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Cavitation bubble dynamics in a shear-thickening fluid
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Cavitation has been extensively studied in Newtonian fluids, and to a lesser yet significant degree
in shear-thinning fluids. However, cavitation has not been previously investigated in shear-thickening
fluids, of which a water-cornstarch suspension is perhaps the best-known example. An interesting
property of such fluids is that, when subjected to an increase in strain rate, their viscosity increases
until they exhibit solid-like behavior and can even fracture. As cavitation bubbles are capable of
generating extreme strain rates, they could be affected by shear-thickening fluid behaviour. As visual
access is limited by opaque or non-index-matched particles present in such fluids, an experimental
study of nominally cylindrical spark-induced cavitation bubbles is conducted in a 2-mm gap between
two parallel flat and transparent plates, which allows visualization of the bubbles as they contact the
boundary. They are theoretically studied through the cylindrical Keller-Miksis equation adapted
to a shear-thickening fluid using a Cross model. For volume fractions starting from ϕ = 0.44,
the limit between continuous and discontinuous shear thickening regime, cavitation bubbles deform
increasingly until they are replaced by cavitation-induced fracture between ϕ = 0.46 and ϕ = 0.52.
Fracture propagation speeds were found to be in the same range as fracture speeds previously
reported for pressure-driven cavity expansion, albeit for estimated initial pressures that are now
orders of magnitude higher.

I. INTRODUCTION

The properties of shear-thickening fluids make them
suitable for a variety of applications involving strong dy-
namic events, including personnel protection. There has
been considerable research in the field of liquid body ar-
mors, where shear-thickening silica suspensions are gen-
erally combined with Kevlar [1–3] to improve the ballis-
tic penetration resistance of the fabric. In general, when
such a fluid comes under stress, the suspended particles
interact, modifying the fluid’s properties. Although not
yet fully understood, the resulting behavior can be classi-
fied into three different regimes of interest depending on
the concentration of solid particles present in the suspen-
sion and stress applied to it: continuous shear thickening
(CST), discontinuous shear thickening (DST) and shear
jamming (SJ) [4]. The increase in fluid viscosity with in-
creasing strain rate is continuous in the case of CST and
almost discontinuous in the case of DST. SJ is the most
extreme region where the fluid becomes solid-like and is
prone to undergoing fracture.

In the event of a small projectile entering a viscoelas-
tic or shear-thickening fluid, it has been shown that its
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speed after impact is reduced in comparison to water,
and that the projectile may cause the fluid to vaporize
along its path [5]. That is, cavitation may occur due to
a sudden decrease in pressure or by a sudden increase
in temperature. Cavitation has been extensively stud-
ied in Newtonian fluids [6] and has also received a fair
amount of attention in non-Newtonian shear-thinning
fluids such as blood [7] and shear-thinning polymer so-
lutions [8, 9]. In developing cavitation-induced jet print-
ing, cavitation in viscoplastic fluids [10], as well as vis-
coelastic films [11] have also been studied. Research in
viscoelastic fluids [12–15] and solid shells [16–18] have
shown that the general equations of motion for a spher-
ical cavitation bubble can be modified from a Newto-
nian fluid to non-Newtonian by constitutive models, such
as the Williamson, Kelvin–Voigt, linear Maxwell or 4-
constant Oldroyd models. Cavitation rheology is, in fact,
an emerging field that has been used for investigating the
material properties of biological tissues [19] and soft ma-
terials such as polyacrylamide [20] and poly(vinyl alco-
hol) hydrogels [21], exploiting cavitation to probe strain
rates not attainable by existing rheometers. In these
studies, sparks [e.g., 22] or lasers [e.g., 23] are commonly
used to generate the cavitation bubbles. However, no
study on cavitation in shear-thickening fluids has yet
been reported.

Possibly the best-known shear-thickening fluid is a
cornstarch particle suspension in water, commonly re-
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ferred to as Oobleck. It has been studied extensively
[24–27] and is composed of readily available materials.
As this particular candidate, like most particle suspen-
sions, is optically opaque, a narrow nominally 2D geom-
etry, inspired by Hele-Shaw cells, can be used to enable
visualization of the movement of the fluid interface. Re-
cently, continuous and discontinuous shear-thickening as
well as fracture due to injection of pressurized gas into a
shear-thickening fluid has been investigated in Hele-Shaw
cells as a function of a particle suspension’s volume frac-
tion in cornstarch [24] and glass beads [28] suspensions,
where both have investigated the Saffman-Taylor insta-
bility in particle suspensions, capable of producing frac-
ture at high volume fraction.

This work presents experimental and theoretical in-
vestigations of cavitation bubbles in a shear–thickening
cornstarch particle suspension in water with varying
solids volume fraction. The effects of the high strain
rates produced by cavitation on the resulting dynamics
are assessed, and the different shear-thickening regimes,
as well as fracture, are expected to be encountered, de-
pending on the particle volume fraction. The observed
bubble dynamics are contrasted to those one would ob-
serve in a Newtonian fluid to evaluate the effects of shear-
dependent viscosity.

II. METHODS

A. Experimental setup

In order to visualize cavitation in an opaque particle
suspension, an experimental setup capable of producing
nominally cylindrical cavitation bubbles in a narrow gap
between two parallel plates is utilized. Figure 1 shows the
overall experimental setup and the electrical schematic
used to generate the spark in the center of the fluid-
filled gap. The spark deposits a large amount of energy
in a small region resulting in vaporization of the liquid.
The generated bubble contains vapor and traces of non-
condensable gases, and expands until it reaches a maxi-
mum size. This maximum size depends on the fluid prop-
erties and the deposited energy. Upon reaching the max-
imum radius, a collapse immediately follows due to the
pressure difference within the bubble and surrounding
fluid, and if sufficient energy remains after collapse, the
bubble rebounds to a smaller maximum radius and the
cycle repeats itself until excess energy is dissipated [6, 29].

The test cell consists of two flat plates separated by
a 3D printed polylactide spacer ring with an inner ra-
dius of Rcell = 100 mm, outer radius of 110 mm, height
of H = 2 mm, and nominal dimensional uncertainty of
0.1 mm. The ring also has four 0.25-mm wide and 1-
mm deep slits to allow for repeatable positioning of wire-
electrodes, which cross at the cell’s center and are kept
under constant tension to ensure contact. The spacer
ring is glued on top of a 300 x 300-mm transparent 4-
mm thick Plexiglas plate forming a reservoir to contain

FIG. 1. Side and top view schematic of the experimental
setup. The shaded circle is the test cell with heightH = 2 mm
and radius Rcell = 100 mm, where spark-induced nominally
cylindrical cavitation bubbles are studied. Cavitation occurs
at the center of the cell where the wire-electrodes (red lines
of exaggerated thickness) cross. The RC electrical circuit in-
cludes switches, a DC power supply, resistor with resistance
R, and capacitor of capacitance C.

the fluid. The test cell is sealed by tightening a second
identical Plexiglas plate on top of the ring with bolts
and nuts at the four corners. However, during cavita-
tion, small droplets are occasionally observed ejecting out
from the wire slits. The cavitation bubble is generated
within the incompressible fluid surrounded by the rigid
ring. The expansion of the volume due to a 3-mm radius
bubble would be accommodated by a mere 0.1% expan-
sion of the volume, which in a perfectly rigid container
would results in a 2.2-MPa increase in liquid pressure for
a 2.2-GPa water bulk modulus. It is more likely that
the gap formed by thin walls expands by ∼2 µm in order
to accommodate the cavity. This increase in gap being
considered small enough, the cell is assumed nominally
rigid.
Figure 1 also shows the electrical schematic of an RC

circuit, which is similar to that used in a previous study
by [22]. The circuit enclosed in a ”Spark-Box” consists
of an inner loop with a 3-W, 2-kOhm, ±5% resistor, a
3300-µF, 9.7-A, 350-V, ±20% electrolytic capacitor, 22-
AWG wires, and an electrical switch to fully separate
the capacitor from the 200-V, 2-A, 160-W power sup-
ply (Elektro-Automatik). The outer circuit consists of
a switch and 14-AWG wires to reduce the resistance, as
this affects the discharge time. The heavier wire is con-
nected at the test cell to the 34-AWG copper wires used
as wire-electrodes and replaced after each experiment.
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The typical voltage at which the capacitor is charged
ranges from VDC = 50–80 V, which is found to produce
cylindrical bubbles of maximum radii within the range
Rmax ≈ 3–8 mm. The discharge time constant, τ , can be
computed by using the wire resistance Rw and capacitor
capacitance C, τ = RwC ≈ 0.62 ms. Hence it is noted
that for the smallest bubbles examined, the amount of
time to reach their maximum radius can be shorter than
τ , in which case the start of the collapse may be delayed
by the spark being still on. Such bubbles are excluded
from our analysis.

The cavitation bubbles are imaged from above the test
cell via a high-speed camera (Photron Fastcam Nova S12)
with a resolution of 160 x 256 pixels at 125 kFPS. A pho-
todiode detector (Thorlabs, DET10A2) with a rise time
of 1 ns is connected to an oscilloscope and pointed at
the cell center to trigger the high-speed camera upon the
spark ignition. When experiments are conducted in wa-
ter, a broadband halogen fiber optic illuminator (Thor-
labs, OSL2), located under the test cell, is used as a
backlight to enable bubble shadowgraphy. In opaque
cornstarch suspensions, the backlight is replaced by a
flash-lamp (Cordin 605) placed above the test cell and
used as a frontlight. The image data are analyzed by
a Matlab script implementing gamma correction, Otsu
edge threshold used for binarization, and Canny edge-
detection. The processed results are verified by superim-
posing the detected edge on the respective video frames.
Subsequently, the bubble’s nominal radius is extracted by
counting the number of pixels contained within the de-
tected edge, and computing the equivalent circular shape
of the same area. This procedure is necessary especially
at higher solids fractions, where the shape of the bubble is
not circular. The overall uncertainty on the computation
of the radius is estimated to be two pixels, or 0.22 mm.

The temperature of the fluid is recorded using a ther-
mocouple and found to be T∞ = 20± 1◦C. The local at-
mospheric pressure is given by the nearby Swiss meteorol-
ogy weather station and amounts to p∞ = 1.00±0.03 bar.
When investigating repeatability, the maximum bubble
radius is found to have a standard deviation up to 14%
of the mean of 14 tests in water, keeping all factors nom-
inally constant.

B. Fluid characterization

The shear-thickening particle suspensions utilized are
composed of cornstarch and deionized water at solids vol-
ume fractions ranging from ϕ = 0.00 to 0.52 ± 0.01.
Water and cornstarch densities based on literature are
ρw = 998 kg/m3 and ρc = 1600 kg/m3, respectively,
with cornstarch density verified from measurements and
a simple mean field approach of [26]. Samples are man-
ufactured by mixing 250-g packs of bulk Maizena corn-
starch with the required amount of deionized water to
reach the desired volume fraction. The mean diameter
of cornstarch particles, dp = 9.66± 4.50 µm is measured

by a particle sizer (Beckman Coulter, Multizer 4e).
While the liquid and solid densities are not matched,

[30] showed that sedimentation can still be avoided if the
cornstarch suspension is stirred properly prior to experi-
ment, and this also ensures homogeneity of the mixture.
Furthermore, the justification to expect homogeneity

of a particle suspension in the neighbouring of a col-
lapsing bubble, capable of inducing extreme accelerat-
ing flow, can be verified by calculating the particle re-
sponse time, or Stokes time. It is the timescale for par-
ticles to follow the accelerating flow and estimated as
τp = d2p/(3βν), where β is the density ratio between the
fluid and particle, β = 3ρw/(ρw+2ρc), and ν is the kine-
matic viscosity of the fluid. The particle response time
is estimated to be between 12-94 µs, which is at least
an order of magnitude lower than the bubble dynamics,
which correspond to an oscillation period of 400-2800 µs
in the cases examined.
The assumption of negligible sedimentation is experi-

mentally confirmed by delaying tests for more than a few
minutes instead of the actual maximum of 40 seconds
from deposition of the continuously stirred fluid into the
test cell to spark ignition. In those cases, sedimentation
effects can clearly be observed, as water moves faster on
the top layer than the particle-laden suspension at the
bottom of the test cell, and separation can clearly be
seen.
Whether the particles and fluid could segregate due to

the acceleration caused by cavitation can also be consid-
ered. However, for 20 µm particles, whose sizes are in the
same order of magnitude as the ones used in the present
study, [31] showed that these should not be significantly
accelerated at a different rate than the fluid. Similarly,
radial segregation that would lead to the fluid becom-
ing clearer in the immediate boundary of the cavitation
bubbles has not been observed in the present study.
It is worth mentioning that, since this research is not

focused on the rheological properties of cornstarch sus-
pensions per se, a few aspects are neglected to simplify
the experiments. The fluid is not degassed nor sonicated,
and the cornstarch is not dried prior to mixing to re-
move ambient humidity. It is, however, accounted for
by using the average moisture content of cornstarch [32],
ξ = 0.10 ± 0.01. The volume fraction ϕ is corrected ac-
cordingly, such as:

ϕ =
(1− ξ)mc/ρc

(1− ξ)mc/ρc +mw/ρw + ξmc/ρw
(1 + λ), (1)

where mc is the mass of cornstarch and mw the mass of
deionized water. The pore space in cornstarch that can
absorb water when fully submerged, λ is also considered,
and its value is 0.3 [33]. These approximations are com-
mon in the literature [26, 30], and hence adopted in the
present study as well.
Figure 2 displays the rheology measurements showing

the evolution of the shear viscosity, µ and shear stress,
τ , with varying shear rate, γ̇, for four cornstarch suspen-
sions of different volume fractions. Measurements are
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FIG. 2. Measured shear viscosity µ and shear stress τ of
cornstarch suspensions of four different volume fractions ϕ as
a function of shear rate γ̇. The dash-dotted lines represent
weight-fitted Cross models (with fit parameters given in the
legend), characterized by the zero and infinite shear rate vis-
cosity, respectively µ0 and µ∞, the relaxation time k and a
dimensionless power index n. The solid lines are weight-fitted
Power laws, τ ∝ γ̇α, fitted to the shear-thickening part of the
data and whose exponent value indicate the shear-regime of
each mixture. The error bars, hidden by the marker on some
points, indicate the standard deviation of the three tests con-
ducted for each suspension.

conducted using an Anton Paar MCR 502 shear rheome-
ter and a 20-mm plate geometry with a 0.8-mm gap. A
19-points shear sweep rheological measurement is con-
ducted with the shear rate as a variable and chosen from a
logarithmic profile. All four tested samples show a shear-
thickening behaviour over the range of shear rates they
were subjected to. After a first shear-thinning phase,
they show continuous shear thickening (CST), a continu-
ous increase in fluid viscosity with increasing strain rate,
which may be due to the shear-induced formation of hy-
drodynamic clusters [34]. For high enough shear rates,
these hydrodynamic clusters start to locally aggregate,
leading to a sudden increase in viscosity. This regime
is called discontinuous shear thickening (DST) and is
not obvious in Fig. 2. Although the limit between these
regimes is not easy to distinguish, by computing α, which
is the exponent of the power law τ ∝ γ̇α fitted to the
shear stress vs. strain rate displayed in Fig. 2, it is possi-
ble to define a limit between these behaviours. If α ≥ 2,
the particle suspension will often be referred as discon-
tinuous [4]. However, this definition can be taken with a
grain of salt, especially since there are no clear discontin-
uous jumps in the viscosity measurements. Nonetheless,
since a value of α = 2.00 has been found for ϕ = 0.44
and experiments start showing bubble deformation for
these and higher solid’s volume fractions, it is assumed

that DST is encountered. Note that, when increasing vol-
ume fractions, the transition into CST and DST happen
for shear rate values which are lower and closer to each
other, up to a critical value ϕc, where they vanish and
the mixture directly undergoes shear jamming (SJ) [25].

The standard deviations of three different tests con-
ducted for each volume fractions in Fig. 2 indicate that
the measurements are consistent, and the data compare
favorably to literature [24]. Sedimentation is assumed to
not play an important role in this case due to the sample
being constantly under shear-stress during experiments.
Although it is unclear if cornstarch moisture content is
accounted for in studies by [25] and [27], their measure-
ments conducted with a different geometry show values
in the same order of magnitude, albeit still relatively far
from ours. The moisture effects and limitations of the
method together with the assumption of negligible sed-
imentation, might lead to discrepancies when using the
measured rheological data to simulate the viscous term
in cavitation bubble dynamics equations.

For its simplicity and adequate fit to the data in Fig. 2,
the Cross model [35] is chosen to describe the strain
rate-dependent viscosity over alternative models such as
Sisko, Carreau, and others. However, it should be noted
that a few studies with different viscosity measurement
techniques also report highly non-Cross behavior showing
shear thinning at very low and high shear-rates [25, 36],
the latter being expected to be relevant for cavitation
bubbles. It has been referred to as an instability and
breakdown of local shear-jamming effects, which may
originate from the elasticity of particles at very high
shear-rates [37]. The parameters of the Cross model are
µ0 and µ∞, which are respectively the zero and infinite
shear viscosities, the relaxation time k, and the power
index n. Both viscosities are assumed constant at low
and high shear rates, which will impact the modelling,
since cavitation bubbles mostly produce extreme strain
rates in the order of 103 − 108 s−1 [20]. The relaxation
time represents the characteristic time a material takes
to relax once the applied rate of deformation is reduced
to zero, and is inversely proportional to the shear rate at
which the viscosity reaches µ∞. The power index rep-
resents the slope of the transition from µ0 to µ∞ with
increasing shear rate γ̇.

While cavitation bubbles produce extensional strain,
only the shear-dependent viscosity is characterized
through rheometry measurements. However, the shear
viscosity can be transformed into the extensional viscos-
ity µe via what has been defined as the Trouton ratio,
Tr = µe/µ [38]. In the case of a particle suspension un-
der uniaxial flow, it has been shown numerically that
the Trouton ratio for particle suspensions keeps a con-
stant value of Tr = 3, as for a uniaxial flow in a Newto-
nian fluid, until the volume fraction approaches the jam-
ming point, beyond which it increases for frictional parti-
cles [39]. This is however still considered an ”unexplored
area” according to [40], with few experimental studies on
extensional rheometry in particle suspensions [41]. Fur-
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thermore, if a range of strain rates is investigated, it is far
from the ones generated by cylindrical cavitation [42]. In
the present study, a constant value is therefore assumed
up to solids fraction of ϕ = 0.44, which is the limit be-
tween the CST and DST regimes. The same value for Tr
is assumed to also hold for ϕ = 0.46, although it might
be underestimated given the proximity to the jamming
point. The radial component of the deviatoric stress ten-
sor τrr can be adapted from a Newtonian fluid to a shear-
thickening one by replacing the constant viscosity by a
Cross model’s strain-dependent viscosity:

τrr = 2µeϵ̇rr = 6µ∞ϵ̇rr +
6(µ0 − µ∞)

1 + (kϵ̇rr)n
ϵ̇rr, (2)

This is only dependent on the radial component of the
strain-rate tensor ϵ̇, and the conversion from shear to
extensional viscosity is accounted for by multiplying the
Cross model by Tr = 3.

The speed of sound, density, surface tension and vis-
cous stress tensor are considered for the water and corn-
starch suspension at each volume fractions. The den-
sity is simply computed, and the speed of sound in non-
density matched cornstarch suspensions in water is ex-
trapolated to be between 1660 and 1757 m/s for volume
fractions of respectively 0.37 and 0.46, based on the data
of [26]. The surface tension has also been reported to be
slightly lower than that of water for cornstarch suspen-
sions of mass fraction of w = 0.30 [43]. However, as it is
of the same order of magnitude and its impact on bub-
ble dynamics is negligible due to the dominating inertial
effects, the surface tension of water at 20◦C is used, i.e.,
σ = 73 mN/m.

III. THEORY

Fortuitously, cylindrical cavitation in a Newtonian
fluid has previously been studied, laying a solid basis for
the theoretical aspects of this research. Previous studies
of cavitation bubbles in microfluidic gaps have applied
the incompressible cylindrical Rayleigh equation and the
accompanying fitted parameter, R∞, symbolizing the dis-
tance from the bubble center to the point at which the
fluid does not feel the bubble’s motion anymore due to
the compressibility of the fluid [44–46]. A past study of
collapsing vortex rings yielded the Rayleigh collapse time
adapted to a cylindrical geometry [47], which reads:

Tc = 0.915R0

( ρ∞
p∞ − pv(T∞)

) 1
2

log
(R∞

R0

) 1
2

= Tc,spherical log
(R∞

R0

) 1
2

,

(3)

where R0 is the bubble’s maximum radius before the
beginning of the collapse, ρ∞ and p∞ are the homoge-
neous density and pressure of the medium, respectively,
pv(T∞) is the temperature-dependent vapor pressure in

the medium and Tc,spherical is the Rayleigh collapse time
defined for spherical bubbles [48].
The effects of viscosity alone in a continuous shear-

thickening fluid can be simulated and compared to a
Newtonian viscous fluid as long as the volume fractions
of a particle suspension is sufficiently far from the shear
jamming point, where fracture is expected to occur. The
Gilmore equation [49] in cylindrical coordinates, simpli-
fied into the Keller-Miksis equation [50] is used, as it
accounts for compressibility and can be adapted for a
shear-thickening fluid. This equation is considered more
appropriate than the simple Rayleigh-Plesset [51] equa-
tion, as it accounts for the change in speed of sound in
cornstarch suspensions with regards to water. However,
its accuracy has been reported to be inferior to that of the
spherical form due to the cylindrical wave equation as-
sumption for compressibility [52]. The cylindrical Keller-
Miksis equation reads:(

1− Ṙ

c∞

)
RR̈+

(
1− Ṙ

3c∞

)3Ṙ2

4

=
(
1 +

Ṙ

c∞

)H
2

+
(
1− Ṙ

c∞

) R

c∞
Ḣ,

(4)

where R, Ṙ and R̈ are the radius, radial velocity and
radial acceleration of the bubble interface. The speed
of sound c∞ and density ρ∞ of the fluid are taken as
constants. Here, H and Ḣ are the enthalpy and first
time derivative of the enthalpy of the fluid at the bubble
wall, respectively. Enthalpy H is given by:

H =
pB(t)− p∞

ρ∞
=

1

ρ∞

(
pv(T∞) + pg,0

(R0

R

)2κ
− σ

R
− p∞

)

+
3

2ρ∞

∫ ∞

R

τrr
r

dr

(5)

The enthalpy consists of the time-dependent pressure at
the boundary of the bubble, pB(t), and the ambient pres-
sure of the fluid far from the bubble, p∞. More pre-
cisely, the boundary term can be decomposed into a va-
por pressure term pv(T∞), which is taken to be a constant
computed from the nominal temperature of the fluid us-
ing the Buck equation, the partial pressure of the non-
condensable gas pg,0 at a reference radius R0, the poly-
tropic index of the vapor phase κ, and surface tension σ.
Note that the viscous term is still in the integral form
with respect to the radial component of the cylindrical
coordinate system, r.

IV. RESULTS

A. Simulations

Figure 3 shows the temporal evolution of the normal-
ized bubble radius and the absolute strain rate com-
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FIG. 3. Normalized radius-time curves (top) of cylindrical
bubbles simulated using the Keller-Miksis equation [Eq. (4)]
for Newtonian fluids of different shear viscosities, µ, and their
corresponding strain-rate-time curves (bottom). The markers
show the collapse times according to the chosen definition

puted by numerically solving the Newtonian Keller-
Miksis equation. The constant shear viscosity, noted µ
for a Newtonian model, is varied to determine its effect
on the bubble dynamics. Note that the viscosity is al-
ways referred to in terms of shear viscosity to ease com-
parison to rheometry measurements, but it is the strain
viscosity which is considered during theoretical simula-
tions. In order to initially only asses the impact of the
viscosity on the bubble dynamics, all constants are se-
lected for water at T = 20◦C. The initial conditions for
all simulations are Rmax = 5 mm, which is the typi-
cal size obtained during experiments, Ṙ = 0 m/s and
pg,0 = 13 Pa. The estimated value for the initial partial
pressure of the non-condensable gas is obtained by nu-
merically fitting the Keller-Miksis equation to the first re-
bound of experimentally observed bubbles in water hav-
ing a maximum radius close to Rmax = 5 mm. This
value is assumed to be similar in the cornstarch suspen-
sions in which the experiments are conducted in a similar
fashion to those in water, but where the rebounds can-
not be visualized. Finally, the time is normalized by the
collapse time, Tc, of a simulated 5-mm bubble in water.
The simulations, where the equations are solved utiliz-
ing an explicit Runge-Kutta formula (ode45 in Matlab),
show that for an increase in shear viscosity, the collapse
time increases as well, which is in accordance with pre-
vious literature and experimental work [e.g., 53, 54]. In
other words, an increasing viscosity results in a decrease
of the collapse speed and in the dampening of the re-
bounds until the collapse gets replaced by a monotoni-
cally decreasing curve that asymptotically tends toward
the equilibrium radius of the bubble. The equilibrium
radius can be computed by solving the steady state case

of Eq. (5) for R: (pv(T∞)+pg,0

(
R0

R

)2κ
− σ

R −p∞), which

yields R/Rmax = 0.035 for the simulations of Fig. 3.
The critical value µ = 3.8 Pa s for which damped re-
bounds transition to an asymptotic collapse also depends
on these initial conditions. At that moment, the abso-
lute value of the strain rate shows an absolute maximum
value not exceeding 104 s−1, while for lower viscosity the
strain rates reach up to 105 s−1. However, these sim-
ulated values depend on Rmax. It is worth noting that
for µ = 0.4 Pa s, the integration results in an oscillating
strain rate even after the bubble has reached its equi-
librium radius, meaning that the simulation is simply
integrating around it.

The round markers in Fig. 3 depict the instants chosen
in this study as the collapse times based on the arbitrary
criteria that bubble has collapsed to within 0.11 mm from
the equilibrium radius. Such a definition is needed par-
ticularly in the case of an asymptotic collapse, to avoid
having non-explicit collapse times. The chosen limit cor-
responds to the size of a single pixel in our experimental
images, below which the image analysis script would not
be able to assess variations in the bubble radius evolu-
tion. Now that the range of typical strain rates in a New-
tonian fluid have been identified, the bubble collapse time
one could expect in a shear-thickening fluid is explored
through a parameter study. Figure 4 displays contours of
the simulated collapse times, according to our previous
definition, by numerically solving the Keller-Miksis equa-
tion. The viscous term is expressed through the Cross
model, and the effects of µ∞, k and n from Eq. (2) are
examined. The zero shear viscosity µ0, density ρ∞, speed
of sound c∞, surface tension σ, the isentropic coefficient
κ and partial pressure of the vapor phase pv(T∞) are all

FIG. 4. Contours of the collapse time extracted by numer-
ically solving the Keller-Miksis equation [Eq. (4)] for non-
Newtonian fluids as a function of the Cross model [Eq. (2)]
parameters: the infinite shear viscosity µ∞, the relaxation
time k and the power index n. The collapse time is normal-
ized to that of a bubble in water, Tc,water. All other constants
are taken for water at T∞ = 20◦C.
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set to the value of water and water vapor at T∞ = 20◦C.
The results indicate that for the typical strain rates

encountered in Fig. 3, a higher µ∞, which translates
into a higher difference between the zero and infinite
shear viscosities, yields a higher collapse time. Similar
results have also been found in numerical research on gen-
eral non-Newtonian fluids such as polymer melts using a
power-law model instead of a Cross model [54, 55]. For
high relaxation times, k, the fluid finds itself within the
µ∞-regime most of the time, as the shear rates required
to reach µ∞ correspond to the ones expected from any
cavitation events, and can thus be compared to a viscous
Newtonian fluid with a constant viscosity of µ∞. The
simulated collapse times are also close to that of a cavi-
tation bubble in water for µ∞ < 3×10−2 Pa s. However,
for low relaxation times, this limit gets slightly shifted
to higher µ∞, as the shear rates required to reach µ∞
in these cases are so high that they are almost never
achieved within the simulated conditions.

Contours for three different power indices, n = 1, 2,
and 5, are also compared. An increase in the exponent
beyond n = 5 did not yield any appreciable differences.
The effect of n on the collapse time appears to become
more significant as µ∞ increases and k decreases, but
overall, its role can be considered to be of secondary im-
portance to viscosity as its impact is highly dependent
on both parameters.

B. Experiments

1. Visualizations

Visualizations of the growth and collapse of cylindrical
cavitation bubbles in water and cornstarch suspensions
of different volume fractions are shown in Fig. 6. In wa-
ter, apparent “inner” and “outer” radii of the bubble can
be observed, as shown in Fig. 5 and Fig. 6(a). This is
caused by the bending of the interface of the cylindrical
bubble in the viewing direction. The bubble’s interface is
bent outwards during expansion and inwards during col-
lapse as displayed in respectively Fig. 5(a) and Fig. 5(c).
Fig. 5(b) shows the transition, which causes the observed
“outer” radius of the bubble to slightly exceed the value
taken at the middle of the oscillation period, which corre-
sponds the the maximum radius as defined by theoretical
cylindrical bubble dynamics. The overshoot being of a
few tens of micrometers, which is still below the measure-
ment uncertainty of 0.22 mm, it is neglected.

The bubble remains almost perfectly circular through-
out its growth until the beginning of its collapse, as seen
in the third frame of Fig. 6(a), where the interface tran-
sitions from being bent outwards to inwards. During the
bubble’s collapse phase, the distance between the “inner”
and “outer” radius reduces. A dark grey halo can be ob-
served around the bubble boundary in the fifth frame.
This is likely due to the friction against the Plexiglas
plate where traces of non-condensable gas are mixed with

the surrounding fluid. The bubble interface is slightly
perturbed by remnants of broken wire. However their
influence on the overall bubble dynamics is considered
negligible, as it is not apparent during the first collapse
and chaotic rebound phases that follow after the seventh
frame. This can also be verified by comparing data in
water to theory. The cavitation bubbles in Figs. 6(b)-(e)
have been generated in the shear-thickening cornstarch
suspensions. In these images, only the “outer” radius is
apparent, which has been verified by comparing values
between water and a low volume fraction cornstarch sus-
pension with frontlight illumination. The bubbles appear
dark against the light background of the more reflective
cornstarch mixture.
The presence of cornstarch particles burnt by the spark

during bubble expansion and pushed against the Plexi-
glas wall and bubble boundary also contribute to dark-
ening the cavity and are visible after collapse. Up to
ϕ = 0.37, the small amount of darker particles remains
dispersed and is only mixed with the fluid during col-
lapse and scattered by the flow inversion during the re-
bound, as shown in Fig. 6(b). However, for cornstarch
suspensions with higher volume fractions, such as those
in Figs. 6(c)-6(e), the particles aggregate in a thin, yet
compact layer of burnt cornstarch that remains adjacent
(but not adhered) to the Plexiglas wall after collapse.
This phenomenon has become the main challenge of this
study, as it obstructs vision of the collapse in higher solids
fraction suspensions.
In Fig. 6 (see also the corresponding videos in supple-

mental material [56]), one sees broken pieces of wire of
radius smaller than 150 µm as bright spots ejected from
the bubble center. They are considered to have no no-
ticeable effect on the bubble dynamics and act as markers
that can be seen under the layer of burnt cornstarch and,
when visible in subsequent frames, they provide informa-
tion on the direction of the flow.
The bubbles generally keep their cylindrical shape up

FIG. 5. Side view of a cylindrical cavitation bubble at (a) the
moment it reaches its maximum volume, while displaying its
shape adopted during expansion, (b) the moment the bubble
interface transition from its expansion shape to its collapse
shape, (c) the moment it collapses showing its collapse shape.
The “outer” and “inner radii are displayed on the left and
right side of the bubble, respectively. The “outer” radius in
(b) slightly overshoots the one in (a) due to the transition in
interface shape.
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FIG. 6. Selected frames from 125 kFPS visualizations of nominally cylindrical spark-induced bubbles in (a) water, and in
cornstarch suspensions of volume fractions (b) ϕ = 0.37, (c) ϕ = 0.44, (d) ϕ = 0.46 and (e) ϕ = 0.52. Every sequence shows
instants t = 0.32, 0.80, 1.28, 1.60, 1.92, 2.24 and 2.32 ms, with t = 0 ms defined as spark ignition. The brightness of all frames
has been increased.

to ϕ = 0.44, which is the volume fraction limit beyond
which the transition from CST to DST of the fluid be-
havior is expected to occur. The bubbles become clearly
deformed in the suspension with ϕ = 0.46, and two spikes
following the horizontal electrode-wire are observed. Fi-
nally at ϕ = 0.52, above which success rate of spark
ignition drops drastically, no more bubble dynamics can
be observed. Rather, the fluid behaves like a solid and
fractures appear. The fracture branches visible in such
experiments are long compared to their width, and typi-
cally 6 to 11 branches are observed. However, one cannot
exclude the possible existence of invisible branches that
are too small to be detected or have not breached to the
surface against the transparent plate.

These results can be compared to those reported previ-
ously in Hele-Shaw cells [24, 57]. However, one must keep
in mind that they are built on Stokes flow theory assum-
ing that inertial forces are negligible compared to viscous
forces, and is not valid in the present study. This is con-
firmed numerically by computing the Reynolds, Re, and
Capillary, Ca, numbers corresponding to the simulations
in Fig. 7(b)-(e), as recording the bubble wall speed is hin-
dered during the collapse by the presence of burnt corn-
starch. Their maximum values are presented in Table I.
Also, viscous fingering, reported in past studies, is never
witnessed in our experiments, confirming that the inertial
forces are dominant during cavitation events. However,
the loss of radial symmetry in Fig. 6(d) shows that the
viscous forces start to counteract the inertial forces be-
fore producing actual fracture, where , Re ≈ O(101).

The fracture patterns observed here are also wider than
reported in the previous studies, which induced the frac-

TABLE I. Maximum Reynolds and Capillary numbers result-
ing from the numerical simulations of the four main volume
fractions, as seen in Fig. 7(b)-(e).

ϕ 0.00 0.37 0.44 0.46

Re 3× 105 5× 102 7× 101 1× 101

Ca 9× 103 2× 103 3× 102 6× 100

ture by injection of pressurized gas. For example, [24]
observed a similar number of branches as seen in the
present study. However, in the gas injection inducing
fractures, the branches could also bifurcate as they grew
and propagated further away from the center of the ap-
plied pressure. Bifurcation of the branches was never
observed with the cavitation-induced fracture. Further
analysis on the fracturing phenomena is provided in sec-
tion IVB3.

2. Comparison with theory

Figure 7(a) compares the measured radius-time curves
at various solids fractions corresponding to the bubbles
shown in Fig. 6. The radii have been normalized to their
maximum “outer” radius, and the times to the simulated
collapse time of a bubble of similar maximum radius in
water, Tosc,water. Note that to obtain a bubble of com-
parable size as in lower volume fractions (Rmax ranges
between 6.45–6.75 mm for ϕ = 0.44–0.37) the capaci-
tor voltage (hence total discharged energy) had to be
increased from 70V to 80V for the ϕ = 0.46 mixture
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FIG. 7. (a) Normalized radius-time curves of cylindrical cavitation bubbles in water and cornstarch suspensions of increasing
volume fraction, ϕ, visible in Fig. 6. The grey region depicts the growth phase. Rmax ranges between 6.2–6.75 mm. The
experimental data are compared to the Keller-Miksis equation, where the viscous term is modeled by a Cross model for
(b) water, and (c) ϕ = 0.37, (d) ϕ = 0.44, (e) ϕ = 0.46, cornstarch suspensions. The density and speed of sound are set
accordingly to each fluid’s volume fraction based on data by [26]. The errorbars show the normalized measurement uncertainty
of 0.22 mm, and to improve readability, only one recorded data point in twelve is shown.

(Rmax = 6.2 mm) in order to compensate for the shear-
thickening effects. The oscillation period in the ϕ = 0.37
cornstarch suspension is similar to the one in water. Dur-
ing the growth phase (gray-shaded region), the extracted
bubble radius is overestimated due to the brightness of
the spark, but this phase is in any case not considered
in our analysis. The radii measured in the ϕ = 0.44
and ϕ = 0.46 cornstarch suspensions are highly affected
by the presence of burnt cornstarch which obscured the
true radius during the later half of collapse. Nonethe-
less, while the minimum radius was not observable in
these cases, the data show the oscillation period through
stabilization and a small rebound. Overall, the experi-
ments agree with the theory quite well in the early col-
lapse stage, but comparison of the collapse and potential
rebound to the Keller-Miksis equation is limited. De-
spite the limitations of the experiment, it is clear that
the bubble’s oscillation period is longer in mixtures than
in water, which is in agreement with the simulations.

In Fig. 7(b)-(e), the Keller-Miksis equation is com-
pared with the experimental collapse and rebound
phases. For bubbles in water, the measurement and the-
ory are in satisfactory agreement up to the end of the first
oscillation, beyond which the bubble loses its cylindrical
shape and is strongly affected by the gap boundaries.

As the solid volume fraction increases, the agreement
with theory deteriorates, and instead for ϕ = 0.37 the
theory predicts a longer collapse time compared to the
experiments. Uncertainty on the exact instant of the

start of the bubble collapse may have contributed to this
mismatch, as the bubbles in cornstarch usually stay in
the range of the maximum radius, given the experimen-
tal uncertainty, for about 20% of the oscillation time.
It could also be that the recorded “outer” radius dur-
ing collapse is underestimated due to opaqueness of the
medium. The simulated rebound is, however, predicted
to be larger than that in water due to the higher speed of
sound in this mixture while being only weakly damped
by viscosity.

Figure 8 shows the duration of the first oscillation pe-
riod, Tosc, for various bubble sizes in water and corn-
starch suspensions of different volume fractions. Clearly
for suspensions exceeding ϕ = 0.37 the oscillation time
increases compared to water. The increased viscosity is
not the only factor causing such prolongation, but also
the increase in density of the mixture, while the speed
of sound’s contributions are minor in the first bubble os-
cillation. This explains why the Cross model parameter
values shown in Fig. 2, when used in the numerical simu-
lations of Fig. 4, suggest shorter collapse times than the
experiments for ϕ = 0.44 and ϕ = 0.46. The shaded re-
gion of Fig. 8 depicts the oscillation periods simulated
through the Keller-Miksis equation and bounded by wa-
ter and a ϕ = 0.46 cornstarch suspension (lower and up-
per lines, respectively). In order to be comparable to
the oscillation period, the collapse time Tc is doubled as-
suming symmetrical growth and collapse. All measured
oscillation times for ϕ = 0.46 exceed the simulated pre-
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FIG. 8. The measured oscillation period of spark-induced
cylindrical cavitation bubbles in water and cornstarch sus-
pension of different volume fraction, ϕ, for different maxi-
mum radii (corresponding to varying spark energies). Curves
show the cylindrical [Eq. (3)] and spherical Rayleigh col-
lapse time equations, doubled to be comparable to Tosc. The
highlighted region shows the numerically simulated bound-
aries of the oscillation period using the Keller-Miksis equation
for cornstarch suspensions of ϕ = 0.00 and ϕ = 0.46. Note:
The uncertainty in Tosc is smaller than the marker, while the
uncertainty on Rmax is estimated to 0.22 mm and is not shown
to improve readability.

dictions, which gives a reason to question the validity
of the rheometry measurements and of the Cross model
at very high shear rates, or the definition of the exper-
imental oscillation period. Indeed, as noted previously
when the shear is increased, a shear-thinning phase may
follow shear thickening, which would not be well repre-
sented by the Cross model. Additionally, friction with
the Plexiglass plates possibly increased by presence of
burned cornstarch particles in contact with the Plexiglas
plates may be delaying the collapse. Note that although
slippage of the shear-thickening mixtures against the par-
allel plates [58] has not been clearly distinguished from
the bubble dynamics, its influence can currently not be
excluded.

One also notices that the Keller-Miksis integration ex-
pects a linear relationship between maximum radius and
oscillation period, as for spherical bubbles. However, the
oscillation period based on the cylindrical Rayleigh col-
lapse time, Tc, as expressed in Eq. (3) and shown by
the solid line in Fig. 8, has a better agreement with the
measurements. As this incompressible equation does not
account for viscosity, it is only fitted to data of cavita-
tion in water and the fit to the measurements yields a
R∞. This fitted value is within 2% of Rcell, which might
be telling on the effects of confinement on bubble dy-
namics. However, the confinement effect has not been
investigated further in the scope of this research.

The Rayleigh collapse time equation for spherical bub-
bles has also been plotted in Fig. 8 (dash-dotted line).
One might expect the bubbles near 1-mm radius to be
closer to it, since Rmax = 1 mm is the limit for a spherical
bubble to exist within the 2-mm gap. This, however, is
not the case for the few tests that were conclusive in this
range, which could be explained by the prolongation of
the oscillation time due to the proximity of solid bound-
aries [59]. Note that reflection of spark-induced shock
waves against the test-cell boundaries are considered to
have a negligible effect on bubble dynamics. This is due
to the fact that cylindrical propagation attenuates the
pressure wave’s peak pressure over the travelled distance,
which is approximately 18 cm in order to come back to
the bubble interface during experiments [60]. The in-
teraction with the two parallel plates induces further re-
flection, leading to interaction between reflected shocks,
which contribute to weakening the overall pressure tran-
sient. Furthermore, granular suspensions have proven to
be efficient means for shock wave attenuation, due to
their interaction with solid particles [61].

3. Fracture patterns

Fig. 6(e) shows cavitation-induced fracture in a
ϕ = 0.52 volume fraction cornstarch suspension, where
rapidly growing dynamic jamming fronts are created
by cornstarch particles interaction in the fluid [4]. It
is henceforth referred to as a fracture pattern with
branches, as no bubble dynamics are exhibited in this
case. In contrast to the finite expansion time of a cavi-
tation bubble, the event of fracturing occurs in the first
instants of the process, while the spark continues to de-
posit energy into the system.
A better view on the fracturing is shown in Fig. 9,

where the illumination has been lowered during the
spark’s presence in order to avoid saturation that would
hide the actual fracture branches. Figures 10(a)-(c) show
different fracture patterns visible at the discontinuation
instant of the spark. This corresponds to the maximum
size of the pattern before the relaxation of the fluid, which
results in a partial “healing” of the fractures. This final
event only lasts a few milliseconds, which is in the same
order of magnitude as the relaxation time, k found in
Fig. 2 for ϕ = 0.52. Higher spark voltages result in a
larger fracture patterns, which, however, remain consis-
tent in shape.
Figure 10 shows fracture quantities extracted from the

visualizations in a ϕ = 0.52 volume fraction cornstarch
suspension where the input energy is varied through
the spark voltage. Results may be compared to lit-
erature where similar fractures are observed as a con-
sequence of injecting pressurized gas into a cornstarch
suspension [24]. To enable a comparison, the initial
pressure generated by the spark, pi = pv(T∞) + pg,0,
where the vapor term is assumed constant and negli-
gible, is estimated by finding the initial partial pres-
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FIG. 9. Time series of the cavitation-induced fracture in a cornstarch suspension of ϕ = 0.52. The interframe time is 80 µs
with the first frame occurring 160 µs after spark ignition.

sure of the non-condensable gas, pg,0, necessary for the
Keller-Miksis equation to reach the mean maximum ra-
dius of all tests conducted at a specific capacitor voltage
in water. As initial conditions, the computation uses
R0 = 0.15 mm estimated as the initial radius of the
plasma generated by the wire-electrodes of this same di-
ameter, and Ṙ0 = 0 m/s. The resulting initial pressures
range between 100–500 bar with capacitor voltages rang-
ing between 60–90 V (corresponding to discharge ener-
gies of E =

∫
u(t)i(t)dt ≈ U2C = 11.9–26.7 J) and are

displayed as a color scale in Fig. 10. The pressures en-
countered in this research are 1 to 2 orders of magnitude
higher than in literature, however the energy input from
simple pressure times volume change estimate in [24] is
of the same order of magnitude up to ≈ 6 J.
The fracture speed is deduced by recording the time

it takes for the first fracture branch to reach a circle of
4-mm radius, centered on the point where the spark ig-
nites. By choosing such an arbitrary value, one expects
higher speeds for higher input energies, as the fracture
pattern is bigger. Yet in general, the data in Fig. 10
show that the fracture speed in such a cornstarch sus-
pension range between, v =10–20 m/s, which is in the
same order of magnitude as reported in literature, using
a similar approach [24]. This last point interestingly sug-
gests that although initial pressures are estimated to be
much higher, the fracture speed seems to converge to a
maximum value. Also note that the mean fracture speed
is comparable to the mean expansion speed of cavitation
bubbles in water from ignition to reaching a 4-mm radius.

Finally, the aspect ratio, A, is a dimensionless param-
eter quantifying the ratio of the mean spacing between
branches to the maximum radius of the circular area
shown in Fig. 10(d), computed as

A =
2πRmax − Pdark

2πRmaxNbranch
, (6)

where Rmax is deduced from the area of the fracture pat-
tern as an equivalent radius at the discontinuation in-
stant of the spark, Pdark is the circular perimeter passing
over dark fracture branches computed by counting the
number of dark pixels on a 1-pixel-wide ring of inner ra-
dius Rmax, and Nbranch is the number of branches having
reached Rmax. This number gives indication on the shape
of the fractures: close to zero, the branches are very thick
and short while close to 1, they are very thin and long.
As could be expected for tests conducted in a similar
cornstarch suspension, the aspect ratio stays constant
through out the test with a mean value of 0.1 ± 0.02,

as shown in Fig. 10. In most of the tests, slightly larger
fractures are visible along the wire-electrodes shown in
black in Fig. 10(a), which suggests the wires to act as
a weakness favorable for propagation. Also note that
fracture patterns in the present study are relatively wide
compared to [24], where the reported fractures were slim
and typical for brittle materials.

V. CONCLUSIONS

A theoretical and experimental investigation of cav-
itation in a shear-thickening fluid is presented for the
first time. The theoretical simulations are based on the

FIG. 10. Mean fracture speed (top) and aspect ratio (bot-
tom) of cavitation-induced fracture in a shear-thickening fluid
(cornstarch suspension of ϕ = 0.52) for different maximum
radii Rmax. The color of the symbols indicates the esti-
mated initial gas pressure generated by the spark, and the
dash-dotted line shows the mean value for the aspect ratio.
Images of different fracture patterns for a capacitor charged
at (a) 60 V and showing the wire-electrodes, (b) 70 V, and
(c) 90 V, are visible, as well as (d) image showing the equiva-
lent circular area computed from the dark pixels of the frac-
ture shape in image (b). The circle shows the maximum ra-
dius, Rmax. The uncertainty on v and A are indicated by error
bars sometimes hidden by their marker. They are computed
from a 95% confidence interval Monte Carlo simulation, using
the usual 0.22 mm inaccuracy on distances such as Rmax and
Pdark and 40 µs on time.
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relatively simple Keller-Miksis-Cross model adapted to
shear-thickening fluids and reveal the properties expected
from such a fluid to show actual shear-thickening vis-
cous effects, distinguishable from an inviscid or Newto-
nian viscous fluid. A minimum infinite shear viscosity of
3×10−2 Pa s is necessary to start distinguishing the col-
lapse time from the inviscid one. Up to an infinite shear
viscosity of 4 Pa s, the collapse time only increases to 10%
of the inviscid collapse time. However, the relaxation
time drastically increases this value when reduced below
10−3 s. The simulations also reveal damped dynamics
and higher collapse times for increasing fluid viscosity.
Overall, although the Cross model fits the rheometry
data reasonably well, better models might be deduced
by probing higher shear rates.

From the experiments, the bubble oscillation period
could be measured and compared to that predicted from
theory. Only for solids fraction above ϕ = 0.37 does
the oscillation period begin to noticeably deviate from
theory in water, although this is more likely due to in-
creased shear viscosity and density of the particle suspen-
sions rather than their shear-thickening nature. Shear-
thickening effects on the observed bubble shapes appear
to become important only in the discontinuous shear
thickening regime, starting from ϕ = 0.37, where the
bubbles are increasingly distorted and eventually show
cavitation-induced fracture starting at solids fractions
between ϕ = 0.37 and ϕ = 0.52. This behavior is similar
to recently reported fracturing in a shear-thickening fluid
by a sudden introduction of compressed gas [24], where
fracture propagation speeds are between 10-20 m/s.

The observed discrepancy of the oscillation periods be-
tween experiments and theory might be caused by un-
accounted wall effects in the cylindrical cavitation bub-
ble dynamics equations. The uncertainty associated with
the extrapolation of the rheometry data to constant in-
finite shear viscosity may also contribute to the discrep-
ancy, making the Cross model invalid for this purpose.
For similar cornstarch water suspensions, utilizing dif-

ferent rheometer techniques, very non-Cross like shear-
thinning, thickening and thinning again behaviour as a
function of monotonically increasing shear rate has been
reported [25, 36]. Presently, rheometers capable of cov-
ering shear rates up to 106, way higher than for com-
mercially available rheometry approaches, have been re-
ported [62, 63], which might help in overcoming the un-
certainty related to high shear rate rheometry. However,
as they often rely on very small gaps in parallel plate
geometries, they will be limited by the particle sizes in
suspensions and this is where cavitation rheology may
offer a useful additional method for characterizing such
complex fluids. Study of the viscosity of opaque shear-
thickening fluids could be achieved by improving current
theoretical models for cylindrical cavitation bubble dy-
namics, and improving the experimental setup used in
this study. The use of a shorter spark duration and in-
crease of voltage, or use of a laser in optically transparent
fluids to mitigate burning of the particles could poten-
tially reduce the measurement uncertainty.

Further study could benefit from tests in a clear parti-
cle suspension such as fumed silica particles in Polyethy-
lene Glycole [64]. This would improve the extraction of
quantities such as the time at which the bubble radius
extracted from experiments diverges from theory, which
appears to happen earlier with increasing ϕ. In general,
a wider variety of particle suspensions could be examined
to enable observing more significant differences between
shear-thickening and Newtonian viscous effects on the
oscillation period.
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fully acknowledges the support of UC Berkeley’s Powley
fund for the seed funding that helped start this project.

[1] E. D. Wetzel, Y. Lee, R. G. Egres, K. M. Kirkwood, J. E.
Kirkwood, and N. J. Wagner, in AIP conferr. proc., Vol.
712 (Am. Inst. Phys., 2004) pp. 288–293.

[2] J. Qin, B. Guo, L. Zhang, T. Wang, G. Zhang, and X. Shi,
Composites Part B 183, 1 (2020).

[3] A. Srivastava, A. Majumdar, and B. S. Butola, Crit. Rev.
Solid State Mater. Sci. 37, 115 (2012).

[4] E. Brown and H. M. Jaeger, Rep. Prog. Phys. 77, 1
(2014).

[5] T. C. De Goede, K. G. De Bruin, and D. Bonn, Sci. Rep.
9, 1 (2019).

[6] C. A. Brennen, Cavitation and bubble dynamics (Camb.
Univ. Press, 2014).

[7] E.-A. Brujan, Europhys. Lett. 50, 175–181 (2000).
[8] E.-A. Brujan and P. R. Williams, Rheol. Rev. , 147

(2005).

[9] E.-A. Brujan, Cavitation in non-Newtonian Fluids
(Springer, 2011).

[10] M. Jalaal, M. K. Schaarsberg, C.-W. Visser, and
D. Lohse, J. fluid Mech. 880, 497 (2019).

[11] E. Turkoz, A. Perazzo, H. Kim, H. A. Stone, and C. B.
Arnold, Phys. Rev. Lett. 120, 1 (2018).
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