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ABSTRACT OF THE THESIS

Fine-Tuning BERT for Sentiment Analysis

by

Michelle Lu Wang

Master of Science in Statistics

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

The introduction of transformer models have vastly improved the performance of machine

learning methods on natural language processing (NLP) tasks. Transformer models use a

self-attention mechanism which allow the model to weigh the importance of different words

in a sequence when making predictions. They also introduce positional encodings which

allow the model to be highly parallelizable, expanding the capacity of data they are able to

learn from.

This paper explores the fine-tuning of the pre-trained transformer model BERT (Bidirec-

tional Encoder Representations from Transformers) for sentiment analysis on e-commerce

reviews. Traditional fine-tuning approaches which involve updating every parameter of a

pre-trained model’s hundreds of millions of parameters can be inefficient and unnecessary.

A parameter-efficient fine-tuning approach is proposed to enhance the pre-trained BERT’s

performance in discerning between positive and negative sentiments within the diverse user-

generate reviews.

The methodology begins by preprocessing the data, including text cleaning and tokeniza-

tion, to prepare the dataset for training. Subsequently, fine-tuning and hyperparameter tun-

ing techniques are applied to the model in order to tailor BERT to the specific qualities of
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the dataset. Smaller subsets of data are fine-tuned on in order to find optimal hyperparam-

eter settings for fine-tuning the full dataset. Three BERT based models will be explored:

BERTBASE, RoBERTaBASE, and DistilBERT. Each model will be fine-tuned and evaluated

in order to find the model which achieves the highest test accuracy rate. The paper will also

delve into the obstacles of training with a large dataset, proposing solutions and techniques

to circumvent the problems.

The findings of this paper show the variations of the models which perform the best

greatly depend on the needs of the dataset. The larger dataset analyzed in this paper

requires a faster, lighter model in order to process in its entirety. The experiment also

explores more robustly optimized and larger models, which yield adequate results using a

smaller data subset, but are not suitable for bigger data sets. Hyperparameter settings are

shown to affect the performance of the model, but not impact the model in any distinct

patterns. The exception to this is the number of epochs the data is trained for, which almost

always positively influences model accuracy rates.
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CHAPTER 1

Introduction

1.1 Natural Language Processing

Natural language processing (NLP) tasks lie at the forefront of bridging artificial intelligence

with human language. NLP combines linguistics and machine learning in an attempt to

create a machine that comprehends language and responds as a real human would. It has

two main components: natural language understanding and natural language generation,

which together have the potential to seamlessly construct communication between computers

and humans. NLP algorithms take vast amounts of data and train a machine based on

the existing text in order to learn to generate, understand, and classify new passages of

text. These algorithms have evolved in the past decades to create models that have grown

exponentially in their ability to accurately mimic the complex nuances of human linguistics.

This paper will discuss the fine-tuning and use of a pre-trained transformer model to perform

sentiment analysis. Sentiment analysis is a sector of a larger collection of NLP tasks which

aim to classify the type of emotion conveyed by a piece of text [Gun23].

The idea of language as a science has spanned for multiple decades, catalyzed by the

introduction of Alan Turing’s prominent ”Turing Test” in 1950. Turing was an accomplished

mathematician who strived to uncover the limits of computation. He surmised that if a

computer could indistinguishably mimic human language from an actual human through

means of chat, that the computer could be considered intelligent. Though it has been shown

that the Turing Test exhibits problems which challenge its actual legitimacy [TUR50], there

is no doubt that this theory lied at the head of one of the most prevalent topics at the front
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lines of machine learning today.

In current research in the field of NLP, language processing is studied through the lens

of creating machines which can mimic human language and intelligence, rather than aiming

to possess a quality of conscious intelligence. There are a plethora of natural language

processing tasks, all of these centered on the foundational goal of developing machines that

are able to imitate human language. A few common ones are:

• Text Classification: Text classification assigns a category to a text. Many common NLP

tasks fall under this category including sentiment analysis, spam detection for emails,

and common categorization tasks prevalent in everyday life (news categorizations, book

and movie genres, and many more).

• Machine Translation: Machine translation converts text from one language to another.

Early forms of machine translation were rule-based, but with the rise of neural machine

translation, adaptive translation that fully encompasses the complicated meaning and

context behind multilingual phrases is possible.

• Text Summarization: Text summarization takes large text documents and outputs

summaries, retaining the most important information and underlying meanings of the

original text.

• Question Answering (QA): Question answering takes an input of a question and outputs

an answer. There are three main types of question answering tasks. Extractive QA

answers questions based on a given text, where the model is able to extract the answer

from the text. Open generative QA is also based on a given text, but is allowed

to openly generate an answer based on the context of the text. Closed generative

QA generates an answer based only on the model, without any other given context.

Chatbots, which have recently risen in popularity, fall under this category.

• Semantic Textual Similarity (STS): STS compares different texts to determine if they

are similar in meaning. Usually STS takes inputs of two different texts, and outputs a
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numerical score ranking their similarity. STS is a particularly difficult NLP task since

it prioritizes the semantic meaning of two texts, which could linguistics wise have very

different words.

Of these many tasks, text classification makes up an important sector of NLP. Within text

classification, sentiment analysis aims to design a model which can classify the underlying

polarity or emotion of a given text. Based on the specific goals of a study, the scale of

sentiment analysis can vary from simple positive or negative sentiments, to more complicated

graded sentiments (very positive, positive, neutral, negative, very negative).

Sentiment analysis is widely used in many different sectors, and is particularly useful

for businesses. The shift toward e-commerce and online platforms in the last decade has

restructured many companies and business models. The rise of social media and online

platforms have created a ubiquitously accessible environment for customers to express their

opinions on products. In the modern world, for any given business or product, it is possible

that there exists extensive amounts of publicly available information that may both help

or hinder a business. By monitoring social media, reviews, and other online platforms,

businesses have the unique opportunity to receive real time reactions from consumers as

well as research on competitors. The problem has quickly developed from finding a lack of

genuine market data to experiencing a lack of procedure to process an influx of large amounts

of data.

NLP algorithms are particularly useful in theses cases. Language models provide an

opportunity for companies to quickly and almost automatically turn complex text into clear

data points. Language models are trained to allow for an automated processing of large

amounts of text data at once. Tasks that would take hours or days to complete manually, can

be performed by machines trained on language models with similar accuracy and performance

within minutes.
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1.2 Overview of Language Models

Transformer models are one of the most popular choices in working with language model

algorithms. They are relatively recent developments in the machine learning sphere. First

introduced in 2017 by Vaswani et al. in Attention is All You Need [VSP17], transformer

models have transformed the way machine learning models approach text data. They dis-

tinguish themselves from other deep learning algorithms prevalent in NLP tasks due to their

ability to connect long-range dependencies and their highly-parallelizable structure. Trans-

formers are valuable for longer lengths of text, where the entire content of the text must be

considered concurrently in order to extract a meaningful representation of the full context

of the text.

Before the introduction of transformers, other widely used methods include Recurrent

Neural Networks (RNN) and Convolutional Neural Networks (CNN).

1.2.1 Related Methods

For a long time, RNNs were the primary method employed in NLP tasks, particularly for

sequential data. Sequential data is any data where the order of the sequence affects the

meaning of the model, such as the order of the words in a sentence. Because RNNs retain a

memory of the past data they receive, they perform well in predicting the next element in a

sequence.

RNNs are based on traditional feed-forward neural networks. Feed-forward neural net-

works are the simplest form of artificial neural networks (ANN). ANNs consist of intercon-

nected nodes which process input data and produce an output data. Data flows through an

input layer, which receives raw data, to hidden layers. In these hidden layers, the input data

gets multiplied by the neurons with a weight and added to a bias, followed by an activation

function, which introduces an element of non-linearity. The number of hidden layers vary

depending on the complexity of the problem, and it is in these hidden layers where the

model attempts to learn the patterns of the data in order to produce an accurate output.
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Each neuron transforms the input in order to minimize the difference between the predicted

output and actual output, sometimes referred to as the target output. During training, these

weights and biases get updated and adjusted as the model learns more about the data. The

ANN then outputs its predicted values based on what it learns during training.

A feed-forward neural network is simply an ANN where the information is processed

unidirectionally forward, every element in the input is processed at once, and moves in a

forward pass through the hidden layers to the output layer, and never in any other direction

[Saz06]. Because of this, feed-forward neural networks do not hold any perception of order

within their input data.

RNNs, however, set themselves apart from feed-forward neural networks by moving in-

formation in cycles [Sch19]. Each element in an input sequence of the RNN gets processed

independently and sequentially. The inputs in RNNs can loop through their hidden layers

multiple times, capturing information about previous inputs and maintaining a sort of mem-

ory. Given an input sequence of elements, at each time step, an element passes through the

hidden layer and maintains a hidden state. The element then receives the hidden state of

the previous time step, and combines it with its current hidden state to create a new hidden

state. Thus, at each time step, the RNN maintains information about previous steps, and

holds a memory about past information. A loss function is then calculated and a backward

pass, referred to as back propagation, then updates the error to the network to update the

weights of the model.

The introduction of memory to machines plays a significant role in their evolution to

providing more accurate predictions. This memory allows machines to capture dependencies

within inputs. In the realm of NLP, it facilitates a way for words to relate to other words in

a sequence. In text tasks, words commonly have different meanings according to the context

in which they appear in. The study of semantics deals with the meanings of words. Different

words in different parts of a sentence can and often times do have very different meanings.

However, the study of semantics becomes complex, as oftentimes the context required to

fully understand the meaning of a single word does not appear in neighboring words, but
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rather much further after or before the initial appearance of the word in a sequence. In

this case, the ability to remember the content of the entire sentence is imperative to the

understanding of a portion of the sentence. As tasks become more complex, and inputs grow

to longer lengths, the relevant context can exist sentences away from the initial position of

the word.

While standard RNNs hold advantages over traditional feed-forward neural networks,

they still suffer from some of their problems. In particular, RNNs suffer from short-term

memory loss. RNNs are shown to perform well for simpler tasks with shorter sequences.

However, with more complex tasks with longer sequences, traditional RNNs have been shown

to provide sub-optimal results [KCH19].

A large reason for the memory loss of RNNs is due to the fact that they are particularly

susceptible to vanishing or exploding gradients. Gradients describe how a neural network

learn. Models whose output changes vastly in response to a small input change have higher

gradients, and they also learn faster. Lower gradients indicate models that learn very slowly;

their outputs change slowly in response to input changes. Gradients of the loss function are

calculated during the back propagation step where RNNs calculate their error. When RNNs

experience vanishing gradients, they suffer from a sort of memory loss, where the model

”forgets” earlier parts of the sequence, and struggles to maintain long-range dependencies.

When RNNs perform their back propagation step, they compute the gradients of the

loss function with respect to the model’s parameters. The gradients are then multiplied

by the model’s weights at each time step. After many time steps, if the model weights

are small enough, the gradient decreases exponentially, essentially vanishing. This means

that the memory from earlier time steps also vanish and earlier inputs no longer influence

current predictions. On the other side of the spectrum, the gradients can explode after many

time steps when the model weights grow very quickly. At this point, the model becomes

extremely unstable, and model weights can be so large they are incapable of being updated.

Vanishing and exploding gradients are especially problematic for natural language processing

tasks where sequences tend to be long and the words at the beginning of a sequence hold
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importance to words later on in the sequence.

Long-Short Term Memory (LSTM) is one way that RNNs can solve their vanishing

gradient problem. LSTM incorporates a gate into the model which determines whether an

input is useful or not, and then erases the unimportant inputs. This helps RNNs to solve

their long-range dependency problem.

However, as sequences grow longer, RNNs that use LSTM become extremely compu-

tationally expensive. Typically, more complex data favor models which are parallelizable.

Parallelizable models are able to perform multiple computations on multiple data points

simultaneously, creating a highly efficient environment for learning. Since RNNs are sequen-

tial models by nature, they are restricted by order in which their input sequence must be

processed, and must be trained on one element at a time. Thus, RNN models cannot train

multiple data points at once and can only feasibly become so complex under computational

restrictions.

CNNs are a highly parallelizable and popular pattern recognition model worth mention-

ing. However, they are mostly used within computer vision systems rather than language

tasks. Convolution leverages two different functions to create a third one. CNNs consist

of three layers: a convolutional layer, a pooling layer, and a fully connected layer. In the

convolutional layer, the network learns how to detect patterns by applying a convolutional

function to the input data using kernels. The pooling layer reduces complexity within the

model by reducing spatial size. Finally, the fully connected layer connectes neurons from

each layer to neurons in the next layer [ON15].

Although there are variations of CCNs which perform better on NLP tasks, traditional

CNNs may not perform as well as other models on sequential tasks and tasks requiring long-

range dependencies [KRG23]. They leverage matrix calculations and focus mainly on grid

data, such as pixels in images, where the spatial relationships between neighboring elements

are important. Text data is normally not structured in a way that the neighboring words

are the most important to their comprehension.
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Transformer models do not face many of the disadvantages of RNNs and CNNs. The

introduction of transformers has become such a widespread success due to their ability

to capture long-range dependencies so well, while also maintaining a highly parallelizable

environment.

1.2.2 History and Evolution

The history of NLP models span far before transformer models, RNNs, and CNNs. Early

methods began with simple text vectorization methods, ways to convert words into numerical

representations [Rud18].

One of the earliest models was the Bag of Words (BoW) model. The BoW model provides

a way to represent a document in a numerical representation. Using this model, a document

is converted to a ”bag” of words - a list of vocabulary disregarding sequence. Each unique

word is represented by a number indicating its frequency. The BoW approach is effective

when dealing with relatively simple tasks. For simple sentiment analysis tasks, a document

can be analysed by looking for frequency of positive or negative associating words. Of course,

there are many limitations with this method as well. Order and context are not in any way

considered. But for tasks requiring only a rough understanding of text, it is a straightforward

and computationally inexpensive method.

Another evolution of text vectorization is Term Frequency-Inverse Document Frequency

(TF-IDF). TF-IDF is a way to quantify how important a word is to a document within a

group of documents, referred to as a corpus. It multiplies term frequency, a metric describing

how often a word appears in a document, and inverse document frequency, a metric describing

how often the word appears across the entire corpus. TF-IDF assigns a higher rate to a word

that appears frequently in a certain document, but not as frequently in the entire corpus.

This usually indicates that the word is particularly informative to the document which it

appears in many times. Words that are more common throughout the entire corpus receive

lower scores.
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Prediction based modeling such as RNNs and LSTM were eventually introduced and

found valuable spaces in NLP tasks. Word embeddings used along with neural networks

provide a powerful way to predict text. Word embeddings are text vectorizations which

consider the meanings of words. They create similar representations for words with similar

meanings. Word2Vec was prominent word embedding to surface. Word embeddings such as

Word2Vec provided a powerful, new way to represent words. While previous vectorizations

of text into numerical vectors didn’t consider semantic meanings of the words, Word2Vec

uses an unsupervised learning method to learn understand semantic meanings. Word2Vec

and similar methods showed the importance of consideration of linguistic meanings within

vectorizations.

Word2Vec was mainly trained with two different architectures. The first one, Continuous

Bag of Words (CBOW), trains the model to predict the target word based on context. The

model takes its input as all words in the sequence except for the target word, and the target

word as its output. The hidden layers in the model attempt to learn the word embeddings.

The second architecture, skip-gram, flips the model around, and takes the target word as its

input, and trains the model to predict the output as all the context words.

Embeddings from Language Models (ELMo) was the next breakthrough in NLP model-

ing. When ELMo vectorizes a certain word, the vector comes from a function of the entire

sentence that the word appears in. This was a breakthrough because ELMo was one of

the first models to be able to represent different meanings based on context within the same

word. ELMo uses a Bidirectional LSTM model to process the sentence forward and backward

in order to capture dependencies in both directions. Its bidirectional architecture greatly

contributes to its efficacy by holding the ability to capture context in both directions of a

word. Many unidirectional sequential models lose a certain amount of complexity by only

capturing dependencies in one direction.

More recently, transformers have been introduced and have left a great impact within

the machine learning sphere. They solve many of the problems faced by their predecessors.

Transformer models leverage an attention mechanism to understand the context of and
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consider all past information, so they don’t suffer from the same memory loss issues as

their counterparts. Transformers’ abilities to process all the information they receive at

once without memory loss makes them particularly powerful and sets them apart from other

models.

1.3 Overview of Transformer Models

Transformers have quickly risen to the forefront method of choice in modeling for NLP tasks

in current day research. Although originally intended for language tasks, they’ve also been

proven to be useful in many computer vision tasks as well [KNH22].

Transformer models introduce a self-attention mechanism, which is the foundation to the

model’s exceptional performance. The self-attention mechanism allows the model to assign

a special weight, or pay attention, to the parts of a text it deems most important to the

contribution of understanding of the full text. Thus, it is able to process longer pieces of

text, holding special consideration to the more important components, without suffering from

short-term memory loss, as many of its neural network counterparts do. It also introduces

positional encodings, information about the word’s position in the sequence. This makes it

unnecessary for the model to process one word at a time, allowing for an entire sentence to be

processed at once, making the model parallelizable and more efficient. Transformer models

in nature are exceptional at capturing long-range dependencies. Unlike RNNs, transformers

do not operate on recursion, they create a highly efficient architecture which allows them to

be trained on vast amounts of data and learn quickly. The combination of these qualities has

led to the growth of the transformer model as the dominant model in current NLP tasks.

There are currently many pre-trained transformer models that exist. Pre-trained models

are generic models that are trained on large datasets for general tasks. These pre-trained

models are trained for many days with powerful processing units. They use extremely large

datasets and have many model parameters, encompassing and representing large amounts of

knowledge. Pre-trained models take on the computationally expensive and extensive training
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of foundational language structures necessary for all NLP tasks. Once a pre-trained model

possesses the basics, it can be even further fine-tuned on specific datasets for more specific

tasks.

One of the first prominent pre-trained transformer models to arise was GPT (Generative

Pre-Trained Transformer) by OpenAI. GPT is a unidirectional transformer model, meaning

it attends to one token associated with a word at once, before then attending to the token to

the right of it. After GPT, BERT (Bidirectional Encoder Representation from Transformers)

was introduced by Google AI in 2018 [DCL2019]. By creating an encoder-only model, BERT

is able to bidirectionally attend to any word of its input sentence. GPT and BERT have since

evolved into many updated versions (GPT-2, GPT-3, GPT-4 and RoBERTa, DistillBERT,

XLNet, etc., respectively). Subsequent versions have made improvements in both model

performance and efficiency using a variety of techniques. They trained existing models with

more data and for longer times, modified number of parameters, adjusted learning objectives

and training methods.

This paper will focus on fine-tuning BERT. BERT is a strong pre-trained model, but was

created with the intention of further fine-tuning to be performed on specific tasks. Subse-

quent BERT based models, roBERTa and distilBERT will also be fine-tuned. RoBERTa was

introduced shortly after BERT [LOG19] . It further trains BERT on a more comprehensive

dataset as well as tailoring some of BERT’s design choices. DistilBERT was introduced in

[SDC20] to provide a smaller, faster, and lighter version of BERT.
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CHAPTER 2

Background and Architectures

2.1 Overview of Sentiment Analysis

This paper focuses on the sentiment analysis of reviews. With the rise of online resources,

reviews have become a unique and crucial focal point of many companies. Reviews provide

a particularly important value to consumers and sellers alike and have transformed the way

that many businesses market and provide customer service.

They are not only the forefront platform for companies to receive direct feedback, they

also provide a platform for potential customers to receive unbiased and real advice on the

goods or services before they buy them. By analyzing a company’s own reviews as well as

potential competitors’ reviews, a company can acquire valuable product research. However,

reviews are also particularly difficult to process. Vast amounts of text encompassing high

word counts make it difficult to be manually monitored by humans. Furthermore, the nature

of user-generated content makes it difficult for even humans to discern meaning at times

[Gun23].

Sentiment analysis as a study has existed through many transformations. Early forms of

sentiment analysis were lexicon-based, sentences were labeled based on certain word related

rules. A common method, similar to the BoW approach, creates a list of ”positive” and

”negative” terms, and processes sentences to keep a frequency count of both sentiments.

The most simple form of this model then calculates a sentiment score (StSc) in the form of

an average:
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StSc =
# of Positive Words−# of Negative Words

Total# of Words

where a negative score deems the sentence negative, and a positive score deems the sentence

positive. Subsequent variations of this method record domain specific lexicon tools in order

to better label sentiments. Rather than using a general list of positive and negative words,

this method can be modified to fit more distinct tasks.

However, sentiment analysis faces some unique challenges within natural language pro-

cessing that are better suited for machine learning based models rather than rule-based

models to solve. Since the data used in this study is entirely user-generated, it is not as

simple as picking and choosing textbook words associated with ”positive” and ”negative”

emotions. Human language is a complicated study even when closely monitored by real hu-

mans. The choice of model must properly capture human emotion and represent the complex

nature of language.

Language nuances such as sarcasm and irony present to be a unique problem that tends

to be difficult to capture for some models and even humans alike. Negation also can be

difficult for some models to understand, especially in instances where the word intended to

be negated occurs later down the sequence from the negation word. Transformer models are

able to handle these complications particularly well. The extensive amount of data they are

able to process and train from make them well-suited to learn the patterns and distinctions

of human emotion through text.

2.2 Model Architectures

To understand the architecture of transformer models, it is helpful to take a look at the inner

workings of the models that preceded them.

Sequence to sequence models based on traditional RNNs employ an encoder and a decoder

step to map an input to an output. The encoder takes a sequence of elements, and maps
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them to a numerical vector, which represents the RNN’s hidden state. This vector is also

referred to as the context, as it provides an encoding of the previous information received

by the model until that point. The vector size of the context is set to the number of hidden

units within the encoder. At each time step, the RNN processes an element of the input

sequence and then updates its hidden state. Once the entire input sequence is processed,

it sends the context, now containing the last hidden state which holds memory of all the

previous hidden states, to the decoder. Conditioned on this context, the decoder then begins

to generate an output sequence of symbols, one element at a time.

As explored earlier in this paper, problems tend to arise with the traditional RNN model,

particularly when dealing with longer input sequences. When processing these longer se-

quences, the RNN’s hidden states struggle to retain relevant information about earlier time

steps.

With the introduction of attention models, this issue is mitigated by giving focus to

the more important parts of the input sequences. Similar to a traditional RNN model, the

encoder in an attention model still processes elements and updates its hidden states in the

same way, except now, it passes on all the hidden states to the decoder, as opposed to only

the last hidden state. The decoder now has all of the encoder hidden state vectors, along with

its own initial decoder hidden state. Then, the decoder in the attention model scores each

hidden state it receives to assign attention weights to each state. Next, it softmaxes each

score and multiplies each hidden state vector by its softmax, creating a series of weighted

vectors. Now, the model can focus its attention to the more important hidden state vectors,

which are weighted higher than the less important ones.

A key component of transformer models lies within their attention mechanisms. Trans-

former models primarily use self-attention to determine which parts of the sequence are the

most important. Self-attention refers to the particular type of attention used specifically

within transformer models. It is conceptually similar to the theory of general attention

mechanisms, except self-attention focuses on how models weigh different parts of the same

input. Meanwhile, regular attention focuses on how models weigh different parts of another
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sequence, a process that extends from the encoding to decoding step.

Similar to RNN models, many transformer models also contain a layer of encoders and

decoders. The encoder and decoder layers each contain multiple encoders and decoders,

respectively, stacked on top of each other. The input sequence flows through each of the

encoder’s two sublayers: a multi-head self-attention layer and then a feed forward neural

network layer, going from encoder to encoder. After passing through all the encoders, the

output of the top encoder is transformed into two attention vectors, to be passed onto the

decoder layers. It is passed through each decoder layer, where it travels through three

sublayers: a masked multi-head self-attention layer, then a encoder-decoder attention layer

(also referred to as a multi-head self-attention layer as in the encoder), and finally a feed-

forward neural network layer. The output of the decoder then passes through a final linear

and softmax layer where it is converted from a numerical vector into a sequence of symbols.

2.3 Attention Models

The transformer is an incredibly powerful model, and its attention mechanism plays a large

role in its effectiveness. This section delves deeper into attention mechanisms and attention-

based models. Attention models assign heavier weights to the more crucial input elements of

the model, and lower weights to pieces which may not contribute as much to the performance

of the model. The attention mechanism solves the memory problem that RNNs often suffer

from when processing inputs with longer lengths. First introduced in 2015 by Bahdanau et

al. [BCB16], the attention mechanism transformed models’ abilities to capture long-range

dependencies.

Bahdanau’s paper focused on neural machine learning on French-to-English translations.

Common antecedent machine translation methods focused on encoder-decoder methods that

encodes an input into a fixed length vector, and then decodes an output translation, which are

then jointly trained to produce the output with the highest probability. The requirement to

compress all necessary input information into a fixed-length vector left the model to perform
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poorly when faced with longer sentences. The neural learning method proposed instead

searches for the position in the input sentence where the most important information lies.

For every word, the model focuses on context vectors associated with the positions of the

important information, as well as all the previous predicted target words, and then predicts

its current target word. By doing so, the whole input sentence does not need to be coded

into a fixed-length vector, and rather as a sequence of vectors, which can be subset and

chosen based on the specific translation.

There are three main types of attention: global, local, and self-attention. Self-attention is

the type of attention used by transformer models, and is outlined more extensively in the next

section. Global attention refers to a model where all elements of the input are given some sort

of attention. While some elements are given more importance and some are given less, by

giving all elements attention, the model suffers high computation requirements. All hidden

states must be computed and multiplied by their weight matrices. Local attention solves

the computation problems that global attention suffers from. Instead of paying attention

to every element of the input, it only considers some when generating context vectors. It

chooses which elements to pay attention using alignment. When using a monotonic alignment

method, local attention will only pay attention to a set of selected information. A predictive

alignment method allows the model predict the position of the information that should be

paid attention to.

2.4 Transformer Model Architecture

Now the transformer model with all necessary equations and notations is formally introduced.

An encoder is given an input sequence of n elements, x = (x1, ..., xn) and maps it to

a numerical vector, z = (z1, ..., zn), of hidden states, also referred to as the context. Once

the input sequence is processed, the encoder sends the hidden states to the decoder. Condi-

tioned on the context, the decoder then begins to generate an output sequence of elements

y = (y1, ...yn), one element at a time [VSP17]. Similarly, X and Y represent the matrix
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representations of inputs and outputs. Figure 2.1 shows a map of the transformer encoder

and decoder architecture.

Figure 2.1: Architecture of transformer encoder and decoder.

2.4.1 Encoder

The encoder in a transformer is tasked with the job of taking the input sequence and trans-

forming it into a set of contextualized representations. The context holds information about

the relationships and dependencies within the input sequence.
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Transformer models stack N multiple identical layers of encoders, and the same number

of decoders, the exact number varying from model to model based on specific demands of the

model. From here on, the original model that was first proposed in Attention is All You Need

will be referred to as the original transformer. The original transformer employs N =

6 encoding and N = 6 decoding layers. The remainder of this section will describe a

transformer model with six encoding and decoding layers, but it is notable that transformer

models can have a different number of layers, and many popular pre-trained models do. This

will be furthered explored in later chapters.

2.4.1.1 Embeddings and Encodings

At the bottom encoder, the input is transformed into a numerical vector, through an em-

bedding process, before entering the two sublayers of the encoder. Most neural networks,

including transformers, require a continuous valued input. Using word embeddings, an input

of elements is mapped to a vector of real numbers that captures both the meaning of the

word, as well as the contextual similarity of the word to other words.

The original transformer uses learned embeddings, as do many prominent existing pre-

trained transformers. Learned embeddings are trainable and updated based on the task-

specific data during training to capture the relationships between words. Pre-trained trans-

formers such as BERT analyzes these relationships bidirectionally to generate meanings

based on the context of the entire sentence it occurs in. There are a variety of embedding

algorithms, which will be delved into further detail in subsequent chapters.

A positional encoding is also added at this step, which provides information about the

relative position of the symbol and gives meaning to the order of sequence of symbols and

distance between symbols. This is a key step in the transformer architecture which makes

a transformer parallelizable. Due to the nature of parallel processing, the model is unable

to learn positional information from data as it processes all words simultaneously. The

positional encoding grants the data a way to hold meaning about order while being processed
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simultaneously.

Like word embeddings, positional encodings may either be learned or fixed. The original

transformer uses fixed sinusoidal positional encodings based on sine and cosine functions:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position, i is the dimension of the positional encoding, and dmodel is the

dimension of the model.

Since sinusoidal functions are periodic, they are suitable choices for representing relative

positions due to their regularity of patterns. However, in demand for more model flexibility,

many pre-trained use learned positional encodings. The BERT architecture used throughout

this paper uses learned positional encodings. Using learned positional encodings allows for

more flexibility within the model’s ability to perform a wider variety of tasks since they are

able to adapt and learn according to the specific task.

The input embeddings and positional encodings are added together, so that X = E+PE

where E is the matrix of word embeddings, and PE is the matrix of positional encodings.

The input then passes through each sublayer, where the function Sublayer(X) is im-

plemented by its respective layer. Each sublayer has a residual connection, and then it is

normalized. The resulting output can be described as LayerNorm(X + Sublayer(X)) of

dimension dmodel = 512.

2.4.1.2 Mulit-Head Self-Attention Layer

The first sublayer the input passes through is the multi-head self-attention layer. The purpose

of this layer is to capture contextual information and dependencies within sequences. It does

this by calculating an attention score. This can be done through dot-product attention and

additive attention. Additive attention involves using a feed forward network and a single

hidden layer, which can lead to lower optimization. This paper will focus on transformer

model architecture using the scaled-dot product attention.
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In order to calculate the attention score, each word is first transformed into a set of three

vectors of dimensionality of 64: a query, q = (q1, ..., qn), key, k = (k1, ..., kn), and value,

v = (v1, ..., vn), vector. Similarly, a matrix of queries, keys, and values can be expressed as

Q, K, and V , respectively. In practice, calculations are done in matrix form to compute

attention scores. The query matrix, Q, holds information about the element which attends

to other elements in the sequence. It helps the model decide which element to focus on.

The key matrix, K, holds information about the element which is attended to. The value

matrix, V , holds information from the chosen element that will be used for the weighted

sum calculation based on attention scores.

More simply put, the query helps the model decide which elements are most important to

focus on. The key then helps the model to understand the general characteristics and features

of the elements chosen by the query. Finally, the value holds the specific characteristics or

features of the elements that are most useful for the model to use.

To calculate Q,K and V , a matrix of embeddings, X, is multiplied by WQ,WK ,W V ,

learned weight matrices for each query, key and value. Each row inX represents an element in

the input sequence. The weight matrices are trained along with the other learned parameters

of the model. The weight matrices are expressed as such:

X ×WQ = Q,

X ×WK = K,

X ×W V = V.

Next, a self-attention score is calculated for each word. The dot product of the query and

key vector is taken, qi · ki, for i = 1, ..., n and divided by the square root of the key vector

dimension,
√
dk. The division here is to provide numerical stability to the score, scaling the

score to prevent it from getting too large. Then, the value goes through a softmax operation

which normalizes the score. Thus, the words with more contextual importance have higher

values.

Each vector is then multipled by its softmaxed score and then summed up. In practice,
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these steps are all done in matrix form for efficiency, and can be expressed as :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where T is sequence length.

The original transformer, as well as transformers focused in on the paper, use multi-head

attention. Multi-head attention maps each input element to h different queries, keys, and

vectors. By doing this, the model is able to express different patterns within each sequence,

reduce redundancy, and overall allow for a deeper understanding of each word within its

sequence than regular self-attention.

The original transformer uses h = 8 attention heads, and the number of attention heads

can and do often vary from model to model. The attention heads can be executed in parallel,

leading to efficient processing. Mathematically this can be expressed as:

X ×WQ
i = Q,

X ×WK
i = K,

X ×W V
i = V,

where i = 1, ..., h and WQ
i ∈ Rdmodel×dq , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv

Then, each set of the matrices goes through the Attention(Q,K, V ) function. The eight

attention heads create eight matrices, Z1, ..., Z8. All eight matrices are concatenated into

one large matrix, and then they are multiplied by a weights matrix, denoted as WO, where

WO ∈ Rdmodel×hdv . WO is trained with the model similarly to the weight matrices in regular

self-attention. The result is one matrix, Z. This function can be written as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O,

where headi = Attention(QWQ
i , KWK

i , V W V
i )

There is a residual connection around this step, which adds together the input of the

multi-head self attention layer, to the output of the multi-head self attention layer, X + Z.

This ensures that the model can pass on the original information from the input, as well as
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mitigating the vanishing gradient problem by creating a direct path from output to input.

Finally, the output goes through a layer normalization step to provide stability to the model.

It is necessary as it creates a consistent scale across the positions of the elements.

Mathematically, this can all be summarized as :

LayerNorm(X + Z),

where Z = Multihead(Q,K, V ).

2.4.1.3 Position-wise Feed Forward Network Layer

Next, the information passes through a position-wise feed forward network (FFN) layer. The

purpose of this sublayer is to process the information from the previous step in a position-

wise manner. In doing so, it transforms the output of the multi-head self-attention layer to

better fit the next self-attention layer as an input. The feed forward network layer allows

the model to better capture complex patterns within the data. It does this by using two

linear transformations with Rectified Linear Unit (ReLU) activation.

Mathematically, this can be written as:

FFN1(x) = ReLU(xW1 + b1)

where W1 is a weight matrix and b1 is the bias term. The weight and bias are learned during

the training process through back propagation. The weight matrix captures the relationships

between inputs. The bias is an offset that represents the constant terms in the relationship

between inputs.

Activation functions are helpful in machine learning models because they introduce non-

linearity to the model. Non-linear models are more flexible and possess higher ability to

capture the complex patterns of the data, than their linear counterpart. Its flexibility man-

ifests in many forms. Many types of data do not conform to linear relationships, and thus

cannot be expressed as so. Since non-linear models hold a higher degree of of represen-

tation power, they can model a wider variety of functions. They are also able to express
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non-independent variables and interactions. Linear models assume that the impact of one

variable is independent to the values of other variables, and cannot properly show these

relationship that do not fall under this category.

The choice of activation function depends on model requirements. Subsequent models

introduced in this paper use other activation functions. The ReLU function is more com-

putationally simple than other activation functions, as there are no complex computations

involved, it simply passes its input through. The ReLU function is helpful in solving the

vanishing gradient problem that other functions face, since it doesn’t saturate its positive

inputs. Its gradient is always 1 for positive inputs.

The ReLU function returns x, if x is positive, and returns 0, otherwise. The piecewise

linear function can be expressed as ReLU(x) = max(0, x). In terms of our problem, it would

be:

FFN1 = ReLU(xW1 + b1) = max(0, xW1 + b1).

The FFN processes one vector at a time independently, thus it is able to process them

in parallel. This is important because it mitigates the computationally expensive problem

that traditional neural networks face when they perform similar functions sequentially.

The FFN then passes the data through a second linear transformation, such that:

FFN2(FFN1) = max(0, xW1 + b1)W2 + b2 = FFN1(x)W2,+b2.

This introduces additional non-linearity for additional ability to capture more complex

patterns.

Similar to the previous attention sublayer, a residual connection is added to the output,

and then the sublayer is normalized. The output of this layer is:

LayerNorm(X + Z),

where Z = FFN2(FFN1(x)).

The output is then sent to the next encoder to go through the self-attention and feed

forward network steps again, until it reaches the last encoder.
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2.4.2 Decoder

Once the data has gone through all the encoder steps, it begins its journey through the N

decoders. The decoder takes two inputs: the output of the top encoder, as well as the output

text shifted to the right. Then the decoder outputs a vector y, which is the target sequence.

Depending on the task of the transformer, y could be a variety of different types of sequences

or values. In sentiment analysis, it is common for y to be a scalar value or categorical labels.

The analysis in this paper will express y as a binary classification of values 0 and 1.

Similar to the encoder architecture, the output travels through a word embedding and

positional encoding, followed by sublayers, each encompassed with a residual connection and

followed by a layer normalization. The original decoder structure contains three sublayers: a

masked multi-head self-attention layer, a multi-head self-attention layer, and a feed forward

network layer. BERT, in particular, has an encoder-only architecture, and does not use a

decoder. BERT specific architecture will be explained more in Chapter 3.

The two inputs of the decoder enter at different sublayers. The output text, which is

shifted to the right, also goes through an embedding and positional encoding step, similar

to the input in the encoder step. The output text is shifted to the right, inserting a ”start of

sentence”, <SOS>, token in the first position, in order to make sure that predictions made

at position i only depend on elements in earlier positions. This sequence is then sent to the

masked multi-head attention layer.

In the original transformer, a masked multi-head attention layer allows the decoder to

attend to previous positions in the sequence while also preventing it from looking at future

positions while it is training. This essentially keeps the model from ”cheating” by looking at

future positions to make its present predictions. The encoder and decoder steps are similar,

however now the model applies a mask to the future attention scores, by setting them to

−∞. By setting the future position scores to −∞, the autoregressive property of the model

is retained. An autoregressive model predicts future values based solely on past values. This

property allows the model to learn and predict in a realistic way. The masked multi-head
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attention layer outputs a query, Q.

The next input of the decoder enters at the multi-head self-attention layer. The output

of the top encoder is transformed into keys, K, and values V and enters the multi-head

attention layer. In a similar process as the previous encoder step, using Q from the masked

multi-head attention layer, the multi-head attention sublayer takes queries (Q), keys (K),

and values (V ) to compute the self-attention score:

Attention(Q,K, V ) =
QKT

√
dk

.

Then, the attention scores are softmaxed and summed and weighted as they were in the

encoder step. In the softmax steps, the masked positions get assigned zero probability. The

sequence then passes through the feed forward network layer and layer normalization layers

with residual connections as it does in the encoder step. The decoder outputs a vector of

floats.

2.4.3 Linear and Softmax

In the final step, the vector of floats, f , is converted into the target sequence. The linear

and softmax steps are important to transform the prediction into a comprehensible output

structure in a form that is suitable for the problem. First, it enters a linear transformation.

The linear transformation transforms the outputs into a logits vector, l, raw unnormalized

predictions. The matrix linear transformation is in the form of:

L = F ·Wout + bout,

where Wout is a learned weight matrix and bout is a bias term.

Then, it passes through a softmax activation function. For models which predict text,

the logits vector gets transformed into a probability distribution over the target vocabulary

in the softmax step. The softmax function normalizes the logits to a probability distribution
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that sums to 1, and is in the form of:

P (yi) =
eli∑V oc
j=1 e

lj
,

where P (yi) is the probability of the ith word in the vocabulary, V oc is the size of the

vocabulary, and li is the logit for the word.

The probability distribution corresponds to a vocabulary, where the model will output

the word with the highest corresponding probability. The word becomes a part of the

input for the next time step for the next word, and the process repeats until an ”end of

sentence”,<EOS>, token is received.

The model is trained to maximize the likelihood of the next word in the sequence. During

training, the predicted probability is then compared to the actual distribution, a one-hot

coded representation of the target word, to optimize some loss function. Common choices

are cross entropy loss functions and binary cross entropy loss functions. A cross entropy

function is in the form of:

CE(p, q) = −
n∑

i=1

pilog(qi),

where p is the true probability distribution, and q is the predicted probability distribution.

The target sequence of a binary sentiment analysis makes this step a little more simple,

as the model only has to output the element with the highest corresponding probability,

which is either 0 or 1 in the case of binary analysis.

The cross entropy function measures how well the predicted probability distribution rep-

resents the true distribution, penalizing the model for larger deviations away from the true

distribution. The function employs a log term to penalize the model heavier for providing

an incorrect prediction with a higher probability than an incorrect prediction with a lower

probability.

The gradient of the loss is calculated with respect to the parameters, and then the

parameters are adjusted to reduce cross entropy loss. The process is repeated for multiple

epochs until the model parameters converge.
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Thus, a final sequence is produced, y.

2.5 Pre-Trained Models For NLP Tasks

Using pre-trained models as opposed to training a transformer model completely from scratch

can be advantageous in many ways. This paper will focus on training BERT, a pre-trained

transformer model. It is important to overview the basics about pre-trained models and

their purpose in machine learning.

A pre-trained model is a saved network that is already trained on a general and large

dataset [QSX20]. They are valuable in machine learning because they save vast amounts

of training time as training does not have to be restarted from scratch for every task. Pre-

trained models allow for a good representation of weights to start from. These weights are

probabilistic representations that have been derived from the pre-training process. Thus, by

using our pre-trained models, our parameters can be expected to converge faster and more

efficiently.

In most models, the bottom layers of a model are more basic and they are similar across

a large variety of tasks. These general features do not usually need to be changed in order to

cater to specific tasks. The top layers tend to be more task-specific. When these top layers

are unfrozen, they can very effectively be fine-tuned to perform more distinct tasks. In the

case of this paper, they are fine-tuned for classification. It is also possible to add additional

layers on top of existing pre-trained layers to customize the models.

Pre-trained models are especially effective for NLP tasks, as NLP tasks generally require

a large, but universal, representation of language. The bottom layers of models are able to

hold information about these vocabularies and linguistic rules. Then the top layers can be

unfrozen and tuned to learn more nuanced patterns of required by the specific downstream

task. It is also possible to unfreeze all parameters of the model and fine-tune all the weights

to cater to a specific dataset. However, this tends to be computationally expensive and un-

necessary, as the model weights for bottom layers are unlikely to require intense adjustments
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across different datasets.

When considering text representations for NLP tasks, there are two main types of embed-

dings for words. Non-contextual embeddings describe a representation of discrete language

symbols. For each word x in vocabulary V , it is mapped to a vector ex ∈ RDe with a lookup

table E ∈ RDeX|V |, where De is a hyperparameter indicating the dimension of the token

embedding representing the word. The embedding of these words do not change based on

their context. Their use falls short in some areas, since in colloquial language most words

do have multiple meanings that vary depending on context of word. The more effective type

of embedding, context embeddings, change depending on the context the word appears in.

These emebeddings can be represented as x1, x2, ..., xt where xt ∈ V is a sub-word with t

different representations that corresponds to the representation of xt, depending on the con-

text in which it appears [QSX20]. Transformer models use a fully-connected self-attention

model as their neural contextual encoder to create context embeddings and directly model

the dependency between words in a sequence.

However, contextual embeddings require a much larger training dataset than a non-

contextual embeddings. For most supervised NLP tasks, the datasets are not large enough

to train an effective model. Thus, pre-trained models which have been trained on datasets

large enough to properly learn contextual embeddings are very advantageous.

Masked Language Models (MLM) are a self-supervised model that combines supervised

and unsupervised learning techniques to predict on inputs. Similar to supervised learning

techniques, an MLM uses training data with explicit labels. However, MLMs proceed to

mask certain words and make predictions on the masked words. This masking can be static

or dynamic. Static models, such as BERT, mask the same words for every epoch of training.

Extensions of BERT, such as roBERTa, use dynamic masking, where the model changes

which words it masks during training. Dynamic masking has been shown to result in a

higher accuracy since the masking strategy is different for each training epoch [LOG19]. By

using different masking techniques, pre-trained models gain a deeper understanding of the

contextual meanings of their training vocabulary.
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Pre-trained models can also be built with a variety of number of layers and parameters.

BERTBASE is trained with 12 layers and 110 million parameters. BERTLARGE is trained

with 24 layers and 340 million parameters. It is able to process more complex data than

BERTBASE, but it also is much more computationally expensive. DistilBERT compresses

BERTBASE layers by a factor of 2x. In doing so, it is able to perform with much less compu-

tational power. This paper will focus on the fine-tuning of BERTBASE and will subsequently

be referring to BERTBASE and BERT interchangeably.

Different pre-trained models can be more advantageous to certain NLP tasks. The choice

of pre-trained model is important to model performance. Another way to customize a pre-

trained model is to perform transfer learning.

2.6 Overview of Fine-Tuning

The next section delves deeper in fine-tuning techniques. Fine-tuning falls under a broader

category of transfer learning. A brief explanation of different types of transfer learning is

provided. Then, a more in-depth explanation of the type of fine-tuning techniques will be

explained. The limitations of traditional fine-tuning will be discussed as well as the methods

used to circumvent the problems.

2.6.1 Transfer Learning

Transfer learning provides a way for a pre-trained model to be better customized to a specific

task. It involves taking one model and re-purposing it for a new task. In this case, taking

a pre-trained model and making it more task-specific. Transfer learning saves a significant

amount of training time required, as well as on the amount of data required. The idea behind

transfer learning is that the weights and biases of a model trained on one task can be utilized

toward a model training to perform a different task.

Fine-tuning is a prevalent type of transfer learning. In fine-tuning, the pre-trained pa-

rameters are unfrozen and the model weights are updated according to the task which the
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model is tuned to. By re-training the layers of the model on a dataset specific to the new

task, the model is able to update its knowledge to the needs of the new task. For tasks such

as sentiment analysis, fine-tuning is particularly advantageous since a pre-trained model may

lack important domain knowledge essential to the comprehension of the language unique to

the task. In this paper, both the terms fine-tuning and training are used, with the term

training just referring to the re-training of the unfrozen parameters on the particular dataset

and task employed for the fine-tuning process.

Hyperparameter tuning refers to the adjustment of the model settings which are not

learned during the training or fine-tuning process, but are rather set before the process

begins. During fine-tuning, it is beneficial to tweak the hyperparameters of the model, such

as the batch size that data is processed, its learning rate, drop out rate, and the number of

epochs the model is trained for. These directly affect the performance of the model, but are

usually manually determined before the training process, rather than learned.

Feature extraction uses pre-trained representations to extract important features from

new data. By adding new layers to a pre-existing model and training the new layer using the

important knowledge from the existing model, the model is able to learn more efficiently.

2.6.2 Parameter-Efficient Fine-Tuning

Fine-tuning on every parameter of a model can be an incredibly computationally expen-

sive process. Although many pre-trained models are built with the intention of eventually

being fine-tuned on downstream tasks, traditional approaches of fine-tuning where every pa-

rameter is updated can be unfeasible and unnecessary. BERT has 110 million parameters,

which would require an unpractical amount of computational power to fine-tune on every

one of the entire model’s parameters. Parameter-efficient fine-tuning (PEFT) focuses on

more computationally efficient fine-tuning methods which reduce the number of trainable

parameters, while still retaining the performance of models which would be fine-tuned tradi-

tionally [XXQ23]. PEFT also mitigates the overfitting risks that occur when all parameters
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are updated during fine-tuning. This section will review four types of PEFT that can be

used specifically with transformer models.

Additive Fine-Tuning incorporates new task-specific trainable parameters into the model.

Adapter-based additive fine-tuning introduce an adapter that has parameters which are

updated, while the rest of the pre-trained parameters are unchanged. Soft-prompt based

additive fine-tuning insert trainable continuous vectors into the input or hidden states of

the model. These trainable vectors are called soft-prompts because they possess a quality

of adaptability. They search for prompts within a discrete token space based on the task-

specific training data and thus can be optimized based on the particular task and training

data. These vectors are fine-tuned while the pre-trained parameters remain frozen. Ladder

side fine-tuning involves training a ladder side network with the pre-trained model using

shortcut connections, called ladders, from the pre-trained model. Unlike adapter or soft-

prompt based fine-tuning techniques which inject trainable parameters into the main network

of the pre-trained model, ladder side fine-tuning uses a separate network on the side to learn

new trainable parameters. There are a variety of variations of different additive fine-tuning

techniques that can be used.

Partial Fine-Tuning determines the subset of pre-trained parameters which are the most

consequential to the performance of the particular downstream tasks, and fine-tunes only on

that subset of parameters. This minimizes the number of parameters which need to be fine-

tuned. In bias update fine-tuning, the bias term in the attention layer, feed-forward layer,

and layer normalization is the only term that is updated. This still leaves most of the pre-

trained parameters to remain frozen. In pre-trained weight masking, a binary weight matrix

mask is created in order to mask certain weights. This matrix creates a pruning criteria

to select which weights will be masked, which discerns which parameters should be chosen

to be updated. Delta weight masking uses optimization approximation and other pruning

techniques to mask delta weights. This type of pruning usually requires an update at each

iteration. A common technique includes selecting some number, k, pre-trained parameters

to update, which are the k parameters which provide the highest absolute difference in
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pre-trained weights between the original model and a fully fine-tuned model.

Reparameterized Fine-Tuning reduces the number of trainable parameters by using a

low-rank transformation. One variation of reparameterized fine-tuning uses low-rank decom-

position techniques. Low-rank decomposition derives a lower-rank matrix from the original

matrix that still retains the most important information from the original matrix. Low-rank

adaptation (LoRA) places low-rank matrices into every layer of the transformer to be trained,

while the rest of the model weights are frozen. When models are adapted to include a smaller

number of task-specific parameters, the models tend to underperform in comparison to full

fine-tuning. LoRA uses the low-rank matrices to represent the dense layer’s change during

adaption, and is able to efficiently optimizes the rank decomposition of these lower-rank

matrices. LoRA derivatives encompass a group of reparameterization techniques based on

LoRA [HSW21].

Hybrid Fine-Tuning uses a combination of the above variations of fine-tuning. Manual

combination incorporates the structures and features of different methods in order to achieve

higher performance or efficiency. Automatic combination seeks to employ various structure

search and optimization methods to automatically find a way to incorporate the different

techniques.
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CHAPTER 3

Experiment and Methodology

This chapter will explain the pre-trained models that will be used, as well as the model-

specific architecture and expected results for each model. It will outline the experiment set

up, including an in-depth description of the training and test data sets. It will include a brief

description of how to fine-tune models for sentiment analysis specifically, and delve into an

in-depth description of how each model will be altered.

3.1 BERT Architecture

This paper will discuss the fine-tuning of BERT, as well as a two of its variations, roBERTa

and distilBERT. BERT employs a transformer encoder that is trained bidirectionally specif-

ically for language modelling. BERT does not include a decoder. Training bidirectionally

allows the model to apply its self-attention mechanism to the elements both left and right of

itself rather than just in one direction, leading to a deeper model understanding of contextual

meaning.

The reason for choosing BERT as opposed to other prominent pre-trained models is due

to its approach to NLP tasks and the variety of different extensions from BERT to explore.

BERT, in particular, is a popular model for sentiment analysis due to its ability to capture

bidirectional context. As mentioned earlier, BERT uses contextualized word embeddings,

allowing the representation of a word to adjust to the meaning of the sentence. As sentiment

analysis takes in an input of a user-generated sentence, this property is particularly important

to capture the nuances of casual language representation.
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The original transformer as well as other pre-trained transformer models are unidirec-

tional, where the model attends to tokens sequentially in only one direction. This is effective

for next sentence prediction tasks where the goal is to predict the next word in a sequence.

However, when fine-tuning the unidirectional models for other tasks, such as sentiment anal-

ysis, they may be sub-optimal. This is because sentiment analysis greatly relies on the

context of an entire sentence to determine whether or not, as a whole, the sequence is posi-

tive or negative. It is generally difficult to determine sentiment from context from only one

direction of a sentence.

The way BERT solves the unilateral directional problem is by using a MLM as introduced

earlier. Unidirectional models cannot train bidirectionally, because seeing both the left and

right direction would allow model to directly see the word it is trying to predict, thus

making the entire process ineffective. Since MLM’s mask the tokens at random, they do

not suffer from the redundancy of this problem. By masking certain words, MLM’s are not

predicting words that they have already seen, and are able to tackle some of the limitations

of unidirectional models.

As noted earlier, BERT architecture only includes an encoder, rather than the traditional

encoder-decoder model. By masking certain tokens, each masked token is conditioned on the

other tokens in the sentence. Because of this MLM objective, BERT does not need a decoder.

Decoders are used to predict the next token in the sequence. BERT, being bidirectional,

predicts on these masked tokens.

The first four lower layers of BERT are shown to contain information about linear word

order [RKR21]. As the position of the layers increase, BERT begins to hold more knowledge

about hierarchical sentence structure, the part of the sentence syntax which concerns the way

full sentences are formed from smaller sub-phrases and words. The middle layers of BERT

contain the most information about syntactic information. Syntactic information tends to be

very transferable across various language tasks, as language follows similar rules regardless

of task choice. While syntax, information about the structure of sentences and language, is

mostly concentrated within the bottom layers of BERT, semantics, information about the
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meanings of words, is spread throughout the entire model. The top final layers of BERT are

the task-specific layers.

When BERT takes an input, special tokens are added to the input. The tokens <CLS>

and <SEP>, classification and separation, are added during text pre-processing. The

<CLS> token appears at the beginning of each input and the <SEP> token appears at

the end of the input to indicate different segments of the input. This process is pre-trained

using a 30,000 token vocabulary from WordPiece embeddings.

BERT is then pre-trained in two unsupervised tasks: Masked LM and Next Sentence

Prediction (NSP). These are BERT’s two training objectives.

In the MLM objective, tokens are randomly masked with a <MASK> token and the

model is trained to predict the tokens. The model randomly selects 15% of the tokens and

then masks 80% of them, keeping 10% unchanged and unmasked, and replacing 10% with a

randomly chosen vocabulary token.

During the NSP objective, the model aims learn if there is a relationship between sen-

tences, and what that relationship looks like. Given sentences A and B, the model predicts

whether or not a sentence, B, is the next sentence after sentence A, or if it’s just a random

sentence. Sentence B can have either label, IsNext or NotNext, where 50% of the sentences

B, IsNext, belong after sentence A, and 50%, NotNext, do not make sense contextually to

follow A.

The whole pre-training procedure was then performed on 800M words from BookCorpus

and 2,500M from English Wikipedia. These corpuses were chosen due to their document

format, as opposed to single sentence formats, in order to teach the machine from longer

form content.

BERT is optimized using the Adaptive Moment Estimation (Adam) algorithm with hy-

perparameters β1 = 0.9, β2 = 0.99, ϵ = 1e−6 and weight decay L2 = 0.01. β1 and β2 describe

the exponential decay rates for the first and second moment estimates. ϵ is a small constant

added to the denominator to prevent division by zero and helps to ensure gradient stability.
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The learning rate, also known as step size or α, describes the rate in which the model is

updated. BERT uses an adaptive learning rate which warms up over the first 10,000 steps

until it reaches a peak of 1e-4. Then it is linearly decayed.

BERT trains with a drop out rate of 0.1 on its layers and attention weights. Drop

out helps reduce the risk of overfitting in models by randomly selecting neurons within the

network to drop. When overfitting occurs, the model memorizes the patterns of the training

data rather than learning from it. By dropping random neurons, neighboring neurons must

adapt to learn the information.

BERT then applies a Gaussian Error Linear Unit (GELU) activation function in the form

of:

GELU(x) = xP (X ≤ x) = xΦ(x) = x · 1
2
[1 + erf(x/

√
2)].

It is notable that the original transformer employs a ReLU function during this step.

The GELU function can be preferable to the ReLU function used in the original transformer

because it completely smooth, where as ReLU is not differentiable at x = 0.

The entire model is pre-trained for 1 million updates, using mini batches of 256 sequences,

and maximum sequence length at 512 tokens. Finally, BERT is trained to contain pre-trained

parameter weights, ready to be fine-tuned on.

There are different variations of BERT, including roBERTa and distillBERT that are

based on the foundational structure of BERT but have updated or changed parts of the

structure in order for increased model performance.

3.1.1 RoBERTa Architecture

The next model to be fine-tuned is roBERTa (robustly optimized BERT approach), which

is built on BERT and modified on its hyperparameters and its objectives. RoBERTa has

twelve layers and is trained on 125M parameters. The implementation and architecture is

very similar to BERT. The basis of roBERTa lies in the assertion that BERT could perform
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better if trained for longer with more data. RoBERTa proves to be an improvement from

BERT, with four main training differences, roBERTa:

(1) dynamically changes the masking pattern during the training stage.

(2) removes the next sentence prediction objective of BERT.

(3) is trained with longer sequences and in bigger batches.

(4) is trained on more data for a longer time.

In order to create roBERTa, BERT models with the same configuration of BERTBASE

were trained.

Firstly, roBERTa adjusts the way the MLM objective is approached. BERT uses static

masking, masking tokens only once during pre-processing, so that the same masking patterns

are used during every epoch of training. RoBERTa uses dynamic masking, which generates

a masking pattern, changing the way tokens are masked each time the sequence is sent to

the model.

Secondly, roBERTa proposes four other training methods other than the NSP objective

the original BERT has.

• The segment-pair and NSP method retains NSP loss and uses a pair of segments as

input. The input can have multiple natural sentences as long as the total combined

length is less than 512 tokens.

• The sentence-pair and NSP method retains NSP loss and uses a pair of natural sen-

tences as input. These sentences are sampled from separate parts of the same docu-

ment, or two separate documents. These inputs tended to be much shorter than 512

tokens. Batch size is increased so that the total number of tokens is similar to the

segment-pair method.

• The full sentence method does not retain NSP loss and uses inputs of full sentences

sampled from one or more documents. Once one document is finished being sampled
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from, a separator token in added, and inputs continue to be sampled from the next

document. Inputs may cross document boundaries.

• The doc-sentence method does not retain NSP loss and samples its inputs in the same

way as the full sentence method, except that it does not allow inputs to cross document

boundaries. Batch size is dynamically increased, for inputs sampled near the end of

documents which may be shorter than 512 tokens.

The results shows that models which used individual sentences under performed compared

to other models, potentially due to their inability to learn long-range dependencies. Results

also show that models removing NSP loss either matches or improves the performance of

models including NSP loss on downstream tasks. Models which restrict input samples to a

single document also perform better than models which allow input sentences from multiple

different documents.

Thirdly, roBERTa is trained with larger batch sizes than BERT. BERT trains with batch

size of 256 sequences. RoBERTa experiments with batch sizes of 2k and 8k sequences.

Results show that larger batch sizes improve perplexity for the MLM objective. Larger

batches are also easier to parallelize.

Lastly, roBERTa trains for a longer time with more data. BERT originally uses a char-

acter level BPE with a vocabulary size of 30k. A BPE (Byte-Pair Encoding) uses subword

units, creating a hybrid between character and word level representations. RoBERTa is

trained on a BPE with a vocabulary size of 40k. RoBERTa is trained for significantly longer

than BERT, for 500k steps, as opposed to BERT’s 100k steps.

In the context of this paper, roBERTa is expected to produce more accurate results

than the base BERT model, however, since roBERTa does have a slightly higher number of

parameters and a more complex training structure, it is expected to result in longer training

times.
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3.1.2 DistilBERT Architecture

DistilBERT (knowledge distillation on BERT) is a particularly valuable modified version of

BERT for this paper, since it is a lighter and faster model. As the dataset used in this paper

is very large, the experiment will experiment with a few modifications in order to adjust for

high processing requirements. While BERT has 110 million parameters, distilBERT only

has 66 million. DistilBERT is 60% faster than the base BERT model while retaining 95% of

BERT’s performance. DistilBERT accomplishes this through a process of distillation.

Distillation is a process which compresses a larger model into a smaller model, making

the model computationally cheaper and faster to use. In the knowledge distillation process,

the smaller model, referred to as the student, is taught to replicate the knowledge of larger

model, called the teacher. In this case, the teacher, BERT, would be trained on its 110

million parameters, and then distill the knowledge to student distilBERT, which then ideally

matches whatever output BERT produces.

The distillation process uses a different training data set from the one BERT is trained on

as outlined in previous sections. This is called a transfer set. Both the teacher and student

models are trained on the transfer set.

The teacher is trained to decrease cross entropy loss between the distribution of the

actual training labels and the predicted labels, over a hard target. Hard targets refer one-hot

encoded labels, represented by binary levels 0 and 1. The teacher model is able to generalize

on information by giving the predicted class a high probability, and all other classes different

low, but non-zero probabilities, such that the classes with slightly higher probabilities would

be closer generalized toward the highest predicted class. During the distillation process, the

student learns from the knowledge of the teacher to be able to train with a cross-entropy

over soft targets. These soft targets use a distribution of probabilities over all classes, as a

opposed to a single 0 or 1. This essentially smooths the labels, allowing more information to

be passed to the student model, and allowing the student model to learn how to generalize
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better. The training loss of the student can be described as:

L = −
∑
i

ti ∗ log(si),

where ti is the teacher’s estimated probability, and si is the student’s estimated probability.

Using soft targets allow the model to hold much more knowledge during training.

A softmax-temperature is used to help generate the soft targets, defined by function:

pi =
exp(zi/T )∑
j exp(zj/T )

,

where zi is the model score for class i and zj is the model score for class j. The temperature,

T , controls the smoothness of the output distribution. The temperature is constant between

the student and teacher during training. Using a higher T produces a softer probability dis-

tribution. When T → 0, the distribution is one-hot coded. When T → +∞, the distribution

becomes uniform.

Finally, the model takes a linear combination of the distillation loss, the masked language

modeling loss, and a cosine embedding loss. The cosine embedding loss helps to align the

direction of the hidden state vectors from the student and teacher so that the student can

more closely mimic the teacher’s behavior.

Architecturally, BERT and distilBERT are very similar. There are three main differences.

DistilBERT removes the token-type embeddings, the pooler, and reduces the layers of BERT

in half. The token-type embeddings help BERT tell the end and beginning of new segments.

DistilBERT relies solely on positional encodings for positional information. The pooler helps

BERT to summarize an input sequence into a fixed-size representation, while distilBERT

omits this step.

DistilBERT also uses training tricks from roBERTa such as dynamic masking and re-

moving the NSP objective of BERT. Due to the distilled process, distilBERT is expected to

see a slightly lower accuracy rate for the experiments in this paper, but it is expected to see

a significantly faster processing time.
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3.2 Fine-Tuning for Sentiment Analysis

This paper uses an Amazon Review dataset containing 4 million reviews. Each review has

either a positive or negative label, with positive labels referring to reviews receiving a 4 or

5 star, and negative labels corresponding to reviews receiving a 1 or 2 star. Reviews with 3

stars are considered neutral and omitted from the dataset. The test dataset contains 400,000

reviews and the training dataset contains 3,600,000 million reviews.

3.2.1 Pre-Processing

The first step is to pre-process the text data to ensure uniformity within the text and reduce

noise. Keeping only the most relevant grammatical information is advantageous toward

maximizing the model’s efficiency. The text is normalized by removing punctuation and

special characters, extra white spaces, removing stop words, and expanding contractions.

Since this paper focuses on the uncased versions of BERT and variations of BERT, the text

is also all converted to lowercase. The case of the text data is unlikely to provide much extra

relevant information toward the prediction of positive and negative values. The labels are

then one-hot-encoded, where 1 corresponds to positive labels, and 0 corresponds to negative

labels.

The full dataset is split into subsets of size 10K, 25K, 50K, and 100K. These are the

datasets that will be used for initial tests and trainings due to computational power con-

straints on the size of the full dataset. Each subset is split such that there is an equal number

of positive and negative labels. The data is shuffled and split into a training and test set of

90/10 proportions. The training data is then split into 90/10, using 10% of the data as a

validation set.

3.2.2 Naive Bayes

A Naive Bayes algorithm will be used to create a baseline to compare the accuracy of the

fine-tuned model to. Using the baseline model, it is possible to see how a transformer
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model compares to other non-attention based learning algorithms, as well as to see how the

fine-tuning of a pre-trained transformer model affects the performance of the model. The

baseline model also acts as a minimum standard for model performance. If any of the fine-

tuned models sees a decrease in performance from the benchmark model’s performance, it

is an indication of either a model that is not properly implemented, or a model that is not

worth further pursuing. Throughout the paper, the metric that will be used for comparison

and indication of performance is accuracy, the percentage of accurate target outputs.

The Naive Bayes classifier is chosen to create a baseline accuracy benchmark. This

supervised learning algorithm is a good method to compare the transformer model to because

of its simplicity, speed, and its suitability toward classification tasks. The Naive Bayes

classifier uses the Bayes theorem to calculate conditional probability to predict which class

an input belongs to. As the algorithm only needs to calculate this probability, it is simple

to implement and quick to process.

The Multinomial Naive Bayes classifier is used as the benchmark, which calculates the

posterior probability that each element belongs to each class. For Multinomial Naive Bayes,

the TF-IDF vectorization is used to reflect how important a term is to the document it is

found in. TF-IDF is calculated as:

TFIDF = TF × IDF,

where

TF =
number of times term appears in document

total number of words in document

and

IDF = log(
number of documents in corpus

number of documents in corpus containing term
)

The TF-IDF takes the log of the IDF score to lessen the effect of the score, preventing it

from exploding when the number of documents in the corpus containing a certain term is

very low.
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The Multinomial Naive Bayes classifier is trained on the data subset of size 25K and

achieves an 88% accuracy rate. Figure 3.1 shows the AUC-ROC (Area Under The Curve-

Receiving Operating Characteristics) curve.

Figure 3.1: AUC-ROC curve for Multinomial Naive Bayes classifier.

The AUC-ROC graph plots the true positive vs. false positive rate. The Multinomial

Naive Bayes classifier seems to predict both of the classes, positive and negative, with a

similar accuracy. The Multinomial Naive Bayes classifier sees a relatively high accuracy in

predicting the sentiment classes.

3.2.3 Implementation

The fine-tuning of BERT uncased begins by loading the tokenizer and tokenizing text. Each

BERT model has its own unique tokenizer. This ensures the data is able to be processed

by the particular model. During the tokenizer step, an input of the text is received, and

an output of two tensors, multidimensional arrays, are created. One contains input IDs

and the other contains attention masks. The text is first tokenized according to WordPiece

tokenizations, and then a <CLS> and a <SEP> token is added to the beginning and end

of each sentence, respectively.

The maximum token length of the entire Amazon dataset is 444 tokens. Since BERT

requires a fixed input length, the sequences are padded to this length. The maximum length
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that BERT can process is 512 tokens, if any sequence were to exceed this length, they would

need to be truncated.

The tokens are then mapped to their IDs, a unique integer from BERT’s predefined

vocabulary, converting the input text to a sequence of integers. Binary attention masks

are also created, where a value of 1 corresponds to tokens that contain content and will be

attended to, and 0 corresponds to padding tokens that will be ignored.

Next, a custom BERT classifier is created. The one layer feed forward classifer is incor-

porated into the BERT model and will be trained along with the rest of the model during

the fine-tuning process. This hidden layer contains four components. The classifier performs

a linear transformation on the input, elementally wise applies a ReLU function to intro-

duce non-linearity, adds an extra drop out layer to reduce overfitting, and finally linearly

transforms the output again into the final logits vector. This goal of this added layer is to

customize the model to the specific dataset as well as to the specific classification task of

sentiment analysis.

The option to unfreeze the top layer of BERT during the fine-tuning process is also added.

This is done by not requiring the parameters of BERT to calculate gradients. By doing so,

the weights and parameters of the layer of the pre-trained model can also be updated when

training for sentiment analysis. Since lower layers of the model are mostly used to capture

more generic tasks, it is usually non-essential to unfreeze and update those layers. However,

top layers of BERT capture more task-specific information and may create an impact on

fine-tuning performance. In this paper, the topmost layer is unfrozen and fine-tuned on.

An optimizer is also created, which will update parameters during fine tuning in order

to minimize the loss function. The cross entropy loss function is chosen as choice of loss

function. The formula for cross entropy loss for binary classification is given as:

H(p, q) = −
∑

x∈class

p(x)log(q(x)),

where p(x) represents the true probability distribution and q(x) represents the probability

distribution predicted by the model. The goal is to minimize the difference between the
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predicted and true values of the model, as H(p, q) = 0 would indicate a perfect model.

AdamW (Adam with Weight Decay) with a learning rate of 5e-5 is used as the optimizer.

AdamW finds the minimum of a loss function by tracking averages of the gradient and the

square gradient to take larger steps toward the minimum when gradients change slowly,

and smaller steps when gradients change quicker. AdamW also contains a weight decay

component that penalizes large model weights to prevent overfitting. The learning weight

determines the step size during optimization. A smaller learning rate results in a slower but

more stable training process.

Similar to the Adam learning rate described in Chapter 2, a linear learning rate with

warm-up scheduler is employed to adapt the learning rate while training. Thus, the learning

rate will linearly increase during a warm-up phase, and then linearly decrease after the warm-

up phase has ended. By doing so, the model is able to initially learn faster while there is

more uncertainty in the model, and then decrease as the model gains more experience, thus

lending to more stability in the later stages of learning.

Authors suggest that batch sizes of 16 or 32 be chosen for fine-tuning [DCL19]. Batch

size determines the number of training samples the model processes before updating its

parameters. Smaller batch sizes are required for large datasets in order to fit into GPU

memory, however larger batch sizes may train faster due to parallelism. Batch size also

correlates to learning rates, larger batch sizes can handle faster learning rates, due to their

stability, and vice versa. Batch size and learning rates can vary quite a bit depending on

dataset and task type.

The model is trained for two epochs, authors suggest two, three, or four training epochs.

When a model finishes training through all its batches, it has completed one epoch of training.

More complex models and datasets may need more epochs to train through to properly

capture all model intricacies. It is not always necessary to have a rigid number of epochs to

train for. There are many early stopping techniques that will train the model for as many

epochs necessary to achieve a certain loss value, and then stop the training process.
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A similar implementation is followed for roBERTa and distilBERT. In the DistilBERT

model, segments are separated with the separation token, <SEP>, since DistilBERT does

not have token type IDs and does not require a user to indicate which token belongs to which

segment. Similarly, roBERTa segments do not have token type IDs and are separated with

a separation token. DistilBERT also does not have an option to select input positions. All

other implementation is kept same as BERT.
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CHAPTER 4

Results

This chapter will explain the results of each model.

First, the pre-trained BERT model with no fine-tuning will be tested. Then BERT and

roBERTa will be fine-tuned on various hyperparameters for the data subsets of the full

dataset. Finally, the hyperparameters which display the highest accuracy will be tested on

distilBERT. Since distilBERT takes a much faster approach than the previous two variations

of BERT, it will be fine-tuned on the full dataset.

4.1 Large Dataset

The size of the full dataset (1.7GB) provides a few problems with computing power lim-

its. This section briefly mentions the challenges and solutions taken to work around large

datasets. All training is performed with NVIDIA GPU A100-SXM4-40GB or Tesla GPU

V100-SXM2-16GB depending on availability.

First, all one-hot encoding label types are compressed from 64int to 8int to reduce memory

usage. This results in a 1.4% memory usage reduction for both the training and test sets.

There is a limit of 24 hours on the amount of time code may be processed. During the

pre-processing process, data is cleaned and normalized in 40 batches of 100K to mitigate

any time-out issues.

The initial testing with BERT is performed on various subset sizes of the entire dataset

to understand and experiment with different hyperparameters. These data subsets, 10K,

25K, 50K, and 100K, are chosen such that average training time for two epochs fall around
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5 minutes, 10 minutes, 30 minutes, and 45 minutes, respectively, for the BERT model.

It is helpful to observe how the hyperparameters interact and shift with each other, and

how each adjusts as dataset size changes. Ideally the full dataset would be tested with all

models. However, fine-tuning both BERT and roBERTa with the full set far exceeds the 24

hour processing limit. Thus, initial testing is done with the data subsets. Once a few high

performing combinations of hyperparameters using the 100K data subset of BERT is found,

they are tested on the data subsets using roBERTa. Then, the data subsets are trained

on distilBERT, which is much faster than both previous models. The same subsets from

roBERTa and BERT are used with distilBERT for comparison of accuracy. Finally, the

entire full dataset is trained using distilBERT to look for a potential increase in accuracy.

4.2 Pre-Trained Transformer Model Results

4.2.1 BERT Results

The data is fine-tuned on the subsets of size 10K, 25K, 50K, and 100K, splitting the dataset

into a 90/10 split of training and test data. Data is further split with a 90/10 split of training

and validation data for each subset. The same exact training, validation, and test subsets

are used for each variation of the experiments.

First, the BERT model with no fine-tuning is tested with the 25K data subset, using

batch size of 32. This model achieves an accuracy rate of 79%. This is lower than the

Naive Bayes benchmark of 88%. This is likely due to the nature of the two models. While

Naive Bayes is structured to be a suitable model to work with classification tasks as is, the

pre-trained BERT is designed to be further fine-tuned before performing downstream tasks

such as sentiment analysis.

The hyperparameter tuning portion will focus mainly on three hyperparameters: drop

out rate, batch size, and number of epochs. The model is fine-tuned without an extra drop

out layer within the classifier layer, and then fine-tuned with drop out rates of 0.1, 0.25,
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and 0.5. It is notable that removing the extra drop out layer or keeping the drop out layer,

but setting drop out equal to 0, would produce the same results and can be thought of

interchangeably. This paper will refer results to models that did not use an extra drop out

layer as models using ”None”, since that is how the model was implemented. However, a

model with the extra drop out layer with drop out rate set to 0, would have the same effect.

Batch sizes of 16, 32, and 64 are chosen to experiment with. Since an adaptive optimizer is

used, the learning rate does not need to be manually adjusted as batch size fluctuates.

Note that all of the choices of drop out rates are only experimented on the data subsets

of 10K, 25K, and 50K. This is because of the processing limits on the dataset of size 100K.

Since the necessity of higher drop out rates also correlates with the size of dataset, this is

a suitable choice in factor to omit. As the size of the training set increases, the need to

adjust drop out rate may diminish. Drop out rate addresses overfitting, particularly when

there is less data available, so the size of a larger data may offset the concern for overfitting.

Thus the drop out rate requirement for larger datasets is likely lower, and higher drop out

rates will not be experimented with the 100K dataset. Subsequent hyperparameter tuning

is performed on the 100K subsets with the drop out rates that are the most optimal for the

50K dataset.

For the subset of 10K datapoints, twelve total models are run, each with a different

combination of batch size and drop out rate. Each model is trained for two epochs and

the validation accuracy is recorded after each epoch of training. Finally the new model

weights are used to predict on the test set, and accuracy results for the test set are recorded.

Table 4.1 shows the results of the experiments for the subset of 10K datapoints in accuracy

percentage. Note that the first column under Drop Out Rate, labeled ”None” corresponds

to the a model where an extra drop out layer was not added into the classifier layer that

was added to the BERT model. Subsequent columns correspond to models where the extra

drop out layer was added, with drop out weights of 0.1, 0.25, and 0.5, respectively.
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10K Results

Drop Out Rate

Batch Size None 0.1 0.25 0.5 Test Average

16 Epoch 1 91.34 92.11 91.29 90.90

Epoch 2 91.67 92.58 92.61 91.67

Test 90.4 89.9 91.5 89.2 90.25

32 Epoch 1 90.95 90.39 91.75 90.09

Epoch 2 91.92 91.72 92.33 91.39

Test 90.5 90.2 90.7 90.4 90.45

64 Epoch 1 91.67 91.25 91.23 90.52

Epoch 2 92.50 92.08 92.12 91.98

Test 90.8 90.1 90.2 91.2 90.58

Test Average 90.57 90.07 90.80 90.27 90.42

Table 4.1: Results of 10K data subset for each model in percentage of accuracy, with test

accuracy of highest performing model in bold.

The total average accuracy using the 10K dataset is 90.42%. The model yielding the

highest accuracy is the model which uses a drop out rate of 0.25 and batch size of 16, at

91.5% accuracy on the test set. This compares to the model with the lowest accuracy at

89.2%, using a drop out rate of 0.5 and batch size of 16. The accuracy averages across each

batch size and each drop out rate is also calculated.

Taking a closer look at the drop out rate and batch sizes, Figure 4.1 shows a graph of

the accuracy for each drop out rate as it changes with batch size.
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Figure 4.1: Test accuracy rates across batch sizes and drop out rates for data subset of size

10K.

There does not seem to be a consistent pattern in how batch size and drop out rate

change together. As a whole, a drop out rate of 0.1 under performs or is equal to drop

out rates of of 0.25 and none for all batch sizes. However, overall it seems that the use

of the different hyperparameters, batch size and drop out rate, affects the model’s overall

performance without much consistent pattern. The highest performing model scores an 1.6%

increase over the lowest performing model. This is a significant increase. As the current data

subset of 10K does lean on the lower side of number of samples, the performance is likely

to be more sensitive to hyperparameter fluctuations. On average, the highest performing

batch size, 64, performs 0.35% better than the lowest performing batch size, 16. The highest

performing drop out setting, 0.25, performs 0.73% better than the lowest, 0.1. The model

likely needs a drop out rate of 0.25 to account for its smaller number of data. However, a

drop out rate that is too large risks the model losing important information as too many

nodes are dropped.

Next, the effect of the number of epochs the model is trained for on the accuracy of

the model is studied. It is assumed that training for a second epoch will likely improve the

performance of the model, but it is interesting to take a look at how greatly the second
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epoch of training affects the accuracy rates. Table 4.2 shows the validation accuracy after

one and two epochs of training, for each of the twelve models, numbered 1-12. It seems

that by training for an extra epoch increases the accuracy by a substantial amount, with

the largest increase across the 12 models in accuracy between epochs at 1.33% for the model

using a batch size of 32 and a drop out rate of 0.1, and an average increase of 0.92%.

Drop Out Rate

Batch Size None 0.1 0.25 0.5 Total Average

16 (1) 0.33 (2) 0.47 (3) 1.32 (4) 0.77

32 (5) 0.97 (6) 1.33 (7) 0.58 (8) 1.30

64 (9) 0.83 (10) 0.83 (11) 0.89 (12) 1.46 0.92

Table 4.2: Difference in validation accuracy between epoch one and epoch two for data subset

size of 10K.

Figure 4.2 visualizes the validation accuracy after epoch one and two, as well as test

accuracy for each of the 12 models. For all models, the validation accuracy is after two

epochs is higher than the validation accuracy after one epoch of training. It is commonly

seen in practice that validation accuracy is higher than test accuracy, since the model may

become more familiar with the validation set during training. For two of the models, 3 and

8, the test set accuracy is higher than the validation accuracy after training for one epoch.

However, for all models, the validation accuracy after training for two epochs is the highest.
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Figure 4.2: Validation accuracy after epoch one and two, and test accuracy for 10K data

subset.

Next, all twelve models are fine-tuned on the data subset of 25K datapoints. Table 4.3

shows the results of the experiments.

The total average of using a 25K dataset size sees an increase of performance from the

10K set by 1.08%. The highest performing model achieves a 91.80% accuracy, while the

lowest performing model achieves a 91.24%. Here, there is less of a difference between the

lowest performing model, batch size 32 with drop out rate 0.25, and the highest performing

model, batch size 64 with drop out rate 0.5, at a 0.56% difference in performance than seen

in the previous data subset results. However, this is still a sizeable difference in performance.
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25K Results

Drop Out Rate

Batch Size None 0.1 0.25 0.5 Test Average

16 Epoch 1 91.13 92.06 91.53 91.62

Epoch 2 91.60 92.29 92.02 92.11

Test 91.36 91.44 91.60 91.52 91.48

32 Epoch 1 91.77 90.98 91.73 92.08

Epoch 2 92.34 92.17 92.61 92.56

Test 91.56 91.52 91.24 91.56 91.47

64 Epoch 1 90.32 90.71 90.28 90.93

Epoch 2 92.39 92.27 92.23 91.87

Test 91.48 91.56 91.32 91.80 91.54

Test Average 91.47 91.51 91.39 91.63 91.50

Table 4.3: Results of 25K data subset for each model in percentage of accuracy, with test

accuracy of highest performing model in bold.

Figure 4.3 shows the drop out rates and batch sizes in terms of accuracy. There does not

seem to be too much of a pattern. This time, the batch size of 16 along with a drop out rate

of 0.25 are the hyperparameters that yield the highest average accuracy. The performance

between all models vary less in accuracy in this dataset subset than the previous one. The

difference in average between the highest performing batch size, 64, and the lowest performing

batch size, 32, is only 0.06%. The change in accuracy from batch size 32 to 16 is only a

difference of 0.01%. drop out rate sees a little more variation, with the highest average

performing drop out rate of 0.5 performing 0.24% higher than the lowest performing drop

out rate of 0.25.
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Figure 4.3: Test accuracy rates across batch sizes and drop out rates for data subset of size

25K.

Table 4.4 shows the difference in accuracy between training epochs one and two. On

average, training for an extra epoch achieves a higher validation accuracy of 1.01%. This is

considerable amount of increase, and also slightly higher than the results from previous data

subset. For a batch size of 64, training for an extra epoch shows the greatest increase. For

this dataset, it seems that for all models except one, the larger the batch size, the greater

the positive impact of training for a second epoch is.

Drop Out Rate

Batch Size None 0.1 0.25 0.5 Total Average

16 (1) 0.47 (2) 1.23 (3) 0.29 (4) 0.49

32 (5) 0.57 (6) 1.19 (7) 0.88 (8) 0.50

64 (9) 2.07 (10) 1.56 (11) 1.95 (12) 0.94 1.01

Table 4.4: Difference in validation accuracy between epoch one and epoch two for data subset

size of 25K.

55



Figure 4.4 visualises difference between each model’s accuracy rates. Here, the test

accuracy is always lower than the validation accuracy after epoch two, but model performance

on the validation test after training for one epoch, and test accuracy vary. It seems that for

this subset, training for an extra epoch contributes greatly to test accuracy performance on

average.

Figure 4.4: Validation accuracy after epoch one and two, and test accuracy for 25K data

subset.

Table 4.5 shows accuracy rates for the 50K data subset. The total average performance

for this subset is 93.21%. The top performing model uses batch size 64 with no extra drop

out layer. As training dataset size increases, it is expected that overfitting is less apparent,

and an extra drop out layer may not be necessary. The lowest performing model, one using

batch 16 and drop out rate of 0.25 performs at 0.68% less in accuracy than the top model. On

average, a batch size of 16 and 32 perform at the same accuracy rate. Again, as the dataset

size increases, the differences between accuracy rates between models seem to decrease.
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50K Results

Drop Out Rate

Batch Size None 0.1 0.25 0.5 Test Average

16 Epoch 1 92.82 92.66 91.82 92.60

Epoch 2 93.26 93.55 93.31 93.22

Test 93.16 93.34 92.98 93.14 93.16

32 Epoch 1 92.81 93.03 92.54 92.76

Epoch 2 93.46 93.49 93.70 93.49

Test 93.12 93.14 93.16 93.22 93.16

64 Epoch 1 92.41 93.06 92.93 92.84

Epoch 2 93.09 93.26 93.35 93.24

Test 93.66 93.16 93.24 93.22 93.32

Test Average 93.31 93.21 93.13 92.19 93.21

Table 4.5: Results of 50K data subset for each model in percentage of accuracy, with test

accuracy of highest performing model in bold.

Figure 4.5 shows the model test accuracy rates across different drop out rates and batch

sizes. The differences between the groups do not seem to have an apparent pattern, however

accuracy rates for the groups of drop out rate 0.1 and 0.5 seem to have very little differences

between accuracy within the groups. The accuracy of batch size 32 seems to be most

consistent across different drop out rates.
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Figure 4.5: Test accuracy rates across batch sizes and drop out rates for data subset of size

50K.

The differences in training accuracy between epoch one and two are analysed. Table 4.6

shows the differences. Again, there is an increase in accuracy between epoch one and two.

As dataset size increases, the need to train for an extra epoch seems to decrease, as the total

average in increase between epochs is still high, but lower than the 25K subset on average.

Drop Out Rate

Batch Size None 0.1 0.25 0.5 Total Average

16 (1) 0.44 (2) 0.89 (3) 1.49 (4) 0.62

32 (5) 0.65 (6) 0.46 (7) 1.16 (8) 0.73

64 (9) 0.68 (10) 0.20 (11) 0.42 (12) 0.40 0.68

Table 4.6: Difference in validation accuracy between epoch one and epoch two for data subset

size of 50K.

Figure 4.6 shows the accuracy plots for all twelve models. It is notable that for model

nine, the test accuracy is higher than the validation accuracy after both epochs of training.
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As the data subset gets larger, validation accuracy after two epochs of training gets closer

to overall test accuracy. The test accuracy is also higher than the validation accuracy after

training for one epoch for all models.

Figure 4.6: Validation accuracy after epoch one and two, and test accuracy for 50K data

subset.

From the subsets of 25K and 50K, it is clear that average test accuracy is the same or

very close to the same for batch sizes of 32 and 64. It is notable that for the subset of

50K samples, the models without the extra drop out layers perform slightly better. Due to

computational limits, only four variations of the models are trained using the 100K dataset.

The experiment includes the variations of models using no extra drop out layer and drop

out rate of 0.1. The experiment also only uses batch sizes of 32 and 64. Table 4.7 shows the

results from the models.
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100K Results

Batch Size No Drop Out 0.1 Test Average

32 Epoch 1 92.83 92.99

Epoch 2 93.26 93.12

Test 93.71 94.05 93.88

64 Epoch 1 93.19 93.13

Epoch 2 93.12 93.06

Test 93.99 94.01 94.00

Test Average 93.85 94.03 93.94

Table 4.7: Results of 100K data subset for each model in percentage of accuracy, with test

accuracy of highest performing model in bold.

For a batch size of 64 and drop out rate of 0.1, the model has the highest overall test

performance of all models so far, at an accuracy of 94.05%. Here, both models with drop

out rate of 0.1 perform better than models with no extra drop out layer. Overall, a batch

size of 64 performs better than a batch size of 32. For all data subsets, except for the 10K

subset, the highest performing model uses a batch size of 64.

Figure 4.7 shows the accuracy rates with various batch sizes and drop out. For a drop

out rate of 0.1, both a batch size of 32 and 64 perform at similar rates. The difference in

performance in between batch sizes is more apparent within the none group of drop out rate.
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Figure 4.7: Test accuracy rates across batch sizes and drop out rates for data subset of size

100K.

Table 4.8 shows the difference in accuracy rates between epochs. Notably, there is a

decrease in accuracy between epoch one and two for a batch size of 64. The decrease is

slightly lower in the model with a drop out rate of 0.1. A decrease in accuracy between an

epoch and a subsequent epoch can indicate the occurrence of overfitting. A drop out rate

may help with this. However, despite the decrease in validation accuracy between epochs,

these two models still perform well in test accuracy.

Batch Size No Drop Out 0.1 Total Average

32 (1) 0.43 (2) 0.13

64 (3)−0.07 (4)−0.05 0.11

Table 4.8: Difference in validation accuracy between epoch one and epoch two for data subset

size of 100K.

Figure 4.8 shows the accuracy rates for all the models. It is notable that for this data

subset, for every model, the test accuracy is higher than validation accuracy after both
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models. In general, validation accuracy tends to be higher than test accuracy. However, the

test accuracy is higher by quite a significant amount for this subset.

Figure 4.8: Validation accuracy after epoch one and two, and test accuracy for 100K data

subset.

Despite the inconsistency in validation accuracy between epochs for batch size 64, both

these models perform much better in their test set accuracy than validation accuracy for

both epochs.

Overall, the subset of data of size 100K sees an average test accuracy rate of 93.94%. This

is significantly more accurate than the models using a subset of 10K datapoints, at 90.24%.

It is clear that the size of the dataset has more effect on the accuracy of the fine-tuning

process than the particular hyperparameter tuning.

4.2.2 RoBERTa Results

RoBERTa is more computationally demanding than BERT, so only the two variations of

models are fine-tuned, using the analysis of hyperparameters from the BERT results. Since

a batch size of 64 is less computationally demanding and also performs the highest, on

average from the larger data subsets on the BERT experiments, a batch size of 64 will be
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used to fine-tune with roBERTa. Then a drop out rate of 0.1 and no extra drop out rate

will be experimented with. Table 4.9 shows the results of the roBERTa models.

RoBERTa 100K Results

Batch Size No Drop Out 0.1 Test Average

64 Epoch 1 92.40 93.30

Epoch 2 93.27 93.59

Test 94.29 94.44 94.37

Table 4.9: Accuracy of roBERTa models on a data subset of size 100K.

RoBERTa sees a considerable increase in test accuracy from BERT. On average, roBERTa

performs 0.37% better than the same models on BERT. RoBERTa performs best with a drop

out rate of 0.1, outperforming the model without a drop out rate by 0.15%.

RoBERTa also seems to be more stable, as there is no issue with decrease in validation

accuracy between epochs. It is expected that roBERTa outperforms BERT, due to its en-

hanced training regimen. Since roBERTa is trained for much longer and with more data, it

performs better with the same amount of fine-tuning as BERT. RoBERTa sees considerable

advantages to BERT, however due to its increase in number of parameters, as well as com-

plexity to BERT, roBERTa is difficult to implement with limited compute powers. It may

be advantageous to use a simpler model with more data.

4.2.3 DistilBERT Results

DistilBERT is the final model fine-tuned on. First, it is fine-tuned on a subset of 100K

to explore if there is a considerable drop in accuracy between the same model variations

using roBERTa and BERT. Then distilBERT is fine-tuned on the full dataset of 3.6 million

training data, and tested on the 400K test set. Although training for an additional epoch
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will double the training time, from previous results, training for an additional epoch also

contributes to a considerable increase in accuracy. The full dataset will thus be trained for

two epochs.

Table 4.10 shows the results from training distilBERT on a dataset of 100K with batch

size of 64 with no drop out layer and a drop out layer with rate of 0.1. The better performing

distilBERT model uses a batch size of 64 and no extra drop out layer.

DistilBERT 100K Results

Batch Size No Drop Out 0.1 Test Average

64 Epoch 1 92.4 92.20

Epoch 2 92.75 92.85

Test 93.6 93.45 93.53

Table 4.10: Accuracy of distilBERT models on a data subset of size 100K.

From the results of this experiment, DistilBERT trains at around 200% faster than BERT,

and retains 99.6% of its accuracy, only underperforming the BERT version of this variation

of model by 0.39%. DistilBERT is able to retain 99.1% of its accuracy from roBERTa,

underperforming the roBERTa version by 0.68%. It is notable, however, that as the training

dataset size increases, the speed at which distilBERT trains decreases per batch.

Figure 4.9 shows the side by side comparison of accuracy rates between the three models

using a batch size of 64. The difference in accuracy between model 1 (no drop out layer)

and model 2 (drop out layer with rate 0.1) vary between model. RoBERTa always performs

the best, then BERT, and finally distilBERT.
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Figure 4.9: Test accuracy for model 1 and model 2 from BERT, roBERTa, and distilBERT.

Ultimately, for the distilBERT, excluding the extra drop out layer increases model per-

formance by 0.15%, so the full data set will be fine-tuned on a model without the extra layer.

The model is trained for one epoch, and the validation accuracy is recorded. The model is

then evaluated on the test set and the result is recorded. The model is then trained for a

subsequent epoch and finally evaluated on the test set. The entire process runs for around

18 hours on GPU.

Table 4.11 shows the results of the full dataset.

Full Dataset Results

Batch Size No Drop Out

64 Epoch 1 95.52

Test 95.45

Epoch 2 95.77

Test 95.76

Table 4.11: Results of fine-tuning using distilBERT on full dataset.
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The final accuracy of the model is 95.75%. By training the model for an extra epoch,

an extra 0.25% in accuracy is achieved on the validation set and an extra 0.31% in accuracy

is achieved on the test set. This is a significant increase from the rest of the models. The

fine-tuning process on distilBERT on a full dataset in batches of 64 with no extra drop out

layer performs the best.

It seems that the biggest factor toward increased performance is an increase in data.

The large increase of data used in fine-tuning the distilBERT model offsets the decrease in

performance due to its distillation process. It seems that although structure and training

process to increase accuracy of a particular variation of model is important, the structure

to increase the speed and processing power of a model is equally as important. Although

distilBERT is not the model that displays overall highest performance given a set size of

data, it surpasses the other models in its ability to efficiently train large amounts of data.
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CHAPTER 5

Conclusion

In this paper, a pre-trained transformer model was fine-tuned on a downstream task in order

to achieve a higher accuracy rates. In particular, BERT from Google AI was fine-tuned in

order to perform sentiment analysis on a dataset of Amazon reviews. Parameter-efficient

fine-tuning was employed in order to effectively fine-tune, by unfreezing and tuning only the

topmost layer of the transformer. A variety of BERT-based transformer models, including

BERTBASE, roBERTaBASE, and distilBERT were fine-tuned. Different hyperparameters for

each model were further explored in order to identify an optimal model, one which yields

the highest accuracy rates.

The Amazon reviews were organized as either positive or negative, based on the number

of stars the review included. The dataset contained a large amount of data, requiring high

memory usage. Thus, the full dataset was subset into smaller batches of 10K, 25K, 50K,

and 100K in order to perform initial testing and exploration. Using a baseline Naive Bayes

model, a baseline performance rate of 88% was established.

The first model that was fine-tuned was BERT. Twelve different variations of the BERT

model were established, each with a different combination of hyperparameters drop out rate

and batch size. The models were trained for two epochs on the subsets. BERT was able to

achieve a peak accuracy of 94.05% on the data subset of 100K data points, with the model

processing data in batches of size 32, and with an extra drop out layer with drop out rate

of 0.1. Results showed that there was no distinct pattern in how batch size or drop out rate

affected the test accuracy for the samples. Results did show that training the model for an

extra epoch for the most part increased validation accuracy during training.
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The next models that were fine-tuned were based on the variation of BERT, roBERTa.

RoBERTa was fine-tuned on the data subset of 100K and found to achieve an impressive

94.44% test accuracy on the model which performed best, using a drop out rate of 0.1

and batch size of 64. RoBERTa was expected to perform higher than BERT, due to its

advantageous adjustments made to BERT during its training. RoBERTa is trained on more

data for a longer time than BERT, as well as applying different training objectives, which

makes it higher-performing in comparison to BERT.

After roBERTa, the same subset of 100K data was fine-tuned using distilBERT. Distil-

BERT sees considerable advantages over both BERT and roBERTa due to its ability to train

faster. Although there is a trade-off between roBERTa and distilBERT in performance in

accuracy, distilBERT still displays competitive results, achieving an accuracy rate of 93.6%

on its 100K data subset, using hyperparameters of batch size 64 and no drop out layer.

DistilBERT is the only model which is able to fine-tune using the entire dataset for two

epochs under computing limits (< 24 hours processing time). Using this method, a test

accuracy of 95.76% is achieved. Although hyperparameter tuning, as well as choice of model

are important considerations toward performance, having more data to train on seems to be

the most important factor.

Processing times and memory limits proved to be one of the predominant limitations faced

throughout this paper. The size of the large dataset greatly contributed to the accuracy of

the model, but also limited the types of models that were able to be implemented under the

processing constraints. Using the full dataset and distilBERT provided impressive results.

However, future research directions which would be able to carry out an experiment with

the full dataset using more accurate models, such as roBERTa could see improved results.

It would also be interesting to explore other bidirectional models with the same dataset.

Since the introduction of BERT, many other bidirectional models have followed in its foot-

steps and displayed competitive results. There are limitations which lie within the BERT

and BERT variations as well. Further directions may explore other types of transformer and

bidirectional models to experiment with. While BERT is shown to possess adequate syntac-
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tic and semantic knowledge, BERT struggles reasoning when world knowledge is required

[RKR21]. Altogether, BERT proves to be a valuable and suitable model for sentiment anal-

ysis, however there are other models which can be studied which may provide alternative

types of benefit toward the problem.

Furthermore, it has been clear throughout the paper that more data contributes to better

performance. It would be interesting to explore the point, if any, at which increased amounts

of data only provide marginal increases in performance. Exploring other types of reviews

from other platforms and analyzing their addition to the performance of the model would

be on interest, as well.
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