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ABSTRACT OF THE DISSERTATION 

 

A silicon-based self-programming synaptic resistor network for neuromorphic computing 

       

by 

 

Dhruva Sean Nathan 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2022 

Professor Yong Chen, Chair 

 

Compared to modern supercomputers, which consume roughly 106 W of power, the human brain 

requires only 20 W to function, and still exceeds the performance of supercomputers in many 

creative tasks.  This stark difference in energy requirements is caused by a fundamental 

difference in computing architecture.  Modern computers follow the Von Neumann architecture, 

in which transistors dedicated to logic and memory functions are physically separated, and the 

time and energy required to communicate between the two units constitutes a bottleneck which 

impedes performance in machine learning and optimization problems.  On the other hand, in the 

human brain, logic, memory, and learning functions are integrated together in a single element: 
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the synapse.  Without the Von Neumann bottleneck, the brain can achieve fast real-time learning, 

adaptability in complex environments, and massive parallelism.  For the future of neuromorphic 

computing, it is important to develop an electronic device which mimics the synaptic function, so 

that large-scale circuits which mimic the neurobiological architecture can be developed.  This 

work reports a silicon-based synaptic resistor (referred to as “synstor” hereinafter) which 

integrates logic, learning, and memory in a single device.  The synstor is composed of a 

semiconducting silicon channel connected via Schottky contacts to titanium input and output 

electrodes, a thermal silicon dioxide, an aluminum oxide switching layer, and a tantalum oxide 

reference electrode. The large defect density in the switching layer attracts or repels charge 

carriers in the silicon channel to modify its conductance, and the defect density in turn can be 

modified by voltage pulses applied on its input and output electrodes (pre- and post-synaptic 

spikes).  Synaptic resistor circuits could be scaled-up to facilitate mobile artificial intelligence 

systems with brain-like intelligence and adaptability in complex environments. 
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1. Introduction 

Moore’s law has overseen an exponential growth in the performance and energy efficiency of 

of transistor circuits, and has empowered supercomputers (e.g. Fugaku) to execute algorithms 

with computational speeds (~1017 floating-point operations per second, OPS) far higher than the 

human brain (~1016 OPS), leading to artificial intelligence (AI) systems that can outperform 

humans in specific tasks such as arithmetic computation, games1, image/speech recognitions2, 

and self-driving cars)3-4. Unfortunately, the supercomputers (Fugaku) consume much more 

power (~3×107 𝑊) than the human brain (~20 𝑊) and have an energy-efficiency (~1010 𝑂𝑃 𝑆 

/𝑊) five orders of magnitude inferior to the  human brain (~1015 𝑂PS/𝑊) (5).  

In modern computers, logic and memory transistors are physically separated, and operated in 

serial based on the Turing Model6, as shown in Figure 1. The signal transmission between 

constitutes a large time and energy cost, referred to as the “Von Neumann bottleneck.”  Memory 

access itself consumes 100-1000 times more energy than a CPU operation7.  Despite the 

improved computational architecture, connectivity, parallelism, data transmission, and energy 

efficiency, transistor-based computing circuits, such as the Fugaku supercomputer8, graphics 

processing units (GPUs)9, tensor processing units (TPUs), field-programmable gate arrays 

(FPGAs)10, TrueNorth11, Loihi12, and Tianjic13 are still subject to this limitation. 

https://paperpile.com/c/DWU34v/XTj5
https://paperpile.com/c/DWU34v/IqgJ
https://paperpile.com/c/DWU34v/2cDA
https://paperpile.com/c/DWU34v/MZ96
https://paperpile.com/c/DWU34v/ioiZ
https://paperpile.com/c/DWU34v/AtIx
https://paperpile.com/c/DWU34v/KHrW
https://paperpile.com/c/DWU34v/vYPQ
https://paperpile.com/c/DWU34v/JYDk
https://paperpile.com/c/DWU34v/N8TR
https://paperpile.com/c/DWU34v/CRX7
https://paperpile.com/c/DWU34v/gpSP
https://paperpile.com/c/DWU34v/Jlxa
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Figure 1: (Left) Based on the Turing model, a computer executes inference and learning algorithms 

on separated logic and memory units in serial mode with data transitions between them. (Right) A 

parallel computing scheme which integrates memory, logic, and learning. 

 

Although massively parallel software neural networks are commonplace in the field of 

artificial intelligence, these networks are ultimately operated by conventional computers with the 

Von Neumann architecture, and a separation between logic and memory units that does not exist 

in biological systems.  Artificial neural networks also suffer from the “curse of dimensionality,” 

a range of phenomena which occur when classifying or analyzing large-dimensional datasets, 

which do not occur in low-dimensional datasets.  In machine learning, it is increasingly common 

to have datasets with very large dimensions.  For example, a simple grayscale small image with 

50x50 pixels has 2500 dimensions.  If the images are RGB-colored, then the dimensionality 

suddenly increases to 7500 (one dimension per color channel per pixel).   As the dimensionality 
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of the space increases, the number of possible data permutations grows exponentially, and thus 

the amount of information gained from observing a single data point decreases.  Therefore, the 

amount of training data required to make meaning models increases exponentially, creating 

unwieldy time and power demands for computing circuits which operate in the serial Von 

Neumann architecture.   

Neuromorphic engineering refers to the development of bio-inspired computing 

architectures to avoid the limitations of conventional computer design.  In the future, 

neuromorphic circuits may enable extremely low power signal processing and learning in 

embedded systems and edge devices.   To date, neuromorphic devices such as memristors and 

phase change memory, have demonstrated analog conductance tuning, fast switching, long 

memory retention, and parallel signal processing.  However, they have not demonstrated the 

important self-learning function of the brain, which can spontaneously program its own synaptic 

weights via Hebbian learning, without the need for external computation or peripheral circuits.  

Development of a device which can fully mimic the synaptic property holds important 

implications for machine learning and artificial intelligence (AI). Four major properties of the 

brain motivate the development of the synaptic device presented in this dissertation.   

Firstly, the human brain has superior computing energy efficiency. The human brain 

concurrently infers and learns from massive information via ~1011 neurons and ~1014 synapses in 

parallel analog mode with a modest power consumption of ~20 𝑊 and computing energy 

efficiency of ~1015 OPS/W5 that is significantly superior to the energy efficiencies of transistor-

based computing circuits (~105−1012 OPS/W)11–13 and neuromorphic circuits based on analog 

synaptic devices (~1010−1014 OPS/𝑊 for inference and ≲1012 OPS/𝑊 for learning)14–18 . 

Secondly, the human brain has superior real-time learning functionality. The human brain 

https://paperpile.com/c/DWU34v/ioiZ
https://paperpile.com/c/DWU34v/CRX7+gpSP+Jlxa
https://paperpile.com/c/DWU34v/4Kh4+VHs1+aP1L+UD9I+m0po
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implements learning and inference algorithms in massive parallel analog mode with an extremely 

high computing speed (~1016 OPS), facilitating the real-time learning by saving the learning time 

spent on offsite computers. Third, the human brain has superior accuracy, performance, and 

adaptability in changing environments. The real-time onsite learning functionality also enables 

the human brains to adapt to unpredictable challenges and create new functions instantly in 

dynamically changing environments. Although the computational precision of analog neural 

networks is significantly inferior to that of the digital computers, the synaptic conductance 

matrix 𝒘 and inference algorithms of the brain are dynamically optimized in a real-time 

statistical learning process, leading to superior accuracy and performance in changing 

environments, such as the perceptions of nonstandard images and speeches, sensorimotor 

learning in complex environments, and medical diagnosis. Fourth, the human brain can 

implement the real-time learning algorithm in arbitrary environments, leading to general 

intelligence of the human brain. 

The superior energy efficiency of the human brain is illustrated in Figure 2 below, and 

compared to the trend of microprocessor efficiency doubling every 18 months, predicted by 

Koomey’s law19.  Before 2005, the improvements primarily came from the transistor channel 

length reduction.  The trend has stagnated in the past two decades due to leakage currents, 

increasingly complicated manufacturing processes, and short-channel effects such as drain-

induced barrier lowering, and progress has instead come from advancements in architecture 

rather than at the device level.  The development of devices which emulate the synaptic function 

are a key requirement to enable the highly efficient neuromorphic circuits with brain-like energy 

efficiency. To date, no neuromorphic devices have demonstrated the real time self-learning 

https://paperpile.com/c/DWU34v/OLox
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function in a massively parallel network.

 

Figure 2: The energy efficiency of microprocessors (black squares), predicted to double every 18 

months following Koomey’s Law, with the dashed black line showing the trend prediction.  The 

dashed red line indicates the global computing power demand20. 

 

The synaptic resistor (referred to as “synstor” hereinafter) is a new neuromorphic device 

which mimics the core synaptic function of the human brain.  When an input voltage vector is 

applied to pre-synaptic neurons in a crossbar network, the synstors process the signal following 

Kirckoff’s current law to produce an output signal, I, given by the sum of the currents across 

each synstor, where w represents the conductance (synaptic weight).  When a potential occurs on 
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a pre- and post-synaptic neuron simultaneously, the conductance of the synstor 𝑤 is modified in 

a Hebbian learning process, 𝑤 = 𝛼𝑉𝑖𝑉𝑜, with 𝛼 as a learning coefficient. 

Prior work on synstors has employed a p-type semiconducting carbon nanotube (CNT) 

channel and a HfO2/TiO2/HfO2 charge trap heterojunction as a switching material.  Previous 

work on carbon-nanotube (CNT)-based synstors have demonstrated the important real-time 

learning function.  A 4x2 synstor crossbar array with two integrate-and-fire “neurons” was 

shown to perform speech recognition with an energy efficiency of ~1017 FLOPS/W, 

outperforming existing computers20.  A 2x2 synstor crossbar array was used to optimize the lift 

and drag signals of a morphing wing in real time while inside a wind tunnel with a dynamic wind 

speed and angle of attack21.  Lastly, a 4x4 synstor crossbar array was used to drive a drone to a 

target position, with no prior knowledge of the system, in a windy environment.  The CNT-based 

synstor circuit demonstrated a performance at these tasks which exceeded that of humans 

performing the same task.  Large-scale synstor networks could be used to solve the Von 

Neumann bottleneck and form the basis of a new computing platform with brain-like self-

programming and adaptability in complex environments.  To date, larger scale synstor networks 

have not been demonstrated.  This is partly due to the unreliable processing of CNTS, whose 

variation in dimensions, chirality, and doping lead to significant device variability.  This 

dissertation introduces a synaptic resistor based on Si, and shows improved scalability and 

uniformity, while maintaining the important real-time self-programming function.  

1.1. Logic and Learning in Biological Synapses 

The human brain, and other biological neural networks, have excellent energy efficiency and 

speed when processing, and especially when learning from, information with large signal 

dimensions in parallel.  Creativity, adaptive learning, and pattern recognition are emergent 

https://paperpile.com/c/DWU34v/bg2B
https://paperpile.com/c/DWU34v/Ar3N
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properties of advanced biological neural networks and are essential properties of an artificial 

general intelligence.  Neuromorphic computing refers to the field of research in developing 

integrated circuits and systems whose architectures mimic biological neural networks.  

Therefore, it is useful to understand the basic operation principles of biological synapses and 

neurons. 

The human brain is composed of some 1011 neurons and 1014 synapses.  The synapses, an 

electrochemical junction connecting two neurons, is the basic information processing unit of the 

brain.  Each neuron is connected to roughly 1000 other neurons via the synapses.  Neurons 

collect and integrate potential pulses (termed pre-synaptic spikes) from neighboring synapses, 

and eventually trigger an action potential upon reaching a threshold (termed post-synaptic 

spikes).  The spiking of this massively parallel network constitutes the basis of human learning 

and cognition. 

In fact, the synapse is a junction, an empty space through which neurotransmitters can flow.  

Upon an action potential, “gates” in the neuron membrane are opened by the neurotransmitters, 

and an ionic current flows into the gates, propagating the signal.  In electrical devices, the 

synaptic weight is typically represented by the device current or conductance, but biological 

synaptic weight is determined by how many neurotransmitter receptors are on the membrane of 

the post-synaptic neuron, and how many neurotransmitters are injected into the synaptic weight.  

A higher weight results in larger current, because more “gates” are open, or they are open for a 

longer time.  Unlike electronic devices, the current is driven by diffusion instead of the action 

potential itself, which is simply required to activate the receptors in the post-synaptic neuron. 
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Learning in the brain is thought to be primarily the result of synaptic plasticity.  Synapses 

exhibit spike-timing dependent plasticity (STDP), in which the rate of modification of the 

synaptic weight is proportional to the timing difference between pre- and post-synaptic spikes22.  

When the spikes are separated by a large time interval, it is likely that they are uncorrelated.  

When they occur together, it is likely that the pre-synaptic spike caused the post-synaptic spike, 

or vice versa, and the synaptic weight between the two neurons is strengthened.  This is 

summarized by the famous quote of neuropsychologist Donald Hebb: “neurons that fire together, 

wire together23.” In short, the timing difference between the pre-and post-synaptic spikes dictate 

the magnitude and direction of the weight change.  To date, it is poorly understood how the 

neurobiology of synapses leads to higher-order properties such as instinct, creativity, and 

problem-solving.   

 

1.2. Prior work in neuromorphic computing 

With the approaching end of Moore’s law, the energy efficiencies of transistor circuits are 

fundamentally limited by the energy cost on the signal transitions (>10−11 𝐽/bit), and are 

asymptotically saturated at ~1012 OPS/W24.  Neuromorphic circuits based on analog electronic 

devices, such as synaptic transistors 25-26, memristors 14,15,16, and phase change memory (PCM) 

resistors17,18  with integrated logic and memory functions circumvent the signal transitions 

between logic and memory units, and compute inference algorithms with energy efficiencies 

(~1010−1014 OPS/W) significantly superior to those of conventional transistor-based circuits.  

Nevertheless, the conductance matrixes (𝒘) of the neuromorphic circuits need to be modified 

by applying high writing voltages when a learning algorithm is executed, and the circuits execute 

https://paperpile.com/c/DWU34v/j4nY
https://paperpile.com/c/DWU34v/Suex
https://paperpile.com/c/DWU34v/6dR3
https://paperpile.com/c/DWU34v/OhTp
https://paperpile.com/c/DWU34v/1VKS
https://paperpile.com/c/DWU34v/4Kh4+VHs1
https://paperpile.com/c/DWU34v/aP1L
https://paperpile.com/c/DWU34v/UD9I+m0po
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an inference algorithm with low reading voltages to avoid the change in 𝒘. Thus, unlike a 

neurobiological network, a single neuromorphic circuit cannot concurrently execute inference 

and learning algorithms with the same voltage magnitudes. Moreover, due to inter-device 

variability, the analog neuromorphic circuits execute learning algorithms with much higher 

inaccuracy than the transistor-based digital computing circuits27. In order to execute algorithms 

accurately in the analog neuromorphic circuits, learning algorithms were executed in transistor-

based digital computing circuits to obtain optimal conductance matrices of the neuromorphic 

circuits, then 𝒘 were modified to optimal values in sequential writing and reading processes 

iteratively, which required separated memory and logic circuits, and signal transmissions 

between the circuits, thus limiting the energy efficiencies for learning to the range comparable or 

lower than those of the digital computing circuits (≲1012 OPS/𝑊)14,17,18,24 . The energy and time 

consumption for computers to execute learning algorithms accurately from a big dataset with 𝑀-

dimensional variables and combinatorial complexity increase exponentially versus 𝑀, referred to 

as the “curse of dimensionality”28. The tremendous costs of energy and time pose a major 

hindrance for edge computers in AI systems to execute learning algorithms onsite in real-time. 

Following the machine-learning protocol, the learning algorithms are usually executed based on 

big data technologies in offsite high-speed computers, with enormous power and time 

consumption to derive optimal inference algorithms that are then executed in edge computers in 

AI systems1,3,4. The derived inference algorithms can outperform humans in specific tasks under 

well-defined environments such as arithmetic computation, games1, recognitions of standard 

images/speeches2, and self-driving cars in normal environments3,4, however, their performance in 

tasks beyond their learning domains, such as recognitions of nonstandard images/speeches, self-

driving cars and robotic systems in unpredictable environments29, and complex medical 

https://paperpile.com/c/DWU34v/VzyU
https://paperpile.com/c/DWU34v/6dR3+4Kh4+UD9I+m0po
https://paperpile.com/c/DWU34v/L40n
https://paperpile.com/c/DWU34v/XTj5+2cDA+MZ96
https://paperpile.com/c/DWU34v/XTj5
https://paperpile.com/c/DWU34v/IqgJ
https://paperpile.com/c/DWU34v/2cDA+MZ96
https://paperpile.com/c/DWU34v/Rasp
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diagnosis30  are significantly inferior to human performance. The existing AI systems lack brain-

like general intelligence beyond their learning domains and are unable to adapt to unpredictable 

challenges in changing environments. 

Beyond these issues, existing neuromorphic circuits suffer from leakage or “sneak” current 

issues, which often necessitate the use of complicated peripheral circuits.  Sneak current refers to 

currents flowing in unintended directions in the crossbar array as the various potentials applied 

on the pre- and post-synaptic neurons draw current from high-conductance synapses.  The sneak 

current issue is especially difficult for devices, such as memristors, which require a large current 

for switching.  In this regard, it is desirable for neuromorphic devices to have a low or zero 

current during switching, and to have a non-linear I-V curve, with small currents at low reading 

voltages.  From an energy perspective, and to minimize sneak current, it is also useful to simply 

have synaptic devices with low conductance.  This issue has been addressed by adding a selector 

device, such as a diode or transistor, in series with each synaptic element, which can be 

programmed externally to control what potential is experienced by the synapse, but this creates a 

complicated external circuit and increases the power consumption. 

Selector devices are also required in many neuromorphic devices due to their linear tuning 

properties.  A programming voltage applied across one device will equally be applied across all 

other devices in its respectful row or column, which makes it challenging to program individual 

devices.  The solution is usually to use apply a half voltage, +
1

2
𝑉𝑡 and −

1

2
𝑉𝑡 respectively, on the 

row and column corresponding to the desired device, so that the tuning voltage 𝑉𝑡 is experienced 

only by the desired device.  This places a strict requirement on the neuromorphic device property 

that it should not be tuned at the half-voltage.  It is desirable that the neuromorphic device’s 

https://paperpile.com/c/DWU34v/JKho
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tuning is a strong nonlinear function of the tuning voltage, in order to reduce the burden on 

external circuits.  

1.3. Prior work in synaptic resistors 

Our group has previously developed synaptic resistors based on carbon nanotubes, and used 

them for real time learning applications.  The structure of the device is shown in Figure 3.  The 

device is composed of a network of randomly oriented p-type semiconducting carbon nanotubes 

(CNTs), forming a channel, and connected via Schottky junctions to two Al input and output 

electrodes.  The device also has a memory stack consists of a HfO2/TiO2/HfO2 charge trap 

heterojunction structure and an Al bottom electrode which acts as a reference potential.   

 

Figure 3: The device structure of a carbon-nanotube synstor.  The synstor has Al input and output 

electrodes, connected via Schottky junctions to a random network of p-type semiconducting 

carbon nanotubes.  The device has an Al reference electrode and a HfO2/TiO2/HfO2 charge trap 

heterojunction as a switching layer. 
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The memory retention, endurance, band structure, and analog tunability have been 

previously investigated20.  The CNT-based synstors have demonstrated the important real-time 

learning function.  A 4x2 synstor crossbar array with two integrate-and-fire “neurons” was 

shown to perform speech recognition with an energy efficiency of ~1017 FLOPS/W, 

outperforming existing computers20.  A 2x2 synstor crossbar array was used to optimize the lift 

and drag signals of a morphing wing in real time while inside a wind tunnel with a dynamic wind 

speed and angle of attack21 .  Lastly, a 4x4 synstor crossbar array was used to drive a drone to a 

target position, with no prior knowledge of the system, in a windy environment.  The CNT-based 

synstor circuit demonstrated a performance at these tasks exceeding that of humans performing 

the same task.    

  The uniformity of a chip containing 400 synstors is described in Figure 4 below.  The 

distribution of conductance is expressed as an error from the mean conductance.  The data were 

obtained by applying a 10 ms -2 V pulse on the input electrode, of each device sequentially, and 

reading the current across the output electrode while the reference electrode is grounded.  The 

devices were not pre-tuned before the measurement, so that they were in an equilibrium 

conductance state.  The relative standard deviation, 𝜎/𝑤̅, of the device conductance is 12.707. 

The synstor is a memory device with analog tunability, and the synstors could be tuned to 

any analog value between their maximum and minimum conductances.  However, there was a 

large variance in the equilibrium conductances, tuning rate, endurance, and retention of each 

device, making it difficult to implement a uniform crossbar array.  Although the materials 

(99.9% pure semiconducting single wall CNTs) and processes were optimized to reduce 

variation in the device properties, the intrinsic variation in CNT densities, CNT directions, CNT 

diameters, CNT purity (semiconducting vs. metallic), CNT doping concentrations, charge 

https://paperpile.com/c/DWU34v/bg2B
https://paperpile.com/c/DWU34v/bg2B
https://paperpile.com/c/DWU34v/Ar3N
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densities at Al/CNT interfaces, charge densities at CNT/HfO2 interfaces can all hypothetically 

introduce variation in the final device property20,31–34. 

The variance in the device conductance, and tuning properties, led to difficulty in 

processing and learning from large-dimensional data.  The insufficient reliability and scalability 

was a primary motivation to explore new device materials, and led to the development of the 

device presented in this work. 

 

 

Figure 4: The conductance distribution of 400 carbon nanotube synstors on a chip, expressed as a 

percentage error from the mean conductance.  

 

https://paperpile.com/c/DWU34v/UzG8+1KSZ+gR0I+MM06+bg2B
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1.4. Research goals 

The synaptic resistor should be a non-volatile memory device with analog conductance 

tunability.  The memory retention should be such that the memory is not disturbed during 

reading operations, and while the circuit is at rest, and should be tunable by writing operations 

which consists of simultaneous writing voltages on the input and output electrode.  This 

Hebbian-style learning will allow the circuit to implement arbitrary learning algorithms.  The 

devices should have improved uniformity and scalability, and show the potential for large-scale 

integration, which has not been demonstrated in the previous generation of synaptic resistors.  

The devices should be arranged in a crossbar circuit to enable vector-matrix multiplication 

operations between the input vector and the synaptic weight matrix for signal processing.  The 

crossbar architecture will also allow for backpropagation of the output vector to coincide with 

the input vector and modify the synaptic weights via learning.  To enable a selector-free 

architecture without sneak current, the device should have a low conductance compared to other 

neuromorphic devices.  In general, the input current of the synstor is much lower than two-

terminal neuromorphic devices, such as memristors, since the writing voltage itself is applied 

across the insulating oxide layers, rather than across the conductive or semiconductive channel35
.   

Another requirement is that the device should be operated with the same magnitude of pulse 

for reading and for writing.  In other neuromorphic devices, the reading and writing operations 

are performed with different voltage magnitudes, or across different terminals.  For example, in 

memristors, reading is performed across the two terminals with a low voltage, to not disturb the 

memory state, while writing is performed using a high voltage.  The high voltage is required to 

induce the formation or dissolution of a conductive filament (often by Joule heating) across the 

switching layer.  In floating-gate transistors and other three-terminal neuromorphic devices, the 

https://paperpile.com/c/DWU34v/favn


15 

 

reading voltage is applied between the source and drain, while the writing voltage is applied 

between the gate and drain.  The reading and writing voltages differ in magnitude here as well, 

with the writing voltage typically much larger (and erasing voltages larger still).  The synstor is 

unique from other neuromorphic devices because it uses the same voltage magnitude for both 

reading and writing operations.  During reading, a voltage pulse is applied across the input and 

output electrodes to induce a current proportional to the device conductance (Ohm’s law).  

During writing, a simultaneous voltage pulse is applied across the input and output electrode, 

while the reference electrode is kept at ground.  This operation changes the potential of the 

channel with respect to the grounded reference electrode, creating an electric field across the 

memory layer to induce switching.  The coincident pulses are the same magnitude as the single 

pulse used for reading, and induce the redistribution of charge states in the defective switching 

layer, driving carriers towards or away from the silicon channel, which will modify the device 

conductance upon the next reading pulse.  This operation mechanism is very useful for a highly 

parallel neural network.  In a fully connected neural network composed of synstors at each 

crosspoint, no selector devices are required, and the writing voltage (voltage on the output 

electrode) will not affect the synstors which do not experience an equivalent input voltage.  This 

operation is fundamentally different from other neuromorphic devices.   

In this work, a synstor crossbar chip with the described properties has been designed and 

fabricated.  The input electrodes of the device can be connected to sensors containing data of the 

system to be optimized, and the output electrodes are connected to an artificial integrate-and-fire 

“neuron” circuit, presented later in this dissertation.    
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1.5. Synaptic resistor & operation mechanism 

The silicon synaptic resistor (synstor) device structure is shown in Figure 5.  The synstor 

is composed of a 5µm-wide Si channel, and an input and output electrode with Schottky 

junctions to titanium silicide, connected by two Ti metal contact pads.  Above the channel is a 13 

nm SiO2 thermal oxide, a 20 nm Al2Ox switching layer, and a 18 nm TaOy reference electrode.  

The switching layer is formed by an electron beam evaporation of 10 nm Al2Ox and 10 nm Al, 

which results in a “metal-rich” oxide which serves as the basis of the memory function of the 

synstor.  The synstor integrates spatiotemporal inference and learning in a single element, and 

functions as a biological synapse.   

  

Figure 5: A synaptic resistor device schematic, showing a Si channel (blue), a thermal oxide (grey), 

a Ti input and output electrode (red), TiSi contacts to the channel (pink), an Al2Ox switching layer 

(green), and a TaOy reference electrode (orange). 
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The switching mechanism for the device is based on the charging and discharging of 

oxygen vacancies, Vo
2+, in the switching layer.  The result of writing operations on the device is 

the redistribution electrons, hopping from the reference electrode or other nearby trap states, into 

the switching layer, which influences the carrier concentration in the channel via static field.  A 

cross-sectional TEM image is shown in Figure 6, showing a 13 nm SiO2 layer, a 20 nm Al2Ox 

layer, and an 18 nm TaOy layer.  Proposed band diagrams for the synstor at various conductance 

states are shown in Figure 7 below. 

 

Figure 6: A cross-sectional TEM image showing the active region of the device.  A Si channel is 

capped by a 13 nm thermal oxide, a 20 nm AlOx layer, and an 18 nm TaOy layer. 
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Figure 7: The band structure of a Si synstor in its low, equilibrium, and high conductance states, 

based on the defect distribution in the switching layer. 

 

Amorphous aluminum oxide (a-Al2O3) films, grown by various deposition techniques, 

have a large defect density composed of O and Al vacancies and interstitials, and H interstitial 

centers.  The defect distribution has recently been studied in a-Al2O3 and α-Al2O3 by Dicks et al 

36 using density functional theory calculations.  The presence of this charge could be undesirable 

in many digital electronic devices, but could be desirable in various memory devices, such as the 

synstor reported here.  The proposed switching mechanism for the synstor is shown in Figure 8.  

At equilibrium, oxygen vacancies have a neutral charge.    When the fermi level of the channel is 

raised with respect to the reference electrode, electrons hop from the oxide to the reference 

electrode, and the vacancies take a positive charge37,38.  When the fermi level of the channel is 

lowered with respect to the reference electrode, electrons hop from the reference electrode to the 

oxide.  After learning, the new charge state attracts or repels electrons in the n-type Si channel to 

modify its conductance.  The presence of oxygen vacancies in the memory stack is confirmed by 

X-ray photoelectron spectroscopy (XPS) and energy dispersive x-ray spectroscopy (EDX) 

https://paperpile.com/c/DWU34v/d5JX
https://paperpile.com/c/DWU34v/s5XC+wRCp
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analysis, presented later in this dissertation.  The presence of vacancies is also inferred based on 

hysteresis in the current-voltage measurements appearing as a function of the voltage drop 

between the channel and reference electrode. 

 

Figure 8: The proposed switching mechanism for the synstor.  At equilibrium, oxygen vacancies 

have a neutral charge.    When the fermi level of the channel is raised with respect to the reference 

electrode, electrons hop from the oxide to the reference electrode, and the vacancies take a positive 

charge.  After learning, the new charge state attracts electrons in the n-type Si channel to decrease 

its conductance. 

 

A synstor crossbar array is shown in Figure 9, connected to M pre-synaptic inputs and N 

post-synaptic outputs.  For inference, a wave of voltage pulses, Vi
m(t), in the mth presynaptic 

neuron is processed by a synapse connected with the mth presynaptic and nth postsynaptic neurons, 

and induces a current in the nth postsynaptic neuron22, 𝐼𝑛𝑚 = 𝜅 ∗ (𝑤𝑛𝑚𝑉𝑖
𝑚) where  𝑤𝑛𝑚 denotes 

the synaptic weight (conductance), 𝜅  denotes a temporal kernel function, and 𝜅 ∗ (𝑤𝑛𝑚𝑉𝑖
𝑚)  

represents the temporal convolution between 𝜅  and 𝑤𝑛𝑚𝑉𝑖
𝑚 .  For spatiotemporal parallel 
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inference, a wave of voltage pulses in presynaptic neurons induces a collective current via synapses 

in the nth postsynaptic neuron, which can be expressed as, 

𝐼𝑛(𝑡) = ∑  𝜅𝑛𝑚 ∗ (𝑤𝑛𝑚𝑉𝑖
𝑚)𝑚                (Equation 1) 

and the current induces voltage pulses,𝑉𝑜
𝑛(𝑡) , in the nth postsynaptic neuron. When the voltage 

pulse is fired in the postsynaptic neuron (𝑉𝑜
𝑛 ≠ 0 ), the postsynaptic current 𝐼𝑛 = 0. The 𝑤𝑛𝑚 

matrix is also modified concurrently by the spatiotemporal waves of voltage pulses in the 

presynaptic and postsynaptic neurons for learning,20,22,23 

𝑑𝑤𝑛𝑚

𝑑𝑡
= 𝛼𝑉𝑖

𝑚𝑉𝑜
𝑛           (Equation 2) 

where 𝛼 denotes the conductance modification coefficient, and 𝑉𝑖
𝑚 and 𝑉𝑜

𝑛 voltage pulses have 

the same amplitudes and durations. 𝑤𝑛𝑚 is modified when 𝑉𝑖
𝑚 = 𝑉𝑜

𝑛, with the learning coefficient 

𝛼 > 0  in Hebbian learning, and 𝛼 < 0 in anti-Hebbian learning.  𝛼 is a function of the timing 

difference between  and  pulses in the learning based on synaptic spike-timing-dependent plasticity 

(STDP). Based on Equation 2, general correlative learning algorithms in machine learning20 can 

also be implemented.  Following Equation 2, when 𝑉𝑖
𝑚 ∙ 𝑉𝑜

𝑛 = 0 (e.g. 𝑉𝑖
𝑚 ≠ 0 and 𝑉𝑜

𝑛 = 0 during 

inference), 
𝑑𝑤𝑛𝑚

𝑑𝑡
= 0 , i.e. 𝑤𝑛𝑚  remains nonvolatile for memory. By integrating the analog 

convolutional processing (Equation 1), correlative learning (Equation 2), and nonvolatile memory 

functions in a single synapse, the brain circumvents the fundamental limitations such as physically 

separated memory units, data transmission between memory and logic units in computers, and 

concurrently executes the inference (Equation 1) and learning (Equation 2) algorithms in a neural 

network in analog parallel mode. The previously reported CNT synstor demonstrated this function 



21 

 

and operation with an energy efficiency more than five orders of magnitudes higher than that of 

the Summit supercomputer20. 

 

Figure 9: An MxN synapse crossbar array with M presynaptic inputs and N post-synaptic outputs.  

Vi
m denotes an input potential on the mth presynaptic neuron, Vo

n denotes a potential on the nth 

post-synaptic neuron, and In denotes a current flowing into the nth post-synaptic neuron. 

2. Methods 

2.1. Device fabrication 

The synstor is fabricated on a p-type silicon-on-insulator (SOI) wafer with 1015cm-3 boron 

doping, a 145nm device layer, a 1µm buried oxide (BOX) layer, and a 700µm insulating handle 

layer.  The process flow is shown in Figure 10.  A photoresist was spin-coated on the Si surface, 

then exposed by ultraviolet (UV) photolithography (Karl Suss MA6), and developed 



22 

 

(AZ300MIF).  The 5µm silicon channels are then etched by dry plasma etching (Technics FRIE, 

1:4 O2:CF4, 100W).  The photoresists are stripped by acetone, isopropanol, and de-ionized water.  

The SOI wafers are then cleaned using the standard RCA cleaning process39.  The first step, 

RCA-1 (5:1:1 H2O:H2O2:NH4OH at 80°C) cleans organic residue from the surface.  The next 

step is a 50:1 H2O:HF dip to remove the native silicon oxide.  The final step, RCA-2 (5:1:1 

H2O:H2O2:HCl at 80°C) cleans away metal ions and reduces further contamination by hydrogen 

passivation. 

The wafers are then oxidized by thermal oxidation at 1000°C for 2 minutes, which results in 

a 13 nm oxide layer based on reflectometry (Nanospec 210).  Since the silicon dry etch process 

does not have perfect selectivity of silicon to oxide, the process is performed after the dry etch 

process.   

Next, another photolithography is performed to pattern the input and output (IO) electrodes.  

The negative photoresist is developed and baked, and then used as a dry etch mask to etch the 

exposed thermal oxide.  The oxide in the IO electrode pattern is etched away, but the oxide in the 

channel and active area are protected by photoresist.  Dry etching is used instead of the more 

typical wet etching of oxide by hydrofluoric acid (HF) to prevent the HF undercut profile which 

would leave exposed Si in the active region.  After the dry etching (Oxford RIE, 1:1 CHF3:Ar, 

100W), the wafers are loaded into an electron beam evaporation (CHA Industries Mark 40) and 

the 300 nm Ti IO electrodes are deposited by liftoff.  The photoresist is stripped by n-methyl-2-

pyrrolidone (NMP) at 75°C, and the wafers are treated by a short oxygen plasma to descum the 

surface (Technics FRIE, 100 mtorr O2, 50 W).   

https://paperpile.com/c/DWU34v/Z4m3
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Then, a 40 nm Al2O3 sacrifical layer is grown on the surface by atomic layer deposition (Fiji 

Ultratech ALD).  Then, the wafers are annealed in forming gas (5% hydrogen in N2) at 460°C for 

30 minutes to induce the reaction of titanium and silicon to form titanium silicide.  The Al2O3 

sacrificial layer protects the metal on the wafer from unwanted oxidation and hydrogenation 

during the anneal.  After the anneal, the sacrificial layer is selectively etched away using a 3% 

tetramethylammonium hydroxide aqueous solution.  Then, a layer of 50 nm Ti contact pads are 

deposited on the 500x500 µm silicon and metal pads by liftoff to improve the electrical contact. 

Finally, the memory layer and reference electrode (10:10:8 nm Al2O3:Al:Ta) are deposited 

by a single photolithography and e-beam evaporation (CHA Industries Mark 40).  E-beam 

evaporation, rather than the more typical sputtering method, is used for the memory oxide for 

two reasons.  First, e-beam evaporation results in high defect generation in the deposited film 

due to the differing vapor pressures of aluminum and oxygen, and this non-stoichiometric film is 

desirable from a memory perspective.  Secondly, deposited the memory layer and reference 

electrode in a single process results in a self-aligned structure.  Depositing the reference 

electrode in a separate process would result in lithographic misalignment, and some electrode 

metal directly contacting the silicon dioxide, which would shield the channel from charges stored 

in the memory layer.  Lastly, depositing all three layers without breaking vacuum minimizes the 

interface layers formed between them. 

After the liftoff of the memory and reference electrode stack, the wafers are passivated by a 

thermal evaporation of parylene-C (SCS PDS-2010 Parylene).  This permanent capping layer 

protects the sensitive silicon, silicon oxide, and memory layers.  A final photolithography and 

dry etch (Technics FRIE, 100 mtorr O2, 100 W) is used to etch the parylene on top of the contact 

pads only, so electrical contact can be made to the synstors.  
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Figure 10: Process flow for the synstor fabrication.  (a) A Si channel is etched into a p-type SOI 

wafer, and (b) oxidized. (c) Thermal oxide in the contact area is dry etched. (d) Ti input and output 

electrodes are deposited by e-beam evaporated and (e) annealed to form titanium silicide Schottky 

contacts.  (f) Finally, the memory stack and reference electrode are deposited by e-beam 

evaporation and liftoff. 
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2.2. System Integration 

The wafers are cleaved in 30x30 mm chips, which interface into a custom-build adapter 

(Ironwood Electronics) via compression insert and pogo pins (spring-loaded pins).  The adapter 

contains 430 pins each with 1 mm pitch.  The pins are arranged into a 20x20 grid for input 

electrode pads, 20x1 grid for output electrode pads, and 10x1 grid for reference electrode 

pads.  Each pogo pin contacts a corresponding 500x500 µm metal pad on the chip side.  An 

optical image of the completed chip is shown in Figure 11, with the parylene passivation layer 

omitted for clarity. 

 

Figure 11: (Left) Microscope image showing the active region of a synstor in a single crosspoint.  

(Right) Optical image of a chip with 400 synstors arranged in a 20x20 crossbar. 

 

The chip layout groups together all output, and reference electrodes within a row.  The 

crossbar is formed when the chip is inserted into the adapter, which groups together all input 

electrodes within a column.  Shorted or stuck devices can be isolated from the crossbar by 
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simply removing the corresponding pogo pins.  Similarly, arbitrary crossbar sizes smaller than 

20x20 can be constructed by removing all the unnecessary pogo pins.  This is usually also 

important to minimize sneak current.  The adapter used to interface with the synstor chip is 

shown in Figure 12. 

 

Figure 12: A custom pogo pin adapter for interfacing the synstor chip with external circuits 

 

The adapter connects to a PGA socket on a custom printed circuit board (PCB) to 

characterize and operate the synstors.  The adapter also comes with a conductive path to the 

backside of the chip for applying substrate bias.  Even without removing any pogo pins, 

individual devices can be accessed using jumpers on the PCB which connect to each row and 

column, but in that case the sneak current should be considered. 
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The PCB serves as the interface between the synstor chip and a compactRIO controller 

(National Instruments, NI-9063) with Zynq-7020 FPGA.  The FPGA controls 32 analog output 

(AO) channels, 32 analog input (AI) channels, and 32 digital input/output (DIO) channels.  

Voltage pulses are applied to the input, output, and reference electrodes using the AO channels, 

and device currents are converted into voltages on the PCB and measured by the AI channels.   

The device currents were converted to voltages through an operational amplifier (Microchip 

Technologies, MPC6022), in an inverting op-amp configuration.  The output voltage of the op-

amp, Vout, was converted to the device conductance following 𝑤 =
𝐼

𝑉𝑖
= −

𝑉𝑜𝑢𝑡

𝑉𝑖𝑅𝑓
 , where Rf is a 

feedback resistor between the inverting input and output terminals of the op-amp.  This system 

was used for the electrical characterization and measurements shown in this work.  Leakage 

current measurements were performed on a semiconductor parameter analyzer (Keithley 4200). 

2.3. An Integrate-&-Fire “Neuron” Circuit 

Integrate-and-fire neuron circuits were designed, as shown in Figure 13, to emulate the basic 

functions of biological neurons according to the Hodgkin-Huxley neuron model.40 Current from 

synstors, I, flows into a capacitor, 𝐶𝐼F, thus increasing its potential . A leakage current, 𝐼𝐿, flows 

through the resistor, 𝑅𝐿, decreasing 𝑉𝐼. 𝑉𝐼 is proportional to the integration of 𝐼 − 𝐼𝐿 with respect 

to time. When 𝑉𝐼 reaches a threshold value, a Schmitt trigger composed of transistors 𝑀1− 𝑀6 is 

switched back and forth to generate an output pulse from the output channel, 𝑉𝑓. The output pulse 

resets 𝑉𝐼 back to zero by switching transistors 𝑀7, 𝑀8, and 𝑀9, and the capacitor 𝐶𝐼 restarts the 

integration of the current. The transistors in the circuit are operated in their subthreshold regions. 

A “neuron” circuit with CIF=10 𝑛𝐹, 𝑅𝐿=0.5 𝑀Ω, 𝑉𝐿=−30 𝑚V, and 𝑅inv =5 𝑀Ω was tested by 

applying a series of 10 ns-wide pulses, with varied firing rates over a resistor with a resistance of 

5 MΩ to inject a current 𝐼 to 𝐶𝐼F, and the average firing rate of the output pulses triggered from the 

https://paperpile.com/c/DWU34v/0Nut
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circuit, 𝑟𝑓, is plotted as a function of the average magnitude of the current, 𝐼, in Figure 14.  The 

firing rate of the pulses output from the “neuron” circuit, 𝑟𝑓 , is plotted versus the average current, 

𝐼,̅ input to the “neuron” circuit (open circles).  The experimental data were fitted by a sigmoid 

function with 𝑟𝑓 =
𝑟𝑠

1+𝑒−𝜒[𝐼̅−𝐼0]
  with 𝑟𝑠 = 152 𝐻𝑧, 𝜒 = 0.26 /nA, and 𝐼0 = 16.0 nA. 

 

Figure 13: An-integrate-and fire “neuron” circuit 
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Figure 14 The firing rate of the pulses output from the “neuron” circuit, 𝑟𝑓 , is plotted versus the 

average current, 𝐼,̅ input to the “neuron” circuit (open circles).  The experimental data were fitted 

by  𝑟𝑓 =
𝑟𝑠

1+𝑒−𝜒[𝐼̅−𝐼0]
 (red line) with 𝑟𝑠 = 152 𝐻𝑧, 𝜒 = 0.26 /nA, and 𝐼0 = 16.0 nA. 

3. Results 

3.1. Current-Voltage Measurements 

The synstor was tested by applying a continuous triangular voltage sweep, Vi, on its input 

electrode, while measuring the current through the grounded output electrode and grounding the 

reference electrode.  The nonlinear rectifying I-Vi curves demonstrate the formation of a 

Schottky contact between the Ti input electrode and the n-type Si semiconducting channel.  The 
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I-Vi sweep exhibits hysteresis, which is a consequence of applying a voltage larger than the 

Schottky barrier height, which induces a voltage drop between the channel and grounded 

reference electrode (ie. across the charge trap layer).   

The synstor was further tested by applying a continuous triangular voltage sweep, Vref, across 

the reference electrode, while applying a constant reading bias, Vi, on the input electrode, and 

measuring the current across the grounded output electrode.  The results of the I-Vi and I-Vref 

sweeps are shown in Figure 15 below.  The I-Vref sweeps shows a significant hysteresis owing to 

the large defect density in the charge trap layer.  When the reference electrode voltage is 

positive, electrons in the memory oxide hop to the reference electrode and leave an increased 

density of positively charged O vacancies, VO
2+, which results in an increase in the carrier 

concentration in the n-type semiconducting channel.  When the reference electrode voltage 

sweeps back to negative, the VO
2+ density is reduced, and the channel is shifted to a depleted 

state, which remains in place until further programming (supported by memory retention tests in 

section 3.2).  The dielectric constant of Al2O3 is much higher than SiO2, so the conductance 

change observed is attributable to changes in the Al2O3 switching layer during the sweep. 
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Figure 15: (Left) I-Vi measurement obtained by applying a continuous triangular voltage sweep, 

Vi, on the synstor input electrode, while measuring the current through the grounded output 

electrode and grounding the reference electrode.  (Right) I-Vref measurement obtained by applying 

a continuous triangular voltage sweep, Vref, across the reference electrode, while applying a 

constant reading bias, Vi, on the input electrode, and measuring the current across the grounded 

output electrode. 

 

The leakage current across the switching layer was similarly tested using a semiconductor 

parameter analyzer (Keithley 4200) and a probe station.  The synstor, as a non-volatile memory 

device, should have minimal leakage current during reading, writing, and at rest.  The leakage 

was tested by applying a triangular voltage sweep, Vref, across the reference electrode, while 

grounding the input and output electrode, and measuring the current across the grounded output 

electrode.  A probe station was used to eliminate the chance of leakage sneak paths from 
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adjacent devices.  The leakage current is shown in Figure 16 below.  The leakage is 6 orders of 

magnitude lower than the device current at -4 V. 

 

Figure 16: Leakage current measurement obtained by applying a continuous triangular voltage 

sweep, Vref, on the synstor reference electrode, while grounding the input and output electrode and 

measuring the current through the grounded output electrode 

 

3.2. Memory Endurance & Retention   

Memory endurance and retention are two common figures of merit for non-volatile memory 

devices.  The endurance is obtained by writing and erasing the device memory in rapid cycles, 

and measuring the decay in tuning range.  The synstor is an analog memory device which can be 

tuned to arbitrary conductances between its minimum and maximum, but only the decay in the 

minimum and maximum conductances are measured here. 
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The synstor endurance is shown in Figure 17.  A train of 50 -3 V (+3 V) 10 ms coincident 

pulses on the input and output electrodes was used to turn on (turn off) the synstors.  After each 

cycle, a 10 ms -3 V read pulse on the input electrode was used to sample the conductance, and 

then the opposite cycle was performed.  The minimum conductance was within the system noise 

of the measurement system.  The minimum and maximum conductances were stable over 45000 

cycles. 

 

Figure 17: The endurance of the synstor is plotted as a function of cycle number.  The minimum 

and maximum conductances are shown in black and red respectively, over 45000 tuning cycles.  

Each tuning cycle consists of a train of 10 ms ±3 V tuning pulses on the input and output electrodes, 

followed by a single 10ms -3 V read pulse on the input electrode. 
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In conjunction with the endurance test, the memory retention test measures how long a 

programmed state takes to decay.  Non-volatile memory devices, such as SONOS memory, have 

a lifetime on the order of 100 years41.  The retention results are shown in Figure 18 below.  For 

each programmed conductance state, the retention is obtained by a +1 V 10ms read pulse on the 

input electrode, while the output and reference electrodes are grounded.  The programming was 

performed by pulses on the reference electrode with various tuning magnitudes from 0 to -5.5V.  

The read pulses have a period of 100 seconds, and the chip is placed in an electrically and 

thermally isolated environment.  50 different analog conductance states are shown, within the 

range 0-100 nS, and the retention is measured over 104 seconds.  The curves are fitted to the 

form 𝑤 = 𝑎𝑡𝑘, where 𝑎 and k are constants.  The retention is extrapolated over a 10 year period 

to show that the conductance stances can still be distinguished from one another even with some 

decay.  The device retention is appropriate for dynamic real-time learning applications where the 

environment is constantly changing, and the optimal strategy needs to be learned and re-learned 

quickly by the neural network for best performance. 

https://paperpile.com/c/DWU34v/z9jE
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Figure 18: Memory retention of the synaptic resistor.  50 analog conductance states are measured 

and in blue, separated into four conductance groups, and fitted by exponential functions shown in 

black.  The retention is extrapolated over 10 years, showing that the individual conductances are 

still resolved. 

 

3.3. Nonlinear analog conductance tuning 

The synstor network is typically operated in pulse mode, where the input pulse frequency is 

based on sensor inputs and the output pulse frequency is based on a learning algorithm.  If an 

input pulse occurs on a synstor, it will process the signal by generating a current following 

Equation 1.  If an input pulse and an output pulse occurs on a synstor at the same time, the 
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current across the channel will be zero, and the channel potential will be modified with respect to 

the reference electrode, inducing a shift in the charges of the memory layer, following Equation 

2.  This constitutes the learning function of the synstor.  In Figure 19 below, the relative 

conductance change is plotted versus pulse trains of various combinations of input and output 

pulse magnitudes and polarities, with a duration of 100 pulses and a pulse width of 10 ms.   

 

Figure 19: The non-linear analog conductance change of the synstor is plotted as a function of 

pulse number, for a train of 10 ms pulses.  The conductance changes caused by coincident -3 V 

(red triangles) and +3 V (green triangles) coincident pulses is much larger than the conductance 
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change caused by +3 V input or output pulses individually (black and blue solid lines respectively), 

or by -3 V input or output pulses individually (black and blue dashed lines respectively). 

 

The conductance changes caused by coincident -3 V (red triangles) and +3 V (blue 

triangles) coincident pulses is much larger than the conductance change caused by +3 V input or 

output pulses (black and blue solid lines respectively) individually, or by -3 V input or output 

pulses (black and blue dashed lines respectively) individually.  As can be seen, the synstor 

experiences very little change in conductance when a pulse train of either polarity is applied on 

either the input or output electrodes.  This corresponds to the signal processing mode of the 

synstor.  On the other hand, the conductance change is much larger when two pulses occur 

simultaneously on the input and output electrode, similar to STDP in the brain.  Non-linear 

tuning, or conductance change as a function of the timing and polarity difference between the 

input and output pulse, enables synstor circuits to have real-time learning and parallel signal 

processing and learning. 

The non-linear tuning is also shown as a function of pulse amplitude in Figure 20 below.   

The pulse trains had a duration of 100 pulses and a pulse width of 10 ms, and voltage magnitudes 

ranging from -3 V to +3 V.  When the coincident pulse amplitude is small, the tuning is also 

small.   At voltages larger than 1.2 V, the positive (green triangles) and negative (red triangles) 

coincident pulses cause much larger conductance change compared to the individual input pulses 

(solid line) or output pulses (dashed line).  The conductance change scales exponentially as a 

function of the magnitude of the coincident tuning pulse.  This corresponds to the defects 

(negative charges) migrating further or closer to the silicon channel upon larger magnitude of 
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tuning pulses.  The defects in turn repel the carriers in the n-type silicon channel to modify its 

conductance.  The presence of the Schottky contact, and the non-linear relationship between the 

threshold shift and current magnitude in the subthreshold regime, contribute respectively to the 

insignificant conductance change when current flows through the channel and to the non-

linearity of conductance change with respect to voltage amplitude. 

 

Figure 20: The non-linear analog conductance change of the synstor is plotted as a function of 

tuning voltage.  When a train of 100 10 ms tuning pulses is applied on the input electrode (solid 

line) or output electrode (dashed line) only, the conductance change is small.  When a train of 

positive input and output pulse are applied simultaneously (green triangles), the synstor is turned 
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off as a function of voltage.  When a train of negative input and output pulse are applied 

simultaneously (red triangles), the synstor is turned on as a function of voltage. 

3.4. Device Uniformity 

A major concern for previous generations of synstors, based on materials other than silicon, 

was the scalability.  Although individual devices demonstrated the synapse-like property, their 

conductances and tuning properties had a large variation, making it difficult to operate large-

scale neural networks.  In contrast, silicon and silicon processing have been studied exhaustively 

in the semiconductor industry for decades, which have allowed the creation of very large scale 

integration (VLSI).   

In Figure 21, the relative standard deviation of the Si synstor is compared to the previously 

reported CNT synstor.  The relative standard deviation is reduced by a factor of 29. 

 

Figure 21: The conductance distribution of a carbon nanotube synstor chip (left) vs. a Si synstor 

chip (right), expressed as expressed as a percentage error from the mean conductance.  The relative 

standard deviation of the Si chip is smaller by a factor of 29. 
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To demonstrate the uniformity and analog scalability of the chip, 300 silicon synstors were 

tuned, using a train of 10 ms ±3 V pulses, to 100 different targeted analog conductance values.  

In Figure 21a, the vertical and horizontal position of each marker respectively show each target 

conductance, and the mean conductance of the corresponding population.  The height of each 

marker corresponds to 3σ.  In Figure 21b, the height of the bars indicate 3σ, and the width of the 

bars indicate the error between the target conductances and the mean of the population.  As can 

be seen, this population of 300 synstors can be tuned with high precision to many discrete analog 

conductance values separated by less than 1 nS.  The error between the mean values and the 

target values is much smaller than the separation between each target values, which shows that 

the populations are resolved.  The synstor could thus be useful in a neural network where precise 

analog memory values are required. 
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Figure 22: (a) The analog tunability of 300 synstors on a chip is shown.  The synstors are tuned to 

100 target conductances, shown on the x-axis, with the center of each marker and the height of 

each marker on the y-axis indicating the mean of each distribution and three standard deviations 

respectively.  (b) The error between the mean of each population and the corresponding target 

value is shown along the x-axis, while the height of each marker is three standard deviations of the 

population. 

 

3.5. Schottky Junction 

The Schottky junction between the input electrode and channel, and the output electrode and 

channel, is an essential feature which gives the synstor its nonlinear analog tuning property.  
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When a single input or output pulse is applied on an electrode to read the conductance, the 

voltage drops primarily across the contact, and the channel potential remains unchanged relative 

to the reference electrode.  The Schottky junction in the synstor is formed between the single 

crystal silicon and an amorphous titanium silicide layer.  Devices with ohmic contacts, such as 

synstors prior to the forming gas anneal to form titanium silicide, exhibit poor non-linear tuning. 

Titanium disilicide, TiSi2, is a common silicide for CMOS contacts in the semiconductor 

industry owing to its thermal stability and low resistivity42.  Titanium silicide has two phases 

commonly used in industry.  When annealing a contact between Ti and a crystalline silicon 

substrate between 400-500°C, an amorphous TiSi2 layer is formed.  Further annealing at 400-

500°C results in the C49-TiSi2 phase (60-70μΩcm), and annealing above 700°C results in the 

C54-TiSi2 phase (15-20μΩcm).  This work uses an annealing temperature of 460°C, in a forming 

gas environment (4% H2 in N2), in order to use the band offset of the amorphous TiSi phase to Si 

to form a Schottky junction.  This is unlike the ohmic contacts used in CMOS, where TiSi2 are 

typically in contact with degenerately doped silicon. 

The cross-section of the titanium-silicon interface after forming gas annealing was analyzed 

by transmission electron microscope (TEM), shown in Figure 22.  The diffraction patterns in 

Figure 23 are produced by selected area electron diffraction (SAED), a companion technique to 

TEM which indicates the degree of crystallinity.  The diffraction pattern shows a polycrystalline 

Ti layer, an amorphous TiSi interlayer, and a single crystal Si layer.   

https://paperpile.com/c/DWU34v/OV4C
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Figure 23: (Left) Transmission electron microscope image (TEM) image showing the cross-section 

of the input electrode and channel of the synstor.  Titanium metal and single crystal silicon are 

separated by an interface layer of amorphous titanium silicide.  (Right)  A magnified image of the 

interface showing the crystallinity of all three layers. 

 

Figure 24: The diffraction pattern of (left) a polycrystalline titanium layer, (middle) amorphous 

titanium silicide layer, and (right) single crystal silicon layer.  The images are produced by selected 

area electron diffraction (SAED) 
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Energy dispersive x-ray spectroscopy (EDX) was performed in conjunction with the 

TEM analysis to obtain a chemical composition profile of the images taken.  The ratio of x-rays 

gathered from Ti and Si atoms in the sample can be used to estimate the stoichiometry of the 

TiSi film. a TEM image and corresponding EDX depth profiles for Ti, Si, and O are shown in 

Figure 24 below.  The colors of the EDX maps correspond to the device layer colors used in 

Figure 5.  The depth profiles are calculated based on the ratio of elements, by atomic weight, 

averaged across each horizontal cross section of the image.  Based on this analysis, the 

amorphous interlayer layer is a-TiSiz with z=0.62.   It has been reported in the literature that 

amorphous TiSi, despite not having a fixed stoichiometry, forms a Schottky contact with p-type 

crystal Si with a barrier height 0.57-0.59eV43. 
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Figure 25: A TEM image of the interface between the Ti input electrode and Si channel (top-left), 

corresponding EDX maps for O, Si, and Ti (top-right), and corresponding depth profile by EDX 

analysis (bottom).  The value of z in a-TiSiz is 0.62, based on the depth profile analysis. 

 

3.6. EDX analysis 

Elemental analysis by EDX was performed on the memory structure to gain information on 

the defect distribution, especially in the Al2Ox layer.  The ratio of x-rays gathered from Al and O 

atoms in the sample was used to estimate the stoichiometry of the Al2Ox film. a TEM image and 

corresponding EDX depth profiles for O, Si, Al, and Ta are shown in Figure 25 below.  The 

colors of the EDX maps correspond to the device layer colors used in Figure 5. 
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Figure 26: A TEM image (top-left) of the memory stack, corresponding EDX maps for O, Si, Al, 

and Ta (top-right), and corresponding depth profile by EDX analysis (bottom). 

 

It is reported in the literature that there is an overlap between between Si kα (1.739keV) 

and Ta M (1.709keV) peak energies.  This is a common issue for analysis of semiconductor 

devices containing refractory metals.  For the range of low energies preferred for EDX, only M-

line x-rays from metals such as Ta and W are generated, and these have a significant overlap 

with the Si-K x-rays.  For the depth profile in Figure 26, and the calculation of the TaOy 

stoichiometry, it is assumed that the peak at ~1.71-1.74eV is entirely attributable to Ta.  While it 
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is difficult to analytically separate the EDX signals from the two elementals over this energy 

range, it is likely that there is only trace Si presence in this region of the device.  X-ray 

photoelectron spectroscopy (XPS) was done in parallel to this analysis, which showed only trace 

presence of Si below the SiO2 layer.  The accompanying XPS analysis is also presented in this 

dissertation. 

The oxygen vacancy profile in the Al2Ox layer was analyzed based on the chemical profile 

obtained by EDX.  The Al2Ox stoichiometry is presented in the form Al2O3-x, where x = 0.3.  The 

stoichiometry was estimated by taking the average ratio of the Al to O signal, by atomic weight, 

over the entire layer.  This analysis shows the presence of O vacancies relative to stroichiometric 

Al2O3.  These O vacancies are the result of the deposition method, e-beam evaporation, which 

inherently evaporates Al and O at different vapor pressures, and the redox reaction between the 

as-deposited AlOx and Al switching layers.  The O vacancies are the primary contributor to the 

switching behavior of the synstor.  When a voltage drops between the reference electrode and 

semiconducting Si channel, the concentration and distribution of charged O vacancies will shift 

to reprogram the conductance (synaptic weight), and said distribution remains non-volatile when 

the voltage drop is removed and the device is operated in its signal processing mode. 

Similarly, the depth profile analysis gives a value of y = 0.45 for TaOy.  This oxide is known 

to have no band gap at room temperature47, thus its conductivity is suitable as a reference 

electrode. 

3.7. XPS analysis 

A standard sample of unpatterned Si/SiO2/Al2Ox/Al/Ta was pre-processed under the same 

conditions as the regular synstor fabrication, and analyzed under x-ray photoelectron 
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spectroscopy (XPS) to study its chemical composition.  16 sputter cycles of 30 seconds each 

were used to etch through the device layers for each measurement.  The sputter cycles used 

Ar(2000)+ clusters at 20 kV, and each sputter cycle etched through a thin layer of the device 

stack.  Peaks were fitted by Gaussian-Lorentzian profiles after a Shirley background correction.  

The survey spectra from the first 12 cycles are shown in Figure 1 below.  The final 4 cycles are 

not shown because they contain only the single crystal silicon.  Peaks are identified from O, Al, 

Ta, and Si. 

 

Figure 27: X-ray photoelectron spectroscopy (XPS) survey spectra for the top layers of the synstor, 

corresponding to the AlOx/Al/Ta structure.  Peaks for Ti, Si, Al, and Ta are identified. 
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The elemental composition of each layer is shown in Figure 1 below.  Cycles 12-16 

correspond to the silicon channel.  One important observation is that the Ta signal appears 

throughout the device, although EDX imaging from TEM confirms that it exists only on the top 

of the memory stack.  This artifact occurs because the Ta atom is very heavy and will be 

implanted into the device rather than sputtered after each sputter cycle. 

 

Figure 28: Elemental distribution of the memory structure by cycle number. 

 

Analysis of individual elemental spectra provides an indication of the defect distribution 

in the memory structure.  The binding energy of O 1s peaks in the switching layer were 

deconvoluted into three major peaks35,43,44.  The binding energy 531.1±0.2 eV is attributed to the 

https://paperpile.com/c/DWU34v/favn+IFTe+44D2
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constituent O species in the amorphous Al2Ox matrix, ie. O bonded to cations in a stoichiometric 

ratio.  The binding energy 532.5±0.5eV is associated with defective oxides and O vacancies (ie. 

the photoelectron is emitted from a neighboring O atom with a shifted binding energy), and the 

binding energy 533.6±0.5eV is attributed to M-OH and H2O species in the Al2Ox film.  A 

quantitative analysis of the defects contributing to the memory function based on XPS alone is 

difficult.  This analysis has several limitations, the most important of which is that the sputtering 

of each layer may itself contribute to the defect density in the oxide layer.  Secondly, Ta is 

poorly sputtered and may in fact be implanted deeper into the oxide by the Ar cluster, and it is 

challenging to decouple the defective memory oxide from the artificial contribution of the 

various Ta suboxides found in every subsurface layer.  However, in Figure 1 below, showing the 

O 1s spectra from the first 6 cycles, a qualitative trend can be observed.  The fitted peak 

corresponding to stoichiometric oxide is dominant near the Ta surface.  Approaching the 

SiO2/Al2Ox interface (cycle 6), however, the stoichiometric O peak shrinks, and the contribution 

from the defective oxide increases substantially.  It can be inferred that there is a large defect 

density in the Al2Ox film near the SiO2 interface, which may modify the silicon channel carrier 

concentration via static field. 
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Figure 29: O 1s spectra for the 1st through 6th cycles of the XPS analysis, corresponding roughly 

to the Al2Ox/TaOy sublayer.  The green fitted peak corresponds to O in the oxide matrix, while the 

purple and blue fitted peaks are attributed to defective oxides, and hydroxides or water in the film, 

respectively. 

 

Al 2p spectra in the 4th through 7th sublayers, corresponding roughly to the Al2Ox layers 

of the memory structure, are shown in Figure 2 below.  The Al 2p peak at 72.5±0.3eV 

corresponding to metallic Al matches well with literature values45.  From EDX, the metallic Al 

film deposited by e-beam evaporation is oxidized.  Thus, cycles 4 and 5 can be viewed as a 

“metal-rich” oxide, which may also be an indication of a large density of vacancies.  The 2nd 

major fitted peak at 75.6±0.2eV is more difficult to analyze practically, because the binding 
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energy for all different suboxides of Al are close to overlapping45.  

 

Figure 30: Al 2p spectra for the 3rd through 6th cycles of the XPS analysis, corresponding roughly 

to the Al2Ox sublayer of the device.  The blue fitted peak corresponds to metallic Al, while the 

green fitted peak corresponds to all Al suboxides present in the film. 

 

Given the variation in the literature and experimental error, it is difficult to conclude which 

suboxides of Al are dominant in this device based on XPS analysis alone. 

https://paperpile.com/c/DWU34v/eIIq
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3.8. Control devices 

To demonstrate the validity of the proposed mechanism, control devices with Si/SiO2/Al and 

Si/SiO2/Al2O3/Pd device stacks were fabricated.  The purpose of the control devices were to 

study the memory effect of Al and Al2O3 by themselves, without the possibility of a redox 

reaction.  Pd was selected in the second control device as an inert reference electrode metal.   

The synstors were fabricated on a similar p-type SOI wafer.  The photolithography, channel 

etching, RCA cleaning, and thermal oxidation processes were equivalent to those described in 

Methods.  Prior to the Ti electrode deposition, the thermal oxides underneath the developed 

photolithography patterns were etched using buffered hydrofluoric acid (Buffered Oxide Etch, 

BOE 6:1).  After the 300 nm Ti electrodes were deposited, the photoresist was stripped by NMP, 

and the wafers were treated by a short oxygen plasma to descum the surface (Technics FRIE, 

100 mtorr O2, 50 W).  The wafers were then annealed in forming gas (5% hydrogen in N2) at 

460°C for 30 minutes.  For the first control device, the Al reference electrode was patterned by 

photolithography, and liftoff in an acetone and isopropanol solution.  For the second control 

device, a 10 nm layer of Al2O3 was deposited by atomic layer deposition (ALD), and then the 

Pd reference electrode was patterned by photolithography and liftoff.  The Pd reference electrode 

was then used as an etching mask to etch the Al2O3 into a self-aligned pattern underneath the 

reference electrode. 

The discrepancy in memory properties between the synstor with AlOx/Al memory stack is 

highlighted by comparing Figure 29 and 30 below with Figure 15.  The devices were tested using 

triangular voltage sweeps on the input or reference electrodes, in an analogous method to the 

process described in 3.1.  The non-linear rectifying I-Vi curves in both control devices indicate 

the formation of Schottky contacts, since the process for the input and output electrodes are 
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identical.  However, the reference electrode sweeps show a distinct lack of hysteresis compared 

to the real device, since the control devices contain only Al2O3 and Al respectively.  Without the 

possibility of the previously described switching mechanism, the control devices simply behave 

like field-effect transistors with Schottky junctions. 

 

Figure 31: I-Vi (left) and I-Vref (right) measurements obtained by applying a continuous triangular 

voltage sweep on a Si/SiO2/Al control device. 
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Figure 32 I-Vi (left) and I-Vref (right) measurements obtained by applying a continuous triangular 

voltage sweep on a Si/SiO2/Al2O3/Pd control device. 

 

4. Conclusions and Recommendations 

The synaptic resistor developed in this work integrates signal processing, memory, and 

learning functions into a single element, similar to a biological synapse.  A Schottky contact 

between Si and a-TiSiz was used to control the voltage drop across the channel, and thus the 

voltage drop between the channel and reference electrode.  In this design, the synstor can operate 

in two distinct modes: a learning mode (following Equation 2), where the input and output 

electrodes are both raised to an equivalent potential, and signal processing mode (following 

Equation 1), where only a single electrode is raised to that potential.  Switching was achieved 

using an oxygen deficient Al2Ox switching layer with x=2.7.  The presence of a high defect 

density was inferred based on hysteresis in current-voltage measurements, and later confirmed 
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analytically.  XPS analysis indicated the presence of a metal-rich (ie. O vacancy rich) oxide 

layer.  These vacancies constitute the basis of the memory mechanism of the device. When the 

device is operating in its learning mode, a voltage drops between the reference electrode and 

semiconducting Si channel, such that the concentration of charged O vacancies will shift to 

reprogram the conductance (synaptic weight), and the charges remain non-volatile when the 

voltage drop is removed and the device is later operated in its signal processing mode.  The 

synstor circuit was shown to have improved uniformity over previously the published synstor 

materials, demonstrating a network of 300 devices with 100 discrete analog conductance states 

between 0 and 100 nS.  The error between the targeted conductance and the mean of each 

population was less than 15pS.  The relative standard deviation of the Si synstor was 29 times 

larger than the previously reported CNT synstor. 

A synstor crossbar circuit emulates neurobiological networks by executing inference and 

learning algorithms concurrently with the ultra-high energy efficiency, and circumvents the 

fundamental limitations of energy consumptions in existing electronic circuits such as physically 

separated logic and memory units, data transmission between memory and logic, the execution 

of the inference and learning algorithms in serial mode in different circuits, and the signal 

transmissions between the inference and learning circuits.   Like human brains, the circuit is 

operated in analog parallel mode.  

Transistor-based computing circuits can be scaled up, and their computing speeds can 

approach the speed of the human brain for offline learning, but their power consumption also 

escalates to ~104−108 𝑊21, thus preventing onsite real-time learning.  The energy efficiency of a 

synstor circuit increases with the numbers of synstors connected in parallel with each neuron, 

and could be further improved by scaling up the crossbar array21. With its high energy efficiency, 
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it is scaled-up synstor could overcome the power hurdle of real-time learning in AI systems, be 

embedded in mobile robotic systems and powered by batteries.  

As an analog device, synstor circuits cannot execute algorithms with the accuracy of digital 

computers, however, the synaptic conductance matrix 𝒘 can be dynamically optimized in the 

real-time learning process, improving the accuracy of the analog inference algorithm, leading to 

the superior performance and adaptability of AI systems for broad applications in changing 

environments. 

In summary, by circumventing the fundamental limitations of computers, synstors emulate a 

neurobiological network able to concurrently execute inference (𝐼𝑛(𝑡) = ∑  𝜅𝑛𝑚 ∗ (𝑤𝑛𝑚𝑉𝑖
𝑚)𝑚 ) 

and learning (
𝑑𝑤𝑛𝑚

𝑑𝑡
= 𝛼𝑉𝑖

𝑚𝑉𝑜
𝑛) algorithms in real-time. The synstor conductance matrix 𝒘 does 

not need to be pre-programmed, and can be modified toward its equilibrium matrix 𝒘 to 

spontaneously optimize the system performance. 

While only individual devices have been analyzed in this dissertation, synstor circuits could 

potentially be used to overcome the “curse of dimensionality” and “Von Neumann bottleneck” 

issues which currently hinder progress in the field of artificial neural networks.   Large-scale 

synstor circuits could be used to enable AI robotic systems with high energy efficiency, and real-

time adaptability in complex environments.  There is “plenty of room at the bottom” to 

miniaturize synstor size,  scale  up  synstor  circuits,  optimize  their  materials  and fabrication  

processes,  improve  their  energy  efficiency,  speed, power  consumption,  and  uniformity  for  

concurrent  inference and learning from “big data” in intelligent systems. 
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