
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Risky Intertemporal Choice with Multiple Outcomes and Individual Differences

Permalink
https://escholarship.org/uc/item/5kv9g28t

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Wall, Daniel G
Chapman, Gretchen
Hemmer, Pernille

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5kv9g28t
https://escholarship.org
http://www.cdlib.org/


Risky Intertemporal Choice with Multiple Outcomes and Individual Differences 
 

Daniel G. Wall (dwall@andrew.cmu.edu)1, 

Gretchen Chapman (gchapman@andrew.cmu.edu)1, 

Pernille Hemmer (pernille.hemmer@psych.rutgers.edu)2 
1 Social and Decision Sciences, 5000 Forbes Ave, Pittsburgh, PA 15213 USA 

2 Psychology, 152 Frelinghuysen Road, Piscataway, NJ 08854 USA 

 

 

 

Abstract 

Risk and delay co-occur. Intertemporal choices are rarely 
certain; risky choices are rarely atemporal. Behavioral 
evidence suggests that risk and time are entangled: time 
discounting is different for risky outcomes than for riskless 
outcomes. A prominent model of risky intertemporal choice 
(Baucells & Heukamp, 2012) combines risk and delay into 
psychological distance. It predicts that risk and time will be 
entangled for outcome risk (risk with one zero outcome and at 
least one positive outcome) but not for amount risk (risk with 
three or more positive outcomes) unless assuming non-
cumulative probability weights. We show that BH does not 
quantitatively fit risky intertemporal choices better than a 
model assuming risk and time are independent. Many 
participants were best fit by a random response model. The 
functional form for risky intertemporal choices is difficult to 
detect. While risk and time are entangled, they do not seem to 
be evaluated as psychological distance. 

Keywords: Risky Intertemporal Choice; Choice Modeling; 
Individual Differences, Latent Mixture Model 

Introduction 

Decisions often involve a trade-off realized over different 

time periods. When choosing an age to retire you can wait to 

receive Social Security payments of $1200 a month or claim 

early and receive only $1000 a month (Knoll, Appelt, 

Johnson, & Westfall, 2015; Schreiber & Weber, 2016). Many 

real-world choices, beyond the delay to receipt, have an 

element of risk in the outcome. For instance, when investing 

in an individual retirement account (IRA), you know that the 

total value at the time of your retirement is uncertain. 

However, most models of risk and time treat each aspect 

independently. This might be why there is mixed evidence 

for the predictive power of intertemporal choices on real-

world decision making (Arfer & Luhmann, 2017). To better 

predict real world decision making, models should 

acknowledge the co-occurrence of risk and delay. 

Recent work has proposed an integrated model of risk and 

time (Baucells & Heukamp, 2012), but this model implicitly 

ignores the fact that risk is rarely binary—you are unlikely to 

encounter a prospect which has a 50% chance of $100 and a 

50% chance of $0. Your IRA can take on a lot of different 

values in the future. Further, as is often the case, a model is 

tested via the qualitative behavior effect it produces, not how 

well it recovers parameters and predicts actual choices. 

The treatment of risk and time as separate is further 

perpetuated in experimental work. As opposed to measuring 

risk and time together, the dominant paradigm for 

investigating temporal preferences is choices between two 

certain (i.e., without risk) monetary amounts, each received 

at a different point in time. For example, participants might 

be asked to make a choice between receiving $100 today or 

$110 in 4 weeks. Adding risk can be achieved by specifying 

a 50% probability for all monetary amounts (Ahlbrecht and 

Weber 1997; Andreoni and Sprenger 2012; Baucells and 

Heukamp 2012). This increased realism, however, it also 

alters discounting.  

Consider the immediacy effect, a phenomenon in which 

people display a strong preference for immediate outcomes. 

People prefer $100 today to $110 in 4 weeks, but if you push 

both options back 26 weeks, people prefer $110 in 30 weeks 

to $100 in 26 weeks. The power of immediacy, however, 

diminishes in the presence of risk. For instance, Weber and 

Chapman (2005) demonstrated that adding outcome risk—

e.g. specifying a 50% probability for all monetary amounts—

attenuates the immediacy effect. In other words, the power of 

now may in part be due to the certainty of now. Related work 

has reached a similar conclusion: people discount the future 

differently if it is risky as compared to if it is certain 

(Andreoni & Sprenger, 2012; Hardisty & Pfeffer, 2015). 

Taken together, these results suggest that risk and time are 

entangled. 

In this paper we measure the entanglement of risk and time 

by fitting multiple models of risk and time to choices, 

including a random response model. We further allow for 

individual differences in risk time entanglement. 

Entanglement has only been observed in aggregate; however, 

this may be due to a subpopulation which has entangled 

preferences. Lastly, to increase realism we include choices 

which have multiple positive outcomes.  

In the next section we discuss two broad categories of risky 

intertemporal choice models: one category assumes risk and 

time are disentangled and the other assumes they are 

entangled. For the entangled model, we focus on the Baucells 

and Heukamp (BH) model which reduces to a disentangled 

model. In order to see how these models deal with risk with 

multiple outcomes, we extend both the entangled and 

disentangled models with cumulative and non-cumulative 

prospect theory. We then fit the 4 models and a random 

response model to choices, allowing each participant to be fit 

by a unique model. Our results suggest that risk and time – 

while entangled – are not unified under psychological 

distance—an assumption of the BH model. 
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Two Classes of Risky Intertemporal Choice Models 

Models of risky intertemporal choices fall into two broad 

categories. The first category assumes that risk and time are 

evaluated independently and therefore involves a two stage 

process: 1) calculate the certainty equivalent of the risky 

option, then, 2) discount it (Abdellaoui, Diecidue, & Öncüler, 

2011; Öncüler, 2000). Evaluating time and risk separately 

assumes that they are independent of one another, meaning 

that, contrary to the evidence presented above, risk should not 

affect temporal discounting. The second category, which 

evaluates time and risk together, in a single step, assumes that 

they are entangled and therefore are dependent on one 

another (Baucells & Heukamp, 2012). This combined 

evaluation assumes that time and risk are evaluated in 

concert, meaning that the effect of risk on value is dependent 

upon the delay to receipt and vice versa. 

For the entangled category of models, we use the BH 

model because it has only three free parameters and has a 

psychological interpretation for risk-time entanglement. 

Specifically, it assumes that both risk and time increase 

psychological distance—which is subadditive. Further, while 

the model was originally presented as a quantitative model of 

risky intertemporal choice, it was not fit to choices. More 

practically for our purposes, BH reduces to a common 

probability weighting model Prelec (1998), for immediate 

prospects, and a common time discounting model, Ebert and 

Prelec (2007), for riskless prospects. 

For the disentangled category of models, we use a two-

stage model that combines the Prelec probability model with 

the Ebert and Prelec time discounting model and evaluates 

risk and time independently, i.e. the effect of delay is 

independent of risk and the effect of risk is independent of 

delay. While the BH model also combines the Prelec model 

with the Ebert and Prelec model, it evaluates delay and risk 

together, e.g. the effect of delay on value depends on how 

much risk and the effect of risk on value depends on delay. 

More simply, the BH model assumes risk and time are 

entangled, while the Prelec then Ebert and Prelec model 

assumes risk and time are disentangled.  

Disentangled Model Stage 1: Prelec Probability Model of 

Probability Weighting  

The first stage of our two stage model calculates, given an 

objective probability, the decision weight of an outcome. The 

decision weight of an unlikely event (𝑝 =  .01) is generally 

overweighted, while the perceived probability of a likely 

event (𝑝 =  .99) is generally underweighted. Prelec (1998) 

outlines a probability weighting model which defines the 

weighted, or perceived, probability w(p) of an objective 

probability 𝑝 as 

                           𝑤(𝑝) = exp((−(−ln𝑝)𝛿𝑃))                    (1) 

Where 𝑝 is the probability of the option and the 𝛿𝑃 

parameter is the distortion of probabilities. For 𝛿𝑃 = 1 there 

is no distortion of probability, but for 𝛿𝑃 = 0.1  probabilities 

are very distorted, with extreme overweighting of low 

                                                           
1 The utility function is similar for both time and risk (Luckman 

et al., 2017) 

probabilities, 𝑤(.01) =  0.31, extreme underweighting of 

high probabilities, 𝑤(.99) =  0.53. The dollar amount 𝑥 is 

then multiplied by the weight, 𝑤(𝑝),  to get the value, 

V(𝑥, 𝛿), of the gamble. For ease of exposition, we are 

assuming linear utility1. The Prelec probability weighting 

model calculates, ignoring delay, the risk adjusted value of a 

prospect. The second stage of our two stage model—the 

Ebert and Prelec model of time discounting—then discounts 

that value . 

Disentangled model stage 2: The Ebert and Prelec Model 

of Time Discounting 

The Ebert and Prelec (2007) model of time discounting has a 

similar functional form as the Prelec model, but instead of 

accounting for deviations from linear probability weighting, 

it accounts for deviations from exponential discounting. 

Specifically, the Ebert and Prelec model calculates the 

discount factor 𝑑(𝑡)—the factor by which a present value is 

reduced moving 𝑡 days into the future—by: 

                           𝑑(𝑡) = exp(−(𝑟𝑑𝑎𝑖𝑙𝑦  𝑡)
𝛿𝐸𝑃

)                   (2) 

Where t is the delay, 𝑟𝑑𝑎𝑖𝑙𝑦  is the daily discount rate, and 

𝛿𝐸𝑃  is the index of time sensitivity. When 𝛿𝐸𝑃 = 1, the Ebert 

and Prelec model reduces to exponential discounting. When 

𝛿𝐸𝑃 <  1 the model predicts increased discounting for delays 

in the near future and decreased discounting for delays in the 

far future—more simply, it can account for the immediacy 

effect. 

Disentangled Model: Combined Prelec and Ebert-Prelec 

(PEP) model  

The discount factor from the Ebert and Prelec model—

Disentangled model stage 2—is multiplied by the risk 

adjusted value—Disentangled model stage 1—to calculate 

the utility of the delayed prospect. Specifically, the 

probability adjusted discount factor, 𝛼, of a delayed prospect 

is the product of the Prelec probability weight and the Ebert 

and Prelec discount factor: 𝛼 =  𝑤(𝑝)𝑑(𝑡). The value of a 

delayed prospect is: 𝛼𝑥. This combination of the Prelec 

probability weighting model and the Ebert-Prelec 

discounting model is a two stage model of delayed prospects 

which we call the PEP model. The PEP model assumes 

disentangled risk and time; it is a foil to the predictions of the 

BH Model.  

Entangled Model: Baucells and Heukamp 

In contrast to the two stage PEP model, Baucells and 

Heukamp (2012) assumes that risk and time are entangled. 

BH combines the Prelec and Ebert and Prelec models into a 

one stage model where risk and time form a single distance 

function, which captures the psychological distance to the 

outcome. Increasing the amount of time to an option 

increases psychological distance; similarly, decreasing the 

probability of receiving an outcome increases psychological 

distance (Trope & Liberman, 2010). This psychological 

distance function is subadditive, such that the combination of 

risk and time produces an effect on psychological distance 
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that is less than the linear combination of risk and time by 

themselves. 

For a delayed prospect, the BH distance model calculates 

probability adjusted discount factor, 𝛼, as: 

                    𝛼 = exp (−(−ln𝑝 + 𝑟𝑑𝑎𝑖𝑙𝑦  𝑡)
𝛿𝐵𝐻

 )               (3) 

where 𝑝 is the probability with which it will be received and 

𝑡 is the delay until receipt. The parameters for calculating 

utility are 𝑟𝑑𝑎𝑖𝑙𝑦—the probability discount rate which 

measures the trade-off between probability and time delay—

and 𝛿𝐵𝐻—the sensitivity to psychological distance. Higher 

𝛿𝐵𝐻 values indicate less sensitivity to distance. For lower 𝛿𝐵𝐻 

values distance is more subadditive. The BH model reduces 

to the Ebert and Prelec time discounting model for certain, 

i.e. 𝑝 = 1, intertemporal choices and reduces to the Prelec 

Probability Weighting function for atemporal, i.e. 𝑡 = 0, 

risky choices (Baucells & Heukamp, 2012; Toubia, Johnson, 

Evgeniou, & Delquié, 2012). 

In order to keep terms consistent across models, we refer 

to the 𝛿 parameter as the deviation parameter. In the Prelec 

model it refers to the deviation from linear probability 

weighting, in the Ebert and Prelec model it refers to the 

deviation from exponential discounting, and in the BH model 

it refers to the diminishing sensitivity between risk and time, 

e.g., how much does risk and time deviate from risk alone and 

time alone. 

Two Types of Risk, Two types of decision weights 

In pilot studies, we found that BH does not predict that 

amount risk alters discounting unless we assume 

noncumulative decision weights. This, however, seems 

implausible because, for amount risk the total probability 

weight can be greater than 1, leading to violations of 

dominance. In order to test if noncumulative probability 

weights actually fit choices better, here we fit all four 

models—BH Cumulative, BH NonCumulative, PEP 

Cumulative, PEP NonCumulative—as well as a random 

response model to choice data. 

A key element of Prospect theory (Kahneman & Tversky, 

1979) is the overweighting of small probabilities and the 

underweighting of large probabilities. For prospects with two 

positive values—½ chance $25 and ½ chance of $100 —

probability weighting can lead to violations of stochastic 

dominance. To correct for this this, Kahneman and Tversky 

propose editing rules—the prospect assuredly pays out $25 

and has a ½ chance of receiving an additional amount. 

However, this editing rule does not easily apply to prospects 

with, say, four (which is what we use in our experiment) 

positive outcomes (Gonzalez & Wu, 1999). Therefore, we 

estimate noncumulative decision weights without an editing 

rule. For the following prospect, a 1/6 Chance of $125; a 1/6 

Chance of $120; a 1/6 Chance of $115; 1/2 chance of $0, we 

simply calculate a decision weight for 1/6th and multiply that 

by the dollar amount and take the sum.  

While noncumulative decision weights can lead to 

violations of stochastic dominance and seem to be prima facie 

incorrect, there is reason to believe that delay alters 

probability weighting. Specifically, the form of decision 

weighting may be entangled with time. If people perceive 

delay as adding risk, they should weight probabilities 

differently when delay is present. As previously mentioned, 

when combined with the BH model, noncumulative decision 

weights predict behavioral patterns in risky intertemporal 

choices, but cumulative decision weights do not. 

In order to deal with violations of stochastic dominance 

without ad hoc editing rules, Tversky and Kahneman (1992) 

created Cumulative prospect theory. What follows is 

Gonzalez and Wu's (1999) intuitive specification of 

cumulative decision weights. First, the options are placed in 

order according to decreasing absolute value. Formally, 

where 𝑋1 is the dollar amount for the first option and 𝑝1 is the 

probability of receiving the first option, a prospect is 

represented by (𝑋1, 𝑝1; … ; 𝑋𝑛, 𝑝𝑛) where |𝑋𝑖| > |𝑋𝑖+1| and 

all 𝑋's are on the same side of the reference point. The value 

of a prospect is the following: 

𝑤(𝑝1)𝑢(𝑋1) + ∑ [𝑤 (∑ 𝑝𝑗

𝑖

𝑗=1

) − 𝑤 (∑ 𝑝𝑗

𝑖−1

𝑗=1

)]

𝑛

𝑖=2

 𝑢(𝑋𝑖)    (4) 

where 𝑢 is the utility function, which in our case is linear.  

Taking the atemporal prospect outlined in the 

noncumulative section, a cumulative probability weighting 

proceeds as follows—remember we assume linear utility. 

Since the items are already in decreasing order according to 

absolute value, “1/6 chance of $125” would be have a 

decision weight of 𝑤(1/6)  ∗  $125. The weight of $120 

would be [𝑤(1/3) –  𝑤(1/6)]  ∗  $120, which is the decision 

weight of the probability of receiving at least $120 minus the 

decision weight of the probability of receiving more than 

$120. And similarly to $125, the weight of $115 would be 

[𝑤(1/2) –  𝑤(1/3)]  ∗  $115, e.g. the probability weight of 

receiving at least $115 minus the probability weight of 

receiving more than $115. This sets an upper bound on the 

sum of decision weights at 1. In the two stage model, the 

weighting function, 𝑤, is the Prelec probability weighting 

function, but for the one stage model it is the BH model.  

For convenience we call prospects with multiple positive 

dollar values amount risk. For instance: a 1/3 chance of $100; 

a 1/3 chance of $120; a 1/3 chance of $1000 has amount risk 

(Blackburn & El-Deredy, 2013; Hardisty & Pfeffer, 2015). 

Moreover, the real world presents prospects with many 

eventualities, our models should account for this. Outcome 

risk, however, is when there are only two outcomes and one 

is a zero. For instance, a ½ chance of $100 and a ½ chance of 

$0 is outcome risk. Outcome risk (2 outcomes, one is zero) is 

a very special case of the broad class of lotteries. This is 

admittedly a fuzzy definition, but it’s a useful demarcation 

which has been used by other researchers studying risky 

intertemporal choices (Blackburn & El-Deredy, 2013; 

Hardisty & Pfeffer, 2015). A two outcome prospect is as 

simple as it gets and when one of the two options is 0 there is 

no need for editing rules.  

In addition to investigating amount and outcome risk 

individually, we also combined amount and outcome risk. 

For instance: a 1/4 chance of $100; a 1/4 chance of $120; a 
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1/4 chance of $1000; a 1/4 chance of $0 has amount and 

outcome risk. 

Method  

Participants 

A sample of 18 MTurk participants made the 120 choices 

outlined above. Two participants missed more than 2 of the 

check questions and were removed from the data2. In order to 

incentivize honest answers, participants were told that one of 

their choices would be paid out for real, except that the value 

would be 1/100 of the nominal value in the survey. To ensure 

attention, participants were told that their bonus payment was 

contingent on answering the check choices correctly. 

Stimuli and Procedure 

To create stimuli, we followed the methodology of Erev et 

al., (2014) which sampled from distributions for probabilities 

and dollar amount. First to eliminate participant’s editing out 

risk common to both options, the smaller present option was 

always certain. Second, the algorithm created stimuli with 

expected values of about $100. Third, and most importantly 

the stimuli had varying delays. The 120 stimuli created from 

the algorithm are at https://osf.io/sv5xn/; and the R code used 

to create the stimuli is at https://osf.io/xdpmz/. An example 

choice with delay, amount, and outcome risk is: 1) $87 for 

certain today 2) A 14% chance of $235 in 60 days; A 6% 

chance of $775 in 60 days; A 18% chance of $87 in 60 days; 

A 62% chance of $0 in 60 days. This design had at minimum 

10 check choices for the atemporal arisky choices. Since the 

algorithm had random values for some choices, there was an 

uncertain number of additional check questions. The random 

number seed yielded an additional 7 check choices for arisky 

intertemporal choices which had a dominated option, for a 

total of 17 check choices—choices in which one item 

asymmetrically dominated the other option. In order to have 

a completely within subjects design, all 120 stimuli were 

presented in a random order to each participant. 

To validate our stimuli, we performed two forms of 

parameter recovery. First we followed the methodology of  

Broomell and Bhatia (2014) which demonstrates the stimuli’s 

ability to recover parameters from a large parameter space. 

These stimuli were comparable to the other stimuli sets in 

Broomell and Bhatia.  

The second parameter recovery followed Nilsson, 

Rieskamp, and Wagenmakers (2011). Specifically, we 

generated synthetic data for 120 participants and used these 

data in the hierarchical Bayesian mixture model outlined in 

the next section. The model recovered both the generative 

parameters and the risky intertemporal choice model which 

generated the data. Taken together, the stimuli created do a 

good job of recovering parameters and distinguishing 

between risky intertemporal choice parameters. 

                                                           
2 While this is an admittedly small sample, there are a larger 

number of individual level choices. Rieskamp 2008 used only 30 

participants to fit a Cumulative Prospect Theory model. Further, we 

Results 

Mixture Model 

When disaggregated, it is possible that for some people risk 

and time are entangled, but for other people they are 

disentangled. In order to see which of the five models—BH 

Cumulative, BH NonCumulative, PEP Cumulative, PEP 

Noncumulative, and random responding—fit individual 

participants best, we used a latent mixture model. Latent 

mixture models—aka latent class models—can be used to 

determine which model best fits each individual participant’s 

data. 

We used a hierarchical modeling framework. Each 

participant’s mean 𝛿 was drawn from a population with a 

mean and standard deviation, and then was given 0-1 support 

via the probit transformation. The same procedure was used 

for each participant’s 𝑟 parmeter. For the logit scale 

sensitivity parameter, as opposed to the probit 

transformation, we used a lognormal transformation. 

Of note is the mixing parameter, which is a categorical 

variable that indexes which model fit a person’s data the best. 

The mixing parameter was not hierarchical. The mixing 

parameter has the following structure: 1st group is the 

cumulative BH, 2nd group is noncumulative BH, 3rd group is 

cumulative pep, 4th group is noncumulative pep, 5th group 

was a random response model, which ignored all other 

information and essentially flipped a coin for each choice.  

The fifth, random response, model was included to ensure 

that a participant who was not fit by any of the four models 

did not contaminate the hierarchical parameter values. More 

importantly, the random response group indicates the number 

of participants who have a generative process which is not 

well estimated by the other models. 

Hierarchical Bayesian Latent Mixture Modeling 

Figure 1 shows that most participants were fit nearly 

equally well by all models. Further, five of the participants 

were better fit by a model of random responding than any of 

the four models. While it would be interesting to see if those 

who were fit by a random response model showed 

entanglement, the stimuli set in our study is not conducive to 

a test of behavioral phenomenon. 

ran another sample with slightly modified stimuli, and the results 

were nearly identical.  
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As seen in Figure 2, the hierarchical mean of delta was 

almost always near 1. When the delta parameter is higher, the 

four models collapse and become nearly identical. The BH 

model becomes: exp (−(−ln𝑝𝑖 + 𝑟𝑛𝑡𝑖)) and the PEP model 

becomes exp(−(−𝑙𝑛𝑝𝑖)) × exp (−𝑟𝑛𝑡𝑖)), and via the 

product rule, these two models are the same. Since there is no 

probability distortion, 𝛿 =  1, cumulative decision weights 

reduce to noncumulative decision weights.  It is tempting to 

rerun the analyses with an unbounded delta parameter, 

however, this makes the assumption that people could 

underweight low probabilities and overweight high 

probabilities. While the description-experience gap predicts 

underweighting of small probabilities, there is reason to 

believe this prediction is an artifact due to a large number of 

possible decision weights that fit experienced prospects 

(Broomell & Bhatia, 2014). A model that predicts anything 

predicts nothing. 

 

Figure 2. Joint posterior of the hierarchical means of δ and r. 

Each point is a sample draw from the Markov Chain. 

 

Un-Mixing the mixture model 

In order to determine if the high 𝛿 in the latent-mixture model 

was due to certain choices, we fit models to various subsets 

of the data. Specifically, for the choices which were simply 

intertemporal choices, we fit the Ebert and Prelec model—all 

four models reduce to the Ebert and Prelec model for arisky 

temporal choices. For risky items which are atemporal, we fit 

the cumulative Prelec model—the cumulative BH model 

reduces to the Prelec model for atemporal risky choices. For 

all of the remaining choices, e.g. temporal risky choices, we 

fit the cumulative BH model.  

For arisky temporal choices, the hierarchical Bayesian 

model converged—all Rhats < 1.1 and visual inspection of 

the traceplots confirmed that the posterior was in a stationary 

distribution. Further the mean value for the 𝛿 parameter was 

0.86 with a 95% credible interval of [.55 - .99]. This estimate 

was higher than previous estimates of the 𝛿𝐸𝑃 parameter .18-

.6 (Ebert & Prelec 2008). This may be due to participants 

adopting a different heuristic when answering risky 

intertemporal choices than when they answer solely 

intertemporal choices. It is worth considering that 

participants only saw 13 pure intertemporal choices, meaning 

that the data do not have a chance to overwhelm the diffuse 

prior on 𝛿𝐸𝑃. With a narrower prior, the posterior 𝛿𝐸𝑃 would 

be closer to 1. The 𝛿𝐸𝑃  parameter is high in our data for 

arisky intertemporal choices, meaning that people’s 

discounting is fit by a discount function which is close to 

exponential discounting.  

For atemporal risky choices, the hierarchical Bayesian 

model for the cumulative Prelec model converged—Rhats < 

1.1 and traceplots indicated convergence. The mean value of 

the delta parameter was .99 with a 95% credible interval of 

[.98, .999]. This value means that people’s distortion of 

probability is very close to linear. However, we must exercise 

caution in interpreting the parameter values because the 

model posterior predicted participant’s actual choices less 

than 50% of the time. As a secondary check we also fit a 

model with just atemporal outcome risk choices and the 

model posterior predicted choices 37% of the time. We refit 

the exact same model on the simulated parameter recovery 

data with 𝛿𝑃 =  .6 and the model recovered the parameters 

well and had a 92% hit rate.  

For the remaining, risky intertemporal choices, the model 

converged as well. The mean 𝛿 value was .985 with a 95% 

credible interval of [.90 - .9999], this suggests that the delta 

value is quite high for these data. Taken together, it seems as 

if the empirical delta is too high to fit the latent mixture model 

and distinguish between different generative processes. 

As another check, we redid the Nilsson et al. (2011) 

parameter recovery outlined above, except with a generating 

delta of .95. The results were nearly the same as the empirical 

data, each participant was fit equally well by all models, and 

no participants had more than 50% of the mixing probability 

in their true generative process. 

Discussion 

In this paper we aimed to test the entanglement of multiple 

forms of risk and delay. Specifically, we were interested in 

individual differences in entanglement and how risk with 

multiple positive outcomes related to entanglement. As 

Figure 1. Probability of each participant being fit best by the four models and random responding. The size of the box indicates 

the probability that model fit the participant best. 

 

Figure 1. . Probability of each participant being fit best by the four models and random responding. The size of the box indicates 

the probability that model fit the participant best. 
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opposed to looking at behavioral phenomenon, we fit these 

models to actual choices. Specifically, we fit a mixture model 

which allowed participants to be fit best by either the BH 

Cumulative, BH NonCumulative, PEP Cumulative, PEP 

NonCumulative, or a random response model. Two assumed 

entanglement of risk and time and two assumed 

disentanglement of risk and time. We were unable to 

determine which of the four discounting models fit 

participant’s data the best. Nearly 1/3 of participants were fit 

better by random responding than by any other model. 

Taken together, this suggests that while the behavioral 

effects are consistent with a BH model using noncumulative 

decision weights, the model is actually not a good fit to the 

data. This work implores caution: using solely behavioral 

effects as a test of models can be insufficient. To determine 

the accuracy of a model, it model needs to be fit to the data.  

The current results suggest that while discounting models 

can account for many behavioral effects seen in risky 

intertemporal choice, they are a poor statistical fit to choices. 

Given the predictive power and process evidence of heuristic 

models in independent risky and intertemporal choices, it 

follows that heuristics operate in combined risky 

intertemporal choices. Recent work on  risky intertemporal 

choices with only two outcomes, found that people spend 

relatively more time fixating on risk compared to time 

(Konstantinidis, van Ravenzwaaij, & Newell, 2017). When 

there are more probabilities—e.g. there is amount risk—

people may focus even more on probability, decreasing their 

relative focus on the delay—i.e., if people don’t pay attention 

to time then they should seem patient. Decreased relative 

attention means that delay plays a lesser role in choice, which 

could explain why amount risk has a bigger effect on 

discounting than outcome risk.  

Konstantinidis, et al. also showed that information 

acquisition is inconsistent with amount and time both falling 

under psychological distance. We add to their result by 

showing that while risk and time are entangled choice models 

are inconsistent with risk and time both falling under 

psychological distance.  Our results also suggest that a 

functional form for the discount function of risky 

intertemporal choices is difficult to detect and that new 

models are needed. 
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