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Abstract

In this work, we implement a new London equation module for supercon-
ductivity in the GPU-enabled ARTEMIS framework, and couple it to a
finite-difference time-domain solver for Maxwell’s equations. We apply this
two-fluid approach to model a superconducting coplanar waveguide (CPW)
resonator. We validate our implementation by verifying that the theoretical
skin depth and reflection coefficients can be obtained for several supercon-
ductive materials, with different London penetration depths, over a range
of frequencies. Our convergence studies show that the algorithm is second-
order accurate in both space and time, except at superconducting interfaces
where the approach is spatially first-order. In our CPW simulations, we
leverage the GPU scalability of our code to compare the two-fluid model
to more traditional approaches that approximate superconducting behavior
and demonstrate that superconducting physics can show comparable perfor-
mance to the assumption of quasi-infinite conductivity as measured by the
Q-factor.
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1. Introduction

The tremendous growth in materials research as well as the race to minia-
turize microelectronic devices has accelerated the adoption and integration
of novel materials in traditional CMOS devices. Superconducting materi-
als exhibit unique characteristics, such as, greatly reduced loss compared to
metals, the expulsion of magnetic fields via the Meissner effect [1], quantum
tunneling effects, and flux quantization [2], making them a promising candi-
date to produce high-fidelity and high-coherence circuits. While our focus is
on microelectronics, applications of these materials also extend to imaging
[3], tokamaks [4], accelerators [5, 6], and magnetic levitation [7, 8]. In mi-
croelectronics, these materials are used in resonators, qubits with Josephson
junctions to build quantum devices, circuit quantum electrodynamics de-
vices (cQED) [9, 10], and in superconducting quantum interference devices
(SQUID). Resonators are devices where the measured field attains maxi-
mum amplitude at a designed resonant frequency. Superconducting coplanar
waveguide (CPW) resonators are used in quantum computing applications
as they are ideal for control and readout [11, 12] and as an interface between
resonators and qubits.

In order to design and optimize such devices without resorting to ex-
pensive trial-and-error fabrication and measurement cycles, we require an
accurate simulation tool that can model the superconducting behavior over
a wide range of frequencies for a given configuration of material properties. In
this work, we are interested in a classical description of the superconducting
materials to investigate the interaction of the electromagnetic signals with
the superconducting sub-components of the CPW. Traditionally, these sub-
components have been approximated as a perfect conductor or as a highly
conductive material or the interaction is reduced to an empirical model with
an resistance-inductance-capacitance (RLC) response to the incoming signal
[13]. However, such methods do not capture the non-linear coupling between
electromagnetic and superconducting physics and more accurate numerical
descriptions are required.

For accurate classical descriptions of superconducting materials, the Lon-
don equations [14] provide foundational constitutive relationships. These
equations are coupled with Maxwell’s equations to fully describe the inter-
action between electromagnetic fields and currents in superconducting ma-
terials. In the past decades, there has been interest in incorporating the
London equations into the widely-used finite-difference time-domain (FDTD)
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approach [15] for solving Maxwell’s equations. This two-fluid approach has
been derived independently from two different mathematical formulations,
however, they both lead to functionally identical numerical implementation.
The first mathematical formulation involves the use of a complex conduc-
tivity to describe the contribution from superconductivity. In Rittweger et
al. [16] and similar work by others [17, 18, 19], the complex conductivity was
incorporated into a frequency-domain representation of Maxwell’s equations
and converted to the equivalent time-domain representation. This resulted
in the inclusion of an additional source term, equal to the time-integral of the
electric field, in Ampere’s law. The second mathematical formulation involves
the use of a two-fluid model [20, 21], where, the total current density is the
sum of the standard conductive current plus a superconducting current whose
evolution is governed by the first London equation. This approach, used by
a number of works [22, 23, 24, 25, 26], is analytically equivalent to that of
the first, since the superconducting current is in fact, a scaled time-integral
of the electric field. Alternative approaches have also been considered, such
as by Yun et al. [27], where a shift-operator technique is incorporated into
the FDTD framework to directly account for a complex conductivity.

The main challenge in using a coupled explicit Maxwell-London solver
for CPW resonators is the large disparity in length-scale of the London pen-
etration depth, (typically 10-400 nm), and the size of the CPW resonator
(∼ 1000) µm. As a result of the explicit time integration, the disparity in
the temporal scales required to resolve the speed of light and that required
for the low frequency signal to achieve resonance results in simulations that
can require 106 time steps or more. Using traditional CPU-based solvers
render such simulations impossible to perform and a scalable GPU-enabled
code is required. Therefore, we use our GPU-enabled open source frame-
work, called ARTEMIS [28] developed to model electromagnetic signals in
microelectronics devices.

In this paper, we describe our implementation of the two-fluid approach
in ARTEMIS for modeling interactions between electromagnetic signals and
superconducting components and apply it to the study of CPW resonators.
The GPU speedup and scalability of our code allows for rigorous valida-
tion and case studies with frequencies comparable to operating conditions
of devices, that would not be possible otherwise. The rest of this paper is
organized as follows. In Section 2, we describe our two-fluid model to cou-
ple Maxwell and London equations. In Section 3, we describe our numerical
method and implementation in the ARTEMIS framework. In Section 4, we
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present the skin depth and reflection coefficient analysis, and validate that
we are able to reproduce theoretically-predicted behavior. We also present
spatial and temporal convergence tests for a number of material configura-
tions. Finally, in Section 5, we perform simulations of a CPW resonator
and compare the results from our two-fluid model to those obtained from a
simpler, purely-conductive approximation for superconductivity that can be
accomplished with a standard FDTD Maxwell solver.

2. Two-Fluid Model for Superconductivity

The thermodynamic model proposed by Gorter and Casimir [20] states
that superconducting materials at temperatures between absolute zero and
the critical temperature will contain both conductive and superconductive
currents, hence the term “two-fluid model”, where one includes normal elec-
trons (with finite conductivity, σ > 0) and the other superconducting elec-
trons, i.e., Cooper pairs [29]. According to this model, at T = 0 K, all
electrons condense to Cooper pairs and σ = 0, leading to pure superconduct-
ing behavior. To model such behavior, we first begin with the full-form of
the dynamic Maxwell’s equations, i.e., Ampere and Faraday’s laws,

∇×H = J+
∂D

∂t
, (1)

∇× E = −∂B

∂t
(2)

where, D = ϵE is the electric displacement, E is the electric field, B = µH
is the magnetic flux density, and H is the magnetic field. The permittivity
of the medium, ϵ, is the product of vacuum permittivity, ϵ0, and the dimen-
sionless relative permittivity, ϵ = ϵ0ϵr. Similarly, the permeability of the
medium, µ, is the product of vacuum permeability, µ0 and the unit-less rela-
tive permeability, µ = µ0µr. Consistent with the model proposed by Gorter
and Casimir[20], in the two-fluid model, the total electric current density, J,
in equation (1), is given by the sum of the conductive current, σE, and the
superconducting current, Js, such that, J = σE+ Js, with conductivity σ.

In order to obtain the superconducting current, we invoke the classical
model for superconductivity given by the London equations. The first Lon-
don equation, given below, can be derived by combining the Lorentz force
with the unbounded acceleration of electrons in the presence of an electric
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field.
∂Js

∂t
=

nse
2

m
E, (3)

where, ns is the number density of superconducting electrons, m is the elec-
tron mass, and e is the elementary charge. If we define λ =

√
m/(nse2µ) as

the London penetration depth, Equation (3) can be written as

∂Js

∂t
=

1

λ2µ
E. (4)

The typical range for London penetration depth of superconducting mate-
rials is O(10 − 100) nm. As previously stated, a superconducting material
may still exhibit finite conductivity that reduces to zero as the temperature
approaches absolute zero. Thus, to model such systems, we require the two-
fluid approach, where Maxwell’s equations given in equations (1) and (2) are
coupled with the first London equation given in equation (3) to provide a
fully classical description of the superconducting physics.

3. Numerical Method and Implementation

We employ the standard Yee grid configuration for electrodynamics, where,
the normal components ofB fields are defined on cell-faces, and the tangential
components of E are defined on the cell-edges. The standard explicit FDTD
scheme for Maxwell’s equations on a Yee grid uses a leap-frog discretization
in time, where E is updated at integer time levels and B is updated at half-
integer time levels. In the superconducting regions within the domain, the
superconducting current, Js are defined using the same spatial discretiza-
tion as the electric field, i.e., tangential currents on the cell-edges, and same
temporal discretization as the magnetic field. We note that this algorithm
is constrained by the fact that the interface between a non-superconducting
and superconducting material is always grid aligned. Thus, all cell-edges that
lie on such interfaces are considered superconducting and contain tangential
components of Js. Also, due to the spatial Yee grid and leap-frog temporal
discretization, the numerical scheme is second-order in space and time. If
there is a sharp discontinuity in either the conductivity or the inverse of the
penetration depth, the algorithm is first-order in space; for cases where the
conductivity is smoothly varying and at superconducting interfaces the in-
verse penetration depth smoothly varies, second-order spatial convergence is
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retained. It should also be noted that the case of non-superconducting ma-
terial implies that 1/λ → 0. The integration scheme that we implemented
in ARTEMIS is described below in Algorithm 1 and it is analytically equiv-
alent to a standard leap-frog approach. For diagnostic purposes, we split
the time-update of the magnetic field, B, and current density, Js, into two
half timestep updates. In Algorithm 1, we describe the steps to advance
the solution from time level, tn to the next time level at tn +∆t, where the
superscript on a variable indicates the time step index.

For domain boundary conditions, the code includes the standard options
for periodic, perfect electric conductor (PEC), and perfectly matched layer
(PML) [30, 31]. We note that the interaction between a London region and
PML is not well-understood. Thus, in our simulations, we use a domain large
enough such that the signal does not interact with London regions close to
the PML boundaries, or include an air gap in-between the London region and
the domain boundary making sure the overall characterization of the device
is not significantly affected.

ARTEMIS is built on the AMReX framework for block-structured mesh
calculations [32] and leverages many of the computational kernels from the
ECP-funded electromagnetic Particle-In-Cell WarpX [33] code. Thus, the
ARTEMIS code is portable and scalable to the largest multicore and GPU-
based supercomputers. We note that all of the simulations in this paper
are performed using uniformly-sized cuboid cells and leverage the efficient
and scalable MPI+CUDA implementation provided by AMReX and WarpX.
More specifically, we use a hierarchical parallelization model where the do-
main is divided into boxes that are distributed to MPI ranks, and computa-
tional work is performed by distributing individual grid cells to GPU threads.
Using three NERSC HPC systems (Perlmutter GPU partition, Perlmutter
CPU partition, haswell CPU partition), we find that on a node-by-node basis,
the perlmutter GPU partition offers a 10.5x speedup compared to Perlmutter
CPU partition, and a 56x speedup over the haswell CPU partition. We have
recently demonstrated the near-perfect weak scaling performance of the code
on up to 2,000 GPUs [28, 34] and due to the explicit nature of the algorithm,
the scaling properties of the new London module will behave the same.

4. Physical and Numerical Validation

In this section, we first validate our implementation by examining the skin
depth within superconducting material and measuring the reflection proper-
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Algorithm 1 Two-fluid Maxwell London Algorithm

1: Integrate Bn → Bn+1/2 using En and Faraday’s law (2) (first half of B-
update)

Bn+1/2 = Bn − ∆t

2
(∇× En).

2: In superconducting regions, integrate Jn
s → J

n+1/2
s , (first half of J-

update)

J
n+1/2
s − Jn

s

∆t/2
=

1

λ2µ
En

3: Integrate En → En+1 using Bn+1/2, and Jn+1/2 ≡ σ[(1− θ)En+ θEn+1]+

J
n+1/2
s in Ampere’s law (1). Here, θ is a parameter that controls the

temporal discretization of the conductive current, where θ = 1 is a first-
order backward-Euler discretization and θ = 0.5 is a second-order time-
centered discretization. The electric field update is given by

En+1 =

(
1 + θ

σ∆t

ϵ

)−1(
En +

∆t

ϵ
∇×Hn+1/2

− (1− θ)
σ∆t

ϵ
En − ∆t

ϵ
Jn+1/2
s

)
For the convergence testing simulations, we use θ = 0.5; the remainder
of the simulations use θ = 1.

4: In superconducting regions, integrate J
n+1/2
s → Jn+1

s (second half of J
update)

Jn+1
s − J

n+1/2
s

∆t/2
=

1

λ2µ
En+1

5: Integrate Bn+1/2 → Bn+1 using En+1 in Faraday’s law (2) (second half
of B-update)

Bn+1 = Bn+1/2 − ∆t

2
(∇× En+1).

ties at superconducting interfaces and comparing the results with theoretical
predictions. We then demonstrate the numerical convergence properties of
our implementation.
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4.1. Skin Depth

The general formula for the skin depth in a normal conductor is well-
known [35]. Here we derive the analogous expression that includes the super-
conducting current. Consider the Maxwell London model in a homogeneous
medium with uniform ϵ, µ, σ, λ, and no free charges. Applying the curl to
Equations (1) and (2) using ∇ ·B = ∇ · E = 0, we get,

∇2E = µϵ
∂2E

∂t2
+ µσ

∂E

∂t
+

E

λ2
(5)

∇2B = µϵ
∂2B

∂t2
+ µσ

∂B

∂t
+

B

λ2
. (6)

These equations admit plane wave solutions. Let us consider a plane wave
traveling along the z-direction given by

E(z, t) = E0e
i(kz−ωt) (7)

B(z, t) = B0e
i(kz−ωt) (8)

where, E0 and B0 are the magnitude of the electric and magnetic fields, ω is
the frequency, and the wavenumber, k, is complex and equal to

k =

√(
µϵω2 − 1

λ2

)
+ iµσω. (9)

Re-writing the complex wavenumber as k = γ + iκ and taking the square
root of the complex term in Eq. 9, we can write the real and imaginary part
of the wavenumber as,

γ =

√√√√√√
√(

µϵω2 − 1
λ2

)2

+ (µσω)2 +

(
µϵω2 − 1

λ2

)
2

(10)

κ =

√√√√√√
√(

µϵω2 − 1
λ2

)2

+ (µσω)2 −
(
µϵω2 − 1

λ2

)
2

. (11)

The skin depth, δ, for the superconductor is simply given by

δ =
1

κ
. (12)
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Note that when the superconducting current is not included (i.e., 1/λ2 = 0),
the skin depth reduces to the well-known expression for a conductor. Also,
in the limit as ω → 0, the skin depth reduces to the London penetration
depth, λ.

Comparison of skin depth with theory

We now measure the skin depth using a series of tests and compare against
theoretical predictions. The computational domain in these tests are homoge-
neous consisting of superconducting metal with a London penetration depth,
λ = 400 nm, vacuum permittivity and permeability, and uniform conduc-
tivity. To study the effect of conductivity on skin depth and compare with
theory, we perform tests with three different values, i.e., σ = 0, 104, and 107

S/m. For each value of conductivity, we perform tests with four different
frequencies, f = 25 GHz, 100 GHz, 1 THz, and 100 THz, In each case, we
perform one-dimensional simulations with ∆z = 10 nm and a domain ex-
tending from −Lz to Lz. The value of Lz is dependent on the frequency and
is chosen to be long enough such that the signal does not interact with the
domain boundaries. Thus, we use Lz = 128 mm, 32 mm, 3.2 mm, and 32 µm,
respectively, for the four frequency values given above. We excite the system
with an electric field given by Ey = sin (2πf) at the center of the domain,
z = 0, and measure the peak amplitude of the signal at the source, i.e., at
z = 0 and at an observation point along the propagation direction at z0 > 0.
These measurements will be compared against the theoretical skin-depth. In
each simulation, we choose the observation point, z0, such that it lies on a
grid-point closest to theoretical skin depth for that particular configuration
of conductivity and frequency used in the simulation. We use a CFL of 0.9,
with a corresponding time step of ∆t = 0.03 fs and run each simulation to
t = 5T s, where T = 1/f is the period of the excitation.

To measure the skin depth from our simulations, we use

δsupercondcomputed =
z0

ln(Epeak
z=0 /E

peak
z=z0)

, (13)

where, the Epeak values correspond to the final peak amplitude of the mea-
sured signal during the simulation. In Table 1, we compare the theoretical
values of the skin depth (δsupercondtheory ) and the computed skin depth (δsupercondcomputed )
in columns 4 and 5, respectively. We obtain excellent agreement between
the theoretical and computed skin depths using the two-fluid approach im-
plemented in ARTEMIS. We note that, as predicted by the theory, for all
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Table 1: Comparison of theoretical and computed skin depths as a function of σ and f
for a superconducting material with London penetration depth, λ = 400 nm.

σ [S/m] f δcondtheory [nm] δsupercondtheory [nm] δsupercondcomputed [nm]

0 25 GHz ∞ 400 400
0 100 GHz ∞ 400 400
0 1 THz ∞ 400 400
0 100 THz ∞ 734 739
104 25 GHz 50331 400 400
104 100 GHz 15920 400 400
104 1 THz 5047 400 400
104 100 THz 656 448 450
107 25 GHz 1592 399 395
107 100 GHz 503 350 350
107 1 THz 159 153 153
107 100 THz 16 16 13

values of conductivity, the skin depth approaches the London penetration
depth as we decrease the frequency. On the other hand, as the frequency
increases, the skin depth either increases or decreases depending on the con-
ductivity. For reference, we also include in column 3, the theoretical skin
depth assuming the metal is conductive with no superconducting behavior
(δcondtheory) to highlight the difference in the physical behavior of the two models
indicating the effect on the simulation if superconductivity is not accounted
for.

4.2. Reflection Coefficient

Next, we examine the reflection coefficient, R, as a function of frequency,
ω, for a signal propagating from vacuum medium at normal incidence to a
conductor or superconductor. With the same plane waves, previously dis-
cussed in Section 4.1, the signals travel in the positive z direction resulting
in transmission and reflection. The incident I, reflected R, and transmitted
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T waves are given as

EI (z , t) = E0,Ie
i(k1z−ωt)ŷ (14)

BI (z , t) = −E0,I

v1
ei(k1z−ωt)x̂ (15)

ER(z , t) = E0,Re
i(−k1z−ωt)ŷ (16)

BR(z , t) =
E0,R

v1
ei(−k1z−ωt)x̂ (17)

ET (z , t) = E0,T e
i(k2z−ωt)ŷ (18)

BT (z , t) = −E0,T

v2
ei(k2z−ωt)x̂. (19)

Let us label the vacuum medium as medium 1 with wave speed v1 = ω/k1,
where the wavenumber, k1 = ω

√
ϵ1µ1, and medium 2 is the conductor or

superconductor with wave speed v2 = ω/k2, where k2 is given by Equation
(9).

The parallel E and normal H fields are continuous at an interface, i.e.,

E
||
1 = E

||
2 (20)

B⊥
1

µ1

=
B⊥

2

µ2

(21)

If the interface is at z = 0, then Equation (20) implies

E0,I + E0,R = E0,T , (22)

and Equation (21) combined with Equations 15, 17, and 19 implies

1

µ1v1
(E0,I − E0,R) =

E0,T

µ2v2
, (23)

or equivalently,

E0,I − E0,R =

√
µ1

ϵ1

k2
µ2ω

E0,T . (24)

Combining Equations (22), (24), and (27), we obtain the following relation-
ships between the incident amplitude and both the reflected and transmitted

E0,R =
1− β

1 + β
E0,I (25)

E0,T =
2

1 + β
E0,I . (26)
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where, β is a complex term given by,

β =

√
µ1

ϵ1

k2
µ2ω

. (27)

Thus, the theoretical reflection coefficient is

R =

∣∣∣∣E0,R

E0,I

∣∣∣∣2 = ∣∣∣∣1− β

1 + β

∣∣∣∣2 . (28)

An interesting result of this analysis is that for the cases where σ = 0, there
is a cut-off frequency below which the reflection coefficient R = 1, with a
dropoff in R greater than this cutoff. Specifically, if σ = 0, then Eq. 9
reduces to

k2 =

√
µ2ϵ2ω2 − 1

λ2
, (29)

and therefore,

β =

√
µ1

ϵ1

1

µ2ω

i
√

1
λ2 − µ2ϵ2ω2 ω ≤ 1

λ
√
µ2ϵ2√

µ2ϵ2ω2 − 1
λ2 ω > 1

λ
√
µ2ϵ2

. (30)

Substituting Equation (30) in Equation (28), we get complete reflection, i.e.,
R = 1, for ω ≤ 1/(λ

√
µ2ϵ2). For finite conductivity (σ > 0), R smoothly

decreases from 1 to 0 with increasing ω. Next, we will perform demonstration
tests to validate our implementation and highlight these key features of the
reflection coefficient.

Comparison of Reflection Coefficient with Theory

To compare the reflection coefficient with theoretical predictions, we per-
form one-dimensional simulations from z = 0 to z = 89.6 µm. For z < 7 µm
we define a vacuum region (medium 1) and for z >= 7 µm we define a su-
perconducting region with λ = 100 nm (medium 2). We perform two tests
with different values for conductivity, σ =0 and 104 S/m, and use vacuum
permittivity and permeability everywhere. We use periodic boundary condi-
tions in x and y, and PML at the low and high z boundaries. Note that, we
terminate the simulation before the signal interacts with the PML boundary.
We discretize the domain with a uniform mesh with 4,480 grid cells such
that ∆z = 20 nm; thus we resolve the London penetration depth sufficiently
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in our validation tests. We then excite the system at z = 100 nm with a
frequency-modulated Gaussian pulse given by,

Ey = exp
−(t− to)

2

2t2w
(31)

where, tw = 1/(2f) is the Gaussian width of the pulsar, to = 4tw is the initial
pulse duration, and the frequency, f , is 100 THz. For the cases we present
here, we use CFL=0.95 resulting in a timestep of 0.0632 fs, and the simula-
tions were run for 15,800 timesteps, such that we resolve one-hundredth of
the frequency of the input signal. To compute the reflection, we first measure
the total signal just upstream of the interface, at z = 6.8 µm, from the simu-
lation. We then measure the input signal at the same observation point from
a separate simulation, performed using the same simulation parameters, but,
with pure vacuum conditions throughout the simulation domain without any
interface. To obtain the reflected signal, we subtract the input signal from
the total signal. Finally, we compute the Fourier transform of the reflected
and input signals in order to compute the reflection coefficient R = Ê2

r/Ê
2
i ,

where Êr and Êi are the reflected and incident signals in Fourier space.
The comparison of the reflection coefficient obtained from our simula-

tions with the theoretical predictions given in equation (28), along with their
abolute differences, is shown in Fig. 1. The results from our code match
the theory within 10% in regions with reflection coefficient greater than 0.4,
and the relative difference increases to a maximum of 30% as the reflection
coefficient decreases for the σ = 0 S/m case. Notable, for the case with
σ = 0, the cut-off frequency from both the simulation and theory are at
fc = 1/(2πλ

√
ϵµ) = 478.75 THz. Thus, we infer that for all operating fre-

quencies below this frequency, the superconductor with σ = 0 will behave as
expected with a reflection coefficient of 1. Also, for σ = 104 S/m, as long
as the operating frequency is below a few THz, the reflection coefficient is
nearly 1 and the metal will behave in the same way as a superconductor.

4.3. Convergence Tests

Having validated the physical accuracy of the Maxwell-London solver,
we now demonstrate the spatial and temporal convergence of our numerical
implementation using three different geometrical configurations with super-
conducting materials that have finite conductivity.
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Figure 1: Comparison of reflection coefficient obtained from the simulation with theory
for superconductor with 100 nm London penetration depth for conductivity, σ=0 and
104 S/m, along with the absolute difference between simulation and theory.

• In the first setup (Section 4.3.1), the three-dimensional domain is ho-
mogeneous with constant properties for the material throughout the do-
main and a Gaussian pulse initialized propagates through the medium.

• In the second setup (Section 4.3.2), we introduce a thin strip of material
(conductive or superconductive) in a vacuum domain and study the
convergence for the Gaussian pulse that interacts with the material
strip.
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• In the third setup (Section 4.3.3), to study convergence for a relatively
complex field structure compared to the first two cases, we embed a
cubic superconducting material at the center of the vacuum domain
which interacts with the incident Gaussian pulse.

In each set of convergence tests, the computational domain extends from
-640 to +640 nm in each of the three directions with vacuum permittivity and
permeability. We use periodic boundary conditions in all the tests described
below. We perform tests with four types of media listed below to compare
the solutions with the superconducting material with finite conductivity.

• (a) vacuum everywhere (σ = 0 S/m and superconductivity disabled),

• (b) purely conductive (σ = 104 S/m and superconductivity disabled),

• (c) purely superconducting (σ = 0 and λ = 40 nm),

• (d) superconducting with finite conductivity (σ = 104 S/m and λ=40 nm).

In order to compute the convergence rates, we use a standard procedure
for computing L1 error norms for the E andB fields at increasing resolution in
space and/or time. This involves computing the error between “coarse” and
“medium” resolution solutions, Emedium

coarse , and the error between “medium”
and “fine” resolution solutions, Efine

medium. The exact procedure, which includes
the spatial averaging procedure for the E and B fields at different resolutions,
is described in detail in Section 5.1 of the original ARTEMIS paper [28]. We
note that for the temporal-only convergence tests below, no spatial averaging
is required since all solutions use the same cell size.

4.3.1. Homogeneous Conductive and Superconducting Domains

First, we demonstrate that the algorithm within homogeneous domains
is second-order in space and time with all the physics turned on, i.e., with
the superconducting material with finite conductivity. We perform four tests
where the entire domain is homogeneous with the material types listed in
cases (a)-(d) above. We initialize three Gaussian pulses, given by,

Ex = e−z2/L2

, Bx =
1

c
e−y2/L2

,

Ey = e−x2/L2

, By =
1

c
e−z2/L2

,

Ez = e−y2/L2

, Bz =
1

c
e−x2/L2

, (32)
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with L = 80 nm and c = 1/
√
ϵ0µ0 m/s. Note that these fields are consistent

with the relationship satisfying the intrinsic impedance in vacuum, and as
demonstrated below, result in pure translation under vacuum conditions.
In each simulation, the domain is discretized with 5123 grid cells (2.5 nm
resolution) and the simulation is performed to 200 time steps with a CFL of
0.9 to a physical time of 0.87 fs. The three Gaussian pulses are all initialized
to propagate in different directions, so showing one-dimensional plots of any
one field is rotationally equivalent to the results for the other fields.

First, to demonstrate that both the conductive physics and superconduc-
tive physics have nontrivial contributions to the evolution of the system, we
compare the results obtained from the four simulations with material types
listed above in (a)-(d). In Fig. 2, we show the initial and final configuration of
Ex(z), extracted along the z−direction at the center of the domain, to show
the nontrivial contribution of physics for each type of material. Case (a)
with homogeneous vacuum domain results in pure translation as expected.
For Case (b) with finite conductivity, the signal undergoes attenuation along
with some dispersion resulting in negative values for the electric field. This
observation is a natural consequence of the frequency-dependent oscillation
of the electromagnetic field. The signal in Case (c) undergoes some trans-
lation, and exhibits a more pronounced dispersion due to superconductivity
and the complex wavenumber previously described in Section 4.1. Finally,
the signal in Case (d) is similar to Case (c) with additional attenuation due
to the finite conductivity.

Next, we compute the numerical convergence in space and time (simulta-
neously) for Case (d) where both the conductive and superconductive physics
is enabled in the entire domain. To compute the convergence, we perform 3
simulations using a computational mesh with 1283, 2563, and 5123 grid cells
(i.e., 10, 5, and 2.5 nm cell resolution, respectively). We use a CFL of 0.9 for
each simulation and run the simulations for 50, 100, and 200 time steps, i.e.,
to the same physical time of 0.87 fs. In Table 2 we show clear second-order
convergence in space and time for all field components.

4.3.2. Conductive and Superconductive Strips

In these tests, the domain is vacuum except for a thin strip (in z). Specif-
ically, a thin strip of material is initialized from z = −40 nm to z = +40 nm,
and it extends to the periodic domain boundaries in x and y. Similar to
the homogeneous domain cases presented above, to demonstrate that both
conductive and superconductive physics have nontrivial contributions to the
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Figure 2: Initial and final Ex field as a function of z with homogeneous medium with
the domain. We compare the variation of Ex for the cases where the domain is vacuum
everywhere, conductive only (σ = 104 S/m), superconducting with finite conductivity
(σ = 104 S/m and λ=40 nm).

Table 2: Spatial and temporal convergence rates for a Gaussian pulse propagating through
a homogeneous superconducting domain with finite conductivity (λ = 40 nm and σ =
104 S/m).

Variable Emedium
coarse Efine

medium Rate
Ex, Ey, Ez 3.33× 10−4 8.30× 10−5 2.00
Bx, By, Bz 6.05× 10−13 1.52× 10−13 1.99

evolution of the system, we perform the 4 simulations with the same pa-
rameters for σ and λ described in the previous section (Section 4.3.1). We
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Table 3: Temporal convergence rates for a Gaussian pulse interacting with a strip of
superconducting material with finite conductivity (λ = 40 nm and σ = 104 S/m).

Variable Emedium
coarse Efine

medium Rate
Ex 1.23× 10−4 3.08× 10−5 2.00
By 3.90× 10−13 9.73× 10−14 2.00

initialize a single Gaussian pulse given by,

Ex = e−(z−z0)2/L2

, Bx = 0,

Ey = 0, By =
1

c
e−(z−z0)2/L2

,

Ez = 0, Bz = 0, (33)

with z0 = −320 nm. Even though we perform the simulations in three-
dimensions, this setup is essentially one-dimensional since the wave prop-
agates purely in the z direction, and Ey, Ez, Bx, and Bz remain zero. The
simulation domain is discretized with a 5123 grid (i.e., 2.5 nm resolution) and
is performed for 400 timesteps with CFL=0.9 to a physical time of 1.73 fs.

In Fig. 3 we show the initial and final configuration of Ex(z), extracted
along the z-direction at the center of the domain, to show the nontrivial
evolution of the signal after it interacts with the strip, indicated by vertical
lines. It can be seen that, similar to the homogeneous setup, Case (a) with
pure vacuum condition results in pure translation of the signal. For Case
(b), the signal interacts with the conductive strip and undergoes attenuation
as well as reflection evident from the negative value of the signal upstream
of the metal strip. For the superconducting strip in Case (c), we see a more
complex signal in the final step of the simulation where the pulse is modi-
fied by two superconducting (zero conductivity) interfaces. After interacting
with the material strip, the pulse undergoes reflection, and transmission with
frequency-dependent dispersion. Finally, in Case (d) with superconducting
strip with finite conductivity, the final profile of the signal is similar to Case
(c) but with additional attenuation.

Since this configuration includes an interface, we perform separate tests
to compute temporal and spatial convergence. We first perform tests with
Case (d) to demonstrate that the algorithm is second-order in time in the
presence of both superconducting and conductive currents. We perform 3
simulations with a computational mesh containing 2563 grid cells (i.e., 5 nm
cell resolution), but use a CFL of 0.9, 0.45, and 0.225 to vary the timestep
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Figure 3: Initial and final Ex field as a function of z for a Gaussian pulse initialized
in vacuum interacting with a strip of material indicated by the region between vertical
solid lines. We compare the variation of Ex for the cases where the domain is vacuum
everywhere, conductive only (σ = 104 S/m), superconducting with finite conductivity
(σ = 104 S/m and λ=40 nm).

Table 4: Spatial convergence rates for a Gaussian pulse interacting with a strip of super-
conducting material with finite conductivity (λ = 40 nm and σ = 104 S/m).

Variable Emedium
coarse Efine

medium Rate
Ex 9.05× 10−3 4.86× 10−3 0.90
By 2.82× 10−11 1.53× 10−11 0.88

resolution, such that the simulations reach the same physical time of 1.73 fs
using 200, 400, and 800 time steps, respectively. In Table 3 we show clear
second-order convergence in time for all the field components.

Next, we conduct a spatial-only convergence test for Case (d) to demon-
strate that the algorithm is first-order in space, even in the presence of the
spatial discontinuity in material properties (i.e., vacuum-superconducting in-
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terfaces). We perform 3 simulations with 1283, 2563, and 5123 grid cells (i.e.,
10, 5, and 2.5 nm cell resolution, and using a CFL of 0.225, 0.45, and 0.9
for each simulation, such that the timestep in each simulation is the same.
We run all the simulations for 400 time steps (to the same physical time of
1.73 fs). Due to the abrupt spatial discontinuity in both physics and conduc-
tivity, we see in Table 4 that the algorithm is first-order in space, which is
expected for configurations with inherent discontinuities. We have confirmed
with separate simulations that for the case where σ = 0 and λ smoothly
varies from 400 nm to 40 nm over the entire right-half of the domain that
second-order spatial convergence is retained. In other words, this is the case
where 1/λ transitions relatively smoothly at the material interface and we
expect second-order convergence.

4.3.3. Cubic Block of Superconductive Material

In these set of tests, a cubic material with material type (d) is embedded
in a vacuum domain to demonstrate the spatial and temporal convergence
for more complex three-dimensional field structures compared to the first two
configurations used for convergence studies. The setup and initialization for
this case is identical to the previous case with a material strip, except that
here the domain has an embedded cube extending from −40 nm to +40 nm
in all three spatial directions. For this set up, we only consider Case (d)
where the material is superconducting with finite conductivity (λ = 40 nm
and σ = 104 S/m). Even though we initialize only Ex and By components,
(described previously in Section 4.3.2), as the Gaussian pulse propagates
along the z−direction, it interacts with the cubic block of material and all
components of the electric and magnetic field develop complex structures as
seen in Fig. 4, thus allowing us to study convergence in three-dimensions for
all components.

In Fig. 4, we show the time evolution of only two components, Ex, and
By, extracted on an x − z slice through the center of the domain, with the
embedded box at the center. The figure illustrates that both Ex and By fields
develop complex structures, especially near the embedded box, as the signal
propagates through the superconductor from z < 0 to z > 0. The figures
at the top show the incident Gaussian pulse at 0.52 fs on the embedded
box. As the pulse propagates through the center of the domain, we observe
that the signal is mainly transmitted outside the embedded box (evident
from signal at 1.21 fs), while, inside the box, the amplitude of the Ex and
By components is very small. Finally, as the signal completely propagates
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Figure 4: Time-evolution of field components, Ex (left column) and By (right column)
extracted along an x − z slice at the center of the three-dimensional domain at t = 0.52
(top,) 1.21 (middle), and 1.73 (bottom) fs. Figures show a zoomed-in view of the slice,
with the Gaussian pulsar propagating along the z-direction through an embedded cube of
superconducting material with finite conductivity (σ = 104 S/m and λ = 40 nm indicated
as the solid black box)

through the material, we observe that surface fields develop surrounding the
embedded box, and we attribute this mainly to the superconducting current
that may evolve in this regions. We would like to note that, the main purpose
of this setup is to perform numerical convergence tests in three-dimensions.
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Table 5: Temporal convergence rate for a Gaussian pulse propagating through a cube of
superconducting material with finite conductivity (λ = 40 nm and σ = 104 S/m).

Variable Emedium
coarse Efine

medium Rate
Ex 1.02× 10−4 2.55× 10−5 2.00
Ey 7.38× 10−7 1.84× 10−7 2.00
Ez 7.67× 10−7 1.91× 10−7 2.00
Bx 1.49× 10−16 3.72× 10−17 2.00
By 3.40× 10−13 8.49× 10−14 2.00
Bz 4.71× 10−15 1.18× 10−15 2.00

Table 6: Spatial convergence rate for a Gaussian pulse propagating through a cube of
superconducting material with finite conductivity (λ = 40 nm and σ = 104 S/m).

Variable Emedium
coarse Efine

medium Rate
Ex 1.68× 10−3 4.77× 10−4 1.82
Ey 1.31× 10−4 6.48× 10−5 1.01
Ez 1.44× 10−4 7.18× 10−5 1.00
Bx 7.89× 10−14 3.83× 10−14 1.04
By 5.37× 10−12 1.46× 10−12 1.88
Bz 5.54× 10−13 2.81× 10−13 0.98

We conduct separate tests for temporal and spatial convergence, similar to
the tests performed for the material strip in Section 4.3.2, and obtain the
same overall conclusions, namely, second-order accuracy in time and first-
order accuracy in space, as illustrated in Tables 5 and 6, respectively.

5. Coplanar Waveguide Resonator

In this section, we present three-dimensional simulations performed using
ARTEMIS for a coplanar waveguide (CPW) resonator verifying that we cap-
ture the resonant behavior of the structure and we also present the Q-factor
measurements for different material configurations. In our simulations, the
computational domain has a physical size of [-65,65] µm in x, [-504,504] µm
in y, and [0,64] µm in z. The domain size in z was chosen to be large enough
to prevent loss of information of the closed loop magnetic field lines by verify-
ing matching results with larger domain sizes in z over shorter time (to save
computational resources). We discretize the domain with 130× 1008× 1280
grid cells, so that ∆x = ∆y = 1 µm and ∆z = 50 nm. In Figure 5(a), we
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Figure 5: (a) Schematic to illustrate a CPW resonator structure found in quantum read-
out applications with superconducting films sitting atop a silicon substrate. (b) Spatial
variation of electric field along an x− z slice passing through the transmission lines. The
dark shaded regions indicate metal (either conducting or superconducting). The red and
blue shading indicates the magnitude of the Ex field (blue/red = ±0.001 V/m) near the
end of the simulation, illustrating the fundamental mode. The inset is an x− z slice with
normal in the y-direction extract at the front of the resonator line, y = −300 µm, with
vectors illustrating the electric field.

show a schematic of the CPW resonator to illustrate the resonator structure
used in our simulations. We use a CPW structure designed to support a
fundamental mode of approximately 100 GHz based on approximate ana-
lytic formulas [36]. Note that, our circuit dimensions and design frequency
are based on typical length scales and operating conditions used in quantum
readout applications [12].

The resonator structure, as shown in Fig. 5(a) consists of a silicon sub-
strate, with a thickness of h = 32 µm and relative permittivity of 11.7.
Thin superconducting films sit atop the silicon substrate with a thickness
of t = 200 nm and relative permittivity of 1. The remainder of the do-
main on top of the resonator structure is vacuum. The grid cell size in the
z-dimension, ∆z = 50 nm, is chosen to properly resolve the finest-scale fea-
ture in the simulation, which in this case is the superconducting film with
200 nm thickness. The central resonator line has a length of 600 µm along
the y−direction, the input/output ports have a length of 100 µm and the air
gaps between the central resonator line and the input/output ports is 100 µm
in y, allowing for capacitive coupling between the ports and resonator. All
three components have a width of w = 10 µm. The ground planes have a
length of 1000 µm in y aand width g = 50 µm, and the air gap between the
ground planes and the input/output as well as transmission lines is s = 6 µm.
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The relative permeability everywhere in the domain is 1. We use a perfectly
matched layer (PML) [37, 30] boundary condition on all domain faces. Note
that with these geometrical specifications of the CPW, we use a 4 µm vac-
uum gap between the domain boundary and the outer x and y edges of the
CPW resonator; thus each PML boundary condition is in contact with ei-
ther vacuum or dielectric material to allow for signals to propagate out of all
domain faces. The use of PML in contact with superconducting material in
the two-fluid model is not well-understood and is a subject for future work.

In the air gaps between the ground planes and the input port, we pro-
vide two (opposite in magnitude in the left and right air-gaps) soft-source
excitations. The excitation used in the two air-gaps at the front end, i.e.,
at y = −500 µm is a modulated sine wave with center frequency, fin, and
associated period Tin = 1/fin.

Ex = ±e−(t−4Tin)
2/(2T 2

in) sin

(
2πt

Tin

)
V/m, (34)

In each simulation we choose fin = 100 GHz to match the predicted res-
onance frequency of the CPW. We use a CFL of 0.95, corresponding to a
time step of ∆t ≈ 0.158 fs. We run our simulations on 32 NVIDIA A100
GPUs on the NERSC perlmutter system for 12 hours, to a total time of
∼ 134 ps (∼ 850, 000 time steps, and we find that each time step requires
∼ 0.05 s). While we have resolved the superconducting film thickness in
z, ideally, we would also like to resolve the structure in x and y, and also
study the effects of varying circuit dimensions. However, computational al-
locations limit us to this size system and a limited number of simulations
with a high-resolution only along the z−direction, which may be sufficient
for the analysis we present. We conduct four tests to measure the effects
of using the two-fluid model for superconductivity when compared to tradi-
tional approximations for superconductivity, such as, modeling the material
as a regular or perfect conductor with artificially high conductivity. Below
are the material properties we set for the superconducting material in each
of the four test cases:

• Case 1: Regular conductor (σ = 6 × 107 S/m and superconductivity
disabled)

• Case 2: Regular conductor, but with artificially high conductivity (σ =
1010 S/m and superconductivity disabled),
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• Case 3: Superconductor with finite conductivity (σ = 6× 107 S/m and
λ = 100 nm),

• Case 4: Purely superconductive (σ = 0 and λ = 100 nm).

Case 1 represents a standard conductor, in this case copper, and requires only
the Maxwell solver. Case 2 represents a commonly-used high conductivity ap-
proximation for superconducting behavior, requiring only the Maxwell solver.
Case 3 represents a superconductor that has been cooled to just below the
critical threshold and retains its standard conductivity properties (we keep
the conductivity of copper here, to compare with Case 1, even though a typ-
ical superconductor such as niobium has a room temperature conductivity
that is an order of magnitude smaller), and in this case, the two-fluid model
implemented in ARTEMIS is used. Finally, Case 4 represents a supercon-
ductor that has been cooled to near absolute zero, and has essentially no
conductive current, and is simulated using the two-fluid model.

In Figure 5(b), we show the spatial variation of the Ex field component
along the x-y slice such that it cuts through the thin-film to include the air-
gap (transmission line) between the ground plane and input/output port and
the central resonator line. The Ex field shown in the figure is obtained from
the results of the Case 3 simulation at time, t ∼ 0.13 ns. We observe that the
system excited with the signal near the input port, achieved resonance with
maximum field amplitude near the front and back edges of the transmission
lines (i.e. in the air-gap region between the ground plane and the central
resonator line). As expected, the fundamental mode (λEM/2, where λEM is
the effective wavelength) of EM resonance is excited at 100 GHz. We also
show a zoomed-in view of field extracted along an x-z slice near the front
edge of the central resonator (at y = −300 µm) along with the electric field
vectors to demonstrate that the left and right air-gaps have opposite Ex

fields, but their amplitude is maximum in this region.
To further visualize resonance and compare the signal evolution among

the four tests cases described above, we measure the signal, i.e., the Ex field
component at two locations; (1) in the air-gap between the ground plane
and input port, halfway along the length of the port, at y = −450µm to
obtain the input excitation; (2) in the air-gap between the front edge of the
resonator line and the ground plane, i.e., y = −300 µm, the same location
where we observe maximum field amplitude in the x − z inset in Fig. 5(b).
In Fig. 6, we show the input excitation (top), and compare the signal evo-
lution at the second location as a function of time as obtained from the
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Figure 6: (Top) Measured Ex field in the air gap between the input port and the ground
plane, halfway down the input port. (Bottom) Measured Ex field for the four simulations
in the air gap between the resonator line and the ground plane at the front of the resonator
line.

four cases. In each case, the fundamental mode is clearly established in
the resonator line, similar to that previously illustrated for the Ex field in
Fig. 5(b). However, the amplitude of the signal decays rapidly for Case 1,
where the superconducting film is approximated as a regular conductor with
σ = 6× 107 S/m. We also observe that the amplitude variation for cases 2,
3, 4, are similar. To quantify the difference, we compute the Q-factor and
resonant frequency obtained from the simulation using the measured signal
shown in Fig. 6 [38, 39]. Q-factor, also known as quality factor, quantifies
how underdamped or performant a resonator is, and is therefore widely used
to quantify the efficiency of a resonator. We compute Q-factor beginning the
measurement at t = 8× 10−11 s, which is after the input pulse has died out,
resonance has formed, and at least five periods of resonance are recorded. We
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Table 7: Computed Q-factors and resonance frequencies for (Case 1) a regular conductor,
(Case 2) an artificially-high conductive material, (Case 3) a superconductor with conduc-
tivity, and (Case 4) a superconductor with zero conductivity.

Q fcomp [GHz]
Case 1 24 96.9
Case 2 491 98.2
Case 3 316 97.1
Case 4 973 97.1

use the signal processing code ESPRIT [38, 39] to extract the attenuation
constant and phase constant, which are used to compute the Q-factor. In
Table 7 we report the Q-factor and computed resonance frequency, fcomp, for
each of the four cases. We see that the standard conductor (Case 1) has the
lowest Q-factor, and the superconductor modeled with no conductivity (Case
4) has the largest Q-factor, i.e., the most performant. Cases 2 and 3 show
a Q-factor that is in-between the purely conductive and the purely super-
conducting cases. This indicates that the amount of standard conductivity
included in a superconducting model (in physical terms, the temperature of
the system) can have a significant impact on performance, and the assump-
tion of quasi-infinite conductivity may not accurately describe performance.
Each simulation is able to compute a resonance frequency that is close to the
predicted frequency, consistent with the observation from the time-domain
plot show in Fig. 6. All inputs files, data sets, and scripts used for analysis
of the simulations presented in Secs. 4 and 5 are provided online 1.

6. Summary and Future Work

We have implemented a two-fluid model for superconductivity within the
open-source ARTEMIS framework and performed numerical studies to vali-
date the model. We have demonstrated that our algorithm is second-order
accurate in space and time within superconducting materials and first-order
in space in the presence of superconducting material interfaces. The reflec-
tion coefficient and skin depth obtained from our implementation agree with
theoretical predictions for a wide range of material properties and frequen-
cies. We have applied our algorithm to model resonant behavior in a su-

1https://doi.org/10.5281/zenodo.7943012
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perconducting coplanar waveguide, demonstrating that the superconducting
physics performs on-par, or even better than the assumption of quasi-infinite
conductivity.

There are several avenues to explore for future work in relation to im-
proving our model further and broadening our applications. To improve the
model, we would like to develop an effective absorbing boundary condition
along the lines of PML for superconducting interfaces at domain boundaries.
We would like to explore and develop higher-order accurate discretization in
space to improve the accuracy of the method at superconducting material
interfaces. Also, methods that are not subject to the Courant condition such
as implicit [40, 41] or spectral methods could be explored in order to signifi-
cantly increase the timestep, which limits the frequency that can be used in
coplanar waveguide simulations even when using GPUs. While in this work,
we use a constant conductivity and London penetration depth throughout
the simulation, new modifications to the model could be implemented to
account for the temperature dependence of these quantities using alternate
approaches suggested by Hirsch [42]. It would also be of interest to explore
using a more general Landau-Ginzberg model or an electrodynamic vector
potential to compute the superconducting current density[43] and compare
with the two-fluid model implemented in this work. For the case of complex
geometrical features, e.g., resonator readout circuitry with non-grid aligned
transmission lines or spherical/curved geometries where this current work
only supports a staircase approximation, we would like to explore embedded
boundary discretizations, which have been developed for Maxwell’s equa-
tions [44, 45, 46]. Finally, we would like to expand the implementation to
applications in larger circuits where we may model multiple superconducting
sub-components and develop new methods to quantify crosstalk interactions
between them.
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