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AVCEM DOCUMENTATION REPORTS 
 
 The documentation to AVCEM is published in six parts:  
 

1) AVCEM Documentation Part 1: Overview of AVCEM 

2) AVCEM Documentation Part 2: Model of Vehicle Cost and Weight 

3) AVCEM Documentation Part 3: Model of Vehicle Energy Use 

4) AVCEM Documentation Part 4: Periodic Ownership and Operating Costs 

5) AVCEM Documentation Part 5: References and Parameter list 

6) AVCEM Documentation Part 6: Appendix A, Modeling Battery and 

Drivetrain Efficiency 

 
 Documentation reports are published on Delucchi’s faculty web page, 
www.its.ucdavis.edu/people/faculty/delucchi.   
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OVERVIEW OF AVCEM, ADVANCED-VEHICLE COST AND 
ENERGY-USE MODEL 

 
 

INTRODUCTION 
 
AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. 

AVCEM designs a motor vehicle to meet range and performance requirements specified 
by the modeler, and then calculates the initial retail cost and total private and social 
lifetime cost of the designed vehicle. It can be used to investigate the relationship 
between the lifetime cost -- the total cost of vehicle ownership and operation over the 
life of the vehicle -- and important parameters in the design and use of the vehicle.  

 
Overview of AVCEM and documentation 

There are three major parts to AVCEM and the AVCEM documentation:  
 

• the model of vehicle cost and weight 
• the model of vehicle energy use 
• periodic ownership and operating costs.  

 
The model of vehicle cost and weight consists of a model of manufacturing cost 

and weight, and a model of all of the other costs -- division costs, corporate costs, and 
dealer costs -- that compose the total retail cost.  The manufacturing cost is the materials 
and labor cost of making the vehicle. In our analysis, material and labor cost is 
estimated for all of the nearly 40 subsystems that make up a complete vehicle. We also 
perform detailed analyses of the manufacturing cost of the key unique components of 
electric vehicles: batteries, fuel cells, fuel-storage systems, and electric drivetrains.  

The model of vehicle energy use is a second-by-second simulation of all of the 
forces acting on a vehicle over a specified drive cycle. The purpose of this model is to 
accurately determine the amount of energy required to move a vehicle of particular 
characteristics over a specified drivecycle, with the ultimate objective of calculating the 
size of the battery or fuel-cell system necessary to satisfy the user-specified range and 
performance requirements. (The cost of the battery or fuel-cell system is directly related 
to its size; hence the importance of an accurate energy-use and performance analysis 
within a lifetime cost analysis.) The energy-use simulation is the standard textbook 
application of the physics of work, with a variety of empirical approximations, to the 
movement of motor vehicles.   

Periodic ownership and operating costs, such as insurance, maintenance and 
repair, and energy, are in toto  about the same magnitude as the amortized initial cost, 
and hence an important component of the total lifetime cost of ownership and use. 
Because of this, and because these costs can vary with the vehicle technology, it is 
helpful to estimate them accurately. We develop detailed estimates of the most 
important of these costs, which are maintenance and repair and insurance. Note that in 
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the AVCEM documentation, periodic ownership and operating costs include external 
costs, such as the cost of air pollution, and financial parameters, such as interest rates.  
 The AVCEM documentation also contains an appendix that details some aspects 
of our modeling of battery and drivetrain parameters.  

 
WHAT AVCEM DOES 

 
Types of vehicles in AVCEM 

AVCEM calculates the performance and  cost of the following kinds of light-duty 
motor vehicles:   

 
• gasoline internal-combustion-engine vehicles (ICEVs);  
• methanol ICEVs;  ethanol ICEVs;  
• compressed natural-gas (CNG) ICEVs;  
• liquefied natural-gas (LNG) ICEVs;   
• liquefied-petroleum-gas (LPG) ICEVs;  
• liquefied-hydrogen (LH2) ICEVs;  
• hydride-hydrogen ICEVs;  
• compressed-hydrogen (CH2) ICEVs;  
• battery-powered electric vehicles (BPEVs);  
• hydrogen fuel-cell-powered EVs (with or w/out peak-power device) (FCEVs);  
• methanol FCEVs (with or w/out peak-power device); and 
• hybrid ICE-electric vehicles.  
 
As noted above, the fuel-cell vehicles may be hybridized with a peak power 

device, such as a high-power battery. AVCEM has over 1000 input variables (not 
counting “low-case” inputs separate from “high-case” inputs, and not counting optional 
multiple inputs of the same variable [e.g., for fuel-cell optimization]). It occupies several 
megabytes of storage space, and takes a minute to run on a personal computer. AVCEM 
is detailed and integrated: all vehicle components are linked analytically to vehicle 
weight, power, cost, and energy use, and the resulting computational circularity is 
solved by iterative calculations. The overall performance of the fuel-cell and the battery 
are calculated from second-by-second simulations that are the equivalent of simplified 
engine maps for ICEVs.   

We emphasize that AVCEM is a vehicle-design and  vehicle lifetime-cost model: 
it designs vehicles that satisfy range and performance requirements over a particular 
drive-cycle, specified by the user, and then calculates the initial and lifetime cost of that 
vehicle over the specified drive cycle.  

AVCEM allows users to specify up to seven different kinds of vehicles for 
detailed analysis. As discussed more below, the user specifies parameters relating to 
energy use, weight, and manufacturing cost. The energy-use parameters describe the 
engine (e.g., engine size and number of cylinders), the transmission (e.g., gear ratios), 
the tires (e.g., tire size and rolling resistance), the body (e.g., drag coefficient), and more. 
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The weight and manufacturing cost parameters describe each of nearly 40 subsystems 
of the vehicle (e.g., suspension, seats, and emission control system).  

There also are five different drive cycles, characterized by beginning and ending 
velocity, grade, and wind speed by time interval. The user selects one vehicle type and 
drivecycle from the among the five.  

AVCEM presently has input specifications for a midsize vehicle (based on the 
Ford Taurus), a compact vehicle (based on the Ford Escort), a postal service delivery 
vehicle, a mini-car (mainly of our design), and an SUV (based on the Ford Explorer). 
There is an input file for two other vehicles, which can be anything from a motor 
scooter to a transit bus. Of course, AVCEM can be expanded structurally to 
accommodate more vehicle types.  

 
Output of AVCEM 

AVCEM calculates the following outputs: 
 
• Vehicle characteristics:   
 
-- the peak power of the electric vehicle (a BPEV, HEV or FCEV) and the baseline 

ICEV 
-- the acceleration performance of the EVs and the baseline ICEV (the user 

specifies the starting and ending speed, grade, and wind speed in the test 
-- the weight of all of the vehicles types; the volume of the fuel-storage system 

and/or battery (EVs and baseline ICEVs only) 
 -- the gasoline-equivalent fuel economy of all of the vehicle types (in 

miles/gallon, mi/kWh, and liters/100 km) 
 -- the life of all of the vehicle types, in kilometers 
 -- the gross peak power of the fuel cell (a key user-input design variable) 
 -- battery cycle life, energy density, and retail-equivalent cost 
 -- and the coefficient of drag for all of the vehicle types.  
 
• Vehicle and subsystem manufacturing cost and weight: this includes the 

variable manufacturing cost, division cost, corporate cost, profit, dealer cost, and 
shipping cost; and the curb weight and loaded in-use weight, of the complete vehicle. 
AVCEM also summarizes the cost, the weight, and (in some cases) the volume of the 
following vehicle subsystems: the chassis, body, and interior; the powertrain and 
emission control system; the traction battery, tray, and auxiliaries, if any; the fuel 
storage system, including valves, regulators, & fuel lines; and the fuel cell stack and 
associated auxiliaries, if any; and the methanol reformer and associated auxiliaries, if 
any. These detailed results are calculated for the baseline ICEV and the EVs, but not for 
the eight alternative-fuel ICEVs (AFICEVs). All subsystems of the vehicle are sized to 
meet the requirements of any drive-cycle and performance test specified by the user. 
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We emphasize that AVCEM estimates the full production and retail cost  of the 
vehicle, which will not necessarily be the same as the actual selling price of the vehicle. 
The actual selling price depends on marketing strategies and other factors as well as on 
the production and selling costs.  

Manufacturing costs are estimated as a continous function of production volume. 
The cost vs. volume functions are fit to point estimates for low (typically 1,000 to 2,000 
units/year), medium, and high (generally 100,000 units/year or more) production runs 
of electric drivetrains, batteries, fuel cells, reformers, high-pressure hydrogen storage 
cylinders, heating and air conditioning systems for EVs, and home recharging stations. 
We also estimate maintenance and repair costs, hydrogen fuel costs, and hydrogen 
fueling station costs as a function of the vehicle production volume.  

• Fuel cost: this is the gasoline-equivalent cost of the fuel, in $/gallon-gasoline 
equivalent. The cost of gasoline, hydrogen and methanol is broken down by: feedstock 
cost, fuel-production cost; fuel-storage and distribution costs; and retail-level costs. 
AVCEM also estimates the cost of fuel used to heat battery EVs.  

• The private and social lifetime cost per-mile (or per km): this is the levelized 
present-value cost per mile. The levelized present value, which is the conceptually 
correct expression of the lifetime cost per mile, is calculated in three steps. First, 
AVCEM calculates the present value (at specified interest rates) of every cost stream. 
Then, this present value is annualized (or levelized) over the life of the cost stream. 
Finally, the annualized present value is divided by the calculated annual average 
mileage. 

The lifetime cost is shown for all vehicle types, and is broken down into the 
following components:  

 
Private or consumer cost components: 
-- Purchased electricity (accounts for battery heating and regen from fuel cell)  
-- Vehicle, excluding battery, fuel cell, and hydrogen storage 
-- Battery and tray and auxiliaries 
-- Space heating fuel for EVs 
-- Motor fuel, excluding excise taxes 
-- Fuel-storage system 
-- Fuel-cell system, including reformer, if any 
-- Home battery-recharging station 
-- Insurance (calculated as a function of VMT and vehicle value) 
-- Maintenance and repair, excluding oil, inspection, cleaning, towing 
-- Oil 
-- Replacement tires (calculated as a function of VMT and vehicle weight) 
-- Parking, tolls, and fines (assumed to be the same for all vehicles) 
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-- Registration fee (calculated as a function of vehicle weight) 
-- Vehicle safety and emissions inspection fee 
-- Federal, state, and local fuel excise taxes 
-- Accessories (assumed to be the same for all vehicles) 
 
External and other social-cost components: 
-- Dollar value of external costs of air pollution, noise, and energy security (this 

can be excluded from the analysis) 
-- Deduction of fuel taxes (a social transfer, not a social resource cost) 
-- Deduction of producer surplus on fuel (a social transfer, not a social resource 

cost)  
  
The social lifetime cost is equal to the private or consumer cost plus the external 

and other social-cost components.  
AVCEM can display the cost-per-mile results for three different driving ranges 

for each of the three types of EVs (BPEV, HEV, FCEV) – a total of nine cases. (Of course, 
the user actually can analyze an unlimited number of cases; if one wants to do more 
than nine cases, one must write down the results or copy them to another file. The point 
is that AVCEM will show nine EV cases simultaneously.) AVCEM displays one case 
only for the baseline ICEV and each of the AFICEVs. 

• The break-even price of gasoline:  The breakeven price is that price of gasoline, 
including all excise taxes, at which the lifetime cost-per-mile of the alternative-fuel or 
electric vehicle equals the lifetime cost-per-mile of the baseline gasoline vehicle. This 
statistic is produced along with the lifetime cost statistic discussed above, and is shown 
in the same six output columns for EVs and individual output columns for the ICEVs. 
The breakeven price is shown on a private-cost basis and a social-cost basis. 

• Cost summary:  these include the gasoline-equivalent fuel retail price, 
excluding excise taxes ($/equivalent gallon); the full retail price of the vehicle, including 
dealer costs, shipping cost, and sales taxes ($); levelized annual maintenance cost 
($/year); the total private and social lifetime cost (cents/km); the difference between the 
present value of the EV lifetime cost and the present value of the gasoline-vehicle 
lifetime cost; and the break-even gasoline price ($/gallon) (private-cost and social-cost 
basis). This is shown for all vehicle types. 

 
 

DISCUSSION OF MODELING INPUTS AND METHODS 
 
This section summarizes the cost parameters and methods used in AVCEM. 

Subsequently, we give an example of how AVCEM works.   
 

Vehicle manufacturing and retail cost  
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The initial cost of the EVs and gasoline ICEV is calculated by a vehicle-
manufacturing sub-model. This sub-model breaks a complete vehicle into nearly 40 
parts, according to the “Uniform Parts Grouping” system used by the automobile 
industry. The major groups (or divisions) in this system are the body, the engine, the 
transmission, and the chassis. For each of the part groups, the model-user enters the 
weight of the material user, the cost per pound of the material, the amount of assembly 
labor time required, the wage rate for labor, and the overhead on labor.  

The material cost plus the overhead-burdened labor cost equals the total variable 
manufacturing cost. To this variable manufacturing cost are added fixed costs at the 
division and the corporate level: buildings, major equipment, executives, engineers, 
accountants, corporate advertising, design and testing, legal, and so on. Finally, 
corporate profit, dealer costs, and shipping costs are added to produce the 
Manufacturers’ Suggested Retail Price (MSRP).  

Parts data for two baseline gasoline ICEVs -- a Ford Taurus and a Ford Escort -- 
are from cost analyses done by experienced automotive consultants. (Another 
consultant provided helpful data for the SUV.) The baseline weight and cost data for the 
approximately 40 subparts sum up to the actual weight and MSRP of the Taurus and 
the Escort. For other ICEVs, and for the EVs and the AFICEVs, the cost and weight of 
each sub-group is modified as appropriate. For, example, in the BPEV and FCEV sub-
models, the cost and weight of the emission-control system and of the exhaust system 
are zero, but the frame and suspension are heavier and costlier in order to support the 
heavy battery (the extra reinforcement is calculated by a weight-compounding factor). 
To accommodate the components of the EV drivetrain, we have added three alternate 
subgroups to the conventional ICEV grouping: the electric motor, the electric motor 
controller, and other electric drivetrain components. (As mentioned next, the traction 
battery, the fuel-cell, and the hydrogen-storage system are handled outside of the basic 
parts grouping.) We develop cost functions for the motor and controller, on the basis of 
a detailed review and analysis of available information. For the EVs, we include a 
complete heating and cooling system, an onboard charger (with offboard charging 
equipment accounted separately), regenerative braking,  battery thermal management, 
and fuel-cell auxiliaries, including air compression and water management.   

The manufacturing cost of the battery, the fuel cell, and the methanol or 
hydrogen fuel-storage system (for FCEVs) are calculated separately elsewhere in the 
lifetime cost model (and discussed elsewhere in this overview), and then added as an 
additional subsystem to the manufacturing cost of the vehicle.  

The division cost is equal to a fixed cost plus an additional cost assumed to be 
proportional to the manufacturing cost. The corporate cost is equal to a fixed cost plus 
an additional cost assumed to be proportional to the manufacturing-plus-divisions cost, 
plus the opportunity cost of money invested in manufacturing. The corporate profit is 
taken as a percentage of the factory invoice. The dealer cost is equal to a fixed cost plus 
an additional cost assumed to be proportional to the factor invoice to the dealer, plus 
the cost of money to the dealer. The shipping cost is assumed to be proportional to 
vehicle weight.  
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The initial cost of the AFICEVs is calculated as the cost of the baseline gasoline 
vehicle plus any cost differences between the AFICEV and the baseline gasoline vehicle 
in fuel storage (e.g., CNG tankage), powertrain, emission control, fuel economy 
improvements, chassis support, or vehicle body and interior.  

 
The battery  

The lifetime cost of the battery is calculated from the following parameters:  
 
-- The $/kg manufacturing cost, estimated as a function of the Wh/kg specific 

energy of the battery (see discussions below). The specific energy of the 
battery is estimated on the basis of a function that relates specific energy 
to specific power. The specific power is estimated on the basis of the 
maximum power required over the drive cycle. These functions ($/kg vs. 
Wh/kg, and Wh/kg vs. W/kg) represent real tradeoffs in battery design 
and manufacturing, and allow AVCEM to optimize the battery for the 
specified range and performance requirements.  

-- the weight of the battery, estimated as a function of the specific energy, the 
driving range, and the vehicle efficiency.  

--  A recycling cost coefficient ($/kWh). 
--  The life of the battery, estimated as the shorter of the calendar life and the 

cycle life. The cycle life is estimated as a function of the depth of 
discharge, and the capacity of the battery when it is discarded. The 
average daily depth of discharge is estimated as a function of the driving 
range of the BPEV.  

--  The efficiency of the battery, estimated second-by-second over the specified 
drive cycle as a function of the battery resistance, voltage, and power. 

--  the weight and size of the battery tray, tie downs, electrical auxiliaries (such as 
bus bars), thermal management systems, and on-board charger. These are 
estimated as a function of battery parameters, temperature, and other 
factors.   

--  the time it takes  the fuel cell/reformer system to warm up (in minutes), 
during which an supplementary power source, such as a peak-power 
battery, drives the vehicle 

 
The battery is designed in AVCEM to be as light as possible for the user-specified 

range and performance mission. The calculation procedure is as follows. First, the 
battery is required to have the amount of power necessary to exactly meet the 
performance requirement -- and no more. Given the required power, the power density 
is calculated. With the calculated power density, the corresponding energy density is 
calculated, from functions that characterize the tradeoff between power density and 
energy density in design. The lower the required power density, the higher the energy 
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density; hence, by having only as much power as is required by the performance 
standard, the energy density of the battery and hence the efficiency of the vehicle is 
maximized.  

AVCEM calculates the amount of heat loss from a high-temperature battery and 
the amount of energy required to heat the battery to maintain its operating temperature 
when it is not in use. The user can specify that the electrical resistive heating energy 
come either from the wall outlet or, if the vehicle has a fuel cell, from the fuel cell. If the 
user specifies that the fuel-cell system is used to maintain the temperature of a high-
temperature battery, AVCEM re-sizes the fuel tank so that the vehicle can store enough 
energy to heat the battery and still satisfy the range requirement. The re-sizing of the 
fuel tank circularly and iteratively affects vehicle weight, efficiency, and power. Thus, 
whether one heats a battery from the fuel cell ultimately affects such thing as the cost of 
structural support material in the rest of the vehicle, because all vehicle components are 
linked in design via the performance, weight, and energy consumption of the vehicle.  

The user also specifies the upper limit on the power density (W/kg) for the 
particular technology chosen. If the performance and range demanded of the vehicle 
necessitate a peak power density in excess of the maximum allowable, AVCEM 
generates a warning statement.  

AVCEM does not account for any loss of interior storage capacity due to the bulk 
of the battery.  

 
The fuel cell and reformer system   

The lifetime cost of the fuel cell is calculated from a detailed set of material and 
labor cost inputs, and an “engine-map” type representation of the efficiency of the fuel 
cell.   

Cost. In the analysis of fuel-cell cost, the material and labor cost inputs include: 
membrane price ($/ft2-total membrane); total membrane area per active membrane 
area; total electrode area per active membrane area; catalyst price (U. S./troy-oz); total 
catalyst loading at the cathode (mg/cm2-electrode area);  total catalyst loading at the 
anode (mg/cm2-electrode area); the cost of the flow-field($/lb); the volume of the flow-
field (cm3/cm2-active membrane area); the density of the flow-field (g/cm3); other 
areal materials cost ($/cm2-active membrane area); total cost of materials for the air 
compressor ($/kWpeak-compressor); total cost of materials for the water pump, the 
hydrogen pump, and the fans ($/kWpeak-stack); total cost of materials for control of 
the reformer and the level of CO ($/kWpeak-stack); total cost of vehicle electronics 
needed specifically for the fuel-cell system, in addition to those needed in a pure BPEV, 
if the fuel-cell system is hybridized with a peak-power device ($-MSRP/kWpeak-stack); 
assembly and installation of the fuel cell, water pump, hydrogen pump, and fans (hrs-
labor/kWpeak-stack); assembly and installation of the air compressor (hrs-
labor/kWpeak-stack); assembly and installation of the reformer system (hrs-
labor/kWpeak-stack); the wage rate, excluding overhead, for fuel-cell assemblers 
($/hr); the overhead on labor (benefits, operating costs, supervisor salaries, and main 
plant costs, expressed as a wage multiplier); specific weight of the fuel-cell stack 
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(kg/kWpeak-stack); specific weight of the heat, air, and water management systems for 
the fuel cell (kg/kWpeak-stack); specific weight of the reformer and associated CO-
control systems (kg/kWpeak-stack); fuel-cell salvage value (fraction of initial cost 
including taxes); ratio of fuel-cell calendar life to vehicle calendar life; volumetric power 
density of the fuel cell (ft3/kWpeak-stack); volumetric power density of all fuel-cell 
auxiliaries (ft3/kWpeak-stack); and the volumetric power density of the reformer and 
associated auxiliaries (ft3/kWpeak-stack). 

Efficiency. The fuel-cell efficiency is calculated from user-input data on the 
current density (I) (milli-amps/cm2-active area) of the fuel cell at different fuel-cell 
voltage levels (V). The user can specify up to six of these V-I series, corresponding to six 
different air-compression regimes and air-fuel ratios. At each point in each of the six V-I 
series, AVCEM calculates the net power output of the fuel-cell system, by deducting 
from the gross power the energy required for air compression and for other system 
auxiliaries. This results of in six series of voltage versus net power. Then, at each 
voltage level, AVCEM reads across the six voltage-power series and selects the 
maximum calculated net power output. This results in a power-vs.-voltage series with 
the “optimal” -- i.e., efficiency maximizing -- combination of air compression and air-
fuel ratio at each voltage point. The fuel cell then “follows” this optimal voltage-power 
path over the drive cycle: for each segment of the drive cycle, AVCEM calculates the 
power required from the fuel cell, and then uses the optimal power-voltage path to find 
the voltage associated with the required power. Finally, this optimal voltage is used to 
calculate the voltaic efficiency of the fuel cell. (Note that AVCEM interpolates between 
input data points (i.e., does not simply choose the closest data point.)  

The user can specify that the fuel cell be used with or without a supplemental 
peak-power device. If the user specifies a supplemental peak power device (such as an 
ultra-capacitor or battery), she or he first characterizes the device with the same input 
data described under “battery”. Then, the user runs a macro command to find the most 
economical fuel-cell power level for the given vehicle. The macro inputs a series of trial 
fuel-cell gross-power levels, starting at 5 kW. For each input gross fuel-cell peak power, 
AVCEM calculates the net peak-power output from the fuel-cell system, the peak power 
required of the peak-power device in order to satisfy the performance requirement of 
the vehicle, and, through a series of iterations, the lifetime cost of the fully equilibrated 
vehicle design. The user then notes the fuel-cell power level that, in combination all of 
the other input parameters, results in the lowest lifetime cost subject to constraints on 
power, range, and the power density of the peak-power device.  

If the user chooses to use the fuel cell alone, without a peak-power device, 
AVCEM automatically calculates the gross power needed to fulfill the performance and 
range requirements. In this case there is no regenerative braking, and vehicle efficiency, 
performance, fuel storage, weight, and so on are recalculated accordingly.  

An example of calculations involving the fuel-cell system is given below. 
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The fuel-storage system.  
The cost of liquid-fuel tanks for gasoline or alcohol, high-pressure CNG tanks, 

low-pressure LPG tanks, cryogenic tanks for LH2 and LNG, and hydrogen-hydride 
systems is calculated by multiplying the amount of tankage required per unit of fuel 
(lb/lb) by the cost of the container per lb.  

The cost of high-pressure hydrogen storage is calculated in more detail. On the 
basis of size, weight, and cost data in the literature, we estimate three parameters –  
$/ft3/1000 psi, lb/ft3/1000psi, and the outer:inner volume ratio – as a nonlinear 
function of storage pressure. We use these estimated functions to calculate the cost, 
weight, and size of the high-pressure hydrogen storage vessels at the user-specified 
storage pressure, as a function of the volume of production. 

 
Energy use: overview  

Energy use is a central variable in economic, environmental, and engineering 
analyses of motor vehicles. The energy use of a vehicle directly determines energy cost, 
driving range, and emissions of greenhouse gases, and indirectly determines initial cost 
and performance. It therefore is important to estimate energy use as accurately as 
possible. 

The drivecycle energy-use submodel calculates the energy consumption of EVs 
and ICEVs over a particular trip, or drivecycle. The energy consumption of a vehicle is a 
function of trip parameters, such as vehicle speed, road grade, and trip duration, and of 
vehicle parameters, such as vehicle weight and engine efficiency. Given trip parameters 
and vehicle parameters, energy use can be calculated from first principles (the physics 
of work) and empirical approximations.  

In the energy-use submodel, the drivecycle followed by the EVs and ICEVs 
consists of up to 100 linked segments, defined by the user. For each segment, the user 
specifies the vehicle speed at the beginning, the speed at the end, the wind speed, the 
grade of the road, and the duration in seconds. Given these data for each segment of  
the drivecycle, and calculated or user-input vehicle parameters (total weight, coefficient 
of drag, frontal area, coefficient of rolling resistance, engine thermal efficiency, and 
transmission efficiency), AVCEM uses the physics equations of work and empirical 
approximations to calculate the actual energy use and power requirements of the 
vehicle for each segment of the drivecycle.  The equations can be found in physics and 
engineering textbooks, books on vehicle dynamics, and papers on estimating the fuel 
consumption of motor vehicles.   

Given a drive cycle along with total vehicle range and a maximum fuel-cell net 
power output, AVCEM calculates the total amount of propulsion energy consumed 
when the required power is less than the fuel-cell maximum power, and the amount 
consumed when the required drive power exceeds the fuel-cell maximum. These 
calculated energy data are used to size the peak-power device and the fuel-storage 
system. (The size of these is important because lifetime cost is directly and indirectly a 
function of component size.)  
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Energy use: vehicle efficiency  
The vehicle efficiency is calculated from the efficiency or energy consumption of 

individual components (the battery, the fuel-cell and reformer system, the engine, the 
transmission, the motor controller, and vehicle auxiliaries), the characteristics of the 
drive cycle (see discussion above), the characteristics of the vehicle (see above), the 
requirements of battery thermal management, and the requirements of cabin heating or 
cooling. (In the base case, we assume year-round “average” heating and cooling needs, 
but these conditions can be varied in AVCEM.)  

The efficiency of the battery, fuel cell, electric motor, motor controller, and 
transmission are not input as single values over the entire drive cycle, but rather are 
calculated second by second. Vehicle efficiency is circularly related to many 
components and parameters via weight: for example, if the driving range is increased, 
the amount of battery needed increases, which in turn increases the amount of 
structural support. The extra battery and structure make the vehicle heavier and less 
efficient, so that even more battery is needed to attain a given range, and so on, 
iteratively. AVCEM resolves these circularities and converges on mutually consistent 
set of values through iterative calculations. Regenerative braking is represented 
explicitly and in complete detail. An example of the circular involvement of vehicle 
efficiency in many areas of the lifetime cost calculation is given below.  

 
Energy use: vehicle performance  

AVCEM designs the EVs to satisfy performance requirements specified by the 
user. The user specifies the desired amount of time for the EV to accelerate from any 
starting speed to any ending speed, over any grade, and AVCEM then calculates the 
required motor power (using calculated or input data on vehicle weight, component 
efficiency, drag, air density, rolling resistance, and so on). As an option, the user can 
specify that the EV have the same acceleration time, for any particular starting and 
ending speed and grade, as has the baseline gasoline ICEV. (The peak horsepower of 
the baseline gasoline ICEV is an input variable. Given this input power, and other 
vehicle and drive-cycle characteristics, AVCEM can calculate the acceleration time for 
the baseline gasoline vehicle.) The formulas used in the performance design calculation 
are the same as those used in the drive-cycle energy-use calculations.  

In AVCEM, the maximum power of the EV is circularly related to every 
component that (in vehicle design) really is related to vehicle performance. Thus, 
AVCEM captures effects that one might overlook but which really do relate to 
performance. For example, if (in vehicle design) one changes the expected storage 
pressure of hydrogen in an FCEV, then the strength and hence the weight of the 
container needed to attain a given range will change. When the weight of the vehicle 
thus changes, the amount of power required to attain a given performance relative to 
the gasoline ICEV changes. This in turn changes the size and weight of the motor and 
battery. These changes in weight change the vehicle efficiency, which in turn changes 
the amount of battery and fuel-storage required to attain a given range. The change in 
weight again affects the amount of power required, and so on. The circularities are 
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resolved by iterative calculations. (Note that the peak power is calculated in this way 
for the EVs only; the AFICEVs are assumed to have the same performance as the 
baseline gasoline ICEV.) 

 
Other ownership and operating costs  

Insurance.  The lifetime cost model handles insurance payments in some detail. 
We begin with an estimate of the monthly premium for comprehensive physical-
damage insurance and liability insurance for a reference vehicle. Then, we formulate a 
relationship between the liability and physical-damage insurance premiums, and the 
value and annual travel of a vehicle. Generally, we assume that premiums are nearly 
proportional to VMT and vehicle value. With this relationship, and an estimate of the 
value of the modeled vehicle relative to the value of the reference vehicle, and of the 
VMT of the modeled vehicle relative to the VMT of the reference vehicle, we calculate 
the insurance premiums for the modeled vehicle relative to the estimated premiums for 
the reference vehicle.  

We also specify the number of years that physical-damage insurance is carried, 
in order to accurately calculate the lifetime cost.  

Home recharging.  The cost of home recharging is estimated as a function of the 
initial cost of a home recharging system (high-power circuit, and charger box), the 
interest rate, and the amortization period of the investment. AVCEM calculates the 
length of time required to fully recharge the battery given a voltage and current input 
by the user, and the size of the battery required to satisfy the input vehicle range and 
power. If the user specifies that the battery in an FCEV be recharged by the outlet, 
AVCEM deducts from the total recharging requirement the amount of energy returned 
to the battery by regenerative braking over the specified drive cycle, when the vehicle is 
operating on the fuel cell. If the user specifies that the battery in the FCEV be recharged 
by the fuel-cell instead of by the outlet, then the home recharging cost is assumed to be 
zero.   

The retail cost of fuel or electricity.  AVCEM calculates the cost of gasoline, 
methanol, and hydrogen on the basis of user-specified feedstock costs, fuel-production 
costs, distribution costs, and retail costs. The cost of a hydrogen refueling station is 
calculated in detail, as discussed below. The cost of electricity is entered directly as an 
input variable. Federal and state fuel excise taxes are handled separately (see below). 

The hydrogen refueling station.  The hydrogen refueling station is characterized 
in detail, on the basis of cost estimates developed by industry specifically for a high-
pressure hydrogen refueling station. AVCEM takes the following input variables:  the 
fixed cost of the compressor ($/hp); the compressor cost per unit of power ($/hp; 
calculated as a function of the compressor power); the compressor cost per unit of 
output ($/hp/million standard ft3 [SCF] of hydrogen/day); the cost of electricity in the 
commercial sector ($/kWh); the annual cost of service, labor, and new parts (fraction of 
initial cost); the salvage value of the compressor (fraction of initial cost); the initial 
temperature  and pressure of hydrogen; the compressor output pressure divided by 
vehicular storage pressure; the factor increase in compression ratio per compressor 
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stage; the efficiency of compression; the efficiency of the electric motor and auxiliaries; 
the cost of storage cascade, including manifolding, support, safety equipment, and 
transportation from the factory to the job site ($/SCF/1000-psi storage); the storage 
capacity of station (in SCF) divided by total SCF demanded during peak period; the 
amount of gas deliverable from storage at the maximum vehicular storage pressure 
(fraction of total SCF of storage); the cost of refueling equipment, including meters and 
safety equipment ($/refueling line); the salvage value of storage and refueling (fraction 
of station initial cost); the annual cost of servicing, labor, and new parts (fraction of 
initial station cost); other station capital and engineering cost (fraction of cost of 
compressor, storage and refueling equipment); the cost of buildings ($); the cost of hook 
up to gas line ($); the price of land ($/acre); the amount of land required for buildings, 
exits and entrances (ft2); the amount of land required per refueling bay (ft2/bay); land 
required for gas storage (ft2 land/1000 SCF storage x 1000 psi pressure); number of 
refueling lines (or bays); rate of delivery of gas to vehicle (SCF/minute [SCFM]); 
average length of time spent pulling in and out of refueling bay, removing and 
replacing pump, and paying (minutes); ratio of average non-peak demand to peak 
demand (assume peak demand = station capacity); hours of peak (maximum) demand 
rate; hours open per day; days open per year; fraction of tank filled per refueling; wage 
rate ($/hr); average number of shifts per hour; overhead on salaries (multiplier); other 
station operating cost: supplies, water, sewage, garbage, etc. ($/yr); and corporate 
financial parameters (discussed next).  

A complete set of financial parameters are used to calculate a real-world capital 
recovery charge: insurance and property tax (as an annual fraction of the total 
investment, every year); the real rate of return on investment, after income taxes; the 
real rate of interest on a loan, before taxes (we assume that the loan period is the life of 
the equipment); the amount of the loan taken out to finance the project (as a fraction of 
the total required initial investment); the corporate income tax rate; the life of the 
building and the equipment at the service station; and the real rate of change in the 
value of land (fraction of original cost per year).  

The cost of a CNG and an LNG station is calculated from a similar but less 
detailed set of input parameters.  

Maintenance and repair.  The cost of maintaining and repairing a motor vehicle 
is one of the largest costs of operating a motor vehicle, on a par with the cost of fuel and 
the cost of insurance. Because the maintenance and repair (m & r) cost is relatively 
large, and  is different for EVs than for ICEVs, it is important to estimate it accurately.  
 We define a relevant set of m & r costs (net of costs covered by automobile 
insurance), estimate a year-by-year m & r schedule for the baseline gasoline light-duty 
ICEV, and then estimate m & r costs for EVs and AFICEVS relative to the estimated m & 
r costs for the baseline gasoline ICEV. In order to facilitate an accurate estimate of m & r 
costs relative to those for gasoline ICEVs, we distinguish three kinds of m & r costs:  

i) those that are the same for all vehicles, regardless of the fuel or drivetrain (e.g., 
costs related to the body);  
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ii) those that are unique to ICEVs (e.g., those related to the emission control 
system);  

iii) those that are common to but not the same for all vehicles (e.g., those related 
to the transmission).  
 Our analysis of costs in these categories for the baseline gasoline vehicles is 
based mainly on the comprehensive data on sales of motor-vehicle services and parts 
reported in the Bureau of the Census’ quinquennial Census of Service Industries and 
Census of Retail Trade.  We use the Census’ data to estimate m & r costs per LDV per 
year, and then compare the results with estimates based on other independent data. We 
then consider estimates by FHWA to transform the Census’ estimates into a year-by-
year m & r cost schedule.  
 The adjusted year-by-year maintenance and repair cost data series are converted 
to a net present value, which is then levelized to produce an equivalent uniform annual 
cost series over the life of the vehicle. Costs for the EVs and AFICEVs are estimated 
relative to costs for the baseline gasoline vehicle in each of the three cost categories.  

Replacement tires.  The cost per mile of tires is calculated as a function of the 
initial cost of the tires, the life of the tires and the interest rate. The life of the tires on the 
gasoline ICEV is specified in miles, and is calculated by AVCEM for the other vehicle 
types on the basis of the weight of the other vehicle type relative to the weight of the 
gasoline vehicle. Thus, if an EV or AFICEV weighs more than the baseline ICEV, then 
its tires will be replaced sooner and hence will have a higher lifetime cost. AVCEM does 
not replace the tires if the last replacement interval is near the end of life of the vehicle.  

Vehicle registration. AVCEM replicates the practice in most states and calculates 
the registration fee as a function of vehicle weight (heavier vehicles pay a higher fee).  

Safety- and emissions-inspection fee.  The user enters the annual fee for the 
baseline gasoline vehicle, and the fee for the other vehicle types relative to the gasoline 
vehicle fee. (For example, EVs would be subject to a safety-inspection only, not an 
emissions inspection, and so would have a lower fee.) 

Parking, tolls, fines, and accessories.  These are input by the user,  and are 
assumed to be the same for all vehicles.  

Federal, state, and local excise taxes.   AVCEM calculates the cost per mile of the 
current government excise taxes on gasoline, and then calculates the cost-per-mile for 
the other vehicles relative to this by using a scaling factor (0.0 to 1.0) specified by the 
user. In the base case, we assume that all vehicles pay the same tax per mile, so that 
government revenues from highway users (for the highways) would be the same 
regardless of the type of vehicle or fuel. 
 Year-by-year mileage schedule. AVCEM requires as inputs a year-by-year 
mileage accumulation schedule for the ICEVs and AFICEVs, and a separate schedule 
for the EVs. This schedule is created from a continuous function that relates age to 
mileage; the user specifies the value of the coefficients in this function in order to 
produce the desired mileage schedule. AVCEM has coefficients for several  functions 
specified: one replicates a mileage-accumulation schedule derived from the Residential 
Transportation Energy Consumption Survey of the U.S. Department of Energy; a 
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second produces a schedule of more intensive use, in which more miles are driven in 
the early years of the a vehicle’s life; a third is a general low-lifetime mileage schedule; 
and a fourth is a low-lifetime mileage schedule specifically for mini-cars.  
 
External costs and other social-cost components 

AVCEM includes the external cost-per-mile of air pollution, climate change 
(greenhouse-gas emissions), noise, and oil use. It also includes adjustments for cost 
items, such as fuel taxes, that are costs to the private consumer but are transfers and 
hence not costs from the standpoint of society. These external costs and adjustments are 
added to the private lifetime cost per mile to produce an estimate of the total lifetime 
social cost per mile.  

In the external-cost analysis, the basic inputs are $-per-gram damages and gram-
per-mile emission rates in the case of air pollution and climate change, $-per-mile 
damages in the case of noise, and $-per-gallon damages in the case of oil use. AVCEM 
does not include any other nonmonetary environmental or consumer benefits or 
disbenefits, such as the disadvantage of a short driving range or the convenience of 
home recharging. 

 
Financial parameters for vehicle purchase   

AVCEM characterizes a “weighted-average” or “typical” vehicle purchase by 
calculating or taking as input a detailed set of financial parameters: the fraction of new 
car buyers who take out a loan to buy a new vehicle; the amount of the average 
downpayment on the car (input as a fraction of retail cost of the vehicle); the length of 
financing period for cars bought on loan (in months); the real annual interest rate on 
loans taken out to  buy a new car, before taxes; the real annual interest rate foregone on 
cash used for transportation expenditures, before taxes (the opportunity cost of cash 
used for downpayment or outright purchase); the effective (average) income tax paid 
on banking interest earned; after deductions; the annual discount rate to apply to yearly 
mileage, the annual rate of inflation; the base year and the target year for the inflation 
analysis (if inflation is not zero); and whether or not interest payments be deducted 
from taxable income. AVCEM treats loan payments as an ordinary cost, to be 
discounted by the personal opportunity cost of money.   

As noted above, the user can specify a “discount rate” to be applied to the annual 
mileage. This allows the user to perform a quasi cost-benefit analysis, in which miles of 
travel are the “benefit” of travel, and are be discounted (or annualized) in the same way 
that the costs are. (It turns out that if one assumes different mileage schedules for 
different vehicles, then whether or not one treats VMT as a benefit and applies a 
discount rate can make a large difference in the overall cost-per-mile results.)  

The financial-cost sub-model also performs a highly simplified macro-economic 
simulation: it assumes that the interest rate, the fraction of new car buyers who take out 
a loan, the downpayment fraction, and the length of the financing period are a 
nonlinear function of the real cost of the vehicle.  
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AN EXAMPLE OF HOW AVCEM WORKS 

 
Here is an illustration of the level of detail and integration of AVCEM. As 

mentioned above, the user specifies characteristics of the drive cycle. The following 
illustrates what happens if the user changes one parameter that affects the drive cycle -- 
say, the grade or wind speed or road roughness.  

 
The fuel cell 

First, AVCEM re-calculates the power required for each segment of the drive-
cycle. Then, AVCEM goes to the fuel-cell submodel and, using the estimated optimal 
voltage-power path for the fuel cell (see the discussion above), calculates the optimal 
(efficiency-maximizing) fuel-cell voltage associated with the power required for the 
drive-cycle segment. Given the calculated voltage and associated optimal air-
compression regime, AVCEM calculates the efficiency of the fuel cell and the energy use 
of the air compressor for the drive-cycle segment. (The energy requirement of the air 
compressor is based on an engineering calculation of the energy requirements of 
adiabatic air compression.) 

The efficiency of the fuel system over the entire drive-cycle then is re-estimated 
on the basis of the new efficiency results for each drive-cycle segment. This change in 
overall drive-cycle efficiency changes the amount of energy required to achieve the 
user-specified driving range, which, in turn, changes the size (and hence cost) of the 
energy-storage system. (As discussed above, the weight, bulk, and cost of high-pressure 
hydrogen storage is a nonlinear function of the storage pressure.) The change in the 
weight of the fuel-storage system affects the efficiency of the vehicle and, eventually, 
changes the amount of storage required to achieve the desired range. Furthermore, the 
change in the weight of the storage systems changes the amount and cost of structural 
material needed to support the storage system. This again affects vehicle efficiency, and 
again feeds back to affect the size of the fuel-storage system. In addition, these changes 
in weight change the amount of power required to achieve the desired performance 
(discussed above), and this in turn changes the required maximum output of the peak-
power device, motor, and controller. These changes in peak power again affect weight, 
efficiency, fuel-storage, weight (again), peak power (again), and so on, until the 
circularities are resolved by convergent iterations. 
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The battery 
The new drive cycle and (if pertinent) the new associated fuel-cell power output 

change the amount of energy that the peak-power device (say, a high-power battery) or 
traction battery must provide. The change in the required energy storage capacity of the 
battery changes the weight of the battery. This change in weight, combined with the 
changes in the weight of the fuel cell, fuel-storage system, and vehicle, change the 
amount of maximum power  needed to achieve a given performance (see the discussion 
of performance). The change in peak power and the change in weight change the 
specific power (W/kg) of the battery, which, via the battery design function in AVCEM, 
changes the specific energy (Wh/kg) of the battery. The new specific energy changes 
the amount of battery required to supply the [new] amount of drive energy not 
supplied by the fuel-cell system; this change in weight  feeds back to affect specific 
power and specific energy, and so on, until AVCEM converges iteratively. The change 
in battery weight also affects vehicle efficiency and ultimately the weight of other 
components, and these effects also come back around to affect the amount of battery 
needed  to supply the driving energy not covered by the fuel cell.  

The change in the segment-by-segment power output of the fuel cell changes the 
required segment-by-segment power output of the battery, because the battery provides 
any difference between power required and power provided by the fuel cell. This 
change in power output leads ultimately to changes in the voltaic efficiency and overall 
efficiency (equal to voltaic efficiency multiplied by a constant coloumbic efficiency) of 
the battery, for each segment.  The new overall battery efficiency changes vehicle 
efficiency, which changes the amount of battery, fuel-storage, and so on, needed to 
attain the given range, which changes the amount of peak power needed, and so on, as 
discussed above.  

Ultimately, the changes in battery weight and power change the initial cost of the 
battery, according to the battery cost equations (see discussion of battery cost above). 
There actually are two effects here: the change in Wh/kg changes the $/kg coefficient 
itself, and the change in total kg changes the total amount of battery to be paid for. The 
change in battery power and weight also change the initial cost of the EV motor and 
controllers, which are input as a function the peak power (kWpeak). 

The change in vehicle efficiency and battery characteristics change the calendar 
lifetime of the battery, which in turn affects the annualized cost per mile of the battery. 
Of course, the change in vehicle efficiency (due to the changes in the segment-by-
segment power output of the battery and fuel cell, and to the changes in weight) 
directly affects the cost per mile of fuel and electricity consumption.    

If the battery is recharged and, if necessary, heated by the fuel cell rather than 
from electricity from the outlet (the user can specify how the battery is heated and 
recharged), then a change in the size of the battery changes the heat loss rate and 
amount of stored energy, which in turn change the amount of fuel needed on board for 
heating and recharging, which changes the amount of fuel-storage equipment, which 
changes the weight of the vehicle, which changes the efficiency and the power 
requirement, which then feedback to the size of the battery and fuel-storage system. 
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Other systems 

Returning again to the original change in the drive cycle: this also changes the 
cycle-average efficiency of the electric drivetrain, which is characterized in AVCEM by 
maps of efficiency vs. power (torque and rpm). The change in drivetrain efficiency 
changes overall vehicle efficiency, weight, and required power. The change in the 
required power of the motor changes the drivetrain efficiency with respect to the drive 
cycle, and so on. 

The changes in weight affect the rate at which tires wear out, which affects the 
tire replacement interval, which in turn affects the annualized cost of the tire. The 
changes in the cost of the fuel-cell, fuel-storage system, battery, motor, vehicle, etc., 
change the value of the vehicle, which in turn changes the cost of physical-damage 
insurance. The change in vehicle weight changes the annual registration fee.  

Finally, the changes in the value of the vehicle (due to changes in the amount and 
cost of fuel-storage, battery, vehicle material, etc.) actually change the financial terms of 
vehicle purchase. In AVCEM, as vehicles get more expensive, more people take at loans 
to buy them, and the cost of borrowing money goes up. These changes are calculated in 
AVCEM and affect the amortized initial cost of the vehicle.  
 




