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Abstract

Cerebrospinal fluid (CSF) levels of amyloid-β 42 (Aβ42) and tau have been evaluated as 

endophenotypes in Alzheimer’s disease (AD) genetic studies. Although there are sex differences 

in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We 

performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-

specific associations. Data came from a previous genome-wide association study (GWAS) of CSF 

Aβ42 and tau (1527 males, 1509 females). We evaluated sex interactions at previous loci, 

performed sex-stratified GWAS to identify sex-specific associations, and evaluated sex interactions 

at sex-specific GWAS loci. We then evaluated sex-specific associations between prefrontal cortex 

(PFC) gene expression at relevant loci and autopsy measures of plaques and tangles using data 

from the Religious Orders Study and Rush Memory and Aging Project. In Aβ42, we observed sex 

interactions at one previous and one novel locus: rs316341 within SERPINB1 (p=0.04) and 

rs13115400 near LINC00290 (p=0.002). These loci showed stronger associations among females 

(β=−0.03, p=4.25×10−8; β=0.03, p=3.97×10−8) than males (β=−0.02, p=0. 009; β=0.01, p=0.20). 

Higher levels of expression of SERPINB1, SERPINB6, and SERPINB9 in PFC was associated 

with higher levels of amyloidosis among females (corrected p-values<0.02) but not males 

(p>0.38). In total tau, we observed a sex interaction at a previous locus, rs1393060 proximal to 

GMNC (p=0.004), driven by a stronger association among females (β=0.05, p=4.57×10−10) 

compared to males (β=0.02, p=0.03). There was also a sex-specific association between rs1393060 

and tangle density at autopsy (pfemale=0.047; pmale=0.96), and higher levels of expression of two 

genes within this locus were associated with lower tangle density among females (OSTN p=0.006; 

CLDN16 p=0.002) but not males (p≥0.32). Results suggest a female-specific role for SERPINB1 
in amyloidosis and for OSTN and CLDN16 in tau pathology. Sex-specific genetic analyses may 

improve understanding of AD’s genetic architecture.

Keywords

Alzheimer disease; cerebrospinal fluid biomarkers; neuropathology; sex difference; APOE; 
amyloid; tau

Introduction

Two-thirds of all prevalent Alzheimer’ disease (AD) cases are female [37, 38], and emerging 

evidence has highlighted striking sex differences in the genetic drivers [19], clinical severity 

[25], and neuropathological presentation of AD [2, 4, 28]. The Lancet Neurology 
Commission thus asserted that a focus on sex differences in AD is essential to advance the 

field [37]. The identification of sex-specific AD genetic drivers could transform the way 

treatments are developed and administered and be a critical step towards personalized 

interventions for AD.

Deming et al. Page 3

Acta Neuropathol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AD is characterized by plaques consisting of aggregated amyloid β (Aβ) and neurofibrillary 

tangles composed of phosphorylated tau protein [47]. Cerebrospinal fluid (CSF) Aβ42 is a 

biomarker for brain amyloidosis, while total tau (t-tau) reflects the intensity of 

neurodegeneration and phosphorylated tau (p-tau) relates to tau pathology [7]. Alterations in 

both of these proteins are measurable in cerebrospinal fluid (CSF) years prior to the clinical 

onset of disease [31, 32], and have become a focus of the preclinical characterization of AD 

[30]. Work over the past five years has sought to elucidate the genetic architecture of CSF 

amyloid and tau through genome-wide association studies (GWAS) [11, 12, 15]. APOE has 

a strong association with both CSF amyloid and tau. Recent work from our group [26] and 

others [1] suggests that the APOE association with t-tau and p-tau is stronger among females 

compared to males, but there is no sex difference in associations between APOE and 

amyloidosis. There have been two additional loci identified in relation to amyloidosis, and 

four related to CSF tau [15]. Yet, sex differences have not been integrated into GWAS 

studies of CSF AD biomarkers.

This manuscript provides a comprehensive characterization of sex-specific genetic 

predictors of CSF amyloid and tau. The use of quantitative traits (in this case continuous 

measures of CSF Aβ42, t-tau, and p-tau) provides additional statistical power and outcome 

metrics that are more proximal to genetic function. We perform a sex-stratified GWAS of 

CSF amyloid and tau to identify loci that show disparate associations between males and 

females. For all sex-specific genome-wide associations, we formally assess whether the 

association differs by sex. Finally, we leverage transcriptomic data from human prefrontal 

cortex (PFC) tissue to test whether we observe sex-specific associations between gene 

expression at the relevant loci and levels of AD neuropathology at autopsy. This work 

highlights sex-specific markers of amyloid and tau and clarifies the degree to which known 

loci act in a sex-specific manner.

Methods

Data used here were previously described [15]. Data were acquired from seven studies of 

cognitive aging, all of which included lumbar puncture and clinical assessments. The 

quantification of CSF biomarker levels and clinical assessments were completed by each site 

independently. The Alzheimer Disease Neuroimaging Initiative (ADNI) is a longitudinal, 

multi-site observational study including AD, mild cognitive impairment (MCI), and elderly 

cognitively normal controls [42, 46]. The Alzheimer’s Disease Genetics Consortium 

(ADGC) was formed as a collaboration to utilize the collective resources of the AD research 

community to conduct GWAS to identify genes associated with late-onset AD risk; data 

were obtained from the Mayo Clinic (MAYO), University of Pennsylvania (UPENN), and 

BIOCARD as part of this collaboration [40]. Data from AD cohorts in Sweden were 

obtained from a multi-center study designed to determine diagnostic accuracy of CSF Aβ42, 

t-tau, and p-tau [36]. The University of Washington (UW) provided data from a CSF AD 

biomarker study [33]. Detailed information about the design of each study has been 

described previously by the ADGC [40], the ADNI [42, 46], Knight ADRC [17], UW [33], 

or Mattsson et al [36]. Clinical and demographic characteristics of the sample are presented 

by cohort in suppl. table 1 (Online Resource 2).
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Ethics Statement

The Institutional Review Boards of all participating institutions approved the study and 

research was carried out in accordance with the approved protocols. Written informed 

consent was obtained from participants or their family members. Secondary analyses of all 

data were approved by the Vanderbilt University Medical Center IRB.

Genotyping and QC

As previously reported [15], genotyping was completed by each study and imputed using 

1000 Genomes Project Phase 3 data. Prior to imputation, all genotype data were processed 

through the same quality control (QC) protocol, including removing single nucleotide 

polymorphisms (SNPs) with a poor call rate (<98%) or outside of Hardy-Weinberg 

equilibrium (p<1×10−6). Samples were excluded for sex inconsistency (genetically observed 

compared to self-reported sex) or cryptic relatedness (Pihat≥0.25). APOE was directly 

genotyped using a Taqman assay [15]. Imputation was completed using IMPUTE2 (version 

2.3.2) and genotyping calls were used for all genotypes with a probability of ≥90%. Imputed 

genotypes were excluded with minor allele frequency (MAF) <2% or information 

score<0.30. Principal component analyses were conducted and, based on visual inspection 

of principal component graphs, only individuals that clustered with the European ancestry 

population from the 1000 Genomes Project were included in the study.

Quantification of Biomarker Outcomes

Harmonization procedures for the CSF analyses have been described [15]. Briefly, raw 

values were log-transformed within each study and centered using the study mean. This 

normalization approach has been leveraged previously [15] and is an effective approach to 

minimize the influence of study differences in assays used to measure the CSF analytes. For 

the present analyses we excluded one small dataset from the original analysis, the Saarland 

University sample from Hamburg (HB), which did not include Clinical Dementia Rating 

(CDR) or diagnosis and did not include all CSF measures. Our decision to drop HB (n=105) 

was primarily driven by visual inspection of outcome distributions that revealed an 

inequivalent variance structure in HB relative to the other datasets. Secondary analyses were 

performed that check for study specific effects including meta-analysis and the comparison 

of regression coefficients across datasets.

Autopsy Measures of Gene Expression and Neuropathology

We leveraged data from the Religious Orders Study/Memory and Aging Project (ROS/MAP) 

through the Accelerating Medicines Partnership AD project (https://www.synapse.org/#!

Synapse:syn2580853/wiki/). ROS began in 1994 and involves older Catholic nuns, priests, 

and brothers recruited from across the US. MAP began in 1997 and involves older lay 

persons recruited from retirement communities, subsidized housing facilities, and social 

service agencies in the Chicago metropolitan area. Participants in ROS/MAP enrolled 

without dementia and agreed to annual clinical evaluations and organ donation [5, 6]. RNA 

expression levels were obtained from frozen sections of the dorsolateral prefrontal cortex 

(PFC) that were manually dissected from postmortem brain tissue. Details of RNA 

extraction, processing, QC, and normalization have been published [34]. RNA was isolated 

Deming et al. Page 5

Acta Neuropathol. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.synapse.org/%23!Synapse:syn2580853/wiki/
https://www.synapse.org/%23!Synapse:syn2580853/wiki/


using the RNeasy lipid tissue kit (Qiagen, Valencia, CA) and was reverse transcribed and 

biotin-UTP labeled using the llumina® TotalPrep™ RNA Amplification Kit from Ambion 

(Illumina, San Diego, CA). Expression signals were generated using the Beadstudio 

software suite (Illumina, San Diego, CA). Standard control and normalization methods were 

employed to account for technical variability due to differences in hybridization dates. For 

the present analyses, low abundance genes (expressed in <10% of the cohort) were filtered 

out from analyses to reduce confounding due to floor effects.

Amyloid-β load and tau tangles were measured using immunohistochemistry and quantified 

by image analysis and stereology [5, 6]. For amyloid-β load, we used levels of Aβ measured 

in 8 cortical regions of the brain [5, 6]. For tangle density, we used levels of abnormally 

phosphorylated tau measured with AT8 antibody across 8 brain regions [5, 6]. 362 males and 

704 females had both neuropathology and SNP data available for analysis, and 207 males 

and 374 females had both neuropathology and gene expression data available.

Posthoc Analyses of Memory Performance, Executive Function Performance, and 
Hippocampal Volume

Genome-wide associated SNPs were further evaluated for associations with memory, 

executive function, and hippocampal volume using ADNI data. Composite measures of 

memory and executive function have been quantified previously [10, 22], and hippocampal 

volumes were quantified using FreeSurfer [13, 20, 21] as previously described [39]. ICV-

adjusted hippocampal volumes were generated from residuals of a linear regression between 

raw volumes and ICV among cognitively normal participants at baseline [50].

Statistical Analyses

Statistical analyses were completed using PLINK (Version 1.9, https://www.cog-

genomics.org/plink/1.9) and RStudio (Version 1.0.136; https://www.rstudio.com/). Additive 

genetic coding was used for all analyses, and all analyses included covariates for age (at 

CSF acquisition), cohort, and the first two population principal components. Sex-specific 

analyses were then evaluated using the same covariates stratifying by males and females. For 

sex-interaction analyses a sex x SNP interaction term was included in the original statistical 

model.

To identify sex differences at known loci, we re-evaluated the most significant single-SNP 

associations from seven genome-wide significant loci for Aβ42, t-tau, and p-tau (p-tau181 

specifically) that had been published [15]. We noted any loci with a significant sex-

interaction effect (nominal p<0.05) on the published outcome and corrected for the seven 

SNPs evaluated. Next, to identify novel sex-specific loci, we assessed all GWAS markers for 

associations within one sex using the established GWAS threshold for statistical significance 

(α=5×10−8). All significant sex-stratified effects were also assessed for sex interactions to 

test whether the coefficients differed by sex. Sex-stratified Miami plots were generated using 

EasyStrata (version 16.0) [51]. Genomic inflation factors for the genome-wide association 

analyses ranged from λ=1.00–1.03 (suppl. figure 1 [Online Resource 1]).

Sex-specific loci identified in candidate and genome-wide analyses were further evaluated 

for functional significance. Expression quantitative trait loci (eQTL) analyses were 
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completed using published gene expression data from Braineac (http://www.braineac.org/) 

and the Genotype-Tissue Expression project (GTEx; www.gtexportal.org) [23, 24, 35]. For 

eQTL association analyses, we corrected for the total number of tissue-gene combinations 

using the false discovery rate (FDR) procedure.

Additional analyses were completed using the measures outlined above. We evaluated SNP 

associations with the relevant neuropathology covarying for age at death and education. 

Next, we tested sex-stratified and sex interaction associations between PFC expression of 

genes implicated in eQTL analyses and the neuropathology of interest, correcting for 

multiple comparisons using the FDR procedure. If Braineac and GTEx did not provide 

strong eQTL evidence at a given locus, we evaluated all genes within the cis region of the 

locus (i.e., 1 MB upstream and downstream of the SNP) and corrected for multiple 

comparisons using the FDR procedure.

To explore if genome-wide associated SNPs were correlated with biomarkers of AD risk and 

progression, we tested for associations with adjusted hippocampal volume, episodic memory 

performance, and executive function performance in ADNI participants at baseline and over 

time. Linear regression covarying for age at baseline was used for cross-sectional analyses. 

Mixed-effects linear regression was used for longitudinal analyses. Fixed effects included 

age at baseline, SNP, interval (modeled as time in years from baseline), and a SNP x interval 

interaction term. Random effects included the intercept and time interval. All analyses were 

run in the entire ADNI cohort (males and females), in males only, in females only, and in the 

entire cohort including a SNP x sex interaction. Additionally, sex-stratified and sex 

interaction results were also calculated from a recently published age-of-onset analysis of 

AD [29]. Raw genotype data were only available from GERAD and ADGC, so we restricted 

analyses to these two groups. Survival analysis followed the original procedures first 

stratified by males and females and second testing SNP x sex interactions.

Role of the Funding Source

The funders of the study had no role in the collection, analysis, or interpretation of data; in 

the writing of the report; or in the decision to submit the paper for publication. The 

corresponding author had full access to all the data in the study and had final responsibility 

for the decision to submit for publication.

Results

Clinical and demographic characteristics of the sample are presented by sex in Table 1 and 

by cohort in suppl. table 1 (Online Resource 2). In the combined sample across cohorts, 

females were younger (p<0.001), had lower levels of CSF amyloid than males (p=0.01), and 

were less likely to have a diagnosis of AD (p<0.001) compared to males. Males and females 

did not differ in levels of normalized CSF t-tau, normalized CSF p-tau, or APOE ε4 carrier 

status (p-values>0.10), but did differ on CSF Aβ42 (p=0.01). Given the difference in age, 

secondary analyses were performed matching for age and stratifying by diagnosis. The sex 

difference in CSF Aβ42 was not present in the age-matched subgroup (p=0.18). 

Methodology, participant characteristics, and detailed results for age-matched analyses are 
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presented in suppl. methods (Online Resource 1) and suppl. tables 2–11 (Online Resource 

2).

Sex Differences for the Top SNP at Previously Published Loci

Sex interaction and sex-stratified results for the SNPs with the strongest reported 

associations at published GWAS loci are presented in Table 2. For Aβ42 analyses, we 

observed a significant interaction between sex and rs316341 on chromosome 6 (p=0.04, 

corrected p=0.28), whereby the association was genome-wide among females (p=4.25×10−8, 

corrected-p<0.001) compared to a nominal association among males (p=0.009, corrected-

p=0.06). The association between rs316341 and Aβ42 was observed in age-matched 

cognitively normal controls (females: n=615, β=−0.04, p=0.0002; males: n=615, β=−0.03, 

p=0.001) but did not reach statistical significance in cases (females: n=613, p=0.14; males: 

n=613, p=0.42). In t-tau analyses, the previously identified locus on chromosome 3 

(rs35055419) showed a genome-wide association among females (p=2.57×10−8, corrected-

p<0.001) but a nominal association among males (p=0.0003, corrected-p=0.002). However, 

the sex x SNP interaction did not reach statistical significance (p=0.17, corrected-p=1). 

Nominal association between rs35055419 and t-tau was observed in age-matched controls 

(females β=0.04, p=3.75×10−4; males β=0.03, p=0.02) and cases (females β=0.03, p=0.04; 

males β=0.04, p=0.003).

We did not observe a significant sex interaction between SNPs in the APOE locus and any of 

the CSF biomarkers (p>0.10, suppl. table 12 [Online Resource 2]). We have previously 

published a sex x APOE-ε4 interaction on CSF t-tau and p-tau levels [26], and when meta-

analyzing across cohorts here we also observed a sex difference in the association between 

APOE-ε4 and t-tau (p=0.008). Further, when meta-analyzing across the datasets included 

here (evaluating the APOE locus determined by Taqman genotyping of rs7412 and 

rs429358) and the non-overlapping datasets previously published, we confirmed a sex x 

APOE-ε4 interaction on both t-tau (β=0.21, p=0.00002) and p-tau (β=0.13, p=0.01). In eight 

out of the nine datasets analyzed across the two studies, the point estimate for the APOE-ε4 

association with CSF t-tau was larger among females compared to males (suppl. figure 2 

[Online Resource 1]).

Genome-Wide Sex-Specific Associations

Significant sex-stratified GWAS loci (outside APOE) are presented in Table 3. In CSF Aβ42 

analyses (Figure 1; suppl. tables 6 and 7 [Online Resource 2]) rs13115400 on chromosome 4 

was significant among females (p=4.61×10−8, corrected-p=0.046), but not among males 

(p=0.19, interaction p=0.003, corrected-p-values=1.0). As highlighted above, one previous 

SNP on chromosome 6, rs316341, also showed a genome wide significant association with 

CSF Aβ42 among females but not males. In CSF t-tau analyses (Figure 2; suppl. tables 8 

and 9 [Online Resource 2]), a SNP within the same chromosome 3 locus previously 

identified by Deming et al. [15] (near GMNC) was associated among females (rs1393060, 

p=8.27×10−10, corrected-p=0.0008), with only a nominal association among males (p=0.03, 

interaction p=0.004, corrected-p-values=1). The female-specific association was also present 

when evaluating age-matched controls (females β=0.04, p=0.0008; males β=0.01, p=0.26), 

but was more comparable among age-matched cases (females β=0.04, p=0.0004; males 
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β=0.03, p=0.04). Locus zoom plots for CSF Aβ42 and t-tau are presented in suppl. figures 3 

and 4 (Online Resource 1). There were no sex-specific associations with p-tau that met 

genome-wide significance (p<5×10−8) with the exception of the APOE locus (suppl. figure 5 

[Online Resource 1], suppl. tables 10 and 11 [Online Resource 2]).

We also analyzed each dataset separately and performed meta-analyses for the three loci 

identified in candidate and GWAS analyses. The directions of effect for all three identified 

SNPs were consistent within sex and across studies analyzed separately. Results from meta-

analyses were consistent with the joint analysis (suppl. figures 6–8 [Online Resource 1]). 

Age-matched results are presented in suppl. tables 6–11 (Online Resource 2), and estimates 

for GWAS SNPs remain consistent, suggesting observed associations are not driven by age 

differences.

eQTL Results for Sex-Specific Associations

For Aβ42, one previously identified SNP (rs316341) and one novel SNP (rs13115400) 

showed sex-specific associations and were further evaluated for eQTL associations. For 

rs316341, significant eQTL associations across all 10 brain tissues in Braineac were seen 

with SERPINB1, SERPINB6, and SERPINB9 (aveALL p-values<0.0012, FDR-corrected 

aveALL p-values=0.047; suppl. table 13 [Online Resource 2]). This eQTL signal appears to 

be driven by gene expression in the hippocampus (p=4.3×10−5, corrected-p[all tissue gene 
combinations]=0.13; 6.5×10−5, corrected-p=0.20 for SERPINB1 and SERPINB9, 

respectively). Similarly in GTEx, significant eQTL associations were observed with 

SERPINB1 expression in brain cerebellar hemisphere (p=4.9×10−6, corrected-p=0.013) and 

transformed fibroblasts (p=1×10−5, corrected-p=0.013) and with SERPINB9 pseudogene 1 

(RP11–420G6.4) expression in the cortex of the brain (p=1.4×10−6, corrected-p=0.005; 

suppl. table 14 [Online Resource 2]). No significant eQTL associations for rs13115400 were 

observed in Braineac (suppl. table 15 [Online Resource 2]) or GTEx.

For t-tau, the top female-specific association within the chr. 3 locus was rs1393060 and was 

further evaluated for eQTL associations. In Braineac, we did not observe any eQTL 

association that survived correction for multiple comparisons. However, the strongest 

observed association was between rs1393060 and osteocrin (OSTN) expression in the 

frontal cortex (p=0.00057, corrected-p=0.86; suppl. table 16 [Online Resource 2]). No 

significant eQTL associations were observed in tissues within the GTEx database.

Autopsy Validation and Extension of Sex-Specific Effects

The three identified SNPs with potential sex-specific effects on CSF biomarker levels 

(rs1393060, rs13115400, and rs316341) were tested for sex differences in AD 

neuropathology. None of the three SNPs had a significant sex interaction (Table 4), but 

rs1393060 did show evidence of an association with tau density at autopsy among females 

(p=0.047, corrected-p=0.14) but not males (p=0.96, corrected-p=1; Table 4).

Given the strong eQTL evidence for rs316341 on SERPINB1, SERPINB6, and SERPINB9, 

PFC expression of these three genes was further assessed for sex-specific associations with 

amyloid burden (suppl. table 17 [Online Resource 2]). Consistent with SNP results, we 

observed associations between expression levels of SERPINB1 (β[SE]=0.08[0.03], p=0.010, 
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corrected-p=0.011), SERPINB6 (β=0.02[0.004], p=0.0002, corrected-p=0.0004; Figure 3) 

and SERPINB9 (β[SE]=0.17[0.07], p=0.011, corrected-p=0.011) with amyloid-β load 

among females that were not observed among males (p-values>0.43). Sex interactions were 

not statistically significant.

There was not strong eQTL evidence at the rs1393060 locus, so we evaluated all 18 genes in 

cis that were measured in ROS/MAP autopsy samples. Of these 18 genes, four genes 

showed an association with tangle density across sexes, including RP11–1976K.1, CLDN16, 

GMNC, and OSTN (suppl. table 18 [Online Resource 2]). Interestingly, both CLDN16 and 

OSTN showed a significant association among females (corrected-p-values=0.040), but not 

among males (p-values≥0.32). As displayed in Figure 4, higher levels of both OSTN and 

CLDN16 were associated with lower tangle density among females.

We did not observe strong eQTL evidence at the rs13115400 locus, so we evaluated all five 

cis genes available for analysis (suppl. table 19 [Online Resource 2]). Three genes showed 

significant associations, two of which were associated just in females (AC108142.1 and 

TENM3, corrected-p≤0.0018) and one just in males (RP11–433O3.1, corrected-p=0.0074). 

There were no significant sex-interactions.

Results from the posthoc analyses of hippocampal volume, memory, and executive function 

are presented in suppl. table 20 (Online Resource 2). In both males and females combined, 

we observed an association between rs1393060 and both memory (β=−0.08, p=0.045) and 

executive function (β=−0.12, p=0.011) performance but did not observe any sex-specific 

associations. Results from posthoc survival analyses using age-of-onset data from IGAP are 

presented in suppl. table 21 (Online Resource 2). In the ADGC, rs1393060 and rs316341 

were significantly associated among females (p<0.01), but not males (p>0.1). A significant 

sex interaction was observed for rs316341 (p=0.009). No associations were observed in the 

GERAD dataset.

Discussion

We evaluated sex specific genetic associations with biomarkers of AD neuropathology 

measured in CSF. We observed female-specific associations with amyloid levels in one 

previously identified locus on chromosome 6 and one novel locus on chromosome 4, both of 

which did not show an association among males. For t-tau, we confirmed that the APOE 
association is stronger among females compared to males [26] and provide new evidence 

that the previously observed t-tau association on chromosome 3 is driven by females. 

Finally, we provide functional evidence that the sex-specific association on chromosome 6 is 

driven by a female-specific effect of SERPINB1 gene expression levels on amyloidosis, and 

that the sex-specific association at chromosome 3 may be driven by a female-specific 

association between OSTN or CLDN16 expression on t-tau levels. Together, our results 

highlight the importance of sex considerations in models of AD risk, suggesting potential 

candidate pathways that may differentially drive AD neuropathology among males and 

females.
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We provide evidence that genetic variation within Serpin Family B Member 1 (SERPINB1) 
is related to amyloidosis, particularly among females. A similar sex-specific association was 

also observed in posthoc age-of-onset analyses, in which the minor allele of rs316341 was 

associated with an earlier age-of-onset among females, but not males. Our eQTL and PFC 

expression results provide support for SERPINB1’s potential role in amyloidosis, 

particularly among females. Serpins are a family of protease inhibitors that are expressed 

ubiquitously including all cell types of the brain. Serpins have been implicated as potential 

inhibitors of Aβ toxicity [48], likely through a role in regulating neutrophil infiltration [18] 

in response to amyloidosis [15]. Neutrophil response is sex dimorphic and modulated by sex 

hormones in rats [14], and there is evidence that estrogen has direct effects on neutrophil 

infiltration and clearance [43]. In total, our results suggest that SERPINB1 may be 

associated with amyloidosis in a sex-specific manner, with evidence suggesting it is a 

particularly relevant predictor among females. The previous work on SERPINB1 and 

neutrophil signaling highlights the need to better understand how gonadal hormonal changes 

in late life may impact the innate immune response to amyloidosis.

For t-tau, our results suggest a fundamental shift in the interpretation of GMNC region. Our 

results suggest the association at this locus is notably stronger in females than in males, with 

a similar female-specific association observed in relation to age-of-onset in posthoc survival 

analyses. Further, our eQTL and gene expression results highlight comparable sex-specific 

effects in the associations between two genes in this locus and brain tau levels, suggesting 

the SNP association may be partially driven by OSTN or CLDN16 rather than GMNC. 
OSTN expression levels are down-regulated in human neurons that are grafted into the brain 

of an AD mouse model [16], suggesting OSTN may be modulated by the presence of 

amyloidosis. It is also notable that OSTN is regulated by neuronal activity, but only in the 

primate brain, suggesting involvement in higher-order brain functions that are specific to 

primates [3]. OSTN is highly expressed in the neocortex of primates, and regulates dendritic 

growth [3]. Outside of the brain, the primary role of OSTN is in bone development, and 

OSTN responds to low-dose estradiol treatment in vitro [8], leaving open the possibility that 

OSTN function in brain may act in a hormone-dependent manner. Another candidate gene in 

this region was claudin 16 (CLDN16). CLDN16 is a tight junction protein with a role in 

renal magnesium processing [27]. Other claudins have been implicated in AD previously 

[44, 49], and claudins 1, 11, and 16 are differentially expressed in the kidney of male 

compared to female rats [45]. Together with our results, these previous findings highlight 

CLDN16 and OSTN as strong candidate genes that may have a sex-specific association with 

CSF t-tau.

One novel association locus on chromosome 4 was identified in amyloid analyses and 

showed a stronger association among females compared to males. The signal was proximal 

to a non-protein coding RNA LINC00290, but we did not observe any eQTL associations in 

the region. In gene expression analyses, we observed some evidence of a comparable 

female-specific association between gene expression and amyloidosis for one gene in this 

locus, teneurin transmembrane protein 3 (TENM3). TENM3 is involved in neuronal 

development, axon guidance, and retinal mapping, and mutations in the gene cause the eye 

disorder microphthalmia [9]. TENM3 has not been implicated in AD previously, but 

represents an interesting candidate gene for follow-up.
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It is notable that the sex-specific associations observed in relation to amyloid and tau 

appeared to be driven by differences among the cognitively normal individuals in age-

matched stratified analyses. However, the interpretation of results is challenging given the 

small sample size of the analyzed sub-groups. One possibility is that the observed sex-

specific genetic effects are associated with deposition that occurs in the preclinical stage of 

disease, but larger datasets will be needed to fully explore the complex interplay between 

sex-specific genetic risk, age, and clinical status.

We also confirmed the sex difference in the association between APOE and CSF tau levels 

whereby females show a stronger association than males. We previously published this sex 

difference in a subset of the datasets here, and two additional datasets not included in this 

analysis (which lacked GWAS data) [26]. Across all the non-overlapping studies, the 

estimate of the sex interaction is strong. Only the Mayo dataset (see Table 1) showed an 

inverse direction of effect whereby the association between APOE and CSF total tau was 

slightly and non-significantly stronger in males compared to females. The Mayo dataset 

included the lowest percentages of females and APOE carriers and included older 

individuals on average, which may contribute to the divergent signal. Additional work is 

needed, particularly focusing on how selection criteria that emphasize memory impairment 

and a family history of AD could contribute to the observed sex difference in APOE 
associations with tau. Currently, the preponderance of data support a stronger association 

between APOE and tau among females.

The present study has multiple strengths, including the large sample size, clinical 

characterization in most datasets, inclusion of comprehensive eQTL analyses, and autopsy 

follow-up analyses that identified functional candidate genes that had sex-specific 

associations with AD neuropathology. Our results highlight the value of sex-specific 

analytical models for genetic association studies.

Our study has limitations. Our sample size did not provide adequate power to complete a full 

genome-wide interaction analysis that may highlight gene signals in opposite directions. The 

samples analyzed come from cohort studies that are highly educated and primarily White, 

limiting generalizability. Although we covaried for age and evaluated both age-matched and 

diagnosis stratified models, the sex differences in age and diagnosis are notable. A more 

carefully matched sample will be needed to better understand how sex differences in genetic 

risk for AD neuropathology change over the course of aging and disease. It is notable that 

the sex difference in the association between APOE and AD varies by age [41], suggesting 

that larger samples will be needed to better model genetic interactions with age on AD 

biomarker levels. Our gene expression results from ROS/MAP were measured from 

prefrontal cortex tissue, which was previously selected for measurement due to its relevance 

to human cognition and AD. However, RNA was not available from other brain regions for 

analysis, limiting our ability to evaluate differential associations across brain regions, 

particularly highly relevant regions like the hippocampus. Measurement in additional 

regions is ongoing, and future work delineating sex difference in gene expression 

associations across the brain are warranted.
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In conclusion, our work has highlighted sex differences in the genetic predictors of AD 

biomarkers, including stronger associations between Serpin genes and amyloidosis among 

females. Modeling sex differences in GWAS analyses provides insights into novel genetic 

signals associated with disease, and provides a helpful framework for prioritizing and 

evaluating functional candidate genes.
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Fig. 1. Sex-Stratified Genome-Wide Association Results for CSF Aβ42
Miami plot illustrating CSF Aβ42 genome-wide association results stratified by males and 

females. Male findings are plotted in blue and grey on the top and female results are plotted 

in pink and grey at the bottom. The red lines at the top and bottom represent the genome-

wide threshold for statistical significance (p<5×10−8).
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Fig. 2. Sex-Stratified Genome-Wide Association Results for CSF Tau
Miami plot illustrating CSF total tau genome-wide association results stratified by males and 

females. Male findings are plotted in blue and grey on the top and female results are plotted 

in pink and grey at the bottom. The red lines at the top and bottom represent the genome-

wide threshold for statistical significance (p<5×10−8).
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Fig. 3. Significant Sex-Specific Gene Expression Associations with Tangle Pathology Among 
Genes in the rs1393060 Locus
(a) OSTN and (b) CLDN16 expression in the prefrontal cortex are presented on the X-axis, 

square-root transformed neurofibrillary tangle burden (measured with 

immunohistochemistry) is presented on the Y-axis. Females are presented in red and males 

are presented in blue.
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Fig. 4. Significant Sex-Specific Gene Expression Association Between SERPINB6 Expression in 
the Prefrontal Cortex and Amyloid Burden
SERPINB6 expression in the prefrontal cortex are presented on the X-axis, square-root 

transformed amyloid burden (measured with immunohistochemistry) is presented on the Y-

axis. Females are presented in red and males are presented in blue. Individuals with an 

amyloid burden value of 0 in the figure did not show IHC evidence of amyloidosis at 

autopsy.
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