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Smart scattering scanning near-field optical microscopy
Simon Labouessea, Samuel C. Johnsonb, Hans A. Bechtelc, Markus B. Raschkeb, and Rafael Piestuna

aDepartment of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado, 80309, USA.; bDepartment of Physics, Department of Chemistry,
and JILA, University of Colorado, Boulder, CO 80309, USA; cAdvanced Light Source Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Scattering scanning near-field optical microscopy (s-SNOM) pro-
vides spectroscopic imaging from molecular to quantum materials
with few nanometer deep sub-diffraction limited spatial resolution.
However, in its conventional implementation s-SNOM is slow to ef-
fectively acquire series of spatio-spectral images, especially with
large fields of view. This problem is further exacerbated for weak
resonance contrast or when using light sources with limited spectral
irradiance. Indeed, the generally limited signal to noise ratio pre-
vents sampling a weak signal at the Nyquist sampling rate. Here, we
demonstrate how acquisition time and sampling rate can be signif-
icantly reduced by using compressed sampling, matrix completion,
and adaptive random sampling, while maintaining or even enhancing
the physical or chemical image content. We use fully sampled real
datasets of molecular, biological, and quantum materials as ground-
truth physical data and show how deep under-sampling with a corre-
sponding reduction of acquisition time by one order of magnitude or
more retains the core s-SNOM image information. We demonstrate
that a sampling rate of up to 6 times smaller than the Nyquist cri-
terion can be applied, which would provide a 30-fold reduction in
the data required under typical experimental conditions. Our smart
s-SNOM approach is generally applicable and provides systematic
full spatio-spectral s-SNOM imaging with a large field of view at high
spectral resolution and reduced acquisition time.
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Infrared vibrational scattering scanning near-field optical1

microscopy (IR s-SNOM) provides nano-imaging with intrin-2

sic vibrational, phonon, and electronic resonance contrast3

with chemical and material specificity at deep-sub-diffraction4

spatial resolution (≤ 20 nm) (1–5). Recent advances in IR5

s-SNOM enable nanoscopic chemical imaging of diverse ma-6

terials, ranging from biological to molecular and quantum7

systems. The meso- and macroscopic behavior of these sys-8

tems is determined by interactions at the nanoscopic level and9

therefore require imaging techniques with high spatial resolu-10

tion and large fields of view. Typical datasets for IR s-SNOM11

chemical imaging include two spatial dimensions across the12

sample surface and one spectral dimension, e.g., as obtained13

by scanning the reference arm mirror position in nano Fourier-14

transform infrared spectroscopy (nano-FTIR), see Fig. 1A.15

Broadband IR light sources are desired for measuring mul-16

tiple vibrational modes but are often limited by their low17

brilliance, which reduces the signal to noise ratio (SNR). Laser18

based IR spectroscopy has high brilliance but is challenged19

by sample exposure when low repetition rate and high pulse20

energy lasers are used. Therefore, chemical nano-imaging of21

biological, molecular, and quantum systems with large spatial22

and spectral resolution over large fields of view has remained23

challenging because of the associated large multidimensional24

datasets whose achievable SNR limits the acquisition rate.25

Modifications of s-SNOM to increase acquisition speed have26

been proposed (6, 7) but have not yet taken advantage of the27

large redundancy in s-SNOM datasets. Previous work showed 28

that compressed sampling can reduce nano-FTIR acquisition 29

time using spectral sparsity (8). Further, compressed sensing 30

has been adapted (9) for spatio-spectral nano-FTIR imaging, 31

and augmented by spatial regularization. While compressed 32

sampling and matrix completion have been used intensively 33

for hyperspectral imaging (10–12), their full potential has not 34

yet been exploited for s-SNOM. Matrix completion (13, 14) 35

relies on the hypothesis that only a small number of chemical 36

species, compositional characteristics, or structural features 37

are present in the sample, which is in fact typically the case 38

for most samples imaged with s-SNOM. 39

In this work we address this problem of reducing the amount 40

of acquired data while maintaining physical relevance by using 41

prior knowledge and an adaptive sampling algorithm tailored 42

for s-SNOM. First, we demonstrate a reduction in data acquisi- 43

tion by using a combination of prior physical knowledge about 44

the light source, the spectral sparsity, and a limited number of 45

distinct chemical species. The analysis of the impact of each 46

hypothesis individually, and their interplay, leads to the design 47

of an effective reconstruction algorithm for full spatio-spectral 48

s-SNOM imaging from compressed measurements. We show 49

that a compression of up to 96.6% (1/30 sample) compared to 50

acquisition under conventional uncompressed conditions can 51

be achieved without sacrificing physically meaningful informa- 52

tion in the nano-FTIR images or spectra. Further, we develop 53

an adaptive algorithm for positioning the reference arm mirror 54

at each spatial position of the sample. We note that random 55

sampling is a universal strategy adapted for compressed sam- 56

pling and matrix completion (15, 16). We propose to estimate 57

the normalized average envelope of the local interferograms to 58

use as a probability distribution to select the random mirror 59

positions. This approach acquires data in the most relevant 60

parts of the interferogram with high probability, see Fig. 1B. 61

To study the achievable performance of this new approach of 62

smart s-SNOM, we use fully sampled real datasets of biological, 63

quantum, and molecular materials (17) as ground truth. A 64

sub-sampled measurement is extracted from the ground truth 65

measurement using smart sampling, then a reconstruction 66

algorithm recovers the remaining not-sampled data by using 67

prior knowledge about the light source and the sample. 68

Methods 69

Compressed sampling (CS) and matrix completion (MC) are 70

well suited for s-SNOM to reduce the number of measure- 71

ments needed to have a large field of view at high spectral 72

resolution. In the following subsections we motivate choices 73
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Fig. 1. Smart s-SNOM schematic: (A) Light source laser L or synchrotron S, beam
splitter BS, scanning mirror M on reference arm. Sample on scanning stage under the
tip T, point detector Mercury Cadmium Telluride or MCT. Hyperspectral images can
be acquired by scanning the mirror and the sample. In case of a 2D grid scan, or of a
1D line scan of the sample, the final output is respectively a 3D or 2D hyperspecral
image. If the sample is not moved but only the mirror is scanned the final output is
a 1D spectrum. B) Diagram of smart s-SNOM. Our contribution: smart sampling
system, provides a list of positions of the scanning mirrors for each sample point
and reconstruction algorithm, to estimates the value of the missing data and hence
recreates a fully sampled hyperspectral image X. At each new spatial position of the
sample, an intermediate reconstruction is calculated in order to evaluate an averaged
envelopeH(X) of the interferograms. H(X) is normalized and used as a random
distribution to select the mirror positions for the next sample position.

to create reconstruction algorithms based on CS and MC and74

describe an adaptive scan strategy for the reference arm mirror75

position. Conventionally, the sample is raster scanned under76

an atomic force microscope (AFM) tip to image a rectan-77

gular area of the sample; the spatial points are distributed78

along a regular discrete grid of evenly spaced points. At a79

given spatial position of the tip, the reference arm mirror80

is scanned to acquire an interferogram. One data point of81

the interferogram corresponds to one mirror position, which82

corresponds to one optical delay between reference and signal83

arms. In practice, the mirror is translated with a constant84

speed and measurements are periodically performed to get85

regularly spaced delays (18). Here we propose to use only86

a small fraction of the mirror positions that are standard in87

conventional s-SNOM acquisition. In order to recover the88

missing data points, we exploit prior knowledge of the sample89

and the light source. See supplementary section "Experiment90

acquisition details".91

Compressed sampling (CS). Infrared spectroscopy resolves92

spectral peaks from, e.g., molecular vibrations, which are93

specific to the molecular identity and their local chemical en-94

vironment. Each spatial point of an s-SNOM measurement95

contains a mixture of distinct chemical species, which, when96

spectroscopically measured, yield a combination of vibrational97

spectra of multiple local chemical species. s-SNOM spectra98

are usually composed of a few resonance peaks and are thus,99

in principle, sparse signals.100

Unfortunately, the sparsity assumption is not always cor-101

rect, for instance, the free carrier response can contribute to a102

wide spectral range. In those cases only other prior knowledge,103

as described in the following sections can be used. The num-104

ber of mirror positions in FTIR spectroscopy can be reduced 105

using concepts of compressed sampling (8, 9). Compressed 106

sampling (19–21) is a well established technique to efficiently 107

acquire and reconstruct a signal. Two main assumptions are 108

required, sparsity (here of the spectrum) and mathematical 109

incoherence of the sensing matrix (19). In our context, in- 110

coherence means that every point of an interferogram is a 111

different linear combination of each frequency point of the 112

corresponding spectrum. Here, the interferogram and the 113

spectrum are linked by a Fourier transform. It is well known 114

in signal processing that the Fourier transform associated with 115

a random selection of samples leads to an incoherent sensing 116

matrix (22). Therefore, in s-SNOM, all the conditions are 117

met to use CS on the spectral dimension. Moreover, spectral 118

peaks can only be detected if they are within the light source 119

bandwidth. Hence, the spectrum is reconstructed only inside 120

the light source bandwidth and set to zero outside. When 121

the light source is a laser, this can be used to greatly reduce 122

the number of necessary samples acquired (6). The spectral 123

portion outside the light source bandwidth does not affect 124

the measurement and is considered to be composed of zeros. 125

A truncated Fourier transform on the accessible part of the 126

spectrum is used to reduce the problem dimension and to 127

increase computation speed and compression factor. 128

Matrix Completion (MC). s-SNOM spectra are combinations 129

of a few distinct chemical vibrational spectra. Under mild 130

assumptions, this leads to a small rank measurement matrix 131

when the number of chemical species in the sample is small 132

compared to the number of spatial measurement points. Under 133

a linear mixing assumption it can be shown that the rank of 134

the measurement matrix will be smaller than the number of 135

chemical species in the sample (23, 24) (see supplementary 136

section "Low rank assumption"). Matrix completion is used to 137

complete matrices with missing entries under the approximate 138

low rank assumption (13, 14). Regular s-SNOM data can 139

be rearranged in a matrix form with interferograms in rows, 140

where each row corresponds to a given spatial position of the 141

tip. When only a few random positions of the mirror are 142

selected, the missing data in the matrix is suitable for recovery 143

as missing entries because the matrix is low rank. MC is not 144

sensitive to the complex spatial distribution of the chemical 145

species, therefore it remains a useful tool even for samples 146

with random uncorrelated spatial distributions of the chemical 147

species. 148

Adaptive random sampling. Redundancies in s-SNOM data 149

can be exploited to recover a full field of view and a complete 150

spectral image from fewer measurements. In addition, we pro- 151

pose an adaptive selection of the most appropriate sampling 152

positions for the reference arm mirror at the next tip position. 153

Intuitively, the sampling should select parts of the interfer- 154

ogram that convey the most variations. Thus, we propose 155

tuning the probability distribution of the random sample selec- 156

tion as close as possible to the envelope of the interferograms. 157

s-SNOM samples can show a wide diversity of interferogram 158

envelopes, which emphasizes the necessity for an adaptive 159

strategy to select the best mirror positions to acquire data. 160

At the beginning of an acquisition, the only prior knowledge 161

available is the spectral bandwidth of the light source and the 162

sparsity of the spectrum. Therefore, for the first sample spatial 163

position, we use a uniform random distribution to select the 164



reference arm mirror positions where data will be collected.165

The number of samples to be acquired can be determined by166

using the Nyquist criterion and the sparsity assumption. For167

the following spatial position, we have more information from168

the previous measurement. Hence, we propose tuning the169

random distribution used to select the mirror positions so that170

it is as close as possible to the envelope of the interferogram.171

We reconstruct all of the interferograms at previous spatial172

positions and calculate their envelopes. We use the average173

of these envelopes to generate the probability distribution for174

spectral sampling at the next sample position. The sampling175

rate is continually reduced throughout the measurement such176

that the desired final compression factor is achieved (more177

details can be found in supplementary section "Parameter178

tuning"). Similar to MC, the performance gain due to our179

adaptive sampling strategy is sensitive to the number of pure180

chemical species in the sample as well as to the number of181

appearances of each chemical species. However, the perfor-182

mance gain does not depend on the spatial distribution of the183

chemical species.184

Experimentally, smart s-SNOM moves the scanning mirror185

(see Fig. 1) to only some specific positions dictated by the adap-186

tive sampling strategy. This kind of experiment is emulated187

by using the adaptive sampling selection rules on the data188

provided by a conventional s-SNOM experiment. The fully189

sampled dataset can then be used both as a ground truth to190

calculate errors, like relative mean square error, or to compare191

the peak positions of the reconstruction. In our algorithm,192

we made the choice to minimize a criterion enforcing fidelity193

to data using a quadratic norm with penalization added to194

enforce the sparsity of the spectrum and the low rank assump-195

tion. The criterion is convex and has two parameters λ1 and196

λ∗ to tune how sparse and how low rank the reconstruction197

should be, respectively. We then use a generalized forward-198

backward algorithm (25) to minimize this criterion. A detailed199

description of the criterion and of the algorithm is presented200

in the supplementary section "Algorithm". In the following we201

demonstrate how our strategy performs on different samples,202

and how well physically relevant information is kept in the203

reconstructions.204

Results205

s-SNOM imaging can be used on a broad class of samples (see206

Fig. 2), including biological, molecular and quantum materials.207

We tested our algorithms with a representative member of each208

of these material types and with two different light sources,209

including a laser and a synchrotron (Advanced Light Source210

ALS). Light source properties affect the interferogram shape211

(see Fig. 2). Specifically, the synchrotron’s broad bandwidth212

leads to a sparser representation than that of a laser. We213

quantify the compression with two different metrics. The214

ratio between the number of acquired samples for a fully215

sampled acquisition and for a smart s-SNOM acquisition is216

called the reduction factor (R). The experimental data used as217

ground truth in this paper are over-sampled to ensure Nyquist218

sampling above the highest frequency of the light source. Fur-219

thermore, the mirror displacement range is scanned to achieve220

a fixed spectral instrument resolution that is narrower than221

the observed spectral features. Therefore we also give the ratio222

between minimally sampled acquisitions (at Nyquist rate and223

smallest mirror motion range) and smart s-SNOM sampling,224

which is called the compression factor (CF). We emphasize 225

that at the experimental integration time per sample, Nyquist 226

sampling would greatly reduce the quality of the spectrum, 227

therefore we use R as a fair ratio to be highlighted. Laser 228

based broadband measurements (nano-FTIR) and synchrotron 229

IR nano spectroscopy (SINS) were performed as previously 230

described in (17) (see also Supplementary Information). We 231

considered a range of sample types and light sources for a 232

robust interpretation of smart s-SNOM reconstructions. 233

The first dataset shown in Fig. 2A is a synchrotron radia- 234

tion based measurement of 400 nm thick γ-globulin referenced 235

to Si as described in (17). This measurement highlights the 236

difficulty of measuring multiple chemical resonances with a 237

low brilliance light source. The spectrum of gamma-globulin 238

shows the characteristic amide resonances (I,II,and III) of a 239

protein and are indicated in Fig. 2A. Only one spatial point 240

is acquired, therefore only sparsity of the spectrum and light 241

source bandwidth priors can be used in this case. For this par- 242

ticular sample the sparsity of the spectrum in the light source 243

bandwidth does not enable a compression factor over 1. Here, 244

only the bandwidth prior has an effect on the compression. 245

However the reduction factor R is 17. 246

The second dataset shown in Fig. 2B corresponds to a laser 247

based measurement of oriented PTFE referenced to gold.We 248

examine the real and imaginary part of nano-FTIR spectra 249

from PTFE, rather than the amplitude and phase, as the 250

oscillator strength is too strong for the typical approximation 251

between phase and imaginary spectra. The achieved com- 252

pression factor is 4, well below the minimum number of the 253

necessary points without the sparsity and small rank assump- 254

tions. Therefore, MC and/or CS are useful to improve the 255

CF for PTFE samples. The separate effect of CS and MC is 256

demonstrated in Fig. 3 using the PTFE dataset. The influ- 257

ence of R on the characterization of the two PTFE peaks is 258

illustrated in Fig. 4. 259

The third dataset is a laser based measurement in a 260

molecular electronic material of a metal carbonyl vibra- 261

tion (2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine ruthe- 262

nium(II) carbonyl). This example demonstrates the difficulty 263

of accurately determining multiple spectral features of varying 264

resonant strengths. The center resonance ω0 splits into ω− 265

and ω+, see Fig. 2C, as the crystalinity of the nanocrystals are 266

increased. These resonances are close to each other and are of 267

similar strength, hence increasing the difficulty of reducing the 268

number of measurements. Nonetheless, we achieve a reduction 269

factor R of 4. It is worth noting that the ground truth spatial 270

sampling was irregular, namely only a subset of a regular 271

rectangular grid positions were used. Our algorithm does not 272

use the relative position of the spatial point, therefore any 273

spatial scanning pattern is compatible with smart s-SNOM. 274

The fourth dataset is a FIR measurement of the silicon 275

dioxide (SiO2) phonon performed with synchrotron radiation. 276

The ground truth corresponds to a line scan of the SiO2 277

sample. A reduction factor of 30 was achieved on this sample 278

corresponding to a CF of 6.5. Therefore, having an adaptive 279

sampling strategy is attractive to collect data only at relevant 280

mirror positions as shown in Fig. 2D. AFM images of the four 281

datasets are shown in Fig. S1 as well as the spatial position of 282

the tip where s-SNOM interferograms where acquired. 283

Adaptive sampling influence. The impact of the adaptive sam- 284

pling influence can be seen by comparing the reconstructed 285



Fig. 2. Application of smart s-SNOM to different materials systems (biological, molecular, and quantum), different light sources (Laser, ALS synchrotron) and different spatial
scanning (single point, line and 2D scan). Fully sampled datasets acquired experimentally (Blue curves). Mirror positions selected by our adaptive sampling strategy (Red
crosses). Reconstructed spectrum in amplitude / phase or |A(ν)|/Φ(ν) and real / imaginary part orRe (A(ν)) /Im (A(ν)) (Red and Black dotted curves respectively). For
the PTFE sample, reconstruction from uniformly sampled measurements without the use of adaptive sampling (Green dotted curves). The reduction factor (R) is respectively
17, 30, 4, 30. The compression factor (CF) is respectively 1, 4, 1.6, 6.5. The regularization parameter called Nuc is respectively 0, 5, 0.75, 0.005. The regularization
parameter `1 is respectively 0, 10−6, 0.01, 4 ∗ 10−5 (See supplementary section "Algorithm").

spectrum from data selected with a uniform random position286

for the reference mirror to the reconstructed spectrum achieved287

from data selected with our adaptive sampling strategy (see288

respectively green and black doted curves in Fig. 2B). We see289

that adaptive sampling dramatically improves the reconstruc-290

tion quality. Fig. 2 displays a broad range of interferogram291

shapes. In each case, our adaptive strategy evaluates the292

average envelope and therefore allows us to select mirror po-293

sitions in the most relevant parts of the interferograms. We294

see the selected mirror positions plotted with red crosses in295

Fig. 2D, showing that most of the sampled positions are near296

the zero-path difference (ZPD) region of the interferogram due297

to the distribution. In this case, improved spectral resolution298

achieved by larger mirror displacements does not appear to299

contribute new information; thus, points closer to the ZPD300

region are sufficient to reproduce the spectrum. In Fig. 2A301

the mirror positions are drawn from a uniform distribution302

because only one spatial point is used, therefore the acquisi-303

tion has to be performed without any prior knowledge of the304

interferogram shape.305

Compressed sampling influence. In Fig. 2, the γ-globulin306

sample is probed at only one spatial position. Therefore only307

spectral compressed sampling could be used to reduce the num-308

ber of measurements. Unfortunately the resulting spectrum is309

not sparse compared to the bandwidth of the synchrotron. We310

observe that the compression factor is one, but nonetheless the 311

reduction factor is 17. The knowledge of the bandwidth allows, 312

in this case, to work with 17 times less data. Fig. 3A shows, 313

for the PTFE sample, the relative mean square error (RMSE) 314

between reconstruction and ground truth for four different 315

compression factors (1, 10, 20, 30). The RMSE for only one 316

spatial point are 0.019,0.197, 0.440, 0.794 respectively. These 317

errors are obtained using optimal parameter settings 0, 0.1, 318

0.1, 0.1 for the `1 parameter and 0, 0, 0, 0 for the nuclear pa- 319

rameter respectively (See supplementary section "Algorithm"). 320

We notice that the nuclear parameter is always 0 indicating 321

the fact that MC is not useful when only one spatial point is 322

probed. For comparison, we perform reconstruction with the 323

`1 parameter also set to 0 to see the effect of the `1 norm on 324

the reconstruction the resulting RMSE are 0.0185, 1.42, 1.53, 325

1.6 respectively. We notice that the RMSE for compression 326

factors of 10, 20 and 30 is greatly reduced using the `1 norm ( 327

by 70% in average). As a result, we conclude that compressed 328

sensing improves the performance for the PTFE sample, in 329

agreement with similar effects observed in (8, 9). 330

Matrix completion influence. The effect of matrix completion 331

depends on the number of spatial points acquired. If there are 332

fewer spatial points than the number of pure chemical mixtures 333

in the sample, matrix completion becomes irrelevant. To show 334

how MC is used in our reconstruction, we study the effect of the 335



number of spatial points on the quality of the reconstruction of336

the PTFE sample. The experiment consists of emulating line337

scan experiments of different sizes and different compression338

ratios. The curves displayed in Fig. 3A show that the relative339

mean square error (RMSE) of the reconstruction compared to340

the ground truth, decrease with the number of spatial points341

sampled. Moreover, we see that MC enables a higher CF342

compared to CS alone. In Fig. 3B, the reconstruction of a343

1D spatial section is shown for different number of spatial344

points and different reduction factor. There is a clear relation345

between R, the number of spatial points and the quality of346

the reconstruction. This shows the effectiveness of MC on the347

PTFE sample. We also observe that only a limited number348

of spatial points is needed to fully use MC (around 6 spatial349

points for PTFE). This is an indication that the number of350

chemical species is indeed small in this sample (See Fig. 3C).

Fig. 3. Illustration of the effect of low rank assumption on the reconstruction error. We
use a PTFE hyperspectral array scan to emulate an acquisition of different sized line
scans. The position of the spatial line scanned is indicated with a blue line on the
image of panel B). A) Plots of relative mean square error as a function of the number
of spatial points for different reduction factors. The largest quality improvement occurs
between 1 and 6 spatial points, this is an indication of the MC influence on the
reconstruction quality. This can be different for other samples with a higher diversity of
chemical species. B) For each number of points used (10, 20, and 40 pixels), different
reduction factors are emulated: 10, 20 and 30 by reducing more and more the number
of positions used for the mirror. The spatial evolution of the spectrum amplitude at
ν̃as for ground truth is plotted in blue and the reconstructions in red. At a given
reduction factor the visual quality of the reconstruction improves with the number of
spatial points sampled, this is also an indication of the MC influence. C) Illustration of
the principle of matrix completion. Each color red, green, and blue corresponds to
one chemical species with a specific spectrum. Those images are separable in space
(x, y) and frequency (ν) and are therefore considered rank one images. In the case
of a linear mixing model, the final hyper spectral image is a sum of a few (rank one) of
these images if the number of chemical species is small in the sample. This explains
the link between small rank assumption on hyperspectral images and the number of
chemical species.

351

Physical relevance of reconstructions. In some applications352

users are only interested in the characteristics of the spectral353

peaks. In the PTFE example, there are two peaks, correspond-354

ing to the symmetric and antisymmetric modes that convey355

the physically relevant information. They are characterized356

by their location at ν̃1 = 1168cm−1 and ν̃2 = 1241cm−1, full357

width at half maximum, amplitude, and phase. Fig. 4A il-358

Fig. 4. Extraction of physically relevant information from resonance peaks at different
reduction factors. A) Characterization of the two spectral peaks of the PTFE sample
located at ν1 = 1168 cm−1 and ν2 = 1241 cm−1 ). Each stack corresponds
to 3 images obtained from reconstruction at different reduction factors (from top
to bottom respectively 1, 10 and 30). Each peak is characterized by its estimated
position ν′ and full width at half maximum FWHM . B) Plot of the relative mean
square error between reconstruction and ground truth in red. Plot of the localization
of the two peaks in blue as a function of the compression factor (top axis) and to
the reduction factor (bottom axis). The standard deviation of the peak localization
increases with compression factor, leading to potential physical misinterpretation of
the reconstruction for high reduction or compression factors.

lustrates the capacity to extract this information from smart 359

s-SNOM data at different reduction factors. Color bars of each 360

image correspond to an estimate of one of these parameters, 361

each pixel corresponds to a spatial position of the sample. 362

Ground truth value of the parameters are shown in the top 363

images of each stack, where R=1, and are compared with the 364

R=10 and R=30 cases. In Fig. 4B, estimation of the peaks 365

positions appears to be unbiased for a reduction factor up 366

to 100, however the standard deviation increases with reduc- 367

tion factor (see error bars of blue curves). A good estimation 368

of the peak’s position, width and relative amplitude can be 369

achieved for R up to 30. We also observe a denoising effect 370

of our algorithm, where the sparsity assumption and the low 371

rank assumption used in our algorithm allow us to reject a 372

significant part of the noise contained in the reconstruction. 373

This is explained by the fact that the noise component of the 374

data is not sparse in Fourier domain and is not low rank. 375

Discussion 376

While signal processing for hyper-spectral imaging is a broad 377

field, we presented a focused development of choices to create 378

a smart s-SNOM approach taking into account its physical 379

properties. In this section we discuss the particular choices 380

made and avoided as well as the limitations of the technique. 381

CS for spatial dimension. Similar to the temporal or spectral 382

dimension, spatial dimensions carry redundancies because sam- 383

ples are composed of finite types of molecules that are typically 384

clustered or arranged in domains. The wavelet transform of 385

such samples is known to be sparse (26). Additionaly, the 2D 386

Curvelet transform has been proven to be sparse for images 387

that are piece-wise smooth with smooth boundaries (27). This 388

could be used to reduce the number of spatial positions of the 389

tip using CS. As an example, CS has been used in AFM to 390

increase acquisition speed (28). CS along the spatial dimen- 391

sions can be combined with CS in the spectral dimension and 392



would fall in a family called Kronecker CS (29). In the case of393

a sample containing a spatially isolated chemical species, the394

Wavelet domain would no longer yield a sparse image and there-395

fore would not comply with CS requirements. It is arguable396

whether this would be an interesting feature to be determined397

and hence whether the wavelet domain sparsity should be398

used or not. Moreover, as a practical note, performing this399

additional step slows down the reconstruction because at each400

iteration one needs to perform a spatial wavelet transform401

for each mirror position used. Given the small compression402

potential, the strong hypothesis on the sample and the added403

algorithmic cost, we decided not to implement this approach404

at this time.405

Scanning. We note that mirror scanning stages have limita-406

tions not included in our model. Indeed, speed and precision407

of the mirror and tip motion are linked to the trajectory used.408

Lissajous curves are a good candidate for scanning strategy409

(12). Our adaptive selection of the mirror positions would410

need to be modified to take these limitations into account.411

Moreover, a multipass strategy could be used to improve the412

selection of the mirror position. Nonetheless, our contribution413

clearly demonstrates the potential of using an adaptive strat-414

egy to reduce s-SNOM acquisition time. Introducing scanning415

limitations in our model could lead to faster implementation416

of smart s-SNOM.417

Algorithm. If the rank was known in advance, Non-Negative418

Matrix Factorization (NMF) (30) could be applied. One can419

argue that an upper bound of the rank can be derived. An-420

other disadvantage of NMF is that the problem becomes non421

convex, therefore we decided not to use NMF. Alternatively,422

we chose to minimize a convex criterion with a generalized423

forward-backward algorithm for its simplicity, its speed, and424

its flexibility to add and try multiple penalization terms. We425

chose to use `1 norm and `∗ nuclear norm to enforce the spar-426

sity of the reconstructed spectra and to reduce the rank of the427

reconstruction respectively. Notwithstanding, one could think428

about many other penalization functions. For instance, we429

tried an `1,2 penalization but the effect on the reconstruction430

quality is smaller than the two penalization functions we use.431

Adding a penalization function also increases the number of432

parameters to tune, therefore we tried to minimize the number433

of penalization functions. We still have two parameters to434

tune in our criterion, see supplementary section "Parameters435

tuning" for more information. An automatic tuning strategy436

like cross validation (31, 32) could be tested.437

A key aspect of smart s-SNOM is that it decreases acqui-438

sition time without sacrificing meaningful information. This439

might seem counterintuitive because of the potential impact440

on SNR of the reduction in total integration time. However,441

the lost integration time from missing data points is offset by442

both the reconstruction and denoising effects. In fact, while443

conventional sampling is inefficient with the data collection as444

prior knowledge is not used to inform sampling, smart s-SNOM445

reconstruction makes use of the prior knowledge of the object446

observed to reject noise and to recover missing acquisitions447

information.448

Perspective and Summary449

We propose a strategy to compress s-SNOM measurements450

and therefore greatly reduce acquisition time. To achieve451

that, we reduce the number of mirror positions needed at 452

each location of the sample by exploiting redundancies in the 453

s-SNOM dataset. Known prior knowledge like bandwidth of 454

the light source, spectral sparsity, and the limited number 455

of distinct chemical species is used to reduce the necessary 456

measurements. By using the same prior knowledge in our 457

adaptive selection of the sampled mirror positions, we greatly 458

improve the performance of s-SNOM. Smart s-SNOM opens 459

the way to applications where a wide field of view and a 460

good spectral resolution are both required apart from the 461

nanometric resolution. 462
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Supplementary Information568

Experimental acquisition details. The data presented here are col-569

lected using three different IR s-SNOM instruments. All of the570

following instruments work on the same following principle. IR light571

is focused onto the apex of an oscillating metalized atomic force572

microscope tip. The tip oscillates at ωt which, through the nonlinear573

distance dependence of the near-field signal, produces harmonics.574

The tip scattered light is collected with a mercury cadmium telluride575

(MCT) detector. The near-field signal is discriminated from the576

far-field background by demodulating the total tip scattered light577

at higher harmonics of the tip tapping frequency. To get complex578

valued spectra from the near-field, the AFM is placed in one arm of579

an asymmetric Michelson interferometer. IR light is sent into this580

interferometer such that the tip scattered light can be amplified581

with the reference field from the interferometer reference arm that is582

scanned to change the relative path lengths between the two arms to583

perform Fourier Transform spectroscopy. Point, line scan, and array584

data are collected by positioning the AFM tip on the sample surface,585

then scanning the reference arm to acquire an interferogram. Line586

scans position the tip sequentially in a line and array scans perform587

repeated line scans with spacing in the orthogonal direction.588

The ultrabroadband data collected using a synchrotron source589

was performed at Beamline 5.4, employing a specially modified590

AFM (Innova, Bruker), at the Advanced Light Source (ALS) at591

Lawrence Berkeley National Laboratory, which supplied the IR syn-592

chrotron radiation. Spectroscopy was performed, using a modified593

commercial FTIR spectrometer (Nicolet 6700, Thermo-Scientific)594

to control the reference arm. The low frequency SiO2 data was595

collected using a customized LHe-cooled Ge:Cu detector and Si596

beamsplitter. The broadband measurements, collected using a laser597

source, were performed at the University of Colorado Boulder. Here,598

tunable mid-IR light was generated by difference frequency gener-599

ation (DFG) of signal and idler beams (HarmoniXX DFG, APE)600

from a femtosecond optical parametric oscillator (OPO) (Levante601

OPO, APE) pumped by a low-noise Yb oscillator operating at 75.7602

MHz, with a pulse duration of 93 fs and an average power of 6603

W (Flint, Light Conversion). The DFG light was tunable from604

4 µm (2,500 cm1) to 15 m (666 cm1), with a pulse duration of605

150 fs. The laser was tuned to relevant wavelengths for the PTFE606

and RuOEP experiments. In this case, the IR light was sent into607

a commercial s-SNOM instrument (nanoIR2-s prototype, Anasys608

Instruments/Bruker).609

Atomic force microscope images. Atomic force microscope (AFM)610

images of the samples used in Fig. 2 are shown in Fig. S1. s-611

SNOM images require a longer acquisition time compared to AFM612

images. Moreover, for some applications s-SNOM acquisition can613

be performed on only a limited number of spatial point. Here, the614

AFM images are used to give an idea of the spatial distribution of615

the chemicals in the samples used to demonstrate smart s-SNOM.616

Low rank assumption. Environmental effects can cause a progressive617

shift of the spectrum’s peak. These can increase the rank of the618

measurement matrix and therefore the rank of the measurement619

matrix might not necessarily be smaller than the number of chemical620

species. Big data matrices generated by a simple generative model621

are of approximate low rank (see (24) for definitions). We assume622

the hyper-spectral imaging data considered here are generated by623

a simple generative model and therefore can be assumed to be of624

approximate low rank.625

Algorithm. In this section we describe the algorithm used to exploit626

the physical prior knowledge like the light source bandwidth, spec-627

trum sparsity, spatial redundancy, and small number of chemical628

species. The algorithm enables a reduction in the number of sam-629

ples required to reconstruct the signal without loss of meaningful630

physical information. s-SNOM data can be represented in a sparse631

matrix form, called X̃ by applying a 1D Fourier transform truncated632

at the bandwidth of the light source along the rows of X, i.e. the633

interferograms, and optionally by applying a 2D wavelet transform634

along the columns.635

X̃ = W X F [1]636

where W and F are matrices performing a 2D wavelet transform637

and a truncated 1D Fourier transform respectively, when no wavelet638

Fig. S1. Atomic force microscope images of the sample used in Fig. 2. The blue
circles indicates the spatial positions of the s-SNOM measurements used in Fig. 2
(single point for Amide, line scan for SiO2 and array for RuOEP and PTFE), the red
circles indicates the spatial position of the data shown in 2. A description of the
samples can be found in the results section of the paper.

transform is used W can be replaced by the identity matrix. Other- 639

wise, this model can be called Kronecker compressive sensing (29). 640

Let us call y the vector of measured samples, we have: 641

y = S
(
W † ⊗ F

)
vect( X̃ ) [2] 642

with ⊗ the Kronecker product and S the sampling matrix composed 643

of 0 and only one 1 per line at the selected sample positions. 644

Criterion. As explained above, a low rank assumption on X can be 645

done. Similarly, it can be shown that this is also true for X̃. In 646

matrix completion, a low rank assumption can be used to complete 647

the missing entries of a matrix. Usually a nuclear norm ‖ · ‖∗ 648

penalization is used as the regularization term (16). Indeed, this 649

norm can be seen as the l1 norm of the singular values of the matrix, 650

i.e. the sum of the absolute value of the singular values. If the rank 651

was known in advance, non Negative Matrix Factorization (NMF) 652

(30) could be applied. One can argue that a superior bound of the 653

rank can be derived. While another disadvantage of NMF is that 654

the problem is non convex. Therefore we decided not to use NMF. 655

Alternatively, we use a convex criterion to minimize, enabling 656

us easily to incorporate penalizations used in CS and MC: 657

J(X̃) = F (X̃) +G(X̃) [3] 658

F (X̃) = ‖ S
(
W † ⊗ F

)
vect(X̃) − y ‖2 [4] 659

G(X̃) = λ1 ‖ X̃ ‖1 + λ∗ ‖ X̃ ‖∗ [5] 660

with ‖·‖1 the l1 norm and λ1, λ∗ two parameters to tune. The main 661

criterion J is split in two part, a smooth and convex fidelity to data 662

term Eq. (4) and a non differentiable convex sum of penalization 663

part Eq. (5). A similar criterion is described in (33). 664

Reconstruction algorithm. To minimize criterion Eq. (3), we choose 665

to use a generalized forward-backward algorithm for its simplicity 666

and for the ability to add and try multiple penalization terms. This 667

algorithm was already applied to minimize the same criterion in a 668

different context (34) and for hyper-spectral imaging (33). Gradient 669

Eq. (6) of the smooth part of the criterion Eq. (4) can be computed 670

using only Fast Fourier transform, Wavelet or Curvelet transforms, 671

the matrix A never need to be constructed. Because the number 672

of spatial points is usually smaller than the number of spectral 673



Algorithm 1: Generalized Forward-Backward (25)

Initialize X̃ = X̃0, Zi = X̃0 ∀i

repeat
Compute G = ∇F (X̃)
for i = 0 to N do

Compute Zi = proxNθHi(·)(2X̃ −Zi − θG)
end

Compute X̃ = 1
N

∑N

k=1 Zk

until convergence;

return X̃

points, application of the Wavelet or Curvelet transform can slow674

down the algorithm. The non smooth part Eq. (5) is split into675

two functions H1 and H2 in order to keep a closed form of the676

operators proxNθHi
.677

∇F (X̃) = 2A†
(
A vect(X̃)− y

)
678

A = S
(
W † ⊗ F

)
679

H1(X̃) = λ1 ‖ X̃ ‖1, H2(X̃) = λ∗ ‖ X̃ ‖∗ [6]680

The proximal operator of the l1 norm is called soft thresholding681

proxλ1‖·‖1 (x) = sign(x)max (|x| − λ1). Proximal operator of the682

nuclear norm is the application of soft thresholding to the singular683

values of the matrix. At each iteration a singular value decomposi-684

tion has to be performed on matrix X̃. We tried other penalizations685

like ‖ · ‖2
2, the L2 norm, to smooth the reconstruction, but they686

are already not too noisy. We also tried ‖ · ‖1,2, the L12 norm, to687

enforce sparsity on the columns of X̃. This combines both effects688

of CS and MC in one norm, but the freedom to tune between CS689

only or MC only seemed more adaptable. Depending on the sample690

and the light source one may prefer MC or CS.691

Positivity. During acquisition, light is focused onto an AFM tip692

in intermittent contact (tapping) mode; as the tip oscillates, the693

near-field interaction increases as the tip approaches the sample694

and decreases as the tip moves away from the sample. The back-695

scattered light is heterodyne amplified (35–38) with the reference696

arm and detected with a mercury cadmium telluride (MCT) de-697

tector. Demodulation of the amplified near-field signal at higher698

tip harmonics isolates the near-field response to within ∼ 25nm.699

Since each measurement is the result of a demodulation, there is no700

guarantee that they are positive valued, therefore a positivity prior701

is not applicable here.702

Parameters tuning. We minimize criterion Eq. (3) that contains two703

parameters, λ1 and λ∗. They are used to balance how strongly704

the priors are applied to the optimal reconstruction. These two705

parameters require tuning depending on the sparsity of the spectra706

and on the number of pure chemical species in the sample. These707

parameters influence the quality of the reconstruction. In Fig. S2 we708

show the mean square error between reconstruction and the "ground709

truth" with respect to these two parameters. In blue, we observe710

the region where the reconstruction error is smaller than when no711

penalization is used (λ1 = 0 and λ∗ = 0). In addition, an automatic712

tuning strategy of the parameters like cross validation (31, 32) could713

be tested. The rule to select the number of mirror position at each714

spatial position also require to tune some parameters. However,715

those parameters depend on quantities assumed to be known like716

the light source bandwidth and the desired compression factor and717

on other parameters kept fix for all the different simulations. We718

have selected the following rule S(k) = max(N1−αk,N2) with s(k)719

the number of mirror position used at the kth spatial position. N1720

is the number of mirror position used at the first spatial position,721

this number is set to be above the Nyquist sampling criterion. We722

PTFE Amide

Fig. S2. Error as a function of parameter settings for two different samples: PTFE and
Amide. Light sources are a laser and the synchrotron, respectively, to illustrate the
estimator behavior for two different spectral sparsities. Colors represent reconstruc-
tion errors, spatial coordinates correspond to (λ1, λ∗) parameter settings. Color
saturates to pure yellow for error values bigger than the error obtained with λ1 = 0
and λ∗ = 0. This way region where errors are reduced are more visible. The
red circle indicates optimal settings, we observe that region around optimal settings
gives similar errors. We observe that tuning the parameters is easy and does not
necessarily need to be optimal to obtain relevant reconstructions.

used α = a × (N1 − N2)/K with K the total number of spatial 723

point and a = 10 so that after one tenth of the spatial point are 724

acquired, the number of mirror position stay constant (at N2), then 725

N2 is tuned so that the total number of mirror position used for all 726

spatial position is in agreement with the desired compression factor. 727

Discussion on Implementation. In comparing smart s-SNOM with 728

other approaches to improve s-SNOM acquisition rates, we note 729

that Reference [6] demonstrated an experimental implementation of 730

the rotating frame for faster acquisition. The underlying physical 731

mechanism through which rotating frame enables faster acquisition 732

is not general and is only suitable for certain materials, resonances, 733

and light sources. The work presented in references [7,9] largely 734

differs from smart s-SNOM in that it is not an adaptive technique 735

and does not use knowledge about signal level strengths through 736

an interferogram. 737

Experimental implementation of smart s-SNOM to reach the 738

theoretical limit requires developments to overcome hardware con- 739

straints in existing systems. To best utilize the approach, trajectory 740

optimization through the combined tip and mirror space would 741

be necessary in addition to careful dynamic demodulation time 742

constant and velocity engineering. Similarly, scanning of the tip 743

mirror space could be done in iterations and evaluated after each 744

iteration to determine what tip and mirror positions need to be 745

measured more densely or with higher signal to noise ratio time 746

constants. This approach would become a second and coarser form 747

of adaptive imaging. 748
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