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Abstract 
 
This chapter discusses the use of diffraction simulators to improve experimental outcomes in 
macromolecular crystallography, in particular for future experiments aimed at diffuse scattering. 
Consequential decisions for upcoming data collection include the selection of either a synchrotron 
or free electron laser X-ray source, rotation geometry or serial crystallography, and fiber-coupled 
area detector technology vs. pixel-array detectors.  The hope is that simulators will provide insights 
to make these choices with greater confidence.  Simulation software, especially those packages 
focused on physics-based calculation of the diffraction, can help to predict the location, size, shape, 
and profile of Bragg spots and diffuse patterns in terms of an underlying physical model, including 
assumptions about the crystal’s mosaic structure, and therefore can point to potential issues with 
data analysis in the early planning stages. Also, once the data are collected, simulation may offer 
a pathway to improve the measurement of diffraction, especially with weak data, and might help 
to treat problematic cases such as overlapping patterns.  
 

1. Introduction 
 Most macromolecular crystallographers are familiar with one or more software packages 
for data reduction, such as xds (Kabsch, 2010b) or dials (Winter et al., 2018), which take the raw 
X-ray diffraction patterns, and convert the Bragg spot intensities to real-valued amplitudes of 
structure factors, which are the Fourier coefficients for calculating the electron density map.  
Diffraction simulation is the opposite concept—it is the idea of having a program that would 



accurately and quantitatively predict every pixel on the diffraction pattern, including the location, 
size, shape, and intensity profile of every Bragg spot, given a set of underlying conditions. There 
is a long history of software packages geared toward such simulation. Recent authors have used 
them for instructive purposes; for example, Diederichs illustrated the effects of mosaicity and 
spectral dispersion on the diffraction pattern (Diederichs, 2009), while Holton & Frankel 
calculated the minimum crystal size needed for a complete diffraction data set (Holton & Frankel, 
2010). Given the current progress in diffuse scattering, where it seems that the analysis of 
correlated motion may be within reach (Wall et al., 2018), it is appropriate to ask whether 
simulation programs can and should be extended to cover the diffuse pattern. 
 

Let us first ask whether the purpose of simulation is solely educational, or does it play a 
critical role in data analysis? After all, if we have a powerful data reduction package, can we not 
simply interpret the data by direct measurement? For example, to process Bragg spots, we could 
run a spotfinding program, and then integrate the signal by summing up all the photons on the 
Bragg-spot pixels. The reality, however, is that Bragg spot measurement is never direct. Rather, 
quantitative modeling has been an important part of data reduction for decades, both for locating 
the Bragg spots on the image, and for accurately finding their intensities.  The critical thing to 
appreciate is that the diffraction pattern is a combination of Bragg reflections and background 
diffraction (which includes diffuse scattering). Measuring a given Bragg spot always means 
quantifying the total signal and then subtracting the background, all the while accounting for 
experimental noise, which itself consists of several parts (counting uncertainty, instrument readout, 
and systematic effects) and potential overlap of neighboring spots. It is easily shown (Bourenkov 
& Popov, 2006) that the Bragg signal is often weaker than the background, especially at higher 
resolutions. While many strong spots may be noticed on a diffraction pattern, the weaker ones are 
not visually apparent by simply looking at an image, and would not be detected by a naïve 
spotfinding algorithm.  Therefore, in real data reduction, the strong spots are used to deduce the 
lattice (the unit cell and crystal orientation), then all the spots are predicted (both strong and weak), 
and Bragg intensity is summed on the pixels considered to be at the predicted positions (Leslie, 
2006).   

 
 Therefore it is clear that quantitative modeling has an established role in processing the 
data post-experiment, but what about for planning purposes, pre-experiment?  Here it needs to be 
acknowledged that the required modeling tools are so familiar that they are used routinely without 



discussion. For example, synchrotron beamline user interfaces like Blu-Ice allow the scientist to 
decide whether the detector position will allow for high-angle Bragg spots, or if instead the detector 
needs to be repositioned closer to the sample (McPhillips et al., 2002).  However, with today’s 
expanded focus on collecting data to reveal diffuse scattering, it is prudent to re-examine the toolset 
to make sure we are asking the right questions.  Since the diffuse signal lies between Bragg spots, 
it may be sensible to focus on whether the unit cell parameters and detector distance permit 
sufficient pixels between the Bragg orders to distinguish the low-intensity diffuse signal from the 
Bragg spikes.  Also, we may ask if the Bragg peaks might be broadened by other factors such as 
beam divergence or dispersion, or the crystal mosaic structure.  If the Bragg peaks are too wide, 
neighboring spots may partially overlap and preclude the observation of diffuse signal. The 
software described herein is capable of illustrating these effects for a specific crystal form 
identified by the program user, in the form of a PDB-format structure file.  It thus serves as a 
mechanism for general education, with the added potential of driving the successful design and 
execution of future experiments. 
 
 To frame the discussion that follows, it is useful to draw a distinction between empirical 
and physical modeling approaches. In many cases, data reduction workflows are empirical in the 
sense of not necessarily breaking down the underlying physics of diffraction.  A key example is 
the spot analysis performed by the program xds (Kabsch, 2010a). The popularity of that software 
is due in part to its approach to modeling of the size and shape of the Bragg spot, employing a 
clever transformation to a coordinate system in which all Bragg reflections share a common 
intensity profile described by two empirical parameters. Under these conditions, the structure 
factor (Fourier coefficient) intensity can be modeled by fitting a single scale factor to the data. 
 
[Insert Fig. 1 here] 
 
 In contrast to the empirical approach, we will take a more physical approach in view of our 
pedagogical purpose, showing how subtle properties of the diffraction pattern arise based on more 
fundamental building blocks.  Familiar elements of the experiment are shown in Fig. 1, including 
the X-ray beam, detector, crystal, and rotating goniometer, along with parameters used to express 
the experimental geometry and sample properties. While the list is not comprehensive, it is at least 
a minimum starting point.  We are now poised to construct a diffraction model from this set of 
parameters. There are indeed data reduction workflows that adhere to physical modeling 



principles, in particular eval15 (Schreurs et al., 2009). Here the physics is represented by four 
statistical distributions, representing respectively the crystal volume, mosaic texture, divergent 
beam, and wavelength spread. Random drawings are performed from the four distributions, with 
the diffraction pattern built up by thousands of repeated drawings. Parameters describing the width 
of these distributions are fit interactively through a graphical interface. Ultimately the information 
carried forward to structure solution is derived from the simulation rather than directly measured 
from the raw data. While primarily meant for small molecules, eval15 has also been applied to 
protein crystallography (Kroon-Batenburg et al., 2015). Separately, James Holton described a 
similar ray-tracing approach in great mathematical detail (Holton et al., 2014), and together we 
have collaborated to include his program nanoBragg (Sauter et al., 2020) in the Computational 
Crystallography Toolbox (cctbx). We subsequently published the code diffBragg with Derek 
Mendez (Mendez et al., 2020), to calculate first derivatives of the nanoBragg simulation, for future 
use in parameter optimization calculations that will ultimately form a new data reduction pipeline. 
Other current authors are also using simulation to address issues in data reduction (Brehm et al., 
2023).    
 

This chapter is an attempt to highlight our physical modeling approach to a more general 
audience, while its eventual applications to data reduction (and particularly to diffuse scattering 
data) are still under development. We describe simtbx.sim_view, which supports the simulation 
functionality of diffBragg within an interactive image viewer, and which was used as a teaching 
tool at the 2022 School of Crystallography in Erice, Italy. Section 2 discusses current best practices 
for the experimental measurement of protein diffuse scattering, section 3 presents the general 
principles of pixelwise image simulation, while section 4 considers how to extend these pixel 
models to at least some aspects of diffuse scattering. Section 5 explains how simtbx models the 
complexity of real-world experiments, while section 6 enumerates the model parameters that may 
be adjusted by the software user, and some that await implementation. Section 7 speculates on 
future directions for data interpretation, while section 8 gives instructions for downloading and 
using the package. 
 

2. Present status and future prospects for diffuse scattering 
The above discussion of macromolecular diffuse scattering emphasizes the importance of 

purposeful planning, with careful optimization of the experimental geometry so that the diffuse 
pattern is well-measured and clearly distinguishable from the Bragg pattern. It is therefore useful 



to examine recent experience, noting how experimental choices can lead to successful data 
collection. We focus the discussion on MCA, the 2020 paper of Meisburger, Case & Ando 
(Meisburger et al., 2020). Not only does this paper present an exciting result dealing with 
correlated motion, it also has a noteworthy methods section, serving as a road map for future 
experiments by identifying critical best practices for measurement of diffuse scattering data. We 
examine these practices here, especially considering their relation to diffraction simulation.  
 
2.1 Pixel array detectors 

The MCA authors’ first experimental choice was to use a Pilatus imaging detector, which 
uses pixel array detection (PAD), meaning the direct detection of X-ray photons in a silicon crystal 
via the production of photoelectrons. Critically, a knife-edge test (Fig. 2B) shows that PAD 
technology reads out the photon signal in essentially the same pixel where the photon is absorbed, 
thus producing a very sharp Bragg spot (Fig. 2D) absent other effects (in this test, the edge of a 
knife held against the detector at a slight angle is used to generate a sequence of pixels with 
smoothly varying X-ray exposure (Koerner et al., 2009; Philipp et al., 2010)). This is in contrast 
to fiber-optic coupled detectors (Fig. 2A), where X-ray photons are first converted to visible 
photons within a thin phosphor sheet, which are in turn coupled through a fiber optic taper to a 
charge-coupled device (CCD) detector. Here, the secondary visible photons generated by the 
phosphor spread out (within the phosphor) in all directions (Fig. 2C), by one or two pixels (Holton 
et al., 2012). Mathematically this is described as a point-spread function (PSF) that is applied to 
the incident diffraction pattern. While fiber-optic coupled detectors are very popular for general 
structure solution, the PSF makes them less than ideal for diffuse scattering, as it leaves less room 
to record the diffuse scattering pattern in between Bragg spots. In addition, commercially available 
CCD detectors exhibit artifacts that interfere with measurement of diffuse scattering when the 
number of X-rays recorded on a pixel becomes too large, due to the spread of charge to neighboring 
pixels after saturation. While it is possible to simulate the PSF with nanoBragg, and therefore 
possible in theory to deconvolute its effects, we will only consider PAD technology for the 
discussion of simulation.  

 
[Insert Fig. 2 here] 

 
2.2 Space group and unit cell  



Studying lysozyme was a best-case scenario, as it is a well-known, relatively small protein. 
Larger proteins to be studied in the future will have larger unit cells, and by the nature of reciprocal 
space the resulting Bragg spots will be closer together in image space. Crowded patterns will make 
it harder to detect the diffuse signal in between Bragg spots, but this might be mitigated by simple 
measures such as moving the detector further from the sample. For this paper it was a judicious 
choice to use a crystalline lysozyme form in space group P1, since lysozyme normally crystallizes 
in space group P43212, and thus produces a Bragg pattern eight times as crowded as the one studied 
here. Higher-symmetry crystals provide more multiplicity, which is advantageous for increasing 
signal-to-noise and improving characterization of data quality. In contrast, lower-symmetry 
crystals provide more independent measurements for diffuse scattering, which can be 
advantageous in modeling. These examples support the argument that there is a potential role for 
simulation in the planning of difficult future experiments. One can read a PDB file to set the 
symmetry and unit cell, set the detector type and geometric parameters, and use a physical model 
to predict the size and shape of spots. One can then inspect for overlap, either from spot to spot, 
or between the spots and the diffuse halo. 
 
2.3 Ambient temperature 

It has become clear over the last decade that proteins exist in a conformational ensemble 
that can be observed crystallographically (Woldeyes et al., 2014), with the likelihood that enzyme 
function and regulation are determined by contact networks that can be modulated in response to 
the local environment (van den Bedem et al., 2013). Furthermore, cryopreservation techniques that 
have long guarded against radiation damage are best avoided, in order to sample conformation 
space under operating conditions (Keedy et al., 2015). Therefore the MCA authors were 
particularly concerned with keeping the radiation absorbed dose below 65 kGy, thus protecting 
against both general damage that reduces resolution, and specific damage that accrues to relevant 
chemical species like disulfide bonds and metallocenters in enzymes. Monitoring the electron 
density maps in real time during rotational data collection, they translated the crystal to a fresh 
position in the crystal at the first sign of damage. This was possible because large crystals were 
available in the 100-200 μm range. 
 

If large crystals are not available in future studies, the best path forward may lie with serial 
crystallographic methods. Here the experiment is performed at ambient temperature, but only one 
shot is taken per crystal to avoid radiation damage. Thus there is a need to accumulate the full 



pattern by merging thousands of patterns from small crystals in random orientations. The serial 
approach is available at either synchrotron sources (with millisecond up to second time scales), or 
at X-ray free electron lasers (XFELs, where pulses, tens of femtoseconds long, enable pump-probe 
experiments in the femtosecond to microsecond regimes). In both cases, there is a capability for 
performing time-domain studies under ambient conditions. However, serial crystallography also 
presents challenges such as the partiality of Bragg spots, as the data are collected with still shots 
rather than with goniometer rotation. XFEL X-ray pulses also have significant X-ray dispersion. 
Simulation programs offer tools for understanding (and therefore mitigating) these problems, as 
will be discussed. 
 

3. Image simulation methods 
 Before mentioning the details of image simulation, we will outline the mathematical 
framework, which is the same framework used to explain crystallography in a graduate-level class. 
The crystal is thought of as existing in direct space, and the diffraction pattern in reciprocal space, 
with the two adjunct spaces co-rotating, and related to each other by Fourier transformation 
(Scheme 1).  
 
[Production editor: please typeset Scheme 1 as indicated here:] 

 
Scheme 1. Initial framework for simulation 

 
A copy of the molecule is found at each position in the crystal lattice. Mathematically this 

is the operation of convolution (⊗), and its Fourier transform is a multiplication. Specifically, in 
the diffraction pattern, the molecular transform is sampled at each reciprocal lattice point. 
Experimentally, the Bragg spot intensity gives us the structure factor (squared) for the 
corresponding Miller index. Furthermore, the Ewald sphere construction (Fig. 3) reminds us that 
we only observe Bragg spots that are exactly in the diffraction condition.  

 
[Insert Fig. 3 here] 

 



We need a few proportionality factors to make sure our simulated image is calculated with 
sensible units (photons/pixel) and is quantitative on an absolute scale. Various formulae go back 
at least a hundred years (Darwin, 1914) but the modern equivalent may be summarized as (Eqn. 
1): 

𝐼!"#$% =	 𝐽&(𝜆)		𝑟'(		𝑃		∆Ω!"#$%		𝑁)$%%*		|𝐅)$%%(𝐡𝟎)|(			Flatt( (𝐬) 
 

where 𝐽&(𝜆) is the number of photons incident on the crystal,		𝑟' is the radius of the electron, 𝑃 is a 
polarization factor (Holton et al., 2014), ∆Ω!"#$% is the solid angle subtended by the pixel, and 𝑁)$%%* 

is the number of illuminated unit cells. The factor |F)$%%(𝐡𝟎)|( is just the familiar structure factor 
intensity at a particular Miller index 𝐡𝟎. Finally for our initial discussion, F%/00(𝐬) is a simple delta 
function, telling us if the reciprocal lattice point is on the Ewald sphere (in diffracting condition), 
given our unit cell and crystal orientation that determines the scattering vector 𝐬.  
 

From here we can add nuanced detail to our mathematical treatment. The statement that 
Flatt(s) is just a delta function must be an oversimplification, since that would imply seeing only 
one Bragg spot at a time as the crystal rotates on the goniometer, rotating successive reciprocal 
lattice points through the Ewald sphere. In reality we know that diffraction patterns are crowded 
with Bragg spots. Let’s re-examine the math implied by Scheme 1, and introduce further 
complexity, Scheme 2:  
 
[Production editor: please typeset Scheme 2 as indicated here:] 

 
 

Scheme 2. Revised simulation framework taking into account the finite size of the mosaic block. 

 
On reconsidering, the reciprocal lattice point is a delta function only if the crystal lattice is 

infinite in extent (due to the Fourier transform of an infinite sine wave being a single spatial 
frequency). We may think of a real crystal being constructed, mathematically, as an infinite crystal 
multiplied by a block mask that describes the volume of matter that diffracts coherently, i.e., where 
the scattering from unit cells constructively interferes to produce Bragg spots. As Scheme 2 shows, 
this has the effect of placing a reciprocal lattice point volume (RLP volume) at every reciprocal 



lattice position, again the operation of a convolution. This reciprocal object, the Fourier transform 
of the coherently-diffracting mosaic block, is finite in size and thus gives rise to the crowded 
pattern of Bragg spots.  
 
[Insert Fig. 4 here] 
 

Let’s consider a possible mathematical form for the RLP volume. Suppose that the block 
mask (the coherently scattering mosaic domain) is a rectangular parallelepiped of N3 = 7 × 7 × 7 
unit cells. We get the familiar Laue interference pattern (Eqn. 2), 
 

Flatt(𝐬) ∝
sin 𝜋𝑁h
sin 𝜋h ×

sin 𝜋𝑁k
sin 𝜋k ×

sin 𝜋𝑁l
sin 𝜋l  

 
where h, k, and l are the reciprocal space coordinates (Miller indices), and specifically for N=7, 
this gives rise to five rectangular interference fringes between every pair of Bragg spots (Fig. 4A). 
While it is difficult to observe this pattern in practice, there is one famous XFEL experiment where 
diffraction was collected from single mosaic blocks, giving rise to precisely this type of pattern 
(Chapman et al., 2011). In a more typical experiment, the crystal might consist of numerous mosaic 
blocks all of slightly different sizes and shapes, with the total diffraction being the incoherent sum 
of the coherent diffraction from each block (Fig. 4B). Therefore it no longer makes sense to speak 
of a specific value of N, but rather a Gaussian distribution, such that the overall RLP shape might 
reflect the average block size ⟨N⟩ while taking a Gaussian form (Eqn. 3),  
 

Flatt(𝐬) ∝ 𝑒1(〈4〉6𝐡)
!  

 
Importantly, this implies a Gaussian falloff of pixel intensity when the RLP is a reciprocal space 
distance 𝛥𝐡 away from the Ewald sphere. The behavior may be summarized as follows: when the 
average block size ⟨N⟩ is small, many Bragg reflections are visible because RLPs are in diffracting 
condition relatively far from the Ewald sphere; and vice versa, with few reflections being visible 
if ⟨N⟩ is large (Sauter et al., 2014).  
 

This gives us some fairly sophisticated grounding for understanding the finer points of 
diffraction (Pflugrath, 1999; Sauter & Adams, 2017). As the RLP volume passes through the 
Ewald sphere (due to a goniometer rotation), the intensity of a Bragg spot first increases, then 



reaches a maximum, and then decreases, eventually to zero (Fig. 5B). This is the famous “rocking 
curve”. The rocking curve might be narrower (in rotation) than one X-ray frame, or it might extend 
over several consecutive frames in the rotation series. To correctly measure the structure factor, 
we must integrate the number of photons over the full rocking curve, and such a Bragg spot would 
be considered to be “fully measured”. Interestingly, as the RLP passes through the Ewald sphere 
(Fig. 5A) [Insert Fig. 5 here], the 𝐬𝟏	vector representing the scattering direction (and which points 
from the Ewald sphere center to the RLP center) changes slightly, just a fraction of a degree. The 
visible manifestation is that Bragg spots change their position very slightly (Fig. 5C), as the crystal 
rotates on an axis perpendicular to the beam. It is a small effect but it should be accurately 
reproduced by the simulator. 
 

What happens with the rocking curve during serial crystallography? Here there is no 
goniometer rotation; the rocking curve is sampled at a single orientation only. Without the context 
of a model, we don’t know if we are near the rocking curve peak or near the tails. In short, we are 
in the uncomfortable position that the thing we measure (the Bragg spot intensity) is not at all 
proportional to the thing we are seeking (the integrated area of the rocking curve). The initial 
approach in serial crystallography was to simply improve the outcome with overwhelming 
multiplicity of measurement. A more sophisticated approach is to use a model to determine a 
separate correction factor for each Bragg intensity, so our partial measurements can be converted 
to the full spot equivalent. Physics-based modeling is especially applicable here, especially if 
iterative parameter estimation (postrefinement) can be used to derive best estimates of the crystal, 
detector, and beam parameters, along with the mosaic block size ⟨N⟩. Many software authors 
addressed this problem in the last decade, leading to a dramatic improvement in the electron 
density maps (Ginn et al., 2015; Kabsch, 2014; Kroon-Batenburg et al., 2015; Sauter, 2015; 
Uervirojnangkoorn et al., 2015; White, 2014). 
 

4. Extending simulators to diffuse scattering 
 

We are now in a position to include some limited information about diffuse scattering in 
the simulator. First let’s give a plausibility argument. We know that there are several contributing 
factors to the diffuse scattering (Fig. 6) among which the inelastic Compton scattering is the least 
interesting for molecular function, and will not be addressed here. The isotropic diffuse signal 
contains interesting information about internal motions, but varies on a length scale longer than 



we are concerned with here. [Insert Figure 6 here] Of the remaining variational diffuse features, 
there is a cloudy pattern observed between lattice layers that informs us about short-range 
correlations in the molecular motion; this will also not be discussed here. Finally there is a pattern 
of intense halos that surround each Bragg spot, which are visible at the lattice positions even after 
Bragg spots have been removed (Fig. 6A). These halos reflect the long-range correlations on scales 
of a few unit cells. An alternative representation is shown in Fig. 6B taken from the MCA paper, 
showing the scattering intensity around one Bragg spot as a function of goniometer rotation. The 
largest signal (blue) is just the rocking curve for the Bragg spot. In this particular experiment, 
where the spindle was rotated in steps of 0.1°, the full width of the Bragg spot was typically found 
to be on a single rotational step. The intense halo also has a characteristic footprint (black), with a 
width extending about 1 or 2° on either side of the central peak. The fact that we can clearly see 
the intense halo as a separate phenomenon, which mimics the well-understood rocking curve 
producing the F%/00(𝐬)  factor in Eqn. (1), suggests that we could simply add another term to our 
simulation that would represent the reciprocal space form of the intense halos (Eqn. 4): 
 

𝐼!"#$% =	 𝐽&(𝜆)		𝑟'(		𝑃		∆Ω!"#$%		𝑁)$%%*		|F)$%%(𝐡𝟎)|( 		<Flatt( (𝐬) + Fdiffuse	halo( (𝐬)> 

 
Possible functional forms for the F2diffuse halo(s) term have been discussed in the literature 

for 30 years. Caspar et al. first expressed the idea of an autocorrelation function to express an 
exponentially decreasing effect with correlation length γ (Caspar et al., 1988). The Fourier 
transform of this function gives an expression for the diffuse halo density in reciprocal space, 
which models the black curve of Fig. 6B. Since we are discussing long-range correlations between 
unit cells, a first estimate of the length γ could be 50 Å. Anisotropic correlation can also be 
represented, in which case the single parameter γ would be replaced with a tensor 𝛬. Finally, an 
additional parameter 𝜎 gives the vibrational amplitude of the motion, typically of magnitude <1 
Å. We cannot go into mathematical detail here, but the reader may refer to Michael Wall’s 
calmodulin paper (Wall et al., 1997) where Wall eqn. (8) essentially gives the Fdiffuse halo

( (𝐬)	term, 
with Wall eqn. (9) used for the autocorrelation function. The reader is also referred to Meisburger 
eqns. (138) to (141) in a recent review (Meisburger et al., 2017).  
 

Eqn. (4), with its diffuse halo term, is incorporated into the simtbx.sim_view simulator 
associated with this chapter (Fig. 7).  [Insert Fig. 7 here] 
 



5. Complexity of the simulation 
It should be emphasized that the Eqn. (4) model for pixel intensity is valid only for a still 

shot. If the experiment includes goniometer rotation, we take a simple summation over 
intermediate goniometer rotational positions (Eqn. 5), 

𝐼!"#$% =	 𝐽&(𝜆)		𝑟'(		𝑃		∆Ω!"#$%		𝑁)$%%*		|F)$%%(𝐡𝟎)|( 		∑ <Flatt( (𝐬) + Fdiffuse	halo( (𝐬)>*!"BC%$	
DE0/0"EB

. 
 

For example, we might represent a 0.1° rotation as a sum over 10 still shots spaced 0.01° 
apart. The changing rotational position does not appear explicitly but is implicit in Eqn. (5). The 
exact math is beyond the scope of this chapter, but we can show the basic idea (and the reader is 
invited to skip this paragraph if only interested in the broad framework). In simplest terms (Fig. 
3B), let’s define the incident beam vector as s0, and the scattered ray vector as s1, both with a length 
of inverse wavelength (1/λ), and 𝐬 = 	 𝐬𝟏 − 𝐬𝟎. Then the fractional Miller index h implicitly used 

for Flatt
# (𝐬) + Fdiffuse halo

# (𝐬) is (Eqn. 6), 
𝐡 = 	𝐑$𝐀𝐬  

 
where Rφ is the rotation matrix corresponding to a spindle rotation of φ, and A is the direct space 
orientation matrix (Eqn. 7), 
 

𝐀 = #
𝑎! 𝑎" 𝑎#
𝑏! 𝑏" 𝑏#
𝑐! 𝑐" 𝑐#

', 

 

consisting of the x, y, and z components of the unit cell basis vectors a, b, and c. 
 

Another source of computational complexity is the phenomenon of mosaic rotation. In Eqn. 
(5) we are treating all the mosaic blocks of the crystal as having the same exact orientation 
represented by matrix A. This may be a reasonable approximation for work at ambient temperature. 
However, from several decades experience with cryopreserved crystals, we know that the quick 
cooling process essentially shatters the crystal into many mosaic blocks of slightly different 
orientations, such that the Bragg spots can actually appear as tiny arcs (Fig. 8D) [insert Fig. 8 here] 
concentric on the direct beam (Nave, 2014). We handle this in our simulation by adding another 
large sum over individual mosaic rotations (Eqn. 8), 

		𝑃		∆Ω!"#$%		𝑁)$%%*		|F)$%%(𝐡𝟎)|( 		 @ @ <Flatt( (𝐬) + Fdiffuse	halo( (𝐬)>
FE*/")	
DE0/0"EB*

*!"BC%$	
DE0/0"EB

 



 
where the rotations represent a Gaussian distribution over small angles with randomly distributed 
axes of rotation.  
  

A final source of complexity is the beam dispersion. While synchrotron beamlines are often 
monochromatic (with a dispersion of ~0.01% in energy), XFEL sources have a broader dispersion 
of ~0.3%, with a unique mean energy for each shot, and a spiky spectrum with a stochastic shape. 
We incorporated 100 experimental XFEL spectra into the simtbx.sim_view simulator so that the 
user can sample the slight differences in the diffraction. These are accessed by the "New XFEL 
shot" button in the GUI. Computationally we incorporate spectral shape into the calculation with 
(Eqn. 9): 
 

𝐼!"#$% =	 @ 𝐽&(𝜆)		𝑟'(		𝑃		∆Ω!"#$%		𝑁)$%%*		|F)$%%(𝐡𝟎)|( 		 @ @ <Flatt( (𝐬) + Fdiffuse	halo( (𝐬)>
FE*/")	
DE0/0"EB*

*!"BC%$	
DE0/0"EB

G/H$%$BI0J	K

 

 
where the factor 𝐽&(𝜆) refers to the number of incident photons within each wavelength interval. 
The effect of spectral dispersion is to transform Bragg spots into radial streaks emanating from the 
direct beam position (Fig. 9).  
 

Considering the triple summation, Eqn. (9) may not be the most computationally efficient 
design for image simulation, and alternate ideas are welcome. To help compensate for the 
combinatorial footprint, we have implemented a GPU-accelerated version, presently available for 
users with Linux machines with Nvidia graphics cards. 

 
[Insert Fig. 9 here] 
  

6. Parameter space and implications for simulation 
Here we offer further discussion of each of the parameters thus far identified as relevant to 

simulating the diffraction experiment, with a brief overview of how we anticipate the user may 
interact with them via the simtbx.sim_view display. 
 
6.1 Incident beam  



The X-ray beam can be described in terms of its wavelength, flux, divergence, polarization, 
shape, and bandpass or spectrum. We ignore shape as the area exposed to the beam is bundled into 
illuminated volume, and the shape itself has no effect. We are also implicitly ignoring the pulsed 
nature of an XFEL beam as well as flux, which again do not matter if we are not addressing 
radiation damage or any other changes over the course of the exposure. Wavelength is clearly 
important — this determines diffracting conditions — and therefore bandpass also concerns us. 
Here we must consider the possibilities case wise. If we are working with a monochromatic beam 
that we are content to model as perfectly monochromatic, we use a single wavelength. If we choose 
to model bandpass, our model currently approximates this as a histogram of contributions from 
different energy channels and sums these contributions. This approach can handle a pink beam or 
an XFEL spectrum equally well. We have three spectrum shapes available in simtbx.sim_view: 
monochromatic, Gaussian, or SASE (self-amplified spontaneous emission, applicable to XFEL 
experiments). As just mentioned, we include 100 measured SASE spectra from LCLS in our 
simulator, and the binning of this histogram was selected to preserve the different shapes of these 
spectra. The binning is not a parameter exposed to the user at present, but it would be trivial to 
make this change if the need arises. The effect of a noticeable bandpass or spectrum is a radial 
streaking of each Bragg spot (Fig. 9D). It is more noticeable when a large mosaic rotation also 
spreads peaks over many pixels, and under the right conditions, the user can observe realistic shot-
to-shot differences when simulating the exposure of the same crystal to different XFEL pulses. 
Finally, divergence and polarization are properties that are important to model correctly, but 
typically are fixed at a particular beamline, and are known quantities. We therefore incorporate 
these into the model but do not expose them as variables to adjust or refine. 
 
6.2 Unit cell and symmetry  

The reciprocal lattice itself scales with the unit cell of the crystal, producing a global 
expansion or contraction of the diffraction pattern on the detector. We include each unit cell 
parameter as an independently adjustable variable in the simulation, as we have often found 
ourselves in the position of observing a slightly different unit cell than expected during an 
experiment. Where applicable, crystal symmetry is enforced so that symmetry-related axes scale 
together. The user is encouraged to explore multiple orientations when adjusting unit cell 
parameters, since the effects of scaling each axis will be more or less visible in different 
orientations — when the beam is aligned with one of the unit cell axes, changes in that axis length 



will not alter the spot-to-spot distance. The "randomize orientation" button can be useful for 
exploring many orientations. 
 
6.3 Crystal orientation 

The orientation of the crystal with respect to the beam determines which Bragg reflections 
will be observed (Fig. 3B). An initial crystal orientation is acquired during indexing, but in 
practice, especially for serial crystallography, small errors may remain. We measure this 
misorientation as rotational offsets on the x-, y-, and z-axes, and denote these rotx, roty and rotz, 
respectively. Rotz is easy to detect and correct, since this angle rotates spots about the origin in the 
plane of the detector. Rotx and roty are more difficult. These latter two have almost no effect on 
the position of spots on the detector, but do impact which reflections meet the diffracting 
conditions. In rotation crystallography we have the opportunity to integrate over the entire rocking 
curve as the reciprocal lattice point rotates through the Ewald sphere, so a slight misorientation is 
tolerable. In contrast, recall that in serial crystallography we accumulate only a large number of 
slices on individual still shots. This renders us extremely sensitive to any misestimation of a 
reflection's position relative to the Ewald sphere: Although each point in the reciprocal lattice is 
smeared out into a small (reciprocal) volume by crystal imperfections, allowing us to record a 
partial spot even when we are not perfectly in diffracting conditions, the resulting intensity changes 
dramatically with slight rotations of the crystal. All three (mis)orientation angles may be adjusted 
in the simtbx simulation. To aid the user in viewing the different effects of rotations in x, y and z, 
we also simulate a "reference" crystal, which begins as identical to the primary simulated crystal 
but does not change as the simulation parameters are updated. (It can be brought back into register 
with the "update reference" button.) The user toggles whether the reference is displayed in red; the 
primary simulation is always displayed in cyan, and the two combine to produce white where pixel 
intensities match perfectly. A spectrum emerges at positions where intensities are only slightly 
different. 
 
6.4 Mosaic character 

Mosaicity describes variation among individual coherently scattering blocks within a 
crystal, and there are multiple approaches to parameterizing this effect (Nave et al., 2016). In 
simtbx.sim_view we focus on the distribution of mosaic block orientations. We presume this to be 
a three-dimensional normal distribution (over rotx, roty, and rotz) and thus sample a representative 
set of orientations (Eqn. 8). Interference between the mosaic blocks is ignored: the coherent 



diffraction from each block is computed separately and summed to produce the simulated 
diffraction pattern. These simplifications appear to be reasonable for both cryocooled 
microcrystals at synchrotrons and crystals at ambient temperature at XFELs, although when 
mosaic domains are individually, explicitly modeled, there may be further improvement in the 
agreement between measured and simulated images. Additional parameters of mosaicity not 
modeled here include variation in unit cell dimensions and variation in the mosaic block size, N. 
The former would produce uniform radial streaking of Bragg peaks and the latter would produce 
nonuniform distortion of the peaks. As we are primarily interested in applying these simulations 
to cases where other effects on spot shape are much stronger, we have omitted these variables for 
now. For simplicity, we model the mosaicity as isotropic, although it would be possible to model 
anisotropic rotations and block sizes. 
 
6.5 Diffuse scattering 

As discussed earlier in this chapter, several types of diffuse scattering arise from different 
physical phenomena, and only the diffuse halos around Bragg peaks produced by long-range 
correlations on the order of several unit cells are modeled in our simulation. By default diffuse 
scattering is disabled in simtbx.sim_view since it is an expensive calculation, but it can be enabled 
with a toggle switch. (We recommend turning off diffuse scattering while exploring other 
parameters.) Halos are parameterized by a correlation length γ in Ångstroms, and the amplitude σ 
of the correlated vibrations also in Ångstroms (Fig. 7). These also govern the strength of the diffuse 
signal relative to the Bragg signal. Diffuse scattering may be either isotropic or anisotropic, and 
we have incorporated a unitless anisotropy term in our simulation to reflect this, which at present 
is assigned a specific directionality. An increasingly thorough treatment of diffuse scattering is a 
high priority for ongoing work (Peck et al., 2018; Wall et al., 2018).  
 
6.6 Oscillation width and rotation  

Our simulator was designed with serial crystallography as the target use case, but we later 
added a rotation mode in order to explore rotation experiments as well. Note that this mode is 
much slower because each oscillation image is produced as the sum of a series of still shots, so we 
generally do not recommend adjusting other variables with this mode enabled, and we especially 
caution against enabling it at the same time as diffuse scattering. Rotation experiments are 
presumed to be carried out at synchrotron sources, so we fix the spectrum shape to monochromatic 



in this mode. The subset of parameters displayed in the GUI is adjusted accordingly when 
switching between modes.  
 
6.7 Background and noise 

The simtbx.sim_view viewer still awaits features that usefully depict background and noise.  
Air and water scattering are well-understood and in principle easily modeled. There may be other 
known sources of scattering or absorption as well, but these two typically dominate, producing 
familiar isotropic patterns. Several types of noise arise from the experiment. Shot noise is a 
consequence of the statistical likelihood of observing a particular photon given a ground-truth 
photon rate, and it follows a Poissonian distribution. The shorter the exposures (and fewer photons 
collected on each image), the greater the fractional contribution of shot noise to each image. There 
is also readout noise, a result of dark current, which is the signal registered by the detector in the 
absence of any photons. This is because at the stage where photons impinging on the detector are 
converted to electrical signal, the same process of charge separation into electrons and holes very 
occasionally occurs spontaneously. The likelihood of these spontaneous events is governed by the 
Boltzmann distribution and increases with temperature. Readout noise, or simply read noise, 
follows a Gaussian distribution. Detectors that do not convert X-ray photons directly to electron-
hole pairs — indirect detectors, as opposed to direct detectors — are also subject to a point spread 
function (PSF; Fig. 2A). X-ray detectors also do not have perfect linear responses, and diffraction 
requires a very large dynamic range compared with direct imaging. Ideally each additional photon 
hitting the detector would register as one additional photon event, but at very high photon counts, 
this response drops off. This last effect can be surprisingly difficult to identify from a diffraction 
pattern directly, as it does not alter the expected Bragg peak shapes. Detectors usually have some 
variation in responsiveness from pixel to pixel even after calibration, manifesting as slightly 
different gains, and typically have a few "hot" and "cold" pixels that deviate more dramatically. 
Cosmic radiation occasionally interacts with the detector, producing a strong, sharp signal at a 
random location; this can be distinguished from a hot pixel by the fact that it appears on only one 
image. In simtbx.sim_view, we presume an ideal detector and avoid modeling most of these 
phenomena. nanoBragg and diffBragg do, however, have the functionality necessary to handle 
them. The relative contributions of various sources of noise are well worth exploring in a detailed 
simulation. 
 

7. Conclusions 



With the expectation that image simulation can serve as both an informative teaching 
reference and an aid for planning future experiments, this chapter provides a first implementation 
of the graphical program simtbx.sim_view.  However, given its focus on pre-experiment modeling, 
the present software represents only a starting point.  Ultimately we wish to include a mechanism 
for post-experiment data interpretation.  At minimum, this would require the development of new 
code to simultaneously display the computational model alongside the experimental data. With 
this type of interactive display, the software user could then adjust the model parameters so that 
the model matches the data as closely as possible. This is essentially the data processing paradigm 
of eval15 (Schreurs et al., 2009), except that the parameter set would be expanded to include 
aspects of the diffuse scattering such as correlation length, vibrational amplitude and anisotropy.   
 
 We certainly expect that most parameter optimization will be performed automatically, just 
as is currently done with conventional diffraction experiments.  Indeed, the program diffBragg, 
which provides the foundation for simtbx.sim_view, is capable of computing the first-derivative of 
the simulated diffraction pattern with respect to each parameter.  Therefore it is envisioned that it 
can be used for iterative inverse modeling, using gradient-descent methods to minimize the 
variance between model and experiment (Mendez et al., 2020).  However, we caution that this 
prospect of automated optimization does not obviate the need for developing an intuitive 
understanding of the underlying physics. We can easily imagine a situation where numerous 
physical parameters (such as the unit cell and mosaic structure) are refined within an automatic 
data reduction pipeline, only to find that the model has radically diverged. Interactive display of 
model and data is the final safeguard, to verify that the numerical metrics of variance are telling 
the truth, and that published model is comfortably within reason.  
 

The Meisburger study of diffuse scattering from lysozyme (Meisburger et al., 2020) 
benefited from an uncrowded diffraction pattern where the separation between Bragg and diffuse 
features was readily accomplished. In future experiments, a combination of factors may contribute 
to more crowded and complex patterns; these factors include larger unit cells, smaller mosaic block 
sizes, and the use of disperse X-ray beams at XFEL sources, used in the pursuit of time-resolved 
data that are free from radiation damage. In this event, image simulation provides a potential 
avenue to deconvolute overlapping signals: either overlapping Bragg spots, or Bragg spots 
overlapping with diffuse halos. Deconvolution has been described in the literature (Bourgeois, 
1999; Schreurs et al., 2009), but has not been common practice. However, in the intervening years 



computational hardware has advanced such that GPU acceleration is widely available. A fresh look 
at simulators is thus warranted, both to facilitate deconvolution and simply to provide the best 
physics-based profiles for data reduction to most effectively account for experimental uncertainty. 

 

8. Software availability 
 

Instructions and files for running simtbx.sim_view may be found at 
https://github.com/cctbx-xfel/erice_2022. Optimal performance requires a Linux machine 
accelerated with an Nvidia GPU; currently both Volta and Ampere architectures are supported.  
Instructions for installing and running the software, plus a short program description, will be kept 
up to date and accessible in the aforementioned Github repository.  Github makes provision for 
users to report bugs, request features, and contribute code.  
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Figure Legends 

 
Fig. 1. A general list of experimental elements for physical modeling.  The first three columns list 
parameters relevant to all experiments, while the fourth column applies only to rotation 
experiments, and not to serial crystallographic data, where every shot is static with no known 
rotational relationship to any other shot.  
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Fig. 2. A comparison of imaging detector types.  (A) In a fiber-coupled area detector, X-rays are 
converted to visible photons in the phosphor layer (green), then coupled through a fiber-optic taper 
(orange) to a charge-coupled device (blue).  (B) In a pixel array detector (PAD), the intensity 
response of one pixel as a knife edge is translated across the detector surface, exposed to an X-ray 
flood field.  Photons are directly converted to detected charge in silicon, with most of the response 
confined to one pixel.  (C) A simulated image models the point-spread function of a fiber-coupled 
detector, while (D) the corresponding simulation of a PAD shows much sharper Bragg spots. Panel 
A: reproduced from Holton et al. (2012), with permission from IUCr Journals.  Panel B: adapted 
from Koerner et al. (2009), with permission from IOP Publishing.  
 

 



Fig. 3 Fundamental framework for image simulation. As implied by Scheme 1, (A) the adjunct 
spaces representing crystal (direct) and diffraction pattern (reciprocal) are (B) related by Bragg’s 

law, relating the wavelength 𝜆, the scattering angle q, and the spatial resolution d. The red 

reciprocal lattice point (located a reciprocal distance 1/d from the reciprocal origin O) satisfies the 
diffraction condition and therefore produces a scattered ray, reaching the indicated detector pixel.  
Although the adjunct spaces co-rotate, their rotation origins differ in the Ewald sphere construction 
(B), with the crystal rotating around the sphere center, and the reciprocal lattice rotating around O. 
Adapted from Sauter et al., 2014. 
 

 
Fig. 4. Size and shape of the mosaic block affects the Bragg spot geometry.  Each reciprocal lattice 
point may be thought of as a Fourier transform of the average coherently scattering block within 
the crystal (Scheme 2).  If the block is a rectangular parallelepiped, seven unit cells on an edge 
(Eqn. 2), the simulated pattern is as shown in (A), with five fringes appearing between every Bragg 
spot center.  In contrast, if the block geometry draws from a 3D Gaussian distribution with a mean 
width of 〈𝑁〉=7 cells (Eqn. 4), the generated pattern is as shown in (B).  Crosshairs indicate the 
direct beam. 
 



 
Fig. 5. Bragg spot position changes slightly with crystal rotation. (A) As the crystal rotates on the 
goniometer spindle, a reciprocal lattice point (RLP) co-rotates thru the diffraction condition (the 
Ewald sphere).  However, the 𝐬𝟏	vector, indicating the direction of the corresponding Bragg spot, 

makes a slightly larger scattering angle 2q when the RLP is inside the sphere, than when the RLP 

is outside.  (B) The rocking curve indicates that the diffracted spot intensity reaches a maximum 
when the RLP intersects the Ewald sphere surface.  (C) Experimental diffraction patterns collected 
at increasing spindle rotations reflect these effects. Panels A,B: reproduced from Sauter & Adams, 
2017 with permission from the Royal Society of Chemistry. Panel C: adapted from Pflugrath, 
1999. 

 



 
Fig. 6. Summary of the diffuse scattering pattern from macromolecular crystallography.  (A) A 
section through reciprocal space, highlighting various contributions to the isotropic scattering (left) 
and anisotropic, or variational scattering (right).  (B) Detail of the scattering focusing on one Bragg 
spot, as the goniometer spindle rotation brings the reciprocal point through the Ewald sphere.  The 
blue curve is the rocking curve proper, with its sharp peak at the central position (note the 
logarithmic scale of intensity), while the black data originate from the long-range correlations, 
forming an intense halo around the tails of the Bragg peak. Adapted from Meisburger et al., 2020. 

 



 
Fig. 7.  Snapshot of the simtbx.sim_view image viewer, simulating the diffuse halo pattern from 
calmodulin crystals (PDB entry 1CM1), which reflects a long-range correlation between unit cells, 
according to the model of Wall et al. (1997), equation 8. Parameters for the correlation length γ 

and vibrational amplitude-squared 𝜎# may be specified by the user to empirically fit experimental 
data. Furthermore, an anisotropy factor is allowed to multiply γ along the a+b and c unit cell 

directions (leaving a–b alone). It also multiplies 𝜎# along a+b (leaving a–b and c alone). In the 
present case, this type of anisotropy was purely an ad hoc decision allowing us to generate a 
simulation that resembles the data in the 1997 paper, but this exercise suggests that correct models 
may require similar anisotropic features in the general case. Courtesy of Michael Wall. 
 



 
Fig. 8. Simulations that differ in the crystal’s mosaic rotational disorder but that are otherwise 

identical. (A) Perfectly ordered mosaic blocks (rotational full width h = 0°). (B) Small mosaicity 

typical of ambient temperature crystals (h = 0.1°). (C) Medium-high mosaicity found with 

cryopreserved samples (h = 0.6°).  (D) Large mosaicity, with arclets indicating high disorder (h = 
1.5°).  Courtesy of James Holton. 
 

 



Fig. 9. Simulations that differ in the dispersion of the incident beam but that are otherwise identical. 

(A) Low dispersion (DE/E = 0.014%) typically produced by a synchrotron monochromator 

equipped with a Si 111 crystal. (B) Medium dispersion (DE/E = 0.25%) found in an XFEL pulse. 

(C) Pink beam, DE/E = 1.6% and (D) Laue, DE/E = 5.1%.  Courtesy of James Holton. 

 
 




