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Measure-Valued Branching Diffusions with Singular Interactions

by

Steven N. Evans1 and Edwin A. Perkins2

Summary: The usual super-Brownian motion is a measure-valued process
that arises as a high density limit of a system of branching Brownian particles
in which the branching mechanism is critical. In this work we consider anal-
ogous processes that model the evolution of a system of two such populations
in which there is inter-species competition or predation.

We first consider a competition model in which inter-species collisions
may result in casualties on both sides. Using a Girsanov approach, we ob-
tain existence and uniqueness of the appropriate martingale problem in one
dimension. In two and three dimensions we establish existence only. How-
ever, we do show that, in three dimensions, any solution will not be absolutely
continuous with respect to the law of two independent super-Brownian mo-
tions. Although the supports of two independent super-Brownian motions
collide in dimensions four and five, we show that there is no solution to the
martingale problem in these cases.

We next study a predation model in which collisions only affect the “prey”
species. Here we can show both existence and uniqueness in one, two and
three dimensions. Again, there is no solution in four and five dimensions. As
a tool for proving uniqueness, we obtain a representation of martingales for
a super-process as stochastic integrals with respect to the related orthogonal
martingale measure.

We also obtain existence and uniqueness for a related single population
model in one dimension in which particles are killed at a rate proportional to
the local density. This model appears as a limit of a rescaled contact process
as the range of interaction goes to infinity.

1Presidential Young Investigator
2Research supported by an NSERC operating grant.
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0 Introduction

Critical branching measure-valued diffusions or superprocesses arise as limits
of branching particle system undergoing random migration and critical (or
near critical) reproduction. These processes give a rich class of solutions to
higher dimensional non-linear stochastic p.d.e.’s. Their qualitative and lim-
iting behaviour is fairly well understood (e.g. Dawson-Perkins (1991)), and
their potential theory is linked with the behaviour of solutions to a (deter-
ministic) non-linear p.d.e. (e.g. Dynkin (1992a), Le Gall (1993)). A precise
mathematical treatment is made possible by the fundamental independence
of the branching particles. In modelling populations or genotype frequen-
cies it is natural to introduce interactions between the branching particles.
These interactions invalidate almost all of the mathematical tools used in
the study of superprocesses (and their close cousins). One major exception
is the Girsanov theorem of Dawson (1978) which allows one to handle certain
interactions in the immigration or emigration terms, which corresponds to
0th order terms in the Markov generator governing the migration. In Section
2 we derive a version of Dawson’s result which is particularly well-suited to
our needs (Theorems 2.3 and 2.5). Recently in Perkins (1993) interactions
have been incorporated in the migration mechanism by means of a new type
of strong equation. Neither of these two approaches are applicable in general
to the most natural kind of “point interactions” in which an interaction only
occurs if particles collide.

In this work we initiate a study of what should be the easiest case: point
interactions in the immigration/emigration term. Consider two independent
super-Brownian motions (i.e., the spatial migrations are governed by Brown-
ian motions in Rd). Now view these two populations as competing species so
that inter-species “collisions” may result in casualties on either side. More
precisely when different species come within an infinitesimal distance of each
other, there is an infinitesimal probability that either of the colliding indi-
viduals is killed. In Section 3 we formulate a measure-valued martingale
problem (MλL) for this model. The Girsanov theorem mentioned above is
used to prove existence of solutions in dimensions three or less by means of
a limiting argument (Theorem 3.6). In one dimension the Girsanov theorem
applies directly to show there is a unique solution to (MλL). This solution is
absolutely continuous (in law) with respect to a pair of independent super-
Brownian motions (Theorem 3.9). The same approach is also used to prove
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existence and uniqueness in a martingale problem for a branching measure-
valued diffusion (again in one spatial dimension) in which particles are killed
at a rate proportional to the local density (Theorem 3.10). This model was
conjectured by Rick Durrett, and shown in Mueller and Tribe (1993), to be
the limit of a rescaled contact process as the interaction range goes to infinity.
We also show that in 3 dimensions, solutions to (MλL) will be singular (in
law) with respect to a pair of independent super-Brownian motions and so
the Girsanov theorem cannot be used to prove uniqueness in law (see The-
orem 3.11.) Hence the fundamental question of uniqueness in law to (MλL)
in dimensions 2 or 3 remains unresolved (see Conjecture 3.7).

Obviously non-trivial solutions to (MλL) can only exist if inter-species
collisions do occur. Two independent super-Brownian motions collide if and
only if d < 6 (see Thm.3.6 and Prop.5.11 of Barlow-Evans-Perkins (1991),
hereafter abbreviated as [BEP]). Our interacting processes can be dominated
by a pair of independent super-Brownian motions (see Theorem 2.1) and
therefore non-trivial solutions to (MλL) can only be expected if d ≤ 5. In
fact in Section 5 we show that solutions can only exist if d ≤ 3 (Theorem
5.3), and therefore our existence result is sharp.

In Section 4 we study an easier kind of singular “interaction”. When
an inter-species “collision” occurs there is an infinitesimal probability of the
type-1 particle being killed but the type-2 particle is not affected by the
encounter. Hence this is not really an interactive model but rather a super-
Brownian motion run in a random and unfriendly environment of a second
super-Brownian motion. We formulate a martingale problem (M1

λL) for this
pair of processes and, for dimensions 3 or less, establish existence, unique-
ness and the Markov property of the solution (Theorem 4.9, Corollary 4.12).
Again solutions will not exist for d > 3 (Theorem 5.3). The first step in this
construction is to show that a super-Brownian in Rd(d ≤ 3) is sufficiently
regular to be the Revuz measure of a time-inhomogeneous continuous ad-
ditive functional (CAF) of a Brownian motion (Theorem 4.1, Proposition
4.7(a)). Kill Brownian motion according to this random CAF to construct a
nice Markov process Bk, with a random law. The law of the unique solution
to (M1

λL) may be described as follows: The second population is a super-
Brownian motion, and the conditional law of the first population given the
second is that of the Bk-superprocess where the second population provides
the Revuz measure used in the construction of Bk (see (4.18) in Theorem
4.9).
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Our original motivation for studying this simple model was the hope that
an iterative procedure in which one successively reverses the roles of the two
populations would shed some light on the uniqueness question for the truly
interactive model studied in Section 3. The fact that such a program can
be carried out in a related model in which collisions reduce the masses of
the colliding particles (Barlow-Perkins (199?)) suggests that this may still
be feasible. The simple model considered here seems to present some non-
trivial problems of its own. Some delicate path properties of super-Brownian
motion (Proposition 4.7) are needed to carry out the construction of the
random CAF in the above. In addition, a representation of super-Brownian
martingales as stochastic integrals with respect to the associated orthogonal
martingale measure plays a critical role in the uniqueness proof. This result,
which holds for a broad class of superprocesses and is of independent interest,
is presented in Section 1 (see Theorem 1.2).

We now gather together some notation which will be used throughout
this article.

Notation. If E is a Polish space E or B(E) denotes its Borel σ-field. Let
MF (E) (respectively M1(E)) denote the space of finite (respectively, proba-
bility) measures on (E, E), equipped with the topology of weak convergence.
Let Ω = ΩE = C([0,∞),MF (E)) denote the space of continuous MF (E)-
valued paths with the compact-open topology and let F = FE denote its
Borel σ-field. Let (Ft)t≥0 denote the canonical right continuous filtration on
(Ω,F). Put θt : Ω→ Ω, t ≥ 0, for the usual shift maps, and, unless otherwise
indicated, Xt(ω) = ω(t) will denote the coordinate variables on Ω. Let P(Ft)
denote the σ-field of (Ft)-predictable sets in [0,∞)× Ω.

Write Cb(E) for the Banach space of bounded continuous real-valued
functions on E. If E is locally compact, C`(E) (respectively, C0(F )) is the
subspace of functions which have a finite limit at infinity (respectively, ap-
proach zero at infinity). Write bE for the set of bounded E-measurable real-
valued functions. Set (bE)+ (respectively, C+

` (E), C+
b (E)) to be the cone of

non-negative functions in bE (respectively, C`(E), Cb(E)). Finally,

C2
` (Rd) = {φ ∈ C`(Rd) : φ has continuous first and second partial derivatives,

∆φ ∈ C`(Rd)}.

Write µ(f) for
∫
fdµ.

4



Acknowledgement. This work grew out of some stimulating discussions
with John Walsh. Section 5 is joint work with Martin Barlow whom we thank
for allowing us to include it here. Roger Tribe pointed out a significant error
in an earlier version of Section 2.

5



1 The Predictable Representation Property

We begin by recalling the martingale characterization of a class of super-
processes from Fitzsimmons (1988, 1992). Let Y = (D,D,Dt+, θt, Yt, Py) be
the canonical realization of a Hunt process (quasi-left continuous, Borel right
process) on a Polish state space E. Here, D is the Borel σ-field of D, the
space of càdlàg E-valued paths, Yt(y) = y(t), y ∈ D, and Dt = σ(Ys : s ≤ t).
Let B denote the class of finely continuous functions in bE and write Uα for
the α-resolvent of Y . The domain of the weak infinitesimal generator, G, of
Y is D(G) = Uα(B) ⊂ B (independent of α > 0) and for f ∈ B,

G(U1f) = U1f − f ∈ B.

It follows from Fitzsimmons (1988, Thm 4.1) and (1992, Thm. 1.5) that for
each m ∈ MF (E), there is a unique probability Pm on Ω = (ΩE,F) that
solves the following martingale problem (which we label as (Mm)):

X0 = m, Pm − a.s.,

Xt(φ) = X0(φ) + Zt(φ) +
∫ t

0
Xs(Gφ)ds,

∀t ≥ 0, Pm - a.s., ∀φ ∈ D(G); where Zt(φ) is an a.s. continuous (Ft)-
martingale such that

〈Z(φ)〉t =
∫ t

0
Xs(φ

2)ds,

∀t ≥ 0, Pm-a.s. The probability Pm is usually called the law of the (Y,−λ2/2)-
superprocesses starting at m. As we will restrict ourselves to finite variance
branching mechanisms scaled as above we simply call Pm the law of the Y -
superprocess starting at m. If Y is a Feller process with a locally compact
state space, the above result holds with G the strong infinitesimal generator
of Y on its domain D(G) ⊂ C`(E) (Ethier-Kurtz (1986, p. 404)). When G
is the generator of Brownian motion on Rd (we write G = ∆/2), Pm is the
law of super-Brownian motion.

The set D(G) is bounded-pointwise dense in bE , and so Zt extends triv-
ially to an orthogonal martingale measure {Zt(φ) : φ ∈ bE , t ≥ 0}. Re-
call that P denotes the predictable σ-field for the filtration (Ft). As in
Walsh (1986, Ch. 2) (and by a trivial localization argument), we may
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define Zt(φ) =
∫ t

0

∫
φ(s, ω, x)dZ(s, x) for any P × E-measurable function

φ : [0,∞)× Ω× E → R such that∫ t

0

∫
φ(s, ω, x)2Xs(dx)ds <∞, ∀t > 0, Pm − a.s.

We denote the above class of integrands by L2
loc(X, Pm) and write φ ∈

L2(X, Pm) (respectively, L2
∞(X, Pm)) if, in addition,

Pm(
∫ t

0

∫
φ(s, ω, x)2Xs(dx)ds) <∞, ∀t > 0,

(respectively,

Pm(
∫ ∞

0

∫
φ(s, ω, x)2Xs(dx)ds) <∞).)

For φ ∈ L2
loc(X, Pm) (respectively, L2(X, Pm)) Zt(φ) is a continuous local

martingale (respectively, square integrable martingale) such that 〈Z(φ)〉t =∫ t
0

∫
φ(s, ω, x)2Xs(dx)ds.

We now prove the predictable representation property for X under Pm.
Recall that Y is a Hunt process with a Polish state space andX = (Ω,F ,Ft, Xt, Pm)
is the canonical realization of the Y -superprocess.

Theorem 1.1. If V ∈ L2(Ω,F , Pm), there is an f in L2
∞(X, Pm) such that

V = Pm(V ) +
∫ ∞

0

∫
f(s, ω, x)dZ(s, x), Pm − a.s.

In particular, every square integrable (Ft)-martingale, Mt, under Pm may be
written as

Mt = Pm(M0) +
∫ t

0

∫
f(s, ω, x)dZ(s, x), ∀t ≥ 0, Pm − a.s.

for some f ∈ L2(X, Pm).

Proof. It suffices to prove the second assertion.
As the martingale problem (Mm) is well-posed, we see from Theorem 2

and Proposition 2 of Jacod (1977) that for each n ∈ N there exist a finite set
of functions φ1

n, . . . , φ
N(n)
n ∈ D(G) and a finite set of P - measurable processes

h1
n, . . . , h

N(n)
n such that

fn(s, ω, x) ≡
∑
i

hin(s, ω)φin(x) ∈ L2(X, Pm)
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and

Mt = Pm(M0) + lim
n→∞

∫ t

0

∫
fn(s, ω, x)dZ(s, x)

in L2((Ω,F , Pm) for each t ≥ 0. Hence for each t ≥ 0 we have that

lim
n,n′→∞

Pm(
∫ t

0

∫
[fn(s, ω, x)− fn′(s, ω, x)]2Xs(dx) ds)

= lim
n,n′→∞

Pm([
∫ t

0

∫
fn(s, ω, x)dZ(s, x)−

∫ t

0

∫
fn′(s, ω, x)dZ(s, x)]2) = 0.

Thus there exists f ∈ L2(X, Pm) such that for each t ≥ 0

lim
n→∞

Pm([
∫ t

0

∫
fn(s, ω, x)dZ(s, x)−

∫ t

0

∫
f(s, ω, x)dZ(s, x)]2)

= lim
n→∞

Pm(
∫ t

0

∫
[fn(s, ω, x)− f(s, ω, x)]2Xs(dx) ds) = 0

as required. 2

Remark 1.2. (a) The above representation is reminiscent of the multiple
stochastic integrals of Dynkin (1988). In fact the integrals are quite different.
Dynkin was motivated by different questions and his multiple integrals were
not martingales in the upper limit of integration.

(b) An analogous representation theorem for martingales with respect to
the excursion fields of a one-dimensional Brownian motion is given in Rogers-
Walsh (1991). The martingales there are represented as stochastic integrals
with respect to the local time sheet. Le Gall (1991, 1993) has shown there is
a close connection between the branching structure of X and the excursions
of one-dimensional Brownian motion. It would be interesting if one could
derive Theorem 1.1 from Theorem 2.1 of Rogers-Walsh (1991). In fact the
above result seems to be the simpler one, so perhaps the converse question
would be more natural.
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2 On Dawson’s Girsanov Theorem

We consider a bivariate version of the Girsanov theorem of Dawson (1978).
The key ideas may be found in Dawson (1978) but we derive a result which is
well-suited for our needs and may be used to verify the hypothesis of Theorem
5.1 of Dawson (1978).

Let ξi be a Hunt process with Polish state space Ei, α-resolvent Uα
i ,

and weak infinitesimal generator Gi for i = 1, 2 (see the previous section).
Let mi ∈ MF (Fi), and let Pimi denote the law of the ξi-superprocess on
(Ωi,Fi) = (ΩEi ,FEi).

Definition. We say that a pair of a.s.-continuous (F ′t)-adapted MF (Rd)-
valued processes (X1, X2) on some filtered space (Ω′,F ′,F ′t, P′) satisfies
(Mm1,m2) if

X i
t(φ) = mi(φ) + Zi

t(φ) +
∫ t

0
X i
s(Giφ)ds− Ait(φ)

∀t ≥ 0, P′ − a.s, ∀φ ∈ D(Gi), i = 1, 2; where the Zi
t(φ) are continuous

(F ′t)-martingales such that Zi
0(φ) = 0 a.s. and

〈Zi(φi), Z
j(φj)〉t = δij

∫ t

0
X i
s(φ

2
i )ds

∀t ≥ 0, P′ − a.s., ∀φi ∈ D(Gi), ∀φj ∈ D(Gj), and the Ait are (a.s.) non-
decreasing, continuous, (F ′t)-adapted, MF (Ei)-valued processes starting at
zero.

If (X1, X2) satisfies (Mm1,m2) with A1 = A2 = 0 then X i has law Pimi (see
(Mm)) and Theorem 1.1 shows X1 and X2 are independent. (This could also
be derived directly as for (Mm).) We call X1 and X2 independent ξ1- and
ξ2-superprocesses with respect to (F ′t) in this case.

The next result was proved in [BEP, Thm 5.1] for E1 = E2 = Rd and
G1 = G2 = ∆/2. The proof extends with only notational changes to the
present setting as well as to the case when ξi are Feller processes with strong
infinitesimal generators Gi.

Theorem 2.1. Let (X1, X2) satisfy (Mm1,m2) on some (Ω′,F ′,F ′t, P′) and
let

(Ω,F ,Ft) = (Ω′ × Ω1 × Ω2,F ′ ×F1 ×F2,F ′t ×F1
t ×F2

t ).
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Let π : Ω→ Ω′ be the projection map. There is a probability P on (Ω,F) and
MF (Ei)-valued processes Y 1, Y 2 on (Ω,F , P) such that:

(a) If W ∈ bF ′ then P(W ◦ π|Ft) = P′(W |F ′t) ◦ π, P-a.s.

(b) Y 1 and Y 2 are independent ξ1- and ξ2-superprocesses with respect to
(Ft) and Y i

0 = mi, P-a.s., i = 1, 2,.

(c) X i
t ◦ π ≤ Y i

t , ∀t ≥ 0, P-a.s., i = 1, 2.

(d) If ZY i

t (φ) is the martingale part of Y i
t (φ) for φ ∈ D(Gi) then

〈ZY i(φi), Z
j(φj) ◦ π〉t = δij

∫ t

0
X i
s ◦ π(φ2

i )ds

∀t ≥ 0, P− a.s., ∀φi ∈ D(Gi), ∀φj ∈ D(Gj).

Remark 2.2. (a) The probability P is constructed as follows. If (ω′, ω1, ω2)
denotes a point in Ω, the ω′ marginal is P′ and conditional on ω′, (ω1, ω2) are
independent ξ1- and ξ2-superprocesses, respectively with zero initial condi-
tions and time-inhomogeneous immigration given by (A1(dt, dx)(ω′),
A2(dt, dx)(ω′)) (see Dynkin 1993, Thm. 3.1, 4.1)). The process Y i is given
by Y i

t (ω′, ω1, ω2) = X i
t(ω
′) + ωi(t).

(b) Part (a) of the theorem implies ((X1, X2, A1, A2),F ′t, P′) and
((X1, X2, A1, A2) ◦ π, Ft, P) have the same adapted distribution in the sense
of Hoover-Keisler (1984). This means that all the random variables ob-
tained from (X,A) ≡ (X1, X2, A1, A2) by the operations of composition with
bounded continuous functions and conditional expectation with respect to
(F ′t) have the same law under P′ as the corresponding random variables ob-
tained from (X,A) ◦ π and (Ft) under P. In particular (X,A) and (X,A) ◦ π
have the same law on their respective spaces and (X,A) ◦ π will also satisfy
(Mm1,m2) on (Ω,F ,Ft, P). In the future we may, and shall, study (X,A)
through its clone (X,A) ◦ π on (Ω,F , P) and hence will simply assert the
existence of a dominating pair of independent superprocesses (Y 1, Y 2).

For the rest of this section we work on the product space (Ω2,F2) =
(Ω1 × Ω2,F1 × F2) with its canonical right-continuous filtration (F2

t ), shift
operators θ2

t , t ≥ 0, and coordinate variables X i(ω1, ω2)(t) = ωi(t), X(t) =
(X1(t), X2(t)).
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Definition. If mi ∈ MF (Ei) and gi : [0,∞) × Ω2 × Ei → R is P(F2
t ) × Ei-

measurable for i = 1, 2, we say that a probability P on (Ω2,F2) solves the
martingale problem (Mg1,g2) if

X i
0 = mi, P− a.s.,∫ t

0

∫
|gi(s, ω, x)φ(x)|X i

s(dx)ds <∞

and

X i
t(φ) = X i

0(φ) + Zi,gi
t (φ) +

∫ t

0
X i
s(Giφ)ds+

∫ t

0

∫
gi(s, ω, x)φ(x)X i

s(dx)ds

∀t ≥ 0, P-a.s., ∀φ ∈ D(Gi), i = 1, 2; where Zi,gi
t (φ) is an a.s. continuous

(F2
t )-martingale under P such that

〈Zi,gi(φi), Z
j,gj(φj)〉t = δij

∫ t

0
X i
s(φ

2
i )ds

∀t ≥ 0, P-a.s., ∀φi ∈ D(Gi), ∀φj ∈ D(Gj).

For such a P, Zi,gi extends to an orthogonal martingale measure and, as for
ordinary superprocesses, one may define

∫ t
0

∫
φ(s, ω, x)dZi,gi(s, x) for P(F2

t )×
Ej-measurable φ satisfying

I(φ)(t) ≡
∫ t

0

∫
φ(s, x, ω)2X i

s(dx)ds <∞, ∀t > 0, P− a.s.

This stochastic integral is a continuous (F2
t )-local martingale under P with

square function I(φ)(t).
For φ ∈ D(Gi) we will use (Mg1,g2) to define Zi,gi

t (φ)(ω) on
{(t, ω) :

∫ t
0

∫
|gi(s, ω, x)φ(x)|X i

s(dx)ds < ∞} and set Zi,gi
t (φ) = 0 on the

complement of this set. In this way Zi,gi
t (φ) is canonically defined on path

space.

Theorem 2.3. Let mi ∈ MF (Ei) (i = 1, 2, ) and assume gi is P(F2
t ) × Ei-

measurable and satisfies

(2.1)
∫ t

0

∫
gi(s, ω, x)2X i

s(dx)ds <∞, ∀t > 0, P1
m1
× P2

m2
− a.s..

11



Let
g = (g1, g2)

and

Rg
t = exp(

2∑
i=1

∫ t

0

∫
gi(s, ω, x)Zi,0(ds, dx)− 1

2

∫ t

0

∫
gi(s, ω, x)2X i

s(dx)ds),

where Zi,0 is defined by (M0,0).

a) If P is a solution of (Mg1,g2) such that

(2.2)
2∑
i=1

∫ t

0

∫
gi(s, ω, x)2X i

s(dx)ds <∞,

P-a.s., ∀t > 0, then

(2.3)
dP

dP1
m1
× P2

m2

|F2
t

= Rg
t

In particular, there is at most one solution of (Mg1,g2) satisfying (2.2).

b) If gi ≤ c for i = 1, 2, for some c ∈ R, then Rg
t is a P1

m1
×P2

m2
-martingale

and (2.3) defines the unique solution P of (Mg1,g2).

Note: The bound in (b) is only one-sided.

Proof. Let

Tn = inf{t :
2∑
i=1

∫ t

0
(
∫

(gi(s, ω, x)2 + 1)X i
s(dx) + 1)ds ≥ n}.

Observe that Tn ≤ n.
(a) Assume P solves (Mg1,g2) and satisfies (2.2). Let

R̃g
t∧Tn = exp(

2∑
i=1

−
∫ t∧Tn

0

∫
gi(s, ω, x)Zi,gi(ds, dx)

−1

2

∫ t∧Tn

0

∫
gi(s, ω, x)2X i

s(dx)ds).
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For n fixed, R̃g
t∧Tn is a uniformly integrable martingale (under P) and

dQn = R̃g
TndP defines a probability on F2. Some elementary stochastic cal-

culus shows that for φ ∈ D(Gi), Z
i,0
t∧Tn(φ)R̃g

t∧Tn is a P-local martingale, and

therefore Zi,0
t∧Tn(φ) is a continuous Qn-local martingale. As Qn << P we also

have

〈Zi,0
·∧Tn(φi), Z

j,0
·∧Tn(φj)〉t = δij

∫ t∧Tn

0
X i
s(φ

2
i )ds,

∀t ≥ 0, Qn-a.s, ∀φi ∈ D(Gi), ∀φj ∈ D(Gj). The bound
∫ Tn

0 X i
s(1)ds ≤ n

shows Zi,0
·∧Tn(φi) is a Qn-martingale ∀φi ∈ D(Gi). Therefore Qn solves (M0,0)

“up to Tn”. Let Q̃n be the unique probability on (Ω2,F2)n such that Q̃n|F2
Tn

=

Qn|FT2
n

and the Q̃n-conditional law of XTn+· given F2
Tn is P1

X1
Tn

× P2
X2
Tn

. It is

now easy to see that Q̃n solves (M0,0) and this implies Q̃n = P1
m1
× P2

m2
(see

the remark prior to Theorem 2.1). Therefore

Qn(Tn < t) = Q̃n(Tn < t) = P1
m1
× P2

m2
(Tn < t)→ 0 as n→∞, ∀t > 0,

by (2.1) and we have (note that (2.2) shows that R̃g
t is well-defined under P)

(2.4) P(R̃g
t ) ≥ P(R̃g

t∧Tn1(Tn ≥ t))

= P(R̃g
t∧Tn)− P(R̃gTn1(Tn < t))

= 1− Qn(Tn < t)→ 1 as n→∞.

This shows R̃g
t is a P-martingale and hence there is a unique measure Q on

F2 such that dQ|F2
t

= R̃g
t dP|F2

t
∀t ≥ 0. Repeating the above arguments,

but now without the Tn’s, one sees that Q = P1
m1
× P2

m2
, because Q solves

(M0,0). The only point on which we need to comment is the fact that Zi,0
t (φ)

is a Q-martingale, as opposed to just a Q-local martingale. Let {Sn} be a
sequence of stopping times reducing Zi,0

t (1). Then

Q(X i
t(1)) ≤ lim inf

n→∞
Q(X i

t∧Sn(1)) = mi(1).

This shows that 〈Zi,0(φ)〉t is square integrable under Q and hence that Zi,0
t (φ)

is a Q-martingale for φ ∈ D(Gi). Therefore we conclude that ∀t > 0

dP|F2
t

= (R̃g
t )
−1d(P1

m1
× P2

m2
)|F2

t
= Rg

t d(P1
m1
× P2

m2
)|F2

t
.
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(b) Assume first gi ≤ 0. Let gi,n(s, ω, x) = 1(s ≤ Tn)gi(s, ω, x) and
gn = (g1,n, g2,n). Then

(2.5) Rg
t∧Tn = Rgn

t

∀t ≥ 0, P1
m1
× P2

m2
-a.s. As in (a) dQn = Rgn

Tnd(P1
m1
× P2

m2
) is a probability on

F2 and a standard Girsanov argument shows that Qn solves (Mg1,n,g2,n). The

only non-obvious point is again the fact that Z
i,gi,n
t (φi) is a Qn-martingale

(not just a local martingale) for φi ∈ D(Gi). To see this, note that X i
t(1) ≤

mi(1) + Z
i,gi,n
t (1) and argue as before. By Theorem 2.1 and Remark 2.2 we

may assume (by passing to a larger space) that there are processes (Y 1, Y 2)
with law P1

m1
× P2

m2
and (X1, X2) with law Qn such that X i

t ≤ Y i
t , ∀t ≥ 0,

a.s. Therefore

Qn(Tn < t) ≤ P1
m1
× P2

m2
(Tn < t)→ 0 as n→∞, ∀t > 0,

the last by (2.1). Now argue as in (2.4) to see that P1
m1
× P2

m2
(Rg

t ) = 1 and
hence Rg

t is a martingale (recall (2.5)).
It is now straightforward to show that (2.3) defines a solution P of (Mg1,g2).

Turning to uniqueness, let P be any solution of (Mg1,g2). Theorem 2.1 shows
that by passing to a larger space we may assume there are processes (X1, X2)
with law P and dominating processes (Y 1, Y 2) with law P1

m1
×P2

m2
. Condition

(2.1) guarantees that P satisfies (2.2). Part (a) now shows that P is given by
(2.3).

Consider now gi ≤ c and let fi = gi − c ≤ 0. Condition (2.1) continues
to hold with fi in place of gi. The previous case shows the unique solution
P = Pf of (Mf1,f2) is given by (2.3) with f = (f1, f2) in place of g. Let

Rt = exp(
2∑
i=1

cZi,fi
t (1)− c2

2

∫ t

0
X i
s(1)ds)

Un = inf{t : X1
t (1) +X2

t (1) ≥ n} ∧ n.
Let P be a solution of (Mg1,g2). Then

X i
t∧Un(1) ≤ mi(1) + Zi,gi

t∧Un(1) + c
∫ t∧Un

0
X i
s(1)ds,

∀t ≥ 0, P-a.s. Take means and use Gronwall’s and Fatou’s lemmas to con-
clude

P(X i
t(1)) ≤ mi(1)ect, ∀t ≥ 0

14



and therefore

(2.6) P(
∫ t

0
(X1

s +X2
s )(c2)ds) <∞

The latter inequality plays the role of (2.2) and allows us to argue just as in
(a) with Pm1

1 × Pm2
2 replaced by the equivalent law Pf and Rg

t replaced by Rt,
to conclude that

dP
dPf
|F2
t

= Rt.

A simple calculation leads to (2.3), giving uniqueness in (Mg1,g2).
Now argue just as in Lemma 10.1.2.1 of Dawson (1992) to see that Rt

is a Pf -martingale. It is then easy to check that dP|F2
t

= RtdP
f
|F2
t

solves

(Mg1,g2). The uniqueness established above gives (2.3) and hence shows Rg
t

is a P1
m1
× P2

m2
-martingale. 2

Remark. Part (b) of the above, or more precisely its counterpart on
(Ω1,F1), appeared in the penultimate draft of Dawson (1992) but unfortu-
nately failed to make the final cut.

Definition. If F is a Borel subset of MF (E1)×MF (E2) and {Qm : m ∈ F} is
a family of probabilities on (Ω2,F2,F2

t ), we say (Ω2,F2,F2
t , θ

2
t , Xt, (Qm)m∈F )

is an F -valued diffusion iff

(i) Qm(Xt ∈ F, ∀t ≥ 0, X0 = m) = 1, ∀m ∈ F .

(ii) m 7→ Qm is a Borel measurable map from F to M1(Ω2).

(iii) For any (F2
t )-stopping time T such that Qm(T <∞) = 1,

Qm(X ◦ θ2
T ∈ A|F2

T )(ω) = QXT (ω)(A), Qm − a.s., ∀A ∈ F2.

An analogous definition may be made for F a Borel subset of MF (E1) and
{Qm : m ∈ F} probabilities on Ω = C([0,∞),MF (E1)).

Definition. If C ⊂ bE×bE , the bounded pointwise closure of C is the smallest
class C̄ in bE × bE which contains C and such that (φ, ψ) ∈ C̄ whenever

(φn, ψn) ∈ C̄ and φn
bp→ φ, ψn

bp→ ψ.
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Lemma 2.4. There is a countable set Di ⊂ D(Gi) such that the bounded
pointwise closure of {(φ,Giφ) : φ ∈ Di} contains {(φ,Giφ) : φ ∈ D(Gi)} =
graph(Gi).

Proof. Let D′i be a countable set in Cb(Ei) whose bounded pointwise closure
is bEi (recall Ei is Polish). Since D′i is contained in the ξi-finely continuous
functions in bEi, clearly

Di ≡ {U1
i φ : φ ∈ D′i} ⊂ D(Gi).

Let C̄i denote the bounded pointwise closure of {(φ,Giφ) : φ ∈ Di} and let

D̄i = {φ ∈ bEi : (U1
i φ, U

1
i φ− φ) ∈ C̄i}.

If φn ∈ D̄i and φn
bp→ φ, then U1

i φn
bp→ U1

i φ and therefore (U1
i φ, U

1
i φ − φ) ∈

C̄i. Therefore D̄i is closed under bounded pointwise convergence, and since
D′i ⊂ D̄i we conclude that D̄i = bEi. This shows that (U1

i φ, U
1
i φ − φ) ∈ C̄i

for all φ in bEi and, as this set contains graph(Gi), we are done. 2

Theorem 2.5. Assume Γi : MF (E1)×MF (E2)×Ei → R, i = 1, 2, are Borel
maps such that Γi ≤ c, i = 1, 2, and let gi(s, ω, x) = Γi(Xs(ω), x). Let F be
a Borel subset of MF (E1)×MF (E2) such that

(2.7) (2.1) holds ∀m = (m1,m2) ∈ F.

(2.8) P1
m1
× P2

m2
(Xt ∈ F, ∀t ≥ 0) = 1, ∀(m1,m2) ∈ F.

For each m ∈ F there is a unique solution Pgm of (Mg1,g2) given by (2.3).
Moreover, (Ω2,F2,F2

t , θ
2
t , Xt, (Pgm)m∈F ) is an F -valued diffusion.

Proof. The existence of a unique solution Pgm of (Mg1,g2) which also satisfies
Pgm(Xt ∈ F, ∀t ≥ 0) = 1 (the set in question is universally measurable
so we are working with completions here) follows from Theorem 2.3, (2.8)
and Pgm|F2

t
<< P1

m1
× P2

m2
|F2
t
. Since P1

m1
× P2

m2
(Φ) is Borel measurable on

MF (E1)×MF (E2) for Φ ∈ bF2 and

Pgm(ψ) = P1
m1
× P2

m2
(ψRg

t ), ∀ψ ∈ bF2
t ,
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it is easy to see that Pgm(Φ) is B(F )-measurable in m, ∀Φ ∈ bF2.
Let T be a bounded (F2

t )-stopping time and let P̂T (ω) denote a Pgm-regular
conditional distribution of X ◦ θ2

T given F2
T . Let Di 3 1 be as in Lemma 2.4,

F0
s = σ(Xu : u ≤ s) and Cs denote a countable set in bF0

s whose bounded
pointwise closure is bF0

s . Let

Λ = {ω ∈ Ω2 :
2∑
i=1

∫ t

0

∫
|gi(s, ω, x)|X i

s(dx)ds <∞, ∀t > 0}.

Our definition of Zi,gi(φi) and the equality gi(s, θ
2
Tω, x) = gi(s+T, ω, x) show

that (drop dependence on gi)

(2.9) Zi
t(φi)◦θT = Zi

t+T (φi)−Zi
T (φi), ∀t ≥ 0, φi ∈ D(Gi), i = 1, 2, ∀ω ∈ Λ.

If φi ∈ Di, ψ ∈ Cs and s < t, then, since Pgm(Λ) = 1 by (2.7), we have

Pgm((Zi
t(φi)− Zi

s(φi)) ◦ θT (ψ ◦ θT )|F2
T )

= Pgm(Pgm(Zi
t+T (φi)− Zi

s+T (φi)|F2
T+s)ψ ◦ θT |F2

T ) = 0, Pgm − a.s.

Therefore

P̂T (ω)((Zi
t(φi)− Zi

s(φi))ψ) = 0, ∀ψ ∈ Cs, Pgm − a.a. ω

and so

(2.10) P̂T (ω)(Zi
t(φi)− Zi

s(φi)|F0
s ) = 0

for all rationals such that 0 ≤ s < t, ∀φi ∈ Di, i = 1, 2, Pgm-a.a. ω.
Clearly Λ ⊂ (θ2

T )−1(Λ) and so we may fix ω outside a Pgm-null set such
that P̂T (ω)(Λ) = 1 and (2.10) holds. Our definition of Zi

t(φ) shows that
on Λ, Zi

t (φ) is continuous in t, ∀φ ∈ D(Gi), and the equality in (Mg1,g2)
holds ∀φ ∈ D(Gi). Therefore these last two conclusions hold P̂T (ω)-a.s.
Since Zi

s(φi) is F0
s -measurable, we may take limits from above in s ∈ Q in

(2.10) to see that Zi(φi) is an a.s.-continuous (F2
t )-martingale under P̂T (ω),

∀φi ∈ Di. Use the pathwise construction of quadratic variation, (2.9) and
Pgm|F2

t
<< P1

m1
× P2

m2
|F2
t

to see that for Pgm-a.e. ω

(2.11) 〈Zi(φi), Z
j(φj)〉t = δij

∫ t

0
X i
s(φ

2
j)ds,
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∀t ≥ 0, P̂T (ω) − a.s., ∀φi ∈ Di , i = 1, 2. If our fixed ω also satisfies
(2.11), then the above shows that P̂T (ω) solves (Mg1,g2) with (m1,m2) =
(X1

T (ω), X2
T (ω)) provided we restrict the class of test functions φi to Di. Use

Gronwall’s lemma as in (2.6) to see that

(2.12) P̂T (ω)(
∫ t

0
X1
s (1) +X2

s (1)ds) ≤ (m1(1) +m2(1))
∫ t

0
ecsds <∞.

Since Di is bounded pointwise dense in bEi, we may now extend Zi
t(φ) to

an almost surely continuous, orthogonal martingale measure as usual (all now
with respect to P̂T (ω)). Take bounded pointwise limits in (φ,Giφ) to see that

(Mg1,g2) holds (under P̂T (ω)) for all φi in D(Gi). (Note that if φn
bp→ φ, then

(2.12) shows Zi
t(φn)→ Zi

t(φ) in L2(P̂T (ω)) and we can take limits in (2.11).)
Uniqueness of solutions to (Mg1,g2) shows that P̂T (ω) = PgXT (ω), which proves
the strong Markov property for bounded T . For an arbitrary stopping time
T such that T <∞, Pgm-a.s., a standard truncation argument completes the
proof. 2

By taking E2 = {0} and g2 = 0 and m2 = 0 in the above we get a corre-
sponding theorem for a solution P (a probability on (Ω,F ,Ft) = (Ω1,F1,F1

t ))
of the martingale problem (Mg) defined as follows:

X0 = m, P− a.s.,

Xt(φ) = X0(φ) + Zg
t (φ) +

∫ t

0
Xs(G1φ)ds+

∫ t

0

∫
g(s, ω, x)Xs(dx)ds,

∀t ≥ 0, P-a.s., ∀φ ∈ D(G1); where Zg
t (φ) is an a.s. continuous (Ft)-martingale

under P such that

〈Zg(φ)〉t =
∫ t

0
Xs(φ

2)ds,

∀t ≥ 0, P-a.s.

Here g : [0,∞) × Ω × E1 → R is P(Ft) × E1-measurable. We let the reader
formulate the obvious version of Theorem 2.3, but state the analogue of
Theorem 2.5 for future reference.

Corollary 2.6. Assume g(s, ω, x) = Γ(Xs(ω), x) for some Borel
Γ : MF (E1)× E1 → R such that Γ ≤ c. Let F1 be a Borel subset of MF (E1)
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such that

(2.13)
∫ t

0

∫
Γ(Xs, x)2Xs(dx)ds <∞, ∀t > 0, Pm − a.s., ∀m ∈ F1

(2.14) Pm(Xt ∈ F1,∀t ≥ 0) = 1, ∀m ∈ F1.

For each m ∈ F1 there is a unique solution Pgm of (Mg) given by

dPgm
dPm
|Ft = exp{

∫ t

0

∫
Γ(Xs, x)Z1,0(ds, dx)− 1

2

∫ t

0

∫
Γ(Xs, x)2Xs(dx)ds}.

The process (Ω,F ,Ft, θt, Xt, (Pgm)m∈F1) is an F1-valued diffusion.

Remark 2.7. If ξi are Feller processes with locally compact state spaces Ei
and strong infinitesimal generators Gi on D(Gi) ⊂ C`(Ei), all the results of
this section hold with some minor simplifications in the proofs. 2
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3 A Two-Type Martingale Problem for Sin-

gular Interactions

We specialize the notation of the last section and take Ei = Rd and Gi = ∆/2,
the strong infinitesimal generator of d-dimensional Brownian motion B on
its domain D(∆/2) ⊂ C`(Rd). Hence Ω = C([0,∞),MF (Rd)), F = B(Ω),
(Ft) and (F2

t ) are the canonical right-continuous filtrations on Ω and Ω2,
respectively, (θ2

t )t≥0 are the shift operators on Ω2 and X and (X1, X2) are
the coordinate variables on Ω and Ω2, respectively. Now Pm denotes the
law of super-Brownian motion on (Ω,F), starting at m. Let pt(x) be the
standard Brownian transition density (that is, pt is the density of a Gaussian
distribution with mean 0 and variance t).

A key ingredient to our approach to singular interactions is the collision
local time of two measure-valued processes, introduced in [BEP].

Definition. For ε > 0 define gε : MF (Rd) × Rd → R and Lε : Ω2 → Ω by
gε(µ, x) =

∫
pε(x− y)µ(dy) and

Lεt(X
1, X2)(φ) =

∫ t

0

∫
gε(X

1
s , x)φ(x)X2

s (dx)ds, φ ∈ bB(Rd).

A pair of continuous MF (Rd)-valued processes (Y 1, Y 2) on some (Ω′,F ′, P′)
have collision local time Lt(Y

1, Y 2) iff Lt(Y
1, Y 2) is an a.s. continuous

MF (Rd)-valued process such that Lεt(Y
1(ω), Y 2(ω))(φ)

P′→ Lt(Y
1, Y 2)(φ) as

ε ↓ 0, ∀t ≥ 0 and φ ∈ C`(Rd).

Remarks 3.1. (a) The definition in [BEP] uses another, symmetric, def-
inition of Lε(X1, Y 2). However, as is remarked in [BEP, Sec.1], these two
different definitions of Lε(X1, Y 2) lead to equivalent definitions of L(Y 1, Y 2).

(b) If Lt(Y
1, Y 2) exists it is clearly unique up to evanescent sets and non-

decreasing in t a.s. That is, almost surely, ∀s < t, Lt(Y
1, Y 2)−Ls(Y 1, Y 2) ∈

MF (Rd). Therefore L(Y 1, Y 2)((s, t] × A) = Lt(Y
1, Y 2)(A) − Ls(Y 1, Y 2)(A)

extends to an a.s. unique measure L(Y 1, Y 2)(dt, dx) on B([0,∞)×Rd) which
is supported by the intersection of the closed graphs of Y 1 and Y 2 (see Section
1 of [BEP]). Intuitively, L(Y 1, Y 2) measures the space-time distribution of
the collisions between the two populations Y 1 and Y 2.
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Proposition 3.2. Let Y 1, Y 2 be continuous MF (Rd)-valued processes on
some (Ω′,F ′, P′) which have a collision local time Lt(Y

1, Y 2). Let PY be the
law of Y = (Y 1, Y 2) on (Ω2,F2). There is an (F2

t )-predictable mapping
L̃ : [0,∞)× Ω2 →MF (Rd) which depends only on PY and satisfies

(i) L̃t(Y
1(ω), Y 2(ω)) = Lt(Y

1, Y 2)(ω), ∀t ≥ 0, P′-a.s.
(ii) L̃t ◦ θ2

s = L̃t+s − L̃s, ∀s, t ≥ 0, PY -a.s.
(iii) L̃t(θ

2
sω) = limk→∞ L

ηk
t (θ2

sω), ∀s, t ≥ 0, PY -a.a. ω for some sequence
ηk ↓ 0.

Proof. A diagonalization argument shows there is a countable dense set D
in C+

` (Rd) and a sequence ηk ↓ 0 (depending only on PY ) such that

Lηkt (Y 1(ω), Y 2(ω))(φ)→ Lt(Y
1, Y 2)(ω)(φ),

∀t ∈ Q ∩ [0,∞), ∀φ ∈ D, P′-a.s. As the limit is a.s. continuous in t and the
approximating processes are non-decreasing, an elementary argument shows
that

sup
t≤T
|(Lηkt (Y 1(ω), Y 2(ω))− Lt(Y 1, Y 2))(φ)| = 0

∀T > 0, ∀φ ∈ D, P′-a.s. This implies

(3.1) Lηkt (Y 1(ω), Y 2(ω))→ Lt(Y
1, Y 2)(ω) in MF (Rd)

∀t ≥ 0, P′-a.s. Let

Λ = {ω ∈ Ω2 : Lηkt (ω) converges in MF (Rd) as k →∞, ∀t ≥ 0}.

Note that PY (Λ) = 1 by (3.1). Define

L̃t(ω) =

 limk→∞ L
ηk
t (ω), if the limit exists in MF (Rd),

0, otherwise.

Observe that L̃ is (F2
t )-predictable because Lηk is. Clearly, (i) is immediate

from (3.1). If ω ∈ Λ and s, t ≥ 0 then

(3.2) Lηkt (θ2
sω) = Lηkt+s(ω)− Lηks (ω)
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shows that θ2
sω ∈ Λ and therefore, by the definition of L̃,

L̃t(θ
2
sω) = lim

k→∞
Lηkt (θ2

sω)

= lim
k→∞

Lηkt+s(ω)− Lηks (ω) (by (3.2))

= L̃t+s(ω)− L̃s(ω),

the last because ω ∈ Λ. This gives (ii) and the first line in the above gives
(iii). 2

Remark 3.3. (a) If Y is as above and FYt = ∩nσ(Ys : s ≤ t+ n−1), then by
the above we may, and shall, assume Lt(Y

1, Y 2) is (FYt )-predictable. When
Y = X on (Ω′,F ′) = (Ω2,F2) the two notations L and L̃ can be confusing.
Our convention will be to write Lt(X

1, X2) for L̃t(X
1, X2) and hence treat

Lt(X
1, X2) as a predictable function on [0,∞) × Ω2. Note, however, the

function depends on the underlying probability P on (Ω2,F2).
(b) In the above argument the sequence {ηk} may be taken as an ap-

propriate subsequence of any given sequence {εn} decreasing to zero. This
allows us to construct a single sequence, and hence a single L̃, which satis-
fies the conclusions of the above theorem for a pair of given MF (Rd)2-valued
processes (Y 1, Y 2) and (Ỹ 1, Ỹ 2), each possessing a collision local time.

Let M(m1,m2) denote the set of a.s. continuous MF (Rd)2-valued pro-
cesses which satisfy (Mm1,m2) (now with Gi = ∆/2). Note the underlying
probability space is allowed to vary. If Ω′ = (Ω′,F ′, P′) is given let

M(Ω′) =M(Ω′,m1,m2) = {(Y 1, Y 2) ∈M(m1,m2) : Y 1, Y 2 are defined on Ω′}.

In this case the filtration associated with (Y 1, Y 2) in (Mm1,m2) is still allowed
to vary.

If m1,m2 ∈ MF (Rd) satisfy a mild finite energy condition ((5.1) below),
d ≤ 5, and (Y 1, Y 2) ∈ M(m1,m2), then Lt(Y

1, Y 2) exists [BEP, Thm.
5.9]. If (Y 1, Y 2) are independent super-Brownian motions (i.e. Ai ≡ 0 in
(Mm1,m2)) and mi 6= 0 then Lt(Y

1, Y 2) is non-trivial [BEP, Remark 5.12].
For our purposes it will be the uniform (in M) results which will be impor-
tant.

Notation. Let B(x, r) be the open ball in Rd of radius r and centered at
x. If m ∈ MF (Rd), let D(m, r) = sup{m(B(x, r)) : x ∈ Rd}. Set M s

F (Rd) =
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{m ∈ MF (Rd) :
∫ 1

0 r
1−dD(m, r)dr < ∞}. Clearly, M s

F (Rd) is a Borel subset
of MF (Rd).

Lemma 3.4. Assume d ≤ 3, mi ∈ M s
F (Rd), i = 1, 2, and ψ ∈ Cb(Rd). Then

∀T > 0

lim
ε↓0

sup
(X̃1,X̃2)∈M(m1,m2)

‖ sup
t≤T
|Lεt(X̃1(ω), X̃2(ω))(ψ)− Lt(X̃1, X̃2)(ω)(ψ)| ∧ 1‖1

= 0

Proof. If Lε is replaced by

L̃εt(X̃
1, X̃2)(φ) =

∫ t

0

∫ ∫
pε(x2 − x1)φ((x1 + x2)/2)X̃1

s (dx1)X̃2
s (dx2)ds,

this result is contained in [BEP, Thm. 5.10]. Let (X̃1, X̃2) ∈ M(m1,m2)
and assume without loss of generality there are (Y 1, Y 2) with law Pm1 × Pm2

such that X̃ i ≤ Y i a.s. (Theorem 2.1 and Remark 2.2). If ψ ∈ Cb(Rd) and
T > 0

(3.3) sup
t≤T
|L̃εt(X̃1, X̃2)(ψ)− Lεt(X̃1, X̃2)(ψ)|

≤
∫ T

0

∫ ∫
pε(x2 − x1)|ψ(x2)− ψ((x1 + x2)/2)|Y 1

s (dx1)Y 2
s (dx2)ds

≤
∫ T

0

∫ ∫
pε(x2−x1)1(|x2−x1| < δ)|ψ(x2)−ψ((x1+x2)/2)|Y 1

s (dx1)Y 2
s (dx2)ds

+2‖ψ‖∞ε−d/2 exp{−δ2/2ε}
∫ T

0
Y 1
s (1)Y 2

s (1)ds.

Using the fact that LεT (Y 1(ω), Y 2(ω))(1)
L1

→ LT (Y 1, Y 2)(1) as ε ↓ 0 ([BEP,
Thm. 5.9]), it is easy to make the first term arbitrarily small in ‖ ‖1 for
all sufficiently small ε by fixing δ sufficiently small (use the fact that most of
the mass of LT (Y 1, Y 2) may be supported on a compact set on which ψ is
uniformly continuous). The last term in (3.3) clearly approaches zero in L1

as ε ↓ 0 for our fixed δ. Therefore the left side of (3.3) converges in L1 to
zero as ε ↓ 0 uniformly in (X̃1, X̃2) and the proof is complete. 2
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Definition. Let ρ be a bounded metric on MF (Rd) which induces the weak
topology, and let Ω′ = (Ω′,F ′, P′). Identify processes inM(Ω′,m1,m2) which
agree up to a P′-evanescent set and define a metric d on M(Ω′) by

d((Y 1, Y 2), (W 1,W 2)) =
∞∑
n=1

P′(sup
t≤n

ρ(Y 1
t ,W

1
t ) + ρ(Y 2

t ,W
2
t ))2−n.

Let C(Ω′) be the set of measurable maps L : Ω′ → C([0,∞),R) and
identify maps which agree up to P′-null sets. Hence processes L(ω′, t) which
are a.s. continuous in t are considered to be elements of C(Ω′). Define a
metric d′ on C(Ω′) by

d′(L1, L2) =
∞∑
n=1

P′(sup
t≤n
|L1(t)− L2(t)| ∧ 1)2−n.

Lemma 3.5. Assume d ≤ 3, mi ∈ M s
F (Rd), i = 1, 2, and ψ ∈ Cb(Rd). Then

(Y 1, Y 2) → L(Y 1, Y 2)(ψ) is a continuous mapping from M(Ω′,m1,m2) to
C(Ω′).

Proof. Let ψε(x1, x2) = pε(x2 − x1)ψ(x2) for ε > 0, and define Tε : Ω2 →
C([0,∞),R) by

Tε(µ
1, µ2)(t) =

∫ t

0

∫ ∫
ψεd(µ1

s × µ2
s)ds

If (µ1
n, µ

2
n)→ (µ1, µ2) in Ω2, then clearly Tε(µ

1
n, µ

2
n)(t)→ Tε(µ

1, µ2)(t) point-
wise. It is easy to see {Tε(µ1

n, µ
2
n) : n ∈ N} are uniformly equicontinuous and

therefore Tε(µ
1
n, µ

2
n) → Tε(µ

1, µ2) in C([0,∞),R). That is, Tε is continuous.
It is now easy to check that

(Y 1, Y 2) 7→ Lε· (Y
1, Y 2)(ψ) = Tε(Y

1(ω), Y 2(ω))

is continuous as a mapping from M(Ω′) to C(Ω′). Lemma 3.4 shows that
L·(Y

1, Y 2)(ψ) is a uniform limit of these continuous maps and therefore is
also a continuous map from M(Ω′) to C(Ω′). 2

Recall the “competing species” model described in the Introduction. Ca-
sualities may occur in either population when type 1 and type 2 particles

24



collide. We are ready to state a martingale problem for this model. Let λ
denote a non-negative parameter which gives the intensity of killing when
particles collide. A probability P on (Ω2,F2) solves (MλL) if and only if

X i
0 = mi

P-a.s., i = 1, 2,

X i
t(φ) = X i

0(φ) + Zi
t(φ) +

∫ t

0
X i
s(∆φ/2)ds− λLt(X1, X2)(φ),

∀t ≥ 0, P-a.s. ∀φ ∈ D(∆/2), i = 1, 2; where Zi
t(φ) is an a.s. continuous

(F2
t )-martingale under P such that

〈Zi(φi), Z
j(φj)〉t = δij

∫ t

0
X i
s(φ

2
i )ds,

∀t ≥ 0, P-a.s., ∀φi, φj ∈ D(∆/2).

Implicit in (MλL) is the existence of Lt(X
1, X2). A pair of a.s. continuous

MF (Rd)-valued processes (Y 1, Y 2) on some (Ω′,F ′, P′) solves (MλL) iff their
law PY on (Ω2,F2) is a solution.

Theorem 3.6. If d ≤ 3 and m1,m2 ∈ M s
F (Rd), then a solution to (MλL)

exists ∀λ ≥ 0.

Proof. If ε > 0 then clearly (2.1) is satisfied by

g1(s, ω, x) = −λgε(X2
s , x) ≤ 0 and g2(s, ω, x) = −λgε(X1

s , x) ≤ 0.

Therefore Theorem 2.3(b) implies that (use the notation from (Mg1,g2))

dPε
dPm1 × Pm2

|F2
t

= exp{−λ
∫ t

0

∫
gε(X

2
s , x)Z1,0(ds, dx)− λ

∫ t

0

∫
gε(X

1
s , x)Z2,0(ds, dx)

− λ2

2

∫ t

0

∫
gε(X

2
s , x)2X1

s (dx)ds− λ2

2

∫ t

0

∫
gε(X

1
s , x)2X2

s (dx)ds}

defines the unique solution Pε to the martingale problem (Mε) defined as
follows:
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X i
0 = mi a.s.

X1
t (φ) = X1

0 (φ) + Z̃1,ε
t (φ) +

∫ t

0
X1
s (∆φ/2)ds− λLεt(X2, X1)(φ),

∀t ≥ 0, Pε-a.s., ∀φ ∈ D(∆/2),

X2
t (φ) = X2

0 (φ) + Z̃2,ε
t (φ) +

∫ t

0
X2
s (∆φ/2)ds− λLεt(X1, X2)(φ),

∀t ≥ 0, Pε − a.s., ∀φ ∈ D(∆/2); where Z̃i,ε
t (φ) is an a.s. continuous (F2

t )-
martingale (under Pε) such that

〈Z̃i,ε(φi), Z̃
j,ε(φj)〉t = δij

∫ t

0
X i
s(φ

2
i )ds,

∀t ≥ 0, Pε-a.s., ∀φi, φj ∈ D(∆/2).

Therefore (X1, X2) on (Ω2,F2, Pε) belongs to M(m1,m2) and by Theorem
2.1 we may work on a larger space ((Ω′,F ′) = (Ω4,F4) will do) with a fil-
tration (F ′t) and a probability P′ε carrying processes (X1,ε, X2,ε) which satisfy
(Mε) and independent (F ′t)-super-Brownian motions (Y 1,ε, Y 2,ε) starting at
m1 and m2, respectively such that X i,ε

t ≤ Y i,ε
t , ∀t ≥ 0, P′ε-a.s.

Choose εn ↓ 0 and let

Pn(·) = P′εn((X1,εnX2,εn , Lεn(X2,εn , X1,εn), Lεn(X1,εn , X2,εn)) ∈ ·).

We claim {Pn} is a tight sequence of probabilities on (Ω4,F4). If T, δ, η > 0
and φ ∈ C+

b (R4), then

lim sup
n→∞

P′εn(sup{|Lεnt (X1,εn , X2,εn)(φ)−Lεns (X1,εn , X2,εn)(φ)| : s, t ≤ T, |s−t| ≤ δ} > η)

≤ lim sup
n→∞

P′εn(sup{|Lεnt (Y 1,εn , Y 2,εn)(φ)−Lεns (Y 1,εn , Y 2,εn)(φ)| : s, t ≤ T, |s−t| ≤ δ} > η)

≤ Pm1×Pm2(sup{|Lt(X1, X2)(φ)−Ls(X1, X2)(φ)| : s, t ≤ T, |s−t| ≤ δ} > η/2)

→ 0 as δ ↓ 0,

where the second inequality follows from Lemma 3.4. Theorem 8.2 of Billings-
ley (1968) implies {Lεn· (X1,εn , X2,εn)(φ) : n ∈ N} is tight in C = C([0,∞),R),
∀φ ∈ C`(Rd) (i.e. their laws under P′εn are tight). By Dawson (1991,
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Thm. 4.6.1) (the result given there for càdlàg MF (Rd)-valued processes car-
ries over to continuous MF (Rd)-valued processes), {Lεn(X1,εn , X2,εn) : n ∈
N} is tight in C([0,∞),MF (R̄d)), where R̄d is the one-point compactifica-
tion of Rd. The domination of Lεn(X1,εn , X2,εn) by Lεn(Y 1,εn , Y 2,εn) shows
that each limit point (a law on C([0,∞),MF (R̄d))) is in fact supported by
C([0,∞),MF (Rd)) = Ω. The tightness of {Lεn(X1,εn , X2,εn) : n ∈ N} in Ω
now follows.

Consider next the tightness of {X2,εn : n ∈ N}, i.e., of their laws on (Ω,F).
Let φ ∈ D(∆/2). The dominationX2,εn ≤ Y 2,εn shows that {

∫ ·
0 X

2,εn
s (∆φ/2)ds :

n ∈ N} is tight in C([0,∞),R). The same domination, Burkholder’s inequal-
ity and Theorem 12.3 of Billingsley (1968) show that {Z̃2,εn(φ) : n ∈ N}
is tight in C. The tightness of {X2,εn

· (φ) : n ∈ N} in C now follows from
(Mεn) and the tightness of {Lεn· (X1,εn , X2,εn)(θ) : n ∈ N} proved above. Now
proceed as for {Lεn· (X1,εn , X2,εn) : n ∈ N} to conclude that {X2,εn

· : n ∈ N} is
tight in Ω. The tightness of {Pn} follows.

By Skorokhod’s representation theorem (Ethier-Kurtz (1986, p. 102)),
we may redefine (X1,εn , X2,εn , Lεn(X2,εn , X1,εn), Lεn(X1,εn , X2,εn)) as adapted
processes on a common filtred probability space Ω′ = (Ω′,F ′,F ′t, P′) such that
this 4-tuple converges P′-a.s. to (X̃1, X̃2, A1, A2). Clearly each Ai is an a.s.
non-decreasing, continuous MF (Rd)-valued process. Routine arguments show
that ∀φi ∈ D(∆/2)

(3.4) Zi
t(φi) = X̃ i

t(φi)−mi(φi)−
∫ t

0
X̃ i
s(∆φi/2)ds+ λAit(φi)

is a continuous (F ′t)-martingale such that

(3.5) 〈Zi(φi), Z
j(φj)〉t = δij

∫ t

0
X̃ i
s(φ

2
i )ds

(the bounds X i,εn ≤ Y i,εn give the necessary integrability conditions). There-
fore (X̃1, X̃2) ∈M(Ω′,m1,m2). If φ ∈ D(∆/2), then

d′(Lεn· (X1,εn , X2,ε)(φ), L·(X̃
1, X̃2)(φ))

≤ d′(Lεn· (X1,εn , X2,εn)(φ), L·(X
1,εn , X2,εn)(φ))

+d′(L·(X
1,εn , X2,εn)(φ), L·(X̃

1, X̃2)(φ))

→ 0 as n→∞,
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where we have used Lemma 3.4 to handle the first term and Lemma 3.5 to
handle the second. This proves A1

t = A2
t = Lt(X̃

1, X̃2). Therefore (3.4) and
(3.5) show that the law of (X̃1, X̃2) on (Ω2,F2) is a solution of (MλL). 2

Here then is the fundamental conjecture which we have not been able to
prove in dimensions d = 2, 3.

Conjecture 3.7. If d ≤ 3 and m1,m2 ∈ M s
F (Rd) the solution to (MλL) is

unique.
In the rest of this section we assume d = 1 and show how Dawson’s

Girsanov theorem proves the conjecture in this case.
Let U : MF (R)× R→ R be the Borel measurable mapping

U(µ, x) =

 limn→∞
n
2
µ([x− 1

n
, x+ 1

n
]), if it exists

0, otherwise.

Also consider the P(F2
t )×B(R)-measurable canonical “densities” ui(t, ω, x) =

U(X i
t(ω), x), i = 1, 2,. It is easy to check that

Ωac = {ω ∈ Ω : ω(t) << dx, ∀t > 0}(dx is Lebesgue measure)

is a universally measurable subset of Ω. Clearly, if ω ∈ Ωac, then ωt(dx) =
U(ω(t), x)dx, ∀t > 0.

Lemma 3.8. Suppose that d = 1. Assume X̃ = (X̃1, X̃2) satisfies (Mm1,m2)
on some (Ω′,F ′,F ′t, P′). Then X̃ i

t(dx) = U(X̃ i
t , x)dx, ∀t > 0, i = 1, 2 P′-a.s.

and

(3.6) Lt(X̃
1, X̃2)(φ) =

∫ t

0

∫
φ(x)U(X̃1

s , x)U(X̃2
s , x)dxds,

∀t ≥ 0, ∀φ ∈ bB(R), P′-a.s.

Proof. By Theorem 2.1 (see also the ensuing Remarks) we may assume
without loss of generality there are a pair of independent (F ′t)-super Brownian
motions (Y 1, Y 2) starting at m1, m2, such that X̃ i

t ≤ Y i
t , ∀t ≥ 0, P′-a.s. The

measure Y i
s has a density wi(s, x) = U(Y i

s , x) which is jointly continuous on
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(0,∞) × R, P′-a.s. (see Konno-Shiga (1988, Thm. 1.4) or Reimers (1989,
Thm. 7.1)). Therefore X̃1

t (dx) = vi(t, x)dx, ∀t > 0, P′-a.s., where

vi(t, ω, x) = U(X̃ i
t(ω), x) ≤ wi(t, ω, x),

∀t > 0, ∀x ∈ R, P′-a.s. Let

vεi (t, x) =
∫
pε(x− y)vi(t, y)dy

and
wεi(t, x) =

∫
pε(x− y)wi(t, y)dy.

Observe that

(3.7) lim
ε↓0

vεi (t, x) = vi(t, x)

and

(3.8) lim
ε↓0

wεi(t, x) = wi(t, x),

Lebesgue-a.a. x, ∀t > 0, P′-a.s.
By continuity, it suffices to prove (3.6) for a fixed t > 0 and φ ∈ C+

b (R).
Choose εn ↓ 0 such that Lεnt (X̃1, X̃2)(φ) → Lt(X̃

1, X̃2)(φ), P′-a.s. (see
Lemma 3.4). Since

Lεnt (X̃1, X̃2)(φ) =
∫ t

0

∫
vεn1 (s, y)v2(s, y)φ(y)dyds,

Fatou’s lemma together with (3.7) gives

(3.9) Lt(X̃
1, X̃2)(φ) ≥

∫ t

0

∫
v1(s, y)v2(s, y)φ(y)dydx, P′ − a.s.

To complete the proof it suffices to show

(3.10) lim
n→∞

P′(
∫ t

0

∫
vεn1 (s, y)v2(s, y)φ(y)dyds)

= P′(
∫ t

0

∫
v1(s, y)v2(s, y)φ(y)dyds) <∞.
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Indeed this, together with Fatou’s lemma, implies

P′(Lt(X̃
1, X̃2)(φ)) ≤ lim inf

n→∞
P′(Lεnt (X̃1, X̃2)(φ))

= P′(
∫ t

0

∫
v1(s, y)v2(s, y)φ(y)dyds)

and (3.9) would then give the required result (3.6). To prove (3.10) define a
finite measure νX̃2 on [0, t]× Rd by

νX̃2(A) = P′(
∫ t

0

∫
1A(s, x)v2(s, x)dxds)

and similarly define νY 2 . In view of (3.7), (3.10) is equivalent to the uniform
of integrability of {vεn1 : n ∈ N} with respect to νX̃2 , which is implied by
the uniform integrability of {wεn1 : n ∈ N} with respect to νY 2 . The latter is
equivalent to (see (3.8))

(3.11) P′( lim
n→∞

∫
wεn1 (s, x2)dνY 2(s, x2)) = P′(

∫
w1(s, x2)dνY2(s, x2)).

The left side of (3.11) equals

lim
n→∞

P′(
∫ t

0

∫ ∫
pεn(x2 − x1)w1(s, x1)w2(s, x2)dx1dx2ds)

= lim
n→∞

∫ t

0

∫ ∫ ∫ ∫
pεn(x2−x1)ps(x1−z1)ps(x2−z2)dx1dx2m1(dz1)m2(dz2)ds

(by Konno-Shiga (1988, (2.14))

= lim
n→∞

∫ t

0

∫ ∫
pεn+2s(z1 − z2)m1(dz1)m2(dz2)ds

=
∫ t

0

∫
p2s(z1 − z2)m1(dz1)m2(dz2)ds,

the last by dominated convergence (pεn+2s ≤ cs−1/2). Again (2.14) of Konno-
Shiga (1988) shows the last integral equals P′(

∫
w1(s, x2)dνY 2(s, x2)). This

gives (3.11) and we are done. 2

Recall the notation Zi,0 from (Mg1,g2) but now with Ei = R and Gi = ∆/2.

30



Theorem 3.9. Let d = 1, λ ≥ 0 and

F = {(m1,m2) ∈MF (R)2 :
∫ ∫

log+(1/|x1 − x2|)m1(dx1)m2(dx2) <∞}.

(a) ∀m = (m1,m2) ∈ F there is a unique solution Pm to (MλL).
(b) ∀m ∈ F , ∀t > 0

dPm
dP1

m1
× P2

m2

|F2
t

=
exp {−λ(

∫ t
0

∫
u2(s, x)dZ1,0(s, x) +

∫ t
0

∫
u1(s, x)dZ2,0(s, x))

−(λ2/2)
∫ t

0

∫
u2(s, x)2u1(s, x) + u1(s, x)2u2(s, x)dxds}.

(c) (Ω2,F2,F2
t , θ

2
t , Xt, (Pm)m∈F ) is an F -valued diffusion.

Proof. Lemma 3.8 shows that P solves (MλL) if and only if P solves (Mg1,g2)
with g1(s, w, x) = −λU(X2

s (ω), x) and g2(s, ω, x) = −λU(X1
s (ω), x). As

−λU ≤ 0, the Theorem will follow from Theorem 2.5 once (2.7) and (2.8)
are verified.

Letting t0 ↓ 0 in (2.14) of Konno-Shiga (1988), we have

(3.12) ui(t, x) =
∫
pt(x− y)mi(dy) +

∫ t

0

∫
pt−s(x− y)dZi,0(s, y),

Pimi-a.s., ∀(t, x). Therefore, if (m1,m2) ∈ F ,

Pm1 × Pm2(
∫ t

0

∫
u1(s, x)2u2(s, x)dxds)

=
∫ t

0

∫
[(
∫
ps(x− y)m1(dy))2 +

∫ s

0

∫
ps−v(x− y)2Pm1(u1(v, y))dydv]

×(
∫
ps(x− w)m2(dw))dxds

≤
∫ t

0

∫
[s−1/2m1(1)(

∫
ps(x−y)m1(dy))+

∫ s

0

∫
ps(x−z)(2π)−1/2(s−v)−1/2dm1(z)dv]

×(
∫
ps(x− w)m2(dw))dxds

= m1(1)
∫ ∫ ∫ t

0
s−1/2p2s(y1 − y2)dsm1(dy1)m2(dy2)

+2(2π)−1/2
∫ ∫ ∫ t

0
s1/2p2s(y1 − y2)dsm1(dy1)m2(dy2)
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≤ m1(1)
∫ ∫

1 + log+(4t/(y1− y2)2)m1(dy1)m2(dy2) + 2(2π)−1/2m1(1)m2(1)t

which is finite since (m1,m2) ∈ F . This proves (2.7). Turning to (2.8), recall
that ui(s, x) is a (jointly) continuous density for X i

s, ∀s > 0, P1
m1
× P2

m2
-a.s.

(Reimers (1989)), and has compact support in x, ∀s > 0, P1
m1
× P2

m2
-a.s.

(Dawson-Iscoe-Perkins (1989, Thm. 1.2)). Condition (2.8) follows and the
proof is complete. 2

We close this section with a related martingale problem on Ω for a self-
interacting population. For θ, λ ≥ 0 and m ∈ MF (R) we will say that a
probability measure P on (Ω,F) solves the martingale problem (M θ,λ

m ) if the
following holds:

X0 = m, P− a.s.,

Xt(φ) = X0(φ) + Zθ,λ
t (φ) +

∫ t

0
Xs(

φ′′

6
+ θφ− λU(Xs, ·)φ)ds,

∀t ≥ 0, P-a.s., ∀φ ∈ C2
` (R); where Zθ,λ(φ) is a martingale such that

〈Zθ,λ(φ)〉t =
∫ t

0
Xs(φ

2)ds,

∀t ≥ 0, P-a.s.

The presence of U(Xs, x) in the above suggests we are only interested in
P such that P(Ωac) = 1. We will see that this is in fact a consequence of
(M θ,λ

m ).
Solutions to (M θ,λ

m ) were conjectured by Rick Durrett to arise as a limit
of rescaled one-dimensional contact processes as the interaction range ap-
proaches infinity. The −λU(Xs, ·) term in (M θ,λ

m ) kills particles at a rate
proportional to their local density. It arises from the approximating contact
processes because of the suppression of “offspring” which jump onto an oc-
cupied site. The φ′′/6 term (as opposed to the usual φ′′/2) arises from this
particular approximation. In Perkins (1989a) it is shown that a discrete time
version of these contact processes do converge weakly to the unique solu-
tion of (M θ,λ

m ). Here we will only show how Corollary 2.6 give existence and
uniqueness of solutions to (M θ,λ

m ). This result is due to Don Dawson who
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told one of us that his Girsanov approach will work in this setting. Mueller
and Tribe (1993) study the properties of solutions of (M θ,λ

m ) and confirm
Durrett’s conjecture.

Let P′m denote the law of super-Brownian motion on (Ω,F) but now scale
the Brownian motion to have generator ∆/6. Also let Zt denote the associ-
ated orthogonal martingale measure, i.e., Zt = Z0,0

t in the above notation.

Theorem 3.10. Let θ, λ ≥ 0 and

F1 = {m ∈MF (R) :
∫ ∫

log+(1/|x1 − x2|)dm(x1)dm(x2) <∞}.

(a) ∀m ∈ F1 there is a unique solution Pθ,λm to (M θ,λ
m )

(b) ∀m ∈ F1, Pθ,λm (Ωac) = 1, Pθ,λm |Ft << P′m|Ft, ∀t > 0, and

dPθ,λm
dP′m
|Ft = exp{

∫ t

0

∫
θ−λU(Xs, x)dZ(s, x)−1

2

∫ t

0

∫
(θ−λU(Xs, x))2Xs(dx)ds}

(c) (Ω,F ,Ft, θt, Xt, (Pθ,λm )m∈F1) is an F1-valued diffusion.

Proof. The result will follow from Corollary 2.6 with Γ(Xs, x) = θ −
λU(Xs, x) ≤ θ, once conditions (2.13) and (2.14) are verified. (Note that
Pθ,λm (Ωac) = 1 is immediate from the absolute continuity result.) As in the
proof of Theorem 3.9, (2.14) is clear from the fact that Xt has a continuous
density with compact support, ∀t > 0, P′m-a.s.

Let m ∈ F1 and u(t, ω, x) = U(Xt(ω), x). Condition (2.13) would clearly
follow from

(3.13) P′m(
∫ T

0

∫
u(t, x)3dxdt) <∞, ∀T > 0.

Equation (3.12) and Burkholder’s inequality show that
(3.14)

P′m(u(t, x)3) ≤ c((
∫
pt(x− y)dm(y))3 + P′m((

∫ t

0
Xs(pt−s(x− ·)2)ds)3/2)).
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The second term is bounded by

P′m((
∫ t

0(t− s)−3/4Xs(pt−s(x− ·)1/2)ds)3/2)

≤ P′m(
∫ t

0(t− s)−3/4Xs(pt−s(x− ·)1/2)3/2ds)2t1/8 (Jensen’s inequality)

≤
∫ t

0(t− s)−3/4P′m(Xs(pt−s(x− ·))3/4Xs(1)3/4)ds2t1/8 (Hölder’s inequality)

(3.15) ≤
∫ t

0(t− s)−3/4[P′m(Xs(pt−s(x− ·)))]3/4[P′m(Xs(1)3)]1/4ds2t1/4 (Hölder again).

Now∫
[P′m(Xs(pt−s(x− ·)))]3/4dx =

∫
[
∫
pt(x− z)dm(z)]3/4dx

≤
∫ ∫

pt(x− z)3/4dm(z)m(1)−1/4dx

≤ ct1/8m(1)3/4.

It is clear from this that (3.15) is integrable in (t, x) over [0, T ]× R, ∀T > 0.
From (3.13) and (3.14) it remains only to show

(3.16)
∫ T

0

∫
(
∫
pt(x− y)dm(y))3dxdt <∞, ∀T > 0.

The left side is bounded by∫ T

0

∫ ∫ ∫
pt(x− y1)pt(x− y2)dxdm(y1)dm(y2)t−1/2dtm(1)

=
∫ ∫

(
∫ T

0
t−1/2p2t(y1 − y2)dt)dm(y1)dm(y2)m(1)

≤ c
∫ ∫

1 + log+(T/(y1 − y2)2)dm(y1)dm(y2)m(1)

which is finite because m ∈ F1. 2

We close this Section with a result which shows these Girsanov techniques
will not work for d = 3. The proof is given at the end of the next section.

Theorem 3.11. Assume d = 3, λ > 0 and m1,m2 ∈ M s
F (R3)\{0}. If P

solves (MλL) then P|F2
1

is not absolutely continuous with respect to
Pm1 × Pm2|F2

1
.
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4 Killing Super-Brownian Motion in a Ran-

dom Environment

We study in this section the much simpler problem in which the first popula-
tion X1 may be killed when it comes in contact with the second population
X2, but X2 is not affected by these encounters. Existence and uniqueness for
the appropriate martingale problem is established in Theorem 4.9 and the
fact that the resulting process is a diffusion on a suitable space of measures
is proved in Theorem 4.11. As a preliminary to studying the uniqueness
question, we first consider a similar martingale problem in which the killing
measure-valued process X2 is replaced by a deterministic measure-valued
function. Uniqueness for this latter martingale problem is obtained in The-
orem 4.5. We have omitted the proof of the companion existence result (see
Remark 4.6.)

We continue to use the notation of the previous section.

Definition. Let W = (T,B) denote space-time Brownian motion on the
canonical space of paths C([0,∞), E), where E = [0,∞)× Rd. Thus W is a
Feller process (in the sense of Ethier-Kurtz (1986, Sec. 4.2)) with semigroup
{Pt : t ≥ 0} and laws

Qτ,y(W ∈ A) = Πy((τ + ·, B·) ∈ A)

where Πy is Wiener measure starting at y.
If µ ∈ Ω ≡ C([0,∞),MF (Rd)) and η > 0, let

fµη (u, x) = gη(µu, x) =
∫
pη(x− y)µu(dy), (u, x) ∈ E,

and define a continuous additive functional (CAF) for W by

Aµη(t) =
∫ t

0
fµη (Ws)ds.

Dependence on µ in the above quantities will often be suppressed. Let

h(µ, ε) = sup
(τ,x)∈E

∫ ε

0
fµs (τ + s, x)ds, M(µ) =

∫ ∞
0

µs(1)ds,

Φ = {µ ∈ Ω : lim
ε↓0

h(µ, ε) = 0, µt = 0 for sufficiently large t}

∈ F ≡ B(Ω).
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Theorem 4.1. If µ ∈ Φ, there is a CAF Aµ for W such that

lim
η→0

sup
(τ,x)∈E

Qτ,x(sup
t

(Aµη(t)− Aµ(t))2) = 0.

If h : [0, 1]→ [0,∞) is such that h(ε) ↓ 0 as ε ↓ 0 and M ∈ N, the convergence
in the above is uniform on Φ(h,M) = {µ ∈ Φ : M(µ) ≤ M, h(µ, ε) ≤
h(ε), ∀ε ≤ 1}.

Proof. Set

Fη(τ, x) =
∫ ∞

0

∫
ps+η(x− y)µτ+s(dy)ds = Qτ,x(Aη(∞)),

and
F (τ, x) =

∫ ∞
0

∫
ps(x− y)µτ+s(dy)ds.

Note that for each ε > 0,

|(F − Fη)(τ, x)| ≤
∫ ε

0

∫
ps(x− y)µτ+s(dy)ds

+
∫
pη(x− z)(

∫ ε

0

∫
ps(z − y)µτ+s(dy)ds)dz

+
∫ ∞
ε

∫
|ps(x− y)− ps+η(x− y)|µτ+s(dy)ds

and so

sup
(τ,x)
|(F − Fη)(τ, x)| ≤ 2h(µ, ε) + sup

u≥ε
sup
z
|pu(z)− pu+η(z)| M(µ).

For µ ∈ Φ it is now clear that

(4.1) lim
η→0+

‖F − Fη‖∞ = 0

and the rate of convergence is uniform in µ ∈ Φ(h,M).

For the moment fix µ ∈ Φ and (τ, x) ∈ E. If we set

(4.2)
eη(t) = Qτ,x(Aη(∞)|Ws, s ≤ t)

= Aη(t) + Fη(Wt) (Markov property),
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then since Aη(∞) is uniformly bounded, eη is a non-negative martingale such
that limt→∞ eη(t) = Aη(∞), Qτ,x-a.s., and in L2(Qτ,x). Doob’s maximal L2

inequality therefore gives

Qτ,x(sup
t
|eη(t)− eη′(t)|2)

≤ cQτ,x((Aη(∞)− Aη′(∞))2)

= 2cQτ,x(
∫ ∞

0
(fη − fη′)(Wu)QWu(

∫ ∞
0

(fη − fη′)(Wt)dt)du)

= 2cQτ,x(
∫ ∞

0
[(fη − fη′)(Wu)][(Fη − Fη′)(Wu)]du)

≤ 4c‖F‖∞‖Fη − Fη′‖∞,

where in the last line we have used Chapman-Kolmogorov to see ‖Fη‖∞ ≤
‖F‖∞. Combine the above with (4.2) to see

(4.3) sup
(τ,x)∈E

Qτ,x(sup
t
|Aη(t)−Aη′(t)|2) ≤ c(‖Fη−Fη′‖2

∞+‖F‖2
∞‖Fη−Fη′‖2

∞).

Since ‖Fη‖∞ ≤ c(η)M(µ) it is clear from (4.1) that ‖F‖∞ is bounded uni-
formly in µ ∈ Φ(h,M), and therefore (4.3) converges to zero as η, η′ → 0
uniformly in µ ∈ Φ(h,M) (again use (4.1)). From this conclusion we can now
carry through the general argument subsequent to line 3.10 of Blumenthal
and Getoor (1968) in order to construct a CAF A = Aµ with the desired
properties. 2

For µ ∈ Φ we introduce the sub-Markov semigroups on bE

P̄ η,µ
t (f)(τ, y) = P̄ η

t (f)(τ, y) = Qτ,y(exp{−Aη(t)}f(Wt))

P̄ µ
t (f)(τ, y) = P̄t(f)(τ, y) = Qτ,y(exp{−A(t)}f(Wt)).

P̄ η
t and P̄t are the semigroups of the processes obtained by killingW according

to the CAF’s Aη and A, respectively. Let W̄ η and W̄ denote these killed
processes and let Q̄η

τ,y and Qη
τ,y denote their laws on C([0,∞), E∆). Here ∆,

the cemetary point, is added to E as a discrete point to form E∆. The weak
continuity of (τ, y)→ Qτ,y and the fact that Aη(t) is a continuous functional
of W show that P̄ η

t : C0(E)→ C0(E). The fact that µt has compact support
in t shows that

lim
(τ,y)→∞

P̄ η
t 1(τ, y) = 1
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and hence {P̄ η
t : t ≥ 0} is a semigroup on C`(E). Since Aη(t) ≤ ct, P̄ η

t is a
(non-conservative) Feller semigroup (i.e. strongly continuous) on C`(E). Let
Ḡη,µ = Ḡη (respectively Ḡµ = Ḡ and G0) denote the (strong) infinitesimal
generators of (P̄ η

t ) (respectively (P̄t) and (Pt)) on their domains in C`(E).
By Dynkin (1965, p. 298)

(4.4) D(Ḡη) = D(G0) and Ḡηφ = G0φ− fηφ.

If φ ∈ C1,2
` (E) = {φ ∈ C`(E) : ∂φ

∂s
, ∆φ

2
∈ C`(E)}, then φ ∈ D(G0) and

G0φ(s, x) =
∂φ

∂s
(s, x) +

∆

2
φ(s, x).

(∆ applies only to the spatial variables).

Proposition 4.2. Let µ ∈ Φ. Then:

(a) limη→0+ supt≥0 ‖P̄
η
t − P̄t‖ = 0 (‖ ‖ denotes the operator norm on

C`(E)).

(b) {P̄t : t ≥ 0} is a Feller semigroup on C`(E).

(c) ∀f ∈ D(Ḡ), ∃fη ∈ D(Ḡη) such that (fη, Ḡηfη)→ (f, Ḡf) in C`(E)2 as
η ↓ 0.

Proof. If f ∈ bE ,

sup
t≥0
‖P̄ η

t f − P̄tf‖∞ ≤ ‖f‖∞ sup
(τ,x)

Qτ,x(sup
t≥0
| exp(−Aη(t))− exp(−A(t))|)→ 0

as η ↓ 0 by Theorem 4.1. Claims (a) and (b) are now immediate. Claim
(c) is then a consequence of Ethier-Kurtz (1986, Thm. 1.6.1) (which extends
trivially to our continuous parameter setting). 2

Let X̄ = (Ω̄, F̄ , F̄t, X̄t, P̄
0
m) (P̄0

m = P̄0,µ
m for m ∈ MF (E)) denote the W̄ -

superprocess on Ω̄ = C([0,∞),MF (E)) with its Borel σ-field F̄ , canonical
right-continuous filtration (F̄t) and coordinate mappings X̄t. As usual m
denotes the initial measure. Although the underlying Markov process is
assumed to be conservative in the literature, it is easy to construct and
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characterize superprocesses in the non-conservative case through the same
martingale problem. The details are given in the Appendix. Let P̄ηm = P̄η,µm
denote the law of the W̄ η-superprocess on (Ω̄, F̄) and let P̄m denote the law
of the W -superprocess. Note that for η > 0, P̄η,µm is defined for all µ ∈ Ω.

It follows from Theorem A.1 (in the appendix) and (4.4) that P̄η,µm is the
unique law on (Ω̄, F̄) such that ∀φ ∈ D(G0) the following holds:

X̄t(φ) = m(φ) + Z̄η,µ
t (φ) +

∫ t

0
X̄s(G0φ− fµη φ)ds,

∀t ≥ 0; where Z̄η,µ
t (φ) is a continuous (F̄t)-martingale under P̄η,µm such that

Z̄η,µ
0 (φ) = 0 and

〈Z̄η,µ(φ)〉t =
∫ t

0
X̄s(φ

2)ds,

∀t ≥ 0, P̄η,µm -a.s. Label the above martingale problem (M̄η
m).

Notation. If µ, ν ∈MF (Rd) let

d(µ, ν) = sup{|µ(φ)− ν(φ)| : φ Lipschitz continuous with

Lipschitz constant at most one, ‖φ‖∞ ≤ 1}.
The metric d is the Vasershtein metric on MF (Rd) and is a complete metric
which induces the weak topology on MF (Rd) (see Ethier-Kurtz (1986, p.150,
problem 2)). Denote the uniform metric on Ω by ρ(µ, µ′) = supt≥0 d(µ(t), µ′(t)).

Although normally we would equip Ω with the compact-open topology,
in the next result we use the ρ-topology. Let Ωρ denote Ω equipped with the
ρ-topology.

Proposition 4.3. (a) ∀µ ∈ Φ, m ∈MF (E), P̄η,µm
w→ P̄0,µ

m as η ↓ 0.
(b) ∀η > 0, the map (m,µ) 7→ P̄η,µm is continuous from MF (E) × Ωρ to

M1(Ω̄).
(c) The map (m,µ) 7→ P̄0,µ

m is a Borel measurable map from MF (E) × Φ
to M1(Ω̄).

Proof. (a) To directly apply the convergence results in Ethier-Kurtz (1986)
we note that (M̄η

m)is equivalent to the requirement that:

exp{−X̄t(φ)} −
∫ t

0
exp{−X̄s(φ)}[X̄s(−G0φ+ fµη φ+ φ2/2)]ds
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is an (F̄t)-martingale under P̄η,µm starting at exp{−m(φ)}, ∀φ ∈ D(G0)+ =
{φ ∈ D(G0) : inf φ > 0}. Label this latter martingale problem (M̃η

m).
To see that (M̄η

m) implies (M̃η
m) involves only elementary stochastic cal-

culus and the converse implication is only slightly more involved (because
one must show P̄η,µm (X̄t(1)) ≤ m(1) < ∞ to see that Z̄η,µ

t (φ) is square inte-
grable). Theorem 2.1 allows us to bound X̄t (under P̄η,µm ) by a (W,−λ2/2)
super-process. This together with Helly’s characterization of compactness in
the space of measures give the compact containment condition

(4.5) ∀δ, T > 0, ∃ a compact set K ⊂MF (E) such that
inf0<η≤1 P̄

η,µ
m (X̄t ∈ K, ∀0 ≤ t ≤ T ) ≥ 1− δ.

Now use Proposition 4.2(c) as in the argument on p.407 of Ethier-Kurtz
(1986) to verify condition (f) of Corollary 8.7 in Ch.4 of the same reference.
This together with Theorem A.1 (which gives uniqueness for (M̃η

m)) and (4.5)
allow us to derive (a) from Corollary 8.16 in Ch.4 of Ethier-Kurtz (1986).

(b) Let (mn, µn) → (m,µ) in MF (E) × Ωρ. By (4.4), if φ ∈ D(Ḡη,µn) =
D(G0) then

(4.6)

|Ḡη,µnφ(u, x)− Ḡη,µφ(u, x)| ≤ ‖φ‖∞|gη(µn(u), x)− gη(µ(u), x)|

≤ cη‖φ‖∞d(µn(u), µ(u))

→ 0 uniformly in(u, x) ∈ E.
The last step uses the uniform convergence of {µn}. The compact contain-
ment condition (4.5) for {P̄η,µnmn : n ∈ N} follows as in (a). That is, we may
define {Yn} with laws P̄mn which bound {X̄n} (with laws P̄η,µnmn ) and use the
weak continuity of Pmn in mn (see Dynkin (1989, Thm. 8.1)) to obtain the
analogue of (4.5). The rest of the proof now proceeds as in (a) (use (4.6) in
place of Proposition 4.2(c)).

(c) This is immediate from (a) and (b). 2

Notation. Set C1
0([0,∞)) = {φ ∈ C0([0,∞)) : φ′ ∈ C0([0,∞))}, C2

0(Rd) =
{φ ∈ C0(Rd)∩C2

` (Rd) : ∆φ ∈ C0(Rd)}. The projection π : MF (E)→MF (Rd)
is given by

π(µ)(A) = µ([0,∞)× A).

Definition. If B is a Banach space and A : D(A) ⊂ B → B is a linear
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map, we say a set D ⊂ D(A) is a core for A if and only if the closure of
{(φ,Aφ) : φ ∈ D} in B ×B contains {(φ,Aφ) : φ ∈ D(A)}.

Lemma 4.4 If D0 = {φ(t, x) : φ(t, x) = φ1(t)φ2(x), φ1 ∈ C1
0([0,∞)), φ2 ∈

C2
0(Rd)} ∪ {1}, then the linear span of D0 is a core for G0.

Proof. This is a simple application of Ethier-Kurtz (1986, Prop. 1.3.3). 2

We are at last in a position to state the martingale problem mentioned at
the start of the section that models a randomly evolving population killed in
the presence of a deterministically evolving second population. Recall that
the primary reason we are studying this model is as a prelude to establish-
ing uniqueness in the martingale problem describing a randomly evolving
population killed in the presence of an independent super-Brownian motion.

Definition. Define the following additional σ-fields of subsets of Ω:

F [τ,∞) = σ{Xu : u ≥ τ}, F0
t = σ{Xu : u ≤ t},

F [τ, t] = ∩nσ{Xu : τ ≤ u ≤ t+
1

n
} (0 ≤ τ ≤ t <∞).

Let µ ∈ Φ, τ ≥ 0, m ∈ MF (Rd) and D be a core for D(∆/2) such that
1 ∈ D ⊂ C2

` (Rd). We say that a law P on (Ω,F [τ,∞)) solves the martingale
problem (Mµ

m) if the following hold:

Xτ = m, P-a.s.,

Xt(φ) = Xτ (φ) + Zt(φ) +
∫ t

τ
Xs(

∆φ

2
)ds− Lt(φ),

∀t ≥ τ , P-a.s., ∀φ ∈ D; where {Zt(φ) : t ≥ τ} is an a.s. continuous F [τ, t]-
martingale under P such that

〈Z(φ)〉t =
∫ t

τ
Xs(φ

2)ds,

∀t ≥ τ , P-a.s., and Lt is an a.s. continuous MF (Rd)-valued process such that
for some sequence ηn → 0, ∀t ≥ τ and ∀φ ∈ D,

Lt(φ) = P− lim
n→∞

∫ t

τ

∫
gηn(µs, x)φ(x)Xs(dx)ds.
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Theorem 4.5. Let µ ∈ Φ, τ ≥ 0, m ∈ MF (Rd) and D be as in the previous
definition. Let P be a law on (Ω,F [τ,∞)) that satisfies (Mµ

m). Then P(A) =
P̄0,µ
δτ×m(π(X̄·−τ ) ∈ A), ∀A ∈ F [τ,∞), and, in particular, P is unique.

Proof. Let

Lnt (A) =
∫ t

τ
Xs(gηn(µs, ·)1A)ds, t ≥ τ, A ∈ B(Rd).

As D is a core, D is dense in C`(Rd). Let φ ∈ C`(Rd) and choose {φm} ⊂ D
such that ‖φm − φ‖∞ → 0. Then

|Lnt (φ)− Lt(φ)| ≤ |Lnt (φ− φm)|+ |Lnt (φm)− Lt(φm)|+ |Lt(φm − φ)|
≤ ‖φm − φ‖∞(Lnt (1) + Lt(1)) + |Lnt (φm)− Lt(φm)|.

First choose m large so the first term is small in probability uniformly in n
and then choose n large so the second term is small in probability. This is

possible because Lnt (φm)
P→ Lt(φm) for all m and Lnt (1)

P→ Lt(1). Therefore

(4.7) Lnt (φ)
P→ Lt(φ), ∀φ ∈ C`(Rd),

and we may choose a countable dense set D′ in
C+
` (Rd) = {f ∈ C`(Rd) : f ≥ 0} with 1 ∈ D′ and a sequence {nk} such that

lim
k→∞

Lnkt (φ) = Lt(φ), ∀t ∈ Q ∩ [τ,∞), ∀φ ∈ D′, P− a.s.

As the limit is a.s. continuous in t and Lnkt (φ) is non-decreasing in t, an
elementary argument shows that

(4.8) lim
k→∞

sup
τ≤t≤T

|Lnkt (φ)− Lt(φ)| = 0, ∀φ ∈ D′, T > τ, P− a.s.

If ρ = sup{s : µs 6= 0}, then ρ <∞ and

(4.9) Lnkt (1) = Lnkρ (1), ∀t ≥ ρ

and therefore Lt(1) = Lρ(1), ∀t ≥ ρ, P-a.s. by the above. It now follows from
(4.8) that

(4.10) lim
k→∞

sup
τ≤t
|Lnkt (φ)− Lt(φ)| = 0, ∀φ ∈ D′, P− a.s.
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Equation (4.10) shows that Lt(φ) is non-decreasing in t and Lτ (φ) = 0 for
all φ ∈ C+

` (Rd), P-a.s. Hence there is a unique (up to null sets) random finite
measure L̄ on [τ,∞)× Rd such that

L̄([τ, t]× A) = Lt(A), ∀t ≥ τ, A ∈ B(Rd), P− a.s.

If L̄n is the corresponding measure for Lnt , then by using (4.9) and (4.10)
first to get a.s. tightness of {L̄nk} and then to see that L̄ is the only limit
point a.s., one obtains

(4.11) L̄nk → L̄ in MF ([τ,∞)× Rd) a.s.

The conditions of (Mµ
m) imply that

(4.12) P(
∫ T

τ
Xs(1)ds) ≤ (T − τ)m(1).

As D is bounded pointwise dense in bB(Rd), this allows us to extend Zt to
an orthogonal martingale measure {Zt(φ) : t ≥ τ , φ ∈ bB(Rd)} such that
{Zt(φ) : t ≥ τ} is a continuous L2 martingale with respect to the filtration
(F [τ, t])t≥τ under P with

〈Z(φ)〉t =
∫ t

τ
Xs(φ

2)ds,

∀t ≥ τ , P-a.s. As in Walsh (1986, Ch.2), we can define
∫ t
τ

∫
φ(s, x, ω)Z(ds, dx)

for the usual class of P(F [τ, t])× B(Rd)-measurable integrands.
By taking limits of (φ,∆φ/2) (φ ∈ D) in C`(Rd)2 we see that (Mµ

m)
continues to hold ∀φ ∈ D(∆/2) (recall (4.12)). If φ(s, x) = φ1(s)φ2(x) for
φ1 ∈ C1

0([0,∞)) and φ2 ∈ C2
0(Rd) (see the notation prior to Lemma 4.2),

then some easy stochastic calculus and (Mµ
m) (the latter for φ2) give

(4.13) Xt(φt) = m(φτ ) +
∫ t

τ

∫
φ(s, x)dZ(s, x)

+
∫ t

τ
Xs(G0φs)ds−

∫ t

τ

∫
φ(s, x)L̄(ds, dx),

∀t ≥ τ , P-a.s. Equation (4.13) continues to hold for φ in the core D0 intro-
duced in Lemma 4.4 and hence, by taking limits, for all φ in D(G0). Let
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φ ∈ D(Ḡ) and use Proposition 4.2(c) to choose φn ∈ D(Ḡηn) = D(G0) (by
(4.4)) such that

(4.14) (φn, Ḡηnφn)→ (φ, Ḡφ) in C`(E)2.

Apply (4.13) with φ = φn and use (4.4) to conclude (write Zt(φ) for the
martingale term in (4.13))

Xt(φn(t)) = m(φn(τ)) + Zt(φn) +
∫ t

τ
Xs((Ḡηnφn)(s))ds

+
∫ t

τ
Xs(gηn(µs, ·)φn(s))ds

−
∫ t

τ

∫
φn(s, x)L̄(ds, dx),

∀t ≥ τ , P-a.s. Let n → ∞ through {nk} and use (4.11), (4.14), and Doob’s
inequality along with (4.12) to handle the martingale terms, to conclude

Xt(φt) = m(φ(τ)) + Zt(φ) +
∫ t

τ
Xs((Ḡφ)(s))ds

∀t ≥ τ , P-a.s. If ~Xt = δτ+t×Xτ+t for t ≥ 0, this becomes (let ~Zt(φ) = Zt+τ (φ),
~Ft = F [τ, τ + t], t ≥ 0)

~Xt(φ) = (δτ+t ×m)(φ) + ~Zt(φ) +
∫ t

0

~Xs(Ḡφ)ds,

∀t ≥ 0, P-a.s., ∀φ ∈ D(Ḡ); where ~Zt(φ) is a continuous ( ~Ft)-martingale such

that ~Z0(φ) = 0 and

〈~Z(φ)〉t =
∫ t+τ

τ
Xs(φ

2
s)ds =

∫ t

0

~Xs(φ
2)ds,

∀t ≥ 0, P-a.s. Theorem A.1 in the Appendix implies ~X has distribution
P̄0,µ
δτ×m. The result follows because Xt = π( ~Xt−τ ), ∀t ≥ τ . 2

Remark 4.6. (a) A uniqueness result without a companion existence theo-
rem is of questionable value. In fact it is true that P = P̄0,µ

δτ×m (π(X̄·−τ ) ∈ ·)
solves (Mµ

m). Our proof of this apparently simple result is ridiculously com-
plicated and we have not included it here. We will see that Theorem 3.6 will
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give solutions to (Mµ
m) for Pm-a.a. µ (Pm continues to denote the law of super

Brownian motion on (Ω,F)) and this will suffice for our purposes.
(b) If m ∈MF (Rd) and µ ∈ Φ, let Pµm(A) = P̄0,µ

δ0×m(π(X̄) ∈ A) for A ∈ F .
Proposition 4.3(c) shows that (m,µ) 7→ Pµm is a Borel measurable map from
MF (Rd) × Φ to M1(Ω). Recall the notation M s

F (Rd) from Section 3 (see
Lemma 3.4)

Proposition 4.7. Assume d ≤ 3 and m ∈M s
F (Rd). Then

(a) Pm(Φ) = 1
(b) Xt ∈M s

F (Rd), ∀t ≥ 0, Pm-a.s.

Proof. (a) Clearly t 7→ Xt(1) has compact support Pm-a.s. It remains to
show

(4.15) lim
ε↓0

sup
x∈Rd,τ≥0

∫ ε

0

∫
ps(y − x)Xs+τ (dx)ds = 0, Pm − a.s.

If d = 1 this follows from the trivial bound ps(y−x) ≤ s−1/2, so let us assume
d = 2 or 3. Let ζ(r) = r2(1 + log+(1/r))4−d. Theorem 4.7 and Lemma 4.6
of [BEP] show there are constants c1, c2 > 0 and an r0(ω) > 0 Pm-a.s. such
that

(4.16) D(Xt, r) ≤ c1(D(m, c2r) + ζ(r)), ∀t ≥ 0 and r ∈ (0, r0).

Choose ω such that r0(ω) > 0 and fix τ ≥ 0, x ∈ Rd. Let νs([0, r)) =
Xs+τ (B(x, r)). Inequality (4.16) implies that

(4.17) νs([0, r)) ≤ c3(ω)(D(m, c2r) + ζ(r)),

first for 0 < r < r0(ω) and then for all r > 0 by choosing c3(ω) appropriately.∫ ε

0

∫
Rd
ps(y − x)Xs+τ (dy)ds =

∫ ε

0

∫ ∞
0

ps(r)νs(dr)ds

=
∫ ε

0

∫ ∞
0

νs([0, r))(2π)−d/2s−1−d/2re−r
2/2sdrds (by parts)

≤ c3(ω)[
∫ ε

0

∫ ∞
0

D(m, c2r)re
−r2/2ss−1−d/2drds

+
∫ ε

0

∫ ∞
0

ζ(r)rc−r
2/2ss−1−d/2drds] (by (4.17)).
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The second integral goes to zero as ε ↓ 0 because d < 4. The first integral
equals ∫ ε

0

∫ ∞
0

D(m, c2x
√
s)xe−x

2/2s−d/2dxds

=
∫ ∞

0

∫ c2x
√
ε

0
D(m,u)u1−dduxd−1e−x

2/2dx(2cd−2
2 ).

This approaches zero as ε ↓ 0 because m ∈ M s
F (Rd). As the above bounds

are uniform in (τ, x), the proof of (4.15) is complete.
(b) This is immediate from (4.16). 2

Remark 4.8. Corollary 4.8 of [BEP] in fact implies Xt ∈ M s
F (Rd), ∀t > 0,

Pm-a.s., ∀m ∈MF (Rd) (for d ≤ 3).

We are ready to introduce the martingale problem (M1
λL) discussed in the

Introduction. Recall that this is intended as a model for a pair of branching
particle systems in which inter-species collisions may kill off the particle in the
first population but have no effect on the particle from the second population.

Definition. Suppose that λ ≥ 0 and m1,m2 ∈ MF (Rd). We say that a
probability P on (Ω2,F2) solves the martingale problem (M1

λL) if the following
holds ∀φ ∈ C2

` (Rd):
X1

0 = m1, P− a.s.,

X1
t (φ) = X1

0 (φ) + Z1
t (φ) +

∫ t

0
X1
s (∆φ/2)ds− λLt(X1, X2)(φ)

∀t ≥ 0, P-a.s.,
X2

0 = m2, P− a.s.,

X2
t (φ) = X2

0 (φ) + Z2
t (φ) +

∫ t

0
X2
s (∆φ/2)ds

∀t ≥ 0, P-a.s.; where Zi
t(φ) are a.s. continuous (F2

t )-martingales under P
such that

〈Zi(φi), Z
j(φj)〉t = δij

∫ t

0
X i
s(φ

2
i )ds

∀t ≥ 0, P-a.s., ∀φi, φj ∈ C2
` (Rd).

Theorem 4.9. Assume d ≤ 3, λ ≥ 0 and m1,m2 ∈ M s
F (Rd). There is a

unique probability P on (Ω2,F2) that solves (M1
λL).
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In fact P is given by

(4.18) P(A×B) =
∫
F

1B(ω)Pλωm1
(A)dPm2(ω), ∀A,B ∈ F .

Proof. The existence of a P satisfying (M1
λL) follows just as in Theorem 3.6.

Assume P satisfies (M1
λL). Let P(X2)(·) be a regular conditional probabil-

ity for X1 given σ(X2). Note that the uniqueness of the martingale problem
for super-Brownian motion (e.g. Ethier-Kurtz (1986, Ch.9 Thm. 4.2)) shows
that P(X2 ∈ ·) = Pm2 .

As usual, Zi extends to an orthogonal martingale measure. If fi(s, ω, x)
is P(F2

t )× B(Rd)-measurable such that

(4.19)
∫ t

0

∫
fi(s, ω, x)2X i

s(dx)ds <∞, ∀t > 0, P− a.s.,

then the stochastic integral∫ t

0

∫
fi(s, ω, x)dZi(s, x) ≡ Zi

t(f)

exists and is a continuous local martingale such that

(4.20) 〈Zi(fi), Z
j(fj)〉t = δij

∫ t

0

∫
fi(s, ω, x)2X i

s(dx)ds.

Let φ ∈ C2
` (Rd). We claim Z1

t (φ) is an Ft×F -martingale. Fix s < t and let
Y ∈ bσ(X2), W ∈ bFX1

s . Here FX1

s = ∩nσ(X1
u : u ≤ s + 1/n). By Theorem

1.1, ∃f ∈ L2
∞(X2, Pm2) such that Y = P(Y )+

∫∞
0

∫
f(s,X2, x)dZ2(s, x), P-a.s.

Therefore

P((Z1
t (φ)− Z1

s (φ))YW )

= P((Z1
t (φ)− Z1

s (φ))W )P(Y )

+ P(WP((Z1
t (φ)− Z1

s (φ))
∫ ∞

0

∫
f(u,X2, x)dZ2(u, x)|F2

s ))

= 0 + P(WP((Z1
t (φ)− Z1

s (φ))(Z2
t (f)− Z2

s (f))|F2
s ))

= P(WP(〈Z1(φ), Z2(f)〉t − 〈Z1(φ), Z2(f)〉s|F2
s ))

= 0 (by (4.20)).
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It follows that P(Z1
t (φ)|F0

s × F) = Z1
s (φ), P-a.s. Letting s ↓ u through

rational values on both sides, we see that Z1
t (φ) is an Ft ×F -martingale.

From Theorem 2.1 it is clear that P(supt≤T X
1
t (1)p) <∞, ∀p, T > 0, and

therefore it follows from (M1
λL) and Burkholder’s inequality that

P(supt≤T |Z1
t (φ)|p) < ∞, ∀p, T > 0 and φ ∈ bB(Rd). Therefore, for φ ∈

C2
` (Rd)

Mt(φ) = Z1
t (φ)2 −

∫ t

0
X1
s (φ2)ds = 2

∫ t

0
Z1
s (φ)dZ1

s (φ)

= 2
∫ t

0

∫
Z1
s (φ)φ(x)dZ1(s, x)

is a square integrable (F2
t )-martingale and by modifying the previous argu-

ment we see it is also an (Ft ×F)-martingale.
Let Nt be a P-a.s. continuous (Ft×F)-martingale. We claim that for Pm2-

a.a. ω2, (t, ω1) → N(t, ω1, ω2) is a P(ω2)(·)-a.s. continuous (Ft)-martingale
with respect to P(ω2). Let Cs ⊂ F0

s be a countable set whose bounded
pointwise closure is bF0

s . If s ≤ t and W ∈ Cs, then

P((Nt −Ns)(W ◦X1)Y ) = 0, ∀Y ∈ bσ(X2)

⇒ P((Nt −Ns)W ◦X1|X2) = 0 P-a.s.

⇒ P(ω2)((Nt −Ns)(·, ω2)W ) = 0 for Pm2 − a.a. ω2.

Therefore we may fix ω2 outside of Pm2-null set such that

(4.21) P(ω2)((Nt −Ns)(·, ω2)W ) = 0, ∀W ∈ Cs, ∀0 ≤ s ≤ t rationals,

and t 7→ Nt(ω
1, ω2) is continuous for P(ω2)-a.a. ω1. Equation (4.21) extends

immediately to all W in bF0
s , so that

P(ω2)(Nn(·, ω2)|F0
s )(ω1) = Ns(ω

1, ω2), ∀s ∈ [0, n]∩Q, ∀n ∈ N, P(ω2)−a.a. ω1.

Fix t ∈ [0, n] and choose rationals sm ↓ t. Take limits in the above to see
that

P(ω2)(Nn(·, ω2)|Ft)(ω1) = Nt(ω
1, ω2), P(ω2)− a.a. ω1, ∀t ≤ n.

This proves the claim.
Let D ⊂ C2

` (Rd) be a countable core for ∆/2 on D(∆/2) with 1 ∈ D.
For example, one may take D = {Pεnφ : φ ∈ D′, n ∈ N} where 1 ∈ D′ is a
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countable dense set in C`(Rd), (Pt) is the Brownian semigroup, and εn ↓ 0.
Now apply the above result with Nt = Z1

t (φ) or Mt(φ), φ ∈ D, to conclude

(4.22) For Pm2-a.a. ω2, ∀φ ∈ D, (t, ω1)→ Z1
t (φ)(ω1, ω2) and

Mt(φ)(ω1, ω2) are a.s. continuous (Ft)-martingales under P(ω2).

We may define an a.s. unique random finite measure L̄ on [0,∞) × Rd

such that L̄([0, t]× A) = λLt(X
1, X2)(A), ∀t ≥ 0, A ∈ B(Rd), P-a.s.

For η > 0 define L̄η(X1, X2) ∈MF ([0,∞)× Rd) by

L̄η([0, t]× A) =
∫ t

0
X1
s (gη(λX

2
s , ·)1A)ds, t ≥ 0, A ∈ B(Rd).

Argue as in the derivation cf (4.11) to see there is a sequence ηk ↓ 0 such
that

L̄ηk → L̄ in MF ([0,∞)× Rd) P− a.s.

From the above we may conclude that for Pm2 − a.a. ω2, for P(ω2)− a.a. ω1,

L̄ηk(ω1, ω2)→ L̄(ω1, ω2) in MF ([0,∞)× Rd),

(4.23) L̄(ω1, ω2)([0, t]× A) = λLt(X
1, X2)(A), ∀t ≥ 0, A ∈ B(Rd)

and λLt(X
1, X2) is continuous in t.

Fix ω2 outside a Pm-null set such that λω2 ∈ Φ (use Proposition 4.7),

ω1
t (φ) = m1(φ) + Z1

t (φ)(ω1, ω2) +
∫ t

0
ω1
s(∆φ/2)ds− λLt(ω1, ω2)(φ)

∀t ≥ 0, φ ∈ D, for P (ω2)-a.a. ω1, and so that ω2 is not in the exceptional
null sets from (4.22) and (4.23). The latter implies∫ t

0
ω1
s(gηk(λω

2
s , ·)φ(·))ds→ λLt(ω

1, ω2)(φ), ∀φ ∈ D, P(ω2)− a.a. ω1.

We therefore have shown that P(ω2) solves the martingale problem (Mλω2

m1
).

Theorem 4.5 implies that for ω2 as above, P(ω2) = Pλω
2

m1
, and as the latter is

F -measurable in ω2 (see Remarks 4.6(b)), (4.18) follows and P is unique. 2
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Remark 4.10(a). Note the above proof shows directly (i.e. without Propo-
sition 4.3) that µ 7→ Pµm1

is F̄ -measurable in µ ∈ Φ, where F̄ is the Pm2-
completion of F and mi ∈M s

F (Rd).
(b) The above proof goes through unchanged if instead of−λLt(X1, X2)(φ)

in (M1
λL) we have −λL̂t(ω1, ω2)(φ) where L̂t(ω

1, ω2) is a P-a.s. continuous,
non-decreasing MF (Rd)-valued process for which there is a sequence ηk ↓ 0
such that

(4.24) Lηkt (X1, X2)(φ)
P→ L̂t(φ) as k →∞, ∀t ≥ 0, ∀φ ∈ C2

` (Rd).

Suppressing dependence on λ, we let P1
m1,m2

denote the probability given
by (4.18). Hence if (m1,m2) ∈ M s

F (Rd)2, P1
m1,m2

is the unique solution of
(M1

λL).

Theorem 4.11. Suppose that d ≤ 3. Let X̃t = (X̃1
t , X̃

2
t ) be a P′-a.s.

continuous, (F ′t)-adapted MF (Rd)2-valued process on some probability space
(Ω′,F ′, P′) equipped with a right-continuous filtration (F ′t). Assume m1,m2 ∈
M s

F (Rd) and ∀φ ∈ C2
` (Rd) the following conditions (which we label as (M ′

λL))
hold:

X̃1
t (φ) = m1(φ) + Z1

t (φ) +
∫ t

0
X̃1
s (∆φ/2)ds− λLt(X̃1, X̃2)(φ),

∀t ≥ 0, P′-a.s. (in particular, L(X̃1, X̃2) exists),

X̃2
t (φ) = m2(φ) + Z2

t (φ) +
∫ t

0
X̃2
s (∆φ/2)ds,

∀t ≥ 0, P′-a.s.; where Zi
t(φ) are a.s. continuous (F ′t)-martingales under P′

such that Zi
0(φi) = 0 and

〈Zi(φi), Z
j(φj)〉t = δij

∫ t

0
X̃ i
s(φ

2
i )ds,

∀t ≥ 0, P′-a.s.

Then:
(a) X̃t ∈M s

F (Rd), ∀t ≥ 0, P′-a.s.
(b) If T is any a.s. finite (F ′t)-stopping time and ψ ∈ b(F2), then

P′(ψ(X̃T+·)|F ′T ) = P1
X̃T

(ψ), P′ − a.s.
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Proof. (a) By Theorem 2.1 and Remark 2.2 we may assume there are
independent (F ′t)-super Brownian motions (Y 1, Y 2) such that Y i = mi and
X̃ i
t ≤ Y i

t , ∀t ≥ 0, a.s. Proposition 4.7(b) implies (Y 1
t , Y

2
t ) ∈M s

F (Rd), ∀t ≥ 0,
a.s. and (a) follows.

(b) For φ ∈ C2
` (Rd) define Z̃i(φ) : [0,∞)× Ω2 → R, i = 1, 2, by

Z̃1
t (φ)(ω1, ω2) = ω1

t (φ)− ω1
0(φ)−

∫ t

0
ω1
s(∆φ/2)ds+ λL̃t(ω

1, ω2)(φ)

Z̃2
t (φ)(ω1, ω2) = ω2

t (φ)− ω2
0(φ)−

∫ t

0
ω2
s(∆φ/2)ds.

Here L̃t is as in Proposition 3.2 but with respect to the law PX̃ of (X̃1, X̃2)
on (Ω2,F2). By an easy truncation argument, it suffices to consider bounded
T . Let P̂T (ω′) be a regular conditional probability for θT (X̃) = X̃T+· given
F ′T . Proposition 3.2 (ii) implies

(4.25) Z̃i
t(φ)(θ2

Tω) = Z̃i
t+T (ω)− Z̃i

T (ω), ∀t ≥ 0, PX̃ − a.s., i = 1, 2.

Let s ≤ t and Cs be a countable set which is bounded pointwise dense in
b((F0

s )2). If ψ ∈ Cs, then

P′([Z̃i
t(φ)(θ2

T (X̃(ω′)))− Z̃i
s(φ)(θ2

T (X̃(ω′)))]ψ(θ2
T (X̃(ω′)))|F ′T )

= P′(P′(Z̃i
t+T (φ)(X̃(ω′))− Z̃i

s+T (φ)(X̃(ω′)))|F ′T+s)ψ(θ2
T (X̃(ω′)))|F ′T )

= P′(P′(Zi
t+T (φ)− Zi

s+T (φ)|F ′T+s)ψ(θ2
T (X̃))|F ′T ) (by (M ′

λL))

= 0.

This implies

P̂T (ω′)((Z̃i
t(φ)− Z̃i

s(φ))ψ) = 0, ∀ψ ∈ Cs, ∀rationals s ≤ t, P′ − a.s..

As in the proof of Theorem 4.9, this implies that for P′-a.a. ω′, Z̃i(φ) is an
a.s. continuous (F2

t )-martingale under P̂T (ω′). Similarly if φi ∈ C2
` (Rd) for

P′-a.a. ω′

Mt(φi, φj) = Z̃i
t(φi)Z̃

j
t (φj)− δij

∫ t

0
ωi(φ2

i )ds

is an a.s. continuous (F2
t )-martingale under P̂T (ω′) .
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By Proposition 3.2 (iii) there is a sequence ηk → 0 such that

L̃t(θT (X̃(ω′))) = lim
k→∞

Lηkt (θT (X̃(ω′))), ∀t ≥ 0, P′ − a.s.

Therefore for P′-a.s. ω′

L̃t(ω
1, ω2) = lim

k→∞
Lηkt (ω1, ω2), ∀t ≥ 0, P̂T (ω′)− a.s.

Theorem 4.9 and Remark 4.10(b) imply that for P′-a.a. ω′, P̂T (ω′) = P1
XT (ω′)

because P̂T (ω′) solves (M1
λL) (modified as in (4.24)) and XT (ω′) ∈M s

F (Rd)2, P′-
a.s., by (a). The result follows because (m1,m2) 7→ P1

m1,m2
is Borel measurble

on MF (Rd)2 by Remark 4.6(b) and (4.18). 2

Corollary 4.12. If d ≤ 3 and λ ≥ 0, then (Ω2,F2,F2
t , θ

2
t , Xt, (P1

m)
m∈Ms

F (Rd)2)

is an (M s
F (Rd))2-valued diffusion.

Proof. The Borel measurability of (m1,m2) 7→ P1
m1,m2

was noted at the end
of the above proof. The result is now immediate from the previous theorem.
2

If d = 1 and (m1,m2) ∈ F (as in Theorem 3.9), then one could argue
exactly as in Theorem 3.9 to obtain existence and uniqueness of P1

m1,m2
sat-

isfying (M1
λL) as well as the Girsanov-type formula

dP1
m1,m2

dPm1 × Pm2

|F2
t

= exp{−λ
∫ t

0

∫
u2(s, x)dZ1,0(s, x)−λ2/2

∫ t

0

∫
u2(s, x)2u1(s, x)dxds}.

We show below that this absolute continuity result fails for d = 3 and conjec-
ture that it also fails for d = 2. Hence our alternative approach to uniqueness
in (M1

λL) seems to be necessary.
We require a pair of preliminary results, the first of which (Lemma 5.1)

will be proved in the next section to give a self-contained treatment of the
non-existence results treated there. The second is the following path property
of super-Brownian motion.

Lemma 4.13. If γ(r) = r2(log+ 1/r)−(1/2)−η for some η > 0 and d > 1, then

lim
r↓0

Xt(B(x, r))

γ(r)
= +∞ for Xt − a.a. x, Pm − a.s., ∀t > 0, m ∈MF (Rd).
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We omit the proof as a more precise result will be given in Perkins and
Taylor (199?).In that work an integral test on γ will be given for d > 2 to
decide whether or not the above lim inf is +∞ or 0 for Xt-a.a. x, Pm-a.s.
The sufficient condition for +∞ will also apply for d = 2. In fact we will
only need a much cruder result for d = 3 in Theorem 4.14 below.

Theorem 4.14. Let d = 3, λ > 0 and assume m1,m2 ∈M s
F (R3). If

P̃1
m1,m2

(A) = P1
m1,m2

({L1(X1, X2) 6= 0} ∩ A)

then P̃1
m1,m2

|F2
1

and Pm1 × Pm2 |F2
1

are mutually singular measures. In par-

ticular, P1
m1,m2

|F2
1
is not absolutely continuous with respect to Pm1 × Pm2|F2

1

whenever mi 6= 0 for i = 1, 2.

Proof. The last assertion is immediate from the first since P̃1
m1,m2

6= 0 when
mi 6= 0 for i = 1, 2. Recall that for φ ∈ D(∆/2),

Zi,0
t (φ) = X i

t(φ)−X i
0(φ)−

∫ t

0
X i
s(∆φ/2)ds

(see (Mg1,g2) in Section 3). For φ ∈ C2
` (Rd) we define Z1

t (φ) by (M1
λL), that

is,

(4.26) Z1
t (φ) = Z1,0

t (φ) + λLt(X
1, X2)(φ),

where Lt(X
1, X2) = L̃t(X

1, X2) is as in Proposition 3.2 and where the un-
derlying measure may be P1

m1,m2
or Pm1 × Pm2 (Remark 3.3 (b) gives the

existence of an (F2
t )-predictable map L which works for both measures si-

multaneously). Following Walsh (1986) we can define stochastic integrals
Z1,0
t (φ) (respectively, Z1

t (φ)) with respect to Pm1 × Pm2 (respectively P1
m1,m2

)
for all P(F2

t )× B(Rd)-measurable φ satisfying

(4.27) P1
m1,m2

(
∫ t

0
X1
s (φ(s, ·)2)ds) + Pm1 × Pm2(

∫ t

0
X1
s (φ(s, ·)2)ds)

<∞, ∀t > 0.

These integrals are a.s.-continuous square-integrable martingales with square
function

∫ t
0 X

1
s (φ(s, ·)2)ds. If, in addition to (4.27),

(4.28) sup
s≤t,x∈Rd

|φ(s, ω, x)| <∞, P1
m1,m2

+ Pm1 × Pm2 − a.s., ∀t > 0,
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then Lt(X
1, X2)(φ) =

∫ t
0

∫
φ(s, ω, x)L(X1, X2)(ds, dx) exists and is a.s. con-

tinuous in t (for both P1
m1,m2

and Pm1 × Pm2). We can now use (4.26) to

define Z1,0
t (φ) with respect to P1

m1,m2
for any P(Ft) × B(Rd)-measurable φ

satisfying (4.27) and (4.28). To distinguish this stochastic integral from the
Pm1 × Pm2-stochastic integral with respect to Z1,0, we denote the former by
Z̃1,0
t (φ). We now show these two stochastic integrals are consistent. More

precisely we claim that

∀φ which is P(F2
t )× B(Rd)-measurable and satisfying (4.27) and (4.28)

∃Hφ : [0,∞)× Ω2 → R which is (F2
t )-predictable such that

(4.29)

Z1,0
t (φ) = Hφ(t,X), ∀t ≥ 0, Pm1 × Pm2-a.s., and

Z̃1,0
t (φ) = Hφ(t,X), ∀t ≥ 0, P1

m1,m2
-a.s.

Consider first

φ ∈ S = {
n∑
i=1

fi(s, ω)φi(x) : fi bounded, left-continuous and (F2
t )−adapted, φi ∈ C2

` (Rd)}.

Then the construction of the above stochastic integrals gives

Z1,0
t (φ) =

n∑
i=1

∫ t

0
fi(s)dZ

1,0
s (φi), ∀t ≥ 0, Pm1 × Pm2 − a.s.

Similarly, using (4.26) one gets

Z̃1,0
t (φ) =

n∑
i=1

∫ t

0
fi(s)dZ

1,0
s (φi), ∀t ≥ 0, P1

m1,m2
− a.s.

By approximating fi by the usual sequence of step functions {fni : n ∈ N}
and taking an appropriate subsequence one constructs a P(F2

t )-measurable
function Hφ such that the conclusion of (4.29) holds. If C denotes the class of
φ in b(P(F2

t )×B(Rd)) for which (4.29) holds, then it is easy to see that C is
closed under bounded pointwise limits. As S ⊂ C (by the above), Theorem
1.21 of Dellacherie-Meyer (1978) implies C contains all φ in b(P(F2

t )×B(Rd)).
Now consider φ as in (4.29) and let φn = (φ ∨ (−n)) ∧ n. Then there is a
subsequence such that

Z1,0
t (φnk)→ Z1,0

t (φ)
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uniformly in t on compacts P1
m1,m2

-a.s. and

Z̃1,0
t (φnk) = Z1

t (φnk)− λLt(X1, X2)(φnk)→ Z̃1,0
t (φ)

uniformly in t on compacts Pm1 × Pm2-a.s. Now define

Hφ(t,X) =

 limk→∞Hφnk
(t,X), if it exists,

0, otherwise,

where Hφnk
as in (4.29) exists since φnk is bounded. Clearly Hφ is as in (4.29)

and the claim is proved. As a result we shall write Z1,0
t (φ) for both Z̃1,0

t (φ)
and Z1,0

t (φ) (and both P1
m1,m2

and Pm1 × Pm2).
Let

Gn(t,X) =
∫ t

2−n/2

∫
X2
s (B(x, 2−n))Z1,0(ds, dx)

or, more precisely, Gn(t,X) = Hφn(t,X) where

φn(s, ω, x) = ω2
s(B(x, 2−n)) 1(s ≥ 2−n/2).

Using Theorem 2.1 it is trivial to see that φn satisfies (4.27) and (4.28), so
Hφn exists.

Let ζ(r) ≡ r2(1 + log(1/r)). Theorem 4.7 of [BEP] shows that
(4.30)
D(X2

t , r) ≤ c1(D(m2Pt, c2r)+ζ(r)) for 0 < r < r1(ω) and some r1(ω) > 0, Pm1×Pm2−a.s..

Under Pm1×Pm2 , (4.30) and a simple calculation show that for n ≥ n0(ω),
where n0 is a.s. finite, the continuous martingale Gn satisfies

(4.31)
〈Gn〉t =

∫ t
2−n/2

∫
X2
s (B(x, 2−n))2X1

s (dx)ds

≤ c2ζ(2−n)2−3nL̂nt (X1, X2)(1)

where

L̂nt (X1, X2)(1) =
∫ t

0

∫
X2
s (B(x, 2−n))X1

s (dx)ds23n.

Now it is easy to see that

L̂nt (X1, X2)(1) ≤ c3L
2−2n

t (X1, X2)(1)
L1

→ c3Lt(X
1, X2)(1) as n→∞,
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where in the last time the L1 convergence is with respect to Pm1 × Pm2

and we have used [BEP, Theorem 5.9] (an integration by parts shows that
mi ∈ M s

F (Rd) implies the hypothesis of that result are satisfied). The L1

boundedness of {L̂n1 : n ∈ N} and a Borel-Cantelli argument show that
if η > 0 is fixed, then 〈Gn〉1 ≤ c22−3nζ(2−n)n1+η for sufficiently large n
Pm1 × Pm2-a.s. This and a well-known estimate (Rogers-Williams (1987, IV.
37.12)) imply

(4.32)
supt≤1 |Gn(t)| ≤ 2−3n/2(ζ(2−n))1/2n

1
2

+η

≤ c42−5n/2n1+η

for sufficiently large n, Pm1 × Pm2-a.s., ∀η > 0. Now let

A = {ω ∈ Ω2 : |Gn(1)| ≤ c42−5n/2n1+η for sufficiently large n} ∈ F2
1 .

With respect to P1
m1,m2

, our definition of Z1,0 (i.e. (4.26)) gives

Gn(t) =
∫ t

2−n/2

∫
X2
s (B(x, 2−n))Z1(ds, dx)

− λ
∫ t

2−n/2

∫
X2
s (B(x, 2−n))L(X1, X2)(ds, dx)

≡ Gn,1(t)−Gn,2(t).

The process Gn,1 is a continuous square integrable martingale under P1
m1,m2

and if Y i ≥ X i are independent super Brownian motions (working now on a
larger space – see Theorem 2.1) then

〈Gn,1〉t =
∫ t

2−n/2

∫
X2
s (B(x, 2−n))2X1

s (dx)ds ≤
∫ t

2−n/2
Y 2
s (B(x, 2−n))2Y 1

s (dx)ds

≤ c2ζ(2−n)2−3nL̂nt (Y 1, Y 2)(1) for n large a.s. (see (4.31))

Repeating the above argument gives

(4.33) |Gn,1(1)| ≤ c42−5n/2n1+η for sufficiently large n, P1
m1,m2

− a.s.

Take mean values to see that Y 2 = X2 a.s. Let γ be as in Lemma 4.13 and
set

φ(s, x,X2) = 1{lim inf
r↓0

X2
s (B(x, r))γ(r)−1 < +∞} = 0
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for X2
s -a.a. x, a.s., ∀s > 0 (by Lemma 4.13). Lemma 5.1 now gives

(4.34) φ(s, x,X2) = 0, L(Y 1, X2)− a.a. (s, x), a.s.

Recall from Proposition 3.2 (iii) and our construction of L (see Remark 3.3
(b)) that for some εn ↓ 0

Lt(Y
1, X2) = lim

n→∞
Lεnt (Y 1, X2), ∀t ≥ 0, a.s.

and
Lt(X

1, X2) = lim
n→∞

Lεnt (X1, X2), ∀t ≥ 0, a.s.

Hence clearly L(X1, X2) ≤ L(Y 1, X2) (as random measures on [0,∞)× Rd)
a.s. and so (4.34) implies

φ(s, x,X2) = 0, L(X1, X2)− a.a. (s, x), P1
m1,m2

− a.s.

Therefore
lim inf
n→∞

Gn,2(1)γ(2−n)−1

≥
∫ 1

0

∫
lim inf
n→∞

1(s ≥ 2−n/2) λX2
s (B(x, 2−n))γ(2−n)−1L(X1, X2)(ds, dx) (Fatou)

=∞1{L1(X1, X2)(1) > 0}, P1
m1,m2

− a.s.

( with the convention ∞ · 0 = 0). This and (4.33) show that

(4.36) lim
n→∞

Gn(1)γ(2−n)−1 = −∞, P1
m1,m2

− a.s. on {L1(X1, X2) 6= 0}.

In particular P̃1
m1,m2

(A) = 0, while (4.32) shows Pm1 × Pm2(A) = 1. This
proves the result. 2

Open Problem. Is P1
m1,m2

(X1 ∈ ·) << Pm1 on Ft?

Proof of Theorem 3.11. We assume P|F2
1
<< Pm1 × Pm2|F2

1
and proceed

by modifying the proof of Theorem 4.14 to obtain a contradiction. We use
the notation of the proof of Theorem 4.14.

Argue just as in the proof of the inequality (4.33) to see that

(4.37) |Gn,1(1)| ≤ c12−5n/2n1+η for sufficiently large n, P− a.s.
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Lemmas 4.13 and 5.1 imply

φ(s, x,X2) = 0, L(Y 1, X2)− a.a. (s, x), Pm1 × Pm2 − a.s.

The absolute continuity assumption and Remark 3.3(b) therefore show that

φ(s, x,X2) = 0, L(Y 1, X2)− a.a. (s, x), P− a.s.,

which in turn gives (set 0 · ∞ = 0)

lim inf
n→∞

Gn,2(1)γ(2−n)−1

≥
∫ 1

0

∫
lim inf
n→∞

1(s ≥ 2−n/2) λX2
s (B(x, 2−n))γ(2−n)−1L(X1, X2)(ds, dx) (Fatou)

=∞1{L1(X1, X2)(1) > 0}, P− a.s.

This and (4.37) imply that

P(A ∩ {L1(X1, X2)(1) > 0}) = 0

and therefore

(4.38) P(Ac ∩ {L1(X1, X2)(1) > 0}) = P(L1(X1, X2)(1) > 0) > 0.

Note that the last inequality must hold since otherwise P|F2
1

= Pm1 × Pm2|F2
1

by (MλL) and we know Pm1 × Pm2(L1(X1, X2)(1) > 0) > 0 for mi 6= 0 (see
[BEP, Prop. 5.11].) Now (4.38) and the fact that Pm1 × Pm2(A) = 1 (see
(4.32)) contradict our absolute continuity assumption and so the proof is
complete. 2
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5 Non-existence for d > 3

Recall from Section 1 (or [BEP]) that two independent “d-dimensional”
super-Brownian motions have a non-trivial collision local time for d ≤ 5.
It is therefore natural to consider the interactive martingale problems (MλL)
and (M1

λL) for d ≤ 5 and not just d ≤ 3. The construction of solutions to
(MλL) in Section 3 relied on a convergence result for L(X1, X2) which was
uniform in (X1, X2) ∈Mm1,m2 (Lemma 3.4) and which could only be proved
for d ≤ 3. The treatment of (M1

λL) in Section 4 was based on constructing
a CAF, A, for each Brownian path in the X1 population. The existence of
A required d ≤ 3. In either case the restriction to d ≤ 3 seemed to be an
artifact of the proof. In this section we show that in fact (MλL) and (M1

λL)
cannot be solved for d = 4 or 5. This work is joint with Martin Barlow.

First note that if d > 5, then by Theorem 2.1 and the a.s.-non-intersection
of the graphs of two independent super-Brownian motions (see [BEP, Thm.
3.6, Remark 5.12(a))), the only possible solution to (MλL) and (M1

λL) is
Pm1 × Pm2 for which Lt(X

1, X2) ≡ 0. If m1 and m2 have disjoint closed
supports, clearly Pm1 × Pm2 is a solution of (MλL) and (M1

λL). Therefore
these martingale problems are only of interest for d ≤ 5 which we assume for
the rest of this section.

We continue with the notation of Sections 3 and 4. In particular, Pm con-
tinues to denote the law of super-Brownian motion on (Ω,F) = (C([0,∞),MF (Rd)),
Borel sets). Also, Xt(ω) = ω(t) and (X1

t , X
2
t ) denote the coordinate map-

pings on (Ω,F) and (Ω2,F2), respectively.

Notation. g0 : Rd\{0} → R is given by

g0(x) =


1, d = 1
ln+(1/|x|), d = 2
|x|2−d, d > 2

.

Lemma 5.1. Let d ≤ 5 and assume m1,m2 ∈MF (Rd) satisfy

∫ ∫
g0(x1 − x2)dm1(x1)dm2(x2) <∞, if d < 5

(5.1) ∫ ∫
(x1 − x2)−4dm1(x1)dm2(x2) <∞, if d = 5.
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If φ : [0, t]× Rd ×Ω→ R is bounded and B([0, t]× Rd)×F-measurable, then

(5.2) Pm1 × Pm2(
∫ t

0

∫
φ(s, x,X2)L(X1, X2)(ds, dx)|X2)

=
∫ t

0

∫ ∫
φ(s, x2, X

2)ps(x2 − x1)dm1(x1)X2
s (dx2)ds a.s.

Proof. Theorem 5.9 of [BEP] and the bound (3.3) imply that for ψ ∈ Cb(Rd)

lim
ε↓0
‖ sup
u≤t
|Lεu(X1, X2)(ψ)− Lu(X1, X2)(ψ)|‖1 = 0

(the L1 norm is taken with respect to Pm1 × Pm2). An elementary argument
now shows that if ψ ∈ C`([0, t]× Rd) then

(5.3) lim
ε↓0
‖
∫ t

0

∫
ψ(s, x)Lε(X1, X2)(ds, dx)

−
∫ t

0

∫
ψ(s, x)L(X1, X2)(ds, dx)‖1 = 0

(for example, one can first extract a subsequence along which one has weak
convergence in MF ([0, t]× Rd) a.s. as in (4.11)). Let ψ(s, x) be as above. A
standard bootstrapping argument shows that w.p.1

Pm1 × Pm2(
∫ t

0

∫
ψ(s, x)Lε(X1, X2)(ds, dx)|X2)

= Pm1 × Pm2(
∫ t

0

∫ ∫
ψ(s, x2)pε(x2 − x1)X1

s (dx1)X2
s (dx2)ds|X2)

=
∫ t

0

∫
Pm1 × Pm2(

∫
pε(x2 − x1)X1

s (dx1)|X2)ψ(s, x2)X2
s (dx2)ds

(5.4) =
∫ t

0

∫ ∫
pε+s(x2 − x1)m1(dx1)ψ(s, x2)X2

s (dx2)ds.

Note that

Pm1 × Pm2(
∫ t

0

∫ ∫
pε+s(x2 − x1)X2

s (dx2)m1(dx1)ds)
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=
∫ t

0

∫ ∫
pε+2s(x2 − x1)m2(dx2)m1(dx1)ds

→
∫ t

0

∫ ∫
p2s(x2−x1)m2(dx2)m1(dx1)ds (use (5.1) and dominated convergence)

(5.5) = Pm1 × Pm2(
∫ t

0

∫ ∫
ps(x2 − x1)X2

s (dx2)m1(dx1)ds) <∞.

This shows that {pε+s(x2− x1) : ε > 0} is a uniformly integrable family with
respect to X2

s (dx2)m1(dx1)dsd(Pm1 × Pm2) and, as ψ is bounded, this allows
us to take a limit as ε ↓ 0 inside the integral sign in (5.4) and conclude

L1 − lim
ε↓0

∫ t

0

∫ ∫
pε+s(x2 − x1)m1(dx1)ψ(s, x2)X2

s (dx2)ds

=
∫ t

0

∫ ∫
ps(x2 − x1)m1(dx1)ψ(s, x2)X2

s (dx2)ds.

This together with (5.3) allows us to take L1-limits on both sides of (5.4) to
obtain the required result with ψ(s, x) in place of φ(s, x,X2).

Observation (5.5), together with the above for ψ = 1, shows that both
sides of (5.2) are integrable for any bounded φ. Therefore (5.2) is preserved
under bounded pointwise limits. Moreover, (5.2) holds for φ(s, x,X2) =∑n
i=1 ψi(s, x)Si(X

2) for bounded measurable Si and ψi ∈ C`([0, t]×Rd) by the
above. Now pass to the bounded pointwise closure of this class of functions
to complete the proof. 2

Lemma 5.2. The integral
∫

1(|x − y| ≤ 1)|x − y|−2Xs(dx) takes the value
∞ for Xs-a.a. y, ∀s > 0, Pm-a.s.

Proof. Let h − m(A) denote the Hausdorff h-measure of A where h(r) =
r2 log+(log+(1/r)). If d = 1 the results is trivial because Xs(dx) = u(s, x)dx
for some jointly continuous density u. Assume d ≥ 2. Let S(Xt) be the
closed support of Xt. Fix ω outside a Pm-null set such that S(Xt) is compact
∀t > 0, and

(5.6) Xt(A) ≥ c(d)h−m(A ∩ S(Xt)), ∀A ∈ B(Rd), ∀t > 0

(see Perkins (1989, Theorems 1 and 2) and Dawson-Iscoe-Perkins (1989,
Thm. 1.2)). Assume now the desired conclusion fails for ω as above and
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some s > 0. Since S(Xs) is compact this means

Xs({y :
∫
|x− y|−2Xs(dx) <∞}) > 0

and therefore for large enough N , Xs(ΛN) > 0 where

ΛN = {y ∈ S(Xs) :
∫
|x− y|−2Xs(dx) ≤ N}.

Therefore ∫
ΛN

∫
ΛN
|x− y|−2Xs(dx)Xs(dy) <∞,

and so ΛN has positive two-dimensional capacity. By Taylor (1961), this
implies x2 −m(ΛN) =∞. On the other hand

h−m(ΛN) = h−m(ΛN ∩ S(Xs)) ≤ c(d)−1Xs(ΛN) <∞

and this contradicts x2 −m(ΛN) =∞. 2

Theorem 5.3. Let d = 4 or 5 and assume m1,m2 ∈ MF (Rd)\{0} satisfy
(5.1). If λ > 0, (M1

λL) and (MλL) have no solutions.

Proof. Let (X1, X2) satisfy (M1
λL) ,λ > 0. Theorem 2.1 allows us to enlarge

our probability space so that it supports a super-Brownian motion
Y 1 ≥ X1. Theorem 2.1(d) shows that if ZY 1

is the orthogonal martingale
measure associated with Y 1, then 〈ZY 1

(φ1), Z2(φ2)〉t = 0, ∀φi ∈ D(∆/2). It
follows that Y 1 and X2 are independent super-Brownian motions starting at
m1 and m2, respectively (see [BEP, Thm 1.2] or use Theorem 1.1 above).
Lemma 5.7 of [BEP] with α = 0 and ψ = 1 implies that∫ t

0

∫ ∫
|x1 − x2|2−dX2

s (dx2)L(X1, X2)(ds, dx1) <∞, ∀t ≥ 0, a.s.

If
A(X2) = {(s, x1) :

∫
|x1 − x2|2−dX2

s (dx2) =∞},

and we continue to write L(X1, X2) for the induced random measure on
[0,∞)× Rd, then the above implies

(5.7) L(X1, X2)(A(X2)) = 0 a.s.
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On the other hand, Lemma 5.2 implies (write 1Ac(s, x,X
2) for 1A(X2)c(s, x))∫ ∞

0
1Ac(s, x,X

2)X2
s (dx)ds = 0 a.s.

⇒
∫ ∞

0

∫
1Ac(s, x,X

2)L(Y 1, X2)(ds, dx) = 0 a.s. (Lemma 5.1)

⇒ L(X1, X2)(A(X2)c) = 0 a.s.,

the last because L(X1, X2) ≤ L(Y 1, X2) a.s. (as in the proof of Theorem
4.14). This, together with (5.7) implies L(X1, X2) = 0 a.s. Therefore, (M1

λL)
implies (X1, X2) is a pair of independent super-Brownian motions ([BEP,
Thm 1.2]). The fact that L(X1, X2) = 0 a.s. contradicts Proposition 5.11 of
[BEP], and hence there can be no solution to (M1

λL).
Assume now (X1, X2) satisfies (MλL). By enlarging our probability space

as in Theorem 2.1 we may also assume there is a pair of independent super-
Brownian motions (Y 1, Y 2) such that Y i ≥ X i a.s. Theorem 2.1 (d) shows
that (Y 1, X2) satisfies (Mm1,m2) with A1 = 0 and A2

t = λLt(X
1, X2). We

may therefore apply Lemma 5.7 of [BEP] (with α = 0 and ψ = 1) to conclude∫ t

0

∫ ∫
|x1 − x2|2−dY 1

s (dx1)L(X1, X2)(ds, dx2) <∞, ∀t ≥ 0, a.s.

If
B(Y 1) = {(s, x2) :

∫
|x1 − x2|2−dY 1

s (dx1) =∞}

then the above implies

L(X1, X2)(B(Y 1)) = 0 a.s.

On the other hand by applying Lemmas 5.1 and 5.2 as in the previous argu-
ment one gets

L(X1, X2)(B(Y 1)c) = 0 a.s.

(again we use L(X1, X2) ≤ L(Y 1, Y 2) a.s.). The proof is completed as above.
2

Remarks 5.4. (a) Although Lt(X
1, X2) exists if (X1, X2) ∈M(m1,m2) and

d ≤ 5, the above result shows that the uniform convergence result, Lemma
3.4, must fail for d > 3. If it held, then the proof of Theorem 3.6 would
produce solutions to (MλL) (and M1

λL), contradicting the above result.
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(b) Note that (5.1) is needed to ensure that Lt(X
1, X2) exists ([BEP,

Thm. 5.9]) and hence (M1
λL) and (MλL) make sense.

(c) The rather slick argument above hides the intuitive reason for the non-
existence of solutions for d > 3: the only collisions that occur are between
particles whose family trees will die out in an infinitesimal time due to the
critical branching. Hence killing off some of these particles has no effect on
the population.
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A. Appendix: Superprocesses for Non-conservative
Markov Processes

In this appendix we prove existence and uniqueness to the standard mar-
tingale problem for superprocesses when the underlying Markov process is
not conservative. In all the references we know of, the underlying semigroup
is assumed to satisfy Pt1 = 1. If the underlying process W is killed by the
CAF At =

∫ t
0 b(Ws)ds (b ≥ 0 bounded) this effectively introduces an emigra-

tion term and is standard. We are interested in CAF’s with more singular
Revuz measures. We make no attempt at maximal generally because we are
only interested in a fairly particular case.

Let W = (D,D,Dt+, θt,Wt, Py) be the canonical realization of a Feller
process on a locally compact state space E and with semigroup Pt on C`(E).
Let At be a CAF for W and define a sub-Markov semigroup {P̄t : t ≥ 0} on
C`(E) by

P̄tf(x) = Px(e
−Atf(Wt)).

We assume

(A.1) {P̄t : t ≥ 0} is a Feller

(i.e. strongly continuous) semigroup on C`(E).

If E∆ = E∪{∆} (∆ is added as a discrete point) and e is an independent
exponential time, then

W̄t =

{
Wt if At < e
∆ if At ≥ e

is a strong Markov process with semigroup P̄t. Here P̄t is extended trivially to
a semigroup on C∆

` (E∆) = {f ∈ C`(E∆) : f(∆) = 0}. Finally, we introduce
the semigroup {P∆

t : t ≥ 0} on C`(E∆) given by

P∆
t f(x) = P̄tf(x) + Px(1− e−At)f(∆).

Thus {P∆
t : t ≥ 0} is the semigroup of the strong Markov process W∆

t which
is W̄t but now viewed as an E∆-valued process with ∆ a trap. It is easy to
see that (A.1) implies W∆

t is an E∆-valued Feller process. Let Ḡ and G∆

denote the strong infinitesimal generators of P̄t and P∆
t , respectively. We

consider D(Ḡ) as a subset of C∆
` (E∆) and D(G∆) ⊂ C`(E∆).
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Let X = (Ω∆,F∆,F∆
t , Xt, (Pm)m∈MF (E∆)) be the canonical realization of

the W∆-superprocess on Ω∆ = C([0,∞),MF (E∆)) with its Borel σ-field F∆

and canonical right-continuous filtration (F∆
t ). The process X is a Feller

process (Dynkin 1989, Sec.8)) and Pm is the unique law on Ω∆ satisfying the
following martingale problem (which we label as (M∆)):

X0 = m, Pm − a.s.,

Xt(φ) = X0(φ) + Zt(φ) +
∫ t

0
Xs(G

∆φ)ds,

∀t ≥ 0, Pm-a.s., ∀φ ∈ D(G∆); where Zt(φ) is a continuous (F∆
t )-martingale

under Pm such that

〈Z(φ)〉t =
∫ t

0
Xs(φ

2)ds,

∀t ≥ 0, Pm-a.s.

(see Ethier-Kurtz (1986, Sec.9.4)).
If µ ∈ MF (E∆) let µr denote the restriction of µ to the Borel sets in

E. We call Xr
t (under Pm) the W̄ -superprocess starting at mr. The next

theorem gives a natural martingale characterization of the law of this process
on Ω̄ = C([0,∞),MF (E)). Let X̄t(ω) = ω(t) denote the coordinate variables
on Ω̄ with its Borel σ-field F̄ and natural right continuous filtration (F̄t).

Theorem A.1. For all m ∈MF (E) there is a unique law P̄m on (Ω̄, F̄) that
solves the following martingale problem (M̄):

X̄0 = m P̄m − a.s.,

X̄t(φ) = X̄0(φ) + Z̄t(φ) +
∫ t

0
X̄s(Ḡφ)ds,

∀t ≥ 0, ∀φ ∈ D(Ḡ); where Z̄t(φ) is a continuous (F̄t)-martingale under P̄m
such that

〈Z̄〉t =
∫ t

0
X̄s(φ

2)ds,

∀t ≥ 0, P̄m-a.s.
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Moreover X̄ = (Ω̄, F̄ , F̄t, X̄t, (P̄)m∈MF (E)) is an MF (E)-valued diffusion and

(A.2) P̄m(·) = Pm(Xr ∈ ·)

Proof. If φ ∈ D(Ḡ) ⊂ C∆
` (E∆), then P∆

t φ = P̄tφ and therefore φ ∈ D(G∆)
and G∆φ = Ḡφ. It is now clear from (M∆) that P̄m given by (A.2) is a
solution of (M̄).

Turning to uniqueness, let P̄m be a solution of (M̄). If ψε(x) =
∫ ε

0 P̄s1(x)ds/ε,
then Ethier-Kurtz (1986, Prop. 1.1.5 (a)) shows that ψε ∈ D(Ḡ) and

Ḡψε(x) = (P̄ε1(x)− 1)ε−11E(x) = Px(e
−Aε − 1)ε−11E(x) ≡ −gε(x).

Clearly ψε → 1 uniformly on E as ε ↓ 0 by strong continuity. As usual, Z̄
extends to an orthogonal martingale measure {Z̄t(ψ) : ψ ∈ bE} under P̄m .
By Doob’s inequality,

sup
t≤T
|Z̄t(ψε)− Z̄t(1)| L

2

→ 0 as ε ↓ 0,

and clearly X̄t(ψε)→ X̄t(1), ∀t ≥ 0, P̄m-a.s. Put φ = ψε in (M̄) and let ε ↓ 0
to see that for some εn ↓ 0,

(A.3)
∫ t

0
X̄s(gεn)ds→ Ct, ∀t ≥ 0, P̄m − a.s. as n→∞

where Ct = m(1)+ Z̄t(1)− X̄t(1) is a.s. a continuous non-decreasing process.
Now enlarge our probability space, to (Ω̂, F̂ , F̂t, P̂) say, so that it supports
an independent (F̂t)-Brownian motion Bt. Let St be the pathwise unique
solution of

St =
∫ t

0

√
SudBu + Ct

(Barlow-Perkins (1983, Thm. 3.2)). Let Xt = X̄t + Stδ∆ ∈ MF (E∆). If
φ ∈ D(G∆) and φ̄(x) = φ(x)1E(x), then Ethier-Kurtz (1986, Prop. 1.1.5(a))
implies

φ̄ε(x) =
∫ ε

0
P̄sφ̄(x)dx/ε ∈ D(Ḡ)

and
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Ḡφ̄ε = (P̄εφ̄(x)− φ̄(x))/ε
= (P∆

ε φ(x)− φ(x))/ε− P x(1− e−Aε)φ(∆)ε−11E(x)
(A.4) ≡ G∆,εφ(x)− gε(x)φ(∆),

where G∆,εφ(x) → G∆φ(x) uniformly on E∆ as ε ↓ 0. Let φε extend φ̄ε to
E∆ by φε(∆) = φ(∆). Combining (M̄) with φ = φ̄ε and (A.4) gives

Xt(φε) = X̄t(φ̄ε) + Stφ(∆)

= m(φε) + Z̄t(φ̄ε) + φ(∆)
∫ t

0

√
SudB(u)

+
∫ t

0
X̄s(G

∆,εφ)ds− φ(∆)
∫ t

0
X̄s(gε)ds+ φ(∆)Ct,

∀t ≥ 0, P̂ − a.s.. Note that φε → φ and φ̄ε → φ̄ uniformly on E∆ and E,
respectively. Now let ε = εn ↓ 0 in the above and use (A.3) to conclude

Xt(φ) = m(φ) + Zt(φ) +
∫ t

0
Xs(G

∆φ)ds, ∀t ≥ 0, P̂− a.s.,

where Zt(φ) = Z̄t(φ̄) +φ(∆)
∫ t

0

√
SudBu is a continuous (F̂t)-martingale such

that

〈Z(φ)〉t =
∫ t

0
Xu(φ

2)du, ∀t ≥ 0, P̂− a.s.

Comparing this with (M∆) we get P̂(X ∈ ·) = Pm(·). This in turn implies
P̄m(·) = Pm(Xr ∈ ·) because X̄t = (Xt)

r in the above. Hence P̄m is unique.
The strong Markov property of X̄ is a standard consequence of the unique-

ness in (M̄) (e.g. see the proof of Theorem 2.5). The Borel measurability of
m 7→ P̄m is clear from that of m 7→ Pm. 2
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