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Measure-Valued Branching Diffusions with Singular Interactions
by
Steven N. Evans' and Edwin A. Perkins®

Summary: The usual super-Brownian motion is a measure-valued process
that arises as a high density limit of a system of branching Brownian particles
in which the branching mechanism is critical. In this work we consider anal-
ogous processes that model the evolution of a system of two such populations
in which there is inter-species competition or predation.

We first consider a competition model in which inter-species collisions
may result in casualties on both sides. Using a Girsanov approach, we ob-
tain existence and uniqueness of the appropriate martingale problem in one
dimension. In two and three dimensions we establish existence only. How-
ever, we do show that, in three dimensions, any solution will not be absolutely
continuous with respect to the law of two independent super-Brownian mo-
tions. Although the supports of two independent super-Brownian motions
collide in dimensions four and five, we show that there is no solution to the
martingale problem in these cases.

We next study a predation model in which collisions only affect the “prey”
species. Here we can show both existence and uniqueness in one, two and
three dimensions. Again, there is no solution in four and five dimensions. As
a tool for proving uniqueness, we obtain a representation of martingales for
a super-process as stochastic integrals with respect to the related orthogonal
martingale measure.

We also obtain existence and uniqueness for a related single population
model in one dimension in which particles are killed at a rate proportional to
the local density. This model appears as a limit of a rescaled contact process
as the range of interaction goes to infinity.

!Presidential Young Investigator
2Research supported by an NSERC operating grant.



0 Introduction

Critical branching measure-valued diffusions or superprocesses arise as limits
of branching particle system undergoing random migration and critical (or
near critical) reproduction. These processes give a rich class of solutions to
higher dimensional non-linear stochastic p.d.e.’s. Their qualitative and lim-
iting behaviour is fairly well understood (e.g. Dawson-Perkins (1991)), and
their potential theory is linked with the behaviour of solutions to a (deter-
ministic) non-linear p.d.e. (e.g. Dynkin (1992a), Le Gall (1993)). A precise
mathematical treatment is made possible by the fundamental independence
of the branching particles. In modelling populations or genotype frequen-
cies it is natural to introduce interactions between the branching particles.
These interactions invalidate almost all of the mathematical tools used in
the study of superprocesses (and their close cousins). One major exception
is the Girsanov theorem of Dawson (1978) which allows one to handle certain
interactions in the immigration or emigration terms, which corresponds to
Oth order terms in the Markov generator governing the migration. In Section
2 we derive a version of Dawson’s result which is particularly well-suited to
our needs (Theorems 2.3 and 2.5). Recently in Perkins (1993) interactions
have been incorporated in the migration mechanism by means of a new type
of strong equation. Neither of these two approaches are applicable in general
to the most natural kind of “point interactions” in which an interaction only
occurs if particles collide.

In this work we initiate a study of what should be the easiest case: point
interactions in the immigration/emigration term. Consider two independent
super-Brownian motions (i.e., the spatial migrations are governed by Brown-
ian motions in Rd). Now view these two populations as competing species so
that inter-species “collisions” may result in casualties on either side. More
precisely when different species come within an infinitesimal distance of each
other, there is an infinitesimal probability that either of the colliding indi-
viduals is killed. In Section 3 we formulate a measure-valued martingale
problem (M) for this model. The Girsanov theorem mentioned above is
used to prove existence of solutions in dimensions three or less by means of
a limiting argument (Theorem 3.6). In one dimension the Girsanov theorem
applies directly to show there is a unique solution to (M,z). This solution is
absolutely continuous (in law) with respect to a pair of independent super-
Brownian motions (Theorem 3.9). The same approach is also used to prove



existence and uniqueness in a martingale problem for a branching measure-
valued diffusion (again in one spatial dimension) in which particles are killed
at a rate proportional to the local density (Theorem 3.10). This model was
conjectured by Rick Durrett, and shown in Mueller and Tribe (1993), to be
the limit of a rescaled contact process as the interaction range goes to infinity.
We also show that in 3 dimensions, solutions to (M) will be singular (in
law) with respect to a pair of independent super-Brownian motions and so
the Girsanov theorem cannot be used to prove uniqueness in law (see The-
orem 3.11.) Hence the fundamental question of uniqueness in law to (M,z)
in dimensions 2 or 3 remains unresolved (see Conjecture 3.7).

Obviously non-trivial solutions to (M) can only exist if inter-species
collisions do occur. Two independent super-Brownian motions collide if and
only if d < 6 (see Thm.3.6 and Prop.5.11 of Barlow-Evans-Perkins (1991),
hereafter abbreviated as [BEP]). Our interacting processes can be dominated
by a pair of independent super-Brownian motions (see Theorem 2.1) and
therefore non-trivial solutions to (M) can only be expected if d < 5. In
fact in Section 5 we show that solutions can only exist if d < 3 (Theorem
5.3), and therefore our existence result is sharp.

In Section 4 we study an easier kind of singular “interaction”. When
an inter-species “collision” occurs there is an infinitesimal probability of the
type-1 particle being killed but the type-2 particle is not affected by the
encounter. Hence this is not really an interactive model but rather a super-
Brownian motion run in a random and unfriendly environment of a second
super-Brownian motion. We formulate a martingale problem (M}, ) for this
pair of processes and, for dimensions 3 or less, establish existence, unique-
ness and the Markov property of the solution (Theorem 4.9, Corollary 4.12).
Again solutions will not exist for d > 3 (Theorem 5.3). The first step in this
construction is to show that a super-Brownian in R¢(d < 3) is sufficiently
regular to be the Revuz measure of a time-inhomogeneous continuous ad-
ditive functional (CAF) of a Brownian motion (Theorem 4.1, Proposition
4.7(a)). Kill Brownian motion according to this random CAF to construct a
nice Markov process B, with a random law. The law of the unique solution
to (M};) may be described as follows: The second population is a super-
Brownian motion, and the conditional law of the first population given the
second is that of the B*-superprocess where the second population provides

the Revuz measure used in the construction of B* (see (4.18) in Theorem
4.9).



Our original motivation for studying this simple model was the hope that
an iterative procedure in which one successively reverses the roles of the two
populations would shed some light on the uniqueness question for the truly
interactive model studied in Section 3. The fact that such a program can
be carried out in a related model in which collisions reduce the masses of
the colliding particles (Barlow-Perkins (1997)) suggests that this may still
be feasible. The simple model considered here seems to present some non-
trivial problems of its own. Some delicate path properties of super-Brownian
motion (Proposition 4.7) are needed to carry out the construction of the
random CAF in the above. In addition, a representation of super-Brownian
martingales as stochastic integrals with respect to the associated orthogonal
martingale measure plays a critical role in the uniqueness proof. This result,
which holds for a broad class of superprocesses and is of independent interest,
is presented in Section 1 (see Theorem 1.2).

We now gather together some notation which will be used throughout
this article.

Notation. If E is a Polish space £ or B(E) denotes its Borel o-field. Let
Mp(FE) (respectively M;(FE)) denote the space of finite (respectively, proba-
bility) measures on (F, &), equipped with the topology of weak convergence.
Let Q = Qp = C([0,00), Mp(E)) denote the space of continuous Mp(FE)-
valued paths with the compact-open topology and let F = Fg denote its
Borel o-field. Let (F;):>o denote the canonical right continuous filtration on
(Q,F). Put 0, : Q — Q, t > 0, for the usual shift maps, and, unless otherwise
indicated, X;(w) = w(t) will denote the coordinate variables on 2. Let P(F;)
denote the o-field of (F;)-predictable sets in [0, 00) x €.

Write Cy(E) for the Banach space of bounded continuous real-valued
functions on E. If E is locally compact, Cy(F) (respectively, Co(F')) is the
subspace of functions which have a finite limit at infinity (respectively, ap-
proach zero at infinity). Write b€ for the set of bounded £-measurable real-
valued functions. Set (b€). (respectively, C/f (E), C; (E)) to be the cone of
non-negative functions in b€ (respectively, Cy(E), Cy(E)). Finally,

CHRY) = {¢ € Cy(R?) : ¢ has continuous first and second partial derivatives,
A € Cy(RY)}.
Write u(f) for [ fdu.



Acknowledgement. This work grew out of some stimulating discussions
with John Walsh. Section 5 is joint work with Martin Barlow whom we thank
for allowing us to include it here. Roger Tribe pointed out a significant error
in an earlier version of Section 2.



1 The Predictable Representation Property

We begin by recalling the martingale characterization of a class of super-
processes from Fitzsimmons (1988, 1992). Let Y = (D, D, D;+, 6., Y:, P,) be
the canonical realization of a Hunt process (quasi-left continuous, Borel right
process) on a Polish state space E. Here, D is the Borel o-field of D, the
space of cadlag E-valued paths, Y;(y) = y(t), y € D, and Dy = o(Ys : s < t).
Let B denote the class of finely continuous functions in b€ and write U® for
the a-resolvent of Y. The domain of the weak infinitesimal generator, GG, of
Y is D(G) = U%(B) C B (independent of @ > 0) and for f € B,

GU'f)=U"f—f €B.

It follows from Fitzsimmons (1988, Thm 4.1) and (1992, Thm. 1.5) that for
each m € Mp(FE), there is a unique probability P, on Q = (g, F) that
solves the following martingale problem (which we label as (M,,)):

Xo=m, P, —a.s.,

Xu(6) = Xol0) + Z(6) + [ X.(Go)ds,

Vt > 0, P, - as., Vo € D(G); where Z;(¢) is an a.s. continuous (F;)-
martingale such that

(26N = [ X.(6?)ds,

Vt > 0, P,,-a.s. The probability P,, is usually called the law of the (Y, —\?/2)-
superprocesses starting at m. As we will restrict ourselves to finite variance
branching mechanisms scaled as above we simply call P, the law of the Y-
superprocess starting at m. If Y is a Feller process with a locally compact
state space, the above result holds with G the strong infinitesimal generator
of Y on its domain D(G) C Cy(E) (Ethier-Kurtz (1986, p. 404)). When G
is the generator of Brownian motion on R? (we write G = A/2), P, is the
law of super-Brownian motion.

The set D(G) is bounded-pointwise dense in b€, and so Z; extends triv-
ially to an orthogonal martingale measure {Z;(¢) : ¢ € b€, t > 0}. Re-
call that P denotes the predictable o-field for the filtration (F;). As in
Walsh (1986, Ch. 2) (and by a trivial localization argument), we may



define Z,(¢) = Ji [ ¢(s,w,x)dZ(s,z) for any P x E-measurable function
¢ :[0,00) x Q x E — R such that

t
/ /¢(s,w,x)2X5(dx)ds < oo, Vt >0, P,, — a..
0

We denote the above class of integrands by L2 (X,P,,) and write ¢ €

loc

L*(X,P,) (respectively, L2 (X,P,,)) if, in addition,

Pm(/ot/¢(s,w,x)2Xs(dx)ds) < o0, Vt >0,

(respectively, N
Py /O / (5,0, 2)2 X, (dz)ds) < 00).)

For ¢ € L} .(X,P,) (respectively, L?(X,P,,)) Z(¢$) is a continuous local

loc

martingale (respectively, square integrable martingale) such that (Z(¢)); =
Is [ é(s,w,z)?X,(dz)ds.

We now prove the predictable representation property for X under P,,.
Recall that Y is a Hunt process with a Polish state space and X = (Q, F, F;, X, Py,)
is the canonical realization of the Y -superprocess.

Theorem 1.1. IfV € L*(Q, F,B,,), there is an f in L? (X,P,,) such that

V=pP,(V)+ /OOO/f(s,w,a:)dZ(s,$), P, — a.s.

In particular, every square integrable (F;)-martingale, My, under P, may be
written as

¢
M, = P,,(Mp) +/ /f(s,w,a:)dZ(s,J:), vVt >0, P, — a.s.
0
for some f € L*(X,P,,).

Proof. It suffices to prove the second assertion.

As the martingale problem (M,,) is well-posed, we see from Theorem 2
and Proposition 2 of Jacod (1977) that for each n € N there exist a finite set
of functions ¢L, ..., Y™ € D(G) and a finite set of P - measurable processes
hL, ..., hN™ guch that

fo(s,w,x) = Zh;(s,w)qﬁln(x) c L*(X,P,)
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and
M; = P,,,(My) +11m//fnswdesx)

n—o0

in L?((Q, F,P,,) for each ¢ > 0. Hence for each ¢ > 0 we have that

lim P, / /fn $,w, 1) — fur(s,w,2))* X,(dx) ds)

nn—>oo

'I’L?’L—)OO

= lim B, //fnswx)dZ(sm //fn (s,w,x)dZ(s,7)]?) = 0.

Thus there exists f € L?(X,P,,) such that for each t > 0
t t
lim ]P’m([/ /fn(s,w,a:)dZ(s,x) —/ /f(s,w,x)dZ(s,x)P)

= lim Pm(/ot/[fn(s,w,x) — f(s,w,2)]? X,(dr) ds) =

n—oo

as required. O

Remark 1.2. (a) The above representation is reminiscent of the multiple
stochastic integrals of Dynkin (1988). In fact the integrals are quite different.
Dynkin was motivated by different questions and his multiple integrals were
not martingales in the upper limit of integration.

(b) An analogous representation theorem for martingales with respect to
the excursion fields of a one-dimensional Brownian motion is given in Rogers-
Walsh (1991). The martingales there are represented as stochastic integrals
with respect to the local time sheet. Le Gall (1991, 1993) has shown there is
a close connection between the branching structure of X and the excursions
of one-dimensional Brownian motion. It would be interesting if one could
derive Theorem 1.1 from Theorem 2.1 of Rogers-Walsh (1991). In fact the
above result seems to be the simpler one, so perhaps the converse question
would be more natural.



2 On Dawson’s Girsanov Theorem

We consider a bivariate version of the Girsanov theorem of Dawson (1978).
The key ideas may be found in Dawson (1978) but we derive a result which is
well-suited for our needs and may be used to verify the hypothesis of Theorem
5.1 of Dawson (1978).

Let & be a Hunt process with Polish state space F;, a-resolvent U,
and weak infinitesimal generator G; for ¢ = 1,2 (see the previous section).
Let m; € Mp(F;), and let ]P”in denote the law of the &;-superprocess on

Definition. We say that a pair of a.s.-continuous (F})-adapted Mp(R%)-
valued processes (X', X?) on some filtered space (€, F',F/,P') satisfies
(Minym, ) if

Xi(0) = mi(0) + Zi(0) + [ Xi(Gig)ds — Ai(9)

Vi > 0, P —as, Vo € D(G;), i = 1,2; where the Z/(¢) are continuous
(F})-martingales such that Z}(¢) = 0 a.s. and

(260, 2 (60 = b [ X2

Vt > 0, P — as., Vo, € D(G;), Vo; € D(G,), and the A} are (a.s.) non-
decreasing, continuous, (Fj)-adapted, Mp(E;)-valued processes starting at
zZero.

If (X', X?) satisfies (M, m,) with A" = A% = 0 then X’ has law P!, (see
(M,,)) and Theorem 1.1 shows X! and X? are independent. (This could also
be derived directly as for (M,,).) We call X' and X? independent &;- and
&-superprocesses with respect to (F) in this case.

The next result was proved in [BEP, Thm 5.1] for £} = F, = R? and
G1 = Gy = A/2. The proof extends with only notational changes to the
present setting as well as to the case when &; are Feller processes with strong
infinitesimal generators Gj.

Theorem 2.1. Let (X', X?) satisfy (Mo, .m,) on some (', F', F},P') and
let
(Q,F, F) = (0 x U x Do, F' x Fy x Fo, F, x Fyf x F7).

9



Let : Q — ' be the projection map. There is a probability P on (Q, F) and
Mp(E;)-valued processes Y, Y? on (Q, F,P) such that:

(a) If W € bF' then P(W o wt|F;) = P/ (W|F]) o, P-a.s.

(b) Y and Y? are independent & - and E-superprocesses with respect to
(F) and Y§ = my, P-a.s., i = 1,2,.

(¢c) Xjom <Y}, Vt >0, P-as.,i=1,2.
(d) If ZY'(¢) is the martingale part of Y (¢) for ¢ € D(G;) then

(27 (60), 22(05) oy = 8 [ Xiom(6?)ds

Vt>0,P— a.s., Vo € D(G;), Vo; € D(G;).

Remark 2.2. (a) The probability P is constructed as follows. If (W', wy, ws)
denotes a point in €2, the w’ marginal is P’ and conditional on w’, (wy,ws) are
independent &;- and &;-superprocesses, respectively with zero initial condi-
tions and time-inhomogeneous immigration given by (A!(dt,dz)(w'),
A%(dt,dz)(w)) (see Dynkin 1993, Thm. 3.1, 4.1)). The process Y is given
by V(W' wi,ws) = X} (W) + wy(t).

(b) Part (a) of the theorem implies ((X!, X2 A, A%), F/,P) and
(X1, X2 A, A%) o, F;, P) have the same adapted distribution in the sense
of Hoover-Keisler (1984). This means that all the random variables ob-
tained from (X, A) = (X', X2, A!, A?) by the operations of composition with
bounded continuous functions and conditional expectation with respect to
(F;) have the same law under P’ as the corresponding random variables ob-
tained from (X, A) om and (F;) under P. In particular (X, A) and (X, A)on
have the same law on their respective spaces and (X, A) o 7w will also satisfy
(Mmym,) on (2, F, F,P). In the future we may, and shall, study (X, A)
through its clone (X, A) o7 on (2, F,P) and hence will simply assert the
existence of a dominating pair of independent superprocesses (Y, Y?).

For the rest of this section we work on the product space (Q2 F?) =
(21 x Qq, F; X Fy) with its canonical right-continuous filtration (F?), shift
operators 67, t > 0, and coordinate variables X (wy,ws)(t) = w;(t), X (¢) =
(XH(), X2(1)).

10



Definition. If m; € Mp(FE;) and g; : [0,00) x Q% x E; — R is P(F?) x &-
measurable for i = 1,2, we say that a probability P on (02, F?) solves the
martingale problem (M, 4,) if

X! =m;, P—as.,
/ /|gZ s,w, 1)é(x)| X (dz)ds < oo
and

Xi(6) = Xi(6) + Z1% (¢ /XZ e ds+/ /gl 5w, 2)p(x) X (dz)ds

Vt > 0, P-as., Vo € D(G,), i = 1,2; where Z;%(¢) is an a.s. continuous
(F?)-martingale under P such that

<Zi:gi(¢) ng] t_ 513/ Xl
YVt > 0, P-a.s., \V/qbz € D(GZ), qu] € D(G])

For such a P, Z%9% extends to an orthogonal martingale measure and, as for
ordinary superprocesses, one may define [; [ ¢(s,w,z)dZ%9% (s, z) for P(F?) x
&;-measurable ¢ satisfying

I(9)(t) = /Ot/gzﬁ(s,x,w)szi(dx)ds < oo, Vt >0, P—a.s.

This stochastic integral is a continuous (F?)-local martingale under P with
square function I(¢)(t).

For ¢ € D(G;) we will use (M,, 4,) to define Z;%(¢)(w) on
{(t,w) = [E[1gi(s,w,2)(z)| X (dx)ds < oo} and set Zy%(¢) = 0 on the
complement of this set. In this way ZZ’g"(qb) is canonically defined on path
space.

Theorem 2.3. Let m; € Mp(E;) (i = 1,2,) and assume g; is P(F?) X &-
measurable and satisfies

1

(2.1) / /gl s,w, )’ X (dx)ds < co, Yt >0, By, X P: — a.s.

11



Let
9= (91,92)

and

2 ] 1 rt )
R =exp(y [ [ gils,o,0)2°(ds, dw) = 5 [ [ gils,w,2)2 X i(dw)ds)
=170 0

where Z*° is defined by (Myy).

a) If P is a solution of (Mg, 4,) such that

(2.2) g/ot/gi(s,w,x)zXz(d:U)ds < 00,

P-a.s., Vt > 0, then

dp

(23) dpl, < PZ

2 = 1Y

In particular, there is at most one solution of (Mg, 4,) satisfying (2.2).

b) If g; < c fori=1,2, for some c € R, then R} is a IP’%n1 X P?nQ—martz'ngale
and (2.3) defines the unique solution P of (M, ,,).

Note: The bound in (b) is only one-sided.

Proof. Let
2 t )
T, = inf{t : Z/ (/(gi(s,w,x)z +1)X(dz) + 1)ds > n}.
i=170

Observe that T, < n.
(a) Assume P solves (M, 4,) and satisfies (2.2). Let

- 2 tAT, .
RtgATn = eXp(Z - / /gi(S’ w, x)ZLgi(dS’ dx)
i=1 0

1 (AT, ,
—5 /gi(s,w,x)QXg(dx)ds).
0

12



For n fixed, Rf/\Tn is a uniformly integrable martingale (under P) and

dQ, = ]:Z%ndIP’ defines a probability on F2. Some elementary stochastic cal-
culus shows that for ¢ € D(G;), Z;\y, (¢)Rl,p. is a P-local martingale, and
therefore Zf}?Tn (¢) is a continuous Q,-local martingale. As Q,, << P we also
have

. . tA\Ty .
(2585, (60, 225, (0000 = 8 [ Xi(0)ds,

Vt > 0, Qu-a.s, Vo, € D(G;), Yo; € D(G;). The bound [y Xi(1)ds < n
shows Z,",’\OTn(@) is a Q,-martingale V¢, € D(G;). Therefore Q, solves (M)
“up to T;,”. Let @, be the unique probability on (Q2, F?),, such that @n\f% =
Q| 7> and the Q,-conditional law of X7, ;. given F7 is IP%(% X ]P’?X% Tt s
now easy to see that Q, solves (Myg) and this implies Q, = E"}m X ]I%Q (see
the remark prior to Theorem 2.1). Therefore

Qu(T, <t) =Qu (T, <t)=P,, xP2 (T, <t)—0asn— o0, Vt>0,

by (2.1) and we have (note that (2.2) shows that RY is well-defined under P)

(2.4) BP(RY) = B(R)\7, AT, > 1))
=P(R}xp,) — PR, (T, < 1))
=1-Q,(T, <t) = 1asn— occ.

This shows RY is a P-martingale and hence there is a unique measure Q on
F?% such that dQ| F2 = RJdp| F2 Vt > 0. Repeating the above arguments,
but now without the 7,’s, one sees that Q = P,, x P2, because Q solves
(My). The only point on which we need to comment is the fact that Z;°(¢)
is a Q-martingale, as opposed to just a Q-local martingale. Let {S,} be a

sequence of stopping times reducing Z;°(1). Then
QX)) < liminf QX (1)) = (D)

This shows that (Z"°(¢)), is square integrable under @ and hence that Z;°(¢)
is a Q-martingale for ¢ € D(G,;). Therefore we conclude that V¢ > 0

Pl = (RY) (B, % B,) | = RId(EL, x B2,

13



(b) Assume first g; < 0. Let gin(s,w,z) = 1(s < Ty)gi(s,w,z) and
9n = (91,0, G2.n). Then

(2:5) Riyr, = R
Vt >0, P, x P2 -as. Asin (a) dQ, = R} d(P;, X P2,) is a probability on
F? and a standard Girsanov argument shows that Q,, solves (M, , ..). The

only non-obvious point is again the fact that Z;7""(¢;) is a Q,-martingale
(not just a local martingale) for ¢; € D(G;). To see this, note that X/ (1) <
m;(1) + Z;?*"(1) and argue as before. By Theorem 2.1 and Remark 2.2 we
may assume (by passing to a larger space) that there are processes (Y, Y?)
with law P, x P2 and (X' X?) with law Q, such that X] < Y/, Vt > 0,
a.s. Therefore

Qu(T, <t) <P,

mi

the last by (2.1). Now argue as in (2.4) to see that P}, x P2, (RY) =1 and
hence R is a martingale (recall (2.5)).

It is now straightforward to show that (2.3) defines a solution P of (M, 4, ).
Turning to uniqueness, let P be any solution of (M, 4,). Theorem 2.1 shows
that by passing to a larger space we may assume there are processes (X', X?)
with law P and dominating processes (Y!,Y?) with law P}, x PZ_. Condition
(2.1) guarantees that P satisfies (2.2). Part (a) now shows that P is given by
(2.3).

Consider now ¢g; < ¢ and let f; = g; — ¢ < 0. Condition (2.1) continues
to hold with f; in place of g;. The previous case shows the unique solution
P =P/ of (My, j,) is given by (2.3) with f = (fi, f2) in place of g. Let

x B2 (T, <t) = 0asn— oo, Vt >0,

2 i, fi 62 t .
Ry =exp(Y ez (1) = 5 [ Xi(1)ds)

i=1
U, = inf{t : X} (1) + X2(1) > n} An.
Let P be a solution of (Mg, 4,). Then
, . tAUn
Xy, (1) S mi(V) + 2085, () + e [ XiW)ds,

Vt > 0, P-a.s. Take means and use Gronwall’s and Fatou’s lemmas to con-
clude '
P(X/(1)) < my(1)e®, Vt >0

14



and therefore
t

(2.6) B( / (X! + X2)(2)ds) < oo
0

The latter inequality plays the role of (2.2) and allows us to argue just as in
(a) with P{™ x P52 replaced by the equivalent law P/ and R{ replaced by Ry,
to conclude that

dP
apr 7 = e

A simple calculation leads to (2.3), giving uniqueness in (M, 4,).
Now argue just as in Lemma 10.1.2.1 of Dawson (1992) to see that R,
is a P/-martingale. It is then easy to check that dPrz = thp‘f:}-g solves
t t

(Mg, 4,)- The uniqueness established above gives (2.3) and hence shows Rf

is a Py, x P -martingale. O

Remark. Part (b) of the above, or more precisely its counterpart on
(Q, F1), appeared in the penultimate draft of Dawson (1992) but unfortu-
nately failed to make the final cut.

Definition. If F' is a Borel subset of Mp(FE;) X Mp(FEs) and {Q,, : m € F} is
a family of probabilities on (Q2, F2, F?), we say (Q% F? F2, 02, X, (Qu)mer)
is an F-valued diffusion iff

(i) Qu(X; € IVt >0,Xg=m)=1,Vme F.
(i) m — Q,, is a Borel measurable map from F to M;(Q?).
(iii) For any (F?)-stopping time T such that Q,,(T < c0) = 1,

@m(X © 0% € A|F%)(W) = QXT(w)(A)a Qn —as,, VA € JT_Q-

An analogous definition may be made for F' a Borel subset of Mp(F;) and
{Q,, : m € F'} probabilities on Q = C([0,00), Mp(E})).

Definition. If C C b€ xbE, the bounded pointwise closure of C is the smallest
class C in b€ x bE which contains C and such that (¢,v) € C whenever

(6n, tn) € C and ¢, 5B ¢, 1, B 1.
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Lemma 2.4. There is a countable set D; C D(G;) such that the bounded
pointwise closure of {(¢,G;¢) : ¢ € D;} contains {(¢,Gi¢) : ¢ € D(G;)} =
eraph(G).

Proof. Let D] be a countable set in Cy(F;) whose bounded pointwise closure
is bE; (recall E; is Polish). Since D} is contained in the &;-finely continuous
functions in b&;, clearly

D;={U}¢: ¢ € Di} C D(G;).
Let C; denote the bounded pointwise closure of {(¢, G;¢) : ¢ € D;} and let
D; = {p € b&; : (U9, U} ¢ — ¢) € Ci}.

It ¢, € D; and ¢, B ¢, then Ulp, B Ul and therefore (Ulg, Ul — ¢) €
C;. Therefore D; is closed under bounded pointwise convergence, and since
D! C D; we conclude that D; = b€;. This shows that (Ul¢, Ulp — ¢) € C;
for all ¢ in b&; and, as this set contains graph(G;), we are done. O

Theorem 2.5. Assume'; : Mp(E1) X Mp(E2) X E; - R, i = 1,2, are Borel
maps such that T'; < ¢, i = 1,2, and let g;(s,w,x) = [';(Xs(w),x). Let F be
a Borel subset of Mp(E;) x Mp(Ey) such that

(2.7) (2.1) holds ¥Ym = (my,ms) € F.

(2.8) Py, X P2 (X; € F\Vt > 0) =1, ¥(mi,ms) € F.
For each m € F there is a unique solution P9, of (Mg, 4,) given by (2.3).
Moreover, (Q2, F?, F2, 0%, Xy, (P4, )mer) is an F-valued diffusion.

Proof. The existence of a unique solution P¢, of (M, ,,) which also satisfies
PI(X; € F, ¥t > 0) = 1 (the set in question is universally measurable
so we are working with completions here) follows from Theorem 2.3, (2.8)
and P§ |z << P, X P |z Since P}, x P} (®) is Borel measurable on
Mp(Ey) x Mp(Es) for ® € bF? and

Py, (V) = By, X By, (VRY), Vi € bF,

mi
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it is easy to see that P9 (®) is B(F)-measurable in m, Y& € bF?.

Let T be a bounded (F?)-stopping time and let P(w) denote a PY -regular
conditional distribution of X o 62 given F2. Let D; > 1 be as in Lemma 2.4,
FV = 0(X, :u < s)and C, denote a countable set in bF? whose bounded

S S
pointwise closure is bF?. Let

2 '
A={weQ?: Z/ /|gi(s,w,x)|X;(dx)ds < 00, Vt > 0}.
i=170

Our definition of Z%9% (¢;) and the equality g;(s, 03w, z) = g;(s+T,w, z) show
that (drop dependence on g;)

(2.9) Z{(di)obr = Zy,r(¢0)— Zp(4), ¥t > 0,1 € D(Gy), i = 1,2, Yw € A.
If p; € D;, ¥ € Cs and s < t, then, since P (A) = 1 by (2.7), we have

B,((Zi(00) — Z3(80) 0 br (6 0 6r)| F2)
= B(B(Zr(60) — Zir(60) | PRy 0 071 F2) = 0, B4, — as.

Therefore

Br(w)((Zi(6s) — ZH@))¥) = 0, Vi € Cy, B, — . w
and so
(2.10) Br(w)(Zi(60) — Zi(6:)|F2) = 0

for all rationals such that 0 < s < ¢, V¢, € D;,2 = 1,2, PY -a.a. w.

Clearly A C (#%)7'(A) and so we may fix w outside a PY -null set such
that Pr(w)(A) = 1 and (2.10) holds. Our definition of Z}(¢) shows that
on A, Z} (¢) is continuous in ¢, V¢ € D(G;), and the equality in (M, ,,)
holds V¢ € D(G;). Therefore these last two conclusions hold Pr(w)-a.s.
Since Z(¢;) is FP-measurable, we may take limits from above in s € Q in
(2.10) to see that Z¢(¢;) is an a.s.-continuous (F7?)-martingale under Pz(w),
Vo, € D;. Use the pathwise construction of quadratic variation, (2.9) and
PY|r2 << P, X P |z tosee that for PY-ae. w

@.11) (2(6). 20 = 6 || Xi(62)is

17



Vvt > 0, Pr(w) —as., Vo, € D; , i = 1,2. If our fixed w also satisfies
(2.11), then the above shows that Pr(w) solves (M, ,,) with (my,my) =
(X} (w), X2 (w)) provided we restrict the class of test functions ¢; to D;. Use
Gronwall’s lemma as in (2.6) to see that

(2.12) @T(wx/ot XL(1) + X2(1)ds) < (ma(1) + ma(1)) /Ut eds < .

Since D; is bounded pointwise dense in b€;, we may now extend Z¢(¢) to
an almost surely continuous, orthogonal martingale measure as usual (all now
with respect to Pr(w)). Take bounded pointwise limits in (¢, G;¢) to see that
(M,, 4,) holds (under Pr(w)) for all ¢; in D(G;). (Note that if ¢, = ¢, then
(2.12) shows Z{(¢,) — Zi(¢) in L*(Pr(w)) and we can take limits in (2.11).)
Uniqueness of solutions to (My, 4,) shows that Pp(w) = P%_ (w): Which proves
the strong Markov property for bounded T'. For an arbitrary stopping time
T such that T' < oo, P -a.s., a standard truncation argument completes the
proof. O

By taking Ey = {0} and g = 0 and my = 0 in the above we get a corre-
sponding theorem for a solution P (a probability on (2, F, F;) = (4, F1, F}))
of the martingale problem (M) defined as follows:

Xo=m, P—a.s.,

X(0) = Xo(0) + 20(0) + [ X.(Groyds + [ [ g(s.,2)X. (do)is,

Vit > 0, P-a.s., Vo € D(G1); where Z7(¢) is an a.s. continuous (F;)-martingale
under P such that

t
(2°(6)): = || X(¢?)ds.
vVt > 0, P-a.s.
Here ¢ : [0,00) x Q2 x By — R is P(F;) x E-measurable. We let the reader

formulate the obvious version of Theorem 2.3, but state the analogue of
Theorem 2.5 for future reference.

Corollary 2.6. Assume g(s,w,z) = ['(X(w),z) for some Borel
[': Mp(Ey) X Ey — R such that T' < c¢. Let Fy be a Borel subset of Mp(E)
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such that

t
(2.13) / /F(Xs,x)ZXs(dx)ds < oo, Vt >0, Py, — a.s., Ym € Fy
0

(2.14) P (Xy € F1,Vt >0) =1, Vm € F}.

For each m € Fy there is a unique solution P9, of (M,) given by
d]P)g t 1 t
= el [ [ T(Xo2)2 s de) = 5 [ [ T(X, 22X, (dw)ds}.
dP,, 0 2 Jo

The process (2, F, Fi, 0, Xiy (P9 )mer,) is an Fy-valued diffusion.

Remark 2.7. If &; are Feller processes with locally compact state spaces E;

and strong infinitesimal generators G; on D(G;) C Cy(E;), all the results of
this section hold with some minor simplifications in the proofs. O
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3 A Two-Type Martingale Problem for Sin-
gular Interactions

We specialize the notation of the last section and take F; = R and G; = A /2,
the strong infinitesimal generator of d-dimensional Brownian motion B on
its domain D(A/2) C Cy(R?). Hence Q = C([0,00), Mp(R?)), F = B(f),
(F:) and (F?) are the canonical right-continuous filtrations on © and Q2
respectively, (62);>¢ are the shift operators on Q2 and X and (X', X?) are
the coordinate variables on Q and Q2 respectively. Now P,, denotes the
law of super-Brownian motion on (2, F), starting at m. Let p;(x) be the
standard Brownian transition density (that is, p; is the density of a Gaussian
distribution with mean 0 and variance t).

A key ingredient to our approach to singular interactions is the collision
local time of two measure-valued processes, introduced in [BEP].

Definition. For ¢ > 0 define g, : Mp(R?) x R? — R and L€ : Q2 — Q by
gE(M7x) - fpe(x - y),u(dy) and

L0, X6) = [ (X 0)6(0) X2 (de)ds, 6 € bB(EY).

A pair of continuous Mp(R?%)-valued processes (Y!,Y?) on some (¢, F',P)
have collision local time L,(Y' Y?) iff Ly(Y!,Y?) is an a.s. continuous

Mp(R%)-valued process such that LE(Y1(w), Y?2(w))(¢) P, LY, Y?) () as
€10,Vt>0and ¢ € Cy(R?).

Remarks 3.1. (a) The definition in [BEP] uses another, symmetric, def-
inition of L¢(X' Y?). However, as is remarked in [BEP, Sec.1], these two
different definitions of L¢(X!, Y?) lead to equivalent definitions of L(Y*!,Y?).

(b) If Ly(Y!,Y?) exists it is clearly unique up to evanescent sets and non-
decreasing in ¢ a.s. That is, almost surely, Vs < ¢, L(Y', Y?) — L, (Y1, Y?) €
Mp(R?). Therefore LY Y?)((s,t] x A) = Ly(Y1,Y?)(A) — Ly(Y', Y?)(A)
extends to an a.s. unique measure L(Y!, Y?)(dt,dx) on B(]0, c0) x R?) which
is supported by the intersection of the closed graphs of Y! and Y? (see Section
1 of [BEP]). Intuitively, L(Y"' Y?) measures the space-time distribution of
the collisions between the two populations Y' and Y?2.
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Proposition 3.2. Let Y1 Y? be continuous Mp(RY)-valued processes on
some (Q, F',®') which have a collision local time Ly(Y"',Y?). Let Py be the
law of Y = (Y1 Y?) on (Q2,F?). There is an (F}?)-predictable mapping
L :[0,00) x Q% = Mp(R?%) which depends only on Py and satisfies

(i) Li(Y'(w),Y?(w)) = Ly(Y', Y?)(w), Vt > 0, P'-a.s.

(1) Lo 0? = Liis— Ls, Vs,t >0, Py-a.s.

(i1i) Ly(0%w) = limy_,o0 L (0%w), Vs, t > 0, Py-a.a. w for some sequence
M4 0.

Proof. A diagonalization argument shows there is a countable dense set D
in C/(R?) and a sequence 7, | 0 (depending only on PY) such that

LF(YHw), Y2 w))(9) = Le(Y!,Y?)(w)(9),

Vit € QN [0,00), Vo € D, P-a.s. As the limit is a.s. continuous in ¢ and the
approximating processes are non-decreasing, an elementary argument shows
that

sup [(L{* (Y (w), Y?(w)) = L(Y', Y?))(9)] = 0

t<T
VT > 0,V¢ € D, P-a.s. This implies
(3.1) LY (Y (w), Y3 (w)) = LY, Y (w) in Mp(RY)
vVt > 0, P-a.s. Let
A={weQ?: L¥(w) converges in Mp(R?) as k — oo, Vt > 0}.
Note that Py (A) =1 by (3.1). Define
_ { limy oo L{*(w), if the limit exists in Mp(R?),

0, otherwise.

Observe that L is (F2)-predictable because L™ is. Clearly, (i) is immediate
from (3.1). If w € A and s,t > 0 then

(3.2) L (0ow) = L% o(w) — LT (w)
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shows that #%w € A and therefore, by the definition of L,
Lith) = Jim L} (6%)
= lim L%, (w) — L) (by (3.2))
—00
= I~/t+s(w) - Es(w)a

the last because w € A. This gives (ii) and the first line in the above gives
(iii). O

Remark 3.3. (a) If Y is as above and F} = N,0(Y; : s <t+mn~'), then by
the above we may, and shall, assume L;(Y! Y?) is (F})-predictable. When
Y = X on (', F') = (92, F?) the two notations L and L can be confusing.
Our convention will be to write L,(X", X?) for L;(X", X?) and hence treat
Ly(X', X?) as a predictable function on [0,00) x Q2. Note, however, the
function depends on the underlying probability P on (Q2 F?).

(b) In the above argument the sequence {n;} may be taken as an ap-
propriate subsequence of any given sequence {¢,} decreasing to zero. This
allows us to construct a single sequence, and hence a single L, which satis-
fies the conclusions of the above theorem for a pair of given Mp(R?)2-valued
processes (Y1, Y?) and (Y, Y?), each possessing a collision local time.

Let M(my,my) denote the set of a.s. continuous My (R?)%-valued pro-
cesses which satisty (M, m,) (now with G; = A/2). Note the underlying
probability space is allowed to vary. If Q' = (Q/, F/, ) is given let

M(Q) = M(,my,my) = {(Y',Y?) € M(my,my) : Y, Y?are defined on '}.

In this case the filtration associated with (Y1, Y?2) in (M,,, m,) is still allowed
to vary.

If my, my € Mp(R?) satisfy a mild finite energy condition ((5.1) below),
d < 5, and (Y1 Y?) € M(my,msy), then L,(Y! Y?) exists [BEP, Thm.
5.9]. If (Y',Y?) are independent super-Brownian motions (i.e. A® = 0 in
(Myymy)) and m; # 0 then Ly,(Y',Y?) is non-trivial [BEP, Remark 5.12].
For our purposes it will be the uniform (in M) results which will be impor-
tant.

Notation. Let B(x,r) be the open ball in R? of radius r and centered at
x. If m € Mp(R%), let D(m,r) = sup{m(B(z,r)) : * € R%}. Set M3 (R?) =
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{m € Mp(R?) : [ r'=?D(m,r)dr < oco}. Clearly, M3 (R?) is a Borel subset
of MF(Rd).

Lemma 3.4. Assume d <3, m; € M3(RY), i = 1,2, and ¢ € Cy(R?). Then
VT >0

lin sup | SgITD!Li(Xl(w),XQ(w))(w) = L X", X?) (@) ()] ALy

(Xl,X2)€M(m1,m2) t<

=0

Proof. If L€ is replaced by
(X 36) = [ [ [ pees = 0006+ 2)/2) X ) X2 )i,

this result is contained in [BEP, Thm. 5.10]. Let (X', X?) € M(my,my)
and assume without loss of generality there are (Y1 Y?) with law P,,, X Py,
such that X? < Y a.s. (Theorem 2.1 and Remark 2.2). If ¢ € Cy(R?) and
T>0

(3.3) sup | Li(X', X?)(v) — Li(X, X?)(¥)]

<[] [ putes = 2lla) — (o + ) /DY) Y2 )
< [ [ plermatea—ai] < )l ()0 (o) )Y, (dr) Y2 de)ds
2l exp{—6/26) [ VIOV (1)ds.

Using the fact that L5-(Y!(w), Y2(w))(1) 5 Lp(Y',Y?)(1) as ¢ 4 0 ([BEP,
Thm. 5.9]), it is easy to make the first term arbitrarily small in || ||; for
all sufficiently small e by fixing ¢ sufficiently small (use the fact that most of
the mass of Ly(Y? Y?) may be supported on a compact set on which 1) is
uniformly continuous). The last term in (3.3) clearly approaches zero in L'
as € J 0 for our fixed §. Therefore the left side of (3.3) converges in L' to
zero as € | 0 uniformly in (f( X %) and the proof is complete. O
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Definition. Let p be a bounded metric on Mp(R?) which induces the weak
topology, and let Q' = (€, 7', P'). Identify processes in M(Q', my, ms) which
agree up to a P-evanescent set and define a metric d on M(Q') by

o0

A0 YOV W) = S sup o7 W) (02 W7)2°

— t<n

Let C(£') be the set of measurable maps L : Q' — C(]0,00),R) and
identify maps which agree up to P’-null sets. Hence processes L(w’,t) which

are a.s. continuous in ¢ are considered to be elements of C(Q'). Define a
metric d’ on C(Q') by

d'(Ly, Ly) = Z P'( SUP ‘Ll( ) — La(t)| A 1)27

n=1

Lemma 3.5. Assume d < 3, m; € M3 (RY), i = 1,2, and ¢ € Cy(R?). Then
(YL Y?) —» L(YL,Y?)(Y) is a continuous mapping from M(Q',my,ms) to
().

Proof. Let v (z1,79) = p(w2 — x1)Y(xs) for € > 0, and define T, : Q* —

C([0,00),R) by
///w b p2)d

If (g, i) — (p', p?) in Q2 then clearly Te(puy, up)(t) — Te(u', 1*)(t) point-
wise. It is easy to see {T.(u}., u2) : n € N} are uniformly equicontinuous and
therefore T.(ul, p2) — T.(p', u?) in C([0,00),R). That is, T, is continuous.
It is now easy to check that

(YLY?) = LAY YH)() = T(Y(w), Y(w))

is continuous as a mapping from M(Q') to C(Q'). Lemma 3.4 shows that
LYY Y?) () is a uniform limit of these continuous maps and therefore is
also a continuous map from M(Q') to C(Q'). O

Recall the “competing species” model described in the Introduction. Ca-
sualities may occur in either population when type 1 and type 2 particles
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collide. We are ready to state a martingale problem for this model. Let A
denote a non-negative parameter which gives the intensity of killing when
particles collide. A probability P on (2, F?) solves (Myy) if and only if

Xi =
P-a.s., 1 = 1,2,
Xi(9) = Xi(6) + Zi(6) + [ Xi(Aa/2ds — \L(X', X?)(0),

Vt > 0, P-as. V¢ € D(A/2), i = 1,2; where Z!(¢) is an a.s. continuous
(]:tz)—martingale under P such that

. . t
(2'(6:), 2/(6))) = by [ Xi(oh)ds
vt > 0, P-a.s., ngl, ¢j S D(A/2)
Implicit in (M) is the existence of L;(X*, X?). A pair of a.s. continuous
Mp(R%)-valued processes (Y1, Y?2) on some (€, F',?') solves (Myy) iff their

law Py on (Q? F?) is a solution.

Theorem 3.6. If d < 3 and my,my € Mi(RY), then a solution to (Myy)
exists VA > 0.

Proof. If € > 0 then clearly (2.1) is satisfied by
gl(S,W; [L’) = _)\ge(vam) <0 and g2<87wax) = _)‘gE<Xsla :U) <0.
Therefore Theorem 2.3(b) implies that (use the notation from (M, 4,))

dP,
APy, X Py,

= exp{ /\/ /ge ) Z10(ds, dx) A/ /ge ) Z%0(ds, dx)
/g6 2)*X}(dx)ds — —/ /gE r)?’X2(dr)ds)}

defines the unique solution P, to the martingale problem (M,) defined as
follows:
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Xy =m; a.s.

X36) = X3(0) + ZE(0) + [ X1(A0/2)ds — AL(X?, X)),
Vt > 0, Pe-a.s., Vo € D(A/2),

X2(6) = X3(6) + Z2(0) + [ X2(A6/2)ds = M;(X', X3)(0),

Vt > 0, P. — as., Vo € D(A/2); where Z(¢) is an a.s. continuous (F?)-
martingale (under P.) such that

~ . o to .
(206, 2°4(0): = 8 || Xi(6P)ds,
Vi Z 0, Pﬁ—a.s., V¢Z, ¢j € D(A/Q)

Therefore (X!, X?) on (2%, F2 P.) belongs to M(my, my) and by Theorem
2.1 we may work on a larger space ((,F’) = (Q* F*) will do) with a fil-
tration (/) and a probability P/ carrying processes (X ¢, X?<) which satisfy
(M,) and independent (F})-super-Brownian motions (Y, Y*¢) starting at
my and mg, respectively such that Xy < Y, Vt > 0, Pl-a.s.

Choose €, | 0 and let

]Pn() — Pén«Xl’E"Xz’en,LE" (){2,6717)(1,5")7 Len (Xl’en,XQ’E")) c )

We claim {P,} is a tight sequence of probabilities on (Q*, F*). If T, 8,7 > 0
and ¢ € C}f (R*), then

lim sup Pr, (sup{|L§" (X, X*)(¢) =L (X1, X2) ()] : 5.t < T [s—t] < 3} > 1)
n—o0

<limsupP, (sup{|Lg" (Y, Y2)(¢) =Ly (Y, Y2 ) ()] : 5,8 < T, |s—t| < 0} > 1)
n—oo
< Pm1XPm2<Sup{‘Lt(X1=X2)<¢)_LS(X17XQ)(¢)| : Sat < T? ’S_t| < 5} > 7]/2)
—0asd 0,

where the second inequality follows from Lemma 3.4. Theorem 8.2 of Billings-
ley (1968) implies { L (X1 X2 (¢) : n € N} is tight in C' = C([0, 00), R),
Vo € Cy(R?) (i.e. their laws under P, are tight). By Dawson (1991,
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Thm. 4.6.1) (the result given there for cadlag Mp(R?)-valued processes car-
ries over to continuous Mp(R?)-valued processes), {L (X1 X2) : n €
N} is tight in C([0,00), Mp(R?)), where R? is the one-point compactifica-
tion of RY. The domination of L (X1 X)) by Len(Ylen Y2en) shows
that each limit point (a law on C(]0,00), Mr(R%))) is in fact supported by
C([0,00), Mp(R?)) = Q. The tightness of {L (X1 X2%) : np € N} in Q
now follows.

Consider next the tightness of { X*% : n € N}, i.e., of their laws on (Q, F).
Let ¢ € D(A/2). The domination X% < Y2 shows that { [; X2 (A¢/2)ds :
n € N} is tight in C'(]0, 00),R). The same domination, Burkholder’s inequal-
ity and Theorem 12.3 of Billingsley (1968) show that {Z%%(¢) : n € N}
is tight in C'. The tightness of {X?(¢) : n € N} in C' now follows from
(M,,) and the tightness of {L& (X1 X2 () : n € N} proved above. Now
proceed as for {L (X1 X2) : n € N} to conclude that {X? : n € N} is
tight in Q. The tightness of {P,} follows.

By Skorokhod’s representation theorem (Ethier-Kurtz (1986, p. 102)),
we may redefine (X1en X2 [en(X2en Xlen) [en(Xben X2€n)) as adapted
processes on a common filtred probability space Q' = (€', F', F/,P') such that
this 4-tuple converges P-a.s. to (X!, X2, A", A%). Clearly each A’ is an a.s.
non-decreasing, continuous Mp(R%)-valued process. Routine arguments show
that Vo, € D(A/2)

(3.4) Z(6:) = X{(¢1) — mi() — /Ot XU(A¢i/2)ds + AA;(4)
is a continuous (F;)-martingale such that
(35) (2'(6:), 2/(6))) = b | Xi(02)ds

(the bounds X ben < Yhn give the necessary integrability conditions). There-
fore (X1, X?) € M(Q',m1,mz). If ¢ € D(A/2), then

d' (L (X, X2 (9), L(X', X?)(9))

< /(L (XB, X2 (9), L(X B, X2 ()
+d (L.(X 1, X2 (9), L(XT, X?)(9))

— 0 asn— oo,
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where we have used Lemma 3.4 to handle the first term and Lemma 3.5 to
handle the second. This proves Al = A? = Ly(X!, X?). Therefore (3.4) and
(3.5) show that the law of (X, X2) on (Qz,}"2) is a solution of (M,). O

Here then is the fundamental conjecture which we have not been able to
prove in dimensions d = 2, 3.

Conjecture 3.7. If d < 3 and my,my € Mj(R?) the solution to (Myy) is
unique.

In the rest of this section we assume d = 1 and show how Dawson’s
Girsanov theorem proves the conjecture in this case.

Let U : Mp(R) x R — R be the Borel measurable mapping

limy, oo 2p(fz — L, 2+ 1)), if it exists
Ulp, r) = _
0, otherwise.

Also consider the P(F?) x B(R)-measurable canonical “densities” u;(t,w,x) =
U(X}(w),z),i=1,2, It is easy to check that

Que = {w € Q: w(t) << dz, Vt > 0}(dzx is Lebesgue measure)

is a universally measurable subset of 2. Clearly, if w € €., then w;(dx) =

U(w(t), z)dx, Vt > 0.
Lemma 3.8. Suppose that d = 1. Assume X = (X', X?) satisfies (M, my)

on some (U, F', FI,P'). Then X}(dx) = U(X!, x)dx, ¥t >0, i = 1,2 P'-a.s.
and

(3.6) L(XL, X2) (¢ / / oz YU(X2, 2)dxds,

YVt >0, Vo € bB(R), P'-a.s.

Proof. By Theorem 2.1 (see also the ensuing Remarks) we may assume
without loss of generality there are a pair of independent (F7)-super Brownian

motions (Y, Y?) starting at my, ms, such that X! < Y}, Vt > 0, P-a.s. The
measure Y, has a density w;(s,z) = U(Y}, x) which is jointly continuous on
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(0,00) x R, P-a.s. (see Konno-Shiga (1988, Thm. 1.4) or Reimers (1989,
Thm. 7.1)). Therefore X} (dz) = v;(t, z)dz, Vt > 0, P-a.s., where

vi(t,w, ) = U(X (), z) < w;i(t,w, z),

vVt >0, Vo € R, P-a.s. Let

and

Observe that

(3.7) lelgw (t,x) = v;(t, )
and
(3.8) lell%l’w (t,z) = wi(t, x),

Lebesgue-a.a. x, Vit > 0, P-a.s.

By continuity, it suffices to prove (3.6) for a fixed t > 0 and ¢ € C; (R).
Choose €, | 0 such that L{(X' X?)(¢) — Ly(X', X?)(¢), P-as. (see
Lemma 3.4). Since

Lo (X1 X2)( / /vi" s,y)v2(s,y)0(y)dyds,

Fatou’s lemma together with (3.7) gives

(3.9) Li(X', X?)( >/ /vl s, y)va(s, y)o(y)dydx, P — as.

To complete the proof it suffices to show

n—oo

(3.10) ti #([* [ 655, 0)0als,0)0 ) dyds)

- P’(/Ot/vl(say)vz(s,yw(y)dde) < o0
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Indeed this, together with Fatou’s lemma, implies
P(L(X', XY)(¢) < limintP(LH (X', X?)(9))
t
= #([ [vils.peals y)o(y)dyds)

and (3.9) would then give the required result (3.6). To prove (3.10) define a
finite measure vg. on [0,¢] x R? by

Vi (A) = ]P"(/Ot / La(s, z)va(s,x)dxds)

and similarly define vy2. In view of (3.7), (3.10) is equivalent to the uniform
of integrability of {v{" : n € N} with respect to vg., which is implied by
the uniform integrability of {wi" : n € N} with respect to vy2. The latter is
equivalent to (see (3.8))

(3.11) hm /wl S, T2)dvyz2 (s, x9)) = P/( /w1 S, T9)dvy, (8, T32)).

The left side of (3.11) equals

n—oo

t
lim IE”’(/O //pen(a:Q — 21)wy (8, T1)wa(8, To)dw1dTads)

t
= lim /O / / / / Pey (T2 = 21)ps (01— 21)ps (22— 22)dr1damy (dz1 ) ma(d2s)ds
(by Konno-Shiga (1988, (2.14))

= lim / //p€n+25 (z1 — zo)my(dz1)ma(dzs)ds

n—oo

:/3 /p25(21 — z9)mq(dz1)ma(dzs)ds,

the last by dominated convergence (p., 12, < cs~'/2). Again (2.14) of Konno-
Shiga (1988) shows the last integral equals P'( [ wy (s, z2)dvyz2(s,z3)). This
gives (3.11) and we are done. O

Recall the notation Z*? from (M, ,,) but now with E; = Rand G; = A/2.
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Theorem 3.9. Letd=1, A > 0 and
F = {(ma,ma) € Me(®)? s [ [1og*(1/]ar = wal)mu(der)ma(daz) < oo},

(a) Ym = (my1,ms) € F there is a unique solution Py, to (Myy).
(b) Ym € F, ¥Vt >0

dp,, exp {=M(Jy [ua(s,2)dZ 0 (s,2) + [§ [ui(s,2)dZ*0(s, 7))

dpy,, X P, e —(N2)2) J5 [us(s, z)?ui(s, o) + ui(s, x)?uq(s, v)dzds}.

(c) (O F? F2,02, X, (Pp)mer) is an F-valued diffusion.

Proof. Lemma 3.8 shows that P solves (M) if and only if P solves (M, ,,)
with gi(s,w,z) = —AU(X2(w),z) and ¢s(s,w,x) = —A\U(X}(w),z). As
—AU < 0, the Theorem will follow from Theorem 2.5 once (2.7) and (2.8)

are verified.
Letting to 4 0 in (2.14) of Konno-Shiga (1988), we have

312) it = [ oo —gmldy) + [ [ pese - 5)dzs,y)
P, -as., V(t,z). Therefore, if (my,my) € F,
By X B t [ s, ) us(s, 2)dads)
= [ [1(f pate = ymatan)* + [ [ oo sl = ) (o (0. )]
x( / Doz — w)ms(dw))dzds
< [ s 2 [ pue—yym @)+ [ [ pula—2)@n) 2 s—) 2 (2)d]
% ([ pale = wyms(dw))deds
) [ [ [ 57 2pn — s gy )ma(de)
2(2m)~V/? / / / 2o (41 — yo)dsma (dy yma(dys)
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< ma(1) [ [ 1+1og" (4t (yr — )% s (dyn ma(do) +2(2m) s (s (1)1

which is finite since (my, ms) € F. This proves (2.7). Turning to (2.8), recall
that u’(s,z) is a (jointly) continuous density for X!, Vs > 0, P, x P2 -a.s.
(Reimers (1989)), and has compact support in x, Vs > 0, P}, X P2 -a.s.
(Dawson-Iscoe-Perkins (1989, Thm. 1.2)). Condition (2.8) follows and the

proof is complete. O

We close this section with a related martingale problem on €2 for a self-
interacting population. For #, A > 0 and m € Mp(R) we will say that a
probability measure P on (2, F) solves the martingale problem (MZ%") if the
following holds:

Xo=m, P—a.s.,

X(6) = Xo(0) + Z40) + [ XL 100 AU(X,, Yoy,

Vt >0, P-a.s., V¢ € CZ(R); where Z%*(¢) is a martingale such that

(2°26). = [ Xo(e)ds,
vVt > 0, P-a.s.

The presence of U (X, x) in the above suggests we are only interested in
P such that P(Q,.) = 1. We will see that this is in fact a consequence of
(M7).

Solutions to (M%) were conjectured by Rick Durrett to arise as a limit
of rescaled one-dimensional contact processes as the interaction range ap-
proaches infinity. The —AU(X,, ) term in (MY?) kills particles at a rate
proportional to their local density. It arises from the approximating contact
processes because of the suppression of “offspring” which jump onto an oc-
cupied site. The ¢”/6 term (as opposed to the usual ¢”/2) arises from this
particular approximation. In Perkins (1989a) it is shown that a discrete time
version of these contact processes do converge weakly to the unique solu-
tion of (M?2*). Here we will only show how Corollary 2.6 give existence and
uniqueness of solutions to (M?%*). This result is due to Don Dawson who
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told one of us that his Girsanov approach will work in this setting. Mueller
and Tribe (1993) study the properties of solutions of (M%) and confirm
Durrett’s conjecture.

Let P/, denote the law of super-Brownian motion on (€2, F) but now scale
the Brownian motion to have generator A/6. Also let Z; denote the associ-
ated orthogonal martingale measure, i.e., Z, = Z,° in the above notation.

Theorem 3.10. Let 0, \ > 0 and
Fy={m e Mp(R //log (1/|z1 — za])dm(zq)dm(xs) < oo}

(a) Ym € Fy there is a unique solution P9 to (M2*)
(b) Vm € Fl; Pfr’z)\(Qac) = 17 Pf‘r;,/\|]:t << IEJJ{m|.7"t7 Vi > O; and

dPé’A
P — |5 = exp{/ /9 AU (X5, x)dZ (s, x) / / (0—\U(X,,2))* X, (dr)ds}

(c) (0, F, Fi, 0, Xy, (P9 cry) is an Fy-valued diffusion.

Proof. The result will follow from Corollary 2.6 with I'(X,z) = 6 —
AU (X, ) < 0, once conditions (2.13) and (2.14) are verified. (Note that
PY2(Q,.) = 1 is immediate from the absolute continuity result.) As in the
proof of Theorem 3.9, (2.14) is clear from the fact that X; has a continuous
density with compact support, vVt > 0, P/ -a.s.

Let m € Fy and u(t,w,z) = U(X;(w), x). Condition (2.13) would clearly
follow from

T
(3.13) P ( / / u(t, z)*dzdt) < oo, VT > 0.
0

Equation (3.12) and Burkholder’s inequality show that
(3.14)

¥ (ult, %) < el( [ il = )dm(u) + Pl Xolpslx = )ds)))
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The second term is bounded by
Bl (o (t = )X (pems (x — ) /) ds5)*?)
P (J3(t — )X (p_s(z — )/?)3/2ds)2t1/® (Jensen’s inequality)
< Jit — 8) TP (X (prs( — )31 X, (1)%4)ds2tY/® (Holder’s inequality)
(3.15) < Jo(t — s) 3P (Xo(prs(z — )PP, (Xs(1)%)]/4ds2tY/* (Holder again).

Now
JELKpsla = e = [ e = 2)dm() e

//pt(x — 234 dm(2)m(1) Y 4da
< ctBm(1)%4

IA

It is clear from this that (3.15) is integrable in (¢,x) over [0,7] x R, V1" > 0.
From (3.13) and (3.14) it remains only to show

(3.16) /OT/(/pt(x —y)dm(y))*dzdt < oo, VT > 0.

The left side is bounded by

/OT///pt(m —y1)pe(T — yz)dzdm(yl)dm(yQ)fl/?dtm(l)

T r—

= C//l +1og™ (T/(yr — y2)*)dm(yr)dm(y2)m(1)

which is finite because m € F;. O

We close this Section with a result which shows these Girsanov techniques
will not work for d = 3. The proof is given at the end of the next section.

Theorem 3.11. Assume d = 3, A > 0 and m;,my € Mi(R3\{0}. If P
solves (Myy) then ]P’|f12 is not absolutely continuous with respect to
Prny X IP)7712|}'12'
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4 Killing Super-Brownian Motion in a Ran-
dom Environment

We study in this section the much simpler problem in which the first popula-
tion X! may be killed when it comes in contact with the second population
X2, but X2 is not affected by these encounters. Existence and uniqueness for
the appropriate martingale problem is established in Theorem 4.9 and the
fact that the resulting process is a diffusion on a suitable space of measures
is proved in Theorem 4.11. As a preliminary to studying the uniqueness
question, we first consider a similar martingale problem in which the killing
measure-valued process X? is replaced by a deterministic measure-valued
function. Uniqueness for this latter martingale problem is obtained in The-
orem 4.5. We have omitted the proof of the companion existence result (see
Remark 4.6.)
We continue to use the notation of the previous section.

Definition. Let W = (T, B) denote space-time Brownian motion on the
canonical space of paths C([0,00), E), where E = [0,00) x R. Thus W is a
Feller process (in the sense of Ethier-Kurtz (1986, Sec. 4.2)) with semigroup
{P, :t > 0} and laws

Qr,(WeA)=1,((r+-,B) € A)

where II,, is Wiener measure starting at y.
If ueQ=C(0,00), Mp(R?)) and 1 > 0, let

Fy(u,z) = gy (pu, © /pn y)pa(dy), (u,z) € E,

and define a continuous additive functional (CAF) for W by

:/Otf;;(W ds

Dependence on p in the above quantities will often be suppressed. Let

hne) = swp [ e sa)ds, M(p) = [ po(1)ds,
(r.x)eE Y0 0
® = {pe: lifgl h(u,€) =0, p; = 0 for sufficiently large ¢}
e F=B(Q).
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Theorem 4.1. If p € ®, there is a CAF A" for W such that

lim sup Qm(sup(A”() AX(1))?) = 0.

n—0 (r,z)eR
Ifh:[0,1] — [0,00) is such that h(€) L 0 ase | 0 and M € N, the convergence
in the above is uniform on ®(h,M) = {p € & : M(u) < M, h(p,e) <
h(e), Ye < 1}.
Proof. Set

/ [ Posale = Diesa(dy)ds = Qrn(Ay(o0)).

T 37 / /ps /‘LT+S dy)d

Note that for each € > 0,

and

|(F— Fy)(r,2)| < / /Ps Yiirss(dy)ds
-+ /pn (z — z) / /ps Y)rss(dy)ds)dz
+ L“/m@ww/—mﬂw—ymwﬁwww

and so

sup |(F — F,) (1, x)| < 2h(p, €) + supsup |[py(2) — putn(2)| M(1).

(m,z) uze %
For p € ® it is now clear that

(4.1) lim ||F — Fyllec =0
n—0+

and the rate of convergence is uniform in p € ®(h, M).

For the moment fix u € ® and (7,z) € E. If we set

en(t) = QT,:’C(A"](OO)‘WS7 S S t)

(4.2)
= A,(t) + F,(W;) (Markov property),
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then since A, (c0) is uniformly bounded, e, is a non-negative martingale such
that limy o €,(t) = A,(00), Q,z-a.s., and in L*(Q,.). Doob’s maximal L?
inequality therefore gives

Qrar(sup ey (1) = e (1))
Qrn((Ay(00) = Ay (0))?)
20Qra( [ Uy = S )W) Qu ([ (= i) (Wit du)

= 2Qual [ [0y = S ) WII(E, = Fy) (W)
< el FllxllFy — Fylls

IN

where in the last line we have used Chapman-Kolmogorov to see ||F)| <
| F'||co. Combine the above with (4.2) to see

(4.3) sup QT,x(SgplAn(t)—An'(t)IQ) < (1B = Fy o HIF I — Fy 115

(rx)eE

Since || F,|lc < ¢(n)M(p) it is clear from (4.1) that ||F|| is bounded uni-
formly in p € ®(h, M), and therefore (4.3) converges to zero as n,n — 0
uniformly in u € ®(h, M) (again use (4.1)). From this conclusion we can now
carry through the general argument subsequent to line 3.10 of Blumenthal
and Getoor (1968) in order to construct a CAF A = A* with the desired
properties. O

For u € ® we introduce the sub-Markov semigroups on b€

PltnM(f)(Ta y) = P;i(f) (Ta y) = QT,y(eXp{_Aﬁ(t>}f<Wt)>

PH(f)(m.y) = PU)(7,y) = Qry(exp{—A(t)}f (W3)).

P and P, are the semigroups of the processes obtained by killing W according
to the CAF’s A, and A, respectively. Let W" and W denote these killed
processes and let Q7 and Q7 denote their laws on C([0,00), Ea). Here A,
the cemetary point, is added to E as a discrete point to form Ea. The weak
continuity of (7,y) = Q. and the fact that A,(¢) is a continuous functional
of W show that P/’ : Co(E) — Co(E). The fact that yu; has compact support
in ¢ shows that
lim P'1(r,y) =1

(1,y)—00
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and hence {P}" : t > 0} is a semigroup on Cy(E). Since A,(t) < ct, P is a
(non-conservative) Feller semigroup (i.e. strongly continuous) on Cy(E). Let
G,u = G, (respectively G, = G and Gy) denote the (strong) infinitesimal
generators of (P/') (respectively (P,) and (P,)) on their domains in Cy(E).
By Dynkin (1965, p. 298)

(4.4) D(G,) = D(Gy) and Gy,¢ = Gop — f,.
If p € Cy*(E) = {p € Co(E) : 22, 22 € Cy(E)}, then ¢ € D(Gy) and
d A
Good(s,x) = £(s, x)+ 5@5(8, ).

(A applies only to the spatial variables).

Proposition 4.2. Let u € ®. Then:

(a) lim, o4 sup,so [P — Bl = 0 (|| || denotes the operator norm on

Cu(E)).
(b) {P, :t >0} is a Feller semigroup on Cy(E).

(c) Vf € D(G), 3f, € D(G,) such that (f,,Gyf,) = (f,Gf) in Co(E)? as
ni 0.

Proof. If f € b€,

sup | B f = Piflleo < || flloo 5Up Qra(sup | exp(—A,(t)) — exp(=A(t))]) — 0
t>0 (r,z) t>0

as n | 0 by Theorem 4.1. Claims (a) and (b) are now immediate. Claim
(c) is then a consequence of Ethier-Kurtz (1986, Thm. 1.6.1) (which extends
trivially to our continuous parameter setting). O

Let X = (O, F, F, X, P°) (B°, = BY* for m € Mp(FE)) denote the -
superprocess on Q = C([0,00), Mp(E)) with its Borel o-field F, canonical
right-continuous filtration (F;) and coordinate mappings X,. As usual m
denotes the initial measure. Although the underlying Markov process is
assumed to be conservative in the literature, it is easy to construct and
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characterize superprocesses in the non-conservative case through the same
martingale problem. The details are given in the Appendix. Let P! = P]*
denote the law of the W"-superprocess on (€2, F) and let B, denote the law
of the W-superprocess. Note that for n > 0, P is defined for all p € Q.

It follows from Theorem A.1 (in the appendix) and (4.4) that P" is the
unique law on (€, F) such that V¢ € D(Gy) the following holds:

X,(6) = m(9) + Z"(6) + [ Xo(Goo — [},

Vt > 0; where Z;"*(¢) is a continuous (F;)-martingale under P”* such that

ZP*(¢) = 0 and t
(Z(@): = || Xu(6%)ds

Vt > 0, P*-a.s. Label the above martingale problem (M!).

Notation. If 1, v € Mp(R?) let
d(p,v) = sup{|u(¢p) — v(¢)| : ¢ Lipschitz continuous with

Lipschitz constant at most one, ||¢|lo < 1}.

The metric d is the Vasershtein metric on Mp(R?) and is a complete metric
which induces the weak topology on Mp(R?) (see Ethier-Kurtz (1986, p.150,
problem 2)). Denote the uniform metric on by p(u, p') = sup,~o d(p(t), ' (t)).
Although normally we would equip  with the compact-open topology,
in the next result we use the p-topology. Let (2, denote €2 equipped with the

p-topology.

Proposition 4.3. (a) Vu € ®, m € Mp(E), P"* % 8% asn | 0.

(b) ¥n > 0, the map (m,p) — Byl is continuous from Mp(E) x Q, to
M;(92).

(c) The map (m, u) — BY* is a Borel measurable map from Mp(E) x ®

to My(Q).

Proof. (a) To directly apply the convergence results in Ethier-Kurtz (1986)
we note that (M )is equivalent to the requirement that:

xp{=Xi(0)} — [ exp{-Xu(6)HX.(~Guo + 0+ 0%/2)1ds
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is an (F;)-martingale under P* starting at exp{—m(¢)}, Vo € D(Go); =
{¢ € D(Gy) : inf ¢ > 0}. Label this latter martingale problem (M?).

To see that (M) implies (M) involves only elementary stochastic cal-
culus and the converse implication is only slightly more involved (because
one must show P*(X,(1)) < m(1) < oo to see that Z;"*(¢) is square inte-
grable). Theorem 2.1 allows us to bound X; (under P’*) by a (W, —\2/2)
super-process. This together with Helly’s characterization of compactness in
the space of measures give the compact containment condition

(4.5) V6, T >0, 3 a compact set K C Mp(E) such that
inf0<n§1 I@Z;u(Xt € K, VO S t S T) Z 1-— 5

Now use Proposition 4.2(c) as in the argument on p.407 of Ethier-Kurtz
(1986) to verify condition (f) of Corollary 8.7 in Ch.4 of the same reference.
This together with Theorem A.1 (which gives uniqueness for (M)) and (4.5)
allow us to derive (a) from Corollary 8.16 in Ch.4 of Ethier-Kurtz (1986).

(b) Let (my, pn) — (m, p) in Mp(E) x Q,. By (4.4), if ¢ € D(G,,.,.) =
D(Gy) then

|G @1, ) = G, )] < (|l (pn (1), 2) = gy (p(w), )|
(4.6) < &Pl ood(pin (w), p(u))
— 0 uniformly in(u,z) € E.

The last step uses the uniform convergence of {y,}. The compact contain-
ment condition (4.5) for {P}*" : n € N} follows as in (a). That is, we may
define {Y,,} with laws P,,, which bound {X,} (with laws /") and use the
weak continuity of Py, in m, (see Dynkin (1989, Thm. 8.1)) to obtain the
analogue of (4.5). The rest of the proof now proceeds as in (a) (use (4.6) in
place of Proposition 4.2(c)).

(c) This is immediate from (a) and (b). O

Notation. Set C}([0,00)) = {¢ € Cp([0,00)) : ¢' € Co([0,00))}, CZ(R?) =
{p € Co(RY)NCZ(RY) : Ap € Cy(R?)}. The projection m : Mp(E) — Mp(R?)
is given by

(1) (A) = p([0,00) x A).
Definition. If B is a Banach space and A : D(A) C B — B is a linear
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map, we say a set D C D(A) is a core for A if and only if the closure of
{(¢,A9) : ¢ € D} in B x B contains {(¢, Ap) : ¢ € D(A)}.

Lemma 4.4 If Dy = {¢(t,2) : ¢(t,x) = d1(t)¢2(z), d1 € Cy([0,00)), 2 €
C2(RY)} U {1}, then the linear span of Dy is a core for Gy.

Proof. This is a simple application of Ethier-Kurtz (1986, Prop. 1.3.3). O

We are at last in a position to state the martingale problem mentioned at
the start of the section that models a randomly evolving population killed in
the presence of a deterministically evolving second population. Recall that
the primary reason we are studying this model is as a prelude to establish-
ing uniqueness in the martingale problem describing a randomly evolving
population killed in the presence of an independent super-Brownian motion.

Definition. Define the following additional o-fields of subsets of :

Flroo) =o{X,:u>71}y, F)=0{X,:u<t},

1
Firtl=Npo{ Xy :7<u<t+ -} (0<7 <t < 00).
n

Let p € ®, 7 >0, m € Mp(RY) and D be a core for D(A/2) such that
1 € D C C3(RY). We say that a law P on (2, F[7,00)) solves the martingale
problem (M#) if the following hold:

X, =m, P-a.s.,

X,(6) = X:(6) + 206) + [ X(50)ds - (o),

Vit > 7, P-as., V¢ € D; where {Z;(¢) : t > 7} is an a.s. continuous F|[r,t]-
martingale under P such that

(2(6)) = [ X.(6?)ds,

Vt > 7, P-a.s., and L; is an a.s. continuous Mp(R?)-valued process such that
for some sequence n,, — 0, Vt > 7 and V¢ € D,

Li(6) = P — lim : [ gl )6 () X, () s

n—oo
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Theorem 4.5. Let € ®, 7 >0, m € Mp(R?) and D be as in the previous
definition. Let P be a law on (2, F|[r,00)) that satisfies (M},). Then P(A) =
PO (m(X._.) € A), VA € F[r,00), and, in particular, P is unique.

Or XM

Proof. Let
t
L(A) :/ Xo(g, (115, )1a)ds, t > 7, A € BRY.

As D is a core, D is dense in Cy(RY). Let ¢ € Cy(R?) and choose {¢,,} C D
such that ||¢m, — ¢|lcc — 0. Then

IL{ (@) = L(@)| < [L¥(@ = dm)| + [ L7 (¢m) — Li(@m)| + [Li(Pm — @)
< lém = Alloo(Li (1) + Le(1)) + | LY (dm) — Le(m)].

First choose m large so the first term is small in probability uniformly in n
and then choose n large so the second term is small in probability. This is

possible because L} (¢,) LN Li(¢m,) for all m and L} (1) LN L.(1). Therefore

(4.7) LM (¢) B Li(¢), Vo € Cu(rRY),

and we may choose a countable dense set D’ in
Cr(RY) = {f € Co(RY) : f >0} with 1 € D" and a sequence {n;} such that

klim L (¢) = Li(¢), Yt € QN [1,00), V¢ € D', P — aus.

As the limit is a.s. continuous in ¢ and L;*(¢) is non-decreasing in ¢, an
elementary argument shows that

(4.8) lim sup |Li*(¢) — Li(¢)| =0, Vo€ D', T > 7, P — as.

k—o0 T<t<T
If p =sup{s: us # 0}, then p < oo and
(1.9 L (1) = L(1), Vi =

and therefore Ly(1) = L,(1), Vt > p, P-a.s. by the above. It now follows from
(4.8) that

(4.10) lim sup [L{*(¢) — Li(¢)| =0, Vo € D', P — a.s.

k—oo r<t
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Equation (4.10) shows that L;(¢) is non-decreasing in t and L,(¢) = 0 for
all ¢ € O (R?), P-a.s. Hence there is a unique (up to null sets) random finite
measure L on [1,00) x R? such that

E([Tv t] x A) =L, (A), Vt>T1, A€ B(Rd), P — a.s.

If L™ is the corresponding measure for Ly, then by using (4.9) and (4.10)
first to get a.s. tightness of {L"} and then to see that L is the only limit
point a.s., one obtains

(4.11) L™ — Lin Mp([r,00) x R?) a.s.

The conditions of (M) imply that
T
(4.12) p(/ X,(1)ds) < (T — 7)ym(1).

As D is bounded pointwise dense in bB(R?), this allows us to extend Z; to
an orthogonal martingale measure {Z;(¢) : t > 7, ¢ € bB(R%)} such that
{Z,(¢) : t > 7} is a continuous L? martingale with respect to the filtration
(F[1,t])i>, under P with

(26N = [ Xo()ds,

Vt > 7, P-a.s. Asin Walsh (1986, Ch.2), we can define [* [ ¢(s,z,w)Z(ds, dx)
for the usual class of P(F][r,t]) x B(R%)-measurable integrands.

By taking limits of (¢, A¢/2) (¢ € D) in Cyp(RY)? we see that (MH)
continues to hold V¢ € D(A/2) (recall (4.12)). If ¢(s,z) = ¢1(s)p2(z) for
1 € CL([0,0)) and ¢ € C2(R?) (see the notation prior to Lemma 4.2),
then some easy stochastic calculus and (M#) (the latter for ¢y) give

t
(4.13) X)) =mion) + [ [ o(s,2)dz(s,2)
t t _
+/ XS<G0¢S)dS _/ /¢(S,$>L(d$,d$>,
Vt > 7, P-a.s. Equation (4.13) continues to hold for ¢ in the core Dy intro-

duced in Lemma 4.4 and hence, by taking limits, for all ¢ in D(Gp). Let
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¢ € D(G) and use Proposition 4.2(c) to choose ¢, € D(G,,) = D(Gy) (by
(4.4)) such that
(

4.14) (én, Gyobn) = (6, G) in Cy(E)™.

Apply (4.13) with ¢ = ¢, and use (4.4) to conclude (write Z;(¢) for the
martingale term in (4.13))

Xo(0n(0) = (60D + 460 + [ Xo((Grbu)(5))ds
b [ Xl J0n(5))ds

//d)nsx (ds,dx),

Vt > 7, P-a.s. Let n — oo through {n,} and use (4.11), (4.14), and Doob’s
inequality along with (4.12) to handle the martingale terms, to conclude

X,(60) = m(6() + Z(0) + [ X,((Go)(s))ds

Vt > 7, P-a.s. If X, = 14X X, 14 for t > 0, this becomes (let Z((b) = Ziir(9),
Fi=Flr,7+1t],t>0)

Xi() = (741 x m) (¢ +/ X(

Vt > 0, P-as., Vo € D(G); where Z,(¢) is a continuous (F;)-martingale such
that Zy(¢) =0 and

Zohe= [ Xu(es = [ X (s

Vt > 0, P-a.s. Theorem A.1 in the Appendix implies X has distribution
]P’5 wm- The result follows because X; = m(X;_,), Vt > 7. O

Remark 4.6. (a) A uniqueness result without a compamon existence theo-
rem is of questionable value. In fact it is true that P = 1P’5 o (M(X) €9)
solves (MH). Our proof of this apparently simple result is ridiculously com-
plicated and we have not included it here. We will see that Theorem 3.6 will
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give solutions to (MH*) for P,,-a.a. u (P, continues to denote the law of super
Brownian motion on (2, F)) and this will suffice for our purposes.

(b) If m € Mp(R?) and p € ®, let PX(A) = IP’S“Xm( (X)€ A) for Ae F.
Proposition 4.3(c) shows that (m, u) — P¥ is a Borel measurable map from
Mp(RY) x & to M;(2). Recall the notation M35 (R?) from Section 3 (see
Lemma 3.4)

Proposition 4.7. Assume d <3 and m € M3 (R?). Then

(a) Pr(®) =1
(b) X; € M3 (RY), Vt >0, P,-a.s.

Proof. (a) Clearly ¢ — X;(1) has compact support P,,-a.s. It remains to
show

(4.15) hm sup / /ps ) Xsir(dx)ds =0, Py, — as.

z€R% >0

If d = 1 this follows from the trivial bound p,(y—2) < s7'/2, so let us assume
d=2or 3. Let ¢(r) = r*(1 +log"(1/r))*%. Theorem 4.7 and Lemma 4.6
of [BEP] show there are constants ¢y, cs > 0 and an ro(w) > 0 P,,-a.s. such
that

(4.16) D(X;,r) < e1(D(m,ear) + ((r)), YVt >0 and r € (0,79).

Choose w such that ro(w) > 0 and fix 7 > 0, # € R%L Let v4([0,7)) =
Xsir(B(z,r)). Inequality (4.16) implies that

(4.17) vs([0,7)) < es(w)(D(m, car) + (1)),

first for 0 < r < r9(w) and then for all » > 0 by choosing c¢3(w) appropriately.
/ des — ) Xs1-(dy) dS—/ / ps(r)vs(dr)d
= /E /OO ys([O,r))(27r)_d/Qs_l_d/Qre_T2/25drds (by parts)
< c3(w / / (m, cor)r e~/ g1=d/2 g
+ /O /0 C(ryre™/2 571 42rds) (by (4.17)).
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The second integral goes to zero as € | 0 because d < 4. The first integral
equals

// D(m, cox/3)we " 25~ dads
o Jo

00 freaxy/E 9
:/ /2 D(m, u)u' " duz?=te™" 2dx(2c¢372).
o Jo

This approaches zero as € | 0 because m € M3 (R%). As the above bounds
are uniform in (7, x), the proof of (4.15) is complete.
(b) This is immediate from (4.16). O

Remark 4.8. Corollary 4.8 of [BEP] in fact implies X; € M3 (RY), Vt > 0,
P,,-a.s., Vm € Mp(RY) (for d < 3).

We are ready to introduce the martingale problem (M}, ) discussed in the
Introduction. Recall that this is intended as a model for a pair of branching
particle systems in which inter-species collisions may kill off the particle in the
first population but have no effect on the particle from the second population.

Definition. Suppose that A > 0 and my,ms € Mp(RY). We say that a
probability P on (Q%, F?) solves the martingale problem (M}, ) if the following
holds V¢ € C2(RY):
X& =mq, P — a.s.,
t
X! (6) = X3(6) + Z1(0) + | X}(Ao/2)ds = ALi(X', X*)(0)

vVt > 0, P-a.s.,
Xg =msy, P—a.s.,

X2(6) = X3(9) + Z2(0) + || X2(Ao/2)ds

Vt > 0, P-a.s.; where Z;(¢) are a.s. continuous (F7)-martingales under P
such that

(200, 29(6,))e = 0 [ Xi(62)ds
Vt >0, P-a.s., Yoy, ¢; € CZ(R?).

Theorem 4.9. Assume d < 3, X > 0 and my,my € M;(Rd). There is a
unique probability P on (2, F?) that solves (My,).
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In fact P is given by

(4.18) P(A x B) / 15(w) P (A) B,y (w), VA, B € F.

Proof. The existence of a P satisfying (M}, ) follows just as in Theorem 3.6.

Assume P satisfies (M, ;). Let P(X?)(-) be a regular conditional probabil-
ity for X! given 0(X?). Note that the uniqueness of the martingale problem
for super-Brownian motion (e.g. Ethier-Kurtz (1986, Ch.9 Thm. 4.2)) shows
that P(X? € ) = Py,,.

As usual, Z% extends to an orthogonal martingale measure. If fi(s,w, )
is P(F?) x B(rRY)-measurable such that

(4.19) /Ot/fi(s,w,x)ng(dx)ds < oo, Vt >0, P—a.s
then the stochastic integral
/Ot/fi(s,w,x)dZi(s,x) =Z(f)
exists and is a continuous local martingale such that
(4.20) (2, 20 e = b [ [ Fls, 2P X ).
Let ¢ € C?(R?). We claim Z}(¢) is an F; x F-martingale. Fix s < t and let
Y € bo(X?), W € bFX'. Here FX' = N,0(X! : u < s+ 1/n). By Theorem

1.1, 3f € L2 (X?,P,,) such that Y = P(Y)+ [5° [ f(s, X2, 2)dZ?(s, x), P-a.s.
Therefore

P((Z}(6) = ZL(6)Y W)
= B(Z}(0) - ZX(e)W)R(Y)
+ POVR((Z(0) = 220) [ [ F(u X 2)a2 w,2)| 7))

= 0+P(WP(Z(¢) — Z; () Z}(f) = ZXFIFD)
= BWP((Z'(¢), Z*(f))e — (Z'(0), Z*(f))s|F2))
= 0 (by (4.20)).
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It follows that P(Z}(¢)|F? x F) = Z!(¢), P-a.s. Letting s | u through
rational values on both sides, we see that Z}(¢) is an F; x F-martingale.

From Theorem 2.1 it is clear that P(sup,., X/ (1)?) < oo, Vp, T > 0, and
therefore it follows from (M},) and Burkholder’s inequality that
P(sup,<r | Z (¢)|P) < oo, Vp, T > 0 and ¢ € bB(R?). Therefore, for ¢ €
Ca(r)

Mio) = Z0) ~ [ XA&)as = 2 [ Z0)iz(o)
= 2 [ [ Z()sw)az (s.x)

is a square integrable (F?)-martingale and by modifying the previous argu-
ment we see it is also an (F; x F)-martingale.

Let N; be a P-a.s. continuous (F; X F)-martingale. We claim that for P,,,,-
a.a. w?, (t,w') = N(t,w' w?) is a P(w?)(+)-a.s. continuous (F;)-martingale
with respect to P(w?). Let Cy C F? be a countable set whose bounded
pointwise closure is bF?. If s <t and W € C,, then

P((N; — N)(W o X1)Y) =0, VY € bo(X?)
= P((N; — N)W o X X?) = 0 P-as.
= P(w?) (N, — N (-, w?)W) = 0 for P, — a.a. w?

Therefore we may fix w? outside of P,,,-null set such that
(4.21)  P(W)((N; — No) (-, )W) =0, YW € C,, Y0 < s < ¢ rationals,

and t — Ny(w!,w?) is continuous for P(w?)-a.a. w'. Equation (4.21) extends
immediately to all W in bF?, so that

P(w?) (N, (-, wH) | FO) (W) = Ny(wh,w?), Vs € [0,n]NQ, Vn € N, P(w?)—a.a. w’.

Fix t € [0,n] and choose rationals s, | t. Take limits in the above to see
that

P(w?)(Np (-, W) |F) (Wh) = Ny(w!, w?), P(w?) —a.a. w', Vt < n.

This proves the claim.
Let D C C?(R?) be a countable core for A/2 on D(A/2) with 1 € D.
For example, one may take D = {P., ¢ : ¢ € D',n € N} where 1 € D' is a
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countable dense set in Cy(R?), (P;) is the Brownian semigroup, and ¢, | 0.
Now apply the above result with N; = Z}(¢) or My(¢), ¢ € D, to conclude

(4.22)  For P,,-a.a. w?, Vo € D, (t,w) = Z}(¢)(w!, w?) and
M (¢)(w',w?) are a.s. continuous (F;)-martingales under P(w?).

We may define an a.s. unique random finite measure L on [0,00) x RY
such that L([0,t] x A) = AL,(X", X?)(A), ¥t > 0, A € B(R?), P-a.s.
For > 0 define L"(X*!, X?) € Mr([0,00) x R%) by

_ ¢
L7([0,4] x A) = / X1 (gy(AXZ,)1a4)ds, t >0, A € B(®RY).
0
Argue as in the derivation cf (4.11) to see there is a sequence 7, | 0 such

that ) )
L™ — L in Mp(]0,00) x RY) P — a.s.

From the above we may conclude that for P,,, — a.a. w?, for P(w?) — a.a. w!,
LM (wh w?) — L(w', w?) in Mp(]0,00) x RY),

(4.23) L(w', w?)([0,1] x A) = AL, (X', X?)(A), Vt >0, A€ BR?Y

and AL,(X*, X?) is continuous in .
Fix w? outside a P,,-null set such that A\w? € ® (use Proposition 4.7),

W) = mi(6) + ZH() (", w? +/ (AG/2)ds — ALy(w", w?)(0)

Vt >0, ¢ € D, for P(w?)-a.a. w!, and so that w? is not in the exceptional
null sets from (4.22) and (4.23). The latter implies

/Ot W gy (A2, )O())ds — ALi(w,0?) (), ¥é € D, Bo?) — aa. o,

We therefore have shown that P(w?) solves the martingale problem (M)*").
Theorem 4.5 implies that for w? as above, P(w?) = P)*", and as the latter is
F-measurable in w? (see Remarks 4.6(b)), (4.18) follows and P is unique. O
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Remark 4.10(a). Note the above proof shows directly (i.e. without Propo-
sition 4.3) that pu — Pl s F-measurable in y € ®, where F is the P,,,-
completion of F and m; € M (R?).

(b) The above proof goes through unchanged if instead of —AL; (X', X?)(¢)
in (M};) we have —AL;(w', w?)(¢) where L,(w',w?) is a P-a.s. continuous,
non-decreasing Mp(R%)-valued process for which there is a sequence 7, | 0
such that

(4.24)  LP(XLX2)(0) B Lu(6) as k — oo, V>0, Vo € C2(RY).

Suppressing dependence on \, we let ]P’}nhm denote the probability given
by (4.18). Hence if (mq,my) € M5 (R?)?, P} is the unique solution of

) mi,ma
(MAL)'

Theorem 4.11. Suppose that d < 3. Let X, = (X}, X?) be a P-a.s.
continuous, (F})-adapted Mp(R?)?-valued process on some probability space
(Q, F',P') equipped with a right-continuous filtration (F}). Assume mq, my €
M3(RY) and V¢ € CZ(RY) the following conditions (which we label as (M};))
hold:

XH0) = ml0)+ 20) + [ XHA0/2ds — ALK, X2)(0),

Vt >0, P-a.s. (in particular, L(X", X?) exists),

X2(0) = maf0) + Z2(6) + [ X3(20/2)ds,

Vt > 0, P'-a.s.; where Z}(¢) are a.s. continuous (F])-martingales under P’

such that Zi(¢;) = 0 and
; . t ..
(Z'(6). 2 (6)): = 0y [ Xi(oD)as,
vVt >0, P-a.s.
Then:
(a) X; € M3(RY), Vt >0, P'-a.s.
(b) If T is any a.s. finite (F;)-stopping time and 1) € b(F?), then

P'((Xrs)|Fr) = P, (¥), P~ a.s.
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Proof. (a) By Theorem 2.1 and Remark 2.2 we may assume there are
independent (F;)-super Brownian motions (Y',Y?) such that Y = m; and
X! <Y}, V¥t >0, as. Proposition 4.7(b) implies (Y}, Y,?) € M3 (RY), Vt > 0,
a.s. and (a) follows.

(b) For ¢ € C2(R?) define Z%(¢) : [0,00) x Q2 = R, i = 1,2, by

ZHO) ) = wH(0) — wb(6) — [ wh(A0/2)ds + AL ) ()

Z(O)( ) = 2(6) — R () - [ H(A0/2)ds

Here L, is as in Proposition 3.2 but with respect to the law Pg of (X', X?)
on (02, F?). By an easy truncation argument, it suffices to consider bounded
T. Let Pr(w') be a regular conditional probability for 67(X) = Xy, given
F. Proposition 3.2 (ii) implies

(4.25) ZH9)(03w) = Zi p(w) — Zh(w), ¥t >0, Pg —as., i =1,2.
Let s < t and C, be a countable set which is bounded pointwise dense in

b((F2)?). If o € Cj, then

P((Zi(o
- PE(Z
= P
= 0.

()X () - Zi(0) O (X )] (X ()
(@) (X)) = Zisr(0) (X (@) Fp 0 (63 (X
(X My,

Fr)
A )
Ler(0) = Zip (O Fry )Y (07.(X)) | Fr) (by (

|
(WIDIF7)
)

This implies

~

Pr(w)((Zi(0) — Zi(9))1h) = 0, Y € O, Vrationals s < t, P — a.s..

As in the proof of Theorem 4.9, this implies that for P-a.a. W/, Zl(¢) is an
a.s. continuous (F7?)-martingale under Pr(w’). Similarly if ¢; € C?(R?) for
P-a.a. w'

~. . t
Mi(i, ¢5) = Z, (1) Z1 (#5) — 5z‘j/0 w

is an a.s. continuous (F2)-martingale under Pr(w’) .
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By Proposition 3.2 (iii) there is a sequence n; — 0 such that
Li(07(X (W) = Jim L (0p(X (W), V>0, P — as.
Therefore for P'-a.s. W’
Li(wh,w?) = Jim L (wh w?), Vt >0, Pp(w) — as.

Theorem 4.9 and Remark 4.10(b) imply that for P-a.a. o', Pp(w') = P&T(w/)
because Pr(w’) solves (M}, ) (modified as in (4.24)) and X7y € M3 (RY)?, P'-
a.s., by (a). The result follows because (my,my) — Py, . is Borel measurble
on Mp(R%)? by Remark 4.6(b) and (4.18). O

Corollary 4.12. Ifd < 3 and A > 0, then (%, F?, F?,02, X;, (PL)
is an (M3 (R%))2-valued diffusion.

meM;(RdP)

Proof. The Borel measurability of (my,mz) — P, ... was noted at the end
of the above proof. The result is now immediate from the previous theorem.

]

If d =1 and (my,ms) € F (as in Theorem 3.9), then one could argue
exactly as in Theorem 3.9 to obtain existence and uniqueness of IP}nth sat-
isfying (M};) as well as the Girsanov-type formula

1
M|p = exp{—)\/t/ug(s,x)le’O(s,x)—A2/2 /t/uQ(s,x)zul(s,x)dxds}.
del X P, *°f 0 0
We show below that this absolute continuity result fails for d = 3 and conjec-
ture that it also fails for d = 2. Hence our alternative approach to uniqueness
in (M},) seems to be necessary.

We require a pair of preliminary results, the first of which (Lemma 5.1)
will be proved in the next section to give a self-contained treatment of the
non-existence results treated there. The second is the following path property
of super-Brownian motion.

Lemma 4.13. If y(r) = r?(log™ 1/7)=/2=" for some n > 0 and d > 1, then

lim Xy (B(z,r))

= +oo for X; — a.a. x,P,, — a.s., ¥t >0, m € Mp(R?).
o y(r)
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We omit the proof as a more precise result will be given in Perkins and
Taylor (1997).In that work an integral test on v will be given for d > 2 to
decide whether or not the above lim inf is 400 or 0 for X;-a.a. x, P,,-a.s.
The sufficient condition for 400 will also apply for d = 2. In fact we will
only need a much cruder result for d = 3 in Theorem 4.14 below.

Theorem 4.14. Let d =3, A > 0 and assume my, my € M3 (R?). If
-1

mama (A) = By, ({L2 (X, X7) # 0} 0 A)
then ]f”}nhmz| F2 and Pp, X P, | F2 are mutually singular measures. In par-
ticular, IP’}anQ\ F21s not absolutely continuous with respect to Py, X P, | F2

whenever m; # 0 fori=1,2.

Proof. The last assertion is immediate from the first since P, # 0 when

m; # 0 for i = 1,2. Recall that for ¢ € D(A/2), o

Z1(6) = Xi(6) = Xi(0) — [ Xi(86/2)ds
(see (My, 4,) in Section 3). For ¢ € CZ(R?) we define Z/(¢) by (M),), that

is,

(4.26) ZH(9) = Zi"(9) + AL( X', X?)(9),
where L;(X', X?) = L,(X", X?) is as in Proposition 3.2 and where the un-
derlying measure may be P; . or P, X P, (Remark 3.3 (b) gives the

existence of an (F7?)-predictable map L which works for both measures si-
multaneously). Following Walsh (1986) we can define stochastic integrals
Z°(¢) (vespectively, Z}(¢)) with respect to P, X Py, (respectively Py my)
for all P(F?) x B(R?)-measurable ¢ satisfying

(120) Bl X0, P)S) + By x B[ X205, )
< o0, Vt > 0.

These integrals are a.s.-continuous square-integrable martingales with square
function [§ X!(#(s,-)?)ds. If, in addition to (4.27),

4.28 sup |o(s,w,z)| < oo, P + Py, X Py, —a.s., Vi >0,
1 2

d mi,ma2
s<t,zelR
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then L;(X', X2)(¢) = Ji [ ¢(s,w,2)L(X", X?)(ds, dr) exists and is a.s. con-

tinuous in ¢ (for both P, . and Pp, X Pp,). We can now use (4.26) to
define Z;°(¢) with respect to Py, m, for any P(F;) x B(R?)-measurable ¢

satisfying (4.27) and (4.28). To distinguish this stochastic integral from the
P, X P,,,-stochastic integral with respect to Z%°, we denote the former by
Z}°(¢). We now show these two stochastic integrals are consistent. More
precisely we claim that

V¢ which is P(F2) x B(R?)-measurable and satisfying (4.27) and (4.28)
JHy : [0,00) x 2 — R which is (F?)-predictable such that
(4.29)
1,0
%f (@) = Hy(t, X), Vt >0, Pp, X Pp,-a.s., and
Z4°(¢) = Ho(t, X), ¥t >0, P}, . -as.

mi,m

Consider first

pesS= {zn: fi(s,w)¢i(x) : f; bounded, left-continuous and (F?)—adapted, ¢; € CZ(R%)}.
i=1

Then the construction of the above stochastic integrals gives
Z6) =3 | FMZE6), W20, £y x By = s

Similarly, using (4.26) one gets
. noot
21°0) =Y. [ Fi(£)dz0(60), ¥t >0, B, —as.
i=1

By approximating f; by the usual sequence of step functions {f* : n € N}
and taking an appropriate subsequence one constructs a P(F?)-measurable
function Hy, such that the conclusion of (4.29) holds. If C denotes the class of
¢ in b(P(F?) x B(rR?)) for which (4.29) holds, then it is easy to see that C is
closed under bounded pointwise limits. As S C C (by the above), Theorem
1.21 of Dellacherie-Meyer (1978) implies C contains all ¢ in b(P(F?) x B(R?)).
Now consider ¢ as in (4.29) and let ¢, = (¢ V (—n)) A n. Then there is a
subsequence such that

Ztl’o(éﬁnk) — Z,°(¢)
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1
mi,m

Zt170(¢nk) = Ztl(¢nk) - ALt(X1>X2>(¢nk) — ZtLO((b)

uniformly in ¢ on compacts P ,-a.s. and

uniformly in ¢ on compacts P,,, X P,,,-a.s. Now define

limy o0 Hy,, (¢, X), if it exists,
Hy(t, X) =
0, otherwise,
where Hy, asin (4.29) exists since ¢y, is bounded. Clearly Hy is as in (4.29)

and the claim is proved. As a result we shall write Z,°(¢) for both Z°(¢)
and Z;°(¢) (and both BL, . and By, X Pyp,).
Let

Galt, X) = [ tm [ X2Bl2)) 21 ds, d)

or, more precisely, G, (t, X) = Hy, (t, X) where
Bu(s,0,2) = W2 (Blx,27) 1(s > 272,

Using Theorem 2.1 it is trivial to see that ¢, satisfies (4.27) and (4.28), so
Hy, exists.
Let ¢(r) = r*(1 + log(1/r)). Theorem 4.7 of [BEP] shows that
(4.30)
D(X?,7) < c1(D(moPy, cor)+((r)) for 0 < r < ry(w) and some r1(w) > 0, By, XP,,, —a.5..

Under Py, X Py, (4.30) and a simple calculation show that for n > ng(w),
where ng is a.s. finite, the continuous martingale G,, satisfies

(Gu)e = fynp [ X2(B(z,27"))* X (dx)ds
(4.31) )
< (2727 LN (X, XP)(1)

where

N t
LrXX3(1) = [ [ X2(Blw,27) X! (de)ds2™
0
Now it is easy to see that
LH(XY, X?)(1) < sl T (X1, X2)(1)

LY 1 y2
= o3 Ly (X, X#)(1) as n — oo,
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where in the last time the L' convergence is with respect to P, X P,
and we have used [BEP, Theorem 5.9] (an integration by parts shows that
m; € Mi(R?) implies the hypothesis of that result are satisfied). The L!
boundedness of {L" : n € N} and a Borel-Cantelli argument show that
if n > 0 is fixed, then (G,); < 27%"C(27")n'™ for sufficiently large n
Py, X Pp,-a.s. This and a well-known estimate (Rogers-Williams (1987, IV.
37.12)) imply

supec [Galt)] < 27022 o

(4.32)
< c42—5n/2n1+77

for sufficiently large n, P,,, X Pp,-a.s., ¥V > 0. Now let
A={weQ?:|G(1)] < 2720 for sufficiently large n} € F2.

With respect to P} our definition of Z19 (i.e. (4.26)) gives

mi,ma?

Go(t) = /t/ [ X2Blw,27) 2 ds,d)

- )\/Ztm/Xf(B(x,2‘”))L(X1,X2)(ds,dx)
G (t) = Ga(t).

The process G, 1 is a continuous square integrable martingale under P}nl’m

and if Y > X* are independent super Brownian motions (working now on a
larger space — see Theorem 2.1) then

t

(Gna)e = /;n/2 /Xf(B(x72_”))2Xsl(dx)ds < YS2(B(:E, 2_”))2Y81(dx)ds

2—n/2

< (27273 LYY, Y?)(1) for n large a.s. (see (4.31))

Repeating the above argument gives

(4.33) 1G1(1)] < 275217 for sufficiently large n, P — a.s.

miy,m2

Take mean values to see that Y2 = X2 a.s. Let v be as in Lemma 4.13 and
set
85,2, X%) = 1limint X2(B(z, )1 (r) ™" < +o0} =0
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for X%-a.a. z, a.s., Vs > 0 (by Lemma 4.13). Lemma 5.1 now gives
(4.34) P(s, 7, X?) =0, L(Y', X?) —a.a. (s,7), as.

Recall from Proposition 3.2 (iii) and our construction of L (see Remark 3.3
(b)) that for some €, J 0

L(Y', X?) = lim Ly (Y', X?), Vt >0, as.

and
Lt(Xl,Xz) = nli_>no10L§”(X1,X2), VvVt >0, a.s.

Hence clearly L(X!, X?) < L(Y'!, X?) (as random measures on [0, 00) x R?)
a.s. and so (4.34) implies
P(s,2,X*) =0, L(X', X?) —a.a. (s,2), P! — a.s.

mi,m2

Therefore
liminf G, o(1)y(27")7!

n—00

> / /hm inf 1(s > 27"2) AX2(B(z,27"))y(27") ' L(X", X?)(ds, dz) (Fatou)
= ocol{L;(X", X*)(1) > 0}, Py, ., — a.s.

( with the convention oo - 0 = 0). This and (4.33) show that

(4.36) Jim G.()y(©2 ™) = —o0, P} —a.s. on {L(X* X?) #0}.

In particular ]P’ml my(A) = 0, while (4.32) shows P, X Pp,(A) = 1. This
proves the result. O

Open Problem. Is P! (X' e:) << P, on F?

mi,msa

Proof of Theorem 3.11. We assume }P’\flz << Py X }P’m2];12 and proceed
by modifying the proof of Theorem 4.14 to obtain a contradiction. We use
the notation of the proof of Theorem 4.14.

Argue just as in the proof of the inequality (4.33) to see that

(4.37) |Gi(1)] < 127520 for sufficiently large n, P — a.s.
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Lemmas 4.13 and 5.1 imply
P(s, 7, X?) =0, L(Y', X?) —a.a. (5,7), P, X P, — ass.
The absolute continuity assumption and Remark 3.3(b) therefore show that
P(s,2,X*) =0, L(Y', X?) —a.a. (s,2), P—a.s.,
which in turn gives (set 0 - co = 0)

lim inf Gra(1)y(2™™)

> / / liminf 1(s > 272 AX2(B(z,27))y(2~") " L(X", X?)(ds, dz) (Fatou)

= ool {Li (X', X?)(1) > 0}, P— as.
This and (4.37) imply that
P(AN{Li (X', X?)(1)>0})=0
and therefore
(4.38) P(A°N{L (X", X?)(1) > 0}) =P(L1 (X', X?)(1) > 0) > 0.

Note that the last inequality must hold since otherwise P|yzz = Py, X Py, | 52
by (Myr) and we know P,,, X P, (Li(X*, X?)(1) > 0) > 0 for m; # 0 (see
[BEP, Prop. 5.11].) Now (4.38) and the fact that P,,, x P,,,(A) = 1 (see
(4.32)) contradict our absolute continuity assumption and so the proof is
complete. O
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5 Non-existence for d > 3

Recall from Section 1 (or [BEP]) that two independent “d-dimensional”
super-Brownian motions have a non-trivial collision local time for d < 5.
It is therefore natural to consider the interactive martingale problems (M)
and (M3};) for d < 5 and not just d < 3. The construction of solutions to
(Myr) in Section 3 relied on a convergence result for L(X', X?) which was
uniform in (X', X?) € M,,, m, (Lemma 3.4) and which could only be proved
for d < 3. The treatment of (M);) in Section 4 was based on constructing
a CAF, A, for each Brownian path in the X' population. The existence of
A required d < 3. In either case the restriction to d < 3 seemed to be an
artifact of the proof. In this section we show that in fact (M,z) and (M};)
cannot be solved for d =4 or 5. This work is joint with Martin Barlow.

First note that if d > 5, then by Theorem 2.1 and the a.s.-non-intersection
of the graphs of two independent super-Brownian motions (see [BEP, Thm.
3.6, Remark 5.12(a))), the only possible solution to (M,z) and (M};) is
P, X P, for which L(X* X?) = 0. If m; and my have disjoint closed
supports, clearly P,,, X Py, is a solution of (M,r) and (M),). Therefore
these martingale problems are only of interest for d < 5 which we assume for
the rest of this section.

We continue with the notation of Sections 3 and 4. In particular, P, con-
tinues to denote the law of super-Brownian motion on (Q, F) = (C([0, 00), Mp(R?)),
Borel sets). Also, X;(w) = w(t) and (X}, X?) denote the coordinate map-
pings on (2, F) and (Q?, F?), respectively.

Notation. gy : R\{0} — R is given by

1, d=1
go(z) =1 In*(1/|z]), d=2.
|z [>74, d>2

Lemma 5.1. Let d <5 and assume my, my € Mp(R?) satisfy

I [ go(x1 — x2)dmy (21)dma(xs2) < 00, if d <5

(5.1)
[ [(x1 — )~ *dmy (z1)dma(x2) < oo, if d = 5.
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If ¢ : [0,t] x RT x Q — R is bounded and B([0,t] x RY) x F-measurable, then

(5.2) P, X B t [ 65,2, XHL(X, X7)(ds, d)| X7)

= /Ot//¢(s,:c2,X2)ps(x2 — 1)dmy (z1) X2 (dxy)ds a.s.

Proof. Theorem 5.9 of [BEP] and the bound (3.3) imply that for ¢ € Cy(R?)

iy [ sup | (X', X2)(9) = Lu(X!, X2) ()] |1 = 0

(the L; norm is taken with respect to P,,, X P,,,). An elementary argument
now shows that if ¢ € Cy([0,¢] x R?) then

(5.3) lim | /Ot/w(s,x)Le(Xl,XQ)(ds, )

el0

_/Ot/1/1(S,x)L(X1,X2)(ds,dx)||1 -0

(for example, one can first extract a subsequence along which one has weak
convergence in Mp([0,#] x RY) a.s. as in (4.11)). Let (s, z) be as above. A
standard bootstrapping argument shows that w.p.1

B X ng(/ot/1/1(s,x)LE(X1,X2)(ds,dx)|X2)

=P, X sz(/ot//¢<87$2)pe<l’2 — 1) X (dx) X2 (dxy)ds| X?)

- /Ot /E”ml X ]P’mz(/Pe(xz — x1) X (doey) | X2) (s, 29) X (dag) ds

64) = [ [ [ pesler = wmaldn)ts,m) X2 dr)ds.

Note that
t
Poy X Pong ( /0 / / Pers(s — 1) X2(dw)ma (da1 )ds)
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_ /Ot / / Deras (s — @1)ma(dwa)ma (dz1)ds

t
— / //pgs(xg—xl)mg(dasg)ml(dasl)ds (use (5.1) and dominated convergence)
0

(5.5) =Py, X sz(/ot//ps(xg — 1) X2(dxo)my (dwy)ds) < oo.

This shows that {peys(za —x1) : € > 0} is a uniformly integrable family with
respect to X2(dwy)my(dzy)dsd(P,,, X P,,) and, as v is bounded, this allows
us to take a limit as € | 0 inside the integral sign in (5.4) and conclude

L' lim /0 t [ [ pesstes = woyma(dan)is(s, 22) X (dwa)ds

€l0

= /Ot//ps(:vg — 2y)ma (dy )i (s, 22) X3 (do)ds.

This together with (5.3) allows us to take L!-limits on both sides of (5.4) to
obtain the required result with (s, z) in place of ¢(s,z, X?).

Observation (5.5), together with the above for ¢y = 1, shows that both
sides of (5.2) are integrable for any bounded ¢. Therefore (5.2) is preserved
under bounded pointwise limits. Moreover, (5.2) holds for ¢(s,z, X?) =
S bi(s, 2)S;(X?) for bounded measurable S; and ¢; € Cy([0, 1] x RY) by the
above. Now pass to the bounded pointwise closure of this class of functions
to complete the proof. O

Lemma 5.2. The integral [1(|z —y| < 1)|z — y| 2 X,(dx) takes the value
oo for Xs-a.a. y, Vs > 0, P,,-a.s.

Proof. Let h — m(A) denote the Hausdorff h-measure of A where h(r) =
r?logt (log™ (1/r)). If d = 1 the results is trivial because X,(dz) = u(s,r)dxr
for some jointly continuous density u. Assume d > 2. Let S(X;) be the
closed support of X;. Fix w outside a P,,-null set such that S(X;) is compact
vVt > 0, and

(5.6) X, (A) > ¢(d)h —m(AN S(X,)), VA € B(R?Y), Vt >0

(see Perkins (1989, Theorems 1 and 2) and Dawson-Iscoe-Perkins (1989,
Thm. 1.2)). Assume now the desired conclusion fails for w as above and
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some s > 0. Since S(X;) is compact this means
Xy [ o=y X, (dr) < o0}) > 0
and therefore for large enough N, X (Ay) > 0 where
Ay = {y € 8(X,): /|x —y[72X,(dz) < N}.

Therefore
/ / |z — y\’QXS(da:)XS(dy) < o0,
An JAN

and so Ay has positive two-dimensional capacity. By Taylor (1961), this
implies > — m(Ay) = co. On the other hand

h—m(Ay) =h—m(Ay NS(X,)) < e(d) ' X (Ay) < 0
and this contradicts 2 — m(Ay) = oo. O

Theorem 5.3. Let d = 4 or 5 and assume my,my € Mp(R)\{0} satisfy
(5.1). If A >0, (M};) and (Myz) have no solutions.

Proof. Let (X!, X?) satisfy (M};) ,A > 0. Theorem 2.1 allows us to enlarge
our probability space so that it supports a super-Brownian motion

Y! > X' Theorem 2.1(d) shows that if Z¥" is the orthogonal martingale
measure associated with Y1, then (2" (¢1), Z%(¢2)): = 0, Vo, € D(A/2). Tt
follows that Y! and X? are independent super-Brownian motions starting at
my and meg, respectively (see [BEP, Thm 1.2] or use Theorem 1.1 above).
Lemma 5.7 of [BEP] with @ = 0 and ¢ = 1 implies that

t
/ //\xl P X2 (day) L(XT, X2)(ds, dxy) < o0, VE >0, as.
0

It
AX®) = {(s.m1) ¢ [ |or = 2P 1X2(day) = o0},

and we continue to write L(X!, X?) for the induced random measure on
[0,00) x R?, then the above implies

(5.7) L(X", X?)(A(X?) = 0 as.
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On the other hand, Lemma 5.2 implies (write 14¢(s, 2, X?) for 14(x2)e(s, z))

/OO Lae (s, 2, X2 X2(da)ds = 0 as.
0

= /Oo / Lae(s,z, X*)L(Y', X?)(ds,dx) = 0 a.s. (Lemma 5.1)
0

= L(X', X?)(A(X?)) =0 as.,
the last because L(X' X?) < L(Y!, X?) a.s. (as in the proof of Theorem
4.14). This, together with (5.7) implies L(X"', X?) = 0 a.s. Therefore, (M};)
implies (X!, X?) is a pair of independent super-Brownian motions ([BEP,
Thm 1.2]). The fact that L(X', X?) = 0 a.s. contradicts Proposition 5.11 of
[BEP], and hence there can be no solution to (M;;).

Assume now (X!, X?) satisfies (Myr). By enlarging our probability space
as in Theorem 2.1 we may also assume there is a pair of independent super-
Brownian motions (Y!,Y?) such that Y? > X a.s. Theorem 2.1 (d) shows
that (Y, X?) satisfies (M, m,) with A = 0 and A? = A\L,(X', X?). We
may therefore apply Lemma 5.7 of [BEP] (with a = 0 and ¢» = 1) to conclude

¢
/ // |21 — o> Y (doy ) (X, X?)(ds, dxy) < 00, ¥t >0, as.
0
If
BOM) = {(s,22) + [ for = oY (doy) = o0}
then the above implies
LIXY, X3 (B(Y)) =0 aus.

On the other hand by applying Lemmas 5.1 and 5.2 as in the previous argu-
ment one gets

LX', X2)(B(YY)") = 0 as.

(again we use L(X', X?) < L(Y!,Y?) a.s.). The proof is completed as above.
O

Remarks 5.4. (a) Although L;(X?!, X?) exists if (X!, X?) € M(my, my) and
d < 5, the above result shows that the uniform convergence result, Lemma
3.4, must fail for d > 3. If it held, then the proof of Theorem 3.6 would
produce solutions to (Myz) (and M}, ), contradicting the above result.
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(b) Note that (5.1) is needed to ensure that L,(X!, X?) exists ([BEP,
Thm. 5.9]) and hence (M};) and (M,r) make sense.

(c) The rather slick argument above hides the intuitive reason for the non-
existence of solutions for d > 3: the only collisions that occur are between
particles whose family trees will die out in an infinitesimal time due to the
critical branching. Hence killing off some of these particles has no effect on
the population.
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A. Appendix: Superprocesses for Non-conservative
Markov Processes

In this appendix we prove existence and uniqueness to the standard mar-
tingale problem for superprocesses when the underlying Markov process is
not conservative. In all the references we know of, the underlying semigroup
is assumed to satisfy P;,1 = 1. If the underlying process W is killed by the
CAF A, = [{ b(W,)ds (b > 0 bounded) this effectively introduces an emigra-
tion term and is standard. We are interested in CAF’s with more singular
Revuz measures. We make no attempt at maximal generally because we are
only interested in a fairly particular case.

Let W = (D,D, Dy, 6;, Ws, P,)) be the canonical realization of a Feller
process on a locally compact state space E and with semigroup P, on Cy(E).
Let A; be a CAF for W and define a sub-Markov semigroup {P; : t > 0} on
Ci(E) by )

PBf(x) = Pole f(W1)).

We assume

(A.1) {P; :t >0} is a Feller

(i.e. strongly continuous) semigroup on Cy(E).

If EA = EU{A} (A is added as a discrete point) and e is an independent
exponential time, then

T Wt ifAt<€
Wt‘{A A, > e

is a strong Markov process with semigroup P,. Here P, is extended trivially to
a semigroup on C2(Ex) = {f € Cy(Ea) : f(A) = 0}. Finally, we introduce
the semigroup {P” : t > 0} on Cy(EA) given by

PP f(z) = Pof(w) + Po(1 — e ) f(A).

Thus { P : ¢ > 0} is the semigroup of the strong Markov process W which
is W; but now viewed as an Fa-valued process with A a trap. It Is easy to
see that (A.1) implies W2 is an Ea-valued Feller process. Let G and G2

denote the strong infinitesimal generators of P, and P2, respectively. We
consider D(G) as a subset of C2(Ea) and D(G?) C Cy(Ea).
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Let X = (Q%, F2, F£, Xy, (Pom)memp(Ea)) be the canonical realization of
the W2-superprocess on Q2 = C([0,00), Mr(EA)) with its Borel o-field F2
and canonical right-continuous filtration (F2). The process X is a Feller
process (Dynkin 1989, Sec.8)) and P, is the unique law on Q* satisfying the
following martingale problem (which we label as (M?)):

Xo=m, P,, — a.s.,

X(6) = Xo(0) + Z4(6) + [ X.(G20)is,

Vt > 0, Pp-as., Vo € D(G?); where Z;(¢) is a continuous (F2)-martingale
under P, such that

(Z(6) = [ Xo()ds

VvVt > 0, P,,-a.s.

(see Ethier-Kurtz (1986, Sec.9.4)).

If u € Mp(E®) let p” denote the restriction of u to the Borel sets in
E. We call X7 (under P,,) the W-superprocess starting at m”. The next
theorem gives a natural martingale characterization of the law of this process
on Q = C([0,00), Mp(E)). Let X;(w) = w(t) denote the coordinate variables
on Q with its Borel o-field F and natural right continuous filtration (F;).

Theorem A.1. For allm € Mg(E) there is a unique law P, on (Q, F) that
solves the following martingale problem (M):

Xo=m P, — a.s.,

X(6) = Xof0) + Z9) + [ Xu(Go)ds,

Vt >0, Yo € D(G); where Z,(¢) is a continuous (F;)-martingale under By,
such that

(Z) = [ Xife)is,

vVt >0, P,,-a.s.
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Moreover X = (Q, F, Fy, Xt, (P)memp(r)) i an Mp(E)-valued diffusion and
(A.2) Pp(-) =Pp(X" € )

Proof. If ¢ € D(G) C CP(Ea), then PA¢ = P,¢ and therefore ¢ € D(G*)
and G2¢ = G¢. It is now clear from (M%) that B, given by (A.2) is a

solution of (M).

Turning to uniqueness, let B,, be a solution of (M). If ¥ (x) = fo P,1(z)ds/e,
then Ethier-Kurtz (1986, Prop. 1.1.5 (a)) shows that ¢, € D(G) and

G (z) = (P1(x) — 1)e 'p(x) = Px(e_Ae — e p(n) = —g(z).

Clearly ¢ — 1 uniformly on £ as € | 0 by strong continuity. As usual, Z
extends to an orthogonal martingale measure {Z;(¢) : ¢ € b€} under B, .
By Doob’s inequality,

sup | Z; () — Z(1)] L0 as e 10,

t<T
and clearly X;(1.) — X,(1), Vt > 0, P,-a.s. Put ¢ = 1), in (M) and let € | 0
to see that for some €, | 0,

t
(A.3) / Xs(ge,)ds — Cy, Yt >0, P,, —a.s. asn — 00
0

where C; = m(1)+ Z;(1) — X;(1) is a.s. a continuous non-decreasing process.
Now enlarge our probability space, to (2, F, F;,P) say, so that it supports
an independent (F;)-Brownian motion B;. Let S; be the pathwise unique

solution of .
St - / \/STJZBH + Ct
0

(Barlow-Perkins (1983, Thm. 3.2)). Let X; = X; 4+ Sida € Mp(Ea). If
¢ € D(G?) and ¢(x) = ¢(x)1g(z), then Ethier-Kurtz (1986, Prop. 1.1.5(a))
implies

() = /O " Pod(x)de/e € D(G)

and
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Go. = (Po(x) — d())/e
= (P2(z) — p(x))/e — P*(1 — e~ )p(A)eH1p(2)
(A.4) = GH() — ge()d (D),

where GA¢¢(x) — G2¢(x) uniformly on Ea as € | 0. Let ¢, extend ¢, to
EA by ¢(A) = ¢(A). Combining (M) with ¢ = ¢, and (A.4) gives

Xi(6) = X6 +Si0(A)
= m(6) + 26 + 0(8) [ \/SudB(w)
b [ X(GHg)ds = 9(8) [ Xilg)ds +6(A)C

Vvt > 0, P — a.s.. Note that ¢, — ¢ and ¢. — ¢ uniformly on Ex and E,
respectively. Now let € = ¢, | 0 in the above and use (A.3) to conclude

X,(8) = m(9) + Zi0) + [ X,(G2g)ds, e >0, B~ as.

where Z,(¢) = Zy(¢) + ¢(A) J&/S,dB, is a continuous (F,)-martingale such
that

75—/X du YVt >0, P—a.s.

Comparing this with (Ma) we get P(X € -) = P,,(+-). This in turn implies
Po(-) = P, (X" € ) because X; = (X;)" in the above. Hence P, is unique.

The strong Markov property of X is a standard consequence of the unique-
ness in (M) (e.g. see the proof of Theorem 2.5). The Borel measurability of
m — P, is clear from that of m — P,,,. O
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