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1 INTRODUCTION 

System identification in the frequency domain plays 
a fundamental role in many aspects of structural en-
gineering. Various applications of system identifica-
tion widely span from system design, model/test cor-
relation and updating, verification and validation 
activities, structural control, and structural health 
monitoring (Ljung, 1982). Frequency domain ap-
proaches, generally considered superior for estima-
tion and computational purposes (Brincker, 2001), 
typically involve estimation of transfer functions, 
whether it is the usual frequency response function 
(FRF) or an output-to-output transfer model such as 
transmissibility.  The field of structural health moni-
toring (SHM), which detects assesses structural 
health via features mined from in-situ measured 
structural performance data, has proposed large clas-
ses of features derived from estimations of either 
conventional FRF or transmissibility. 

Any frequency domain approach requires 
knowledge of the input excitations (in the case of 
FRF) and output responses (in all cases). For all 
practical applications, regardless of frequency do-
main model chosen or its intended use, uncertainties 
affect the process. It is well known that the sensitivi-
ty of any feature derived from FRF is compromised 
by noise, generally categorized into four classes: op-
erational, environmental, measurement, and compu-

tational (Johnson, 2002); these compromised esti-
mates may lead to significant false-positive (Type-I) 
errors in the interpretation of system identification 
results (Kay, 1998). 

In the common binary case of structural damage 
assessment and detection, two different conditions 
are compared, namely undamaged baseline and 
damaged testing conditions. Inevitably, the decision 
associated with correct classification of the features 
being used is corrupted by the uncertainty or noise 
induced by the processes above. Regardless of 
source, this noise leads to the propagation of uncer-
tainty from inception to final estimation of the fea-
ture, and makes the final evaluation of features a 
random variable process. Distinguishing the two 
conditions is thereby evaluated by some form of a 
classical binary hypothesis test. 

In this paper, a statistical model for uncertainty in 
the FRF estimation process is established, and a 
probability density function is derived which is ex-
ploited in the hypothesis test. The established uncer-
tainty quantification models are validated with outli-
er analysis for the conditions with good signal 
quality and poor quality with extraneous noise con-
tamination. Based upon the statistical model, ulti-
mate hypothesis testing is deployed to characterize 
the performance of FRF-based damage detection, 
and optimal rate of detection given certainty toler-
ance of false alarms is obtained. Finally, receiver 
operating characteristics (ROC) and the area under 
the ROC curve are used to evaluate the performance 
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of detection and suggest optimal trade-off between 
detection rate and false alarm rate. 

2 FRF UNCERTAINTY QUANTIFICATION  

2.1 FRF Estimation 
Considering a single-input-multiple-output (SIMO) 
signal flow shown in Figure 1, u and v denote true 
input and output of arbitrary vibration measure-
ments, and i and j represent two sensing locations 
and channels. With additive noise m and n, the actu-
al measurements obtained from data acquisition 
hardware are denoted as x and y, as in Figure 1. 
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Figure 1. SIMO data flow. 

 
Mathematically, the FRF is defined as the ratio 

between frequency domain input and output  

  
Hi(ω ) =

Vi(ω )
U (ω )

,  (1)     

in which U(ω)  and V(ω) are the Fourier transforms 
of ideal (“noise free”) input and output. Given the 
fact that signal u and v are not actually measureable 
because they are always contaminated by noise, dif-
ferent algorithms (called estimators) are often adopt-
ed to calculate the estimations, such as 

  
Ĥi(ω ) =

Ĝxyi
(ω )

Ĝxx (ω )
. (2) 

In this estimator, FRF is calculated via auto and 
cross power density function estimations given by 
Welch’s method 

   
Ĝxy ω( ) = 1

nd

!Xk
* ω( )

k=1

nd

∑ ⋅ !Yk ω( ) ,  (3) 

where nd is number of averages, * denotes complex 
conjugate, and X(ω) and Y(ω) are the Fourier trans-
forms of x(t) and y(t) (Welch, 1967). 
 

2.2 Uncertainty Quantification 
Uncertainty quantification (UQ) in this paper aims 
to model the estimation process as a random variable 
in order to obtain a probability density function, 
from which any statistical information regarding the 
estimation can be achieved. For a Gaussian process 
of a vibration-based structural test, normality of the 
excitation will be propagated to the output if the me-
chanical channel is linear, along with any sort of 
variability and noise contaminating the measure-
ments. Therefore it is reasonable to statistically 
model the uncertainty of FRF via a Gaussian-related 
approach, particularly since frequency domain aver-
aging, as shown in Equation (3), strengthens it by 
the central limit theorem. 

By making Gaussian assumptions at the level of 
fundamental variability in the cross- and autopower 
spectra of Equation (2), the distributions of FRF 
magnitude and phase estimations are characterized 
by the probability density function in Equations (4) 
and (5) (Mao, 2013) for the magnitude: 
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in which gA and gC are the sampled magnitudes of 
auto- and cross-power spectra, and 

  

α = H 2σ A
2 − 2ρHσ Aσ C +σ C

2 ,

β = Hσ A ρµAσ C − µCσ A( ) +σ C ρµCσ A − µAσ C( )
γ = 1− ρ 2σ Aσ C

ρ =
cov gA,gC( )

σ Aσ C

; 

and for the phase, 

   

p
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−
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2π

+η ⋅e
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, (5) 

where 

  η = µR cos θ( ) + µI sin θ( ) . 

All the σ and µ terms represent the standard devia-
tions and mean values of the corresponding time se-
ries. 



3 STATISTICAL MODEL VALIDATION 

3.1 Test design 
In order to validate the proposed UQ model, a lab-
scale test structure is built as shown in Figure 2. 
Random excitation is applied onto the cantilever 
plate and acceleration responses at multiple loca-
tions are measured. Equations (4) and (5) give the 
uncertainty bounds corresponding to a given signifi-
cance level, therefore outliers observed in Monte 
Carlo test are adopted as the metric to validate the 
probability density functions. The UQ models are 
validated if the outlier percentage is consistent with 
the complement of confidence level. 
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Figure 2. Test structure for model validation. 

 
The test is implemented in a lab environment 

where noise influence is relatively low, but the data 
acquired are still considered as contaminated data 
x(t) and y(t) in Figure 1. To simulate a more realistic 
in-situ testing environment, the data obtained from 
plate structure are contaminated with extra artificial 
white noise to make the estimates more realistic. 
The original data were modified with 20 dB signal-
to-noise (SNR) contamination case, which is equal 
to a 10% noise level in terms of energy. 

3.2 UQ results 
For the test and estimations with original and con-
taminated data, Figure 3 plots the FRF magnitude 
and phase between the input and an arbitrarily se-
lected output, with uncertainty bounds associated 
with 90% confidence levels. The expectation is also 
calculated by integrating order statistics from the es-
tablished probability density function. With the 
same number of averages (nd), the extraneous noise 
causes much more fluctuation and uncertainty in 
both the magnitude and phase estimations, as would 
be expected. 

As a function of frequency, FRF is evaluated at 
every frequency point, and at a sample frequency 

line, numerous realizations (trials) form a histogram, 
which can be compared with the established proba-
bility density models, as shown in Figure 4. There is 
very good consistency, indicating the probability 
density function characterizes FRF magnitude and 
phase distributions accurately, and green stars are 
the 5% and 95% significance levels at a given 90% 
confidence. 
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(a) magnitude estimation; 
noise free 

(b) magnitude estimation; 
noise contaminated 
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Figure 3. FRF estimations and 90% confidence uncertainty 
boundaries. 
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(a) magnitude estimation, 
noise-free 

(b) magnitude estimation, 
noise-contaminated 
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(c) phase estimation, noise-
free 

(d) phase estimation, noise-
contaminated 

Figure 4. Histogram of FRF estimations at single frequency 
line with characterized distribution and 90% quantiles. 

 
A quantified consistency validation is imple-

mented with outlier percentage used as the quality 
metric. Different confidence thresholds are selected, 
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namely 95%, 90%, 80% and 70%, and outlier per-
centage are plotted across the entire frequency do-
main. Figures 5-8 plot the results in crossings, with 
the anticipated value, i.e., 1%, 5%, 10% and 25%, 
plotted with a red line. Multiple thresholds are 
adopted here for a thorough model validation. Fig-
ures 5 and 6 illustrate the validation result of magni-
tude UQ model, with original data and the data con-
taminated with artificial noise. For the extraneous 
noise-free condition, the observed outliers are con-
sistent with threshold confidence, and the UQ model 
works well across all frequency lines.  
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Figure 5. Outlier percentage in FRF magnitude observations, 
extraneous noise free condition. 
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Figure 6. Outlier percentage in FRF magnitude observations, 
noise contaminated condition. 

 
For the stricter condition with extraneous noise, 

as Figure 6 shows, the model performance is de-
graded and at some frequencies, the consistency of 
outlier percentages is poor. This phenomenon is 
caused by the limitation of Gaussian assumption in 
the UQ process. With noisy data and few averages, 
the Gaussian assumption cannot fully describe the 

actual distribution, and leads to a violation of do-
main support. 

Similar to magnitude uncertainty, Figures 7 and 8 
illustrate the validation result of phase estimation 
uncertainty. The UQ model works perfectly for the 
original data obtained in the lab, and also nicely for 
the contaminated condition, with a slight degrada-
tion. Compared to the magnitude validation, the re-
sults in phase uncertainty quantification are obvious-
ly more robust to extraneous noise. From Figures 5 
to 8, the UQ models are validated with outlier analy-
sis, and when there is extraneous noise, the perfor-
mance of UQ is degraded, especially for magnitude 
estimations.  
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Figure 7. Outlier percentage in FRF phase observations, extra-
neous noise free condition. 
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Figure 8. Outlier percentage in FRF phase observations, noise 
contaminated condition. 
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Figure 9. Normality with different amount of averaging, (a) 
nd=8; (b) nd =32; (c) nd =128. 

 
This is mainly caused by the violation of distribu-

tion support, and Figure 9 addresses this issue by a 
parametric study. As shown in Figure 9, when the 
mean value of the random variable is small, with 
sufficient variance, the skewness will cause the left 
tail of distribution to penetrate into negative side. 
Under this circumstance, it is inappropriate to apply 
the Gaussian assumption, which has a full real num-
ber domain support. By taking more averages, the 
variation of distribution is suppressed, and the left 
tail does not substantially cross zero. As a result, the 
performance of UQ model present is improved with 
more averaging if the SNR is poor. In this test, the 
lab-acquired data acquired is only enough for 20 av-
erages, thus the negative tails appear in the contami-
nated condition. 

4 HYPOTHESIS TESTING 

4.1 Damage test-bed 
In order to make changes to the structure, an exter-
nal spring is placed underneath the plate at an arbi-
trary place as surrogate damage, as shown in Figure 
10. The general idea is to detect change of FRF 
magnitude/phase from uncertain test data. With a 
supervised learning process, baseline statistics and 
damaged statistics are both available, and the dam-
age detection process is to determine the statistical 
significance of FRF feature evaluation. In the pro-
cess, a null hypothesis is made that there is no statis-
tical significance to the case of the system being 
damaged, and the alternative hypothesis that damage 

to the system has occurred with statistical signifi-
cance. 
 

 
Figure 10. Surrogate damage simulation by added spring. 

 
Equation (6) describes the null and alternate hy-

potheses, which partition the decision-making pro-
cess into acceptance or rejection of given statistical 
hypotheses under certain confidence: 
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which means a classification between undamaged 
and damaged distributions, so the separation of two 
distributions Φ(Λu) and Φ(Λd) is essential to the 
quality of hypothesis test. 

4.2 Detection rate and errors 

Given any detection threshold γ, the hypotheses in 
Equation (6) can be rewritten as Equation (7): 
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assuming that damage will cause an increase in the 
FRF features. As shown in Figure 11, the corre-
sponding rates of detections and false alarms are 
calculated as the area under probability density 
curves. 
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Figure 11. True positive and false positive for hypothesis test. 

 
There are two types of errors, namely false posi-

tive (type I) and false negative (Type II). Type I er-
ror is a false alarm when a true null hypothesis is re-
jected, and type II error is the cases that false null 
hypothesis fails to be rejected (Kay, 1998). As the 
decision threshold is varied between the two data 
cases, the true positive rate and false positive rate 
under transformed null/alternative hypotheses will 
change monotonically with each other. As an exam-
ple, Figure 12 plots the undamaged and damaged 
FRF magnitude distributions subject to different lev-
el of noise contamination. Probability of detection 
and probability of false alarms can be calculated by 
integrating the appropriate probability density 
curves. 
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Figure 12. Baseline and damaged distributions for plate about 
original data and contaminated data 

 
Since the probability of detection increases as the 

rate of false alarms, Figures 13 and 14 plot the max-
imum possible rate of detection given a fixed false 
alarm tolerance. Moreover, we can execute the hy-
pothesis test at all frequency lines, therefore the two 
figures plot detection rate PD given PFA equal to 
10%, 1%, and 0.1%, as a function of frequency. Fig-
ures 13 and 14 illustrate the results from original da-
ta and contaminated data, respectively, and it is clear 
that when the tolerance of false positive is small, the 
rate of detection moves down in a quasi-parallel 
fashion, for both noise contamination circumstances. 
With no doubt, the noise contamination dramatically 
degrades the rate of detection, and only leaves a very 
limited frequency region with high quality of detec-
tion. 

Comparing magnitude to phase detection, Figure 
15 illustrates the detection rate given a 10% toler-
ance of false positives, and the data is contaminated 
by extraneous noise. There are only several frequen-

cy lines with very good detectability, and they are 
consistent between the magnitude and phase testing. 
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Figure 13. Detection rate versus different levels of false alarms 
using FRF magnitude; extraneous noise-free. 
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Figure 14. Detection rate versus different levels of false alarms 
using FRF magnitude; extraneous noise-contaminated. 
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Figure 15. Detection rate given 10% of PFA, extraneous noise-
contaminated, (left: magnitude; right: phase). 

4.3 Receiver operating characteristics (ROC) 
As mentioned above, the rate of detection is mono-
tonically correlated with the false positive rate, and a 
receiver operating characteristic (ROC) curve may 
be used to quantify this. A ROC curve is traced out 
parametrically as the decision boundary between 
choosing the hull and alterative hypotheses is varied. 
As Figure 16 illustrates, if it goes to the upper left 
corner, it means the optimized detection will have a 
nearly 100% detection rate, practically independent 
of false alarms. On the other hand, the 45-degree di-
agonal line is the random guess performance, which 
means equal detection and false alarms (effectively 
akin to coin flipping). Figure 16 shows the perfor-
mance of the model at a single frequency line. At 
this sample frequency line, the noise free condition 
shows significantly enhanced detectability (blue 
line). As noise is added, one may quantitatively ob-
serve the performance degradation (red curve), 
which for severely compromised signal-to-noise, 
would approach the green curve (“coin flip”). 
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Figure 16. ROC curves at a sampled frequency line. 

 
One way to reduce comparisons with noise to a 

single metric is to introduce the area under the ROC 
curve (AUC) metric, which is the total area between 

one ROC curve and the 45-degree random guess 
line, as demonstrated in Figure 17. This metric var-
ies from 0 to 0.5, and there are a couple of further 
normalizations adopted in the literature. In this pa-
per, the area is normalized by its maximum value 
(0.5), and therefore the best ROC with perfect detec-
tion performance will have AUC equal to 1. 
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Figure 17. Area Under Curve (AUC) definition. 

 
The result in Figure 18 plots AUC of magnitude 

detection across entire frequency domain for the 
contaminated case, and unsurprisingly, all the AUC 
metric degrades as noise contamination goes severe. 
The shape of this curve is close to the probability of 
detection in Figures 13 and 14, and this illustrates 
the consistency, i.e. better performance of detection 
(in terms of AUC) will lead to a higher detection 
rate (PD) given certain false positive tolerance (PFA).  

In Figure 18, even under the 10% noise-to-signal 
contamination, there are several frequencies at 
which the detectability is very good, indicating that 
these frequency lines have high input-output gain 
(such as resonances) and are much more robust to 
noise.  
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Figure 18. AUC across all frequencies. 



5 SUMMARY 

This paper proposes uncertainty quantification mod-
els for frequency response function magnitude and 
phase estimations, and probability density functions 
are presented to fully characterize the distribution of 
the estimations as random variables. The proposed 
models are validated by outlier analysis from Mon-
te-Carlo test, and outlier percentage is used as metric 
for comparison. To be more stringent, test data ob-
tained from a lab-scale structure are contaminated 
by artificial noise, which degrades the UQ perfor-
mance, especially for magnitude estimations. How-
ever, it is proven that with sufficient number of av-
eraging, the probability density function also nicely 
characterizes the uncertainty of estimations with 
Gaussian assumptions. 

Hypothesis testing is deployed adopting the pro-
posed statistical model, and optimal detection rates 
may be computed for any detection threshold. 
Changing the detection threshold will cause detec-
tion rate and false alarm rate change in a correlated 
way, and this may be studied via ROC curves, which 
leads to optimization formulations centered upon de-
tection rates and/or false positive rejections. To gen-
erally evaluate the detectability for FRF features at 
an arbitrary frequency line, the metric of area under 
curve is adopted to evaluate the performance of sig-
nificance detection quality over the frequency do-
main, and frequency lines with higher input-output 
gain, especially close to resonances, will have better 
detectability, even when there is extraneous noise 
contamination. 
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