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Abstract

Risk-Aware Algorithms for Learning-Based Control With Applications to Energy and
Mechatronic Systems

By

Aaron Kandel

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Co-chair

Professor Scott Moura, Co-chair

This dissertation leverages and develops the powerful out-of-sample safety certificates of
Wasserstein ambiguity sets to create a suite of data-driven control algorithms that help
solve safety-critical industrial problems. This work is motivated by the ongoing relevance
of robustness and safety when applying data-driven decision making in the real world. For
example, lithium-ion batteries are driving transitions to renewable energy sources. Optimizing
their performance and longevity is of the utmost importance, but highly difficult due to their
complex, nonlinear, and safety-critical electrochemical dynamics. While data-driven control
can dramatically improve the performance of systems like lithium-ion batteries, certifying
system safety remains an open challenge. This dissertation explores certifying learning-based
controllers via distributionally robust optimization (DRO). We focus on Wasserstein ambiguity
sets, DRO methods that draw worst-case realizations of random variables under relatively
permissive assumptions. This makes them ideal for learning-based control, where data can
be highly limited and the controller is likely encounter new experience unaccounted for in its
training data.

In Chapter 2, we begin by presenting simple mathematical arguments that extend an existing
reformulation of Wasserstein DRO to cases where dependence on decision variables x and
random variables R can be nonconvex as long as x and R are separable. By cleverly modeling
stochasticity in model uncertainty, we augment nonconvex optimal control problems with
Wasserstein ambiguity sets to obtain idealized probabilistic safety certificates.

The remaining chapters extend this theoretical result across the range of model-based and
model-free reinforcement learning. Chapter 2 explores offline model-based reinforcement
learning within a latent state-space, with application to real-time fast-charging of li-ion
batteries using electrochemical information. By leveraging the results of Chapter 2, we
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can hedge against model and data errors to probabilistically guarantee safe distributional
data-driven control.

Chapter 4 presents an end-to-end framework for safe learning-based control using nonlinear
stochastic MPC. We focus on scenarios where the controller is applied directly to a system
of which it has highly limited experience, toward safety during tabula-rasa learning-based
control as a challenging case for validation. We validate findings with case studies of extreme
lithium-ion battery fast charging and autonomous vehicle obstacle avoidance using a basic
perception system.

Finally, in Chapter 5, we apply the same DRO architecture to value-based RL. We describe a
structure for deep Q-learning within the framework of constrained Markov decision processes
(CMDPs). By characterizing the uncertainty of constraint cost functions based on their
temporal-difference errors, we augment relevant constraints with tightening offset variables
based on DRO theory of Chapter 2.

In our concluding remarks, we discuss the broader relevance of our findings and map directions
for future work.
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Chapter 1

Introduction

This dissertation investigates techniques for learning-based control, with applications to
energy and mechatronic systems. This work is motivated by the powerful capability of
data-driven control to unlock new levels of performance and efficiency in real-world industrial
systems. While data-driven methods can amplify impact, they still often struggle to do so
while guaranteeing safe operating conditions. Current research explores guaranteeing the
safe behavior of learning-based control systems, but these certificates remain largely elusive.
This dissertation leverages distributionally robust optimization to create progress towards
certified data-driven control by developing relevant theory and a suite of learning-based
control algorithms. We validate these works on several problems in the mechatronics and
energy systems domains.

1.1 Motivating Example - Energy Storage Systems

Lithium-ion batteries are a ubiquitous technology that has enabled revolutionary technological
advancement for a host of applications including personal electronic devices, healthcare,
vehicle electrification, and renewable energy technologies. Chances are you are reading this
dissertation on a device powered by a lithium-ion battery.

Lithium-ion batteries (LIBs) are highly complex electrochemical systems. No two LIBs are
precisely the same, due to even well controlled and minute variances throughout manufacturing
processes, materials, storage, and usage conditions. Modern manufacturing tolerances have
created greater consistency among cells, but many react with variability after prolonged
usage. Even our most advanced dynamical models still fail to capture the granularity within
the underlying electrochemistry that is perhaps only accessible via molecular modeling itself
[32].

The relevance of li-ion batteries will continue to grow as our grid moves more towards
utilization of intermittent renewable energy sources. A recent report predicts that investment
into battery manufacturing infrastructure must increase by $150-$300 billion dollars in the
next 30 years [105]. This will mean greater usage, as well as a growing need for our existing
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batteries to last longer and function more efficiently. Currently, battery management systems
(BMS) utilize highly simplified battery models in their decision-making. Lithium-ion batteries
are complex electrochemical systems whose full dynamics are computationally expensive to
simulate. Those full-order dynamics could inform BMS that more effectively preserve the
cell health, but using that information in real time and on embedded hardware is highly
challenging.

Figure 1.1: Comparison of safe operating conditions defined by reduced order vs. full order
model of li-ion battery dynamics. By considering granular and nonlinear electrochemical
information most relevant to feasibility during control, the limits of the controller become
much less restrictive compared to limits imposed by a simplified model that must approximate
the truly relevant nonlinear relationships and variables [80].

Consider Figure 1.1, which visualizes this tradeoff. The left hand side visualizes the
safe operating conditions for a li-ion cell as described by a reduced-order dynamical model
(specifically an equivalent circuit model, or ECM). The right side shows the safe operating
conditions of the cell modeled with its fine-resolution electrochemical relationships as defined
by, for example, the Doyle-Fuller-Newman (DFN) model [31, 30, 32]. In the reduced-order
case, we have highly limited information of the cell (e.g. input current, terminal voltage).
Constraints on the reduced-order model attempt to emulate the known electrochemical
relationships of the DFN that are directly tied to the safety of the battery cell. These
constraints define the safe operating conditions shown on the left. When these constraints are
projected into the electrochemical space on the right, we see that they create a conservative
approximation of the true safe operating conditions as defined by the relevant electrochemical
states themselves (two shown on the x and y axes). Thus, if we could create BMS using
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granular, high fidelity electrochemical information, we could take the battery closer towards
the true boundary of its safe operating conditions. This would reduce charge times while also
improving our ability to preserve the state-of-health (SOH) of the battery cell.

This tradeoff falls within the crux of control-oriented modeling. However, many systems
are characterized beyond the scope of existing historical control-theoretic tools. Consider
visuomotor control synthesis, where a control policy is learned from observations of RGB
images of the environment [64, 20, 37]. Generally, the case of multimodality in the state space
is becoming a significant space for LbC algorithms [67]. Modern models are being asked to
process combinations of text, images, and numerical inputs, synthesizing information from
all sources into appropriate predictions and decisions [106, 46]. Learning-based control is
guiding development of many such models, and ensuring their alignment with safety and
specifications [18]. While multimodal inputs are more immediately associated with safe
control of autonomous vehicles using a fusion of classical state variables (e.g. position,
velocity, etc.), camera image inputs, and lidar measurements; or guiding foundation models to
avoid profanity and hallucinations in the text and images they generate - multimodal inputs
from systems like batteries are also being shown to improve the performance of BMS. For
example, recent work has improved estimation and control in BMS by considering fusion of
classical observations (voltage, temperature, input current) with strain gauge measurements
of the swelling of the battery cells [45, 36].

While LbC has seen a surge in application and study in recent years, the LbC problem
space borrows many concepts from historical research on stochastic optimal control - a field
which dates back decades to the original linear-quadratic Gaussian problem [7]. LbC has a
powerful ability to synthesize control from high-dimensional, nonlinear, unintuitive systems,
but the frequent lack of transparency of black-box learning means the robustness of the
resulting controller is difficult to certify.

Exploring the question of certifying LbC systems dates back decades in the literature.
The key underlying concept typically relates to uncertainty, and how we can accommodate
limited or imperfect knowledge of the underlying dynamics. For instance, foundational work
by Kothare et al. addresses uncertainty in linear MPC with linear matrix inequalities by
allowing the state transition matrices to vary in time within a convex polytope [59]. As
many high-impact modern control systems are nonlinear, multimodal, and unstructured,
certification still comprises a significant ongoing investigation in the literature [102, 44, 13].

1.2 Background and Relevant Works

The objective of this dissertation is to create progress in the space of certifying learning-based
controllers, and to demonstrate that progress with relevant application studies.

The systems of focus are nonlinear, high-dimensional, and potentially multimodal. Cer-
tifying the behavior of such systems is an open challenge, comprising a significant area of
study in contemporary literature. Our approaches partially focus on cases with highly limited
subject matter expertise. We define subject matter expertise (SME) as prior knowledge of
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the structure of underlying dynamics, and/or prior access to data of system trajectories
and behavior. Many existing safe LbC algorithms require assumptions from either or both
of these spaces. In this section, we provide relevant background and literature review to
contextualize our statement of contributions.

Model-Based Control

Consider the following model-based finite-time optimal control problem statement:

minimize
u

N∑
k=0

J(xk, uk) (1.1a)

subject to: xk+1 = f θ(xk, uk) (1.1b)

g(xk, uk) ≤ 0 (1.1c)

h(xk, uk) = 0 (1.1d)

x0 = x(0) (1.1e)

xN ∈ Xterminal (1.1f)

We denote x(t) to be the value of the state at time t, and xk to denote the predicted value of
the state x k steps after the current time t. Here, N is the final time index during prediction;
xk ∈n is the predicted state vector after k steps of prediction; uk ∈p is the control input vector;
J(xk, uk) :

n ×p → is the stage cost function at time k; f(xk, uk) :
n ×p →n represents the

system dynamics learned with parameterization θ; g(xk, uk) :
n ×p →m represents inequality

constraints; and h(xk, uk) :n ×p →ℓ represents equality constraints. The constraints are
evaluated with predictions of the state trajectory, and themselves may be learned functions.
The set Xterminal defines feasible terminal states for the state trajectory.

We call this problem “model-based” because it uses models of the system f , g, and h to
plan the control sequence. A model-free approach might look something like:

minimize
θ

V πθ

(x(t)) (1.2)

Here, πθ is the control policy which we learn parameterized by θ, and V π is the value function
given the policy π.

In the case of model-predictive control (MPC), we solve (1.1a-1.1f) at each instant int
time - planning into the future - but only applying the first control input x∗0. Then, after
transitioning with the plant in the loop, we repeat this process.

Relevant Works

Stochastic optimal control has become connected to ongoing research in the burgeoning field
of LbC - often referred to as reinforcement learning (RL). Here, researchers seek guarantees on
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safety1 and performance when learning and/or controlling a dynamical system. For example,
offline reinforcement learning focuses on synthesizing a robust policy from a fixed set of offline
data. For a review of current state of the art methods in learning-based control which utilize
MPC, we direct the reader to the following thorough reviews [44, 102]. For discussion of
historical RL research, Garcia provide a comprehensive review [41].

Simultaneous learning and control presents a nuanced and complex challenge for a host of
reasons. Safety and feasibility pose significant barriers for proper implementation of such
algorithms. Moreover, balancing the exploration-exploitation tradeoff inherent to simultaneous
control and model identification has presented researchers with unique challenges which form
a primary focus of research in active learning. Work by Dean et al., for instance, explores
safety and persistence of excitation for a learned constrained linear-quadratic regulator [28].
They show that the complexity of the underlying dynamics plays a significant component
in our ability to analytically guarantee relevant certificates on model errors and controller
performance.

MPC is a highly popular use case for learning-based control problems, and provides an
intuitive bridge between longstanding adaptive control theory and new developments. For
instance, recent work has investigated recursive feasibility for adaptive MPC controllers based
on recursive least-squares [14] and set-membership parameter identification [103], although
similar papers frequently possess limitations including a dependence on linear dynamical
models. Rosolia and Borrelli derive recursive feasibility and performance guarantees for a
learned episodic MPC controller [98]. Koller et al. also address the safety of a learned MPC
controller when imperfect model knowledge and safe control exists [57].

We note that Control Lyapunov function and control barrier function [23, 35, 24] based
approaches have further strengthened the connection between classical adaptive control and
more modern approaches akin to popular model-based reinforcement learning (RL) problems.
Recent work by Westenbrouk et al. has even explored coupling such nonlinear control methods
with a policy optimization scheme [107]. Assumptions of model structure can still be critically
important in these works (e.g. control-affine nonlinear systems). Such physical constraints
have, however, been shown to be strong modeling foundations for a host of diverse tasks even
within the visuomotor control space [19], often leveraging neural differential equations to
learn control-affine relationships in data [21]. Chow and Nachum also leverage Lyapunov
stability principles to obtain improved empirical results in complex data-driven domains
and applications [26]. Other methods focus on safety as a challenge relevant to transfer
learning, where safe behavior can be extrapolated and expanded from simpler tasks [101].
Methods in the space of RL provide idealistic safety guarantees that generally translate into
improved empirical safety properties. However, any guarantees (probabilistic or robust) or
safety certificates in this space are elusive and remain an open challenge.

Guarantees in RL literature are difficult to obtain since that literature often eschews
subject matter expertise (SME), or direct intuition into a specific application. Generally, when
RL neglects considerations to SME it becomes applicable to a much wider body of relevant

1We define safety as the ability of the control policy to satisfy constraints.
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decision and control problems [64] that lack permeability to our intuition and expertise.
Conversely, controls literature is ubiquitous in revealing how such expertise can be leveraged
to yield strong and specific performance and safety even in adaptive and learning contexts.
As previously discussed, SME in LbC methods often takes the form of model knowledge [14,
103, 23, 35, 24] and preexisting data of safe trajectories [98, 27].

The problem with these SME assumptions is that they can very easily become optimistic.
Given the overarching assumption of preexisting data of safe trajectories, we have to ask “How
trustworthy is our data?” This should always be called into question, especially when safety
is of the utmost importance. Many LbC methods do consider noise-corrupted data [27], and
distributional shifts among data and agent experience are a subject of great importance in
offline reinforcement learning research [60]. The process generating the data could be flawed
in many ways, the relevance of each to existing methods varies but is persistent. An example
could be sampling data locally where relevant dynamics can be effectively linearized, when
the system experiences highly nonlinear behavior outside of that region. Without exploiting
and trusting our SME, we cannot guarantee things like this will not happen especially in
safety-critical settings. By applying a resultant controller to the underlying system, it can
encounter out-of-distribution (OOD) experience and adversarial attacks that a majority of
existing LbC methods simply cannot consistently accommodate. Those few LbC algorithms
that do make consideration to OOD experience do so using hyperparameters that are not
trivial to select and validate [27], and often assume structure of the underlying dynamics
[114]. These same fundamental quandaries also apply when assuming model knowledge -
which is not always possible especially for multimodal control problems.

This dissertation focuses on distributionally robust optimization (DRO) as a tool to
address safety concerns during LbC. Given that MPC solves a sequence of optimization
programs, methods that operate within the space of robust optimization are a powerful tool
to certify the performance of learning-based MPC (LMPC).

Background on DRO and LbC

In recent practice, DRO has been gaining traction as a set of methods that provide significant
value to the study and solution of the LbC problem. DRO is a field of inquiry which seeks
to guarantee robust solutions to optimization programs when the distributions of relevant
random variables are estimated via sampling. This uncertainty can involve the objective or
the constraints of the optimization program. Uncertainty in both cases can pose significant
challenges if unaccounted for, leading to suboptimal and potentially unsafe performance [84].
Given that past work in the LbC space frequently considers chance constraints [14, 55, 27],
incorporating a true DRO approach possesses the potential to improve our capabilities of
guaranteeing safety during learning. These methods have been recently explored to address
challenges of safety and performance imposed by uncertainty. For instance, Van Parys et
al. address distributional uncertainty of a random exogenous disturbance process with a
moment-based framework [89]. Paulson et al. also apply polynomial chaos expansions to
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characterize distributional parametric uncertainty in a nonlinear model-predictive control
application [90].

Within the toolbox provided by DRO, Wasserstein ambiguity sets are a foremost asset.
The Wasserstein metric (or “earth mover’s distance”) is a symmetric distance measure in
the space of probability distributions. Wasserstein ambiguity sets account for distributional
uncertainty in a random variable, frequently one approximated in a data-driven application.
Recent exploration of Wasserstein ambiguity sets reveals they possess powerful out-of-sample
safety guarantees in data-driven stochastic optimization. Namely, formulating a DRO problem
with Wasserstein ambiguity sets can robustify results subject to worst-case realizations of
relevant random variables - even if those realizations are not present in available data.
Likewise, Wasserstein ambiguity sets make much less restrictive assumptions on the shape of
underlying probability distributions [34, 40]. Expressions exist which map the quality of the
empirical distribution with size parameters for the Wasserstein ambiguity set such that desired
robustness characteristics are achieved without significant sacrifices to the performance of the
solution [113]. Within the control context, the Wasserstein distance metric has only recently
began emerging as a valuable and widespread tool. Wasserstein ambiguity sets (1) make few
if any assumptions on the shape of the underlying distribution, and (2) provide out-of-sample
guarantees. Both of these features relate to subject matter expertise, and broad cases where
only basic model knowledge and data are needed.

For example, work by Yang et al. explores the application of Wasserstein ambiguity
sets for distributionally robust control subject to broad classes of disturbance processes
[109]. Similar methods have made their way to research on model-based and model-free
reinforcement learning as well [53, 51, 114]. DRO has also been applied to Markov decision
processes (MDPs) in a general sense [63, 6, 2, 108]. Scalability is still an open challenge in
that space. Overall, while Wasserstein ambiguity sets are seeing increased application in
controls research, many of their true capabilities have yet to be fully exploited.

1.3 Statement of Contributions

The problem of synthesizing optimal control with highly limited SME is immensely challenging.
The objective of this dissertation is to make progress towards that objective. This progress
comes from the following contributions.

We consider stochastic LMPC problems of the following general format:

minimize
N∑
k=0

J(xk, uk) (1.3a)

subject to: xk+1 = f̂(xk, uk, θf ) (1.3b)

ĝ(xk, uk, θg) ≤ 0 (1.3c)

x0 = x(0) (1.3d)
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where uncertain models f̂ and ĝ are learned from data. We omit equality constraints h and
terminal state constraints Xterminal for simplicity for now.

In Chapter 2, we adopt a DRO method from the literature and modify it to fit within a
formulation of LMPC aligned with (2.22a-2.22d). After making this connection, we apply
our method to three application cases. First, we combine our safe LbC method with data-
driven sequence modeling to create a scalable finite-time optimal control architecture for
high-dimensional, nonlinear, and multimodal dynamical systems. We validate this approach
by safely fast charging a lithium-ion battery using electrochemical information learned in a
latent state space. Our controller runs in real time and respects relevant safety constraints in
the fast charging problem. By solving this problem with respect to granular electrochemical
information, the fast charging protocol more effectively preserves the state of health (SOH)
of the cell compared to existing industry standard charging methods.

Next, we apply our method to learning-based control problems with strong limitations
on available subject matter expertise. By exploring the fundamental limitations that still
allow synthesis of safe control policies, we reveal insights into the LbC problem. We apply
these insights to solve two application studies: (1) vision-based autonomous vehicle obstacle
avoidance, and (2) extreme fast charging of lithium-ion batteries. In both cases, we start
with the least allowable amount of SME, and validate whether our LbC algorithm can safely
learn to control each system from scratch. Our results demonstrate powerful capabilities that
extend to general adaptive control context while accommodating multimodal and nonlinear
systems.

In Chapter V we leverage the DRO formulation to robustify value-based RL algorithms.
By modeling a system as a constrained Markov decision process (CMDP) and using temporal-
difference (TD) errors to characterize model uncertainty, we develop a deep Q-learning
algorithm that translates improved safety to real-world systems leveraging the idealistic
guarantees of Wasserstein DRO.

Finally we provide broader discussion of our results in Chapter VI. This includes outlining
applications outside the direct LbC problems discussed in this dissertation. For example,
our theory extensions in Chapter 2 can provide robust uncertainty estimates for forecasting
models. We conclude with a summary of our diverse findings, and their broader relevance to
the literature.

Table 1.1 outlines the PhD contributions on which this dissertation material is based.



CHAPTER 1. INTRODUCTION 9

Table 1.1: Summary of contributions during the Ph.D. work on which this dissertation is
based.

Work Summary
[53] Distributionally robust LbC using ϕ-

divergence, combined with sequence model-
ing and dimensionality reduction, application
to lithium-ion battery fast charging based on
a single-particle model

[52] Journal extension of [53], utilizing Wasser-
stein ambiguity sets and validating on full-
order electrochemical battery model fast
charging

[51] Extends existing theory on DRO using the
Wasserstein distance, and explores minimal
assumptions for safe learning-based control
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Chapter 2

The Interface Between Robust
Optimization and Optimal Control1

Abstract

This chapter explores formulations of the LbC problem that are almost immediately amenable
to distributionally robust optimization with the Wasserstein distance. We first provide
relevant background on DRO, and identify an equivalent chance-constraint reformulation
from the literature. We then discuss our formulation of LbC, and show that with some minor
extensions of existing theory, we can make progress translating certificates from DRO to real
systems.

2.1 Stochastic Optimization with Chance Constraints

A chance constraint is a constraint within an optimization program which is only satisfied
with some probability. This is typically a necessary concession when the constraint is affected
by a random variable R:

P[h(xk, uk,R) ≤ 0] ≥ 1− η (2.1)

Here, the constraint function h(xk, uk,R) outputs an m-dimensional vector. In this case, the
distribution P relates to random variable R with support ξ. Here, 0 ≤ η < 1 is the specified
risk metric or our allowed probability to violate the constraint. If η = 0, we say we have a
robust optimization program which must not yield any probability of constraint violation. In
practice, especially when approximating P from sampling, we admit some small probability
of constraint violation leading to a value of η > 0. This is frequently necessary because it
allows our probabilistically robust solution to balance conservatism with performance.

1This chapter is adapted from previously published work [51]. ©2023 IEEE. “Safe Learning MPC With
Limited Model Knowledge and Data.” IEEE Transactions on Control Systems Technology (2023).
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Upon utilizing an empirical approximation of P derived from sampling (usually denoted P̂),
we admit some distributional uncertainty which can arise from only having access to a finite
group of samples. The law of large numbers states that for any number of samples ℓ→∞,
P̂→ P∗. The discrepancy from this limited sampling creates distributional uncertainty, which
can affect the quality of the solution if our approximation P̂ is inaccurate [84]. Throughout the
remainder of this chapter, we discuss the application of distributionally robust optimization
techniques to address this distributional uncertainty.

2.2 Wasserstein Ambiguity Sets

Wasserstein Ambiguity Sets

The Wasserstein metric is defined as follows:

Definition 1 Given two marginal probability distributions P1 and P2 lying within the set of
feasible distributions P(ξ), the Wasserstein distance between them is defined by

W(P1,P2) = inf
Π

{∫
ξ2
||R1 −R2||aΠ(dR1, dR2)

}
(2.2)

where Π is a joint distribution of the random variables R1 and R2, and a denotes any norm
in Rn.

The Wasserstein metric is colloquially referred to as the “earth-movers distance.” This
name is rooted in the interpretation of the Wasserstein metric as the minimum cost of
redistributing mass from one distribution to another via non-uniform perturbation [109]. To
show why the Wasserstein distance is a valuable tool we can leverage to robustify a data-driven
optimization program, we first reference the chance constraint equation (2.1), which depends
on an empirical distribution P̂. Rather than solving the optimization program with respect to
an imperfect snapshot of P∗ defined by P̂, we can optimize over any probability distribution
within some ambiguity set centered around our estimate P̂. The Wasserstein distance provides
a formal method to define such an ambiguity set. Namely, we can optimize against the
worst-case realization of R sourced from a set of probability distributions within specified
Wasserstein radius of our empirical estimate. We define “worst-case” as the realization which
yields the lowest probability of satisfying the chance constraint. This formulation can be
described mathematically with the following relation:

inf
P∈Bϵ

P[h(xk, uk,R) ≤ 0] ≥ 1− η (2.3)

where
Bϵ := {P ∈ P(ξ) | W(P, P̂) ≤ ϵ} (2.4)

is the ambiguity set defined for a Wasserstein ball radius ϵ. Of note is the fact that (2.3)
guarantees probabilistic feasibility for any probability distribution within the ambiguity set
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when reformulated correctly. No assumptions must be leveled on the true distribution P∗ for
these guarantees to translate under a proper reformulation.

Reformulation is necessary because the exact constraint shown in (2.3) poses an infinite
dimensional nonconvex problem. Ongoing research has pursued tractable reformulations of
this constraint which facilitate its real-time solution.

This dissertation largely works with a reformulation of (2.3) detailed in [33]. This
reformulation accommodates vector constraint functions and requires that the function
g(xk, uk,R) is linear in R, and entails a scalar convex optimization program to derive. Our
algorithm is designed to exploit the linear dependence on R such that this assumption has
no affect on the applicability of our approach. Importantly, the result is a conservative
convexity-preserving approximation of (2.3). For an m-dimensional constraint function, the
exact form of the ambiguity set is V = conv({r(1), ..., r(2m)}), where the vector r is sourced
from the optimization component of the overall procedure. The set of constraints we find to
replace the infinite dimensional DRO chance constraint are:

h(xk, uk) + r(j) ≤ 0, ∀ j = 1, ..., 2m (2.5)

For complete and elegant discussion of this reformulation, we highly recommend the reader
reference work in [33], specifically pages 5-7 of their paper. This reformulation requires some
additional information, including a tractable representation of an appropriate Wasserstein
ball radius.

Finally, several expressions exist for the Wasserstein ball radius ϵ which are probabilistically
guaranteed to contain the true distribution with allowed probability β. We adopt the following
formulation of ϵ from [113]

ϵ(ℓ) = C

√
2

ℓ
log

(
1

1− β

)
(2.6)

where ℓ is the number of data points, β is the probability the Wasserstein ball contains the
true distribution, and C relates to the diameter of the support of the distribution and is
obtained by solving the following scalar optimization program:

C ≈ 2 inf
α>0

{
1

2α

(
1 + ln

(
1

ℓ

N∑
k=1

eα||Rk−µ̂||21

))} 1
2

(2.7)

where the right side bounds the value of C, and Rk is a sample of the random variable which
comprises our empirical distribution, and µ̄ is the sample mean of the distribution.

2.3 Equivalent Chance-Constraint Reformulation

This chapter builds upon the equivalent reformulation of (2.3) from [33]. This reformulation
leverages findings from recent work by [34]. The statement of the specific reformulation in [33]
indicates a requirement that the constraint function g(x,R) is linear in x and R, respectively.
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Notably, we identify a simple extension of the reformulation in [33] that allows its
application to our nonlinear MPC formulation via relaxing requirement the constraint
function be linear in the decision variable x.

Restatement of the Reformulation from [33]

The reformulation from [33] is stated to require the constraint function g(x,R) to be linear in
x and R, respectively. In this chapter, we extend the reformulation to include some broader
cases of constraint functions:

g(x,R) = gx(x) + gR(R). (2.8)

where the functions gx and gR can be nonlinear in their respective arguments. We first restate
the work from [33] as a reference for our extension included in subsection III.b.

Data samples {R(1), R(2), ..., R(ℓ)} corresponding to random variable R ∈ Rm are drawn
from the true distribution P∗. These finite samples comprise our empirical distribution P̂.
The finite-ness of our empirical distribution indicates it will not perfectly match the behavior
of the true distribution P∗. This is especially true in cases with limited samples, which are
relevant to the challenging case studies explored in this dissertation.

Normalizing the data lends simplicity to the derivation:

ϑ(i) = Σ− 1
2 (R(i) − µ) (2.9)

where Σ is the sample variance of the data and µ is the sample mean. This standardization
transforms the data samples such that its new mean is 0, and its new variance is Im×m. The
support of this normalized distribution is

Θ = {ϑ ∈ Rm | −σmax1m ≤ ϑ ≤ σmax1m} (2.10)

since we have centered the normalized variable ϑ. Note that 1m is a column vector of ones.
Let Q∗ and Q̂ represent the true and empirical distributions of the normalized data ϑ. We
construct the ambiguity set Q̂ using the “Wasserstein ball” given by (2.4), allowing us to
transform the distributionally robust chance constraint (DRCC) in (2.3) to

sup
Q∈Q̂

Q[ϑ /∈ V ] ≤ η (2.11)

which says the worst case probability that normalized random variable ϑ is outside set V is
less than η, where the supremum is taken over all distributions Q in ambiguity set Q̂. We
wish to obtain the least conservative (i.e. tightest) set V ⊆ Rm in order to define the desired

Wasserstein uncertainty set A =
{
a ∈ Rm | a = Σ

1
2v + µ, v ∈ V

}
such that

g(xk, uk,R) ≤ 0, ∀ R ∈ A (2.12)
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We restrict the overall shape of the set V to be a hypercube, which enables computational
tractability:

V(σ) = {ϑ ∈ Rm|−σ1m < ϑ < σ1m}. (2.13)

Now, to compute this ambiguity set without introducing unnecessary conservatism, we need
to find the minimum value of the hypercube side length σ ∈ R. The following optimization
program details this problem:
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min
0≤σ≤σ̂max

σ (2.14)

subject to: sup
Q∈Q̂

Q[ϑ̃ /∈ V(σ)] ≤ η (2.15)

Here, we select σ̂max using a priori information about the specific problem context.
The derivation in [33] provides a worst-case probability formulation, summarized by the

following Lemma:

Lemma 1 (Lemma 2 of [33])

sup
Q∈Q̂

Q[ϑ̃ /∈ V(σ)] = inf
λ≥0

{
λϵ(ℓ) +

1

ℓ

ℓ∑
j=1

(
1− λ

(
σ − ||ϑ(j)||∞

)+)+}
(2.16)

where (x)+ = max(x, 0).
We defer to [33] for the proof of this finding. Their result entails that (2.16) can be

reformulated as
min

0≤λ,0≤σ≤σ̂max

σ subject to: h(σ, λ) ≤ η ≤ σmax (2.17)

where

h(σ, λ) = λϵ(ℓ) +
1

ℓ

ℓ∑
j=1

(
1− λ(σ − ||ϑ(j)||∞)+

)+
(2.18)

The result of this optimization program is the value of σ, which is used to reformulate the
chance constraints via convex approximation. For a convex approximation of the constraint
function in (2.3), the hypercube V(σ) becomes the convex hull of its vertices. If for example
m = 1 (i.e. the random variable is 1-dimensional), then V(σ) = (−σ, σ) – an open interval.
The offset r(j) is calculated from:

r(1) = Σ
1
21mσ + µ (2.19)

r(2) = Σ
1
21m(−σ) + µ (2.20)

In the two dimensional case, this yields the ambiguity set A = conv({±σ,±σ}) where
conv({· · ·}) represents the convex hull of points {· · ·}. For an m-dimensional constraint
function, the exact form of the ambiguity set is V = conv({r(1), ..., r(2m)}). In each case, the
ambiguity set is a hypercube, and the change of signs is the method by which we enumerate
across that hypercube’s vertices with the following constraints:

g(x) + r(j) ≤ 0, ∀ j = 1, ..., 2m (2.21)

Algorithm 1 details the method used to compute the offset σ.
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Algorithm 1 Computation of σ

0: Initialize σ = 0, σ̄ = σmax
while σ̄ − σ > tolerance do
σ = σ̄+σ

2

[λ, h∗(σ, λ)] = minimize(σ, λlb, λub, ϵ, θ)
if h∗(σ, λ) > η then
σ = σ

else
σ̄ = σ

end if
end while
σ = σ̄

2.4 The Interface

In Chapter 1, we defined the general format of a model-predictive control program. We
restate that definition here for reference:

minimize
N∑
k=0

J(xk, uk) (2.22a)

subject to: xk+1 = f̂(xk, uk, θf ) (2.22b)

ĝ(xk, uk, θg) ≤ −G (2.22c)

x0 = x(0) (2.22d)

Shuffling equation (2.22c) reveals stark similarity to (2.8) assuming the stochasticity is
represented by the process noise term G:

ĝ(xk, uk, θg) + G ≤ 0 (2.23)

This similarity raises the question of “How can we characterize model uncertainty as a random
variable that aligns with the DRO theory?” Of note is that the function ĝ is almost surely
nonlinear, which ostensible conflicts with the setup from [33]. In the next section, we provide
simple arguments to extend the applicability of the DRO reformulation to chance constraints
of the form (2.8).

2.5 Extending the Reformulation

Duan et al. utilize the findings of [34] in presenting their convex reformulation. Critically,
we identify that the fundamental theory presented by [34] allows applying the identical
reformulation to cases where the constraint function takes the form

g(x,R) = gx(x) + gR(R). (2.24)
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wherein gx and gR may be nonlinear functions. Critically, there must not be any interdepen-
dence between x and R.

Remark 1 The linear separability of x and R poses a DRO program that can be thought of
like solving

minimize
z∈R

− z (2.25a)

s. to: inf
P∈Bϵ

P [z −R ≤ 0] ≥ 1− η (2.25b)

for offset z from the second stage nominal constraint boundary.

This chapter presents a modified lemma for the applicability of the previously stated
reformulation first presented by [33].

Lemma 2 If the function g satisfies

g(x,R) = gx(x) + gR(R). (2.26)

then constraints of the following form:

inf
P∈Bϵ

P[g(x,R) ≤ 0] ≥ 1− η (2.27)

can be reformulated into the convex approximation

gx(x) + r(j) ≤ 0, ∀ j = 1, ..., 2m (2.28)

using the relations in (2.16-2.17), where r = Σ
1
21mσ + µ.

Proof 1 We start by defining auxiliary variables in the constraint function. Consider that,
without loss of generality, nonlinear functions of R can themselves be considered the random
variable in question:

R̃ = gR(R) (2.29)

where R̃ is the new model of the stochasticity. This gives

g(x,R) = gx(x) + R̃ (2.30)

Now, we create a dummy auxiliary decision variable x̃ in the same manner:

g̃(x̃, R̃) = x̃+ R̃ (2.31)

forming a function g̃ which is trivially linear in x̃ and R̃, where

x̃ = gx(x). (2.32)
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This equality constraint (2.32) now shows up in the overall optimization program. However,
the DRCC reformulation only poses conditions on the constraint function in question (namely
g̃(x̃, R̃)). We have transformed the distributionally robust chance constraint into

inf
P∈Bϵ

P
[
g̃(x̃, R̃) ≤ 0

]
≥ 1− η (2.33)

which is now linear in x̃ and R̃. Following procedure from [34], we suppress dependence on x
(or x̃) for simplicity, leading to ℓ(R̃) = g̃(x̃, R̃) [34, 33]:

inf
P∈Bϵ

P
[
ℓ(R̃) ≤ 0

]
≥ 1− η. (2.34)

The remainder of the proof is identical to the Appendix in [33], leading to the convex approxi-
mation:

gx(x) + r(j) ≤ 0, ∀ j = 1, ..., 2m (2.35)

Beyond exploiting the linear presence of x̃ in the constraint function, suppressing depen-
dence on decision variables is possible and helpful for the following reasons. The overall
process of solving an optimization program with a DRCC is characterized by a two stage
stochastic optimization problem. Here, (2.34) is the first stage problem that we solve using
the equivalent reformulation. Esfahani and Kuhn show in Section 5.3 of their paper that,
without loss of generality, the solution in the second stage (i.e. the overall optimization
program) is unaffected by suppressing dependence of ℓ on decision variables in the first stage.
Additionally, the decision-independent loss function ℓ(R̃) can trivially be expressed as a
pointwise maximum of elementary measurable functions, as required by Section 4 of [34].

In practice, the dummy decision variable x̃ will not come into play during any stage
of solution. After solving the first stage problem, we can reverse the substitution in the
remaining optimization to avoid an equality constraint with poor computational tractability.

2.6 Conclusion

This chapter investigates extensions of DRO theory that unlock new applications in the LbC
problem space. Our extension allows Wasserstein ambiguity sets to apply in cases where
nonlinear and nonconvex functions and constraints are of interest. As long as problems of
interest can be decomposed in a specific manner, we can apply Wasserstein DRO to quantify
uncertainty and conduct decision making in the face of uncertainty with certificates on
performance and feasibility. Critically, the decomposition format relates to the modeling of
stochasticity in the problem in a manner that is widely generalizable and computationally
tractable. In the following chapters, we develop algorithmic architectures across the LbC
space that leverage this new DRO theory to certify the performance and safety of LbC
controllers.
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Chapter 3

Real-Time Electrochemical Fast
Charging Using Distributionally
Robust Surrogate Optimal Control1

Abstract

This chapter develops a data-driven surrogate modeling architecture for tractably solving
optimal control and offline reinforcement learning problems for high-dimensional systems.
Leveraging techniques from sequence modeling, we develop surrogate models that predict
the loss function and timeseries of constraint functions in a finite-time optimal control
problem from an embedding of the initial state and timeseries of control inputs. DRO
theory from Chapter 2 ensures the learned surrogate models respect distributional shifts,
and satisfy constraints with high probability. We validate our method by synthesizing an
extreme fast-charging protocol for a lithium-ion battery directly from its electrochemistry.
The resulting policy preserves the state-of-health of the battery cell more effectively than
industry standards.

3.1 Introduction

This chapter presents a novel model-based data-driven method for robust optimal control
and offline reinforcement learning of high-dimensional dynamical systems.

Optimal control faces unique challenges related to guaranteeing optimality and computa-
tional efficiency [56]. These challenges are generally exacerbated when the dynamical system
in question is a high-dimensional system, a classification based on the cardinality of state
variables n (x ∈ Rn) being high (i.e. n > 102 or 103). Learning based methods help tackle

1This chapter is adapted from previously published work [52]. ©2022 IEEE. Reprinted, with permission,
from Aaron Kandel, Saehong Park, and Scott J. Moura. “Distributionally Robust Surrogate Optimal Control
for High-Dimensional Systems.” IEEE Transactions on Control Systems Technology (2022).
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dimensionality through data compression [37], but historically can struggle to guarantee
feasible solutions especially in safety-critical applications.

In this chapter, we introduce a simple algorithmic framework which utilizes (i) deep
sequence modeling, (ii) dimensionality reduction, and (iii) distributionally robust optimization
(DRO) to obtain computationally tractable optimal control for high-dimensional nonlinear
optimal control problems. This contribution is important, considering that the majority
of real-life dynamical systems (i.e. heat transfer, fluid dynamics, etc...) are inherently
high-dimensional. This is partially a result of their representation with partial differential
equations (PDEs), which when solved numerically are frequently represented with numerous
state variables [11]. Often, model-order reduction is applied to generate a “control-oriented”
dynamical model when the true underlying system is complex and high-dimensional [54].
However, reductions can refute our ability to observe fundamental insights from our optimal
control solution [43]. Reductions can also compromise the capability of maximizing the
performance of the control policy.

Relevant literature presents a host of methods for high-dimensional optimal control.
Besides use of specialized and case-specific heuristics, these generally include (i) control
vector parameterization (CVP), (ii) reinforcement learning (RL) and approximate dynamic
programming (ADP), (iii) pseudospectral optimal control (POC), and (iv) variational calculus
and Pontryagin methods (PM) [79, 16].

CVP is a powerful tool due to its simplicity (see e.g. [75]). In CVP, the control input
is represented and manipulated in reduced form. For instance, the control input can be
defined using a zero-order hold over long timesteps, or as a polynomial whose coefficients
we optimize. The advantage of CVP is it reduces the number of decision variables in the
optimization program. For instance, CVP has been used to reduce the complexity of highly
non-convex but relatively small-scale problems [99]. Nonetheless, for high-dimensional control
CVP has been shown to yield useful results [75, 100]. CVP simplifies the problem, which
compromises optimality. Furthermore, CVP only addresses computational cost from the
cardinality of the control input. Other sources of computational expense (i.e. simulation,
numerical optimization) can still prohibit tractable solution of the control problem.

ADP leverages black-box function approximations to enable policy learning beyond the
spatial/memory limitations of tabular dynamic programming methods [Bertsekas01, 9].
The three biggest shortcomings of ADP relate to safety, optimality, and computation. In this
context, safety refers to the ability of a learned control policy to satisfy relevant constraints.
ADP and other model-free RL methods often require constraints to be encoded as auxiliary
penalties to the objective/reward function [41]. Weighting these penalties requires tuning
the objective function carefully. More importantly, however, model-free and model-based
RL algorithms must learn behavior through exploration. For constrained problems, this can
implicitly require violating constraints throughout online learning [96]. Moreover, RL can
lose guarantees of converging to an optimal policy when the problem is complex (i.e. not
linear-quadratic). Furthermore, for high-dimensional nonlinear problems, ADP and model-
free RL methods can require a large number of iterations to converge to a high-performing
control policy [Bertsekas01]. At a high level, many of these challenges are just as relevant
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for model-based RL methods. These challenges are exacerbated when learning policies
from fixed, offline datasets. Recent research in offline reinforcement learning literature has
provided modified algorithms that address these challenging questions while also proving to
be amenable to high-dimensional control [83, 60]. In particular, offline RL methods address
distributional shifts between the training data and data encountered from novel experience.
For high-dimensional systems, these shifts become more likely, and can hamper optimality
and feasibility.=

Surrogate optimization models typically map decision variables to an approximation
of the true objective function. Historically, surrogate optimization has been popular in
aerospace applications, where complex high-dimensional physics-based models form the basis
for design and analysis [69, 94]. The surrogate functions are fit using samples from the original
objective, which is typically expensive to evaluate. The most popular approach is efficient
global optimization (EGO). EGO is an adaptive sampling regime which is guaranteed to
yield a surrogate optimization model with bounded modeling errors under certain conditions
[48]. EGO can work for simple control problems [74], however for high-dimensional problems
the parameterization of the surrogate model and the required sampling depth can become
intractable. Surrogate models have also been used to approximate state-transition dynamics
for control [22, 82]. This application underpins modern research activity on model-based
reinforcement learning [49, 61]. For high-dimensional systems, such models are ostensibly
impractical again due to the expansive parameterizations which would be required to represent
state-transition dynamics. Use of embeddings, latent spaces, and dimensionality reduction
can ease computational demands, but add additional approximations that have yet to be
addressed in a certified way [76].

Table 3.1 shows a summary of these algorithms. Existing methods possess unique strengths
in solving high-dimensional optimal control problems, but there is area for further development.
The objective of this chapter is to present a general, data-driven algorithmic framework
applicable to high-dimensional systems which addresses the critical, unanswered question
of safety and feasibility. First, we define neural network surrogates which map a reduced
state representation and a finite time series of control inputs to an approximation of the
objective function. Instead of constraint penalties, we develop auxiliary surrogate models
which predict time series of the constraint functions using the same reduced input data. Our
method is then, by definition, a model-based RL approach. For optimal control problems
with a short time horizon, we obtain approximate solutions by optimizing around the models
a single time. However, for optimal control problems on longer time horizons, we apply these
surrogates within a receding horizon control framework. Via a sequence-modeling method,
we absorb the dynamics of the state transitions into the prediction of the surrogate models,
eliminating modeling drift.

By leveraging surrogate models, we introduce modeling errors. While objective uncertainty
may affect optimality, uncertainty in the constraint functions can mean the difference
between safe control and critically unsafe behavior. Therefore, this work accommodates
uncertainty in the constraints via distributionally robust chance constraints (DRCC). These
chance constraints encode distributions of modeling errors computed from testing data. We
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Table 3.1: Algorithms for High-Dimensional Control. A * indicates the approach can be
applied given a fixed, offline dataset with no model knowledge.

Algorithm Challenges
CVP optimality, computation, requires

model knowledge
RL* safety, optimality, computation
POC requires model knowledge, propri-

etary software
PM numerical instability, computation,

requires model knowledge

apply Wasserstein ambiguity sets to strengthen robustness by optimizing with respect to
worst-case modeling errors sourced from a family of distributions within some Wasserstein
distance of the empirical distribution. The Wasserstein measure is distinguished from
other probabilistic distances (i.e. moment-based methods of ϕ-divergence [47]) in that it is
symmetric between two distributions, makes no assumptions on the shape of the distributions,
and importantly provides an “out-of-sample” safety guarantee [34]. When used for DRCCs,
we can probabilistically guarantee adherence to constraints even when our surrogate models
experience distributional shifts relative to the training data.

To evaluate the efficacy of the algorithm, we solve the safe-fast charging problem for a
high-dimensional lithium-ion battery model at low temperatures. Lithium-ion battery fast
charging is currently an active research area in the energy systems and control literature.
Significant challenges can arise in this problem from using reduced-order models [92]. If
we leverage full order electrochemical battery models, then we benefit from more granular
electrochemical information to safely operate the cell farther towards the boundary of its safe
operating conditions [52]. This increases the performance of the resulting charge/discharge
cycle, but requires that we strictly adhere to safety constraints. Violation of some electro-
chemical constraints leads to rapid aging and potential catastrophic cell failure. Consequently,
the fast charging problem presents a relevant safety-critical challenge to our proposed algo-
rithm. Historically, fast charging has been explored with reduced order models due to the
nonlinearity and computational complexity of simulating the full-order dynamics [95, 17, 39].
By demonstrating that our surrogate optimal control algorithm can yield fast and feasible
charge cycles based on the full-order electrochemical model in real time, we validate its use
for high-dimensional nonlinear optimal control problems.

The results in this chapter comprise a significant extension of previous work in [53]. These
extensions include (i) a comprehensive novel case study using a full-order electrochemical
battery model, including a computational comparison to control using a reduced order model,
and (ii) the use of Wasserstein ambiguity sets instead of more limited ϕ-divergence.
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Figure 3.1: Block diagram detailing progression and flow of our proposed optimal control
method. u∗k is the optimal open-loop control input obtained from MPC with the surrogate
models.

3.2 Problem Formulation

Optimal Control Problem Formulation

This work considers the following optimal control problem statement, cast in discrete time:

min
N∑
k=0

J(xk, uk) (3.1a)

subject to: xk+1 = f(xk, uk) (3.1b)

g(xk, uk) ≤ 0 (3.1c)

h(xk, uk) = 0 (3.1d)

x0 = x(0) (3.1e)

where k is the current time and N is the final time; xk ∈n is the state vector at time k;
uk ∈p is the control input vector; J(xk, uk) :

n ×p → is the stage cost function at time k;
f(xk, uk) :

n ×p →n represents the system dynamics; g(xk, uk) :
n ×p →m represents inequality

constraints; and h(xk, uk) :
n ×p →ℓ represents equality constraints. In this chapter, we are

particularly interested in problems where the cardinality of x is high, i.e. n > 102, 103, or
more.

Our objective is to simplify the computation required to solve (3.1a)-(3.1e) when the
model is high-dimensional. Figure 3.1 shows a block diagram of our method. In each of the
following sections II.B and II.C, we discuss the components represented in this diagram.
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Offline Dataset

Our method leverages a fixed, offline dataset composed of state trajectories matched with
control input sequences. Typically, training data for surrogate optimization models is
generated via a host of methods. For instance, one popular method in the literature is
Latin hypercube sampling (LHS) [94]. In another method, EGO, sampling from the original
objective function is organized and adaptive to the real-time evolution of modeling errors
[48]. We train our surrogate models using data obtained from random, offline, parallelizable
simulations of the original high-dimensional dynamical model. However, any dataset could
be used to learn these surrogate models. For example, such data could come from physical
experiments, an existing suboptimal controller, etc... In considering how such a dataset can be
generated, the distributional shift problem becomes highly relevant. We want to minimize the
degree to which real-time control data will deviate from the distribution of training data. How
this question is answered is highly dependent on the specific application. Importantly, our
framework is data-driven and does not require explicit model knowledge. This is differentiated
from many existing methods (incl. CVP, psuedospectral optimal control).

Model Formulation and Training

Within the context of optimal control, surrogate models have been applied to represent state
transition dynamics directly [22, 82]. Direct approximation of state transition dynamics is not
ideal for high-dimensional dynamical systems, where the large cardinality of state variables
would require function approximators with intractable parameterizations. This work proposes
using a modified finite-time surrogate modeling approach which takes the following form:

min J (x0, U) (3.2a)

subject to: Gi(x0, U) ≤ 0 ∀ i = 1, · · · ,m (3.2b)

The surrogate model J absorbs the state transition dynamics by mapping the initial state
x0 and time series of control inputs U = [u(0), · · · , u(N)] directly to an approximation of
the objective function given in (3.1a). In set notation J (·, ·) :n ×p×(N+1) →. Likewise, the
surrogate constraint functions Gi :n ×p×(N+1) →(N+1) take the same inputs and predict as
output a time series of the relevant constraint function values for each of i = 1, ...,m inequality
constraints. Importantly, the constraint surrogates only model the most relevant information
in time series format. State variables that do not pertain to constraints in the optimization
problem are disregarded by the surrogate models. Furthermore, by outputting an entire
time series, we avoid the possibility of modeling drift inherent to a surrogate which predicts
individual state transitions across a single time step [49].

For a model predictive control application, the optimal control problem in (3.2a)-(3.2b)
becomes:

min J (xk, Uk:k+N) (3.3a)

subject to: Gi(xk, Uk:k+N) ≤ 0 ∀ i = 1, · · · ,m (3.3b)
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At k = 0, the initial state becomes the current state, and the control input time series
Uk:k+N = [uk, · · · , u(k +N)] starts at the current state and evolves over a horizon of N time
steps into the future. Note we are re-using N here to indicate the control horizon length
relative to the current time step, as opposed to the global time horizon length in (3.2a)-(3.2b).
After solving this reduced optimization program, we apply the first control input to the plant,
simulating one step forward and then repeating the overall process.

Perhaps the most important transformation we make relates to reducing the state with
dimensionality reduction techniques. Our case study specifically uses principal component
analysis (PCA) to project the state onto a reduced basis. So in fact, the optimization program
becomes:

min J (x̃k, Uk:k+N) (3.4a)

subject to: Gi(x̃k, Uk:k+N) ≤ 0 ∀ i = 1, · · · ,m (3.4b)

where x̃k is a reduced representation of the dynamical state. Note the control is not included
with state reduction, because its approximation could corrupt the input signal and negatively
impact performance.

Dimensionality Reduction With Principal Component Analysis

High-dimensional, nonlinear, and multimodal state spaces are often compressed by learning
an appropriate embedding space [111]. This technique falls under dimensionality reduction,
which has longstanding presence in the literature. Perhaps the most basic approach relates
to principal component analysis (PCA).

We can reduce the dimensionality of state vectors using PCA, provided we have some
historical data samples of past states. Consider the arguments of J and Gi, (x0, U) ∈n
×p×(N+1). We are interested in n > 102, 103 whereas p(N + 1) ∼ 101.

Suppose we haveM training data samples for the state x, represented as matrixX ∈ Rn×M .
Consider a so-called “principal component” which can be expressed as:

V = wTX (3.5)

where w ∈ Rn×1 is a vector of weights, V ∈ R1×M is an arbitrary principal component. If we
consider X as a random matrix, then we seek to choose w to maximize the variance of V

var(V ) = wTXXTw (3.6)

We then formulate the following optimization problem while constraining w to have unit
length:

max
w

wTXXTw (3.7)

subject to wTw = 1 (3.8)

which yields the first principal component. This method can be extended to compute multiple
principal components, and project the original data onto a reduced basis that maximizes
variance [15], thus reducing x0 ∈ Rn to a vector of dimension q, where q << n.
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Note: Facilitating Optimization

This chapter’s approach requires that we optimize around the neural network architecture.
This architecture shares similar nonconvexity with the original expensive-to-evaluate objective
function [48]. Past work has explored the use of convex neural architectures to facilitate this
format of optimization [22]. However, input-convex neural networks can compromise the
universal function approximator properties of general neural networks [5].

The use of neural function approximation allows us to exploit analytic expressions for the
function input-output gradient, as done in [22]. For instance, for a single hidden layer neural
network f(x) = σout(W2σhidden(W1x+ b1) + b2) where σout(x) = x, the Jacobian is given by:

Jac(f(x))ij = W1(:, i)
TW2(j, :)σ

′
hidden(W1x+ b1) (3.9)

Were we to solve the original optimal control problem with no surrogates, any gradients
would be computed numerically via finite differences, which is highly inefficient. Numerical
gradient calculations scale on the order of O[n3] for a function f :n→, which would add
significant computational complexity [15]. By supplying the numerical optimization solver
with analytic expressions for the input-output gradients of relevant surrogate models, we
avoid expensive numerical gradient calculations. Consequently, analytic gradients provide a
fruitful opportunity to reduce computational complexity.

In this chapter, we evaluate and compare two optimization schemes. First, we use
numerical optimization with specified analytical gradients. We compare this approach to a
sample-based random search. Past work has shown for some applications that random search
can provide high-performing results relative to more conventional optimization approaches
[72]. In this chapter, we specifically apply a (1 + λ) evolutionary strategy algorithm to solve
the receding horizon control problem. Section 3.4 of this chapter provides more details of this
comparison. Overall, however, random search outperformed the gradient-based approach.

Model Uncertainty

Surrogate models are inherently imperfect. Uncertainties are expected in approximations of
both the objective and constraint functions and, if unaccounted for, these uncertainties can
affect the optimality and feasibility of the final solution [15]. Likewise, nearly every process
for dimensionality reduction will introduce approximation errors.

In this chapter, we leverage the DRO theory from Chapter 2 to robustify the control
architecture to its sources of uncertainty. The residuals of the surrogate models, trained on
low-dimensional embeddings of the initial state, and trained from a limited offline dataset,
can be modeled as random variables - turning the problem into a stochastic optimization
program amenable to relevant DRO tools.

min J (x̃k, Uk:k+N) (3.10a)

subject to: Gi(x̃k, Uk:k+N) + q ≤ 0 ∀ i = 1, · · · ,m (3.10b)
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where q is a random variable representing the random modeling residual of the function
G, and is drawn from empirical distribution Q̂ computed from the validation dataset. We
describe the final DRO problem statement in the following section III.III.

3.3 Case Study

Next we present a case study to validate and characterize the performance of the proposed
algorithmic architecture. Our case study is safe-fast charging of a lithium ion battery at low
temperatures. Lithium-ion battery fast charging is a highly relevant safety-critical application
which possesses a rich and diverse history of research. It also presents a prototypical high-
dimensional optimal control problem, in that complex electrochemical battery models are
described with hundreds or even thousands of state variables. While reduced-order equivalent
circuit models address these dimensionality problems, the granular electrochemical information
afforded by the full order models allows us to confidently take the battery closer to the
safe operating envelope boundary. This grants us the ability to exploit electrochemistry to
improve charging performance [53].

Low temperatures complicate the fast charging problem problem, as they sensitize many
of the complex electrochemical dynamics. Specifically, the cell side-reaction overpotential
constraint, which dictates the rate of lithium plating and cell degradation, can be much more
readily violated at low temperatures [77]. Thus, the optimal control problem possesses many
opportunities for constraint violation, which allows us to properly validate the efficacy of the
proposed DRO framework.

Our case study is structured precisely as follows, where we solve a high-dimensional fast
charging problem using the full-order Doyle-Fuller-Newman model (DFN) [104]. We also
compare computation between the full order problem and one included in past work [53]
based on a moderately reduced single particle model. We ensure comparison of our results
with and without the added DRO framework, in order to validate its relative value and
contributions to the safety of our algorithmic architecture.

Electrochemical Battery Model

High fidelity battery modeling provides insights on performance, without requiring one to build
and experimentally test the cell. The mathematical model formulated in this dissertation’s
appendix is the Doyle-Fuller-Newman battery model which comes from porous electrode
theory, where Li-ions intercalate/deintercalate into porous spherical particles in the negative
and positive electrodes. During charging, the Li-ions in the positive electrode deintercalate,
dissolve into the electrolyte, and then migate and diffuse to the negative electrode by passing
through the separator. Critically, this full-order electrochemical model reveals insights into
the the mechanisms within the battery cell which allow us to take the battery farther towards
the limit of its safe operating conditions. By exploiting electrochemistry, we can calculate
and apply faster, higher-performing charging cycles.
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Table 3.2: Relevant Model Values

State
Variable

Description Units

SOC State of Charge -
ηS Side-Reaction Over-

potential
Volts

T Cell Temperature K
I Input Current C-Rate

While we relegate the model equations to this dissertation’s appendix, we include some
basic, useful information in this section in Table 3.2 for reference in discussing this chapter’s
problem formulation and results.

Optimal Control Problem Statement

For the DFN fast charging case study, we adopt the following optimal control problem
statement within the framework of receding horizon control:

min
t+N∑
k=t

(SOCk − SOCtarg)2 (3.11a)

Subject to: (3.11b)

Dynamics (3.11c)

ηs ≥ 0 (3.11d)

T ≤ Tmax (3.11e)

0 ≤ I ≤ 2.5 (3.11f)

The key constraints are that the side reaction overpotential stays positive, and the temperature
does not exceed a maximum allowed threshold. The overpotential constraint is the most
critical barrier to prevent rapid aging and potential catastrophic failure of the cell. If
overpotential becomes negative, lithium metal begins to plate on the anode. This phenomena
reduces the capacity of the cell and leads directly to cell failure. The temperature constraints
provide indirect ways to avoid rapid aging, as the cell dynamics become more sensitive at
temperature extremes.

We adapt this formulation using the distributionally robust surrogate modeling approach
to yield:

min J (xu,k) (3.12a)

subject to: (3.12b)

Gηs(xu,k) ≥ qηs (3.12c)
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GT (xu,k) ≤ Tmax − qT (3.12d)

0 ≤ I ≤ 2.5 (3.12e)

Since we are exploring fast charging at low temperatures, the temperature constraint is
unlikely to be violated. We omit this constraint, for simplicity, but it can be added back in
practice.

Results

Table 3.3 details several important hyperparameters for this case study. We consider a nickel-
manganese-cobalt battery cell. The initial electrochemical states correspond to equilibrium
with a voltage of V = 3.25 Volts. The cell is at the same uniform temperature as the ambient
temperature of Tamb = 281 Kelvin. We simulate 150 random charging trajectories to generate
the requisite training data to fit the surrogate models. Each trajectory was either terminated
if (1) the target SOC of 0.7 was reached, or (2) the episode end time of 55 minutes was
reached. The maximum allowed C-rate for these simulations is 2.5C, where the C-rate for a
lithium-ion battery is the parameter describing how much input current would be needed to
charge the battery from empty to full in exactly 1 hour. A typical target SOC for electric
vehicle applications is 0.8 or higher. Software implementations of the DFN model lose some
numerical stability when applying high C-rates at higher SOCs. To ensure we can continue
utilizing a maximum C-rate of 2.5, we instead choose to set a slightly lower target SOC of
0.7 in our case study. Our algorithm can, however, be adapted to charge a battery cell to a
higher SOC.

Using principal component analysis on the state trajectories, we decide to project the
state vector x ∈ R2687 → R40. This decision is motivated by the explained variance of the
data, plotted in Fig. 3.2. Figure 3.2 shows that the first 40 principal components of the state
vector data explain 99.74% of the variance in the dataset.

The surrogate models are feed-forward neural networks each with two hidden layers, each
with 10 neurons and sigmoid activation functions. The distribution of test data residuals for
side reaction overpotential constraint function Gηs are shown in Figure 3.3. This distribution
is centered around zero with tight variance, although the tails of the distribution indicate
that large residuals can occur with non-zero probability. If unaccounted for in the control
algorithm, violation of the overpotential constraint by, for example 0.14 volts, would cause
accelerated cell aging and could potentially sow the beginnings of a catastrophic failure. Based
on the testing data from model training (using an 80/20 split), the DRO offset computed
using a Wasserstein ambiguity set is r = 0.0200066. Given the specified chance constraint
parameters, this offset is expected to yield desired safety characteristics.

We implemented our algorithm using a (1 + λ) evolutionary strategy for optimization,
depending on 25000 mutants per iteration and 12 total iterations. Cross-entropy random
search also presents a useful alternative for numerical optimization [12]. As a point of
comparison, we implemented a numerical optimization scheme based on Matlab’s fmincon
solver, which we supplied with analytical gradient expressions for each function approximator.
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Figure 3.2: Individual and cumulative explained variance from principal component analysis
of the electrochemical model state trajectories.

Figure 3.3: Histogram of test data residuals for Gηs .
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Figure 3.4: Optimal charging results for the DFN model using a nickel-manganese-cobalt
(NMC) cell parameterization. Here, the maximum allowed C-Rate is 2.5C and the target
SOC is 0.7. Charging is marked as complete at the vertical dotted lines for each respective
trajectory.
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Table 3.3: Relevant Hyperparameters

Parameter Description Value
∆t Timestep 15 seconds
N Control Horizon 4 timesteps
SOC0 Initial state-of-charge 0.0286
SOCtarg Target SOC 0.7
Tamb Ambient Temperature 281 Kelvin
e Number of Training Episodes 100
T Length of Training Episode 3300 seconds
Imax Maximum Charging Current 2.5 C
β Ambiguity Set Confidence 0.9
ρ Chance Constraint Risk Metric 0.1

The results from this implementation were inferior to a random search based optimization
scheme. The analytic gradients made fmincon nearly 70% faster compared to using finite
differences for gradient calculations. However, the average computation time per time step
using fmincon was 9.1007 seconds whereas random search only required 2.0968 seconds per
timestep on average. We also find that the random search approach yields results of higher
relative quality in terms of the overall charging time performance compared to the fmincon
solver. The improved performance of random search, in terms of speed and solution equality,
led us to use the random search method for our final results included in this chapter.

Our first benchmark is a hyper-aggressive constant current constant voltage (CCCV)
charging protocol with 2.5 C-rate maximum input current and 4.2 Volts cutoff voltage. A
CCCV protocol charges the battery at the maximum allowed current until a cutoff voltage is
reached. From that point on, the battery is charged at a rate that keeps the voltage at the
specified threshold. Typically, CCCV profiles correspond to thresholds given in the battery
cell specifications document, which tend to limit the maximum allowed input current to
around 1C for most nickel-manganese-cobalt cells. For the sake of consistency, we keep the
maximum allowed current the same for each method. CCCV contextualizes the relative
performance of the proposed method.

As a point of comparison, we also implement conservative Q-learning (CQL), a popular
offline reinforcement learning algorithm that addresses distributional shift through penalties
on out-of-distribution (OOD) actions [60]. The CQL network is a feed-forward network with
two hidden layers each composed of 64 neurons, and ReLU activations. The network input
is the DFN state projected via the same PCA approach as our method. We discretize the
input current into 11 bins between 0 and 2.5 C-rate. The network is trained in tandem with
a target network iteratively with the same offline dataset used to learn the surrogate models
of our approach. The reward function is given below, and is adopted with slight modification
from recent work [85] successfully applying actor-critic RL methods to lithium-ion battery
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fast charging:
r = −I − 100(1ηS<0|ηS|) (3.13)

We substitute an SOC-based reward with one based on input current as we find it yields
CQL results that perform better with respect to charge time and constraint violation. A
complementary OOD CQL loss is augmented to this reward function when training the
networks [60]. CQL is a model-free method, meaning its sample efficiency isn’t as high as
our model-based approach. In [85], model-free actor critic methods are shown to require on
the order of 3e3 episodes of learning to achieve high-performing charging results. Given in
this case we are dealing with more than an order of magnitude reduction in available data,
the fidelity of these CQL results is actually quite impressive. CQL unfortunately does not
provide certificates on safety and feasibility, which is reflected in the final charging profile
as shown in Figure 3.4. This highlights a comparative advantage of our model-based RL
methodology, namely its out-of-sample safety guarantees.

Both CCCV and CQL are relevant benchmarks for the following application and method-
ological reasons. Firstly, CCCV is by far the most popular fast-charging algorithm in practice.
In fact, closed form optimal fast charging with reduced-order battery models collapses to the
CCCV profile [86]. Speaking of methods, both algorithms share with our algorithm a lack of
dependence on a-priori model knowledge. Explicit understanding of the underlying physics
is not needed to achieve good control results with any of these methods, meaning they are
operating on the same playing field. Second, CQL is a state-of-the-art learning-based control
method that is designed to address many of the same problems our approach addresses.
Principal among such problems is the “distributional shift” challenge that is prominent in
offline RL. Finally, neither CQL nor any other existing state-of-the-art offline RL method
(e.g. model-based offline policy optimization, or MOPO [110]) provide any explicit safety
guarantees when considering the context of lacking model knowledge. This reveals the relative
value of our novel methodology, insofar as our mechanism towards addressing distributional
shift carries with it strong probabilistic safety guarantees.

Figure 3.4 shows the optimal fast charging results for versions of our algorithm with and
without distributionally robust optimization. Overall, the CCCV protocol charges in 30.6
minutes, the non-robust predictive controller in 32.35 minutes, the full distributionally robust
controller in 34.1 minutes, and the CQL controller in 42 minutes. The industry benchmark
CCCV protocol yields a good performance with respect to charging time with a total time of
30.6 minutes. However, it significantly violates the safety constraint by up to 0.12 Volts, and
for extended periods of the overall experiment. This would undoubtedly lead to significant
degradation and potential failure of the cell. Figure 3.5 shows constraint violation for each
learning-based method. Without the DRO architecture, the surrogate-based method provides
a relatively high performing charging protocol which charges the battery cell in 32.35 minutes,
only 5.7% slower than the CCCV approach. It also demonstrates improved safety relative
to the industry CCCV benchmark. Specifically, the magnitude of the maximum constraint
violation in the non-robust version of our algorithm is only 0.0082 Volts. With the added
DRO framework based on Wasserstein ambiguity sets, we see that the charging protocol
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Table 3.4: Comparison of relevant experiment metrics.

Algorithm Charge Time
[min]

Feasible?

CCCV 30.6 No
CQL 42 No
Surrogate Optimal Control (No DRO) 32.35 No
Robust Surrogate Optimal Control 34.1 Yes

satisfies the constraint at every instance in time, while also providing a competitive 34.1
minute charging time. These results illustrate the theoretical guarantees we expect from
application of Wasserstein ambiguity sets. Relative to the non-robust version, the charging
time with the DRO offset is only 5.4% slower, a tradeoff that may be worthwhile for the
increased safety and mitigation of aging. CQL violates overpotential constraints and charges
slowly in comparison, however we trained the CQL network with the exact same dataset
as used by our method for consistency. An offline dataset with (i) more trajectories, and
(ii) trajectories that more frequently violate constraints would yield higher performing CQL
results, however such results would not have any guarantees of adhering to constraints. Table
3.4 shows a comparison of relevant results metrics.

Computational Effort Analysis

Comparing the computational requirements of this algorithm to those of our preliminary
version in [53] reveals a host of meaningful insights. We are performing optimal control on
the DFN model, which is characterized by 2687 state variables. In the past exploratory
work, we tested a more rudimentary version of our algorithm on the single particle model
with electrolyte and thermal dynamics (SPMeT), a model with 208 state variables. The
average computation time per iteration with the DFN is 2.0968 seconds, when the algorithm
is executed on a Windows desktop workstation equipped with a 9th generation Intel i5
processor. In [53], the average time per iteration was 1.7803 seconds when run on the same
machine. Despite the more than 10-fold increase in the cardinality of the state vector of
each model, the computational effort of the proposed algorithm only changes marginally by
17.81%. This slight difference is likely due to the more complex neural network architecture
and DRO framework which we employ in our updated analysis.

Insights from Wasserstein DRO Algorithm

One unique aspect of this work from preliminary results presented in [53] is the application of
Wasserstein ambiguity sets. Wasserstein ambiguity sets are differentiated from ϕ-divergence
based chance constraint reformulation by their robust out-of-sample safety guarantee. We
see this difference by observing that Wasserstein ambiguity sets provide a slightly more
conservative result that that shown in previous work. This finding is clear from our DFN
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Figure 3.5: ηs evolution statistics for each respective method (omitting CCCV and CQL).
While the DRO version violates the conservative constraint offset, it still yields safe charging
behavior relative to the nominal constraint boundary. Conversely, the non-robust version of
our algorithm violates the nominal constraint boundary in 25.38% of its timesteps.

case study. The DRO does prevent constraint violation entirely compared to the non-robust
version which only attenuates its magnitude relative to CCCV. For safety critical control
applications, this added safety from the out of sample safety guarantee is valuable.

To further demonstrate this added value, we refer to Figure 3.6 which shows a comparison
of the cumulative distribution of GηS model residuals from test data and from the state-action
pairs in the final optimal charging profile. This plot highlights the distributional shift problem
which is a significant open challenge in offline RL research. Consider that when limited
to a static, offline dataset for model training, applying resulting control policies to a real,
dynamical system creates the opportunity for the agent to encounter states that fall out of
the distribution of its training data. For high-dimensional nonlinear dynamical systems, the
probability of this occurring is significant. Thus, safety must be guaranteed with respect
to such OOD experience. Wasserstein ambiguity sets provide a strong means to satisfy
this requirement, given their out-of-sample safety guarantee. While the final experimental
distribution does not represent the true underlying distribution of residuals, it does present a
significant deviation from what we observe in our test data. Besides some slight differences
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Figure 3.6: Comparison of cumulative distribution of GηS model residuals from test data and
from the final optimal charging profile. These differences visualize the distributional shift
problem that is a critical challenge in offline reinforcement learning.

in overall shape, the experimental residual distribution is more heavily skewed to higher
magnitudes of modeling errors. Importantly in this case the maximum residual we observe is
0.5033 Volts, which is 2.908 times the magnitude of the largest residual represented in the
test data set. This difference is just one way of demonstrating how distributional errors can
come into play once we set out to apply an optimal charging policy

3.4 Conclusion

This chapter presents a novel framework for optimal control of high-dimensional dynamical
systems. The key challenges to numerical optimal control addressed by this chapter include:
(i) the “curse of dimensionality” incurred by high-dimensional systems, (ii) formulations that
are not linear-quadratic, and (iii) ensuring safety/feasibility when constraint model errors
occur.

We identify surrogate models that learn from limited offline datasets, and which absorb
state transition dynamics to reduce compounded modeling errors. Principal component
analysis applied to the training data allows us to project the high-dimensional data onto a
reduced basis. This makes the modeling architecture conducive to fast identification and
evaluation. Finally, we integrate these models into a receding horizon control framework.
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Critically, our strategy utilizes distributionally robust optimization to robustify the solution to
errors in the constraint function surrogate models. the OOD safety guarantee of Wasserstein
DRO directly addresses the open challenge of distributional shift for offline RL problems. All
combined, we demonstrate that the algorithmic approach yields tractable and robust control
results for high-dimensional dynamical systems.
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Chapter 4

Safe Learning and Adaptive MPC with
Limited Model Knowledge and Data1

Abstract

This chapter presents an end-to-end framework for safe learning-based control using nonlinear
stochastic MPC. We focus on scenarios where the controller is applied directly to a system
of which it has highly limited experience, toward safety during tabula-rasa learning-based
control as a challenging case for validation. We show under basic and limited assumptions
that we can translate the probabilistic guarantees in Chapter 2 even with strong limitations
on available data and model knowledge. We also present a coupled and intuitive formulation
for the persistence of excitation (PoE) and illustrate the connection between PoE and the
applicability of the proposed method. We validate these findings with case studies of extreme
lithium-ion battery fast charging and autonomous vehicle obstacle avoidance using a basic
perception system.

4.1 Introduction

This chapter presents a novel application of Wasserstein ambiguity sets to robustify model-
based reinforcement learning (MBRL) and learning-based control (LbC) in safety-critical
applications. Here, we define safety as the ability of the control policy to satisfy constraints.
Translating safety to online reinforcement learning (RL) algorithms is a notoriously difficult
open challenge in relevant literature. This work is motivated by unsolved shortcomings of
many existing means to address this challenge, particularly a strong and often optimistic
dependence on subject matter expertise. Two overarching examples include (i) assumed
knowledge of underlying dynamics, and (ii) preexisting data of safe trajectories.

1This chapter is adapted from previously published work [51]. ©2023 IEEE. Reprinted, with permission,
from Kandel, Aaron and Moura, Scott. “Safe Learning MPC With Limited Model Knowledge and Data.”
IEEE Transactions on Control Systems Technology (2023).
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In Chapter 2, we outlined a simple extension of DRO theory that is amenable to translating
results to the space of LbC with nonlinear, high-dimensional, unstructured systems. This
chapter seeks to apply this method to address key open questions in the literature. Among
those previously discussed, foremost is the lack of general methods that possess robustness
when conducting tabula-rasa learning-based control, or those requiring significant assumptions
on availability of prior data of safe control trajectories.

We present a novel and simple model-based LbC scheme based on MPC which provides
strong probabilistic out-of-sample guarantees on safety. We validate our method using
experiments that emulate tabula-rasa as closely as possible given our assumptions, but
our algorithm is widely applicable to adaptive control scenarios especially when underlying
dynamics may be poorly structured or difficult to characterize. By developing Wasserstein
ambiguity sets relating to empirical distributions of modeling error, we can conduct MPC
with an imperfect learned snapshot model while maintaining confidence on our ability to
satisfy nominal constraints. The Wasserstein ambiguity sets allow us to optimize with respect
to constraint boundaries that are shifted into the safe region. As our empirical distributions
improve with more data, the offset variables tighten towards the nominal boundary in a
provably safe way. Our approach yields probabilistic safety guarantees. Critically, in this
work, we present this LbC algorithm along with (1) an explicit and fundamental persistence
of excitation (PoE) scheme, and (2) highly limited SME assumptions. While many LbC
methods are amenable to PoE schemes [28], the question of PoE is in some cases neglected
despite its relevance. We actually show our explicit PoE scheme is fundamental to illustrating
the applicability of our method. Our contributions combine to allow us to translate safety
guarantees with highly limited model knowledge and data.

The overarching objective of this chapter is not to present the most high-performing LbC
architecture, but rather to explore what kind of performance we can obtain when limiting
our SME assumptions more than existing work in controls literature. Many control-theoretic
methods provide stronger robust (i.e. safety w.p. 1) guarantees under much more restrictive
assumptions. In our case, we label our method as “trustworthy” insofar as it relies on highly
limited SME. Given the elusiveness of safety guarantees in RL literature, a probabilistic result
within our context is powerful and describes improved safety we observe in our case studies.

We validate our approach with two case studies focusing on safety-critical applications.
In the first, we learn a policy that safely charges a lithium-ion battery using a nonlinear
equivalent circuit model. Battery fast charging presents a strong challenge for learning-based
control methods, given that the optimal policy is a boundary solution which rides constraints
until the terminal conditions are met. We also conduct a case study on safe autonomous
driving using a nonlinear bicycle model of vehicle dynamics. We demonstrate that our
algorithm provides a provably safe method for the vehicle to avoid obstacles while learning
its dynamics from scratch.

We provide an open-source GitHub repository [50] for our case studies.
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4.2 Distributionally Robust Model-Based

Learning-Based Control

Fig. 4.2 shows a block diagram of our proposed control architecture, detailed within this
chapter.

Figure 4.1: Diagram of safe Wasserstein-constrained MPC. In the most restrictive case, after
initializing the controller, it immediately begins interacting with its environment. At every
timestep, it observes an MDP state transition tuple, calculates model residuals, uses the
residuals to calculate the DRO offset r(j)(k), and then solves a new MPC program at the
next state. This application case serves as a purposefully extreme challenge of the robustness
and behavior of our algorithm at what would otherwise be unreasonable levels of uncertainty
and risk. Later in this chapter, we demonstrate that even under such extreme conditions, we
manage to safely learn control policies for a host of nonlinear stochastic control problems.
We do note, however, that our algorithm is much more widely applicable when prior data
and SME is available.

Model Predictive Control Formulation

We apply Wasserstein ambiguity sets to robustify a learning model predictive controller,
based on the following optimization program formulation. Given true plant dynamics:

xt+1 = f(xt, ut,Wt) (4.1)

yt = g(xt, ut, Vt) (4.2)

where t is the current timestep, Wt is state noise, Vt is output measurement noise, xt is the
state variable, and yt is the output variable. We assume access to full state and output
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measurements, subject to the measurement noises Wt and Vt. The capital letters represent
random variables. Before considering modifications for distributional robustness to uncertainty
(which also accommodate exogenous inputs), we seek to solve the following predictive control
problem:

minimize
ut:t+N−1

t+N∑
k=t

Jk(x̂k, ŷk, uk) (4.3a)

subject to: (4.3b)

x̂k+1 = f̂(x̂k, uk, θf ) (4.3c)

ŷk = ĝ(x̂k, uk, θg) (4.3d)

ŷk ≤ 0 (4.3e)

x̂t = xt (4.3f)

where xt is the known (measured) initial state at the current timestep t. The “hat” symbol
indicates a predicted variable, and the learned models themselves are given by:

x̂t+1 = f̂(xt, ut, θf ) (4.4)

ŷt+1 = ĝ(xt, ut, θg). (4.5)

At a high level, these can be thought of as two separate models. However, when learning a
black-box representation of the system, that single model can be trained to predict both sets
of values x̂t+1 and ŷt. The parameters θf and θg are learned from historical data through
model identification.

Model Identification

The models are used to predict state transition dynamics and constraint function outputs.
We assume the true model parameters θ∗f and θ∗g are inaccessible to the controller. Several
methods can be selected to learn the parameters online, and can depend on what type of
learning model architecture is selected. In this chapter, we utilize nonlinear least-squares
with neural network models for both the state transition dynamics and constraint functions:

f̂(xt, ut, θf )← xt+1 (4.6)

ĝ(xt, ut, θg)← yt (4.7)

where xk+1 and yk are assumed to be measurable from the real system at the current timestep.
When conducting MPC, the initial xk is obtained by assuming full state observability
throughout the LbC problem. From this point forward, we denote θg;t as the parameterization
of the learned model of g at timestep t in the overall learning process.
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Modeling Error Characterization

We characterize modeling error through comprehensive modeling residuals across varying
prediction depths.

For example, consider a scalar system x ∈ R, y ∈ R within three steps of model predictive
control N = 2 with quadratic, time invariant objective function (state penalty q = 1, effort
penalty r = 1, terminal state penalty p = 1):

minimize
ut,ut+1,ut+2

x2t + x̂2t+1 + u2t + u2t+1 + x̂2t+2 (4.8a)

subject to: (4.8b)

x̂t = xt (4.8c)

x̂t+1 = f̂(xt, ut, θf ) (4.8d)

x̂t+2 = f̂(x̂t+1, ut+1, θf ) (4.8e)

x̂t+3 = f̂(x̂t+2, ut+2, θf ) (4.8f)

ŷt = ĝ(xt, ut, θg) (4.8g)

ŷt+1 = ĝ(x̂t+1, ut+1, θg) (4.8h)

ŷt+2 = ĝ(x̂t+2, ut+2, θg) (4.8i)

ŷt ≤ 0 (4.8j)

ŷt+1 ≤ 0 (4.8k)

ŷt+2 ≤ 0 (4.8l)

Suppose we find a sequence u∗t , u
∗
t+1, u

∗
t+2 from solving 3 sequential model predictive

control problems with the true plant in the loop. Since we are using learned models to solve
these predictive control problems, these inputs are likely not actually optimal for the system,
and with added PoE they include exploratory aspects. In each case we apply the first control
input to the system to obtain x∗t+1, x

∗
t+2, x

∗
t+2 We can quantify prediction error of the learned

constraint function in the following manner:

R
(t)
1 = g(xt, u

∗
t )− ĝ(xt, u∗t , θg) (4.9a)

R
(t+1)
1 = g(x∗t+1, u

∗
t+1)− ĝ(x̂t+1, u

∗
t+1, θg) (4.9b)

R
(t+2)
1 = g(x∗t+2, u

∗
t+2)− ĝ(x̂t+2, u

∗
t+2, θg) (4.9c)

These are 1-step residuals, as denoted by the subscript R1, since x̂t+1 = f(xt, u
∗
t ) and

x̂t+2 = f(x∗t+1, u
∗
t+1). In these equations, the function g represents our observations from

the real system (simple data), and the function ĝ represents the predictions of our learned
constraint model. We take the absolute value since these residuals will be introduced as
variables that add conservatism relative to the existing constraint boundary. Since we conduct
predictive control, we also want to quantify modeling errors after 2, 3, or more steps of
prediction into the future using learned models, as errors can accumulate and become worse
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with successive prediction steps. This happens in the following way:

R
(t)
1 = |g(xt, u∗t )− ĝ(xt, u∗t , θg)| (4.10a)

R
(t)
2 = |g(x∗t+1, u

∗
t+1)− ĝ(f̂(xt, u∗t , θf ), u∗t+1, θg)| (4.10b)

R
(t)
3 = |g(x∗t+2, u

∗
t+2)− (4.10c)

ĝ(f̂(f̂(xt, u
∗
t , θf ), u

∗
t+1, θf ), u

∗
t+2, θg)| (4.10d)

As is shown here, modeling error accumulates from learned representation of both the
constraint function ĝ and the learned dynamics function f̂ .

Remark 2 We choose to take the absolute value of residuals. This decision is not necessary,
but makes intuitive sense given the application. Since we are intending to modify the nominal
constraint boundary, signals of modeling errors that show underestimation could lead to an
offset that potentially moves the constraint into the unsafe region. We seek to avoid this, and
only create offsets that reduce the size of the feasible region.

The model identification process utilizes the 1-step residuals to minimize mean-square
prediction error (MSE) of the prediction of the state transition compared to past observations.
The multi-step residuals are utilized by the DRO framework to adjust conservatism deeper
into the future based on cumulative modeling error.

By representing modeling error this way, we lump all relevant sources of modeling error
into an additive term. As previously discussed, the absolute value is taken as a precautionary
measure. Omitting that transformation provides the following simple expression:

g(x∗t+2, u
∗
t+2) = ĝ(f̂(f̂(xt, u

∗
t , θg), u

∗
t+1, θg), u

∗
t+2, θg) +R

(t)
3 (4.11)

By treating the residuals as random variables drawn from a true distribution P, the constraints
will by definition be additive in the random variable/modeing error.

Safety and Robustness using Wasserstein Ambiguity Sets

Now that we have outlined the distributionally robust chance constrained approach using the
Wasserstein ambiguity set, we can describe how it fits within our robust control framework.

The residuals defined in the previous subsection IV.C entail a representation of the
modeling error. This is only true because the constraint functions are evaluated using
predicted states from the learned dynamical model, whose true representation is unknown.
By considering process error/residuals as an additive noise term, we can maximize the utility
of the DRO reformulation in [33] which requires this linear structure in the constraint:

g(xk, uk, θg;t) +R1 ≤ 0 (4.12)

As previously discussed and shown in equation (4.11), by design, this linear structure will
always occur. These residuals are random variables characterized by empirical distributions
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based on our observations. Now, we’ve bolded the variable R1 to indicate it is a random
variable, whereas the previous value R

(t)
1 was a realization of this random variable at time t.

To accommodate distributional uncertainty in our estimate of P̂, we transform the
constraint (4.12) for each of 1 → N + 1 step residuals into a joint distributionally robust
chance constraint via Wasserstein ambiguity set as follows:

inf
P∈Bϵ

P


ĝ(x̂k, uk, θg;t) +R1 ≤ 0

ĝ(x̂k+1, uk+1, θg;t) +R2 ≤ 0
...

ĝ(x̂k+N , uk+N , θg;t) +RN+1 ≤ 0


≥ 1− η

(4.13)

The reformulation we adopt from [33] presents a simple method to accommodate the constraint
without inverting the CDF. If we operate under the assumption that the residuals for
i = 1, ..., N steps are uncorrelated, then we can decompose this joint chance constraint into a
set of individual chance constraints. This decomposition could be useful if the optimization
algorithm we select to solve the MPC problem scales unfavorably with the dimension of
the constraints. Algorithm 1 provides an overview of the real-time implementation of our
approach. As previously stated, the process for computing r entails a simple scalar convex
optimization program.

Remark 3 The reformulation from [33] adds cardinality of constraints that scale with order
2m. However, our formulation of modeling error as an additive residual allows the number of
constraints to remain constant. We detail this property in the Appendix of this dissertation.
The simple answer is that, by taking the absolute values of the residuals, the random variable
that represents modeling error is strictly non-negative. This means a negative realization
is impossible to encounter, and need not be accommodated. By keeping the cardinality of
constraints constant, the computational scalability of our approach is preserved for higher
dimensional control problems.

At each time step, we compute model residuals with our most recent estimate θg;t using
predicted state transitions from our entire cumulative experience, compile a unique empirical
distribution P̂ corresponding to each individual chance constraint, and compute the value of
r in (2.5) to reformulate the distributionally robust chance constraints. We can begin the
overall process with a small control horizon N , and gradually increase N as we accumulate
more and more data from experience. The residuals we compute are for horizon lengths of
1 to N -steps, meaning the elements of R correspond to each of i = 1, ..., N step residuals.
Then, we assemble a joint chance constraint where the elements of the column vector of the
random variable are the 1→ N step residuals. In [33], authors pursue a DRO reformulation
that utilizes a polytopic representation of the uncertainty set. Our formulation preserves
scalability by isolating dependence on the random variable in the constraint. Our Appendix
shows the logic that allows the cardinality of constraints to remain constant.
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Finally, when we conduct MPC, we replace the nominal constraints with their distribu-
tionally robust counterparts:

minimize
u∈U

t+N∑
k=t

Jk(x̂k, uk) (4.14a)

s. to: x̂k+1 = f̂(x̂k, uk, θg;t) (4.14b)
ĝ(x̂k, uk, θg;t)

ĝ(xk+1, uk+1, θg;t)
...

ĝ(x̂k+N , uk+N , θg;t)

+ r(j) ≤ 0 (4.14c)

x̂0 = xt (4.14d)

Algorithm 2 describes the implementation of our MPC architecture coupled with the Wasser-
stein distributionally robust optimization scheme:

Algorithm 2 Wasserstein Robust Learned MPC

Require: State space §, Action space U
for t in range tmax do
if t = 1 then
ut = known safe input, N = 1

else
Update the dynamical system model and constraint functions θt−1 → θt
Receding horizon increment rule (i.e. N = min{Ntarg, round(

t
Ntarg

) + 1})
Obtain Wasserstein ambiguity set offset r:
ut ← Solve MPC optimization program (4.15a)-(4.15i)

end if
xt+1 = f(xt, ut,Wt) (Truth plant)
yt = g(xt, ut, Vt) (Truth plant)

end for

The MPC program specified in (4.15a-4.15i) details the slight modifications made to
(5.13-5.34) accommodating the coupled PoE component to our LbC framework. We discuss
this in more detail in part F. of this section.

One important note concerns a specific scenario of model adaptation where the true
underlying system slowly changes. Our application of receding horizon control necessitates
the use of a snapshot model in the prediction phase. This requires we assume the rate of
change of the dynamics of the true plant is relatively small. In such conditions, however,
the historical residuals we collect through measurements will slowly lose relevance. This
issue can be easily reconciled with use of either a moving window of residuals, or with a
proper forgetting scheme. In this chapter, we propose a simple method to accommodate such
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cases. Since the focus of this chapter is on tabula-rasa learning-based control, we relegate the
discussion of this additional framework to this dissertation’s appendix.

Horizon Increment Rule

MPC with well-defined dynamical structure can leverage judicious selection of the prediction
horizon as a component to proving recursive feasibility. When considering a general class
of systems as is the case with MBRL, the prediction horizon becomes a hyperparameter
that manages the tradeoff between prediction depth and computational expense. In this
work, we elect to define a simple horizon increment rule for our experiments. Typically in
learning-based control, the prediction horizon is a hyperparameter whose selection can be
done empirically with more nuanced methods [112, 65]. In our case studies, which we design
to emulate tabula-rasa learning-based control as closely as is consistent with the assumptions
of our algorithm, we utilize this horizon increment rule as a heuristic to simply allow the
problem to be rapidly solved. By solving severely restrictive case studies, we validate the
performance of our method under the most challenging context for which it is technically
designed. For real-world applications, the horizon can often be selected using a combination
of available subject matter expertise (which should not be ignored if it is available), and
automatic tuning methods like those of [112, 65]. The increment rule is not meant as a
serious method for real-world embedded control systems that often possess highly limited
computational resources.

Persistence of Excitation, and Problem Assumptions

This subsection defines the set of least restrictive assumptions we identify towards achieving
safe learning-based control. In this work, we consider systems with non-hybrid dynamics for
simplicity. Our method leverages proved safety properties from [33], which apply to static
optimization programs. We identify that these methods can apply to LbC problems under a
series of assumptions made in this section. These assumptions almost entirely relate directly
to situations when the dynamical, DRO, and PoE components, which are normally not
considerations for static optimization programs, could create opportunities for empty feasible
sets. This subsection defines a PoE scheme directly amenable to translating guarantees
from [33] to our formulation. Notably, our assumptions are significantly less restrictive than
those of existing LbC methods. The majority of these assumptions relate to clear necessary
conditions which we detail here:

Assumption 1 A feasible state and control trajectory exists for each prediction horizon N
in the optimal control problem.

This is the most fundamental requirement to apply safe control.

Assumption 2 We assume we know a safe control input which we can apply at the first
timestep.
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Starting with limited model knowledge, if we don’t know a temporarily safe control input we
can apply at the first timestep, we obviously can’t translate any meaningful safety certificates.
This contrasts to other work which requires knowledge of safe control trajectories throughout
the time horizon, or a known safe backup policy.

Assumption 3 Starting with an optimal control problem of the form (5.11-4.3f), suppose
we have a constraint function g(xk, uk, θg;t) : § × U × θ → S. The sublevel set GrDRO

=
{(x, u) ∈ §,U : g(x, u) + rDRO ≤ 0} defines the adjusted feasible region, where feasibility
is satisfied at the current timestep. This set must not be empty ∀rDRO ∈ R, where the set
R = {rDRO ∈ R : 0 ≤ rDRO ≤ rDRO;max} describes the set of all potential values of the DRO
offset.

Since our method relies on creating an offset from the nominal constraint boundary, any
potential value of the offset must lie in the image of the constraint function.

This assumption can be thought of as a generalization of a common LbC assumption that
relates to “bounded modeling error,” an example of which is given by Assumption 2 in [8].
In our case, using general function approximation, our method to quantify model error is
empirically based on residuals. If the residuals of the learned model are too large, indicating
our learned model is inaccurate, the resulting computed rDRO (which is a conservative
approximation of the residual, based on its distribution) will enforce a large offset from the
nominal boundary. This assumption says that if the learned model is sufficiently inaccurate,
the offset will be so large that the adjusted feasible region is empty, which is incompatible
with the setup of [33]. The value rDRO;max represents any maximum residual value we can
potentially infer from the problem, and can be defaulted to as an empirical approach if this
case is reached in a real problem, although safety properties may not be reliable in such cases.
Our experiments show such scenarios can be unlikely to occur, although the possibility of
their occurrence should be considered.

The next assumption relates to a slightly stronger condition regarding persistence of
excitation (PoE). The agent must be capable of exploring during LbC. In order to ensure
the guarantees from [33] translate under those diverse circumstances, the same statements of
3.1-3.3 must be satisfied with respect to an additional exploration process N that ensures
PoE.

For clarity, we define the following modified MPC program that considers an additive
exploration signal from N :

minimize
u,un∈U

t+N∑
k=t

Jk(x̂k, uk) (4.15a)

s. to: x̂k+1 = f̂(x̂k, uk, θg;t) (4.15b)

x̂nk+1 = f̂(x̂nk , u
n
k , θg;t) (4.15c)

ĝ(x̂k, uk, θg;t) + rDRO ≤ 0 (4.15d)
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ĝ(x̂nk , u
n
k , θg;t) + rDRO ≤ 0 (4.15e)

un = u+Ni:i+N (4.15f)

Ni:i+N ∼ N (4.15g)

x̂0 = xt (4.15h)

x̂n0 = xt (4.15i)

where N is the distribution of a random exploration process which can be added to the
nominal control input, and the superscript xn and un denote trajectories perturbed by the
exploration signal. The solution un(t)⋆ is then applied to the plant at time step t.

Remark 4 Equations (4.15a-4.15i) guarantee feasibility from k = t to k = t+N for a system
with parameters θg;t with a specified risk metric/probabilistic guarantee. This is formulated to
guarantee feasibility over the control horizon. To assess recursive feasibility, one could utilize
the methods from [114, 27] that require more significant restrictions in the form of model
knowledge, mathematical structure on the feedback policy, and prior existing safe data.

The additive noise perturbation for exploration takes inspiration from common methods
with actor-critic or policy gradient learning, where noise via an Ornstein-Uhlenbeck process
is added to the control input [66]. Relative to those existing methods, we make the following
modifications for implementation:

Remark 5 We must constrain both nominal and perturbed trajectories to ensure safety even
with exploration. If we only add the perturbation after solving the MPC program, safety is
not guaranteed.

Remark 6 A scalarized tradeoff between Jk(x̂k, uk) and Jk(x̂
n
k , u

n
k) can be formulated to

balance exploration and exploitation during planning.

Now, we define the next assumption relevant to translating safety to LbC systems under
strong limitations on SME:

Assumption 4 Given the noise process N defined to satisfy PoE for the model identification
problem, the constraints g(xk, uk, θg;t) and g(x

n
k , u

n
k , θg;t) of the snapshot model must be satisfied

for every realization from N throughout the overall finite-time optimal control problem.

Given these conditions, we state the following remark detailing the properties of our
method:

Remark 7 Based on the provided safety guarantee afforded from the adopted DRO framework
from [33], (5.13-5.34) admits a feasible solution that satisfies the nominal constraints w.p.
1− η as long as the feasible set is not empty, which follows from Assumptions 3.1-3.4.

We also state two remarks that help with implementation of our approach.
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Remark 8 These assumptions must also hold for the prediction horizons chosen at each
instant in time.

Remark 9 If the DRO offset is so large it creates an empty feasible set, an artificial value
rDRO;max can be defaulted to to facilitate implementation, although safety guarantees in such
situations may be difficult to translate. If a random search is used to solve the MPC program
in such cases, the evaluated trajectory that creates the least predicted constraint violation
given the unmodified DRO offset can be selected.

4.3 Case Study in Safe Online Lithium-Ion Battery

Fast Charging

In this section, we validate our approach using a nonlinear lithium-ion battery fast charging
problem. This problem closely emulates the performance-safety tradeoffs of common safe RL
validation studies including ant-circle [1]. Specifically, the objective is to charge the battery
cell as fast as possible, but the charging is limited by nonlinear voltage dynamics which must
stay below critical thresholds. Violation of the voltage constraint can lead to rapid aging and
potential catastrophic failure. However, higher input currents (which increase voltage) also
directly charge the battery more rapidly. Thus, the optimal solution is a boundary solution
where the terminal voltage rides the constraint boundary. This presents a problem with
significant challenges and tradeoffs relating to safety and performance. Exploring how such
algorithms accommodate these challenges can reveal insights into their overall efficacy and
shortcomings.

Equivalent Circuit Model of a Lithium-Ion Battery

Lithium-ion batteries can be modeled with varying degrees of complexity. Some of the more
detailed dynamical models are based on electrochemistry. For example, the Doyle-Fuller-
Newman (DFN) electrochemical battery model is a high-fidelity first-principles derived physics
based model of the dynamics within a lithium-ion battery [30]. Varying model-order reduction
can be applied, yielding versions including the single particle model and the equivalent circuit
model (ECM). For simplicity, this section’s case study utilizes an ECM. The relevant state
variables in this model are the state of charge SOC and capacitor voltages VRC in each of
two RC pairs. The relevant constraint is on the terminal voltage V . This constraint prevents
the battery from overheating or aging rapidly during charging and discharging. The state
evolution laws are given by:

SOCk+1 = SOCk +
1

Q
Ik ·∆t (4.16)

VRC1;k+1 = VRC1;k −
∆t

R1C1

VRC1;k +
∆t

C1

Ik (4.17)
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Table 4.1: Safety, computational, and performance comparison for DRO-MPC and MPC
with battery fast charging. Activation of the DRO offset begins at minResidNum = 2.

(DRO) % Violations [%] Max Voltage [V] Iteration Time [s] Time [min]
1 0.0 % 3.5944 0.8551 7.3833
2 0.4 % 3.7004 0.8473 7.7667
3 0.2 % 3.6887 0.8529 7.3000
4 0.6 % 3.7098 0.8503 8.1833
5 0.0 % 3.5927 0.8688 7.5333
6 0.4 % 3.7344 0.8550 7.7833
7 0.4 % 3.7032 0.8643 8.1167
8 0.2 % 3.6921 0.8692 7.6667
9 0.2 % 3.6916 0.8620 7.8667
10 0.2 % 3.6985 0.8375 8.0167

Averages 0.26% 3.6806 0.8562 7.8150

(No DRO) % Violations [%] Max Voltage [V] Iteration Time [s] Time [min]
1 4.2 % 3.7795 0.8630 6.8667
2 7.4 % 3.7604 0.8345 6.8667
3 5.0 % 3.7474 0.8055 6.7833
4 13.6 % 3.7284 0.7938 6.8500
5 8.0 % 3.9072 0.8020 6.8333
6 16.2% 3.9060 0.7977 6.8667
7 8.0 % 3.9040 0.8240 6.8667
8 11.6 % 3.7651 0.7875 7.0167
9 7.2 % 3.7736 0.8237 6.8000
10 16.4 % 3.7634 0.7928 6.7500

Averages 9.76 % 3.8035 0.8125 6.8500

VRC2;k+1 = VRC2;k −
∆t

R2C2

VRC2;k +
∆t

C2

Ik (4.18)

Vk = Vocv(SOCk) + VRC1;k + VRC2;k + IkR0 (4.19)

where I(t) is the current input (which is the control variable for this problem), and VOCV
is the open-circuit voltage function, which is conventionally measured through experiments.
The full experimental OCV curve is used to represent the true plant in the loop, and is
obtained from a lithium-iron phosphate (LFP) battery cell [91]. In this case study, we learn
the dynamics of the model using a simple feed-forward neural network.
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Table 4.2: Relevant Parameters for Battery Case Study

Parameter Description Value Units
Q Charge Capacity 8280 [ 1

A.h
]

R0 Resistance 0.01 [Ω]
R1 Resistance 0.01 [Ω]
R2 Resistance 0.02 [Ω]
C1 Capacitance 2500 [F ]
C2 Capacitance 70000 [F ]
∆t Timestep 1 [s]
Ntarg Max Control Horizon 8 [-]
η Risk Metric 0.025 [-]
β Ambiguity Metric 0.99 [-]
SOC0 Initial SOC 0.2 [-]
SOCtarg Target SOC 0.8 [-]
VRC1(0) Init. Cap. 1 Voltage 0 [V]
VRC2(0) Init. Cap. 2 Voltage 0 [V]

Model-Predictive Control Formulation

We utilize the following formulation of fast charging:

minimize
Ik∈U

t+N∑
k=t

(SOCk − SOCtarget)2 (4.20)

s. to: (5.23)− (5.25), SOC(0) = SOC0 (4.21)

Vk ≤ 3.6V, 0A ≤ Ik ≤ 40A (4.22)

The relevant parameters of the true model and DRO-MPC program are referenced in Table
4.3.

Remark 10 In our case, we assume the controller does not have access to the form of the
underlying dynamics given by (5.23-5.25). Instead, we apply our end-to-end LbC method to
learn the dynamics “from scratch” as is consistent with tabula-rasa learning methods. We
utilize neural network black-box models to accomplish this. The rules used to update the neural
network parameters affect the convergence of the data-driven model to accurate behavior,
which also effects empirical safety. We keep the neural network training consistent between
our DRO algorithm and its non-robust baseline. The exact training procedure can be referenced
in [50]. Updating the model more slowly at first tends to encourage more consistent behavior.

In these case studies, we apply perturbation to the inputs that further excite the system,
towards ensuring PoE. These perturbations are drawn as uniform vectors whose elements lie
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between −2.5 ≤ xp ≤ 2.5 Amps. These perturbations are applied to both the distributionally
robust controller, as well as the non-robust baseline controller In both cases, we seek to
ensure mutual constraint satisfaction for the trajectories predicted using both the nominal
and perturbed inputs.

We only allow a maximum total of 500 seconds for the battery to be charged. The
timestep ∆t = 1 seconds, η = 0.025, β = 0.99, and Ntarg = 8 steps. Our neural network
dynamical model has 1 hidden layer with 3 neurons and sigmoid activation function, with a
linear output layer. To solve the MPC problem, we apply a (1 + λ) evolutionary strategy
(ES) based on a normally distributed mutation vector. In our appendix, we describe how this
strategy works, why we select it, and other reasonable alternatives. The solver works with a
single iteration and 250,000 mutants. The initial point of the ES is taken as the optimal point
from the previous timestep. Addressing Assumption 2, we assume that at the first timestep,
control inputs of Ik ≤ 25 Amps are known to be temporarily safe. Since we constrain voltage
which is a scalar, the constraint function dimension m = 1.

Our baseline is a learning MPC controller with no DRO framework. We adopt the same
problem formulation as if we were going to add the constant rDRO to the constraints, but we
omit the DRO constant in the end to evaluate the impact it has on the robustness of the
final control law.

Results
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Figure 4.2: Comparison of nonlinear MPC Controller with and without DRO for lithium-ion
battery fast charging. Run 1 is shown here.
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Figure 4.3: Comparison of nonlinear MPC Controller with and without DRO for lithium-ion
battery fast charging. Run 4 is shown here.

In total, we conducted 10 experiments with identical designs but different initial random
seeds. We run our algorithm and a non robust baseline for these 10 runs on the same battery
fast charging problem detailed in the previous subsections. Table 4.3 shows the performance,
computation, and safety statistics for each of these runs. For a closer look, we go to Figure
4.2 which shows one run of both the DRO algorithm and its non-robust counterpart. In the
case of Figure 4.2 (run 1), the DRO-based does not violate the constraint at any point. In
Figure 4.3 we see the highest incidence of constraint violation for the DRO controller (from
run 4). Figure 4.4 shows the time evolution of the DRO offset from run 4.

Conversely, the non-robust versions both experiences a combination of initial, significant
voltage spikes as well as minor violations which persist throughout the experiments. In total,
if we focus on Figure 4.3 (run 4), the non-robust version violated constraints in 13.6 % of
timesteps (68 timesteps out of 500 total). The charging time was 6.85 minutes, which was
16.29% faster than the DRO version, whose charging time was 8.1833 minutes. This makes
intuitive sense, as the added DRO framework introduces additional conservatism which affects
the performance of the overall control policy.

Overall across all 10 runs, our DRO version violates constraints in 0.26% of total timesteps,
which is well within the chosen value of η = 0.025 = 2.5% over just a single optimization
iteration. The non-robust version, however, violates constraints in 9.76% of total timesteps
on average. Similarly, there is a stark difference in the maximum voltages seen by the robust
and non-robust versions, with the DRO framework reducing the mean peak voltage by 122.9
millivolts. The DRO calculations increase the overall computation time by an average of
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Figure 4.4: Time evolution of DRO offset from run 4.

43.7 milliseconds per timestep, and allow the algorithm in this case to run in real time. No
optimizations were made to the Matlab code to expedite the runtime of either algorithm,
and the only difference in code between the two algorithms is the auxiliary and separate
DRO framework. Finally, across the 10 total runs the overall charging time with the DRO
framework averages 7.8150 minutes, approximately 14.1% longer than that of the non-DRO
version. Given the safety-critical nature of this control problem, the safety guarantees of
our algorithm are likely well worth the marginal degradation to the charging performance
resulting from added conservatism.

4.4 Case Study in Safe Autonomous Driving and

Obstacle Avoidance

In this section, we implement our algorithmic architecture to safely learn to drive a vehicle
while avoiding obstacles. This learning occurs within the same design as our battery case
study, namely we begin with zero model knowledge and only a single known safe control
input. We fit a data-driven model to the dynamics and conduct receding-horizon control.

This study is designed with specific decisions in mind to more effectively reveal the efficacy
of our algorithm. Some of these decisions make our study somewhat unrealistic insofar as
they expose the agent to greater danger than necessary. Subsections VI.A and VI.B discuss
these decisions in detail.

Dynamical Simulator

In this case study, we utilize a bicycle model for the vehicle dynamics. This environment is
encoded in the following equations discretized via forward Euler approximation:



CHAPTER 4. SAFE LEARNING AND ADAPTIVE MPC WITH LIMITED MODEL
KNOWLEDGE AND DATA 55

x1;t+1 = x1;t +∆t(x4;t cos(x3;t)) (4.23)

x2;t+1 = x2;t +∆t(x4;t sin(x3;t)) (4.24)

x3;t+1 = x3;t +∆t

(
x4;t

tan(u2;t)

L

)
(4.25)

x4;t+1 = x4;t +∆t(u1;t). (4.26)

where t is the current timestep, x1 and x2 are the x-y position of the vehicle, x3 is the vehicle
heading angle, x4 is the vehicle velocity, u1 is the acceleration input (in m

s2
), and u2 is the

steering angle input in radians. These equations represent the true plant, which is unknown
to our learning-based controller.

Model Predictive Control Formulation

We utilize the following formulation of simple autonomous driving with obstacle avoidance:

minimize
uk∈U

− (x1(t+N) + x2(t+N)) (4.27)

s. to: (4.23)− (4.26), x(0) = x(t) (4.28)

Z(xk) ≤ Zcutoff , umin ≤ uk ≤ umax (4.29)

Here, Z(xk) is the obstacle function and can be thought of as a simple vision system. We
limit Z to be smaller than a specified value (corresponding to the definition of the edge of the
obstacle). Residuals in the DRO algorithm are with respect to this barrier using predicted
values of the dynamical state, as opposed to the value of the obstacle function obtained with
the true state. We create the environment defined by Z(xk) by generating and summing
random Gaussians in 2 dimensions. Then, we define the obstacle boundaries by setting a
threshold within the static map, below which becomes the safe region and above which the
obstacles inhabit. This map is used with interpolation during the final experiment. If the
constraint is violated, the agent will take actions which minimize violation until feasibility is
restored. We set umin = [−1,−0.75], umax = −umin. The experiment ends once the vehicle
leaves the 100 × 100 meter space.

With the learned neural network dynamics models, the MPC formulation in (4.27-4.29)
becomes:

minimize
uk∈U

− (x̂1(t+N) + x̂2(t+N)) (4.30)

s. to: x̂k+1 = fNN(xk, uk, θ) (4.31)

x̂(0) = x(t) (4.32)

Z(x̂k) ≤ Zcutoff − rDRO (4.33)

umin ≤ uk ≤ umax (4.34)
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Table 4.3: Relevant Parameters For Obstacle Avoidance Case Study

Parameter Description Value Units
L Vehicle Length 0.5 [m]
∆t Timestep 0.2 [s]
Ntarg Max Control Horizon 12 [-]
η Risk Metric 0.005 [-]
β Ambiguity Metric 0.99 [-]
x1(0) Initial x-position 5 [m]
x2(0) Initial Y-position 10 [m]
x3(0) Initial vehicle angle π

4
[rad]

x4(0) Initial velocity 0.5 [m/s]

Table 4.4: Safety comparison for DRO-MPC and MPC with vehicle obstacle avoidance. Vio.
stands for violations. The max violation is in terms of the Euclidean distance. The numbers
in parenthesis are the total number of timesteps where constraints are violated, with the
denominator being the number of timesteps before the vehicle leaves the 100 × 100 sized
environment.

Run Vio. (DRO) Max Vio. (DRO) [m] Vio. (no DRO) Max Vio. (no DRO) [m]
1 0% (0/156) 0 2.05 % (3/146) 0.3877
2 0 % (0/145) 0 0.65 % (1/155) 0.0121
3 0.6% (1/174) 0.0386 3.47 % (5/144) 0.4472
4 0 % (0/184) 0 7.94 % (17/214) 0.9986
5 0 % (0/167) 0 1.12 % (2/179) 0.1897
6 0 % (0/140) 0 8.55 % (23/269) 2.6259
7 0 % (0/148) 0 6.74 % (13/193) 1.6726
8 0 % (0/143) 0 4.73 % (8/169) 0.2581
9 0 % (0/182) 0 10.27 % (23/224) 1.1720
10 0 % (0/165) 0 1.14 % (2/175) 0.1772

Avg. 0.0623% 0.00386 5.193 % 0.8041

Table 4.4 includes relevant parameters of our case study design. In this case study, we simply
use 1-step residuals by relying on a basic assumption that the modeling error is uncorrelated
to the depth of prediction. Based on our experiments, this assumption is reasonable.

We make a deliberate choice for this objective function for a host of reasons. While it
necessarily encodes our intended behavior, it also is simple and at odds with the objective of
avoiding obstacles. By allowing our simple objective function to drive the vehicle directly
towards the obstacles, our control algorithm must be capable of managing the vehicle while
simultaneously maintaining safety throughout the experiment. Thus, this case study is
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Figure 4.5: Comparison of nonlinear MPC Controller with and without DRO for vehicle
obstacle avoidance. In this run, the DRO controller does not violate the constraints at all.
This figure shows run 1, with the bottom plots revealing close ups of the areas with the
highest constraint violation.

designed to specifically focus on the added safety contributions from the DRO framework.
For our learned model, we initialize a feed forward neural network based on a single

hidden layer with 10 neurons. The hidden layer uses sigmoid activation functions, and the
output layer uses linear activation. At the first timestep, we assume control inputs of a zero
vector are known to be safe. To solve the MPC problem, we use the same (1+λ) evolutionary
strategy used in our battery case study. In this case, we modify the optimization algorithm
such that we utilize 750,000 mutants. We also increase the maximum prediction horizon to
Nmax = 12 to improve the consistency of our results.
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Figure 4.6: Comparison of nonlinear MPC Controller with and without DRO for vehicle
obstacle avoidance. This figure shows run 3, with the bottom plots revealing close ups of the
areas with the highest constraint violation.

Results

We conduct 10 individual runs with both our algorithm and a non-robust version. Figures
4.5 and 4.6 show runs 1 and 3, respectively. Table 4.4 shows safety statistics. With the DRO
controller, only 1 of the 10 total runs violates constraints at all and only during a single
timestep. The overall violation with the DRO controller is 0.0623% of timesteps. Moreover,
the magnitude of the violation with the DRO controller is equivalent to the vehicle skimming
the edge of the boundary by less than 0.0386 meters. Conversely, the non robust controller
shows significant constraint violation in nearly all 10 runs. The constraint violation of the non
robust controller averages 0.8041 meters of violation, which represents a complete collision
with the obstacle (given our vehicle length L = 0.5). In one run, the non robust controller
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drives the vehicle nearly 3 meters into the boundary before correcting and exiting the unsafe
region. To verify the model is operating in nonlinear state space, Figure 4.7 shows the range
of the variable x3 in run 1.

Figure 4.7: Heading angle trajectory for run 1 (same as that shown in Figure 6). The total
range of heading angles is nearly π, showing exploration of highly nonlinear portions of
the state space. The feasible range of steering angle input also covers a range of nonlinear
behavior in the dynamics.

4.5 Discussion

Perhaps the most important available insight is that for an application, the least amount
of SME needed for synthesizing safe data-driven control is tied to the minimum amount of
SME that yields a DRO offset that admits a feasible solution.

We have not only explored the behavior of our algorithm at the boundary of available
knowledge and data, but have validated its theoretical safety under a challenging arena of its



CHAPTER 4. SAFE LEARNING AND ADAPTIVE MPC WITH LIMITED MODEL
KNOWLEDGE AND DATA 60

applicability. Importantly, our approach is widely relevant in many LbC contexts (and for
uncertainty quantification beyond control). For real-world applications, we are unlikely to
conduct this restrictive type of tabula-rasa LbC. However, the same safety guarantees we
have rigorously validated in these case studies are similarly applicable when more data and
knowledge is available (e.g. conventional adaptive control, but with the modeling capacity
of nonlinear machine-learning models). Since our approach functions as an end-to-end LbC
method, it is also amenable to more unconventional applications including control synthesis
from images or multimodal inputs [64]. We relegate exploration of this topic to future work.

4.6 Conclusion

This chapter presents an end-to-end distributionally robust model-based control algorithm.
It addresses the problem of safety during learning-based control with strong limitations
on our available knowledge and subject matter expertise. We adopt a stochastic MPC
formulation where we augment constraints with random variables corresponding to empirical
distributions of modeling residuals. By applying Wasserstein ambiguity sets to optimize over
the worst-case modeling error, we translate an out-of-sample safety guarantee subject to new
data and experience. We validate this finding through simulation experiments. Our method
is applicable to nonlinear MPC, but when applying to convex MPC programs it preserves
convexity.
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Chapter 5

Safe Wasserstein Constrained Deep
Q-Learning1

Abstract

This chapter presents a distributionally robust Q-Learning algorithm (DrQ) which leverages
Wasserstein ambiguity sets to provide idealistic probabilistic out-of-sample safety guarantees
during online learning. We illustrate that these idealistic certificates translate to imporved
observations of safety in two BMS case studies. First, we follow past work by separating the
constraint functions from the principal objective to create a hierarchy of machines which
estimate the feasible state-action space within the constrained Markov decision process
(CMDP). DrQ works within this framework by augmenting constraint costs with tightening
offset variables obtained through Wasserstein distributionally robust optimization (DRO).
These offset variables correspond to worst-case distributions of modeling error characterized
by the TD-errors of the constraint Q-functions. This procedure allows us to safely approach
the nominal constraint boundaries. Using a case study of lithium-ion battery fast charging,
we explore how idealistic safety guarantees translate to generally improved safety relative to
conventional methods.

5.1 Introduction

This chapter presents an algorithmic framework for improving safety with deep Q-learning.
Safe RL is the study of reinforcement learning with safety constraints. The question

of safety during online learning and control - especially with respect to out of distribution
(OOD) experience and data - poses perhaps the greatest open challenge to ongoing RL
research. Consider that generally, the only ostensible way to learn what behavior is safe and

1This chapter is adapted from work that has appeared in a preprint [51]. Reprinted, with permission,
from Kandel, Aaron and Moura, Scott. “Safe Wasserstein Constrained Deep Q-Learning.” (2020).
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unsafe is by acting in an unsafe manner. This poses an incredible challenge for safety-critical
applications where observations of unsafe behavior could involve human injuries or worse.

Recently, [41] organize safe RL research into two primary categories. The first category
modifies the optimization criterion for the underlying control problem. The second category
modifies the fundamental exploration process itself using either (1) external knowledge, or
(2) a risk metric. Take, for example, conventional Q-learning with an ϵ - greedy exploration
policy. In this case, there is no direct method to ensure constraint satisfaction when taking
exploratory actions randomly. This is a problem safe RL research seeks to address when
modifying the overall exploration process. A common approach is to use external information
to guide the exploration of an RL agent. For instance, Mann et al. avoid random exploration
by guiding exploration via transfer learning with an intertask mapping [73]. Other work
addresses safe exploration using prior information about the application (e.g. a model) [71,
70, 78]. More recently, [58] use predefined safe baseline policies as an initialization for online
learning. Incorporating a priori information into the exploration process is frequently coupled
with a model-based RL approach [38].

The exploration process can also be modified using risk criteria obtained during learning.
Law et al. presented early work addressing this approach, which defines a flexible risk
heuristic that motivates RL agent exploration [62]. Perkins et al. address this problem by
restricting the policy space based on improving identified Lyapunov functions for RL control
[93]. Another risk-criterion based approach can be found in work by Gehring et al. which
guides exploration via a controllability metric that represents confidence in the result of
taking an action at a given state. In this work, Gehring et al. utilize the TD error given by
the objective Q-function for a given state-action pair to quantify confidence in the result
from that state-action pair. They show empirically that weighting this TD error in the action
selection process can improve safety [42]. Our proposed safe RL algorithm similarly uses TD
errors, as detailed later.

Guiding exploration can also be done based on learning safe regions. For instance, Koller
et al. present an approach for learning-based model-predictive control which guarantees
the existence of feasible return trajectories to a defined safe region with high-probability
[57]. Other work by Richards et al. constructs a neural network Lyapunov function in order
to learn safe regions for nonlinear dynamic systems [97]. Berkenkamp et al. also leverage
Lyapunov stability to establish specific metrics of safety for an RL controller [8].

Recently, ideas from the literature on constrained Markov decision processes (CMDPs)
have begun migrating into relevant RL research. Simply put, CMDPs are MDPs where
the policy space is limited by constraints imposed on auxiliary cost functions. See work by
Altman for more discussion of their specific formulation [4]. Q-learning has been applied to
solve CMDPs in the past, however existing works re-frame the problem using the assumption
of strong duality [29]. In most common use cases, however, Slater’s constraint qualification
condition rarely holds, making this approach difficult to effectively implement. The general
concept of constraint costs has been applied in recent papers on the subject of safe RL [25, 1].
Chow et al. present an algorithm reminiscent of past work by [87] which defines the feasible
action space for stationary deterministic MDPs with respect to such constraint cost estimates,
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improving adherence to constraints. They use resource constraints in the MDP formulation to
act in a similar manner as a shield [3]. However, the certificates of their algorithm ostensibly
depend on an assumption that the convergence of the reward and constraint Q-functions
occurs on separate timescales. Their formulation is also sensitive to noisy observations, and
has yet to be explored with function approximation.

While these approaches all improve safety during online learning, they still share the
exact same shortcoming which remains the strongest motivating force behind this area of
literature. Namely, without a priori information about the underlying environment it is
impossible to act in a safe manner without violating constraints to some degree. In exploring
this open question, this chapter takes motivation from literature on robust model-predictive
control (MPC), where the concept of “constraint tightening” has become fairly popular
over the past decade. We presents a novel robust approach to safely solving constrained
RL problems. Our work is roughly inspired by the motivating idea of constraint tightening
literature, as well as the ideas presented by [87]) regarding hierarchies of machines in RL
problems. We use the methodology of [25] as a simple foundation upon which we build DrQ,
a novel framework for safe RL. DrQ is an algorithmic framework for safe deep Q-learning
which leverages Wasserstein ambiguity sets to enforce safety constraints. Specifically, we
follow [25] by separating consideration of constraints to their own constraint cost functions.
These cost functions define the feasible action space within which DrQ operates. Importantly,
our DrQ algorithm leverages a novel formulation for pulling the nominal constraint boundary
into the safe region, based on worst-case distributions of modeling error. These distributions
are characterized by observed TD errors of the underlying constraint cost functions. By
presenting a disciplined Wasserstein DRO-based method for recessing the constraint boundary
into the safe region, DrQ observes and reacts to unsafe behavior before nominal constraints are
violated. Our algorithm yields probabilistic safety guarantees under idealistic circumstances
which arise from past theoretical work on Wasserstein ambiguity sets [34, 40, 33]. As the
constraint cost models improve, the constraint offset naturally tightens towards the nominal
boundary. Our case studies in safe lithium-ion battery fast charging demonstrates the strong
propensity of DrQ to translate these theoretical safety certificates directly to improving safety
during exploration and exploitation in more nuanced, real-world RL problems.

5.2 Distributionally Robust Q-Learning

The principal tools leveraged in DrQ are CMDPs and Wasserstein ambiguity sets. Chapter
2 discusses the relevant background and results for Wasserstein ambiguity sets. Subsection
5.2 includes additional relevant background on constrained MDPs before outlining the DrQ
algorithmic structure.
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Constrained MDPs

Constrained Markov decision processes are identical to MDPs except that additional cumula-
tive costs are used to restrict the space of feasible control policies. We direct the reader to [4]
for further reading on the subject. The feasible set of control policies is defined as:

Πfeas = {π ∈ Π : ∀i,Dπ
i ≤ 0} (5.1)

where Di are cumulative constraint cost functions (henceforth referred to as constraint
Q-functions) developed subject to the policy defined by Q:

π∗ = argmax
π∈Πfeas

Q (5.2)

where
Q(st, at) = rt(st, at) + Est+1 [γ max

a∈Afeas(st+1)
Q(st+1, a)] (5.3)

Di(st, at) = ci(st, at) + Est+1 [Di(st+1, a
∗ = argmax

a∈Afeas(st+1)

Q(st+1, a))] (5.4)

Afeas(s) = {a ∈ A | Di(s, a) ≤ 0 ∀ i = 1, ...,m} . (5.5)

DrQ is inspired by [87], which discusses hierarchies of machines in RL problems. More
recently, a similar approach for CMDPs was presented by [25], given the title of “Two-Phase”
Q-learning. In “Two-Phase” Q-learning, the objective and constraint Q-functions are learned
online while limiting the feasible space based on estimates of the constraint cost functions.
This approach, however, still requires we experience unsafe states in order to gradually learn
safe behavior. Their algorithm is also sensitive to noise, only works for deterministic MDPs,
and has yet to be explored with deep function approximation. In the following sections, we
will lay groundwork for DrQ, which ameliorates the shortcomings of existing value-based
approaches.

Distributionally Robust Q-Learning Algorithm

Consider that the primary problem in constrained RL is that we generally cannot plan
avoidance of unsafe states without first acquiring some experience of which states are
themselves unsafe. For conventional algorithms, this “chicken and egg” problem means
the first step to learning safe control is to violate constraints. As a result, conventional
algorithms are by nature incompatible with the principal objective of constrained RL. In order
to address this challenge, we look to the control theoretic literature for potential solutions.
In research on model-predictive control (MPC), the concept of “constraint tightening” is a
popular method when implementing adaptive predictive controllers. This field uses heuristics
or analytical methods to adapt constraints subject to the uncertainty of the nominal model.
As the uncertainty of the nominal model decreases, the constraint boundaries will safely
approach nominal boundaries. The idea of constraint tightening immediately radiates
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potential for RL algorithms. By shifting the constraint boundary into the safe region, we
can experience artificially unsafe states long before the actual safety of the
underlying system comes into question. This emulates the same logic used in Chapter
4 to learn safe behaviors using MPC. Motivated by this insight, we present an approximate
constraint tightening methodology for deep Q-Learning which can idealistically provide strong
probabilistic guarantees on safety, which in practice we show to generally improve overall
constraint satisfaction.

From this point forward, we consider cases of deep reinforcement learning (i.e. each value
function is learned via a parameterization). First, we limit our algorithm to solving optimal
control problems subject to inequality constraints indexed by i, gi(st, at) ≤ 0. The cost
functions associated with these constraints take the form:

ci(st, at) =

{
0 if gi(st, at) ≤ 0
gi(st, at) else

(5.6)

This is a key definition, showing we define constraint costs Di as measures of cumulative
constraint violation. Furthermore, it allows us to uncouple the updates between Q and Di

using the following Di target:

Di(st, at) = ci(st, at) + min
a∈Afeas(st+1)

Di(st+1, a) (5.7)

By updating Di with its own Bellman equation, we convert the constraint to its best-case
counterpart. This means that Di represents the cumulative constraint cost acquired with
the safest possible policy. Since any positive signal in Di indicates infeasibility, we
can make this change. This uncoupling allows us to learn Q and Di without timescale
separation between their respective learning processes. The proof of convergence of the original
two-phase Q-learning algorithm in [25]) ostensibly depended on this timescale separation
assumption, including for more general problems which do not satisfy (5.6).

Remark 11 We can also apply a tolerance when updating Di to allow constraint violation to
propagate backwards throughout the model.

In order for our framework to be consistent with the ideas motivating constraint tightening
approaches, we can introduce an offset variable to each constraint cost as follows:

ci(st, at) =

{
0 if gi(st, at) ≤ −qi
(gi(st, at) + qi) else

(5.8)

This formulation begs the questions of how we set and update the value of offset variable qi
in real time. For these questions, we consider ways to characterize the modeling error of the
constraint Q-functions. Ideally, we want to offset the constraint boundary proportionally to
the worst-case error of our models. For this consideration, we can use TD error distribution
for each constraint Q-function. Past work by [42]) has utilized TD errors in Q-learning as
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indicators of our confidence in the underlying model. Consider the TD error defined for the
ith constraint Q-function (which unlike the objective Q-function is solving a minimization
problem):

δDi
(st, at) = ci(st, at) + min

a∈Afeas

γDi(st+1, a)−Di(st, at) (5.9)

This TD error δDi
is a modeling residual by definition, but it is not perfect. It represents how

much our model of the cumulative constraint cost changes after a parameter update. The
TD error provides a good indication of modeling error, but since it does not exactly represent
that quantity our theoretical guarantees do not exactly translate to real applications. But we
show later in this chapter that DrQ architecture still manages to dramatically improve safety
during online learning. Our best indication of such model error can be obtained by using the
distribution of TD errors computed after each update to describe the error inherent to our
function approximator for each Di, we

Now we can delve into the fundamental basis for our algorithmic architecture. DrQ works
by defining the offset variables qi, one for each inequality constraint, through an equivalent
reformulation of the following distributionally robust chance constraint:

inf
P∈Bϵ

P[Di(st, at) +Ri ≤ 0] ≥ 1− η (5.10)

where Bϵ defines the Wasserstein ambiguity set, Ri represents the realization of the TD error
of the ith constraint Q-function, and η is our allowed probability of violating the constraint.
We can interpret this constraint as follows: we have an empirical distribution of TD errors
which we compute after each parameter update of Di. We want to satisfy the constraint
Di(st, at) +Ri ≤ 0 for the worst-case realization of TD error Ri sourced from a family of
probability distributions centered about our empirical distribution. This set of distributions
is within ϵ distance of the empirical distribution, with the expression for ϵ given by (2.6).
The reformulation we select for our algorithmic architecture comes from [33]), and yields the
constant qi that we augment to our ith constraint cost function. Thus, the greedy action
selection process becomes:

a∗t = argmax
a∈Afeas(st)

Q(st, a) (5.11)

where
Afeas(s) = {a ∈ A | Di(s, a) ≤ rj ∀ i = 1, ...,m} (5.12)

can be used to limit the feasible action space for exploration and exploitation. In order to evolve
the offset qi as our TD distributions change over time, we store the tuple (st, at, st+1, gi(st, at)).
Then, each time we prepare to update the Di functions we recompute the unique values of
the constraint cost function as per (5.19) based on our most recent qi. This formulation
mathematically encodes that we seek to satisfy the constraint subject to the addition of the
potential worst-case modeling error. As our model improves, we can approach the constraint
in a provably safe manner consistent with the theoretical guarantees afforded Wasserstein
ambiguity sets.
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Algorithm 3 DrQ Algorithm (ϵ− greedy)
Require: State space S, Action space A, Reward R : S × A → R, Constraint cost RC;i :
S × A → R, i = 1, ..., n, State transition function T : S × A → S, Initialize Q-functions
Q,Di : S ×A → R
Conduct first episode with vanilla ϵ-greedy, Store tuples of (st, at, st+1, gi(st, at))
Initialize qi = DΞi

; Fit Q(st, at) and Di(st, at); store TD-errors from fitting Di

for k in range episodes do
Initialize state s ∈ S
for j in range iterations do
Afeas(s) = {a ∈ A | Di(s, a) ≤ 0 ∀i = 1, ..., n}
if |Afeas(s)|= 0 then
Afeas(s) = argmin

a∈A
||D(s, a)||

end if
Compute qi for each Di based on TD-error distribution
if exploring then
Pick random action a = arand ∈ Afeas(s)

else
a← argmax

am∈Afeas(s)

Q(s, am)

Store tuples (st, at, st+1, g(st, at)); Fit Q(st, at) and Di(st, at); store TD-errors of Di

end if
end for

end for

Algorithm 3 describes the implementation of DrQ. We opt for a fitted Q-iteration method
for deep Q-learning. The next section details a high level conceptual example of how DrQ
works, which leads into additional discussion and finally our case studies.

• Can our algorithm accommodate nonstationary MDPs? -No

• Can our algorithm accommodate probabilistic MDPs? -Yes

• Could qi stabilize prematurely, removing some safe states from future exploration?
- Yes, but only under very specific conditions on the measurement noise or function
approximator.

5.3 Conceptual Graphical Example of DrQ

In this appendix, we will walk through a complete episodic sequence of DrQ for the following
simple optimal control problem:
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max
a⃗∈A∈R2

N∑
k=0

rk(s(k), a(k)) (5.13)

s. to: s(k + 1) = f(s(k), a(k)) (unknown) (5.14)

g1(s(k), a(k)) ≤ 0 (5.15)

a1 ∈ {−3,−2,−1, 0, 1, 2, 3} (5.16)

a2 ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} (5.17)

s(0) = s0 (5.18)

where the unknown state transition function f(s(k), a(k)) can be either deterministic or
probabilistic.

Episode 1

The safety guarantees of DrQ become active after our first parameter update of the Di

functions. Therefore, for the first episode of learning, we operate similarly to conventional
deep Q-learning while simultaneously recording constraint violation subject to an artificial
sunken constraint boundary. For the first episode, the offset q(i) can be set as a hyperparameter
given any understanding of the scale of the constraint functions and how close they may be
to the nominal boundary. Our objective for the first episode is to observe violation of the
offset while maintaining safety relative to the actual constraint boundary. A priori knowledge
of the constraints can be applied to initialize the constraint offset.

For the first episode, with random initialization of the functions Q and D1, we essentially
act randomly while recording values of r and g1. Then at the end, when we apply our first
parameter update to the function approximators, the constraint costs become:

c1(st, at) =

{
0 if g1(st, at) ≤ −q1(0)
g1(st, at) + q1(0) else

(5.19)

and we update Q and D1 according to the following targets:

Q(st, at) = rt(st, at) + [γ max
a∈Afeas(st+1)

Q(st+1, a)] (5.20)

D1(st, at) = c1(st, at) +D1(st+1, a
∗) (5.21)

where a∗ = argmin
a∈Afeas(st+1)

D1(st+1, a). We update D1 first so we can superimpose the latest

estimate of the feasible set Afeas on our update of Q.
Once we have updated the parameters of D1, we compute the TD errors of our new model

as follows:
δD1(st, at) = c1(st, at) + min

a∈Afeas

γD1(st+1, a)−D1(st, at) (5.22)
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We use this TD error distribution to recompute the value of q1 for the next episode. Then,
for the next episode, we observe constraint violation subject to the modified boundary given
by q1.

Episode 2

Once episode 2 begins, the real advantages of DrQ begin to manifest. To demonstrate, lets
use a graphical example. Suppose we are at state stest at the beginning of episode 2. After our
parameter updates to D1, we can plot in 3D the relationship between D1 and the potential
actions we can take in R2 for fixed state. Suppose this plot takes the form shown in Figure
5.1. Here, the action pairs within the black square correspond to the true (unknown) feasible

Figure 5.1: Plot of D1 for total action space

actions. Since qi is nonzero, our estimated feasible action space is smaller than the true space,
resulting from our offset of the constraint boundary into the safe region. From this plot, we
can easily deduce the feasible pairs of a1 and a2 as those with value of D1 equal to zero (dark
purple). We can superimpose this set onto our plot of Q to get the graphic in Figure 5.2. If
we are exploring, then we can pick any action within this feasible set. If we are exploiting,
we choose the pair (a1, a2) which maximizes Q along the restricted domain defined by Afeas,
which is computed from the data visualized in Figure 5.1, which in this case turns out to be
(−1,−3). This action is safe, but conservative. As the offset qi progressively tightens, the
action DrQ selects will slowly yield improved performance without sacrificing safety.

Now, at the end of episode 2, we can use the new data to further update the parameteriza-
tions of the function approximators Q and D1. With the new TD errors of D1, we recompute
the DRO offset q1 and continue this process until the desired control performance is attained.
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Figure 5.2: Plot of Q with superimposed feasible action space

Episode k

Suppose arbitrary number of episodes have passed, and we are now at an episode “k.” After
these episodes, the TD errors of D1 have reduced in magnitude given the assumption that
our model D1 has improved. Given no measurement noise, we assume that our TD error
distribution is predominantly centered about zero. Now, at the same test state stest at the
beginning of the episode, we evaluate the potential actions to give the following plot of D1:
Here, our estimated safe set is the same as the true safe set. Since our offset qi is derived

Figure 5.3: Plot of D1 for total action space

from the TD-error distribution (which is predominantly zero given a converged function
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approximator), qi=0 and we have approached the true constraint boundary. Thus, with no
modeling errors in this simple conceptual example we eventually act in a truly optimal way
relative to the optimal control problem statement. Here, the safe set superimposed on the
objective Q-function at episode k takes the form: meaning we pick the truly optimal (and

Figure 5.4: Plot of Q with superimposed feasible action space

importantly nominally feasible) action (−3, 0). The next section in this appendix details how
to compute the DRO offset variable qi which guides this constraint tightening procedure.

5.4 Extended Discussion of DrQ

This appendix provides further discussion on the following questions raised in the main text:

• Can our algorithm accommodate nonstationary MDPs? -No

• Can our algorithm accommodate probabilistic MDPs? -Yes

• Could qi stabilize prematurely, removing some safe states from future exploration?
- Yes, but only under very specific conditions on the measurement noise or function
approximator

Nonstationary MDPs

Our algorithm in its current state cannot effectively accommodate nonstationary MDPs.
Consider that if the underlying dynamics change, the historical data mapping (st, at, gi(st, at))
will no longer represent the actual constraint dynamics. This would cause the DRO offset
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qi to grow given growing model residuals from inconsistent historical data. Perhaps with
a disciplined forgetting scheme this phenomenon could be avoided, however as of now we
relegate this issue to future work.

Probabilistic MDPs

Our algorithm can accommodate probabilistic MDPs. Past work by [25]) and [88]) indicates
similar algorithms cannot accommodate probabilistic MDPs without miscoordination occur-
ring. These studies explore frameworks for multi-agent systems. When applied to single-agent
systems, our algorithm avoids this shortcoming.

For the case where state transition dynamics are probabilistic, consider the definition of
the functions Q and Di. Both consider cumulative costs, which given probabilistic dynamics
simply become cumulative expected costs. For Di, any nonzero signal indicates constraint
violation (subject to the offset qi), so any state-action pair with a non-zero probabilitiy of
violating constraints will eventually be pruned.

Stability of qi

Two cases exist where the value of qi stabilizes prematurely, removing some safe state-action
pairs from future consideration. The first has to do with measurement noise. Assuming the
function approximator Di converges, if our measurements of gi are subject to a measurement
noise process, then the eventual TD error distribution of Di will represent the underlying
measurement noise process. This distribution of residuals could create a permanently nonzero
qi.

The second has to do with the properties of the function approximator. If the function
approximator Di fails to converge, then the value of qi may not stabilize and could oscillate
or diverge. Our numerical experiments have yet to show a case where this occurs, but it is a
possibility for nearly any deep Q-learning algorithm. Some specific cases where this occur
can be found in [68]).

5.5 Battery Fast Charging Case Study

This chapter presents two case studies on battery fast charging to validate the performance
and safety of DrQ.

Equivalent Circuit Model of a Lithium-Ion Battery

This case study utilizes an equivalent circuit model of a lithium-ion battery. The relevant
states in this model are the state of charge SOC and capacitor voltage VRC . The relevant
constraint is on the terminal voltage V . The state evolution laws are given by the following
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equations:

SOCt+1 = SOCt +
1

Q
It ·∆t (5.23)

VRC;t+1 = VRC;t −
∆t

R1C1

VRC;t +
∆t

C1

It (5.24)

Vt = VOCV (SOCt) + VRC;t + ItR0 (5.25)

where It is the current input, and VOCV is the nonlinear open-circuit voltage, which is obtained
through experiments.

We utilize the following formulation of fast charging:

min
It∈A

T∑
t=0

(SOCt − SOCtarget)2 (5.26)

s. to: (5.23)− (5.25), SOC(0) = SOC0 (5.27)

Vt ≤ 3.6V, 0A ≤ It ≤ 46A (5.28)

Table 5.1 outlines relevant parameters of the model. Figure 5.5 shows the OCV-SOC
curve represented by VOCV (SOC).

Table 5.1: Relevant Parameters

Parameter Description Value Units

Q Charge Capacity 8280 [ 1
A.h

]
R1 Resistance 0.01 [Ω]
C1 Capacitance 2500 [F ]
R0 Resistance 0.01 [Ω]
∆t Timestep 2.5 [s]
γ Discount Factor 0.5 [−]
α Learning Rate 0.15 [−]
ϵ Exploration Prob. 0.2 [−]
DΞ Support Rad. 0.2 [V ]
β DRO Confidence 0.98 [−]
η CC Confidence 0.02 [−]

DrQ Problem Formulation

The objective reward function for this optimal control problem takes the form:

r(st, at) = −(SOCt+1 − SOCtarget)2 (5.29)
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Figure 5.5: Experimental Open-Circuit Potential Function

The initial SOC in our case study is 0.2 (20% capacity), and SOCtarget = 0.7 (70%
capacity). The constraint penalty takes the form:

c =

{
0 (st, at) ∈ C
| Vt − 3.6 + q | (st, at) /∈ C

(5.30)

where C = {Vt ∈ R | Vt ≤ 3.6− q}. Our risk metric η = 0.02. For a baseline comparison,
we also examine conventional deep Q-learning (DQN) with the following modified performance
criterion:

reng = −(SOCt+1 − SOCtarget)2 − 1(Vt > 3.6) (5.31)

Results

We generate 10 independent runs of 25 episodes using both DQN and DrQ for this analysis.
For DrQ, Q is a single hidden layer neural network with 10 neurons and sigmoid activation
and D is a neural network with four hidden layers of size (2, 5, 5, 2). The DQN is a neural
network with two hidden layers of size (10, 10). We use sigmoid activation functions for
our function approximators. This demonstrates our algorithm is capable of yielding a high
performing control policy which safely charges the battery. Comparatively, after 25 episodes
the DQN yields a consistently unsafe control policy which overcharges the battery. In fact,
analysis of our other runs indicates the DQN frequently fails to converge to any usable result
entirely. Figure 1 clearly demonstrates this finding. Overall, DrQ delivers significantly more
consistent and near monotonic improvements in performance, whereas the DQN shows no
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clear pattern of improvement after 25 episodes. DrQ also delivers tighter variance on the
overall performance compared to DQN.

Figure 2, which provides our most illustrative results, displays statistics on constraint
satisfaction for both DrQ and DQN throughout these 10 runs. After the first episode (where
constraint satisfaction is commensurate between DrQ and DQN since we do not enforce
DRO), DrQ safely learns to charge the battery by leveraging the idealized probabilistic
guarantee of Wasserstein ambiguity sets. In fact, our observations of constraint violation
for DrQ are entirely consistent with our chosen chance constraint risk metric η = 2% (see
the figure caption for this analysis). Overall, only 1.25% of episodes and only 0.023% of
timesteps violate constraints for DrQ. By observing the magnitude of the y-axis scale between
cumulative and maximum constraint violation in Fig. 2, it is clear that DrQ also attenuates
the magnitude and frequency of constraint violation in the unlikely event that violations do
occur relative to DQN. In comparison, the DQN benchmark consistently violates constraints.
The average computation time for each DrQ episode was 5.57 seconds, compared to 3.77 for
DQN when run on a PC with a 9th generation intel i5 processor.

DQN is our comparison for several reasons. DrQ, much like DQN, can be augmented
with additional and existing safe RL architecture. More importantly, our analysis is intended
to quantify real-world adherence to idealized theoretical guarantees we obtain through
application of Wasserstein ambiguity sets.
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Figure 5.6: Greedy policy performance statistics over 10 runs of DrQ and DQN, based on the
reward function defined by (5.40). Performance of -35 indicates no input current is applied,
which occurred as the final result of 6 of the DQN runs.
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Figure 5.7: Safety statistics over 10 runs of DrQ and DQN, starting from the second episode.
The black “exploration” points correspond to the data obtained from the ϵ-greedy policy. The
cyan “greedy” points correspond to the greedy policy evaluated at the end of each exploratory
episode. The safety observed in both exploration and exploitation with DrQ is consistent
with the chance constraint risk metric η = 0.02. Out of 240 exploratory episodes (excluding
the first from each run, where we do not enforce DRO), only 3 episodes exhibit constraint
violation ( 3

240
= 0.0125 < η).

5.6 SPMeT Case Study

In this section we detail our comprehensive case study on safety-aware learning-based fast
charging control, with a large scale electrochemical battery model. The details of the single
particle model with electrolyte and thermal dynamics (SPMeT) are included in the appendix
of this dissertation.

Optimal Control Problem Statement

The optimal control problem statement for fast charging with SPMeT is given by:

min
a
J =

∫ tF

t0

[SOCn(t)− SOCtarg]2 dt (5.32)
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s. to: (7.1)− (7.7) (5.33)

s0 = s(t) (5.34)

ckss;min ≤ ckss(t) ≤ ckss;max ∀ k ∈ {+,−} (5.35)

Tmin ≤ T (t) ≤ Tmax (5.36)

cke;min ≤ cke(t) ≤ cke;max ∀ k ∈ {+,−} (5.37)

(5.38)

where SOCn is the normalized bulk concentration in the anode, at = I(t) is the control action,
and st = [c±s (r, t), ce(x, t), Tcell(t)] is the state vector. We define the overall cell SOC as:

SOCt =
3
∫ R−

s

0
r2c−s (r, t)dr

(R−
s )

3c−s,max|x100% − x0%|
(5.39)

To solve this problem using reinforcemnet learning, we spatially discretize the system of
PDEs to formulate a discrete-time and space model of the form st+1 = f(st, at). The reward
function for DrQ takes the form:

r(st, at) = −(SOCt+1 − SOCtarget)2 (5.40)

We also compare DrQ to a conventional DQN, whose reward function takes the form:

reng = −(SOCt+1 − SOCtarget)2 − 1 [gi(st, at) > 0] (5.41)

where we apply a constant step penalty for any constraint violation.
For each relevant constraint, we define a feed forward neural network to approximate Di

with 2 hidden layers each with 10 neurons and sigmoid activation function. We approximate
the objective Q-function using a network of similar architecture. Table 2 includes the
hyperparameters for the overall problem. The SPMeT model we use as a simulator is
parameterized for a prismatic lithium nickel manganese cobalt oxide cell, different from the
lithium iron phosphate cell used in our ECM case study. The episode simulation horizon is
1400 seconds. For an optimal baseline, we use methods outlined in [92]). Figure 8 shows
the baseline control result. Several meaningful insights can be taken from these baseline
results. First, the anode electrolyte constraint has the potential to be violated at almost
every timestep. Violation of this constraint can cause rapid aging or catastophic failure.
Second, the multitude of constraints provides a stronger challenge to our algorithm.

DrQ Results

We simulate 10 independent runs of both DrQ and DQN, each with 25 episodes. Figure 5.9
shows a comparison of the performance between DrQ and DQN, averaged across the runs. We
evaluate the greedy policy performance at episodes 2, 5, 10, 15, 20, and 25 for computational
purposes, given the SPMeT model is numerically expensive to simulate. Relative to DrQ, the
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Figure 5.8: Baseline optimal control result.

Table 5.2: Relevant DrQ Parameters

Parameter Description Value Units

∆t Timestep 4 [s]
γ Discount Factor 0.75 [−]
ϵ Exploration Prob. 0.2 [−]
DΞ;i Support Rad. 1 []
β DRO Confidence 0.9 [−]
η CC Confidence 0.05 [−]

variance in the DQN performance is greater. Furthermore, the performance of DrQ is on
average 31% greater compared to DQN. One important note is that, to get the DQN baseline
properly running, we had to add a fail-safe which set the input current to zero if the anode
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electrolyte concentration c−e became too low. DQN tended to max out the input current in
the first several episodes of each run, which would rapidly deplete the electrolyte. With a
real battery cell, this would cause unsafe charging conditions and potential for catastrophic
failure. In simulation, however, this would simply terminate the code with numerical errors.

The safety advantages of DrQ can be seen in plots of constraint satisfaction. Figures 5.10
and 5.11 show these results for the two active constraints, namely c−e and T . Figure 5.10 is
particularly informative, since the electrolyte constraint is most often the dominant constraint.
Here, DrQ strongly attenuates the magnitude and frequency of constraint violation. The
temperature constraint is violated less for several reasons. First, the temperature constraint
only becomes active after a history of high input current. DrQ shows faster convergence to an
optimal policy, which aggressively charges the battery. Therefore, this constraint is violated
more compared to DQN, which yields lower performing policies on average. Nevertheless,
the risk metric η of the DrQ algorithm (η = 5%) is validated within these experiments for
all of the constraints, given that over all of the episodes and runs only 4.82% of timesteps
exhibited any constraint violation.

Based on our data, the average DrQ episode took 361.58 seconds while the average DQN
episode took 90.12 seconds. Both simulate faster than real-time, which suggests that DrQ
(and DQN) could run within on-board microcontrollers, even for complex dynamical systems.

5.7 Conclusion

This chapter presents a novel algorithmic framework for deep Q-learning with probabilistic
safety guarantees. Considering CMDPs, we apply a Wasserstein DRO framework to modify
the constraint cost functions with offset variables that tighten towards the nominal constraint
boundary as our modeling accuracy improves. We characterize the underlying modeling error
of our function approximators with the TD errors of the constraint Q-functions, treated as
random variables. This scheme allows us to observe constraint cost without violating nominal
constraints, which provides strong information we use to define a set of feasible state-action
pairs. The probabilistic guarantees of our augmented algorithm allow us to guarantee safety
throughout the entire online learning process.

Our algorithm addresses critical challenges of safe RL literature. Specifically, we present a
methodology for Q-learning which allows us to provide strong safety certificates during online
learning. Our approach is widely applicable to a diverse set of learning-based optimal control
problems. Furthermore, our approach facilitates the overall learning process with what we
observe to be more consistent and dependable convergence, and more effective intermediate
control results.
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Figure 5.10: Safety statistics for the active c−e constraint over 10 runs of DrQ and DQN,
starting from the second episode. The black “exploration” points correspond to the data
obtained from the ϵ-greedy policy. The cyan “greedy” points correspond to the greedy policy
evaluated incrementally across each run.
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Figure 5.11: Safety statistics for the active T constraint over 10 runs of DrQ and DQN,
starting from the second episode.
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Chapter 6

Discussion and Conclusion

6.1 Dissertation Summary

This dissertation presents a general framework that develops tools from distributionally robust
optimization to robustify learning-based controllers in three domains: (1) finite-time optimal
control using data-driven black-box models; (2) online tabula-rasa learning-based control
of nonlinear, multimodal systems; and (3) value-based reinforcement learning. This work
is motivated by the ongoing relevance of robustness and safety when applying data-driven
decision making to high impact industrial systems.

Many real-world industrial systems are high-dimensional, multimodal, poorly structured,
and nonlinear. Data-driven control possesses a unique potential to optimize their performance,
but complex model uncertainties have prevented prior algorithms from guaranteeing feasibility
and safety in practice - preventing widespread adoption. For example, battery management
systems utilize simple cell models. But maximizing the performance, longevity, and safety
of lithium-ion batteries requires working with granular electrochemical information that is
not observable and expensive to simulate. Moreover, multimodal observations of battery
cells can improve the performance of control and management algorithms. The overarching
contribution of this dissertation is progress it creates towards solving complex real-world
problems like these. We provide simple extensions of existing DRO theory and leverage
them to develop a suite of control algorithms amenable to complex, nonlinear, multimodal
dynamical systems. We validate these algorithms - which span surrogate optimal control,
model-based and model-free reinforcement learning - on a host of challenging case studies
with emphasis on mechatronic and energy storage systems.

6.2 Summary of Contributions

The exact contributions of this dissertation can be summarized as follows:

• Chapter 2 presents simple extensions to DRO theory, focusing on optimization problems
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whose safety constraints are linearly separable in dependence on state variables x and
modeled random variables R.

• Chapter 3 presents an algorithm for data-driven finite-time optimal control. We leverage
techniques from sequence modeling and data compression, as well as DRO theory from
Chapter 2, to develop a tractable and probabilistically robust method for solving
high-dimensional nonlinear optimal control problems.

• Chapter 4 of this dissertation presents an end-to-end framework for safe learning-
based control using nonlinear stochastic MPC. In this Chapter, we focus on scenarios
where the controller is applied directly to a system of which it has no or extremely
limited direct experience, toward safety during tabula-rasa or “blank slate” model-based
learning and control as a challenging case for validation. We show under basic and
limited assumptions on the underlying problem that we can translate the probabilistic
guarantees in Chapter 2 even with strong limitations on available data and model
knowledge. We also present a coupled and intuitive formulation for the persistence of
excitation (PoE) and illustrate the connection between PoE and the applicability of
the proposed method.

• Chapter 5 develops a safe value-based RL algorithm based on the DRO technique in
Chapter 2 within the structure of a constrained Markov decision process. A distri-
butionally robust analysis of the distribution of constraint value function TD errors
approximately characterizes the worst-case errors on our ability to predict constraint
violation. We leverage this finding to add an adaptive level of conservatism to online
deep Q-learning. We demonstrate that our robust RL policy more consistently respects
constraint boundaries throughout the learning process.

6.3 Perspectives on Future Extensions

The proposed algorithmic architectures within this dissertation create a host of progress
in translating theory to improved safety of data-driven controllers operating in real-world
industrial systems. Nonetheless, there exist several routes to extend and further validate the
results presented here.

Multimodality

Our case study of vehicle obstacle avoidance does synthesize physical states (e.g. position,
velocity, heading angle) with input from a simple perception system. However, the bulk of this
dissertation’s validation studies explore the fairly narrow application area of energy systems.
Future work can apply each presented DRO control algorithm to additional nonlinear and
multimodal control applications (e.g. visuo-motor control synthesis, OpenAI SafetyGym
[96]).
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Uncertainty Quantification

This dissertation focuses on applying results in Chapter 2 to learning-based control problems.
However, the extended DRO theory can also be applied throughout applications of stochastic
optimization and beyond. For example, consider the problem of training a sequence model to
forecast a building’s energy demand:

E(x, t, θ) = D⃗ (6.1)

where x is the current state of features utilized by the model, t is the current timestep, and
θ are the model parameters. In the same sense that the black box models G and f(x, u, θ)
forecast state transitions, E predicts energy demands. Likewise, the uncertainty of E can be
characterized with the same DRO theory of Chapter 2. Since this theory allows user specified
risk levels η, a sweep over η and samples of model prediction errors can provide a diverse
characterization of, for example, error bars on forecast energy demand.
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via Quasi-Linearization and Padé Approximation”. In: Journal of the Electrochemical
Society 158.2 (2011), A93–A101. url: http://jes.ecsdl.org/content/158/2/A93.
abstract.

[40] Rui Gao and Anton J. Kleywegt. “Distributionally Robust Stochastic Optimization
with Wasserstein Distance”. In: arXiv (2016).

[41] Javier Garcia and Fernando Fernandes. “A Comprehensive Survey on Safe Reinforce-
ment Learning”. In: Journal of Machine Learning Research 16 (2016), pp. 1437–
1480.

[42] Clement Gehring and Doina Precup. “Smart Exploration in Reinforcement Learning
using Absolute Temporal Difference Errors”. In: Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems. Ed. by Takayuki Ito et al.
Saint Paul, Minnesota, USA: International Foundation for Autonomous Agents and
Multiagent Systems, 2013, pp. 1037–1043.

[43] Joao Hespanha. Linear Systems Theory. Princeton University Press, 2009.

[44] Lukas Hewing et al. “Learning-Based Model Predictive Control: Toward Safe Learning
in Control”. In: Annual Review of Control, Robotics, and Autonomous Systems 3.1
(2020), pp. 269–296. doi: 10 . 1146 / annurev - control - 090419 - 075625. eprint:
https://doi.org/10.1146/annurev- control- 090419- 075625. url: https:
//doi.org/10.1146/annurev-control-090419-075625.

[45] Ryan Hickey and Thomas M. Jahns. “Measuring Individual Battery Dimensional
Changes for State-of-Charge Estimation using Strain Gauge Sensors”. In: 2019 IEEE
Energy Conversion Congress and Exposition (ECCE). 2019, pp. 2460–2465. doi:
10.1109/ECCE.2019.8912578.

[46] Joey Hong, Sergey Levine, and Anca Dragan. Zero-Shot Goal-Directed Dialogue via
RL on Imagined Conversations. 2023. arXiv: 2311.05584 [cs.LG].

[47] Ruiwei Jiang and Yongpei Guan. “Data-driven chance constrained stochastic pro-
grams”. In: Mathematical Programming 140.6 (2016), pp. 291–327.

[48] Donald R Jones, Matthias Schonlau, and William J Welch. “Efficient Global optimiza-
tion of expensive black-box functions”. In: Journal of Global Optimization 13.1 (1998),
pp. 455–492.

[49] Lukasz Kaiser et al. “Model based reinforcement learning for atari”. In: arXiv (2019).

[50] Aaron Kandel. Wasserstein Nonlinear MPC. Version 0.0.1. Aug. 2023. url: https:
//github.com/aaronkandel/Wasserstein-Nonlinear-MPC/tree/main.



BIBLIOGRAPHY 90

[51] Aaron Kandel and Scott J. Moura. “Safe Learning MPC With Limited Model Knowl-
edge and Data”. In: IEEE Transactions on Control Systems Technology (2023), pp. 1–
16. doi: 10.1109/TCST.2023.3324869.

[52] Aaron Kandel, Saehong Park, and Scott J. Moura. “Distributionally Robust Surrogate
Optimal Control for High-Dimensional Systems”. In: IEEE Transactions on Control
Systems Technology (2022), pp. 1–12. doi: 10.1109/TCST.2022.3216988.

[53] Aaron Kandel et al. “Distributionally robust surrogate optimal control for large-scale
dynamical systems”. In: Proceedings of the 2020 American Control Conference (to
appear). Denver, CO USA: IEEE, 2020.

[54] G. Kerschen et al. “The Method of Proper Orthogonal Decomposition for Dynamical
Characterization and Order Reduction of Mechanical Systems: An Overview”. In:
Nonlinear Dynamics 41.1 (2005).

[55] Mohammad Javad Khojasteh et al. “Probabilistic Safety Constraints for Learned High
Relative Degree System Dynamics”. In: L4DC. 2020.

[56] Donald E. Kirk. Optimal Control Theory. Dover, 1970.

[57] Torsten Koller et al. “Learning-based Model Predictive Control for Safe Exploration
and Reinforcement Learning”. In: arXiv (2018), pp. 1–8.

[58] Rogier Koppejan and Shimon Whiteson. “Neuroevolutionary reinforcement learning
for generalized control of simulated helicopters”. In: Evolutionary Intelligence 4.4
(2011), pp. 219–241.

[59] Mayuresh V. Kothare, Venkataramanan Balakrishnan, and Manfred Morari. “Robust
constrained model predictive control using linear matrix inequalities”. In: Automatica
32.10 (1996), pp. 1361–1379.

[60] Aviral Kumar et al. Conservative Q-Learning for Offline Reinforcement Learning.
2020. arXiv: 2006.04779 [cs.LG].

[61] Nicholas C Landolfi, Garrett Thomas, and Tengyu Ma. “A Model-based approach for
sample-efficient multitask reinforcement learning”. In: arXiv (2019).

[62] Edith L.M. Law et al. “Risk-directed Exploration in Reinforcement Learning”. In:
Proceedings of the IJCAI’05 Workshop on Planning and Learning in A Priori Unknown
or Dynamic Domains. Ed. by V. Bulitko and S. Koenig. Edinburgh, United Kingdom:
International Joint Conferences on Artificial Intelligence, 2005, pp. 97–102.

[63] Erwan Lecarpentier and Emmanuel Rachelson. “Non-Stationary Markov Decision
Processes, a Worst-Case Approach using Model-Based Reinforcement Learning”. In:
Advances in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 7216–7225.

[64] Sergey Levine et al. “End-to-End Training of Deep Visuomotor Policies”. In: CoRR
abs/1504.00702 (2015). arXiv: 1504.00702. url: http://arxiv.org/abs/1504.
00702.



BIBLIOGRAPHY 91

[65] Lisha Li et al. “Efficient Hyperparameter Optimization and Infinitely Many Armed
Bandits”. In: CoRR abs/1603.06560 (2016). arXiv: 1603.06560. url: http://arxiv.
org/abs/1603.06560.

[66] Timothy P. Lillicrap et al. Continuous control with deep reinforcement learning. 2015.
arXiv: 1509.02971 [cs.LG].

[67] Bryan Lim et al. “Temporal Fusion Transformers for interpretable multi-horizon time
series forecasting”. In: International Journal of Forecasting 37.4 (2021), pp. 1748–1764.
issn: 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2021.03.012. url:
https://www.sciencedirect.com/science/article/pii/S0169207021000637.

[68] Tyler Lu, Dale Schuurmans, and Craig Boutilier. “Non-delusional Q-learning and
value-iteration”. In: Advances in Neural Information Processing Systems 31. Ed. by
S. Bengio et al. Curran Associates, Inc., 2018, pp. 9949–9959.

[69] Yolanda Mack et al. “Surrogate Model-Based Optimization Framework: A Case Study
in Aerospace Design”. In: Evolutionary Computation in Dynamic and Uncertain
Systems (2007).

[70] Richard Maclin et al. “Knowledge-based support vector regression for reinforcement
learning”. In: Proceedings of the IJCAI’05 Workshop on Reasoning, Representation,
and Learning in Computer Games. Edinburgh, Scotland: International Joint Confer-
ences on Artificial Intelligence, 2005, pp. 61–66.

[71] Frederic Maire. “Apprenticeship learning for initial value functions in reinforcement
learning”. In: Proceedings of the IJCAI’05 Workshop on Planning and Learning in A
Priori Unknown or Dynamic Domains. Ed. by V. Bulitko and S. Koenig. Edinburgh,
United Kingdom: International Joint Conferences on Artificial Intelligence, 2005,
pp. 23–28.

[72] Horia Mania, Aurelia Guy, and Benjamin Recht. “Simple Random search provides a
competitive approach to reinforcement learning”. In: arXiv (2018).

[73] Timothy A. Mann and Yoonsuck Choe. “A Comprehensive Survey on Safe Reinforce-
ment Learning”. In: JMLR: Workshop and Conference Proceedings 24:59–75, 2012
10th European Workshop on Reinforcement Learning. Edinburgh, Scotland: JMLR
W—&C Proceedings, 2012, pp. 1437–1480.

[74] Julien Marzat and Helene Piet-Lahanier. “Design of nonlinear MPC by Kriging-based
optimization”. In: 16th IFAC Symposium on System Identification. Brussels, Belgium:
The International Federation of Automatic Control, 2012, pp. 1490–1495.

[75] Ravi Methekar et al. “Optimum charging profile for lithium-ion batteries to maximize
energy storage and utilization”. In: Transactions of the Electrochemical Society 25.35
(2010), pp. 139–146.

[76] Thomas M. Moerland et al. Model-based Reinforcement Learning: A Survey. 2020. doi:
10.48550/ARXIV.2006.16712. url: https://arxiv.org/abs/2006.16712.



BIBLIOGRAPHY 92

[77] S. Mohan, Y. Kim, and A. G. Stefanopoulou. “Energy-Conscious Warm-Up of Li-Ion
Cells From Subzero Temperatures”. In: IEEE Transactions on Industrial Electronics
63.5 (2016), pp. 2954–2964. doi: 10.1109/TIE.2016.2523440.

[78] David L. Moreno et al. “Using prior knowledge to improve reinforcement learning in
mobile robotics”. In: Proceedings of the Conference Towards Autonomous Robotics
Systems. Bath, England: Springer, 2004.

[79] Scott Moura, Nalin Chaturvedi, and Miroslav Krstic. “Constraint Management in
Li-ion Batteries: A Modified Reference Governor Approach”. In: 20133 American
Control Conference. Washington, DC: IFAC, IEEE, 2013.

[80] Scott J. Moura. “Estimation and control of battery electrochemistry models: A
tutorial”. In: 2015 54th IEEE Conference on Decision and Control (CDC). 2015,
pp. 3906–3912. doi: 10.1109/CDC.2015.7402827.

[81] Scott J. Moura et al. “Battery State Estimation for a Single Particle Model with Elec-
trolyte Dynamics”. In: IEEE Transactions on Control Systems Technology 25.2 (Mar.
2017), pp. 453–468. doi: 10.1109/TCST.2016.2571663. url: http://ieeexplore.
ieee.org/document/7489035/.

[82] Anusha Nagabandi et al. “Neural Network Dynamics for Model-Based Deep Rein-
forcement Learning with Model-Free Fine-Tuning”. In: International Conference on
Robotics and Automation (ICRA). Brisbane, Australia, 2018.

[83] Ashvin Nair et al. AWAC: Accelerating Online Reinforcement Learning with Offline
Datasets. 2021. arXiv: 2006.09359 [cs.LG].

[84] Arnab Nilim and Laurent El Ghaoui. “Robust Control of Markov Decision Processes
with Uncertain Transition Matrices”. In: Operations Research 53.5 (2005).

[85] Saehong Park et al. “A Deep Reinforcement Learning Framework for Fast Charging
of Li-ion Batteries”. In: IEEE Transactions on Transportation Electrification (2022),
pp. 1–1. doi: 10.1109/TTE.2022.3140316.

[86] Saehong Park et al. “Optimal Control of Battery Fast Charging Based-on Pontryagin’s
Minimum Principle”. In: 2020 59th IEEE Conference on Decision and Control (CDC).
2020, pp. 3506–3513. doi: 10.1109/CDC42340.2020.9304409.

[87] Ronald Parr and Stuart Russel. “Reinforcement Learning with Hierarchies of Machines”.
In: Proceedings of the 10th Conference on Neural Information Processing Systems
(NIPS 1997). Denver, CO: Neural Information Processing Systems Foundation, Inc.,
1997.

[88] Praveen Paruchuri et al. “Towards a formalization of teamwork with resource con-
straints”. In: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, 2004. AAMAS 2004. New York, NY USA: IEEE,
2004.



BIBLIOGRAPHY 93

[89] Bart P.G. Van Parys et al. “Distributionally robust control of constrained stochastic
systems”. In: IEEE Transactions on Automatic Control 61.2 (2016), pp. 430–442.

[90] Joel Paulson, Edward Buehler, and Ali Mesbah. “Arbitrary Polynomial Chaos for
Uncertainty Propagation of Correlated Random Variables in Dynamic Systems”. In:
IFAC PapersOnLine 50.1 (2017), pp. 3548–3553.

[91] HE Perez et al. “Optimal Charging of Li-Ion Batteries With Coupled Electro-Thermal-
Aging Dynamics”. In: IEEE Trans. on Veh. Technology 66.7 (2017), pp. 7761–7770.

[92] Hector Perez, Niloofar Shahmohammadhamedani, and Scott Moura. “Enhanced Per-
formance of Li-Ion Batteries via Modified Reference Governors and Electrochem-
ical Models”. In: IEEE/ASME Transactions on Mechatronics 20.4 (Aug. 2015),
pp. 1511–1520. doi: https://doi.org/10.1109/TMECH.2014.2379695. url:
https://ieeexplore.ieee.org/document/7004876.

[93] T. J. Perkins and A. G. Barto. “Lyapunov design for safe reinforcement learning”. In:
Journal of Machine Learning Research 3 (2002), pp. 803–832.

[94] Nestor Queipo et al. “Surrogate-based analysis and optimization”. In: Progress in
Aerospace Sciences 41 (2005), pp. 1–28.

[95] Christopher D Rahn and Chao-Yang Wang. Battery Systems Engineering. John Wiley
& Sons, 2012.

[96] Alex Ray, Joshua Achiam, and Dario Amodei. “Benchmarking Safe exploration in
deep reinforcement learning”. In: arXiv (2020).

[97] Spencer Richards, Felix Berkenkamp, and Andreas Krause. “The Lyapunov Neural
Network: Adaptive Stability Certification for Safe Learning of Dynamic Systems”. In:
arXiv (2018), pp. 1–11.

[98] Ugo Rosolia and Francesco Borrelli. “Learning Model Predictive Control for Iterative
Tasks. A Data-Driven Control Framework”. In: IEEE Transactions on Automatic
Control 63.7 (2017), pp. 1883–1896.

[99] Michael J. Rothenberger et al. “Genetic optimization and experimental validation of
a test cycle that maximizes parameter identifiability for a Li-ion equivalent-circuit
battery model”. In: Journal of Energy Storage 4 (2015), pp. 156–166.

[100] Martin Schlegen et al. “Dynamic Optimization using adaptive control vector parame-
terization”. In: Computers and Chemical Engineering 29.8 (2005), pp. 1731–1751.

[101] Krishnan Srinivasan et al. “Learning to be Safe: Deep RL with a Safety Critic”. In:
CoRR abs/2010.14603 (2020). arXiv: 2010.14603. url: https://arxiv.org/abs/
2010.14603.

[102] Florian Tambon et al. “How to certify machine learning based safety-critical systems?
A systematic literature review”. In: Automated Software Engineering 29.2 (Apr. 2022).
doi: 10.1007/s10515-022-00337-x. url: https://doi.org/10.1007%2Fs10515-
022-00337-x.



BIBLIOGRAPHY 94

[103] Marko Tanaskovic et al. “Adaptive receding horizon control for constrained MIMO
systems”. In: Automatica 50 (2014), pp. 3019–3029.

[104] K Thomas, John Newman, and R Darling. “Mathematical modeling of lithium batter-
ies”. In: Advances in lithium-ion batteries (2002), pp. 345–392. doi: 10.1007/0-306-
47508-1_13. url: http://www.springerlink.com/index/RXM87M4067U87J65.pdf.

[105] Lorenzo Usai et al. “Analysis of the Li-ion battery industry in light of the global
transition to electric passenger light duty vehicles until 2050”. In: Environmental
Research: Infrastructure and Sustainability 2.1 (Mar. 2022), p. 011002. doi: 10.1088/
2634-4505/ac49a0. url: https://dx.doi.org/10.1088/2634-4505/ac49a0.

[106] Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. 2023. arXiv: 2201.11903 [cs.CL].

[107] Tyler Westenbroek et al. “Combining Model-Based Design and Model-Free Policy
Optimization to Learn Safe, Stabilizing Controllers”. In: Proceedings of the 7th IFAC
Conference on Analysis and Design of Hybrid Systems. 2021.

[108] Insoon Yang. “A Convex Optimization Approach to Distributionally Robust Markov
Decision Processes With Wasserstein Distance”. In: IEEE Control Systems Letters 1.1
(2017), pp. 164–169.

[109] Insoon Yang. “Wasserstein Distributionally Robust Stochastic Control: A Data-Driven
Approach”. In: arXiv (2018).

[110] Tianhe Yu et al. “MOPO: Model-based Offline Policy Optimization”. In: CoRR
abs/2005.13239 (2020). arXiv: 2005.13239. url: https://arxiv.org/abs/2005.
13239.

[111] Rowan Zellers et al. “MERLOT Reserve: Neural Script Knowledge Through Vision
and Language and Sound”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). June 2022, pp. 16375–16387.

[112] Baohe Zhang et al. “On the Importance of Hyperparameter Optimization for Model-
based Reinforcement Learning”. In: CoRR abs/2102.13651 (2021). arXiv: 2102.13651.
url: https://arxiv.org/abs/2102.13651.

[113] Chaoyue Zhao and Yongpei Guan. “Data-driven risk-averse stochastic optimization
with Wasserstein metric”. In: Operations Research Letters 46.2 (2018), pp. 262–267.

[114] Zhengang Zhong, Ehecatl Antonio del Rio-Chanona, and Panagiotis Petsagkourakis.
Data-driven distributionally robust MPC using the Wasserstein metric. 2021. doi:
10.48550/ARXIV.2105.08414. url: https://arxiv.org/abs/2105.08414.



95

Chapter 7

Appendices

7.1 Single Particle Model with Electrolyte & Thermal

Dynamics

The single particle model with electrolyte and thermal dynamics (henceforth denoted as
SPMeT) is a reduced-order electrochemical lithium-ion battery model derived from the
Doyle-Fuller-Newman (DFN) electrochemical battery model [81]. The DFN model employs a
continuum of particles throughout the anode and cathode of the battery cell. Diffusion within
this continuum is represented with partial differential equations (PDEs) and differential-
algebraic equations (DAEs). The SPMeT uses a simplified representation of solid phase
diffusion based on a single spherical particle in each electrode of the battery cell. Compared
to the ECM model used in the main text (which is isothermal), the SPMeT incorporates
thermal dynamics. Furthermore, the state variables of the SPMeT model provide direct
physical intuition on the conditions occurring within the battery cell. The SPMeT model
also provides much more accurate prediction at higher input current rates.

The main advantage of designing fast charging controllers with the SPMeT is that we
can leverage the granular electrochemical information encoded in the dynamical state to
replace the phenomenological equivalent circuit model used in the main text. Specifically,
by constraining electrochemical state variables instead of terminal output voltage, we can
safely expand the safe operating envelope in order to improve charging times significantly.
Coincidentally, constraining electrochemical states gives us greater agency in avoiding rapid
cell aging sourced from myopic charging protocols.

The governing equations for SPMeT include linear and quasiliniar PDEs and a nonlinear
voltage output equation, given by:

∂c±s
∂t

(r, t) =
1

r2
∂

∂r

[
D±
s r

2∂c
±
s

∂r
(r, t)

]
, (7.1)

εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
, (7.2)
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where t represents time. The superscript j denotes anode, seperator and cathode, j ∈
{+, sep,−}, each forming essential components of the lithium ion battery cell. The terminal
voltage output is governed by a combination of electric overpotential, electrode thermodyan-
mics, and Butler-Volmer kinetics, yielding:

V (t) =
RTcell(t)

αF
sinh−1

(
I(t)

2a+AL+ī+0 (t)

)
− RTcell(t)

αF
sinh−1

(
−I(t)

2a−AL−ī−0 (t)

)
+U+(c+ss(t))− U−(c−ss(t)) +

(
R+
f

a+AL+
+

R−
f

a−AL− +
Rce(Tavg(t))

A

)
I(t)

−
(
L+ + 2Lsep + L−

2Aκ̄eff

)
I(t) + kconc(t)[ln(ce(0

+, t))− ln(ce(0−, t))],

(7.3)

where css is the solid phase surface concentration, namely c±ss(x, t) = c±s (x,R
±
s , t), U

± is the
open-circuit potential, and c±s,max is the maximum possible concentration in the solid phase.

The exchange current density ij0 and solid-electrolyte surface concentration cjss are given by:

ij0(c
j
ss) = kj

√
c0ec

j
ss(t)(c

j
s,max − cjss(t)), (7.4)

cjss(t) = cjs(R
j
s, t), j ∈ {+,−}. (7.5)

Note the electrolyte diffusion PDE (7.2) is quasilinear because the diffusion coefficient depends
on lithium concentration, Deff

e (cje).
The nonlinear temperature dynamics are modeled with a single lumped thermal mass

subjected to heat generation from the input current:

dTcell
dt

(t) =
Q̇(t)

mCp;th
−
Tcell(t) − T∞
mCp;thRth

(7.6)

where T∞ is the ambient temperature, m is the mass of the cell, Cp;th is the thermal specific
heat capacity of the cell, Rth is the thermal resistance of the cell, and Q̇(t) is the heat added
from the charging, which is governed by

Q̇(t) = I(t)
[
U+(SOCp)− U−(SOCn)− V (t)

]
(7.7)

Here, I(t) is the input current (the control input), and V (t) is the voltage determined by
(7.3). Both nonlinear open circuit potential functions in (7.7) are functions of the bulk state
of charge (SOC) in the anode and cathode, respectively. For more details on the SPMeT
equations and notation, we direct the reader to ([81]).

7.2 Doyle-Fuller-Newman Electrochemical Battery

Model

We consider the Doyle-Fuller-Newman (DFN) model to predict the evolution of lithium
concentration in the solid c±s (x, r, t), lithium concentration in the electrolyte ce(x, t), solid
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electric potential ϕ±
s (x, t), electrolyte electric potential ϕe(x, t), ionic current i±e (x, t), molar

ion fluxes j±n (x, t), and battery temperature T (t). The x-dimension runs across the negative
electrode, separator, and positive electrode. At each x-coordinate value in the negative and
positive electrodes, we consider a particle where spherical lithium intercalation occurs. The
governing equations in time are given by

(7.8)
∂c±s
∂t

(x, r, t) =
1

r2
∂

∂r

[
D±
s r

2∂c
±
s

∂r
(x, r, t)

]
,

(7.9)εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
,

(7.10)mcP
dT

dt
(t) =

1

Rth

[Tamb − T (t)] + Q̇,

for j ∈ {−, sep,+} and Q̇ is the rate of heat transferred to the system [104], defined as

Q̇ = I(t)
[
U+(t)− U−(t)− V (t)

]
− (7.11)

I(t)T (t)
∂

∂T
[U+(t)− U−(t)], (7.12)

and differential equations in space and algebraic equations are given by

(7.13)σeff,± · ∂ϕ
±
s

∂x
(x, t) = i±e (x, t)− I(t),

(7.14)
κeff(ce) ·

∂ϕe
∂x

(x, t) = −i±e (x, t) + κeff(ce) ·
2RT

F
(1− t0c)

×
(
1 +

d ln fc/a
d ln ce

(x, t)

)
∂ ln ce
∂x

(x, t),

(7.15)
∂i±e
∂x

(x, t) = a±Fj±n (x, t),

(7.16)j±n (x, t) =
1

F
i±0 (x, t)

[
e

αaF
RT

η±(x,t) − e−
αcF
RT

η±(x,t)
]
,

(7.17)i±0 (x, t) = k±
[
c±ss(x, t)

]αc
[
ce(x, t)

(
c±s,max − c±ss(x, t)

)]αa
,

(7.18)η±(x, t) = ϕ±
s (x, t)− ϕe(x, t)− U±(c±ss(x, t))− FR±

f j
±
n (x, t),

(7.19)c±ss(x, t) = c±s (x,R
±
s , t).

where Deff
e = De(ce) · (εje)brug, σeff = σ · (εjs + εjf)

brug, κeff = κ(ce) · (εje)brug are the effective
electrolyte diffusivity, effective solid conductivity, and effective electrolyte conductivity given
by the Bruggeman relationship. The boundary conditions for solid-phase diffusion PDE (7.8)
are

∂c±s
∂r

(x, 0, t) = 0, (7.20)
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∂c±s
∂r

(x,R±
s , t) = − 1

D±
s

j±n (x, t). (7.21)

The boundary conditions for the electrolyte-phase diffusion PDE (7.9) are given by

(7.22)
∂c−e
∂x

(0−, t) =
∂c+e
∂x

(0+, t) = 0,

(7.23)ε−e De(L
−)
∂c−e
∂x

(L−, t) = εsepe De(0
sep)

∂csepe
∂x

(0sep, t),

(7.24)εsepe De(L
sep)

∂csepe
∂x

(Lsep, t) = ε+e De(L
+)
∂c+e
∂x

(L+, t),

(7.25)ce(L
−, t) = ce(0

sep, t),

(7.26)ce(L
sep, t) = ce(L

+, t).

The boundary conditions for the electrolyte-phase potential ODE (7.14) are given by

ϕe(0
−, t) = 0, (7.27)

ϕe(L
−, t) = ϕe(0

sep, t), (7.28)

ϕe(L
sep, t) = ϕe(L

+, t). (7.29)

The boundary conditions for the ionic current ODE (7.15) are given by

i−e (0
−, t) = i+e (0

+, t) = 0, (7.30)

and also note that ie(x, t) = I(t) for x ∈ [0sep, Lsep]. In addition, the parameters,D±
s , De, κe, k

±

vary with temperature via the Arrhenius relationship:

ψ = ψref exp

[
Eϕ
R

(
1

T
− 1

Tref

)]
(7.31)

where ψ represents a temperature dependent parameter, Eψ is the activation energy and ψref
is the reference parameter value at room temperature. The model input is the applied current
density I(t) [A/m2], and the output is the voltage measured across the current collectors,

V (t) = ϕ+
s (0

+, t)− ϕ−
s (0

−, t). (7.32)

The level of charge in the cell is defined by the bulk state of charge (SOC) of the negative
electrode, namely,

SOC−(t) =

∫ L−

0

c̄−s (x, t)

c−s,max(θ
−
100% − θ

−
0%)L

−dx (7.33)

where c̄−s represents the volume averaged of a particle in the solid phase defined as:

c̄−s (x, t) =
3

(R−
s )

3

∫ R−
s

0

r2c−s (r, t)dr (7.34)
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Lithium plating, which is the main battery degradation mechanism, is related to the side
reaction overpotential ηs, defined as:

ηs(x, t) = ϕ−
s (x, t)− ϕ−

e (x, t)− Usr ≥ 0. (7.35)

To facilitate numerical optimal control, this model is discretized in space and time. There
is a rich literature on discretization methods (see e.g. [95, 17]). The discretization approached
used for this dissertation involve finite difference, Padé approximation [39], and automatic
differentiation methods.

7.3 Cardinality of Constraints Remains Constant

In the following lemma, we show that the number of constraints in the reformulation of the
DRO problem in (4.13) need only be m (where m is the dimension of the constraint function
output). When g(·) is non-separable, as described in [33], then the number of constraints in
the reformulation scales super-linearly as 2m.

Lemma 3 If the modeling error residuals are defined as:

R
(t)
1 = |g(xt, u∗t )− ĝ(xt, u∗t , θg)| (7.36a)

R
(t+1)
1 = |g(x∗t+1, u

∗
t+1)− ĝ(x̂t+1, u

∗
t+1, θg)| (7.36b)

R
(t+b)
1 = |g(x∗t+b, u∗t+b)− ĝ(x̂t+b, u∗t+b, θg)| (7.36c)

and appear in the constraint function g(·) as (4.13), then the number of constraints in the
reformulated problem remains identically m without jeopardizing the probabilistic guarantee.

Proof 2 Consider the following stochastic constraint converted to a distributionally robust
chance constraint:

x+R ≤ 0 (7.37a)

inf
P∈Bϵ

P [x+R ≤ 0] ≥ 1− η (7.37b)

representing a constraint with uncertainty. Without loss of generality, we consider a MPC
program with horizon N = 1.

The method of [33] enumerates across the vertices of a hypercube by modulating the sign
of the DRO variable σ. However, when the random variable is a separable offset from a
constant constraint boundary, we only need consider perturbations that add conservatism. In
the 1-dimensional case, we can see from looking at the set of constraints

x ≤ −r and x ≤ r (7.38)

that only the first constraint x ≤ −r will ever be active. Therefore, x ≤ −r adequately defines
the feasible region.
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Likewise, if we consider the case where R ∈ R2 with additive R, we obtain the following
set of constraints [

x̃1
x̃2

]
+

[
r1
r2

]
≤ 0 (7.39)[

x̃1
x̃2

]
+

[
−r1
r2

]
≤ 0 (7.40)[

x̃1
x̃2

]
+

[
r1
−r2

]
≤ 0 (7.41)[

x̃1
x̃2

]
+

[
−r1
−r2

]
≤ 0 (7.42)

we see trivially that the feasible region defined by (7.39-7.42) is identical to that defined solely
by (7.42). This pattern continues for any m ∈ N of R ∈ Rm.

7.4 Evolutionary Strategies and Random Search

In Chapters 3 and 4 of this dissertation, we utilize a (1 + λ) evolutionary strategy to
approximately solve numerical MPC optimization programs. This is a subset of what is
generally referred to as a (µ

ρ
+ λ) evolutionary strategy, whose precise definition can be

referenced in [10]. A (µ
ρ
+ λ) evolutionary strategy is a very simple form of a genetic

algorithm, whereby at each generation/iteration of optimization, we have some number
of “parents” who are mutated, and the parents are replaced by the highest performing
mutated offspring. Random search has been shown to be a highly effective method for solving
optimization problems in reinforcement learning literature [RStest]. Random search is also
highly amenable to constrained optimization (without equality constraints), as infeasible
mutants can be pruned from selection. If no feasible mutants are found, the mutant that
least violates the constraint boundary can be selected to avoid additional computation.

7.5 Slow Model Adaptation

To accommodate potential cases where the true plant dynamics change slowly over time, we
can adopt the following approach which preserves the safety guarantees of the Wasserstein
DRO framework. We have system dynamics x ∈ Rn with no finite escape time. Furthermore,
g(x, u, θ∗) ≤ 0 is our constraint function. Suppose it holds that the function g behaves in the
following manner (similarly, although not identically, to a Lipschitz continuous function):

max
x∈x,u∈U,δθ

|g(x, u, θ + δθ)− g(x, u, θ)| ≤ C (7.43)

where δθ = θ∗t+1 − θ∗t is any possible deviation in the model parameters over the course of a
single timestep. The value δθ is bounded. Consider we are at time t of the experiment. Let
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us represent the 1-step residual at time j = t− k, where k ∈ {1, 2, ..., t} is an integer, as:

R
(t)
1 = g(xt, ut, θ

∗
t )− ĝ(xt, ut, θt) (7.44)

where θ∗t is the parameterization of the true plant at time t, and θt is the learned model at

time t. If we add a value to the residual R
(t)
1 of C · k · sgn(R(t)

1 ),

R̃
(t)
1 = R

(t)
1 + C · k · sgn(R(t)

1 ) (7.45)

we accommodate for worst-case model adaptation in our algorithm. This scheme, coupled
with a judiciously designed moving window of residuals, can accommodate model adaptation
in the true underlying plant.




