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Abstract

Image segmentation plays an essential role in many medical applications. Low SNR conditions 

and various artifacts makes its automation challenging. To achieve robust and accurate 

segmentation results, a good approach is to introduce proper shape priors. In this study, we present 

a unified variational segmentation framework that regularizes the target shape with a level-set 

based sparse composite prior. When the variational problem is solved with a block minimization/

decent scheme, the regularizing impact of the sparse composite prior can be observed to adjust to 

the most recent shape estimate, and may be interpreted as a “dynamic” shape prior, yet without 

compromising convergence thanks to the unified energy framework. The proposed method was 

applied to segment corpus callosum from 2D MR images and liver from 3D CT volumes. Its 

performance was evaluated using Dice Similarity Coefficient and Hausdorff distance, and 

compared with two benchmark level-set based segmentation methods. The proposed method has 

achieved statistically significant higher accuracy in both experiments and avoided faulty inclusion/

exclusion of surrounding structures with similar intensities, as opposed to the benchmark methods.
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1. Introduction

Image segmentation is a ubiquitous challenge in medical imaging analysis, especially when 

the noise level is high and/or observations are subject to partial occlusion due to signal 

voids. To achieve more robust and accurate segmentation results, shape priors need to be 

incorporated.

One typical approach is to encourage the target segmentation to be close to a single given 

template [1, 2, 3, 4, 5], often a “mean” representation generated from a training set. 

However, such approach could introduce large bias, especially when the ground truth differs 

significantly from most shapes in the training set. Another approach for modeling shape 

prior is to impose a statistical distribution on the training set [6, 7, 8] and to approximate the 

shape manifold as a linear space. These methods have achieved some success but are limited 

by the questionable presumptions of a linear shape space and the Gaussian distribution of 

shapes [9, 10, 11, 12]. Further investigations of nonlinear shape modeling approaches 
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follows the general rationale of local analysis, and typical approaches inlude manifold 

learning [13], kernel density estimation [10, 11], and kernel PCA [14]. More recently, the 

development of compressed sensing techniques inspires the refinement of intermediate 

segmentation results with a sparse linear combination of training shapes, represented as a set 

of regularly placed points along the shape contour [15, 16].

In this study, we present a unified variational segmentation framework with a level-set based 

sparse composite shape prior, which reflects the perspective of a local linear approximation 

to the globally nonlinear shape manifold. When a specific block minimization/descent 

scheme is applied to solve the optimization problem, the target shape can be observed to be 

pushed towards an evolving sparse shape superposition at each iteration, which can be 

perceived as a dynamically evolving shape prior. We use a level-set based shape 

representation that avoids building point correspondences and permits flexible shape 

interpolation/extrapolation. Formulating the segmentation problem in a unified energy 

minimization framework and solving it with descent scheme guarantees numerical stability.

2. Method

2.1. Level-set based shape representation and variational energy formulation

The level set method, originally introduced by Osher et al. [17], is a flexible framework for 

curve representation. A contour C is represented implicitly as the zero level set of a signed 

distance function , which is one dimensional higher. The level set 

approach provides a continuous representation of curve on a fixed regular grid, avoiding the 

effort to maintain point correspondence and distribution regularity as with point clouds [18]. 

More importantly, linearly combined level set functions yields a natural interpolation/

extrapolation behavior of the resulting zero level set contour. Maybe a bit counter intuitive, 

this property is not shared by the commonly used characteristic function representation, 

whose linear combination provides a staircase addition, leading to piece-wise shape results 

as the thresholding value varies. To see this, consider the simplest convex combination 

scenario, under which one would desire to correspond to interpolation of the corresponding 

shapes. Let two shapes define the boundaries of region Ω1 and Ω2, respectively. The convex 

combination of the characteristic function f(η) = η1{x ∈ Ω1} + (1 − η)1{x ∈ Ω2} is 

piecewise constant:

Without loss of generality, assuming η ≤ 1/2 and thresholding this “staircase” function at ξ 

will generate “interpolating” shapes of the form:
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On the other hand, linear combination of shapes with signed distance function representation 

can be conceptualized as a diffusion process starting with the given shapes with different 

velocity governed by the weight parameter η. Figure 1 exemplifies this phenomenon by 

combining a circle Ω1 and a square Ω2, with a simplistic scenario Ω1 ⊂ Ω2.

The typical variational level set segmentation formulation has the following form:

(1)

where Efidelity is the data fidelity that depends on image appearance, Ereg regularizes the 

geometrical properties of the segmentation, and λ is the balancing parameter. The specific 

formulations for Efidelity and Ereg are provided in the subsequent sections.

2.2. Fidelity metric and likelihood function

As a generalization to the classic Chan-Vese level set segmentation method [19], we model 

intensity distributions with Gaussian mixtures [20, 21]. The intensity distributions for the 

foreground (Ωin) and background (Ωout) voxels are modeled as:

(2)

where nin, nout represent the number of Gaussian components for the foreground and 

background respectively, and θin = {win,j, μin,j, σin,j}, θout = {wout,j, μout,j, σout,j} represent 

the weight and parameters for the jth Gaussian component in the corresponding partition. 

Efidelity is constructed as the negative logarithm of the likelihood:

(3)

2.3. Regularization energy

Our design of Ereg consists of two parts:

(4)

 regularizes the contour length and attracts the contour into the 

high image gradient area, where  is an edge indicator function. Eshape regularizes the 

shape with corresponding priors. Shape regularization is the focus of this work, which we 

elaborate in Section 2.4.

2.4. Shape regularization

2.4.1. Sparse Composite Shape Prior (SCSP)—We first construct a shape library D 

= [ψ1, ψ2, ... ψm], where ψi is a training shape represented by the level set function. All 

training shapes are aligned to an arbitrarily chosen center ψ0 via rigid registration 
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. Shape regularization is designed so that the target shape is 

encouraged to be close to a sparse linear combination of shapes from the library:

(5)

In practice, we relax the l0 constraint to l1 regularization with weighting to further enhance 

the concentration of weight coefficients to favor shapes that are closer to ϕ:

(6)

where C is a diagonal matrix with element . In the above formulation, Dw can 

be considered an implicit representation of a shape prior whose sparsity (in w) is enforced 

with the reweighed l1 norm.

With the introduced fidelity and regularization energy functions, the energy model with 

SCSP reads:

(7)

where Hε is a numerical approximation of the heaviside function [22]. We solve the above 

optimization problem by alternatingly minimizing w.r.t. {θin, θout}, w, and descending w.r.t. 

ϕ. Algorithm 1 presents the detailed block energy minimization scheme. It can be observed 

that the block minimization with respect to w generates an effective dynamic prior ψk+1, 

which subsequently used to guide the variational update of the level set function ϕ.

3. Experiments and Results

We assessed the performance of the proposed method by applying it to: (1) 2D corpus 

callosum segmentation from MR images, and (2) 3D liver segmentation from CT volumes. 

Given the ground truth contours, we evaluated the performance using the Dice Similarity 

Coefficient (DSC) and Hausdorff distance to quantify the segmentation accuracy.

3.1. Benchmark methods

We compared the proposed method with two benchmark methods:

1. CV: For a fair comparison, we extended the original Chan-Vese approach [19] with 

Gaussian mixture model (GMM) based on the fidelity energy introduced in Eq. 3:

2. CV-SSP: The Single-Shape-Prior modeling is originally proposed in [1]. In this 

study, we extended the original approach with GMM based fidelity energy:
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where Eimage follows the energy design in Eq. 3,  is the mean 

shape calculated from the n aligned training shapes and T is the rigid 

transformation.

3.2. Implementation details

1. Initialization—To achieve a warm start, we initialized the segmentation by choosing an 

arbitrary image Ir and its corresponding shape ψr from the training set as reference, and 

registered Ir to the target image It. The initial segmentation for It was constructed using ψr ◦ 

T . For a fair comparison, the same initialization was used for all benchmark methods.

2. Parameter settings—The number of Gaussian components of foreground (Nf) and 

background (Nb) are determined empirically by examining the intensity distribution of 

training images. We set Nf = 1 and Nb = 2 in corpus callosum segmentation task, and set Nf 

= 2 and Nb = 3 in liver segmentation experiment. The common shape prior regularization λ 

and curve smoothness regularization β were set to λ = 0.01 and β = 0.1, with time step Δt = 

1. The l1 regularization coefficient γ in the proposed SCSP was set to 0.01.

3. Quantitative evaluation—The quantitative evaluation of the segmentation accuracy 

was based on DSC and Hausdorff distance. Specifically, DSC is defined as DSC 

, where Cseg and Ctruth are the segmented regions from the achieved and 

ground truth segmentation, respectively. The Hausdorff distance is defined as: H(A, B) = 

max(h(A, B), h(B, A)), where , with A and B being the contours 

from the achieved and ground truth segmentation, respectively.

3.3. Experiment 1: Corpus callosum segmentation from MR brain images

Segmentation of the corpus callosum in midsagittal sections is important to neurocognitive 

research: the size and shape of the corpus callosum have been shown to correlate to sex, age 

and neurodegenerative diseases [25]. The segmentation is challenging because corpus 

callosum exhibits large shape variations between subjects and neighboring structures that 

shares similar intensity values as the region of interests.

The test dataset contains 100 brain MR volumetric images from different subjects with 

image size of 256×256×128 and voxel size of 1×1×1mm3. The middle 66th slice indicates 

the locality of interest for segmenting corpus callosum. Manual segmentation on that 

specific slice is available and used as the ground-truth in our experiment.

The corpus callosum shape library was constructed using the manual segmentation from 50 

slices, as shown in Figure 2. The proposed method was applied to the remaining 50 middle 

slices. Example segmentation results are illustrated in Figure 3, showing accurately 

segmented corpus callosum and reasonablely constructed shape priors. The DSC 

performance is reported in Figure 5. The statistics of DSC and Hausdorff distance are 
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summarized in Table 1. The benchmark method CV tends to fail when certain exterior 

region shares similar intensity as the interior of corpus callosum, as shown in Figure 4(a). 

The benchmark method CV-SSP has experienced some difficulties in segmenting corpus 

callosum structures that have large variations from the central shape, as illustrated in Figure 

4(e). The sparse composite shape regularization offers the proposed approach superior 

performance beyond both CV and CV-SSP benchmark methods. Results of paired t-test in 

Table 2 indicates that the proposed method performs significantly better (p-value < 0.1) than 

the benchmark methods in terms of both DSC and Hausdorff metric.

3.4. Experiment 2: Liver segmentation from CT images

The liver boundaries were manually segmented in 19 volumetric abdominal CT scans from 

different patients with image size of 128 × 128 × 64 and voxel size of 2.36 × 2.36 × 3mm3. 

Given the small size of the dataset, we employed a leave-one-out strategy to test the efficacy 

of the proposed scheme by picking one image volume as the test and using the rest for shape 

library construction. A typical liver library is shown in Figure 6. Example segmentation 

results are compared in Figure 7, where the proposed method with SCSP yields more 

accurate results than the benchmark methods. The DSC distribution of each method is 

compared in Figure 8. The statistics of DSC and Hausdorff distance are summarized in 

Table 3. Paired t-test results in Table 4 shows the statistical significance of the performance 

difference.

4. Discussion and conclusion

We have presented a unified variational segmentation framework that regularizes the target 

shape with a level-set based sparse composite shape prior. In both corpus callosum and liver 

segmentation tasks, the proposed method achieved high segmentation accuracy and shown 

its advantage compared to the benchmark methods. Paired t-tests demonstrated the statistical 

significance of such superiority.

Variational segmentation methods are usually sensitive to initializations, especially when 

driven by edge-based fidelity alone [26]. The initialization step in our method, which 

consists of registering an arbitrary gaining image to the target image and propagating the 

training contour via the estimated transformation, can be considered as a very crude and fast 

single atlas based segmentation step. This “preprocessing” yields a decent initialization for 

the subsequent variational evolutions. In addition, the use of Gaussian mixture to model the 

intensity distributions is capable of accounting for more global and regional information, 

which provides additional drive to the shape update even when local gradient is weak. 

Practically, we have observed that the proposed method exhibits strong robustness to initial 

conditions.

It should be noted that the set of signed distance functions is not closed under addition [10]. 

However, this does not prevent the zero level set of linear combinations from providing the 

proper shape interpolation/extrapolation behavior in most situations, especially when the 

shapes to be combined are close enough to start with. This observation can be argued again 

from the perspective of a local linear (tangent space) approximation of a nonlinear shape 

manifold. The localness of this operation is usually achieved with a sparse regression setup 
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for automatic support selection. In this work, this feature is further enhanced with the 

proposed reweighting scheme modulating the l1 regularization.

This work shares a similar principle to the works in sparse shape decomposition model [15, 

16] in that shapes are considered to reside on a nonlinear manifold that can be locally 

represented in a low dimensional linear structure. Our work is distinct in its unified 

variational framework in a single optimization, as opposed to the sequential injection of 

shape prior as refinement steps [15, 16]. Compared to the successive refinement scheme, the 

single optimization provides better convergence behavior and numerical stability, 

particularly near the final solution. Another distinction lies in the technical aspect of shape 

representation. Representing shapes implicitly as level set functions, our method avoids con- 

structing explicit point cloud, which may involve careful interventions for landmark 

placement and selection. The Eulerian nature of the level set method eliminates the efforts in 

maintaining point regularity during the contour evolution. In all fairness, the point cloud 

presentation has computational speed benefit with a well-executed numerical package, yet 

such resource is generally unavailable. Therefore, one needs to be aware of the demands 

associated with the different technical decisions.
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ALGORITHM 1

Block minimization scheme
while |Ek – Ek−1| < tol do

    –Minimization w.r.t. {θ̂in
k , θ̂out

k }:

            {Minimization w.r.t. θin, θout using EM algorithm 23 :

{θ̂in
k+1, θ̂out

k+1} ← EM({ϕ̂k , ŵk , I ; θ̂in
k , θ̂out

k })
    –Minimization w.r.t. w:

    {
Estimate transformation T by minimizing ϕ̂k ∘T − ψ0 2

2

Pushforward to shape dictionary coordinates ϕ̂k ← ϕ̂k ∘T
Minimization w.r.t. w using ADMM algorithm 24 :

ŵk+1 ← ADMM( λ2 ϕ̂k − Dw) 2
2

+
γ
2

Cw 1)
Pullback shape prior to current image coordinate ψ k+1 ← Dŵk+1 ∘T −1

    –Variational descent w.r.t. ϕ:

        {
ϕ̂1

k+1 ← ϕ̂inner_iter_num
k

for i = 1 : inner_iter_num

ϕ̂i+1
k+1 = ϕ̂i

k+1 + Δt{ − δ∊(ϕ̂i
k+1)log ∑ j=1

nin
ŵin, j

k+1

2πσ̂in, j
k+1

exp( −
(I (x) − μ̂in, j

k+1)2
2(σ̂in, j

k+1)2 )
+δ∊(ϕ̂i

k+1)log ∑ j=1

nout
ŵout , j

k+1

2πσ̂out , j
k+1

exp( −
(I (x) − μ̂out , j

k+1 )2
2(σ̂out , j

k+1 )2 )
− βδ∊(ϕ̂i

k+1)∇ ⋅ (g ∇ϕ
∣ ∇ϕ ∣ ) + λ( − ϕ̂i

k+1 + ψ k+1)
− γ(∑l=1

m ŵk+1(l)(ϕ̂i
k+1 − ψ k+1))}

end for

end while
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Figure 1. 
Shape consequence from the linearly combining shapes represented with characteristic and 

level set functions: (a) shape results are piecewise, and in this special case of Ω1 ⊂ Ω2 

correspond to either ∂ Ω1 or ∂ Ω2. (b) As the weight η varies, convex combination of the 

level set functions yield natural (smooth) interpolation behavior of the resulting shapes 

represented by the zero level set.
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Figure 2. 
Example corpus callosum shape library represented in signed distance functions and 

corresponding zero level sets (red).
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Figure 3. 
Left column: segmentation results (green); middle column: constructed shape prior overlaid 

with its zero contour (blue) and the ground truth contour (red); right column: the final 

weighting coefficients distribution.
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Figure 4. 
Comparison of corpus callosum segmentation results (red).
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Figure 5. 
Comparison of DSC histograms from corpus callosum segmentation results.
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Figure 6. 
Example elements in the constructed liver shape library.
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Figure 7. 
Comparison of liver segmentation results: the ground truth (red), actual segmentation results 

from different approaches (green).
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Figure 8. 
Comparison of DSC histograms from liver segmentation results.
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Table 1

Statistics of DSC and Hausdorff distance from corpus callosum segmentation results.

Mean S.D. Median

DSC CV 0.91 0.04 0.92

CV-SSP 0.93 0.05 0.94

SCSP 0.95 0.02 0.95

Hausdorff (mm) CV 7.86 6.27 7.00

CV-SSP 3.38 1.76 3.00

SCSP 2.81 1.23 2.83
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Table 2

P-values from paired t-tests on DSC and Hausdorff distance from corpus callosum segmentation results.

CV CV-SSP SCSP

DSC CV - - -

CV-SSP 0.01 - -

SCSP 8.42e-7 0.02 -

Hausdorff CV - - -

CV-SSP 4.46e-6 - -

SCSP 2.15e-7 0.07 -
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Table 3

Statistics of DSC and Hausdorff distance from liver segmentation results.

Mean S.D. Median

DSC CV 0.84 0.07 0.87

CV-SSP 0.86 0.04 0.87

SCSP 0.90 0.03 0.91

Hausdorff (mm) CV 43.6 19.6 38.5

CV-SSP 30.0 15.3 23.9

SCSP 22.2 6.2 20.6
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Table 4

P-values from paired t-tests on DSC and Hausdorff distance from liver segmentation results.

CV CV-SSP SCSP

DSC CV - - -

CV-SSP 0.38 - -

SCSP 2.30e-3 7.10e-4 -

Hausdorff CV - - -

CV-SSP 0.02 - -

SCSP 6.15e-5 0.05 -

Phys Med Biol. Author manuscript; available in PMC 2016 March 07.




