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KASHing up with the nucleus: novel functional roles of KASH
proteins at the cytoplasmic surface of the nucleus
GW Gant Luxton1 and Daniel A Starr2

Nuclear–cytoskeletal connections are central to fundamental

cellular processes, including nuclear positioning and

chromosome movements in meiosis. The cytoskeleton is

coupled to the nucleoskeleton through conserved KASH–SUN

bridges, or LINC complexes, that span the nuclear envelope.

KASH proteins localize to the outer nuclear membrane where

they connect the nucleus to the cytoskeleton. New findings

have expanded the functional diversity of KASH proteins,

showing that they interact with microtubule motors, actin,

intermediate filaments, a nonconventional myosin, RanGAP,

and each other. The role of KASH proteins in cellular mechanics

is discussed. Genetic mutations in KASH proteins are

associated with autism, hearing loss, cancer, muscular

dystrophy and other diseases.
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Introduction
SUN and KASH proteins form a bridge across the nuclear

envelope, often referred to as the LINC complex, connect-

ing the nucleoskeleton to the cytoskeleton [1]. KASH

proteins are named after the founding members of the

family, Drosophila Klarsicht, C. elegans ANC-1, and mamma-

lian SYNE-1 and SYNE-2 (nesprin-1 and nesprin-2) [2]. All

KASH proteins contain a C-terminal trans-membrane

domain followed by a short (�10–32 residues), conserved

luminal KASH domain that is necessary and sufficient to

target the large, unconserved cytoplasmic domains to the

outer surface of the nuclear envelope [1,3–5]. KASH

proteins are targeted to the outer nuclear membrane through

a direct physical interaction between the KASH domain and

SUN proteins in the peri-nuclear space of the nuclear

envelope. The KASH–SUN interaction was recently

described at the structural level [6,7] and thoroughly

reviewed [8–11]. There are many excellent comprehensive

reviews on KASH and SUN proteins [1,3–5]. Here we focus

on recent developments on the diverse array of functions

that KASH proteins play at the cytoplasmic surface of the

nucleus (Figure 1). KASH proteins function in transmitting

mechanical forces from the cytoplasm to the nucleus.

During meiosis, KASH proteins transmit forces generated

in the cytoplasm that move telomeres inside the nucleus

[12]. Given the wide variety of cell and developmental

functions KASH proteins play, it is not surprising that

defects in KASH proteins have been linked to an ever-

growing list of human diseases (Table 1).

KASH proteins form a complex nuclear
scaffold
The canonical KASH proteins are mammalian nesprin-1

and nesprin-2, and their worm and fly orthologs ANC-1 and

MSP-300 (Figure 1A). These giant (800–1000 kDa)

proteins tether nuclei to the actin cytoskeleton, and play

important roles in muscle and neuronal development [1].

They consist of N-terminal actin-binding domains and C-

terminal KASH domains separated by a long rod consisting

of over 70 spectrin repeats in the case of nesprin-1 [13].

Adding to the difficulties of studying nesprin-1 and

nesprin-2 is the abundance of isoforms; 16 50 start sites

and 14 30UTR in the nesprin-1 locus alone encode count-

less isoforms, many of which are tissue specific [14�]. It was

recently shown that the N-termini of nesprin-1 and

nesprin-2 interact with the cytoplasmic domains of other

KASH proteins, including the intermediate filament-

associated KASH protein nesprin-3 [15] (Figure 1A,B).

Together, these data suggest a model where various iso-

forms of nesprin-1 and nesprin-2 form a scaffold around the

nucleus [15,16]. Furthermore, this nuclear scaffold likely

plays a role in regulating the size of the nucleus [15].

Hearing and KASH protein-mediated
recruitment of kinesin to the nuclear envelope
Another class of KASH proteins including mammalian

nesprin-4, C. elegans UNC-83, and Drosophila Klarsicht,

interact with a kinesin light chain to target kinesin-1 to

the surface of the nucleus [17,18] (Figure 1C). Recently,

nesprin-4 was found to function in ear development and

hearing. Human geneticists identified a family with a

mutation in nesprin-4 that caused hearing loss, and

nesprin-4 knockout mice were shown to be normal except

for loss of hearing [19��]. Major structural defects were

observed in the cochlea of nesprin-4, or the SUN partner

sun-1, knockout mice. By postnatal day 30, the outer hair

cells in these mice exhibited degenerated stereocilia and
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nuclei that were mispositioned to the apical cellular sur-

face [19��].

Dynein–KASH protein interactions
There is a large class of KASH proteins that recruit dynein

to the surface of the nuclear envelope (Figure 1D). Mouse

Sun1 functions in homologous chromosome pairing in

meiosis to attach telomeres to the inner surface of the

nuclear envelope [20]. KASH5 was recently identified as a

meiosis-specific protein with a conserved KASH domain

that localizes to the nuclear envelope in a Sun1-depend-

ent manner [21,22��]. Ectopic expression of KASH5

70 Cell nucleus
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Functions of KASH proteins at the cytoplasmic face of the nucleus. SUN proteins form trimers in the inner nuclear membrane with their conserved SUN

domains (red) and coiled domains in the lumen of the nuclear envelope and nucleoplasmic domains (yellow). SUN domains interact with the KASH

domain (light blue) in the lumen of the nuclear envelope. The cytoplasmic domains of KASH proteins (various shades of blue) are on the outer surface of

the nucleus. SUN and KASH proteins are thought to interact in a three-to-three ratio. Only one or two KASH proteins are shown for each complex for

simplicity. (A) Giant KASH proteins made of spectrin repeats tether the nucleus to actin networks. (A–B) Giant KASH proteins also interact with

nesprin-3 to form a cage around the nucleus. (B) Nesprin-3 interacts with intermediate filaments through plectin. (C) KASH proteins recruit kinesin-1 to

move nuclei. (D) KASH proteins recruit dynein to move nuclei, telomeres (or pairing centers in worms) or to connect centrosomes. (E) The plant KASH

proteins WIP1, 2, and 3 interact with WITs (green) to recruit a myosin-XI to move nuclei, and a RanGAP to catalyze the hydrolysis of GTP in Ran (pink)

as it exits the nucleus. (F) The worm KASH protein KDP-1 regulates the cell cycle through unknown mechanisms. (G) Yeast Csm4 fits the definition of a

KASH protein used to move telomeres along actin. (H) A novel kinesin-13 is a KASH protein that functions to attach the centrosome to nuclei. The

names of KASH proteins from various systems, including humans (Hs), roundworms (Ce), fruit flies (Dm), zebrafish (Dr), fission yeast (Sp), budding

yeast (Sc), slime molds (Dd), and angiosperms (At) are indicated.
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recruits dynein to the nuclear envelope, KASH5 co-

immunoprecipitates with dynein and dynactin, and

KASH5 co-localizes with SUN proteins and telomeres

during meiosis [22��]. Furthermore, KASH5 knockout

mice are infertile, have a severe meiotic chromosome

pairing defect, fail to repair double-strand breaks, and fail

to recruit dynein to telomere attachment sites [22��]. The

KASH5 homolog in zebrafish, Lrmp, functions in the

zygote to attach centrosomes to the male pronucleus

and is required for female pronuclear migration [23]. In

C. elegans, ZYG-12 and SUN-1 recruit dynein to subtelo-

meric regions (pairing centers in worms) that serve as

attachment sites in meiosis. Dynein then is required for

the intranuclear movements of chromosomes, which aid

in homolog pairing and synapsis [24]. ZYG-12 also med-

iates the nuclear envelope localization of dynein during

pro-nuclear migration [25], making ZYG-12 a likely func-

tional ortholog of KASH5 and Lrmp. During meiosis in S.
pombe, the KASH proteins Kms1 and Kms2 recruit dynein

to specific spots on the nuclear envelope that associate

with telomeres attached to the inside of the nuclear

envelope. The g-TuRC complex is then recruited to

these spots resulting in the formation of mini microtubule

organizing centers, or telocentrosomes, which move the

telomeres toward the spindle pole body [26�]. The KASH

proteins UNC-83, Klarsicht, nesprin-1 and nesprin-2 also

function, in part, to recruit dynein to the nuclear envelope

[27–30]. Therefore, dynein is recruited to the surface of

nuclei by SUN–KASH bridges. At the surface of the

nucleus, dynein movements function to move nuclei,

connect microtubules or centrosomes to nuclei, and to

move chromosomes inside the nucleus during meiotic

homolog pairing.

KASH proteins in plants
SUN and KASH proteins were recently described in

plants [31,32��,33] and have been hypothesized to med-

iate actin-dependent nuclear migrations [34]. Three Ara-
bidopsis WIP (for WPP domain-Interacting Proteins;

Figure 1E) proteins are the first identified KASH proteins

in plants [32��,35]. WIP proteins interact with WIT1 and

2 (WPP-Interacting Tail-anchored proteins) in the outer

nuclear membrane [36]. AtWIP1, 2, and 3 fail to localize

to the nuclear envelope in SUN double mutants and all

three co-immunoprecipitate with AtSUN1 and AtSUN2

in a KASH-domain-dependent manner [32��]. Arabidopsis
mutants lacking the SUN, WIP, or WIT proteins lead to

abnormally round nuclei, suggesting that nuclei are no

longer attached to the actin cytoskeleton [32��,37�]. For-

ward genetic screens for similar mutants identified the

Arabidopsis gene kaku1, which encodes a nonconventional

myosin, myosin-XI [37�]. Myosin-XI contains a WPP

domain that interacts with WIT2 and then the WIP/

SUN bridges to recruit it to the outer nuclear membrane

to stretch and move nuclei [37�] (Figure 1E). WIP and

WIT proteins also recruit RanGAP1 to the cytoplasmic

surface of the nuclear envelope [32��,35,36,38]. In animal

cells, RanGAP interacts with the cytoplasmic filaments of

nuclear pore complexes to induce the hydrolysis of

RanGTP to RanGDP as it exits the nucleoplasm [39].

Alternatively, in plants, RanGAP has a novel WPP

domain that interacts with WITs at the outer nuclear

membrane [32��,36,38] (Figure 1E). Other plant KASH

proteins likely remain unidentified since SUN proteins

appear to play a similar role in maize meiosis as they do in

yeast and animals [31], but their KASH partners remain

unknown.

Novel KASH proteins and their functions
Novel functions for new KASH proteins continue to be

found. C. elegans KDP-1 is a KASH protein that

regulates progression of the cell cycle through unknown

mechanisms [40] (Figure 1F). Genetic phenotypes, the

presence of a tail-anchored domain, and the interaction

with the SUN protein Mps3 [41,42] are consistent with

Csm4 being a KASH protein that connects actin to

meiotic telomeres in S. cerevisiae (Figure 1G). Kif9, a

Dictyostelium kinesin-13, is a KASH protein that func-

tions to connect nuclei to centrosomes [43��,44]. Kif9

localizes to the nuclear envelope near the centrosome

with Sun1; once at the nuclear envelope, it is thought

that Kif9 depolymerizes microtubules, pulling the cen-

trosome toward the nucleus [43��] (Figure 1H). It is

likely that additional KASH proteins remain to be

discovered.

KASH proteins and cellular mechanics
Mechanical stimuli have been known for sometime to be

communicated into the nuclear interior through the cytos-

keleton during various fundamental cellular processes

such as cell adhesion, migration, and differentiation

[45–47]. However, the molecular mechanism responsible

for this communication remained unclear until recently.

KASH proteins, through their participation in LINC

complexes, have been hypothesized to be responsible

for this force transmission [48,49].

Interactions between the nucleus and the cytoskeleton Luxton and Starr 71

Table 1

Human diseases associated with genetic mutations in KASH

proteins.

KASH protein Disease Reference

Nesprin-1 Emery-Dreifuss muscular dystrophy [70]

Myogenic autosomal recessive

arthrogyroposis

[71]

Autosomal recessive cerebellar ataxia [72,73]

Colorectal cancer [74]

Ovarian cancer [75]

Bipolar disorder [76,77]

Recurrent major depression [77]

Familial autism spectrum disorders [78,79]

Nesprin-2 Emery-Dreifuss muscular dystrophy [70]

Breast cancer [74]

Gastrointesitnal stromal tumors [80]

Nesprin-4 High-frequency hearing loss [19��]

www.sciencedirect.com Current Opinion in Cell Biology 2014, 28:69–75
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Four lines of experimental evidence where the over-

expression of dominant negative KASH or SUN protein

constructs was used to disrupt the formation of endogen-

ous LINC complexes have supported this hypothesis.

First, the lack of functional LINC complexes was shown

to cause a loss of cytoskeletal mechanical stiffness in

fibroblasts [50]. Second, cells containing disrupted LINC

complexes had defective nuclear–cytoskeletal coupling

as measured by the deformation of the nucleus caused by

a microneedle pulling on the cytoskeleton [51]. These

cells also displayed an altered organization of the actin

and intermediate filaments. Similar results were obtained

in experiments where shear forces transmitted through

magnetic beads adhered onto the plasma membrane of

cells [52]. Third, the actin-dependent rotation of nuclei

observed in cells exposed to cyclic stretch requires intact

LINC complexes [53]. Fourth, the rigidity dependence of

nuclear height was disrupted in cells lacking functional

LINC complexes [54]. While collectively these results

implicate LINC complexes in intracellular force trans-

mission, they do not identify specific KASH or SUN

proteins.

Specific KASH proteins are necessary for three examples

of nuclear–cytoskeletal force transmission. First, nesprin-

1 is required for the reorientation of endothelial cells in

response to applied uniaxial cyclic strain perpendicular to

the direction of mechanical strain, which is important

during proper angiogenesis [55]. Nesprin-1-depletion also

resulted in an increase in focal adhesion assembly, cell

traction, and nuclear height. Since a similar change in

nuclear height was observed in cells where myosin-II

activity was inhibited, it was suggested that the actomyo-

sin tension is balanced in part by the nucleus. However, in

the absence of nesprin-1, actomyosin tension was

balanced by the increase in focal adhesions [55]. In a

separate study, nesprin-1-depleted endothelial cells sub-

jected to uniaxial stretching exhibited increased nuclear

strain, which is an indicator of force transmission to the

nucleus [56]. Second, nesprin-3 was found to be required

for the ability of endothelial cells to polarize in response

to shear stress such that their centrosomes are positioned

on the side of the nucleus facing the source of stress [57].

Third, the ability of shear flow-stimulated myoblasts to

assemble a specialized subset of actin cables above their

nuclei was shown to require nesprin-3 and to a lesser

extent, nesprin-2G [58�]. The formation of these cables,

which have been referred to as the PeriNuclear Actin Cap

(PNAC), occurs in response to sheer stresses that are 50-

fold lower than those required to form the actin cables

found underneath the nucleus. PNAC cables terminate in

a specialized subset of focal adhesions that are important

for the mechano-sensing of matrix stiffness [59]. Inter-

estingly, the focal adhesion protein zyxin was specifically

required for the fast assembly of the PNAC, suggesting

that extracellular mechanical stimuli can be sensed by the

PNAC and quickly relayed to the LINC complex and into

the nucleus [58]. Taken together, these results are con-

sistent with a model where the LINC complex mediates

nuclear–cytoskeletal force transmission.

A comparison between the PNAC and TAN
lines
The PNAC is a subset of highly organized and dynamic

actin cables that form over the apical surface of interphase

nuclei in adherent cells [59–61]. In addition to mechano-

sensation, several functions have been attributed to the

PNAC including maintenance of nuclear shape, control of

cellular differentiation, and three-dimensional cell

migration [62�,63,64]. A similar structure to the PNAC,

known as transmembrane actin-associated nuclear (TAN)

lines, has also been identified and demonstrated to be

required for nuclear movement in migrating fibroblasts

[65,66]. TAN lines are linear arrays of nesprin-2G/Sun2

LINC complexes that form on the dorsal nuclear surface

of fibroblasts that are preparing to migrate. Through their

anchorage by A-type lamins, TAN lines are able to

harness the forces generated by retrograde flow of the

perinuclear actin cables, resulting in the movement of the

nucleus to the rear of the cell, which is required for

efficient cell migration [65–67]. The inner nuclear mem-

brane protein Samp1 is also a TAN line component [68].

Samp1 associates with both SUN2 and A-type lamins, but

requires the later for its localization to the nuclear envel-

ope, suggesting that Samp1 assists in anchoring TAN

lines. While linear arrays of LINC complexes have not

been visualized in the PNAC, it is possible that these

structures are related to one another. For instance, TAN

lines may only form during active movement of the

nucleus in migrating cells. It will be important to further

understand the similarities and differences between the

PNAC and TAN lines.

Conclusions
Our understanding of the cellular, developmental, and

disease-related roles of KASH proteins is growing at an

accelerating rate. It has become clear that KASH proteins,

as part of LINC complexes, are critical mediators of

nuclear–cytoskeletal force transmission events and cel-

lular mechanics. KASH proteins also function in other

events including cell cycle regulation and nuclear trans-

port. The ability of KASH proteins to participate in such a

wide variety of cellular functions stems from the ever-

growing list of KASH proteins and their functions at the

surface of the nucleus. Unsurprisingly, genetic mutations

in KASH proteins are associated with various human

diseases including Emery-Dreifuss muscular dystrophy,

mental disorders, several cancers, and hearing loss [3,69]

(Table 1 and references within). Much remains to be

studied about the regulation of KASH proteins. It is not

know when KASH proteins are assembled onto SUN

proteins, or how KASH proteins are regulated during

important developmental switches such as between

nuclear migration and anchorage. Most importantly,

72 Cell nucleus
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how mutations in KASH proteins contribute to the path-

ologies of various human diseases remains to be deter-

mined.
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