation small mammal species in
Yosemite National Park (YNP), California, USA, have retracted upward over the past cen-
tury of climate change. This landmark study demonstrated the potential of using museum
archives to understand community level ecological responses to climate change. Here we
focus on two chipmunk species within the YNP montane mammal community. The alpine
chipmunk (Tamias alpinus) has undergone severe elevational range retraction [10, 53] com-
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bined with pronounced shifts in diet and cranial morphology [54] across the alpine zone of
YNP and elsewhere in Sierra Nevada mountains. For YNP T. alpinus, modern samples show
increased phenotypic integration relative to historic samples across a suite of skull characters
consistent with strong directional selection [55]. In contrast, the range, diet, and morphology
of the partially overlapping lodgepole chipmunk (T. speciosus) has remained stable within
YNP [53, 54]. It remains unclear why T. alpinus has contracted with 20th Century climate
change whereas its congener has not. A previous temporal survey of eight microsatellite
markers revealed increased subdivision and stable heterozygosity but declining allelic diver-
sity in YNP T. alpinus, but no signi�cant genetic changes in T. speciosus over the same
interval [18]. Extending these basic descriptions of phenotypic and genetic variation to a
detailed understanding of demographic and evolutionary responses in these species requires
genomic data.

Here we build on these previous works by generating targeted genome-wide sequence data
from over 300 contemporary and archived chipmunk specimens spanning a century of climate
change. We then develop a novel analytical framework that allows us to both characterize
general demographic responses in these species and to localize positive selection on standing
genetic variation at speci�c genes. In addition to providing important insights into climate-
induced evolutionary responses in this system, this genomic time-series approach should be
broadly applicable to detecting biological responses to recent climate change given the wealth
of archived specimens contained within natural history museums.

3.2 Methods

Biological samples

Tamias speciosus and T. alpinus surveyed in this study were collected from montane
transects in Yosemite National Park (YNP) and the Southern Sierras (SS). Historic samples
were collected by Joseph Grinnell and his colleagues from 1911 to 1916, and are preserved
as dried skins in the Museum of Vertebrate Zoology (MVZ), at the University of California,
Berkeley. Modern samples were collected from the same sites by the `Grinnell Resurvey' team
led by MVZ researchers and collaborators from 2003 to 2012 (Figure 3.1). We examined 100
YNP T. speciosus (52 historic, 48 modern), 104 YNP T. alpinus (56 historic, 48 modern),
and 90 SS T. alpinus (52 historic, 38 modern) from each transect. We also sampled six
T. minimus (the least chipmunk) immediately east of YNP, which were used to control for
sample misidenti�cation and potential signals of recurrent hybridization between T. alpinus
and T. minimus [56]. Furthermore, we included one sample each of three outgroup species
(T. striatus, T. ru�caudus, and T. amoenus) in order to polarize SNPs identi�ed in our focal
populations. Historic DNA was extracted from toe pad tissue (∼3 x 3 mm) in a separate
dedicated laboratory using a previously described protocol [19]. DNA was extracted from
modern samples using Qiagen DNeasy Blood and Tissue kits following the manufacturer's
protocol. Genomic libraries for all samples were constructed following Meyer and Kircher
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[57] with slight modi�cations [19].

Exome capture and sequencing

We previously developed Agilent SureSelect custom 1M-feature microarrays to target
11,975 exons in chipmunks [19, 58, 59] identi�ed from multi-tissue transcriptome sequenc-
ing. We enriched and sequenced (Illumina HiSeq 2000, 100 bp paired-end) this target in 40 T.
alpinus YNP samples. The resulting data was used to de novo assemble targeted exons and
their �anking sequences, yielding 9,774 contiguous regions from 8,053 genes (6.9 Mb, includ-
ing �anking introns and intergenic regions). In addition to these published assemblies [19],
we also extracted a broad set of candidate genes from the AmiGO and NCBI mouse (Mus
musculus) protein databases with associated functional annotations that were potentially rel-
evant to environmental stress responses (e.g., HSP/HSF, hemoglobin, cytokines, apoptosis,
immunity, oxidative stress, oxidative phosphorylation, metabolism, c-reactive protein, MHC,
pyruvate, citrate cycle, T-cell signaling, glucocorticoids). We then located 2,054 orthologous
transcripts (2.4 Mb) from the Tamias transcriptome using a BLASTx search against the
mouse candidate genes. These Tamias transcripts were included as target sequences in our
capture. Following our previous designs [19, 58], we also targeted the T. alpinus complete
mitochondrial genome (16.5 Kb) to assess empirical error rates and potential sample con-
tamination and �ve previously sequenced nuclear genes [60, 61] used as positive controls
in post capture qPCR assays of global enrichment e�ciency. The total target size was 9.6
Mb. In-solution capture probes were designed and manufactured by NimbleGen (SeqCap EZ
Developer kits) using soft masking relative to the targeted sequences as well as the genome
for the thirteen-lined ground squirrel, Ictidomys tridecemlineatus (Ensembl v2.68).

Barcoded genomic libraries were pooled together and hybridized in seven independent
reactions with Tamias Cot-1 DNA (prepared following [62]) and barcode-speci�c blocking
oligonucleotides. Six hybridization experiments were used for the focal species (one per time
point for each of the three temporal contrasts) and one additional capture was performed on
pooled libraries from six T. minimus and three outgroup samples (T. striatus, T. ru�caudus,
and T. amoenus). After hybridization, each of the enriched genomic libraries were ampli�ed
using PCR and sequenced using one lane of Illumina HiSeq2000 per capture with 100-bp
paired-end reads.

De novo assembly and mapping

The bioinformatic work�ow that we employed for processing the de novo exon capture
data was previously outlined [19, 63]. Brie�y, raw fastq sequencing reads were treated to
remove adapters, exact duplicates, low complexity, and reads sourced from bacteria and
human contamination. Overlapping paired reads were merged to avoid in�ating estimates
of coverage and biasing downstream genotype likelihoods. The cleaned paired-end and un-
paired reads for the 48 contemporary YNP T. alpinus genomic libraries were assembled
together all at once using ABySS [64] at kmer sizes of 21, 31, 41, 51, 61, and 71. The re-
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sulting assemblies were then merged using Blat [41], CD-HIT [65], and CAP3 [66] to remove
redundancies. This merged assembly was then compared to the original set of targeted se-
quences to obtain the assembly subset associated with targets. This in-target reference was
then error-corrected using the method suggested by Bi et al. [19]. We aligned cleaned reads
from T. alpinus, T. speciosus, and T. minimus individuals to the T. alpinus reference using
NovoAlign (http://www.novocraft.com/products/novoalign) and retained only uniquely
mapped reads. The resulting SAM format alignments were initially analyzed using SAM-
tools [38] and BCFtools to produce data quality control information in VCF format. To
generate an outgroup reference, we aligned cleaned reads from T. striatus, T. ru�caudus,
and T. amoenus to the error-corrected T. alpinus reference using NovoAlign and then used
BCFtools on the alignments to generate a multi-species VCF followed by `vcfutils.pl vcf2fq'
implemented in SAMtools. We only retained sites that had data for all three focal species
(T. alpinus, T. speciosus, and T. minimus), passed quality �lters, and were monomorphic
among the three outgroup samples (T. striatus, T. ru�caudus, and T. amoenus).

Post mapping data quality control

Quality control was applied hierarchically down from the individual level, contig level, and
then to the site level (3.1). We previously described the quality control �ltering in detail [19],
which was carried out using the script snpCleaner (https://github.com/tplinderoth/
ngsQC/tree/master/snpCleaner). We restricted downstream analyses to sites that passed
all three levels of quality control.

Empirical error rates were measured as the percentage of mismatched bases out of the
total number of aligned bases in the mitochondrial genome. On average, the empirical error
rate was almost fourfold higher in historic (0.16%) than in contemporary (0.04%) samples.
The observed error rates were consistent with previous �ndings based on data generated
from array-based exon capture of museum skin DNA [19]. There were no concerning biases
in empirical error rates or sequencing coverage of individual samples compared to population
averages. All samples passed individual-level quality control. Within populations at the
contig level, we removed contigs showing signatures of paralogy based on excessively high
coverage (99th percentile) and sites that strongly deviated from Hardy-Weinberg equilibrium
(HWE) proportions (p<0.0001). For each transect, we retained the intersection of remaining
contigs between historic and contemporary populations. As a result, 2,569, 2,451, and 2,738
contigs (11.6 - 13% of the total) were eliminated from YNP T. speciosus, YNP T. alpinus,
and SS T. alpinus datasets, respectively. At the site level, we removed sites showing excessive
strand bias, end-distance bias, base quality bias, and map quality bias. We also �ltered out
sites with extensive missing data among samples within each population.

Errors associated with long-term DNA degradation were of particular interest in our
study. DNA derived from archaeological and historic samples is usually characterized by
postmortem nucleotide damage from hydrolytic deamination. This causes conversion from
cytosine (C) to uracil (U) residues resulting in mis-incorporation of thymine (T) during
PCR ampli�cation [67, 68, 69]. We found elevated frequencies of C-to-T and G-to-A substi-

http://www.novocraft.com/products/novoalign
https://github.com/tplinderoth/ngsQC/tree/master/snpCleaner
https://github.com/tplinderoth/ngsQC/tree/master/snpCleaner
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tutions at the 5'- and 3'-most positions, respectively, and compared to other changes, their
frequencies remained elevated throughout the sequence (Figure 3.2). These results are in
strong agreement with patterns of damage accumulation characteristic of museum [19, 70]
and ancient samples [68]. To mitigate the e�ects of misincorporation-bias on population
genetic and demographic analyses [67], we took a rigorous �ltering approach and eliminated
all C-to-T and G-to-A SNPs (relative to the reference, not to the outgroup). In total, 9.0,
9.3, and 8.5 Mb of data from YNP T. speciosus, YNP T. alpinus, and SS T. alpinus passed
all quality controls and was used in downstream analyses.

Population genetic analyses

For the SNPs that passed quality control we used probabilistic methods for variant dis-
covery and allele frequency estimation as implemented in the software ANGSD [37]. These
approaches account for genotyping uncertainty associated with low-medium coverage NGS
data [71]. This entailed using a population-speci�c SFS estimated from allele frequency like-
lihoods as a prior to obtain allele frequency posterior probabilities. We then called SNPs
using a 95% probability cuto� of being variable. We used ANGSD to estimate levels of di-
versity in terms of the number of segregating sites (S), Watterson's theta (θW ), and Tajima's
theta (π) in the historic and modern T. alpinus and T. speciosus populations. We cal-
culated Tajima's D to evaluate skew in the di�erent SFS [72]. Population di�erentiation
within and between the modern and historic populations of T. speciosus and T. alpinus was
determined using probabilistic methods for estimating FST [36] and individual covariance
matrices for principle component analysis (PCA) implemented in ngsTools [73]. As an over-
all comparison between allele frequencies over time, we estimated the 2D-SFS between the
pooled modern and pooled historic demes of each species and/or transect. SNPs identi�ed
in T. speciosus and T. alpinus individuals were polarized relative to the sampled outgroups.
We further examined population genetic structure using NGSadmix [74], which estimates
admixture proportions from genotype likelihoods. We ran 10 replicates for K (number of
clusters) ranging from 1-10. Results across runs were summarized to determine the best
K using the method of Evanno and colleagues [75]. To investigate possible hybridization
between sampled T. alpinus and T. minimus samples, we used the program Admixture [76],
which estimates individual ancestries from multilocus SNP data. We randomly sampled one
SNP per contiguous sequence for all admixture analyses to minimize the e�ect of linkage
disequilibrium.

Demographic inference using Approximate Bayesian Computation

Studies utilizing museum specimens often require sampling schemes that are suboptimal
for population genetic analyses due to uneven sampling across time and space. ABC is
particularly well suited for demographic inference under such circumstances. Simulation-
based approaches allow modeling of serial sampling from populations that have experienced
complex demographic histories. Further, simulations can be processed in the same way as



45

observed data (e.g., removal of deamination SNP categories), permitting meaningful com-
parisons between expected and observed results. A major di�culty of ABC is the choice
of statistics that su�ciently describe demographic parameters of interest. Multiple, jointly
informative, summary statistics are often used to su�ciently estimate parameters while re-
ducing the risk of any particular statistic biasing the results [77]. In many cases, the SFS
is an optimal choice for �tting demographic histories as many commonly used summary
statistics can be derived from it. In practice, high dimensionality and low count categories
of joint site frequency spectra make them di�cult to �t. Consequently, we developed an
e�ective means of �tting binned 2D-SFS using an ABC framework that is particularly useful
for inferring demographic histories from serially sampled populations or metapopulations.
We applied this approach to the serially sampled chipmunk populations to test hypotheses
about their demographic histories (see Figure 3.3 for a method overview).

For Yosemite populations, we modeled each sampling locality as its own deme in an
island model with symmetric migration. SS T. alpinus was modeled in a similar manner
except that, given fewer demes, we tried to �t speci�c pairwise migration rates according
to a stepping stone model. We �tted between �ve and nine explicit demographic models
(Figure 3.4) characterized by possible changes in migration and population size to each of
the temporal contrasts. For YNP T. alpinus we tested models A, B, C, D, E, F, G, H, and
N, for T. speciosus we tested A, B, D, E, G, H, J, and N, and for T. alpinus in the southern
Sierras we tested models A, G, H, J, and N. Di�erent subsets of our total model set were
tested for di�erent populations because it was apparent through the course of the analysis
that �tting some of the nested models was redundant since the more �exible models converged
on them. For each model we performed 25,000 simulations. Each simulation entailed �rst
drawing demographic parameter values from uniform or log-uniform prior distributions and
then simulating ∼20.2 Mb of sequence split evenly among 38 unlinked chromosomes for
each individual under the speci�ed history using the coalescent simulator fastsimcoal [78]
assuming a mouse-based mutation rate of 2.2 x 10−9, an empirically determined transition
bias of 0.725, and no recombination. Lineages from the di�erent demes were sampled at the
present (modern sample) and 90 generations in the past (historic sample) according to the
actual number of sampled individuals. Then all samples within a respective time period were
pooled and the historic versus modern 2D-SFS was calculated. Diagonal and anti-diagonal
bins of this joint SFS were then calculated using a bin width of 2. The bin width refers to
the number of joint SFS categories on either side of the diagonal that are included in each
bin (Figure 3.5). The joint SFS was binned in this way to reduce noise caused by trying
to �t categories with no or few counts, reduce the dimensionality of the summary statistic
vector, and to ensure that we �t the mass correctly everywhere throughout the spectrum.
Binning in this manner �ts the shape of the 2D-SFS, which should be a result of demography
(barring selection).

Best �tting models where chosen as those with the highest posterior probabilities ap-
proximated with rejection sampling at a 0.8% tolerance-level after performing 1000 rounds
of leave-one-out cross validation per tested model to determine if di�erent models were dis-
tinguishable based on the 2D-SFS bins using the R [79] package `abc' [80]. The same 0.8%
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tolerance level was also used for the cross-validation. Under the rejection sampling frame-
work, the posterior probability of a model is approximated by the proportion of accepted
simulations determined to have come from that model when at least two models are com-
pared. We additionally based model selection on the maximum likelihood (ML) history for
each model, which is the set of parameter values that minimized the Euclidean distance
between the observed and expected joint SFS bins. This allowed us to identify close-�tting
histories when the rejection method posterior probability for the corresponding model may
have been low as a result of �tting relatively more free parameters (a small proportion of
parameter value sets may resemble the true history under a model that could potentially
generate a greater array of histories at a �xed number of ABC simulations). ML parameter
values for each model were used to perform 1,000 simulations with fastsimcoal to encapsulate
variance due to randomness under the ML histories, and the distances between our observed
and the set of simulated joint SFS bins, DML,obs, were calculated. This produced a distribu-
tion of DML,obs for each of the models, which were compared using a Kolmogorov-Smirnov
2-sample test (KS test) to determine if models were signi�cantly di�erent. The model that
was most probable to minimize DML,obs was chosen as the most likely demographic scenario
under this framework. The best models chosen using posterior probabilities versus maximum
likelihood always agreed, except for one case involving model H as it was the most �exible
(had the most free parameters) among the tested models, and even then, its ML history
resembled the other best �tting models (see `YNP T. alpinus demography').

Once we had chosen amongst competing models, we evaluated the �t of the selected model
to our observed data by comparing the distribution of the Euclidean distance between the
model's ML history joint SFS bins and the observed bins, DML,obs, to the distribution of
the Euclidean distance between the ML history and itself, DML,pseudo. DML,pseudo is calcu-
lated exactly like DML,obs except that we use one set of joint SFS bins produced under the
ML history as pseudo-observed values. To quantify the agreement between the DML,obs and
DML,pseudo distributions we used Weitzman's coe�cient of overlapping (OV L) [81], which
given two probability density functions f1(x) and f2(x) de�ned on n-dimensional real num-
bers Rn is

OV L =
∫
Rn

min
{
f1(x), f2(x)

}
dx

In our case the OV L can be interpreted as the probability of incorrectly exchanging the ML
history for the true demography or vice versa as the population history producing DML,obs

andDML,pseudo. GreaterOV L values indicate more similarity between the ML history and the
true population history. The OV L ranges from zero to one, where an OV L value of one would
indicate that the ML history is the same as the true history assuming that the demography is
identi�able from the 2D-SFS bins. Lastly, we obtained posterior probability distributions for
the demographic parameters under the chosen models using the standard rejection method
by which we retained 8% of the parameter value sets that minimized the Euclidean distance
between the simulated and observed 2D-SFS bins. The entire ABC procedure is implemented
in scripts available at https://github.com/tplinderoth/ABCutils.

https://github.com/tplinderoth/ABCutils
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Selection inference

We considered SNPs with large allele frequency shifts between the modern and historic
time periods that could not be attributed to demography as evidence for positive selec-
tion. We used the program OutFLANK [82] to detect FST outlier SNPs. This approach
empirically adjusts the degrees of freedom of χ2-distributed FST values in order to control
for how demography distorts this distribution. We considered SNPs to be outliers if the
false detection rate (FDR) adjusted p-value (q) for the test of neutrality was less than 0.01.
We then con�rmed that outlier SNPs identi�ed through OutFLANK could not have been
a consequence of demography by comparing the observed FST values for the SNPs to null
distributions of FST generated under the population histories inferred through ABC. Specif-
ically, null exome-wide and per-site FST distributions were generated by performing 1,500
simulations under each of the best �tting ML histories for YNP T. alpinus. These null
distributions were generated for the scenario involving all sampled demes and for when the
calculation of FST was limited to demes providing samples in both time periods. Compar-
ing our observed FST values to these distributions allowed us to determine the probability
that demography alone could generate such extreme values. The outlier loci identi�ed using
OutFLANK were then annotated relative to the Mus musculus reference genome. When the
outlier nucleotide positions did not match the mouse reference sequence their locations were
inferred relative to annotated exon-intron boundaries. Finally, we used Latent Factor Mixed
Models (LFMM) [83] to test if outlier loci were correlated with elevation when taking under-
lying population structures into account. LFMM uses a hierarchical Bayesian mixed model
that controls for population structure via latent factors (K), which roughly correspond to the
number of clusters identi�ed by NGSadmix (historic K = 2; modern K = 6). We performed
50 LFMM runs, each with 500,000 iterations and a 10% burn-in for both the historic and
modern populations, respectively. We considered the focal loci to be signi�cantly correlated
with elevation at an FDR q < 0.05.

3.3 Results and Discussion

Exome capture e�ciency

We designed a custom targeted capture to enrich and sequence exons from 10,000 protein
coding genes (9.4 Mb) in 294 T. alpinus and T. speciosus samples and nine samples from
other chipmunk species (total n=303). We sampled modern and historic (∼100 year-old)
populations in Yosemite National Park (YNP) for both species as well as past and present
populations of T. alpinus in the Southern Sierras (SS), where this species has also contracted
[53], with an average of 49 individuals per population (Figure 3.1). This design allowed us
to compare stable and retracting species within the same montane mammal community, as
well as replication within the same range-retracted species across two di�erent areas that
span its latitudinal range.
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Exome enrichment was highly speci�c (90-93% of reads on target) and sensitive (>92-
93% of the target regions sequenced), resulting in high coverage of targeted regions (26-35X
average individual coverage per population). While historic DNA samples are notorious for
poor technical performance, all 303 individuals yielded moderate to high coverage data with
similar capture success between modern and historic samples. Analysis of mitochondrial
DNA indicated that empirical error rates were ∼fourfold higher in historic (0.16%) versus
modern samples (0.04%), due primarily to DNA damage typical of century-old museum
samples [19, 70].

Population genetic characterization

After applying a series of quality �lters [19] (Table 3.1), we identi�ed 20,395, 10,395, and
10,954 high-quality single nucleotide polymorphisms (SNPs) in YNP T. speciosus, YNP T.
alpinus, and SS T. alpinus, respectively. Consistent with prior microsatellite results [18], we
observed only a slight reduction in heterozygosity in modern versus historic samples (Table
3.2). We also quanti�ed the degree of population genetic structure within each species by
estimating the �xation index (FST ) for historic and modern populations. Within YNP,
population structure was relatively low overall but increased considerably in modern T.
alpinus (FST,historic = 0.032, FST,modern = 0.058). By contrast, population structure in T.
speciosus was more stable over time (FST,historic = 0.027, FST,modern = 0.030). These patterns
were supported by a maximum likelihood analysis of population structure [74] that revealed
a substantial increase from two to six genetic clusters for YNP T. alpinus compared to stable
temporal structure (K=2) within T. speciosus (Figure 3.6). Principle component analyses
of these data also indicate less genetic similarity among modern YNP T. alpinus samples
(3.6). In contrast, population structure appears to have remained relatively more stable for
T. alpinus in the Southern Sierras (FST,historic = 0.034, FST,modern = 0.044; Figure 3.6). Less
detectable increases in SS T. alpinus population structure could re�ect di�erences in local
responses to rapid environmental changes and/or more spatially clustered samples across
both historic and modern periods in this region (Figure 3.1). Finally, we found no evidence
for gene �ow between T. alpinus and neighboring (lower elevation) populations of the closely
related least chipmunk (T. minimus ; Figure 3.7), indicating that recent admixture has not
impacted modern genetic diversity in this high elevation endemic [56].

Tamias chipmunk population histories

While a previous analysis of a few microsatellite loci produced qualitative insights on over-
all patterns of genetic variation [56] that are reinforced and extended here, reconstructing
detailed demographic changes and identifying loci under selection requires more comprehen-
sive data and analyses. To fully leverage information a�orded by our temporal genomic data,
we developed an Approximate Bayesian Computation (ABC) framework designed to infer
population histories from serially sampled metapopulations (Figure 3.3). We constructed a
two-dimensional site frequency spectrum (2D-SFS) for each pairwise temporal contrast by
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pooling individuals across populations within a time period (Figure 3.8). Allele frequen-
cies should be highly correlated over such short time scales but the overall shape of this
joint spectrum will depend on various demographic processes that contribute to skews in
the distribution of allele frequencies. We �tted the 2D-SFS to multiple demographic models
(Figure 3.4) describing changes in population size (constant size, bottlenecks, expansions)
and connectivity (migration) among subpopulations or demes.

YNP Tamias alpinus demography

The best �tting models for YNP T. alpinus were B, F, H, and N, which mostly converged
on a population history characterized by a relatively small, constant population size and
increased fragmentation occurring within 90 generations ago. Models B, F, and N had the
highest posterior probabilities (Table 3.3), while the distribution of the distance between the
observed and expected 2D-SFS bins under the ML history for model H suggested that it was
also a relatively good �t (Figure 3.9, Table 3.4). There was an overall high cross validation
misassignment rate among nested models because they converged on similar histories that
produced similar joint frequency spectra (Table 3.5). It is worth noting that model H had
a low posterior probability relative to B, F, and N because it was the most �exible model
such that a large proportion of histories produced under it did not resemble the B, F, and N
histories and were rejected. Consequently, in the case of model H, we focused primarily on
its ML history for parameter inference. The ML histories under models B, F, H, and N all
produced joint spectra similar to the true history as indicated by OV L values greater than
0.81, with model F having the highest value of 0.89 (Figure 3.10).

Posterior median parameter estimates for models B, F, and N (Figure 3.11) and the
ML estimate for model H indicate modern deme e�ective sizes of around 1,350 individuals
for YNP T. alpinus (Table 3.6). Estimates for the strength and timing of population size
change for any models which allowed for it indicated no population size change. With the
exception of N (which involves constant migration), the best �tting models specify at least
a two order of magnitude decrease in migration from historic rates of approximately 7e-
5 (based on model B and F median values and model H's ML value). Models B and H
indicate that migration slows from 20-90 generations ago, while migration entirely stops
under model F 90 generations in the past (Table 3.6). Model N had the worst �tting ML
history among the other best �tting models (Figure 3.10), supporting a history involving
increased fragmentation as speci�ed under the better �tting ML histories of B, F, and H.

SS Tamias alpinus demography

The best �tting models for T. alpinus in the southern Sierras were A, G, and N, which
had both the highest posterior probabilities (Table 3.3) and ML histories that produced
joint frequency spectra most closely resembling the observed joint SFS (Figure 3.9). The
population history inferred from these three models is one with fragmentation potentially
recently increasing among demes and a constant population size that is likely around three
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times larger than YNP T. alpinus. There is, however, some evidence for a potential recent,
weak, population bottleneck. While there was only a 29% chance of correctly di�erentiating
between the tested models with cross validation due to the nested nature of the models,
simulations under the ML histories indicate that models A, G, and N are a signi�cantly
better �t to the observed data than the other models (all KS test p-values < 2.2e-16) (Figure
3.9, Table 3.7).

The parameter posterior medians for models A, G, and N (Table 3.6) indicate that SS
T. alpinus has a modern e�ective deme size of around 4,600 individuals, which has likely
remained constant through time. The histories based on the parameter posterior medians
for models A and G suggest constant population size over the past 90 generations, which
is supported by model N and the ML history for model G, which had the highest OV L of
0.93 (Figure 3.10). The 95% credible intervals for the intrinsic shrink rate and bottleneck
time for models A and G do not however exclude the possibility for a population bottleneck
(Table 3.6), but if one did occur, the parameter posterior distributions indicate that it was
weak (r < -3e-4) and likely within the past 100 years (Figure 3.12). The historic migration
rates between adjacent demes {1,2} and {2,3} were around 3e-4 and 6e-5 respectively, while
the migration rate was lower between the geographically most distant demes, {1,3}, ranging
from possibly around 2e-9 (based on model G and N ML estimates) to 3.5e-7 (based on
posterior median estimates). The posterior median values for models A and G indicate
that somewhere between 29-90 generations ago migration rates between demes decreased
to around 2e-5, 1e-5, and 2e-8 for demes {1,2}, {2,3}, and {1,3} respectively. While the
ML history for model A supports this increased fragmentation among all demes, the ML
history for model G has migration changing only 5 generations ago suggesting a history with
e�ectively no change in migration, which is supported by model N. This con�icting result
implies that it is uncertain whether population fragmentation has changed in the southern
Sierras, but if it has, it is likely a subtle increase within the past 100 years. Any potential SS
T. alpinus demographic changes being minor is also supported by the fact that the 2D-SFS
bins produced under various models were hardly distinguishable from those produced under
a history with constant population size and migration, which is contrary to the case for T.
alpinus and T. speciosus in YNP (Tables 3.5 - 3.10).

YNP Tamias speciosus demography

Models D, H, and J had the best �t for YNP T. speciosus in terms of both their pos-
terior probabilities (Table 3.3) and distance of their ML histories from the observed data
(Figure 3.9). The �ts for these models indicate that T. specious is characterized by a past
population expansion and a modern e�ective size that is likely at least three times larger
than T. alpinus in YNP. The model �ts also provide some evidence to suggest that migration
among T. speciosus demes has also decreased recently. Cross validation indicated only a 0.19
probability of being able to correctly distinguish among models due to their nested nature,
however simulations under the ML histories showed a clear and signi�cant di�erence (all KS
test p-values < 2.2e-16) in the �ts between models D, H, and J and the other tested models



51

(Figure 3.9, Table 3.9).
Based on the parameter posterior medians for models D, H, and J (Figure 3.13, Table

3.6), T. speciosus demes were expanding at an intrinsic rate of around 8e-6 until 45 - 1,234
generations ago, at which point deme sizes have remained constant at around 4,560 individ-
uals. The migration rate posterior medians for models D, H, and J decreased from around
3e-4 to rates of 0 - 1.47e-5 within 33 generations in the past. It should be noted that the ML
estimate for model J, which produced a nearly perfect �t to the observed history according
to an OV L value of 0.98 (Figure 3.10), speci�ed a decrease in migration rates from 3.42e-3
to 1.17e-8 341 generations ago, but the parameter posterior distributions for all three best
�tting models (Figure 3.13) suggest that if migration has decreased, it likely happened within
the last 100 generations. The ML histories for models D and H indicate constant migration
and so it is not entirely certain that fragmentation has increased in YNP T. speciosus but
the majority of evidence would suggest it has.

Comparison of population histories among Tamias chipmunk populations

The best �tting population history for YNP T. alpinus was characterized by relatively
small but constant deme e�ective sizes through time (∼1,350 individuals) and a strong
decrease in migration within the past 90 years (Figure 3.14). In contrast, both SS T. alpinus
and YNP T. speciosus were found to have much larger e�ective deme sizes (∼4,600 and
∼4,560 individuals respectively) and higher migration rates overall. Although SS T. alpinus
showed some evidence for a possible, recent decline in e�ective size (Figure 3.14), YNP T.
speciosus was the only population that showed a strong signature of size change, which
involved a historic expansion followed by constant population size (Table 3.6).

We found that modern individuals tended overall to be less genetically similar to each
other than did historic individuals in all three comparisons (Figure 3.6). Consistent with this
observation, the �tted demographic histories for each comparison provide some evidence for a
recent (< 90 years ago) decrease in migration among demes. Decreased migration is expected
if climate change is broadly a�ecting species within this montane community, but strong
genetic structuring is only currently apparent in YNP T. alpinus (3.6). Long-term changes
in gene �ow should ultimately impact the genetic composition of metapopulations across
these heterogeneous landscapes. It is possible that higher overall migration rates and larger
e�ective population sizes have so far bu�ered the population genetic e�ects in T. speciosus
and SS T. alpinus, but that genetic structure could increase over time according to the
inferred histories. This is signi�cant in that it emphasizes the importance of high-resolution
demographic inference from genomic data not only for reconstructing population histories,
but also as a potentially powerful tool that could enable proactive conservation management.
Our ABC framework is generalizable to other temporally sampled genetic datasets, allowing
high-resolution inference into demographic histories over shallow evolutionary timescales that
are relevant to recent anthropogenic climate change.
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Adaption of Tamias alpinus to climate change

We investigated speci�c genetic changes that might underlie adaptive responses to climate
change by directly comparing genetic di�erences between historic and modern populations.
These temporal population pairs are very closely related, however, complex population his-
tories can result in stochastic changes in allele frequencies that confound standard signatures
of positive selection [84]. We tested for individual SNPs that had undergone large frequency
shifts between historic and modern populations using an approach that accounts for the con-
founding in�uence of complex population histories on the genomic distribution of FST [85,
86, 82]. We found no signi�cant allele frequency shifts in YNP T. speciosus or SS T. alpinus.
In contrast, �ve SNPs in YNP T. alpinus populations appeared as very strong outliers (false
discovery rate [FDR] q-value < 0.01) relative to the inferred null distribution of per-site,
genome-wide FST between the very closely related temporal populations (temporal FST =
0.012; Figure 3.15). To further verify the in�uence of positive selection on these SNPs, we
compared the observed FST values to null distributions simulated under the best ABC-�tted
demographic history for YNP T. alpinus (Figure 3.14). Our simulated FST distributions
were in close agreement with the observed FST values and thus it is very unlikely that de-
mography alone could produce the extreme changes in allele frequencies that we observed at
the outlier loci (p-value < 3e-7; Figure 3.16).

The �ve signi�cantly di�erentiated SNPs showed three-fold increases in derived allele
frequencies between historic and modern samples (average frequencies of 0.22 versus 0.65;
Figure 3.15B) and all were located in the protein-coding gene, Arachidonate 15-Lipoxygenase
(Alox15)(Figure 3.15D). Alox15 is a broadly expressed lipoxygenase involved in in�ammatory
responses and is upregulated in response to hypoxia [87, 88] as part of the Hypoxia-inducible
factor-1α (HIF-1α) regulation pathway [89]. Two of the variants represent synonymous
changes in non-adjacent exons (positions a, b; Figure 3.15D) while the three other SNPs
(positions c-e) were at non-coding positions within the same intron. All �ve positions were
in strong linkage disequilibrium (historic r2 = 0.86; modern r2 = 0.93) in YNP T. alpinus
but invariant in all other populations except for one site (b) that was at similar frequency
across the SS T. alpinus temporal contrast (historic = 0.13, modern = 0.2; Figure 3.17).

Given the extreme loss of low elevation range in YNP T. alpinus over the last century [53]
and the potential functional association between Alox15 and hypoxia [87, 88], we reasoned
that standing genetic variation at this locus might be associated with elevation (or correlated
environmental variables). To test this, we �rst examined the frequency of derived Alox15
alleles as a function of elevation (Figures 3.15C and 3.18). Given small sample sizes at some
localities, individuals were pooled into discrete elevation bands to enable more precise allele
frequency estimation. For historic samples we observed a positive correlation between derived
allele frequencies and 100-meter elevation bands (adjusted R2=0.34, p-value=0.0004), while
modern samples showed a negative association (adjusted R2=0.28, p-value=0.01). However,
it is important to note that allele frequencies are not independent across this landscape due
to shared ancestry and gene �ow [90]. To account for this, we used Latent Factor Mixed
Models (LFMM) [83] to test for correlations between historic and modern genetic variation
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and elevation while accounting for underlying population structure. We found signi�cant
associations (FDR q < 0.05) between elevation gradients and derived allele frequencies at
all �ve outlier positions in modern YNP T. alpinus, and all but one outlier SNP (position
a) in historic YNP T. alpinus.

These correlations reveal an apparent link between genetic variation at Alox15 and ele-
vation and suggest that the strength of selection on this variation might di�er across demes
at di�erent elevations. Given range retraction and an association between derived allele
frequencies at Alox15 and elevation, it is possible that higher overall frequencies in modern
populations could simply re�ect non-sampling of extinct low elevation populations. This
interpretation is inconsistent with the observation that the magnitude of derived allele fre-
quency changes at Alox15 vary by elevation and have been much greater at lower elevations
(Figure 3.15C and 3.18). To examine this further, we repeated our temporal FST contrasts
excluding low elevation sampling localities present only in the historic YNP T. alpinus tran-
sect. All �ve positions remained strong outliers in these comparisons (OutFLANK FDR q <
0.05, ABC-�tted FST distribution p-value 4e-7). Thus, evolutionary responses at Alox15 are
consistent with in situ evolutionary change driven by selective pressures that are strongest
among remnant demes at the lower bound of the modern YNP T. alpinus range (<3000
meters elevation). The strong association of the derived alleles with lower elevations may
partially explain why we did not detect selection at Alox15 in SS T. alpinus where popu-
lations currently do not exist below 3200 meters and all but one of the outlier YNP SNPs
were �xed for ancestral alleles.

3.4 Conclusions

By integrating high throughput sequencing, cost and time-e�ective targeted enrichment
technologies, and sophisticated inference methods we provide powerful insights into demo-
graphic and evolutionary responses of an alpine species threatened by rapid climate change.
Our unique time-series approach demonstrates how historical archives of biological speci-
mens can unlock the potential of genomics to transform the study of climate change [50,
19]. Temporal genomic data can provide a means to understand the current state of popu-
lations and their potential evolutionary trajectories, providing powerful tools to inform the
conservation of populations experiencing changing environments.

This framework also enables the detection of speci�c evolutionary responses in adaptive
genetic variation over timescales that are usually refractory to population genomic inference.
Detailed functional understanding of Alox15, and other such targets of positive selection
identi�ed using these methods, will continue to be challenging in species of conservation
concern. Even in the absence of speci�c links to phenotypes or �tness, the identi�cation of
evolutionary responses at speci�c genes will inform and improve future on-ground studies
focused on identifying the proximate causes of warming-related population declines across the
range of this montane species. However, we suggest that the true power of this approach lies
in its potential to extend across species. Though the occurrence of museum records tend to be
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highly punctuated through space and time for a given species, historic collection e�orts, such
as those led by Grinnell and other early naturalists, usually surveyed many co-distributed
species. These invaluable genetic resources now enable comparative community level insights
into the impacts of and evolutionary responses to rapidly changing environments.
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3.6 Tables

Table 3.1. Hierarchical data quality control protocol.

�ltering at individual level
(a) Remove individuals with extremely low or high coverage (<1/5 or >5 x the
average coverage across all individuals).

(b) Remove individuals with excessively high sequencing error rates measured as
the percentage of mismatched bases out of the total number of aligned bases in the
mitochondrial genome.

�ltering at contig level
(a) Remove contigs having extremely low or high coverage relative to the empirical
coverage distribution across all contigs.

(b) Remove contigs for which at least one SNP has genotype frequencies highly
deviating from Hardyâ��Weinberg equilibrium expectations (p < 0.0001).

(c) Retain only the contigs that pass all �lters for both historic and contemporary
samples.

�ltering at site level
(a) Remove sites with excessively low (<1st percentile) or high (>99th percentile)
coverage based on the empirical coverage distribution across all sites.

(b) Remove sites with biases associated with reference and alternate allele base
quality, mapping quality and distance of alleles from the ends of reads. Also
remove sites that show a bias for reads derived from the forward or reverse strand.

(c) Remove sites for which there are not at least 80% of individuals covered by at
least three reads each.

(d) Remove sites with a Phred-scaled root mean square mapping quality for SNPs
below 10.

(e) Due to elevated base misincorporation rates present in the historic samples,
remove sites from all individuals for which C to T and G to A mutations are
identi�ed.

(f) Retain only the sites that pass all �lters for both historic and contemporary
samples.
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Table 3.2. Population genetic summary statistics for historic and contemporary Tamias
chipmunk populations in Yosemite National Park (YNP) and the Southern Sierras (SS).

Populations n S

number
private
SNPs θW π

Tajima's
D

global
FST

Historic YNP
T. speciosus 52 18,309 2,977 0.000778 0.000565 −0.3424 0.0274

Modern YNP
T. speciosus 48 17,959 2,627 0.000601 0.000514 −0.3616 0.0296

Historic YNP
T. alpinus 56 9,495 1,397 0.000419 0.000377 0.4330 0.0324

Modern YNP
T. alpinus 48 8,998 900 0.000318 0.000351 0.5185 0.0575

Historic SS
T. alpinus 52 10,211 2,232 0.000435 0.000430 0.3355 0.0344

Modern SS
T. alpinus 38 8,722 743 0.000335 0.000380 0.5159 0.0438

Table 3.6. Statistics for ABC demographic parameter posterior and maximum likelihood
estimates under the best �tting models for each Tamias chipmunk population. Tamias
speciosus is appreviated as `spec'. The parameters mhist and mmod are the pairwise historic
and modern migration rates between demes (when applicable, speci�c demes are indicated
with numbers), tmig_change is the number of generations in the past at which migration rates
change, rgrow is the intrinsic growth rate for population expansion, tgrow_stop is the number
of generations in the past that expansion stops, rshrink is the intrinsic rate of population size
decrease, tshrink is the number of generations in the past that a bottleneck starts, Nemod is
the modern, haploid e�ective size of each deme. Gray backgrounds indicate parameter
values that were �xed among simulations.

parameter pop model median mean 95% CI min max ML

Nemod

YNP

alpinus B 2668 2659 (2382,2904) 2168 2946 2857

tmig_change

YNP

alpinus B 90 90 (90,90) 90 90 90
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parameter pop model median mean 95% CI min max ML

mhist

YNP

alpinus B 8.76e-5 9.28e-5

(3.63e-5,

1.74e-4) 2.64e-5 1.91e-4 1.20e-4

mmod

YNP

alpinus B 0 0 (0,0) 0 0 0

rshrink

YNP

alpinus B -6.42e-7 -7.42e-6

(-5.41e-5,

-1.45e-8) -1.08e-8 -5.72e-5 -8.64e-8

tshrink

YNP

alpinus B 90 90 (90,90) 90 90 90

tgrow_stop

YNP

alpinus B 0 0 (0,0) 0 0 0

rgrow

YNP

alpinus B 0 0 (0,0) 0 0 0

Nemod

YNP

alpinus F 2694 2679 (2440,2904) 2405 2963 2688

tmig_change

YNP

alpinus F 90 90 (90,90) 90 90 90

mhist

YNP

alpinus F 8.49e-5 9.68e-5

(4.12e-5,

1.86e-4) 3.82e-5 1.98e-4 5.14e-5

mmod

YNP

alpinus F 0 0 (0,0) 0 0 0

rshrink

YNP

alpinus F 0 0 (0,0) 0 0 0

tshrink

YNP

alpinus F 0 0 (0,0) 0 0 0

tgrow_stop

YNP

alpinus F 0 0 (0,0) 0 0 0

rgrow

YNP

alpinus F 0 0 (0,0) 0 0 0

Nemod

YNP

alpinus H 2636 2623 (1867,3034) 1227 3177 2627

tmig_change

YNP

alpinus H 17.5 75 (1,406) 1 494 20
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parameter pop model median mean 95% CI min max ML

mhist

YNP

alpinus H 8.01e-5 2.20e-4

(2.45e-5,

1.10e-3) 1.28e-5 4.38e-3 6.78e-5

mmod

YNP

alpinus H 1.22e-5 3.38e-4

(1.39e-7,

3.45e-3) 1.03e-7 4.78e-3 8.82e-7

rshrink

YNP

alpinus H -6.29e-6 -5.80e-4

(-6.78e-3,

-1.34e-8) -1.10e-8 -7.71e-3 -1.40e-5

tshrink

YNP

alpinus H 22.5 79.28 (1,423) 1 489 19

tgrow_stop

YNP

alpinus H 1256 2287 (123,8910) 91 9990 94

rgrow

YNP

alpinus H 4.77e-7 9.02e-6

(1.14e-

8,2.71e-5) 1.02e-8 1.04e-3 1.10e-8

Nemod

YNP

alpinus N 2664 2647 (2395,2879) 2266 2985 2868

tmig_change

YNP

alpinus N 0 0 (0,0) 0 0 0

mhist

YNP

alpinus N 8.18e-5 8.91e-5

(3.85e-5,

1.85e-4) 3.35e-5 2.00e-4 5.69e-5

mmod

YNP

alpinus N 8.18e-5 8.91e-5

(3.85e-5,

1.85e-4) 3.35e-5 2.00e-4 5.69e-5

rshrink

YNP

alpinus N 0 0 (0,0) 0 0 0

tshrink

YNP

alpinus N 0 0 (0,0) 0 0 0

tgrow_stop

YNP

alpinus N 0 0 (0,0) 0 0 0

rgrow

YNP

alpinus N 0 0 (0,0) 0 0 0

Nemod

SS

alpinus A 9116 8672 (3407,10557) 1041 10860 3106

tmig_change

SS

alpinus A 90 90 (90,90) 90 90 90
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parameter pop model median mean 95% CI min max ML

m1,2,hist

SS

alpinus A 3.26e-4 8.82e-4

(3.31e-5,

3.96e-3) 1.95e-5 4.63e-3 1.75e-4

m1,3,hist

SS

alpinus A 5.01e-7 1.44e-5

(1.58e-

9;8.93e-5) 1.10e-9 9.94e-4 4.32e-7

m2,3,hist

SS

alpinus A 8.57e-5 4.49e-4

(1.96e-5,

3.59e-3) 1.85e-5 4.49e-3 3.18e-5

m1,2,mod

SS

alpinus A 1.23e-5 3.41e-4

(5.45e-9,

2.78e-3) 3.00e-9 4.94e-3 2.63e-9

m1,3,mod

SS

alpinus A 2.15e-8 1.30e-6

(1.06e-9,

1.27e-5) 1.00e-9 4.04e-5 1.05e-9

m2,3,mod

SS

alpinus A 7.94e-6 2.38e-4

(5.01e-9,

2.71e-3) 2.00e-9 4.95e-3 4.96e-9

rshrink

SS

alpinus A -9.82e-6 -1.20e-3

(-1.20e-2,

-1.63e-8) -1.00e-8 -2.57e-2 -1.20e-2

tshrink

SS

alpinus A 90 90 (90,90) 90 90 90

tgrow_stop

SS

alpinus A 0 0 (0,0) 0 0 0

rgrow

SS

alpinus A 0 0 (0,0) 0 0 0

Nemod

SS

alpinus G 9232 8970 (5211,10495) 1884 10780 9101

tmig_change

SS

alpinus G 29 93.3 (1,405) 1 464 5

m1,2,hist

SS

alpinus G 3.53e-4 8.61e-4

(3.52e-5,

3.86e-3) 2.22e-5 4.67e-3 1.23e-4

m1,3,hist

SS

alpinus G 1.77e-7 1.20e-5

(1.51e-9,

4.93e-5) 1.20e-9 5.49e-4 1.86e-9

m2,3,hist

SS

alpinus G 7.42e-5 3.81e-4

(1.53e-5,

3.37e-3) 1.03e-5 4.89e-3 4.19e-5

m1,2,mod

SS

alpinus G 2.53e-5 5.44e-4

(6.65e-9,

4.16e-3) 2.00e-9 4.86e-3 1.14e-4
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parameter pop model median mean 95% CI min max ML

m1,3,mod

SS

alpinus G 2.23e-8 4.26e-6

(1.20e-9,

3.30e-5) 1.04e-9 2.75e-4 2.21e-5

m2,3,mod

SS

alpinus G 1.51e-5 3.78e-4

(5.27e-9,

3.73e-3) 2.00e-9 4.84e-3 8.35e-4

rshrink

SS

alpinus G -1.40e-5 -2.35e-3

(-2.48e-2,

-1.49e-8) -1.00e-8 -3.79e-2 -1.57e-7

tshrink

SS

alpinus G 17 73.28 (1,433) 1 483 2

tgrow_stop

SS

alpinus G 0 0 (0;0) 0 0 0

rgrow

SS

alpinus G 0 0 (0,0) 0 0 0

Nemod

SS

alpinus N 9438 9380 (7932,10674) 7134 11120 9065

tmig_change

SS

alpinus N 0 0 (0,0) 0 0 0

m1,2,hist

SS

alpinus N 3.44e-4 7.74e-4

(3.36e-5,

3.71e-3) 1.96e-5 4.39e-3 4.15e-4

m1,3,hist

SS

alpinus N 3.62e-7 1.33e-5

(1.27e-9,

8.61e-5) 1.10e-9 6.46e-4 2.34e-9

m2,3,hist

SS

alpinus N 6.22e-5 2.48e-4

(1.60e-5,

1.64e-3) 1.13e-5 4.91e-3 4.56e-5

m1,2,mod

SS

alpinus N 3.44e-4 7.74e-4

(3.36e-5,

3.71e-3) 1.96e-5 4.39e-3 4.15e-4

m1,3,mod

SS

alpinus N 3.62e-7 1.33e-5

(1.27e-9,

8.61e-5) 1.10e-9 6.46e-4 2.34e-9

m2,3,mod

SS

alpinus N 6.22e-5 2.48e-4

(1.60e-5,

1.64e-3) 1.13e-5 4.91e-3 4.56e-5

rshrink

SS

alpinus N 0 0 (0,0) 0 0 0

tshrink

SS

alpinus N 0 0 (0,0) 0 0 0
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parameter pop model median mean 95% CI min max ML

tgrow_stop

SS

alpinus N 0 0 (0,0) 0 0 0

rgrow

SS

alpinus N 0 0 (0,0) 0 0 0

Nemod

YNP

spec D 9290 9386 (7879,11210) 7660 11770 9492

tmig_change

YNP

spec D 33 192.4 (1,1168) 1 1918 2

mhist

YNP

spec D 2.18e-4 2.90e-4

(2.74e-5,

9.10e-4) 1.34e-5 9.79e-4 7.64e-4

mmod

YNP

spec D 0 0 (0,0) 0 0 0

rshrink

YNP

spec D 0 0 (0,0) 0 0 0

tshrink

YNP

spec D 0 0 (0,0) 0 0 0

tgrow_stop

YNP

spec D 44.5 327 (1,2105) 1 2954 4

rgrow

YNP

spec D 9.01e-6 1.07e-5

(2.79e-8,

3.01e-5) 1.00e-8 4.16e-5 1.01e-5

Nemod

YNP

spec J 9001 9105 (7898,10998) 7413 11840 9827

tmig_change

YNP

spec J 19 60.86 (1,347) 1 463 341

mhist

YNP

spec J 3.67e-4 8.73e-4

(1.83e-5,

4.09e-3) 1.28e-5 4.69e-3 3.42e-3

mmod

YNP

spec J 7.95e-6 3.81e-4

(1.58e-8,

2.86e-3) 1.10e-8 4.91e-3 1.17e-8

rshrink

YNP

spec J 0 0 (0;0) 0 0 0

tshrink

YNP

spec J 0 0 (0;0) 0 0 0
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parameter pop model median mean 95% CI min max ML

tgrow_stop

YNP

spec J 951.5 1983 (4,8802) 3 9721 9330

rgrow

YNP

spec J 7.28e-6 1.05e-5

(3.27e-8,

4.50e-5) 1.82e-8 7.34e-5 1.47e-5

Nemod

YNP

spec H 9068 8979 (7171,10692) 2407 11110 9062

tmig_change

YNP

spec H 23 72.36 (1,421) 1 478 1

mhist

YNP

spec H 3.48e-4 8.37e-4

(2.21e-5,

3.98e-3) 1.37e-5 4.82e-3 7.82e-4

mmod

YNP

spec H 1.47e-5 4.05e-4

(1.54e-8,

3.64e-3) 1.10e-8 4.73e-3 3.69e-4

rshrink

YNP

spec H -5.40e-6 -4.66e-4

(-5.41e-3,

-1.53e-8) -1.00e-8 -8.90e-3 -2.72e-7

tshrink

YNP

spec H 18.5 65.05 (1,383) 1 471 3

tgrow_stop

YNP

spec H 1234 2446 (148,9222) 94 9949 327

rgrow

YNP

spec H 8.27e-6 1.12e-5

(3.51e-8,

3.79e-5) 1.08e-8 7.30e-5 6.77e-6
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Table 3.5. Confusion matrix for the demographic models �t for YNP Tamias alpinus.
The matrix was constructed using leave-one-out cross validation with rejection sampling at
a tolerance of 0.008. The matrix shows how well the di�erent models can be di�erentiated
based on 2D-SFS bins. The number of cross validation rounds under the di�erent models
are represented by the rows and the number of times each model was assigned as having
the highest posterior probability of producing the simulated 2D-SFS bins are represented
by the columns.

A B C D E F G H N

A 519 54 64 5 182 68 62 0 46

B 1 335 24 3 208 274 13 0 142

C 55 143 276 52 209 138 62 12 53

D 75 123 252 113 173 144 60 12 48

E 66 161 85 7 399 178 15 0 89

F 8 315 32 3 179 308 2 0 153

G 94 120 155 3 240 132 179 0 77

H 103 106 218 92 156 105 113 46 61

N 3 297 26 2 236 251 12 0 173

Table 3.7. Pairwise comparisons between DML,obs empirical CDFs for the di�erent
demographic models �tted using ABC to SS Tamias alpinus populations in terms of the
2-Sample Kolmogorov-Smirnov (KS) test. KS test statistic values and their corresponding
p-values are displayed in the blue and red rows, respectively.

A G H J N
A 0.000 0.078 0.314 0.473 0.173

G 0.000 0.265 0.430 0.129

H 0.000 0.275 0.213

J 0.000 0.424

N 0.000

A 1 0.004558 <2.2e-16 <2.2e-16 2.01e-13

G 1 <2.2e-16 <2.2e-16 1.19e-7

H 1 <2.2e-16 <2.2e-16

J 1 <2.2e-16

N 1
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Table 3.8. Confusion matrix for the demographic models �t for SS Tamias alpinus. The
matrix was constructed using leave-one-out cross validation with rejection sampling at a
tolerance of 0.008. The matrix shows how well the di�erent models can be di�erentiated
based on 2D-SFS bins. The number of cross validation rounds under the di�erent models
are represented by the rows and the number of times each model was assigned as having
the highest posterior probability of producing the simulated 2D-SFS bins are represented
by the columns.

A G H J N

A 243 71 66 148 472

G 181 86 60 170 503

H 97 51 145 328 379

J 66 49 128 356 401

N 63 71 49 181 636
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Table 3.10. Confusion matrix for the demographic models �t for YNP Tamias speciosus.
The matrix was constructed using leave-one-out cross validation with rejection sampling at
a tolerance of 0.008. The matrix shows how well the di�erent models can be di�erentiated
based on 2D-SFS bins. The number of cross validation rounds under the di�erent models
are represented by the rows and the number of times each model was assigned as having
the highest posterior probability of producing the simulated 2D-SFS bins are represented
by the columns.

A B D E G H J N

A 263 304 195 34 105 6 13 80

B 262 314 185 32 106 5 21 75

D 165 224 260 26 90 60 126 49

E 204 270 207 28 103 46 48 94

G 181 220 153 17 165 56 78 130

H 138 138 180 18 99 145 214 68

J 113 147 184 21 98 139 225 73

N 182 210 168 20 121 63 97 139
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3.7 Figures

Figure 3.1. Historic and modern sampling localities. Tamias speciosus and T. alpinus
specimens were collected from Yosemite National Park (A, B) and the Southern Sierras
(C). Historical sampling localities (1911-1916) are shown in �lled blue circles and modern
(2003-2012) in �lled red crosses. The vertical bar plots in the right panel show the lower
elevation (kilometers) range changes of the species over the past century with sequenced
samples indicated by dots within the bars. Upper elevation limits were determined for T.
speciosus but the trapping resurvey was not designed to ascertain upper limits for T.
alpinus from either transect area. Sample sizes (n) are indicated under the elevation bars.
While T. speciosus maintained a stable range, T. alpinus populations have severely
contracted upwards in elevation throughout their distribution. The inset (bottom right)
USA map shows the state of California with Yosemite National Park (northern) and the
Southern Sierras (southern) study areas outlined.
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Figure 3.2. Patterns of base misincorporations in historic samples. The frequencies of the
12 types of substitutions (y-axis) are plotted as a function of distance from the 5' and
3'-ends of the DNA molecules (x-axis). The �rst 50 bp of the reads are shown. The
substitution frequency of each particular type is calculated as the proportion of a
particular alternative (non-reference) base type at a given site along the read, and is coded
in di�erent colors and line patterns explained at the bottom of the plots: `X -> Y'
indicates a change from reference base type X to alternative base type Y.
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Figure 3.3. Diagram of the demographic inference method based on �tting bins of the
2D-SFS with Approximate Bayesian Computation (ABC) that was used to infer the
Tamias population histories. For assessing model �t in step 5, DML,obs is the Euclidean
distance between the observed 2D-SFS bins and bins from the maximum likelihood (ML)
history under the chosen model, while DML,pseudo is the same except that the bins from a
single simulation under the ML history serve as the observed bins.
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Figure 3.4. The general demographic models that were �t with ABC included histories
with demes bottlenecking into the present (A, B, G), historic population expansion (C, D,
J), historic population expansion followed by a bottleneck (H), and constant deme size (E,
F, N). The dark circles within the history outlines represent di�erent demes. The actual
number of simulated demes equaled the number of sampling localities, which were 10 for
YNP T. alpinus, 3 for SS T. alpinus, and 8 for YNP T. speciosus. The demes for YNP T.
alpinus and T. speciosus were simulated under an island model (symmetric migration and
identical deme sizes), while SS T. alpinus demes were simulated under a stepping stone
model (isolation-by-distance and identical deme sizes). Solid versus dotted arrows between
demes represent di�erent migration rates, while no arrows represent no migration between
demes. The parameter mhist is the historic migration rate between two demes, mmod is the
modern migration rate between a pair of demes, tmig_change is the number of generations in
the past at which the migration rate changes, rgrow is the intrinsic growth rate for
population expansion, tgrow_stop is the number of generations in the past that expansion
stops, rshrink is the intrinsic growth rate of population decline, tshrink is the number of
generations in the past that a bottleneck starts, and `mod Ne' is the e�ective size of each
deme at the present.
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Figure 3.5. Diagram showing how bins of the 2D-SFS were �t in the ABC inferrence
procedure. The 2D-SFS was constructed using the historic (pooled historic demes) and
modern (pooled modern demes) metapopulations. The summary statistic used in the ABC
procedure was the set of o�-diagonal (left) and diagonal (right) bins of the 2D-SFS, where
each bin's value is the sum of the counts contained within the bin. The width of each bin
refers to the number of 2D-SFS categories on either side of the diagonal/o�-diagonal and
determines the amount of resolution (�ner bins for higher resolution) and noise dampening
(wider bins) when �tting the 2D-SFS. For each ABC simulation, the set of simulated
2D-SFS bins was compared to the observed bins (top) by calculating the Euclidean
distance between them.
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Figure 3.6. Temporal and spatial population genetic structure among Tamias chipmunk
populations. A) Genetic clustering by general sampling locality (left, pie charts) and
individual (bar graph to the right of each map) based on NGSadmix analyses. Each
individual is partitioned into colored segments that indicate cluster membership. Pie charts
represent the sum of all individualsâ�� membership in each cluster at each general locality
on the map. Proximate individual sample localities were pooled for clarity following
Rubidge and colleagues[14]. The inferred best number of clusters (K) is shown on the top
of each bar graph. The global FST estimate for each population is indicated at the bottom
of each map. B) Each data point in the PCA plot represents an individual specimen. The
�rst two principal components (PCs) are shown.
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Figure 3.7. Inferred genetic ancestry of three Tamias chipmunk species. Individual
ancestries were inferred based on randomly sampling one SNP per contiguous sequence to
minimize the e�ect of linkage disequilibrium. Each individual specimen is represented by a
horizontal bar partitioned into colored segments indicating their proportion of ancestry
from each species.
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Figure 3.8. Unfolded and folded two-dimensional site frequency spectrum (2D-SFS) for
SNPs between historic (x-axis) and modern (yÂ­Â­Â­Â­-axis) Tamias chipmunk
populations. The color of each data point represents the number of SNPs belonging to that
particular category in the 2D-SFS, which is speci�ed by the color key inset. Folded spectra
were used in demographic analyses and the unfolded spectra were used to identify outlier
SNPs.
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Figure 3.9. Empirical cumulative distribution functions (ECDF) for the Euclidean
distance between the observed and expected joint SFS bins, d(ML,obs), for the di�erent
demographic models tested for (A) YNP T. alpinus, (B) SS T. alpinus, and (C) YNP T.
speciosus. For each model 1,000 simulations under the ML history were performed to
generate the expected joint frequency spectra from which the distribution of d(ML,obs)
was calculated. Models with the leftmost ECDF curves are relatively most likely to
resemble the true demographic history.
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Figure 3.10. DML,obs and DML,pseudo kernel density estimates (KDE) for the best �tting
demographic models for (A) YNP T. alpinus, (B) SS T. alpinus, and (C) T. speciosus.
DML,obs is the Euclidean distance between the observed and expected 2D-SFS bins under
the ML history for each model, while DML,pseudo is the distance between a single set of
2D-SFS bins under the ML history (pseudo observed) and the expected joint SFS bins. For
each ML history, 1,000 simulations were performed to generate the expected joint spectra.
The values within the distributions are Weitzman's coe�cient of overlapping (OV L), which
ranges from 0 to 1 and quanti�es the area of overlap between the two KDEs. More overlap
between the two distributions indicates greater similarity between the ML and true
demography.
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Figure 3.11. Posterior probability distributions for the demographic parameters of the
best �tting models, B, F, H, and N, for YNP Tamias alpinus obtained using ABC. The
posterior distributions re�ect the set of parameter values after retaining 8% of the total
25,000 ABC simulations for each model that produced 2D-SFS bins most closely matching
the observed 2D-SFS bins.



80

Figure 3.12. Posterior probability distributions for the demographic parameters of the
best �tting models, A, G, and N, for SS Tamias alpinus obtained using ABC. The
posterior distributions re�ect the set of parameter values after retaining 8% of the total
25,000 ABC simulations under each model that produced 2D-SFS bins most closely
matching the observed 2D-SFS bins.
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Figure 3.13. Posterior probability distributions for the demographic parameters of the
best �tting models, D, J, and H, for YNP Tamias speciosus obtained using ABC. The
posterior distributions re�ect the set of parameter values after retaining 8% of the total
25,000 ABC simulations under each model that produced 2D-SFS bins most closely
matching the observed 2D-SFS bins.
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Figure 3.14. Population histories �tted with ABC showing the general topology and
posterior median demographic parameter values averaged across the best �tting models for
YNP T. speciosus, YNP T. alpinus, and SS T. alpinus, respectively. The �tted parameters
are the modern e�ective number of individuals per deme (Ne), migration rates (m),
intrinsic growth rates (r), and the timing of demographic events (1 generation = 1 year).
History widths are proportional to the deme e�ective sizes though time. The four-deme
depiction represents histories �tted with an island model, where the actual number of
islands equaled the number of sampled demes. The three-deme depiction indicates that
histories were �tted with a stepping stone model involving three demes. The events
depicted with dashed lines for SS T. alpinus are relatively uncertain (see `SS T. alpinus
demography'), but if any demographic changes did occur they are as shown (note that a
bottleneck would have been weak and the size is not to scale).
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Figure 3.15. Derived alleles showing signi�cant frequency shifts between historic and
modern populations of Tamias alpinus in YNP. (A) Five outlier SNPs (a-e, FDR q <
0.001) are labeled on a plot of the neutral per site temporal FST distribution (modern
versus historic) estimated by OutFLANK. The histogram of observed FST (yellow bins) is
shown with the inferred neutral distribution (blue line). (B) Unfolded two-dimensional site
frequency spectrum (2D-SFS) for SNPs between historic (x-axis) and modern (y-axis) YNP
Tamias alpinus specimens. The color of each data point represents the number of SNPs
(speci�ed by the color key) belonging to that particular 2D-SFS category. Arrows point to
the �ve outliers (a-e) showing the only signi�cant allele frequency shifts over time. (C)
Derived allele frequencies of the �ve outliers SNPs plotted against sample elevation.
Individual sample localities were pooled into 100-meter elevational bands to enable allele
frequency estimation. (D) The position of the �ve outliers mapped onto the mouse Alox15
gene.
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Figure 3.16. The expected distribution of neutral FST per site and exome-wide under the
best �tting demographic histories for YNP T. alpinus inferred with ABC. Each FST
distribution was generated from 1,500 simulations under the maximum likelihood histories
for the best �tting demographic models for YNP T. alpinus, B, F, H, and N. The blue
distributions were determined from all sampled demes. Calculation of the red distributions
was limited to demes that provided samples in both the historic and modern periods (the
extant demes). The values of the �ve observed FST outlier SNPs estimated from all and
extant demes are plotted onto their respective expected per site FST distributions.
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Figure 3.17. Site b derived allele frequencies in YNP and southern Sierra T. alpinus
plotted against sample elevation. Among sites a-e that are variable in YNP T. alpinus,
only b was segregating in SS T. alpinus for which it had similar frequency across temporal
contrasts.
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Figure 3.18. Modern and historic derived allele frequencies at the �ve Alox15 outlier
SNPs among YNP T. alpinus sampled at high and low elevations. Calculation of the allele
frequencies was restricted to individuals from demes that provided samples in both the
modern and historic time periods. Low elevation individuals are those from the lower half
of the modern-sample elevational range, while high elevation individuals are from the upper
half. Sample sizes at the �ve SNPs were n = 17-22 for historic low, n = 15-17 for historic
high, n = 22-24 for modern low, and n = 21-24 for modern high.
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4. Mapping the genetic basis of

coloration in the mimic poison frog

Tyler Linderoth, Evan Twomey, Adam Stuckert, Ke Bi, Amy Ko,

Joana Rocha, Jason Chang, Matthre MacManes, Kyle Summers,

Rasmus Nielsen

4.1 Introduction

A crux of modern evolutionary biology is discovering adaptive genomic regions, the pur-
suit of which is constantly being propelled forward by the latest molecular methods of the
time starting with allozymes [91, 92], Sanger and length polymorphism sequencing of a few
loci [93, 94, 95], and now next generation sequencing (NGS) on a genomic scale. New
sequencing approaches and technologies based on NGS have also rapidly expanded the tax-
onomic breadth for mapping, at least putative, adaptive loci [96, 97, 28, 98]. Since animal
color (including its distribution on the body in terms of pattern) has a major role on survival
and reproduction [99, 100], it has been the focus of many mapping studies in non-model or-
ganisms [101, 102, 44]. Among the di�erent ways in which color can in�uence �tness [103,
104], mimicry is perhaps one of the most blatant examples of just how intimately related
color and selection are in nature [105, 106, 107]. For this reason, wing pattern mimicry has
been extensively studied in Heliconius butter�ies [108, 109, 110], and genomic approaches
have revealed genes underlying wing color [111, 112, 113].

In regions of Peru proximal to where Heliconius melpomene and H. erato have under-
gone a mimetic radiation, the poison frog, Ranitomeya imitator, has also undergone a similar
radiation, as its common name, the mimic poison frog, suggests. Ranitomeya imitator is
a Müllerian mimic of three congeners (R. summersi, R. variabilis, and R. fantastica), rep-
resenting four distinct color morphs. Phylogenetic analyses [114, 115] indicating that the
congeners diverged prior to the R. imitator morphs support R. imitator as being the mimic,
versus the model, species. Between the two geographic regions where R. imitator is sympatric
with, and mimics, banded R. summersi and the region where it mimics striped R. variabilis
there exists an introgression zone with admixed individuals between the banded and striped
R. imitator morphs that exhibit intermediate color and pattern phenotypes [116]. The genes
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responsible for the di�erent R. imitator color morphs are entirely unknown, which is mostly
true for dendrobatids in general despite showing arguably some of the most striking color
diversity among terrestrial vertebrates (one exception is Posso-Terranova & Andres[117] who
recently showed MC1R to be responsible for darker phenotypes in Oophaga histrionica). The
R. imitator complex, with its divergent and admixed morphs provides an excellent stage for
mapping color genes and using them to understand what kind of evolutionary mechanisms
drive mimetic radiations and maintain introgression zones.

Mapping genes in R. imitator, however, with a genome size (12 GB) that is 30-40x larger
than Heliconius and 4x larger than humans, and completely lacking any prior genomic
resources, is not a trivial task. We sought to overcome these challenges by designing a
custom exon capture system for R imitator, which we used to survey over 13K genes in 124
individuals representing the banded, striped, and admixed morphs. We used a combination
of divergence and admixture mapping to reveal candidate genes, showing enrichment for
melanogenensis pathways, that we believe are likely in�uencing pattern, dorsal color, and/or
leg color in R. imitator.

4.2 Methods

Ranitomeya imitator exome capture system design

Our own sequencing results have revealed that Ranitomeya imitator has a ∼12 GB
genome that is large due to extensive paralogy. To minimize the obstacle of mapping genes
in a very large and highly duplicated genome, we decided to focus on the exome, which
could feasibly be assembled and was likely directly, via the encoded proteins, or indirectly,
as targets of expression regulation, relevant to the phenotypes that we sought to identify
the genetic basis for. There are no pre-existing reference genomes to design suitable capture
probes from however, so we designed our capture system from R. imitator transcriptomes
in a manner inspired by Bi et al.[58]. Speci�cally, we sequenced barcoded cDNA libraries
prepared separately using Illumina TruSeq stranded total RNA kits for mRNA isolated from
various tissues sampled from two, young adult, Tarapoto morph R. imitator. The di�erent
libraries for these samples were generated from the brain and eyes, and skin patches sam-
pled from the dorsal trunk, nape and dorsal head, ventral jaw, and rear leg areas. These
four skin areas di�ered amongst each other in terms of color and pattern. We sequenced
additional barcoded cDNA libraries prepared from the skin for individuals sampled at four
developmental stages: Week 1 (n = 1), 2 (n = 3), 4 (n = 3), and 5 (n = 3) tadpoles. Various
developmental stages were sequenced since we had no a priori knowledge for when the rele-
vant color and patterns genes may be expressed, and color becomes visible at around week
5 (Figure 4.1). The di�erent skin patches plus brain and eye libraries were multiplelxed and
sequenced across two lanes of the Illumina HiSeq 2000 using 100 bp paired-end reads. All of
the tadpole skin libraries were multiplexed and sequenced in the exact same way.

The sequencing reads from each cDNA library were jointly assembled using Trinity,
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yielding 273,039 transcripts. We used the transcriptome annotation procedure explained
in Singhal [63] to annotate the R. imitator transcripts based on BLASTX comparisons to
Xenopus tropicalis proteins downloaded from Ensemble (transcriptome annotation methods
are implemented in the script available at https://github.com/CGRL-QB3-UCBerkeley/

MarkerDevelopmentPylogenomics/blob/master/5-Annotation. By requiring a maximum
blast e-value of 1e-10 and at least 50% protein similarity to X. tropicalis we were able to
assign Ensemble gene identi�ers to 12,305 unique transcripts, which were used as the tem-
plate sequence to design exon capture probes from. In order to ensure that we would not
miss designing probes on any potentially relevant transcripts that we failed to annotate due
to the considerable divergence between R. imitator and X. tropicalis, we looked for di�er-
ential expression between the di�erent skin patches and brain/eyes from the juvenile and
between developmental stages as well as transcripts that were constitutively highly expressed
throughout development. Despite having small sample sizes, we used EdgeR [118] to iden-
tify transcripts with the most extreme di�erences in the number of mapped read counts
between the di�erent body parts and developmental stages as well as transcripts that had
TPM values calculated with Kallisto [119] that were above the 95th percentile across all
stages of development. Any transcripts that we were unable to annotate but that showed
interesting expression patterns were added to the set of transcripts to design capture probes
from. To be con�dent that these unannotated candidate transcripts, or at least a portion
of each assembly, represented genuine genes we ran transDecoder [120] on them to identify
likely coding regions. We retained only transcripts having open reading frames of at least
100 bp and trimmed away any non-gene-like portions.

We applied a suite of quality control �lters to the set of probe design transcripts to arrive
at a �nal set that would result in optimal capture performance. This �ltering entailed �rst
performing a reciprocal blast of the transcripts and retaining one isoform per gene. For
the retained transcripts we trimmed any untranslated regions (UTRs) greater than 500 bp
down to this threshold in order to avoid designing probes on exceptionally long UTRs that
could potentially represent assembly artifacts. We then �ltered away any low-complexity
and repetitive regions occurring in either Xenopus or the database for all vertebrates using
repeatMasker [40] since these types of regions would promote o�-target capture. After repeat
masking, we only kept transcript regions of at least 80 contiguous base pairs of unmasked
sequence. We then removed any sequences with GC content outside of the range of 40-70%
since capture becomes relatively ine�ective at these more extreme levels [58]. Lastly, since
mitochondrial genes were unlikely to be of relevance to the phenotypes we wanted to map,
we removed all mitochondrial transcripts except for cytochrome B, which we kept in order
to ensure that we had some haploid representation to check things like sequencing error
rates. After all quality controls, our total capture target was 28,281,490 bp, representing
13,265 genes. Among these genes, 10,904 were annotated (or at least had Ensemble IDs)
and had a total length of 24,530,337 bp, while the remaining 2,361 unannotated genes with
intriguing expression patterns had a total length of 3,751,153 bp. In-solution, sequence
capture probes were designed from this target sequence and synthesized as a NimbleGen
SeqCap EZ Developer Library kit.

https://github.com/CGRL-QB3-UCBerkeley/MarkerDevelopmentPylogenomics/blob/master/5-Annotation
https://github.com/CGRL-QB3-UCBerkeley/MarkerDevelopmentPylogenomics/blob/master/5-Annotation
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Data collection

Ranitomeya imitator sample collection

We opportunistically sampled R. imitator from sites throughout the San Martin province
of Peru (Figure 4.2) throughout the morning and early afternoon in 2010, 2012, 2013, and
2014. We hand-caught frogs as we encountered them out foraging during the day or resting
in plant axils. Frogs were placed individually into �lm canisters or 15 mL Falcon tubes and
transported back to a �eld-based laboratory where we collected phenotypic data and toe
clips, which were stored in 96% ethanol. On the following day, frogs were released to the
location from which they were caught. We collected samples from each location in one to
three consecutive days.

Genomic library preparation, exome capture, and sequencing

We extracted DNA from a single toe clip for each of the 124 R. imitator samples using
either Qiagen DNeasy Blood and Tissue kits following the manufacturer's protocols or using
standard salt precipitation. For the salt precipitation method we �rst incubated the toes
in 500 µL cell lysis bu�er (1 mM Tris pH 8, 100 mM NaCl, 10 mM EDTA pH 8, 0.5%
SDS) and 10 µL 20 mg/mL proteinase K at 55 °C for ∼24 hours. After the tissues were
completely digested we added 3 µL of 10 mg/mL RNase A to the samples and incubated
them for an additional 30 minutes at 37°C. Following this RNA digestion the samples were
placed in a freezer at -20 °C for 5 minutes. We then added 200 uL of 5 M NaCl to each
sample accompanied by vortexing for 20 seconds, and then placed them back in the freezer
for another 5 minutes. Samples were then centrifuged at 11,000 RPM for eight minutes
to pellet the proteins. The supernatant containing the DNA was then transferred to new
tubes, leaving behind the protein pellet, and 600 µL of 100% isopropanol was added to the
tubes containing DNA, followed by 50 gentle inversions of the tubes. The samples were then
placed in the freezer for ∼1 hour and then centrifuged at 10,000 RPM for 10 minutes to
pellet the DNA. After pouring o� the supernatant, being careful not lose the DNA pellet,
we washed the DNA with 600 µL of fresh 70% ethanol. The tubes were inverted to dislodge
the pellet in the 70% ethanol, and then centrifuged for eight minutes at 10,000 RPM. After
centrifugation, the supernatant was poured o�, leaving the DNA pellet behind, which was
allowed to dry for ∼12 hours or until completely dry. Lastly, the samples were resuspended
in 50 µL TE bu�er.

For samples that had been extracted using the Qiagen kits, we performed an additional
post-extraction, RNase A digestion to ensure complete removal of RNA. Speci�cally, 3 µL
of 10 mg/mL RNase A was added to DNA suspended in Qiagen AE bu�er and incubated at
37 °C for 30 minutes. The DNA was then recovered by adding 0.1x volume of 3 M sodium
acetate (pH 5.2) and 2 volumes of 100% isopropanol to the samples, followed by gently
inverting the samples 50 times. The samples were then placed into a -20 °C freezer for 15
minutes. After removing the samples from the freezer, we centrifuged them at 10,000 RPM
for 12 minutes at room temperature to pellet the DNA. We then discarded the supernatant
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and washed the DNA pellet by adding 600 µL of fresh 70% ethanol to each sample followed
by inverting the tubes to dislodge the pellet. The samples were then centrifuged at 10,000
RPM for 12 minutes. Lastly, we poured o� the supernatant being careful not to lose the
DNA pellet, which we allowed to dry for ∼12 hours. After the samples were completely dry,
we eluted them in 50 µL TE bu�er.

We prepared genomic libraries for 124 R. imitator following the protocol of Meyer &
Kircher [57]. We started the library preparation with 1-1.2 µg DNA per sample for individuals
from the striped and banded populations and 0.92 - 1.4 µg per sample for the admixed
population as measured by a Nanodrop �uorospectrometer. The one exception was for
admixed sample CH-14-5, for which we used 0.4 µg of initial DNA because less overall DNA
was available for this sample. The DNA for each sample was �rst sheared using a Diagenode
Bioruptor to an average fragment size of ∼250 bp for striped and banded samples and ∼300
bp for the admixed samples. For striped and banded population samples this was achieved
by shearing samples at the 'high' Bioruptor setting for a total of 7 minutes using cycles
de�ned by 30 seconds of shearing followed by 30 seconds of pause (each sample was in the
Bioruptor for a total of 13 minutes). The admixed samples were sheared at the 'medium'
Bioruptor setting for a total of 4 minutes using the same 30 seconds on / 30 seconds pause
cycle scheme (each sample was in the Bioruptor for a total of 8 minutes). Following each
enzymatic reaction up until the indexing PCR step, all samples were cleaned using 1.6x
volume of Sera-Mag bead solution. A sample-speci�c 7-nt barcode was incorporated into the
library sequences for each sample via indexing PCR using 4 µL of template library DNA and
10 PCR cycles under the reaction conditions speci�ed in Meyer & Kircher [57]. We performed
three independent indexing PCR reactions for the striped and banded individuals followed
by bead puri�cation using 1.3x volume Sera-Mag beads. For the admixed individuals we
performed �ve independent PCR reactions, each of which were puri�ed using 0.8x volume
Sera-Mag beads. All of the PCR products from each of the independent PCRs were pooled
for each individual respectively.

Equal amounts of DNA from barcoded libraries for striped and banded samples were
pooled to generate three separate banded/striped pools for capture with each pool comprised
of 22 individuals. Likewise, equal amounts of DNA from all 58 admixed individual barcoded
libraries were pooled to form an admixed capture pool. We isolated the targeted exons
from these capture pools using our custom R. imitator capture kit following NimbleGen's
protocols with slight modi�cations. In light of R. imitator 's large genome size we increased
the amount of input DNA for capture compared to the 1 µg called for by the NimbleGen
protocol in order to preserve the complexity of the captured libraries. For each of the three
banded/striped capture pools we slightly more than doubled the called for amount of DNA
(2.522, 2.388, 2.663 µg of DNA), and for the admixed capture pool we used 3 µg of DNA for
hybridization. Accordingly, we also doubled and tripled the amount of barcode blockers and
COT-1 DNA used in the banded/striped and admixed hybridization reactions, respectively,
relative to the amounts speci�ed in the NimbleGen protocols. For COT-1 blocking DNA
we used a cocktail of chicken Hybloc, human COT-1, and mouse COT-1 combined in equal
amounts. Both the banded/striped and admixed libraries hybridized for ∼75 hours. The
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captured libraries were LM-PCR ampli�ed in three separate reactions using 20 µL of the
template solution and the number of PCR cycles was catered to yield concentrations between
20-25 ng/µL as assessed using the Nanodrop. Each of the banded/striped captured libraries
were initially ampli�ed using 14 PCR cyles, which was then reduced to 12 cycles for the
second set of PCRs, and then to 11 cycles for the �nal set of PCR reactions for two of
the captured libraries (the 3rd continued to use 12 cycles). The captured admixed libraries
were ampli�ed using one 12-cycle PCR and two 13-cycle PCRs. The products from the
three separate PCR reactions for each capture were pooled by equal amounts based on
Qubit �uorometer measurements. The enrichment e�ciency for the four di�erent capture
experiments was assessed using qPCR with negative and positive targeted control loci. The
three banded/striped captures were pooled equally based on qPCR measurements and the
resulting library pool was sequenced on two lanes of the Illumina HiSeq 4000 using 100 bp
paired-end reads. The captured admixed libraries were also sequenced using two Illumina
HiSeq 4000 lanes but with 150 bp paired-end reads.

Sequencing data quality control

Raw reads

The raw sequencing reads were processed for quality prior to assembly or using them
for any analyses with the program readCleaner https://github.com/tplinderoth/ngsQC/
tree/master/readCleaner. This entailed applying, in the following order, speci�c quality
control measures to the raw fastq �les: 1) remove any reads spawned from PCR duplicates
from the dataset, 2) trim adapter sequences from the ends of reads, 3) trim bases from the
ends of reads with average Phred Quality below 20 in a 4 bp sliding window as well with
the BWA algorithm implemented in cutadapt [121] using the same quality threshold of 20,
4) remove low complexity reads having a DUST score [122] above 4, 5) merge any read pairs
that overlap by at least 6 base pairs and that have an observed expected alignment score [123]
p-value less than 0.01, 6) remove reads that may be derived from potential contaminants
identi�ed as those that map to the human GRCh38 or Escherichia coli (NCBI GenBank
accession U00096 AE000111-AE000510) reference genomes, 7) remove reads that are shorter
than 36 bp long and/or have at least 50% of their sequence comprised of `N's.

https://github.com/tplinderoth/ngsQC/tree/master/readCleaner
https://github.com/tplinderoth/ngsQC/tree/master/readCleaner
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Mapped data

Prior to performing any population genetic or association analyses we �ltered the mapped
data for quality, initially processing data from the banded and striped population capture
experiment and the admixed population capture separately. We pooled the data for the
banded and striped populations to which we applied snpCleaner (https://github.com/
tplinderoth/ngsQC/tree/master/snpCleaner) in order to retain sites that met the fol-
lowing criteria: 1) At least 70% of the individuals had to have data, meaning that they were
covered by at least 1 sequencing read, 2) p-value for a test of strand bias above 0.0001, 3)
Phred root mean square (RMS) mapping quality of at least 15, 4) base quality bias test
p-value above 1e-100, 5) mapping quality bias test p-value above 1e-100, 6) distance from
end-of-read bias test p-value above 0.0001. Criteria 3-6 applied only to potentially variable
sites identi�ed with samtools and bcftools since, other than for RMS mapping quality, these
�lters are geared to looking for systematic bias between reads with the reference and alter-
native alleles. We refer to the subset of retained sites from this �ltering as the SBall set of
sites. The divergence mapping used SNPs called from the SBall set. We �ltered sites for
the admixed population dataset using the same criteria as for SBall except for relaxing the
coverage requirement by requiring at least ∼25% of individuals to have data (at least one
sequencing read) to retain the site. This generated a quality controlled subset of admixed
population sites referred to as ADMIXall. The intersection of ADMIXall and a second subset
of sites for the banded and striped dataset generated using the same quality �ltering param-
eters as SBall except for requiring only ∼25% of individuals to have data in order to keep
sites, yielded the subset of quality controlled sites called SBAall. SBAall, representing sites
that passed quality control requirements in both the admixed and striped/banded datasets,
were used for admixture mapping in the introgression zone.

We applied more stringent quality �ltering for sites used for population genetic character-
ization analyses to ensure highy accurate results. We chose to use the more liberally �ltered
SBall and SBAall sets of sites for gene mapping so as to not risk removing any potentially
associated SNPs from the analysis; we ensured that these particular SNPs were of reliable
quality after identifying potential candidates. Additional �ltering of the SBall and ADMIX-
all sites for population genetic analyses involved removing any sites from SBall for which
either the banded or striped population did not have at least 90% of individuals covered
by at least 3 reads and removing any sites from ADMIXall for which these same minimum
coverage requirements were not met among the admixed individuals. From these trimmed
versions of SBall and ADMIXall we additionally removed any sites showing evidence of be-
ing paralogous. We ran ngsParalog (https://github.com/tplinderoth/ngsParalog) on
the banded, striped, and admixed populations separately in order to calculate population-
speci�c duplication likelihood ratios at sites contained in the trimmed SBall and ADMIXall
sets. We purged any sites from the coverage-trimmed SBall subset that had a signi�cant
likelihood ratio of being duplicated at a 0.008 signi�cance level after a Bonferroni correction
for multiple testing in either the banded or striped population. Using a Bonferroni adjusted
0.008 signi�cance level, we removed sites from the coverage-trimmed ADMIXall subset that

https://github.com/tplinderoth/ngsQC/tree/master/snpCleaner
https://github.com/tplinderoth/ngsQC/tree/master/snpCleaner
https://github.com/tplinderoth/ngsParalog
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had signi�cant p-values of duplication for the admixed population. We then took the inter-
section of the remaining SBall and ADMIXall sites to obtain a subset of paralog-free, high
quality sites refered to as SBAallstrict. This represented sites that are high quality in the
striped, banded, and admixed populations and that are appropriate for population genetic
inferrence.

Reference exome assembly and mapping

We assembled the subset of exome capture reads that passed all quality controls for six
individuals separately using Spades with all default parameters. Three of the six individuals
used for assembly were from the banded population (ET13012, ET13017, ET13018) while the
other three were from the striped population (ET13029, ET13032, ET13033). We blasted
the assembled contigs to the R. imitator transcriptome sequences used for probe design to
identify in-target assemblies based on if they matched the targeted sequences by at least
80%. The in-target assemblies among the six individuals were then clustered using CD-
HIT [65] and, if possible, assembled with CAP3 [66]. Any unassembled contigs belonging
to the same gene were joined together using a span of 39 Ns between them to prevent
reads from mapping across the gaps. Scripts used or assembly are available at https://

github.com/CGRL-QB3-UCBerkeley/seqCapture. We then mapped the quality controlled
reads for each of the 124 individuals to this de novo exome reference using NovoAlign (http:
//www.novocraft.com/products/novoalign) requiring at least 30 good quality (option l)
bases per read and a minimum Phre-scaled mapping quality of 20 to retain reads, and setting
the highest acceptable alignment score for the best alignment at 150. The average insert
size and standard deviation mapping parameters were set according to values determined
from bioanalyzer traces for the libraries. Mapping for the striped and banded population
dataset used an insert size of 220 bp with a standard deviation of 58, while for the admixed
population dataset the insert size was set to 271 bp with a standard deviation of 63. We then
used samtools to merge the resulting unpaired and paired alignments for each individual into
a single, sorted �le, and converted the SAM �les into BAM format.

Population genetic analyses

We used the program ANGSD [37] to estimate the respective site frequency spectrum
(SFS) for the banded, striped, and admixed populations for the SBAallstrict set of quality
controlled sites. The shape of the SFS were used to gain insight into the demographic histories
of the populations and also served as a proxy for the adequacy of our data quality control
measures. The three SFS suggested that there were no apparent data quality problems with
the SBAallstrict sites and so all population genetic analyses were based on this subset. ANGSD
performs population genetic analyses in a probabilistic framework, based on genotype and
allele frequency likelihoods, thereby avoiding compounding inaccuracy due to genotyping
errors in downstream analyses, which is a particularly pronounced problem for low-medium
coverage datasets like ours. It also takes an empirical Bayes approach to many analyses that

https://github.com/CGRL-QB3-UCBerkeley/seqCapture
https://github.com/CGRL-QB3-UCBerkeley/seqCapture
http://www.novocraft.com/products/novoalign
http://www.novocraft.com/products/novoalign
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use allele frequencies, for which it requires an estimate of the site frequency spectrum as a
prior. Accordingly, each population's respective SFS served as a prior to obtain estimates of
genetic diversity in terms of Watterson's estimator, θW , and nucleotide diversity, π, for the
di�erent R. imitator populations. We also used ANGSD to calculate p-values for whether
sites in the SBAallstrict set were variable, and called SNPs based on a p-value cuto� of 1e-6
for the banded, striped, and admixed populations separately.

We quanti�ed the degree of genetic di�erentation between populations in terms of FST
with ANGSD as well. We estimated the joint SFS between each pair of populations, which
served a prior for estimating FST for each of the corresponding pairwise comparisons. In ad-
dition, we examined the genetic relationship among individuals by using ANGSD to estimate
the genetic covariance among individuals based on genotype posterior probabilities assuming
a Hardy-Weinberg equilibrium prior. Eigen decomposition was performed on the resulting
covariance matrix using the `eigen' function in R [79] in order to perform PCA analysis. We
also estimated ancestry proportions in the banded, striped, and admixed populations using
NGSadmix [74] run with two ancestral populations, considering only sites with a minimum
minor allele frequency (MAF) of 5%. The PCA and admixture analyses were performed
using SNPs called from the SBAallstrict set for the three populations pooled.

Color and pattern phenotyping

In order to determine which genes may be underlying speci�c colors and pattern in R.
imitator, we quanti�ed pattern in terms of its degree of stripedness or bandedness, the pro-
portion of the dorsum that was black, and �ve aspects of color in the Lab color space; 1)
dorsal color along the red-green color axis, DCa, 2) dorsal color along the lightness axis,
DCL, 3) hind leg color along the red-green color axis, LCa, 4) hind leg color along the
lightness axis, LCL. These features were quanti�ed from digital photographs taken with a
Nikon D7000 camera using a Nikkor 85 mm macro lens. Images were converted from RAW
to the highest quality JPEG format using Nikon ViewNX2 software. Prior to quantifying
the phenotypes the JPEG images were converted to PNG format using the software GIMP
(www.gimp.org). Ranitomeya imitator from the striped population are characterized by
segments of black running parallel to the anteroposterior axis along the dorsum versus in-
dividuals from the banded population which have segments of black running perpendicular
to this axis. Ranitomeya imitator from the introgression zone exhibit a gradient of patterns
intermediate between the pure striped and banded morphs. To quantify pattern from digital
images, we used a continuous measure of the degree of stripedness or bandedness referred to
as the pattern rotation measure, patternrot. When considering a raster image the number
of pattern gaps, γ, is the count of the number of transitions between pattern color and non-
pattern color pixels when traversing the image in a straight line. We denote γ calculated
along the horizontal axis as γr and along the vertical axis as γc. Note that throughout we
use the subscript r to refer to the horizontal axis of a raster image (the rows) and c to refer
to the vertical axis (the columns). Pattern track length, τ , is de�ned as the count of directly
adjacent pattern color pixels along a straight line. We use τmaxr to denote the maximum τ in

www.gimp.org
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a set of tracks for a given raster image row, and similarly, τmaxc for the maximum τ among
the set of tracks for a given column. The e�ective segment length, φ, is the count of all pixels
in a given row or column of a raster image to be analyzed and so is bounded from above by
the image's width and height, respectively. For a raster image of width, w, and height, h,

η =
∑w

j=1 γcj +
∑h

i=1 γri

ξ = 1
h

∑h
i=1 τ

max
ri /φi − 1

w

∑w
j=1 τ

max
cj /φj

patternrot = (
∑w

j=1 γcj −
∑h

i=1 γri)/η + ξ

Increasing patternrot in the positive direction corresponds to more stripedness, while increas-
ing magnitude in the negative direction indicates more bandedness. A patternrot value of 0
corresponds to a frog that is perfectly intermediate between striped and banded.

To quantify color from PNG images we determined the average red, green, and blue
values in the RGB color space over all non-tranparent pixels. Speci�cally, for a raster
image with d non-tranparent pixels having color values (ψv1, ..., ψvd) for color channels v,
v ∈ {red, green, blue}, the average for each RGB channel, Ψv, was calculated as

Ψv = (1
d

∑d
k=1 ψ

2
vk)

1
2

These average RGB values were then converted to Lab color space using CIE Standard
Illuminant D65 as the reference white for both color spaces.

To calculate the proportion of the dorsum that was black we simply took the fraction of
the number of black pixels out of all non-transparent pixels. Speci�cally, for a PNG image
with d non-transparent pixels having fractional RGB values as outlined above, the propor-
tion of black is given by∑d

k=1 1{ψred,k=0, ψgreen,k=0, ψblue,k=0}

d

Prior to quantifying the phenotypes we preprocessed the JPEG images by �rst stan-
dardizing the dimensions of the frogs in each image. The anteroposterior length of each R.
imitator sample as well as its orientation to the horizontal axis was measured using imageJ
software. These measurements were then used in R to transform each image such that the
anteroposterior axis of each frog was oriented horizontally and the length of the frogs along
this axis from the tip of the rostrum to pelvis was the same across all photographs. These
standardized photos were imported into GIMP, which we used to manually �ll in black por-
tions of the frogs. This was done to reduce noise from glare, debris, and the occasional
tissue damage. We also used GIMP to extract regions of the photos that we wanted to
restrict our phenotyping to, which were exported in PNG format for input into our phe-
notyping scripts. All scripts used for image processing and phenotyping are available at
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https://github.com/tplinderoth/image_phenotype.

Association mapping

Divergence mapping between striped and banded morphs

We used the likelihood ratio test for allelic association described in Kim et al. [35] to
look for allelic divergence between the 33 banded and 33 striped R. imitator. This test
compares the null hypothesis that the frequency, pA, of the total population minor allele,
denoted A, is the same among treatments to the alternative hypothesis that it is di�erent,
where in our case the treatments are banded and striped morph. That is, we test the null
situation in which pA = pbandA = pstripeA against the alternative case in which pbandA 6= pstripeA ,
where pbandA and pstripeA are the frequency of the A allele in the banded and striped population,
respectively. We implemented this likelihood ratio test as a C++ program, ngsAssociation
(https://github.com/tplinderoth/ngsAssociation), which accounts for individual base
qualities, Qmr , that translate into the probability that an observed read, X(m)

r , in pool m, is
an error, E (m)

r . Assuming uniform error among the three possible incorrect alleles gives

P
(
X(m)
r = A|G(m) = k,Q(m)

r

)
=

(
Spool − k
Spool

)(
1− E (m)

r

)
+

(
k

Spool

)(
E (m)
r

3

)
and

P
(
X(m)
r 6= A|G(m) = k,Q(m)

r

)
=

(
Spool − k
Spool

)
E (m)
r +

k

Spool

((
1− E (m)

r

)
+

2

3
E (m)
r

)
where Spool is the haploid sample size of each pool and Gm is the true number of type A alleles
that went into constructing pool m. Note that a pool of sequencing reads can represent a
single individual or multiple, pooled, individuals, and we have chosen to use the term pool
here only because it is most general.

Assuming that sites are diallelic and no population structure, the probability of the data
for an observed pool, O(m), with V m sequencing reads, given pA, is then

P (O(m)|pA) =

Spool∑
k=0

(
Binom(k;Spool, pA)

V (m)∏
r=1

P
(
X(m)
r |G(m) = k,Q(m)

r

))
The likelihood of pA for an entire site with N pools (or individuals) is

https://github.com/tplinderoth/image_phenotype
https://github.com/tplinderoth/ngsAssociation
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L(pA|O) =
∏N

m=1 P (O(m)|pA)

In our particular case, this is compared to the joint likelihood

L(pbandA , pstripeA |O) =
∏Nband

m=1 P (O(m)|pbandA )
∏N

m=Nband+1 P (O(m)|pstripeA )

Maximum likelihood estimates for the allele frequencies p̂A, p̂bandA , and p̂stripeA are obtained
using the bounded, limited-memory, Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algo-
rithm. The likelihood ratio statistic is then

LRallele = −2 log

(
L(p̂A|O)

L(p̂bandA , p̂stripeA |O)

)
While we have described the implementation of a slightly modi�ed version of the likeli-

hood ratio test from Kim et al. [35] in terms of allele frequencies corresponding to striped
and banded frogs, the implementation is general and ngsAssociation can be used for any
similar divergence mapping experiment. We used ngsAssociation to identify variable sites
among the SBall set after �ltering out any sites with total coverage greater than 6000X
(corresponding to the 99.7th percentile of the empirical coverage distribution) because these
sites are likely within low mappability regions for reasons such as paralogy or low complex-
ity. The test for whether a site is variable implemented in ngsAssociation is a likelihood
ratio test that compares the likelihood under the null that pA = 0 to the p̂A likelihood using
the same likelihood function for pA described above. We calculated LRallele, comparing the
banded to the striped population, at all called SNPs. The LRallele value at each SNP was
divided by the mean LRallele value across all SNPs in order to control for in�ation of the
likelihood ratios due to population structure between the striped and banded populations
[124]. We compared these genomic-controlled LRallele values to a χ2

1 distribution in order to
obtain corresponding p-values.

Admixture mapping in the introgression zone

We used a general linear model (GLM) framework to look for associations of genotype
with pattern, leg color, and dorsal color among the 58 R. imitator sampled from the in-
trogression zone between the striped and banded morphs. Speci�cally, we used ANGSD to
perform the score statistic test for association described in Skotte et al. [125], thereby cal-
culating likelihood ratios, LRgeno, that compare maximum likelihood estimates for the e�ect
of genotype on phenotype, β, in the linear predictor to the null case where β = 0. This
was done for sites in the SBAall subset that had an associated p-value for being variable
of at most 1e-6 for the admixed population as determined using ANGSD. By using a GLM
framework we were able to account for genetic ancestry and other phenotypic features that
could confound the speci�c genotype-phenotype relationships of interest by including the
confounders as covariates. By assuming that the phenotypes are normally distributed our
models for the distribution of each of the phenotypes conditional on genotype, g, genetic
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admixture proportion, m, and other phenotypic features, for individual i were

patternroti ∼ N(α0 + α1mi + α2blacki + βg>i , σ
2)

LCai ∼ N(α0 + α1mi + α2LCLi + βg>i , σ
2)

DCai ∼ N(α0 + α1mi + α2DCLi + βg>i , σ
2)

where gi ∈ {0, 1, 2}, that is, the genotype can have 0, 1, or 2 copies of the minor allele.
The admixture proportion, mi, is the proportion of striped morph ancestry for individual
i estimated with NGSadmix. For modeling the distribution of color quanti�ed along the
red-green color axis, we included lightness as a covariate because no color checker card was
used and the lighting conditions among photos was not standardized. By including lightness
as a covariate we reduced the e�ect of noise caused by variable lighting conditions. Using
these models, we calculated LRgeno for each of the SNPs having at least 10 individuals in
two of the three genotypic categories with genotype posterior probabilities greater than 0.9.
We then calculated p-values for the LRgeno values based on a χ2

1 distribution.
We combined the results from the divergence and admixture mapping using Fisher's

method; SF = −2
(
log(pallele) + log(pgeno)

)
, where pallele and pgeno are the p-values corre-

ponding to LRallele and LRgeno, respectively. We obtained p-values corresponding to SF
through comparison to a χ2

4 distribution, which is the theoretical asymptotic distribution of
SF under the null. However, distortion of the null pallele distribution caused by population
structure even after applying genomic control resulted in in�ation of SF . To obtain a more
appropriate distribution for SF under the null, we �t a maximum likelihood estimate for the
number of degrees of freedom, δ, of a χ2

δ to the empirical distribution of SF , thereby assum-
ing that there are no genetic associations with phenotype. This is a reasonable assumption
because we expect a negligible number of allelic associations due to selection across the ex-
ome. We then compared SF to the χ2

δ distribution to obtain a slightly improved distribution
of p-values for SF .

4.3 Results

Exome assembly and capture e�ciency

We used a custom capture sytem to target a little over 28.28 megabases of the R. im-
itator exome in 124 individuals, the resulting libraries from which were sequenced on the
Illumina Hiseq 4000. After performing quality control on the resulting sequencing reads we
used Spades to generate separate assemblies for three banded population individuals and
three striped population individuals, representing on average 61,471,541 reads per individ-
ual (range 55,318,560 - 67,710,836). These six assemblies were then merged, resulting in a
�nal in-target exome assembly of 76,414,788 base pairs, 87.7% of which belonged to anno-
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tated genes, with the remaining 12.3% assigned to unannotated genes that showed either
constantly high or di�erential expression in our set of transcripts used for probe design (Ta-
ble 4.1). We were able to generate assemblies for 98.7%, that is 13,086, out of the 13,265
targeted genes. The assembly was comprised of 101,607 contigs having an N50 of 786 bp,
which represent exons and a portion of their �anking sequences. The average gene length
among all genes represented in the assembly was 5,825 bp.

We mapped the quality-controlled reads for each individual to our exome assembly using
NovoAlign. For the banded and striped population capture experiment, on average 66.9%
(variance = 3.3) of reads mapped uniquely to the exome assembly, with the range of unique
mapping among individuals spanning 63.9 - 68.8%. For the admixed population capture, an
average of 69.3% (variance = 0.2) of reads mapped uniquely to the exome assembly with
unique mapping ranging from 68.1% - 70.4% among individuals. On average, 4.8% and 3.2%
of reads mapped to multiple locations in the exome reference from the striped/banded and
admixed population captures, respectively. This resulted in an average sequencing cover-
age of 14.5X and 12.2X per individual for the banded and striped populations, respectively,
among the SBall set of quality-controlled sites. The average sequencing coverage per indi-
vidual in the admixed population was 16.1X for the ADMIXall set of sites.

Phenotyping

We quanti�ed the degree of pattern rotation (stripedness versus bandedness), dorsal and
leg color along both the red-green and lightness color axes of the Lab color space, and the
proportion of black on the dorsum for 85 frogs using digital images. Although only the
58 admixed individual's phenotypes were used for genetic mapping, we included 15 banded
and 12 striped population individuals to ensure the accuracy of our phenotyping methods
since these morphs should show clear separation in terms of their phenotypic values. Our
automated phenotyping worked well as demonstrated by logical ordering of the R. imitator
images based on the phenotypic values for traits that we sought to map genes for (Figures
4.3 - 4.5) and those which we used as covariates in the association analysis (Figures 4.6 - 4.8).
There is a negative relationship between leg color and patternrot, meaning that increasingly
banded frogs tend to have redder legs, while all other traits of interest appeared independent
(Figure 4.9). As expected for uniform lighting conditions across the entire body of a single
individual, there was a strong relationship between leg and dorsal color measured along the
lightness axis, which was quanti�ed to control for lighting variability between individuals.
Interestingly, while lighting conditions appear to have a strong in�uence on dorsal color, that
is brighter lights make frogs appear less red, pushing them towards the green end of the color
spectrum, there appears to be no relationship between lighting conditions and leg color.

Population genetic characterization

We sequenced the exomes from 33 striped morph, 33 banded morph, and 58 striped/banded
admixed R. imitator individuals. Our quality controlled consensus dataset purged of par-
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alogs consisted of 26,910,103 sites. The site frequency spectra generated from these sites do
not show any abnormalities, and so were deemed reliable to make population genetic char-
acterizations from (Figure 4.10). Among all 124 individuals we identi�ed 292,159 sites with
a p-value of ≤ 10−6 of being variable. Genetic diversity is highest in the striped population
for which we identi�ed 2.7x as many segregating sites as in the banded population (193,249
striped SNPs and 70,580 banded SNPs), while the admixed population with 188,011 SNPs
is more similar to the striped population in terms of the number of segregating sites. Es-
timates of Watterson's theta, θW , and nucleotide diversity, π, were highest for the striped
population, followed by the the admixed population, and lowest in the banded population
(Table 4.2).

We also found evidence for exome-wide genetic structure between the striped and banded
populations with an FST of 0.137. The admixed population, while genetically intermediate
between the striped and banded populations along the primary axis of genetic variation in
a principle components analysis, is substructured into two dinstinct groups (Figure 4.11).
Measures of FST (Table 4.3) indicate that the admixed population is slightly more genetically
similar to the striped than banded population, which is corroborated by a greater proportion
of the admixed sample showing more striped ancestry than banded (Figure 4.11).

Candidate gene identi�cation

To reveal potential color and pattern genes in R. imitator we identi�ed SNPs having
exceptionally strong alleleic associations between the striped and banded population using
a likelihood ratio test. Even after applying genomic control based on the mean exome-wide
LRallele, genetic structure between the two populations (Figure 4.11) caused in�ation of the
LRallele values, thus biasing formal statistical testing (Figures 4.12 & 4.13). Consequently,
we limited our analysis to exploring the relative ranking of allelic association. For the
divergence mapping, we examined 563,187 variable sites among the striped and banded
morphs, representing 13,086 genes (83% of which we were able to annotate using Xenopus).
Table 4.4 lists the relative ranking for the top 35 most highly associated genes from the
divergence analysis. Among the 10 genes with SNPs having the strongest associations (Table
4.5), the �rst and fourth ranked genes, MC1R and ASIP, are well known melanogenesis genes.
The third and eighth ranked genes, ARG2 and PTCH2, we also noted as being potentially
strong candidates due to their relevant biological functions.

Given the challenge of formal statistical testing using LRallele, we also looked for genotype-
phenotype associations among 58 admixed individuals at ∼143.9K SNPs while controlling
for genetic ancestry, to provide evidence that the divergence at the most strongly associated
SNPs was not confounded by exome-wide divergence. We focused on 3 traits; pattern, leg
color, and dorsal color, that exhibit phenotypic divergence between the striped and banded
morphs. Inclusion of the admixture proportion in the admixture mapping model e�ectively
controlled for the in�uence of ancestry on the association between SNP-speci�c genotypes
and phenotypes (4.12). We combined the results from the divergence and admixture map-
ping using Fisher's combined p-value statistic, SF , which for the highest values indicates
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SNPs showing both high allelic divergence between the striped and banded morphs and
strong genotype-phenotype associations among admixed individuals while controlling for
background genetic structure. Any candidates from the divergence analysis that were con-
founded by population structure should not intersect with the combined test candidates since
this test controls for ancestry. We examined SF at ∼141.1K SNPs representing 12,544 genes.
Among the most highly associated 35 genes for each phenotype in terms of SF (Tables 4.6 -
4.8), we identi�ed seven color and pattern candidates (Table 4.9) based on either highly rele-
vant biological function and/or being ranked among the top 10 genes in both the divergence
and the combined test (Figure 4.14). Among these seven genes, �ve were present among the
top 10 from the divergence analysis, while RETSAT was the most highly associated gene with
dorsal color and KRT8.2 was the second most associated gene with leg color (after MC1R)
according to SF . Each of the seven candidate genes' SNPs with the greatest SF all had both
LRallele values above the 99th percentile across all associated phenotypes, except for KRT8.2
(93rd LRallele percentile) and LRgeno values at or above the 99th percentile for at least one
phenotype, except for ASIP which fell into the 86th and 81st LRgeno percentiles for pattern
and leg color, respectively (Table 4.10). Among the top 35 most highly associated genes from
the divergence analysis (Table 4.4), none of the non-candidate genes are in the intersection
between the top 10 divergence and combined test genes. Out of the top 10 combined test
genes we found that the only ones that showed evidence for e�ecting multiple phenotypes
(Figure 4.15) were those which were present in the intersection of the genes found by the
divergence and combined divergence/admixture analyses respectively.

4.4 Discussion

We used a custom exon capture system to survey over 13K genes in 124 samples of the
mimic poison frog, R. imitator, representing banded, striped, and admixed morphs. We
found twice as much genetic diversity in the striped population as compared to the banded,
and intermediate levels of diversity in the admixed population. We found genetic substruc-
ture among the admixed individuals resembling two strata of striped and banded ancestry.
We also found clear exome-wide di�erentation between the striped versus banded popula-
tions, though with an FST of 0.137, we ought to have power to map genes underlying the color
and pattern di�erences between the two populations without excessive genomic background
noise according to a simulation study by Crawford & Nielsen [126]. When we compared
33 striped to 33 banded R. imitator we found that in practice the population structure
distorted the distribution of our association statistic, LRallele, even after applying genomic
control, making formal statistical outlier detection di�cult. Consequently, to avoid making
any invalid statistical claims we decided to focus on the relative rank ordering of LRallele,
which indicates the relatively most divergent genes in the R. imitator exome. In order to
be sure that we were not confounding genes associated with the di�erent phenotypes due
to background structure, we incorporated genotype-phenotype correlation information from
the admixture zone in a way that successfully controlled for genetic ancestry. Using SF
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as a measure of association that re�ects both the degree of divergence between the striped
and banded morphs and association of genotype with speci�c phenotypes while controlling
for genetic structure we identi�ed seven potential color and pattern candidate loci: MC1R,
ASIP, ARG2, BSN, PTCH2, RETSAT, and KRT8.2. Each of these candidates has inde-
pendent measures of allelic divergence between the striped and banded population, LRallele,
and genotype-phenotype association among admixed individuals, LRgeno, for at least one
phenotype in the most extreme upper tails of their empirical distributions, indicating that
it was not just exome-wide divergence driving their high SF association ranking.

MC1R, ASIP, ARG2, BSN, and PTCH2 are among the top 35 genes showing the strongest
allelic exome-wide divergence, with MC1R ranked number one. RETSAT, a retinol metabolism
gene, is the strongest associated gene with dorsal color quanti�ed along the red-green color
axis, and is exclusively associated with this phenotype. Retinol directly in�uences epithe-
lial cell function and certain classes of retinoids, spec�cally β-carotene, are involved in the
transition from yellow to more red phenotypes in birds [127, 128]. Therefore, the association
of RETSAT with the transition of yellowish, striped to orange, banded R. imitator seems
plausible. KRT8.2, a keratin encoding gene responsible for producing keratin �laments in
epithelial cells, was the second most strongly associated gene for leg color, after MC1R, and
was exclusively associated with this phenotype. The association of KRT8.2 with leg color
would make biological sense, particularly in light of MC1R's involvement, because the inter-
play of melanin with keratin is known to produce the green structural colors in birds [129,
130, 131]. There is most certainly a structural color component to leg color in R. imitator,
which changes from green in the striped morph to orange in the banded morph, and so it
is possible that a similar interaction of MC1R with keratin could in part account for the
di�erence in leg color.

PTCH2 and ASIP, while among the top 10 most divergent genes between the striped
and banded morphs (particularly ASIP with six out of the 17 most highly associated SNPs
among the 10 genes), show the weakest signal of association among all of the candidates when
involving direct comparison with the admixed phenotypes. If these genes are in fact related to
color and pattern, this weaker signal may just be because we did not quantify the phenotypes
in a manner as directly related to the speci�c e�ect of these genes as compared to the other
candidates. Nevertheless, PTCH2 and ASIP, which are involved in skin development and
melanogenesis, respectively, may be e�ecting pattern formation in R. imitator. ASIP, an
antagonist of MC1R, additionally shows evidence of in�uencing leg color, for which MC1R is a
very strong candidate. Though PTCH2 and ASIP rank less strongly than the other candidate
genes in their association with the particular phenotypes that they may be in�uencing, among
all of the top 35 most divergent genes between the striped and banded morph, they are still
more strongly associated with their respective phenotypes than any other annotatable, non-
candidate, gene.

The genes for which we have the most evidence for in�uencing color and pattern in R.
imitator are MC1R, ARG2, and BSN. In our analysis of over 13K genes, these were the only
ones among the top 10 most highly divergent genes between the striped and banded morphs
to show both this excessively high divergence, and to also be among the the top 10 most
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strongly associated genes in our combined divergence/admixture analysis using SF . This
means that the evidence is very strong that the extreme allelic association of these genes
with their respective phenotypes is not just a consequence of genetic background structure.
Furthermore, MC1R, ARG2, and BSN are the only genes among the 10 most divergent
and associated genes in our analysis that combined the divergence with admixture mapping
to show an association with multiple phenotypes, with MC1R being associated with all
three phenotypes that we examined. Given the biological function of MC1R and ARG2
this seems quite feasible, and should support their role as candidates. MC1R is directly
involved in melanogenesis, and has a well documented role in in�uencing color across many
taxa [132, 133] including dendrobatids [117]. According to Posso-Terranova & Andrés [117],
the density of melanosomes in�uences the dorsal background color in the harlequin poison
frog, Oopaga histrionica. Apart from MC1R playing a role in melanosome aggregation,
ARG2 may also play a relevant role. Kim et al. [134] recently experimentally showed that
upregulation of ARG2 in humans results in skin pigmentation by reducing the degradation
of melansomes, therefore, it seems plausible that ARG2 could be playing a role in regulating
the melanosome density known to in�uence color in poison frogs. Heterogeneous melanin
production and melanosome degradation across the frog body could also certainly produce
pattern di�erences. BSN encodes a sca�olding protein involved in organizing the presynpatic
cytoskeleton of axons, making its mechanistic role in how it could be in�uencing color and
pattern less clear despite its very convincing association with these phenotypes.

While evidence for all of these candidate color and pattern genes is currently circum-
stantial, we believe that the support for particularly MC1R and ARG2 is very compelling.
We are currently underway with experiments to validate these genes. Importantly, our ex-
ome capture approach and analytical framework demonstrates an e�ective methodology for
identifying candidate loci for a non-model species with a daunting genome and lacking any
pre-existing genomic resources.
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Table 4.2. Estimates of θW and π for the banded, striped, and admixed R. imitator
populations.

population θW π
striped 0.001932 0.001036
banded 0.000719 0.000434
admixed 0.001413 0.000686

Table 4.3. Pairwise FST between the banded, striped, and admixed R. imitator
populations.

banded striped admixed

banded 0.1372 0.0668

striped 0.1372 0.0564

admixed 0.0668 0.0564
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Table 4.4. Ranked association strengths for SNPs belonging to the top 35 genes showing
the greatest divergence between the striped and banded R. imitator morphs. Genes
considered to be candidates for in�uencing color and pattern are denoted in bold.

gene
SNP
position LRallele

banded
allele

frequency

striped
allele

frequency
mc1r 1662 27.364 0.00 0.90
mc1r 1813 26.300 0.00 0.88
arg2 2193 25.935 0.00 0.89
asip 219 25.739 0.02 0.93
asip 1303 25.732 0.00 0.88
asip 1231 24.907 0.00 0.85
asip 1312 24.774 0.00 0.86
bsn 1764 24.682 0.05 0.93
itpkc 573 24.151 0.02 0.88
asip 1500 23.862 0.00 0.87
asip 1327 23.808 0.00 0.84
spire2 1532 23.714 0.00 0.83
ptch2 8521 23.258 0.03 0.91
rnf182 198 23.155 0.02 0.88
zbtb40 1173 23.086 0.02 0.86

mphosph10 5850 23.078 0.03 0.90
soat2 405 23.063 0.00 0.82
asip 1031 23.038 0.00 0.88
tm4sf4 3032 22.846 0.02 0.85
gpr61 824 22.763 0.02 0.85
colgalt2 7481 22.744 0.00 0.81
asip 1542 22.703 0.00 0.88

contig6769 405 22.688 0.92 0.06
fbxo41 6663 22.500 0.06 0.91
ahcy 5337 22.440 0.00 0.81
nicn1 843 22.437 0.90 0.03
sfxn5 5338 22.431 0.02 0.85

fam179a 926 22.233 0.00 0.90
asip 306 22.149 0.02 0.85
eps8 5615 21.983 0.00 0.81
bsn 6952 21.868 0.88 0.04

slc22a31 1794 21.852 0.00 0.86
app 311 21.843 0.02 0.85
tenc1 5730 21.839 0.05 0.89
asip 1582 21.749 0.00 0.90
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contig3030 5178 21.662 0.02 0.83
asip 1553 21.602 0.00 0.87
tll1 461 21.519 0.89 0.06

mb21d2 1080 21.476 0.03 0.86
contig12957 3141 21.390 0.02 0.83

cdh15 5206 21.366 1.00 0.23
cdh5 6797 21.346 0.93 0.09

zcchc14 8028 21.281 0.02 0.82
nrcam 17755 21.147 0.00 0.81
vegfc 313 21.145 0.02 0.83
phlpp2 7275 21.123 0.00 0.80
rc3h1 1101 21.03 0.00 0.77



109

Table 4.5. Ranked order of SNPs showing the most divergence between the striped and
banded R. imitator morphs based on LRallele, listed up until the 10th-ranked gene.
Candidate genes are in bold.

gene
SNP
position LRallele

banded
allele

frequency

striped
allele

frequency
mc1r 1662 27.364 0.00 0.90
mc1r 1813 26.300 0.00 0.88
arg2 2193 25.935 0.00 0.89
asip 219 25.739 0.02 0.93
asip 1303 25.732 0.00 0.88
asip 1231 24.907 0.00 0.85
asip 1312 24.774 0.00 0.86
bsn 1764 24.682 0.05 0.93
itpkc 573 24.151 0.02 0.88
asip 1500 23.862 0.00 0.87
asip 1327 23.808 0.00 0.84
spire2 1532 23.714 0.00 0.83
ptch2 8521 23.258 0.03 0.91
rnf182 198 23.155 0.02 0.88
zbtb40 1173 23.086 0.02 0.86

mphosph10 5850 23.078 0.03 0.90
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Table 4.6. Ranked association strengths for SNPs belonging to the top 35 genes showing
both the greatest divergence between the striped and banded R. imitator morphs and
genotype association with pattern in the admixed population. Genes considered to be
pattern candidates are denoted in bold. ∗ = gene is ranked among the top 35 most
divergent genes between the striped and banded morphs.

gene
SNP
position SF

banded
allele

frequency

striped
allele

frequency
mc1r* 1662 32.767 0.00 0.90
pitpnm2 382 32.387 0.89 0.08
mc1r* 1813 31.961 0.00 0.88
arg2* 2193 31.081 0.00 0.89
bsn* 1764 30.779 0.05 0.93
htr3a 5212 28.299 0.03 0.79
clip1 9830 28.035 0.05 0.84

fam178a 677 27.254 0.05 0.79
synj1 13999 26.960 0.09 0.47
arg2* 2158 26.872 0.01 0.87

contig6769* 405 26.623 0.92 0.06
contig12985 4310 26.474 0.02 0.81

decr2 930 26.383 0.03 0.85
lcorl 4389 26.298 0.00 0.65

contig6742 866 26.291 0.09 0.55
asip* 1303 26.013 0.00 0.88
sorcs3 11795 25.699 0.22 0.63

mb21d2* 1080 25.180 0.03 0.86
atp13a1 5008 25.127 0.03 0.56
fkbp8 361 25.036 0.00 0.69

tmem63b 7653 25.028 0.02 0.79
barx1 447 24.880 0.09 0.59

mphosph9 355 24.856 0.88 0.07
mb21d2* 2501 24.852 0.03 0.82
contig7184 3859 24.794 0.06 0.67
fancd2 14551 24.755 0.05 0.87
tceb2 1033 24.687 0.00 0.62
rnf182* 198 24.570 0.02 0.88
ppip5k2 2162 24.566 0.89 0.85
syngr2 1562 24.509 0.05 0.78
tbc1d4 294 24.405 0.13 0.81
ckmt1b 943 24.351 0.00 0.83
ptch2* 6811 24.252 0.03 0.69
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asip* 1500 24.197 0.00 0.87
cilp 4471 24.131 0.08 0.83
aifm1 405 24.120 0.07 0.83
kcnk15 411 24.085 0.80 0.10
fkbp8 281 24.029 0.00 0.72
nicn1* 843 23.960 0.90 0.03
fam126a 463 23.848 0.97 0.17
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Table 4.7. Ranked association strengths for SNPs belonging to the top 35 genes showing
both the greatest allelic divergence between the striped and banded R. imitator morphs
and genotype association with leg color quanti�ed along the red-green axis in the admixed
population. Genes considered to be leg color candidates are denoted in bold. ∗ = gene is
ranked among the top 35 most divergent genes between the striped and banded morphs.

gene
SNP
position SF

banded
allele

frequency

striped
allele

frequency
mc1r* 1662 36.372 0.00 0.90
mc1r* 1813 35.567 0.00 0.88
krt8.2 2306 33.967 0.09 0.67
EpCAM 3181 32.798 0.00 0.68
jak1 1426 32.125 0.14 0.82
arg2* 2193 29.502 0.00 0.89
kda2a 3553 29.294 0.06 0.80
dbnl 3593 27.803 0.00 0.44

unc119b 263 27.682 0.80 0.08
tpi1 1172 27.626 0.20 0.79

contig3238 2438 27.560 0.00 0.58
spon1 8539 27.393 0.00 0.66
cep83 8901 27.135 0.04 0.56
akap11 5190 27.099 0.00 0.77
heatr5a 4484 26.719 0.00 0.64
ttc7b 4575 26.662 0.02 0.72
heatr5a 4483 26.572 0.00 0.63
chsy3 3270 26.465 0.02 0.79
spire2* 1532 26.325 0.00 0.83
dbnl 3602 26.312 0.00 0.57
arg2* 2158 26.288 0.01 0.87
tpi1 1163 26.278 0.19 0.78
usp5 7298 26.189 0.17 0.66
pgs1 3715 26.035 0.86 0.09

trappc6a 759 26.004 0.73 0.07
hepacam 4209 25.943 0.00 0.41
contig8410 2730 25.899 0.13 0.85

lhx8 4094 25.867 0.49 0.05
lmnb3 6286 25.843 0.03 0.61
slc6a16 1317 25.697 0.32 0.08
ttc7b 7941 25.687 0.00 0.83
strap 2761 25.675 0.02 0.75
lasp1 3430 25.617 0.00 0.69
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cdc42bpb 4578 25.561 0.02 0.73
nin 16754 25.475 0.73 0.24

contig12475 8235 25.219 0.04 0.85
dip2a 10212 25.180 0.03 0.73
mok 5289 24.980 0.06 0.82
krt8.2 3260 24.930 0.12 0.54
asip* 1231 24.900 0.00 0.85
clstn2 8384 24.886 0.00 0.54
cep83 8915 24.735 0.05 0.58

tmem63b 7653 24.454 0.02 0.79
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Table 4.8. Ranked association strengths for SNPs belonging to the top 35 genes showing
both the greatest allelic divergence between the striped and banded R. imitator morphs
and genotype association with dorsal color quanti�ed along the red-green color axis in the
admixed population. Genes considered to be dorsal color candidates are denoted in bold.
∗ = gene is ranked among the top 35 most divergent genes between the striped and banded
morphs.

gene
SNP
position SF

banded
allele

frequency

striped
allele

frequency
retsat 6779 32.518 0.00 0.75
arhgef25 7447 30.354 0.03 0.77
tmem63b 7653 30.309 0.02 0.79
rps13 1592 29.253 0.03 0.76
bsn* 6952 28.656 0.88 0.04
clip1 9830 28.272 0.05 0.84
tenc1* 5730 27.972 0.05 0.89
mc1r* 1662 27.830 0.00 0.90
hnrnpa1 1777 27.700 0.11 0.89
strap 2761 27.422 0.02 0.75

arhgef28 6305 27.221 0.06 0.84
contig3228 8822 27.181 0.05 0.82
mc1r* 1813 27.025 0.00 0.88
plekha7 11555 26.853 0.06 0.74

contig6288 1749 26.659 0.02 0.89
contig12922 927 26.235 0.01 0.55
pik3c2a 5961 26.133 0.08 0.73

contig3228 5091 25.981 0.30 0.09
hap1 6525 25.785 0.74 0.19

plekha7 9452 25.705 0.04 0.83
herc1 31561 25.531 0.09 0.60
herc1 31560 25.525 0.09 0.60
vps37b 348 25.479 0.03 0.84
dlg1 9015 25.361 0.76 0.08

heatr5a 4484 25.247 0.00 0.64
sfxn5* 5338 25.214 0.02 0.85
herc1 31559 25.196 0.09 0.58
heatr5a 4483 25.099 0.00 0.63
pnpla6 7978 25.080 0.05 0.70
med20 2290 25.035 0.02 0.56

arhgap44 10566 25.021 0.83 0.08
contig12922 1022 24.857 0.02 0.58



115

plekha7 10124 24.832 0.06 0.77
contig5910 1832 24.787 0.77 0.09
clns1a 3147 24.742 0.05 0.75
pik3c2a 7852 24.724 0.08 0.76
snx18 1856 24.684 0.07 0.81

st6galnac5 789 24.681 0.10 0.78
syde2 770 24.674 0.08 0.69
adal 5264 24.575 0.06 0.78

contig8410 2730 24.549 0.13 0.85
unc119b 263 24.543 0.80 0.08

contig12477 1377 24.444 0.03 0.81
rc3h1* 1101 24.379 0.00 0.77
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Table 4.9. Candidate color and pattern genes identi�ed among the top 35 genes with
highest SF out of ∼14.1K SNPs comprising 12,544 genes.

gene biological function associated phenotypes SF rank

mc1r melanogenesis {pattern, leg color,
dorsal color}

{1, 1, 8}

asip melanogenesis {pattern, leg color} {14, 33}

arg2 keratinocyte autophagy {pattern, leg color} {3, 5}

ptch2 skin development and
epidermal cell fate

pattern 30

bsn organization of axon
presynaptic cytoskeleton

{pattern, dorsal color} {4, 5}

krt8.2 keratin �lament formation
in epithelial cells, cellular
structural integrity, signal
transduction, and
di�erentiation

leg color 2

retsat retinol metabolism dorsal color 1
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4.7 Figures

week 1 week 2 week 4 week 5 juvenile

Figure 4.1. Photos of the developmental stage individuals for which transcriptomes were
generated. Transcriptomes were sequenced for the entire body for individuals from weeks 1
through 5. Six separate cDNA libraries were prepared from mRNA for the juvenile stage,
representing various tissues with a focus on areas of the skin representing di�erent color
and pattern; 1) dorsal trunk, 2) nape and dorsal head, 3) ventral jaw, 4) hind leg skin
areas. A library representing the brain and eyes was also prepared for the juvenile stage.
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Tarapoto

Chazuta

Chipaota
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Malpaso

Chipesa

Callanayacu

Ricardo Palma

Achinamisa 1
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Sauce

banded striped admixed

0 5 10 15 20 km

Figure 4.2. Map of the San Martin province in Peru with sampling localities for the
banded (orange circles), striped (magenta circles), and admixed (purple circles) morph
Ranitomeya imitator samples.
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Figure 4.3. Dorsal photos for 58 admixed, 12 pure striped, and 15 pure banded morph R.
imitator sorted according to patternrot. The images represent values for patternrot
increasing from lowest (most banded) in the upper left-hand corner to highest (most
striped) in the lower right. Banded and striped population individuals are indicated with
'B' and 'S', respectively.
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Figure 4.4. Dorsal photos for 58 admixed, 12 pure striped, and 15 pure banded morph R.
imitator sorted in increasing order of DCa, which quanti�es color along the red-green Lab
color axis with green at negative DCa values and red at positive DCa values. Banded and
striped population individuals are indicated with 'B' and 'S', respectively.
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Figure 4.5. Hind leg images for 58 admixed, 12 pure striped, and 15 pure banded morph
R. imitator sorted in increasing order of LCa, which quanti�es color along the red-green
Lab color axis with green at negative LCa values and red at positive LCa values. Banded
and striped population individuals are indicated with 'B' and 'S', respectively.
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Figure 4.6. Dorsal photos for 58 admixed, 12 pure striped, and 15 pure banded morph R.
imitator sorted in increasing order of the proportion of the dorsum that is black. Banded
and striped population individuals are indicated with 'B' and 'S', respectively.
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Figure 4.7. Dorsal photos for 58 admixed, 12 pure striped, and 15 pure banded morph R.
imitator sorted in increasing order of DCL, which quanti�es color along the lightness Lab
color axis with black at negative DCL = 0 and white at DCL = 100. Banded and striped
population individuals are indicated with 'B' and 'S', respectively.
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Figure 4.8. Hind leg images for 58 admixed, 12 pure striped, and 15 pure banded morph
R. imitator sorted in increasing order of LCL, which quanti�es color along the lightness
Lab color axis with black at negative LCL = 0 and white at LCL = 100. Banded and
striped population individuals are indicated with 'B' and 'S', respectively.
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Figure 4.9. Correlations between six phenotypic features that were quanti�ed from the R.
imitator photos. Each point represents the measurement for an individual. Dorsal/leg color
a and dorsal/leg color L correspond to the color of the frogs quanti�ed along the red-green
and lightness axes of the Lab color space. The greater pattern is in the positive direction
the more striped are the frogs, while the opposite direction indicates more banded frogs.
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Figure 4.10. Site frequency spectrum for the striped, banded, and admixed R. imitator
populations generated using a set of 26,910,103 high quality sites among all three
populations.
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Figure 4.11. Principle components analysis (top) showing the genetic relationship among
banded, striped, and admixed R. imitator individuals. Each point in the PCA represents
an individual, while the axes label percentages denote the amount of variance explained by
the respective principle component. In the admixture plot (bottom) each vertical bar
represents an individual with their proportion of genetic ancestry indicated by di�erent
colors. From left to right in the admixture plot, the �rst 33 individuals are banded, the
following 58 are admixed, and the last 33 are striped.
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Figure 4.12. Quantile-quantile plots of the observed versus expected p-values
corresponding to the likelihood ratios from the divergence test between the banded and
striped population after applying genomic control (D) and the score statistic test
performed on the admixed population (A), and SF (C), which is combines the p-values
from the divergence and score statistic tests using Fisher's method. The divergence
'combined subset' plot is for LRallele calculated from the subset of consensus quality sites
between the banded, striped, and admixed population used to construct SF . Combined
test (C) p-values were calculated by comparing SF to a χ2

δ distribution, where a maximum
likelihood estimate for the number of degrees of freedom, δ, was obtained by �tting δ to the
empirical distribution of SF .
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Figure 4.13. Quantile-quantile plots of the observed versus expected p-values
corresponding Fisher's combined p-value statistic, SF , constructed from the p-values for
the divergence and admixture mapping analyses. Observed p-values were calculated by
comparing SF to a χ2

4 distribution.
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Figure 4.14. Venn diagrams showing overlap between the top 10 most highly associated
genes from the respective divergence and combined divergence/admixture tests. Any
divergence mapping gene confounded by population structure should not overlap with
genes from the combined analysis because a requisite for high SF is a strong
genotype-phenotype association while controlling for genetic ancestry.



132

pattern

leg colordorsal color

htr3a

pitpnm2

contig6769

fam178a

synj1

mc1r

arg2
bsn

contig12985

clip1

retsat
rps13

arhgef25

tmem63b

hnrnpa1

tenc1
strap

krt8.2
jak1

tpi1

EpCAM

kda2a
dbnl

unc119b

contig3238

Figure 4.15. Venn diagrams showing which phenotypes the top 10 most highly associated
genes identi�ed from the combined divergencce/admixture analysis are associated with.
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5. Conclusion

The computational methods and general approaches for analyzing next-generation se-
quencing (NGS) data discussed in this thesis are intended to extend the utility of NGS for
identifying adaptive genes into two insightful yet challenging areas: Natural history museum
collections and taxa with genomes that have previously obstructed genomic-scale population
genetics. The �rst step towards achieving this goal was developing the computational tool
ngsParalog that identi�es paralogy from NGS data. If not addressed, paralogy can obscure
population genetic and selection inference by falsely in�ating levels of heterozygosity. This
can then lead to inaccurate estimates of things like mutation rates which bias demographic
inference, including the type that we demonstrated can be done using museum collections.
Apart from the quality control aspect, �nding genomic regions that have been duplicated is
by itself interesting from an evolutionary perspective since paralogs can e�ect �tness through
sub and neo functionalization and gene dosage e�ects [32, 33]. While other computational
approaches for detecting paralogy do exist [6, 7, 5, 4, 8, 9], ngsParalog is the only one among
them to jointly leverage information from both sequencing coverage and read proportions
within and across individuals, which we showed provides superior true positive versus false
positive rates than either of these signals independently. At the same time, the applicabil-
ity and e�ectiveness of ngsParalog is not limited by sequencing scheme, since it works for
both single or paired-end read sequencing data at low to high coverage. The high power of
ngsParalog enabled us to �nd previously unrecognized regions in the human genome that
show evidence of low mappability and that were not included in the 1000 Genomes masks.

Other new computational tools spawned from this thesis work are a C++ program for
probabilistic association mapping from pooled or unpooled NGS data, ngsAssociation, and a
suite of programs, ABCutils, that implement an Approximate Bayesian Computation (ABC)
approach for inferring population demography through �tting the joint site frequency spec-
trum. I used ABCutils to infer population histories from museum time series exome com-
parisons of Tamias chipmunk species, which revealed that metapopulation structure in T.
alpinus had increased due to decreased migration among demes over the past century. Ad-
ditionally, I found evidence that migration may also be slowing among other chipmunk
populations with much larger inferred e�ective sizes, and for which genetic changes are not
yet as apparent. This is signi�cant as it demonstrates that high resolution demographic in-
ference using museum genomics may be useful for early detection of demographic responses
to environmental change that are of interest for wildlife conservation, thus avoiding relatively
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ine�ective late-stage intervention into biodiversity loss. A second very important aspect of
our ability to infer recent population histories from museum specimens is that it allows us
to identify which genes have undergone large allele frequency shifts as a consequence of se-
lection, without being confounded by demography, which points to genes possibly involved
in rapid adaptation to climate change. Accordingly, we were able to pinpoint one such
gene in T. alpinus, Alox15, which may helping alpine chipmunk populations persist at high
elevations.

The research focused on mapping color genes in the mimic poison frog, Ranitomeya
imitator, re�ects a culmination of the methods and approaches developed during work sur-
rounding the �rst two chapters. I used the same exon capture approach that colleagues and
I developed for Tamias chipmunks to reduce the ∼12 gb R. imitator genome down to a
little over 13K genes, which could be assembled and tested for having associations with color
and pattern. Targeting the exome also allowed us to partly circumvent the problems posed
to inference by the extensive duplication which led to the large genome size. Then I used
ngsParalog to fully identify remaining paralogs. Having accounted for paralogy, I was able
to use ngsAssociation in conjunction with admixture mapping to identify seven candidate
genes that show strong evidence for in�uencing color and pattern in a species in which gene
mapping seemed to be an extremely intimidating endeavor.

In summary, while NGS now makes genomic-scale sequencing theoretically possible for
nearly any organism, including extinct taxa preserved naturally or held in museums, a lack
of high-quality preexisting genomic resources can impede e�ectively using the data for popu-
lation genetic, selection, and demographic inference. This is compounded for organisms with
large,highly duplicated genomes and by pre molecular era sampling schemes. The research
presented in this thesis highlights a particular combination of experimental and new com-
putational tools that can be used to overcome all of these challenges and discover adaptive
loci.
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