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ABSTRACT OF THE DISSERTATION

Probing the Dark Universe at the Pixel-Level in Large-Scale Surveys

By

Alexander Broughton

Doctor of Philosophy in Physics

University of California, Irvine, 2024

Professor Simona Murgia, Chair

Future astrophysical surveys will provide unprecedented datasets in both scale and precision

for testing our most concordant theories of dark matter and dark energy. For the first time,

the confidence of our understanding of the components of the Universe will be limited by sys-

tematic uncertainties rather than the statistical precision we can achieve. Improved modeling

of measurement biases in survey data is necessary to achieve the theory-constraining power

of ambitious future astrophysical surveys. Recent in-lab, on-sky, and simulated experiments

offer opportunities to investigate coherence between systematic and phenomenological ob-

servables and invent new techniques to differentiate them. This thesis details my contribution

to measuring the Dark Universe, and it is structured in two parts.

The first part of this thesis improves template modeling of the foreground gamma-ray

emission in the Galactic plane in 12 years of Fermi-LAT data. This has implications for the

observed excess γ-ray emission near the Galactic center, which was previously associated

with dark matter. We compare the likelihood of observing gamma-ray emission from cold

hydrogen gas clouds using models derived from spectral line emission maps of abundant

(12CO) and rare (13CO) tracer molecules. Using this approach, the rare tracer predicts

previously unmodeled gamma-ray emission at 47σ significance, localized to the pixels around

the densest regions, where emission is undercounted due to reabsorption along the line-of-

sight. We also identify unassociated point-like sources in the Galactic plane which were

xiii



previously smoothed out by re-absorption consistent with peaked gas structure as well as

point-like gas structure which could have been mistaken for millisecond pulsars by earlier

works. We further utilize a convolutional neural network (CNN) to try to predict the 13CO

distribution in the same region, which could prove useful to predict the 13CO distribution in

data-poor regions such as the Galactic center.

The second part of this thesis develops a correction for the observed size-magnitude

relation of stars, which are used calibrate observables for the Legacy Survey of Space and

Time (LSST). The brighter-fatter effect results in distorted images of bright calibration stars,

creating a flux-dependent point spread function (PSF) that if left unmitigated, could make up

a large fraction of the error budget in Stage IV weak-lensing (WL) surveys such as the Legacy

Survey of Space and Time (LSST). Using data from the LSST camera, we compare the BFE

in flat field and star images and test the ability of scalar correction methods to mitigate it. We

observe that the BFE evolves anisotropically as a function of flux due to higher-order BFEs

which were previously assumed to be negligible by a commonly used correction technique.

We also find that poor assumptions of the correction result in unphysical violations of flux

conservation in the images at the O(0.01%) level. Based on these analyses, we then propose a

new, unbiased correction methodology to account for these effects. With these improvements

we can correct on average 95% of the total effect in the sensors we tested. We use these

results to predict the impact of these previously unmodeled effects on sensitive observables

of inferred cosmological outcomes and advise data processing strategies to limit the impact

of the effects on LSST science pathways.
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Chapter 1

Introduction

Astrophysical observations over the past century have played a critical role in the discovery

of dark matter (DM), and it continues to be a promising avenue to test predictions of

different particle dark matter scenarios that potentially lie beyond the Standard Model

(SM). In the 1930s, Fritz Zwicky conducted his famous “weighing” of galaxies experiment,

which found that the mass of the Coma galaxy cluster was much larger than the mass of

the observed luminous matter and coined the term “dark matter” to fill the gap in our

understanding. Later, in the 1970s, observations by Vera C. Rubin confirmed that the

stable rotations of the outer regions of galaxies were faster than could be explained by the

gravitational effects of luminous matter alone. Around the same time, it became apparent

that Big Bang nucleosynthesis could not have produced enough baryons to explain these

observations throughout the Universe. Since the 1990s, a variety of numerical simulations

and observations of the Cosmic Microwave Background (CMB), type Ia supernovae, and

gravitational lensing of dynamical galaxy systems, show overwhelmingly that dark matter

exists, and that galaxies are primarily made up of dark matter. However, the nature of dark

matter is still elusive.

Current theories of particle dark matter span 90 orders of magnitude, ranging from ultra-

2



Chapter 1. Introduction

light axions to weakly-interacting massive particles (WIMPs) and even to planet/star mass

objects (massive compact halo objects or MACHOs, such as primordial black holes). Searches

for these particles on on Earth, including collider experiments (SM + SM → DM+DM, e.g.

ATLAS Collaboration et al. 2022) and direct detection experiments (DM+ SM → DM+ SM,

e.g. Aalbers et al. 2023), have found a few interesting events yet nothing statistically defini-

tive. The ability of these probes to detect particle dark matter depends on the relative

content of dark matter available, the interaction couplings involved, and the detector con-

straints. Direct detection experiments have very good sensitivity, but are limited in scale and

need to contend with large backgrounds (Gaitskell et al. 1996). And while collider experi-

ments have well-determined backgrounds, technical constraints (data volume, size, efficiency)

have limited their testable parameter space.

The space of untested theoretical dark matter scenarios is still rich (for an overview see

Tait 2021), and the astrophysical landscape offers a laboratory with regimes that we can not

reproduce on Earth. The most promising candidate to search for in this space is the WIMP

dark matter particle, which is predicted to self-annihilate into high-energy SM products (e.g.

γ-ray photons, quark/anti-quark pairs, and even neutrinos). Indirect detection of dark matter

(DM+DM → SM+ SM) involves looking for the remnants of these exotic processes. Studies

of the gravitational influences of dark matter from galaxy rotation curves show that dark

matter is concentrated in the interior regions of the Milky Way Galaxy, making it the most

likely location to potentially observe these rare and energetic phenomena. However, indirect

detection probes for WIMPs can be very sensitive to background models of other sources of

high mass-energy SM particles (Murgia 2020a). Systematic errors from background modeling

are the largest hurdle to confirming or ruling out the indirect-detection of self-annhilating

dark matter particles.

3



Chapter 1. Introduction

1.1 The Galactic Center γ-ray Excess

The Fermi Gamma-ray Space Telescope has been surveying the γ-ray sky since June 2008,

and has observed potential signals from the products of self-annihilating dark matter par-

ticles. The primary on-board detector is the Large Area Telescope (Fermi-LAT), which is

a particle tracker made of towers of layered high-Z foils coupled to a calorimeter, which

allows it to reconstruct the energy and trajectory of incoming γ-rays (Atwood et al. 2009).

Long-standing analyses of the Fermi-LAT data, first by Goodenough & Hooper (2009) and

later by Hooper & Goodenough (2011); Hooper & Linden (2011); Abazajian & Kaplinghat

(2012); Hooper & Slatyer (2013); Gordon & Maćıas (2013); Abazajian et al. (2014); Daylan

et al. (2016); Calore et al. (2015); Ajello et al. (2016), report an unassociated excess of γ-ray

emission, consistent with a spherical morphology that is brightest near the Galactic Center

region (coincident within 0.05◦ the black hole Sgr A∗). It extends approximately 15◦ (< 2

kpc) from the Galactic plane (Daylan et al. 2016; Calore et al. 2015). The Galactic Center

Excess (GCE) makes up 5− 10% of the γ-ray emission above 1 GeV within this region. The

GCE has been the fascination in the astrophysics community and the subject of increasingly

detailed analyses for 15 years in part because of its tanatalizing agreement with the WIMP

self-annhilation dark matter particle scenario in both morphology and spectrum, which has

been reproduced by multiple independent analyses.

In general, the distribution of the γ-ray flux from self-annhilating dark matter across a

solid angle element (dΩ) depends on the density distribution of the dark matter particles:

dR(θ)

dΩ
= NT

1

2

⟨σannv⟩
m2

DM

1

4π

∫
los

dsρ2(r⃗(s, n⃗)), (1.1)

where mDM is the mass of the hypothetical dark matter particle, ⟨σannv⟩ is the velocity

averaged self-annihilation cross-section, NT is the number of nuclei in the detector, which

4



Chapter 1. Introduction

acts as a detection efficiency factor. The observed density distribution (ρ(r)) is consistent

with a Navarro–Frenk–White (NFW) profile:

ρ(r) = ρ0

(
r

Rs

)−γ (
1 +

r

Rs

)γ−3

. (1.2)

with γ = 1.1 − 1.3, a characteristic scale radius Rs = 20 kpc, and a characteristic density

consistent with the local dark matter density ρ0 = 0.3–0.4 GeV cm−3. Interestingly, an

NFW profile is consistent with measurements of the Coma cluster’s dark matter halo density

distribution, and a distribution with γ ∼ 1 is consistent with predictions from N-body

simulations of cold, collisionless, virialized (equilibrated) dark matter density distributions

after baryonic feedback effects are included (Gnedin et al. 2004). The GCE is found to be

consistent with a predicted distribution of WIMP dark matter with a mass of approximately

30 − 60 GeV, annihilating with a velocity-averaged cross-section of order ∼ 10−26 cm3 s−1

with a dominate annihilation mode into a bottom quark hadron (Hooper & Linden 2011;

Abazajian & Kaplinghat 2012; Gordon & Maćıas 2013; Daylan et al. 2016; Calore et al.

2015).

Similarly, the expected spectral density distribution of self-annhilating dark matter would

be given by:

dNγ

dE
=

⟨σannv⟩
4πηmDM

dNγ

dE
×
∫
∆Ω

dΩ

∫
los

dsρ2(r⃗(s, n⃗)) (1.3)

Most analyses agree that the most of the spectrum across the GC region comes from a

band between 1-3 GeV (Goodenough & Hooper 2009), however the soft (sub-1 GeV) and

hard (super-10 GeV) power-law regimes of the GCE spectrum are still debated. Some

analyses have observed a power-law tail that can extend beyond 10 GeV (Ajello et al. 2016).

In addition, both Abazajian et al. (2014) and Horiuchi et al. (2016) argue that the GCE

spectrum varies spatially and exhibits a higher energy spectrum in regions above and below
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the Galactic plane. However it is generally agreed that the peak of the excess alone is

consistent with theory predictions of WIMP annihilation into SM particles. In addition, the

inferred annihilation cross-sections (σann) from the measured spectra are consistent with the

weak-scale annihilation cross-section needed to produce the relic abundance of dark matter

measured by observational probes.

1.2 Interstellar Emission Models (IEMs)

The spectrum and spatial morphology of the GCE is crucial to identifying its source, and

these properties depend on the removal of foreground and background γ-ray emission sources.

An estimation of the uncertainties by Calore et al. (2015) outside the Galactic Center finds

that the presence of the GCE above background is robustly above statistical uncertainty,

but discrepancies between its morphology and spectrum can be traced back to different

treatments of interstellar emission models. And interpretations of the GCE can change

within the systematic uncertainties of these different emission models. None of the models

considered in previous analyses has been able to reach Poisson noise-level agreement with the

observational data, and properties of the GCE are strongly correlated with the properties

of these other components. This can lead to poorly-constrained inferred properties and

interpretations of the GCE. In this section we will cover the different types of γ-ray emission

sources, their uncertainties, and how they can impact the characterization and interpretation

of the GCE.

We will discuss two types of γ-ray background components in the interstellar region, a

diffuse component and a discrete component. The diffuse component of emission originates

from cosmic ray (CR) interactions with the interstellar medium: (i) CR protons collide with

other free protons or protons within nuclei of interstellar gas and hadronize into neutral pions

which quickly decay in to pairs of γ-rays (pp → X + π0 → X + γγ); (ii) high-energy CR

6
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electrons upscatter starlight in the interstellar radiation field into γ-rays via inverse Compton

(IC) scattering; (iii) high-energy cosmic ray electrons interact with gas in the interstellar

medium and emit bremsstrahlung radiation at γ-ray energies (although this component is

typically sub-dominant). Diffuse emission can also originate outside the interstellar medium,

for example extragalactic active galactic nuclei (AGN) or blazars, or the Fermi bubbles of our

own galaxy (two lobes of hot plasma extending ±50, 000ly from the Galactic plane, which are

thought to be remnants of earlier outflows from the Galactic Center and emit γ-rays via IC

scattering. In addition, there are discrete sources of GeV level γ-rays from pulsars and X-ray

binaries. Pulsars are rotating neutron star remnants (with periods ranging from milliseconds

to seconds) from supernova explosions, and the subclass of millisecond pulsars (MSP) emit

photons strongly at GeV (γ-ray) scales. In addition, X-ray binaries (particularly high mass

X-ray binaries or HMXBs) are binary systems with a star (larger than about 10M⊙) and

either a neutron star or a black hole that emit strongly in γ-rays via relativistic jets.

These models are derived as “templates” which are pixel-level counts maps of the sky

that are binned by energy, and the total observed γ-ray sky is a linear combination of these

templates (see Murgia 2020a). The templates can be derived in two ways, and both introduce

their own systematic uncertainties. One method involves fitting a set of pre-selected physical

parameters (e.g. γ-ray emissitvity, cosmic-ray spectra and radial dependence, etc.) to the

γ-ray data, however this risks over-fitting the data and eating up the GCE. Another way to

construct interstellar emission models is to simulate the propagation of known physics with

empirically measured initial conditions to the resultant templates, and while these models

typically agree with observations to the 10-20% level, they do not fully capture the realistic

complexity of processes and regions in the Galaxy. All template models depend on the

distribution of sources, particle propagation, the distribution of the interstellar medium, and

the completeness of our understanding of the physical sub-processes.
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1.3 Alternate Interpretations

One possible interpretation of the GCE is a distribution of unresolved point sources. The

12-year 4FGL-DR3 data release by Fermi-LAT (Ballet et al. 2023) identified 5,064 distinct

point sources, however the resolution likely undercounts the number in the Galactic Center.

The confirmed MSPs have spectra that peak between 1-3 GeV, which is coincident with

expected peak from the dark matter annhilation scenario, and with the Galactic Center

Excess (Abazajian & Kaplinghat 2012; Linden et al. 2016; Abazajian 2011; Petrović et al.

2015). To distinguish between these components, the low-energy and high-energy regimes

need to be modeled both accurately and precisely. Below 1 GeV, the spectra of MSPs falls off

gradually while the predicted dark matter spectrum falls off sharply. In addition, the dark

matter annhilation scenario predicts a spectrum that could extend beyond 10 GeV, however

MSPs are invisible above this level (Linden et al. 2016). However, the low- and high-energy

regimes of the GCE spectrum vary across analyses with different assumptions, models, and

analysis methods. For example, including the Fermi-bubble component, Ackermann et al.

(2017a) finds that the GCE spectrum completely disappears above 10 GeV, although it is

difficult to properly model this component, particularly near the Galactic Center, which can

make it difficult to disentangle the Fermi bubbles from the other γ-ray components near the

GC.

Composite likelihood analyses of subdivided galactocentric regions within the Galaxy

by Horiuchi et al. (2016) find that the spectral energy distribution is not uniform across

the GCE region. Depending on the background models used, the GCE emission spectrum

can have higher-energy at higher latitudes, and in some analyses the GCE is not spherically

symmetric and the GCE centroid could be pulled away from the Galactic Center by as

much as 1◦ (Ajello et al. 2016; Linden et al. 2016; Karwin et al. 2017). If these findings are

true, it would disfavor a single-component DM scenario and favor multiple origins associated
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with background modeling.1 Higher-energy at higher latitudes could be explained by a

population of high-latitude MSPs sourcing an extra IC scattering component. In fact, it

has been proposed that a population of MSPs could exist in this region as relics of ancient

globular clusters (Brandt & Kocsis 2015). However, even this would still not be able to

rule out DM annhilation scenario. If the hypothesized WIMP could self-annhilate into e+e−

pairs, there could be a secondary IC and bremsstrahlung emission component that would

also explain the softened the spectrum closer to the Galactic plane, thus making it even

more difficult to distinguish between DM an MSP interpretations (Daylan et al. 2016; Cirelli

et al. 2013, 2014).

Evidence for the MSP interpretation is driven by a non-Poissonian template fitting

(NPTF) analysis of photon-counting statistics (Lee et al. 2015; Lee et al. 2016). NPTF

is a Bayesian statistical tool that looks for deviations from photon-counting Poisson fluctua-

tions in pixels across extended regions of the sky as a result of unresolved, underlying point

sources. The method infers a posterior distribution of the possible source function in a given

region (dN/dF for N sources contribution a flux between F and F + dF ). The analysis by

Lee et al. (2016) found the GC excess can be fully accounted for by a population of order

100 point sources accumulating at a flux just below the minimum Fermi–LAT sensitivity

threshold.

Other known dark matter accumulation sites outside the Galactic Center seem to offer

new areas to reproduce results with different systematics. An investigation of γ-ray emission

from dwarf spheroidal galaxies by Ackermann et al. (2017b)) and another investigation of

nearby galaxies such as Messier 31 & 33 by McDaniel et al. (2024) find that the presence

of excesses in these regions is questionable and the overall uncertainty is still dominated by

model uncertainties. The space of possible interpretations is so large, and the GCE is so

1Note that this conclusion is highly model-dependent, and other studies have concluded that the high-
energy and low-energy components favor the same radial profile (Linden et al. 2016; Karwin et al. 2017).
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sensitive to different model and analysis choices that it is difficult to rule out any scenario.

The assumptions and analysis choices that generate the interstellar emission models are the

largest source of systematic uncertainty in indirect search for WIMP self-annhilation modes.

The origin of the GCE cannot be resolved without improvements to the assumptions and

methodologies for analyzing the background an foreground models in these analyses.
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Improved Modeling of the Interstellar

Discrete H2 Component

The Galactic γ-ray interstellar emission (IE) traces interactions of cosmic rays (CRs) with

the interstellar medium and constitutes most of the γ-ray emission observed by Fermi–LAT.

Uncertainties in modeling the IE are large and difficult to constrain, and they impact the

study of other γ-ray sources in the Fermi–LAT data, point-like as well as extended. We

focus on modeling the small-scale structure of the IE which, which if not robustly captured

by the model, confuses the determination of point sources, especially along the Galactic

plane (Abdollahi et al 2020). It was shown in Ajello et al. (2016) that a large fraction

of the point sources detected by Fermi–LAT in the Galactic Center (GC) region could be

misidentified gas structure, and strongly dependent in number and spatial distribution on

the IE model employed to analyze the data. This result indicates the presence of point-like

emission in the data arising from unmodeled structure in the interstellar gas, and it underlines

the importance of accurately modeling this component to reliably identify point sources in

the γ-ray data. An investigation of the 4FGL-DR3 catalog by Abdollahi et al (2022) reported

evidence for clustering of unassociated, spectrally soft sources along the Galactic plane that
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appears to be tracing interstellar clouds. This emission could be originating from small-scale

molecular gas structure.

More reliable modeling of the small scale gas structure could also impact the character-

ization of extended sources. A prominent example is the Fermi–LAT GC excess (see e.g.

Goodenough & Hooper 2009; Hooper & Goodenough 2011; Hooper & Linden 2011; Abaza-

jian 2011; Abazajian & Kaplinghat 2012; Hooper & Slatyer 2013; Gordon & Maćıas 2013;

Abazajian et al. 2014; Daylan et al. 2016; Calore et al. 2015; Ajello et al. 2016). Striking fea-

tures of this excess are its spatial morphology and spectrum which could be consistent with

annihilating dark matter (DM). Alternative explanations have been proposed, with the lead-

ing one attributing the signal to a collection of discrete emitters such as an unresolved point

source population of millisecond pulsars. Deviations from a spherically symmetric morphol-

ogy for the excess have also been claimed which would imply the emission to be compatible

with the stellar distribution in the Galactic bulge (Macias et al. 2018; Macias et al. 2019;

Bartels et al. 2018; Pohl et al. 2022). The origin of the Fermi -LAT GC excess remains a

debated topic (Murgia 2020b). This debate could be settled by determining whether the

spatial morphology of the excess is consistent with a smooth distribution, as predicted for

DM, or with the cumulative emission of a collection of point-like emitters. Several statistical

techniques have been employed to accomplish this (see Bartels et al. 2016; Lee et al. 2016;

Leane & Slatyer 2019; Zhong et al. 2020; Leane & Slatyer 2020; Leane 2020; Buschmann

et al. 2020; Calore et al. 2021; List et al. 2021; Mishra-Sharma & Cranmer 2022), including

the non-Poissonian template fit (NPTF) which can detect upward fluctuations in the photon

statistics above Poisson noise which are associated with a collection of point sources. How-

ever, the results of the NPTF technique depend on the modeling of the IE (e.g. Leane &

Slatyer 2019; Leane & Slatyer 2020; Leane 2020; Buschmann et al. 2020; List et al. 2021),

and an uncontroversial resolution to the origin of the GC excess has not yet been reached.

We posit that if the interstellar gas is more structured and point-like than current models
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predict, the unresolved point source contribution in the data could be erroneously inflated

by the fainter component (also below detection threshold) of the small scale gas features.

In particular, statistical methods such as the NPTF might attribute this component to a

smooth GC excess and conclude it is point-like. These uncertainties might therefore hinder

the ability to distinguish the smooth versus point-like duplicity of the excess. We note that

wavelet decomposition is another statistical technique that has been employed to resolve the

GC excess (Bartels et al. 2016). While these studies are not as impacted by the IE model,

the related results on the nature of the GC excess remain uncertain (Balaji et al. 2018; Zhong

et al. 2020).

In this work, we present a novel approach to improve modeling of the small-scale structure

in the interstellar gas. The IE is due primarily to CRs interacting with the interstellar

hydrogen gas (and radiation field), in molecular (H2), atomic (Hi), and ionized (Hii) forms.

The H2 component is the most highly structured, and this structure is traced by the related

γ-ray emission. In this work, we focus on H2 gas because of its high degree of structure and

our methodology hinges on the availability of additional proxies better suited to trace its

structure. The impact of the other components of the γ-ray IE (specifically Hi and dark

gas Grenier et al. 2005), and related uncertainties, are not considered in this study and

will be the focus of later work. Since H2 does not emit at a characteristic radio frequency,

other molecules are used to trace its distribution. In particular, carbon monoxide (12CO,

or CO hereafter) is typically employed as a proxy. Radio surveys trace the distribution of

CO across the sky and the H2 column density is inferred by scaling the CO content by a

conversion factor (XCO) which gives the ratio of the integrated CO line emission to the H2

column density. The bulk of the H2 is traced following this methodology, and the survey of

the CO J=1–0 transition line from Dame et al. (2001) has been widely employed. However,

the CO line emission is typically optically thick in the denser cores of molecular clouds and it

underestimates the total H2 column density there. γ-ray IE models that employ CO to trace
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H2 gas may therefore underestimate its finer structure. This limitation can be addressed by

exploiting CO isotopologues, 13CO and C18O, also found in H2 clouds. The line emission

from these rarer isotopologues remains optically thin to larger column densities and therefore

is more reliable to probe dense cores.

2.1 Tracers of H2

We employ the data from the Mopra Southern Galactic Plane CO Survey (data release

3, Braiding et al. 2018) to trace the denser H2 regions. The survey covers a 50 square

degree region, spanning Galactic longitudes l = 300◦-350◦ and latitudes |b| ≤ 0.5◦, and

it targets the J = 1–0 transitions of CO, 13CO, C18O, and C17O. Mopra is a 22 meter

single dish radio telescope located ∼450 km from Sydney, Australia, targeting the 109− 115

GHz J = 1 − 0 transitions of CO, 13CO, C18O, and C17O. It utilizes a “Fast-On-The-Fly”

mapping in 1 square degree segments, with each segment being comprised of orthogonal

scans in longitudinal and latitudinal directions. Each square degree has an exposure of at

least ∼20 hours. The data reduction process by the Mopra team, which involves six main

stages of processing to perform the band-pass correction and background subtraction, yields

data cubes of the brightness temperature for each spectral line, as a function of Galactic

coordinates and local standard of rest velocity. The spectral resolution is 0.1 km sec−1. To

efficiently work with the Mopra observations we create a mosaic of the data over the full 50

square degree region for both CO and 13CO. These maps are shown in Figure 2.1, where the

color scale gives the total line strength, W (CO), integrated over all velocities (−150 to 50

km s−1). The vertical black lines show the footprint of the mosaic, i.e. regions where pixels

from adjacent fields overlap. As can be seen, the emission shows discontinuities in these

footprint regions. This is likely due to the fields having different noise levels resulting from

the varying weather conditions of the observations. To avoid any potential complications
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with these regions they are masked in the analysis. Additionally, we slightly degrade the

spatial resolution from 0.0083◦ to 0.03125◦. This is done to speed up the computation time

of the γ-ray intensity maps (see Section 2.3). We note that the CO maps customarily used to

trace H2 (Dame et al. 2001) have a spatial resolution of 0.25◦, and thus the Mopra maps that

we employ represent an 8× improvement. The emission shown in Figure 2.1 also displays

vertical and horizontal strips. This is a systematic feature due to the scanning method used

in the observations, and it does not have any significant impact on our analysis.

To ensure the highest quality data in the rare isotopologues, only pixels for which the

brightness temperature exceeds the 1σ noise provided by Mopra are used. Noise removal is

necessary since the noise could otherwise predict spurious γ-ray emission (see Section 2.2 for

more details.) The noise threshold is chosen for consistency with the next stage of this work,

where we will train machine learning (ML) models on these data to predicts 13CO in regions

of the sky where observations are not available. Because the optimization of ML models

learns about the noise, our choice favors retaining more data for training purposes (see §3).

In this analysis we utilize the CO and 13CO data, as the C18O emission is extremely sparse,

and the C17O emission was too faint to be detected in the survey. For the region it surveys,

the Mopra data provide a sharper view of the CO emission compared to Dame et al. (2001),

in addition to probing the rarer H2 tracers.

2.2 Deriving H2 column densities

We calculate the H2 column density corresponding to Mopra’s CO and 13CO, referred to as

N(H2)CO and N(H2)CO13, respectively. Following the method of Ackermann et al. (2012),

the gas is separated into 17 Galactocentric radial bins (or annuli) based on its velocity and

therefore corresponding to different distances from the GC, assuming uniform circular motion
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about the GC (see Appendix A for details). The N(H2)CO is determined as:

N(H2)CO = W (CO)×XCO, (2.1)

where W (CO) is the line strength of the CO gas, and we adopt the radially-dependent XCO

from Ackermann et al. (2012) for the 17 radial bins. An alternative assumption of a constant

XCO could also be considered when our methodology is applied to the data. N(H2)CO13 is

evaluated as:

N(H2)CO13 = N(CO13)×
[ H2

CO13

]
. (2.2)

where N(CO13) is the 13CO column density, and the abundance ratio [ H2

CO13
] is the conversion

factor for the rarer species, 13CO in this case. Following Wilson et al. (2009); Braiding et al.

(2018), we derive N(CO13) assuming that the gas is in local thermodynamic equilibrium

at a fixed excitation temperature of 10 K (the procedure is summarized in Appendix B).

Since the conversion to column densities involves multiplying the line strength observed by

Mopra by large factors, of order ∼1020, noise in regions with no gas emission would yield

significant column density and, in turn, spurious predictions for the related γ-ray emission.

This is especially problematic for our ultimate goal of comparing N(H2)CO12 to N(H2)CO13.

To mitigate this issue we use the noise maps which have been provided by the Mopra team, as

anticipated in Section 2.1. For each spatial pixel, the noise is determined from the standard

deviation of the continuum channels for line-of-sight velocities containing no apparent signal.

The observations were carried out over a wide variety of weather conditions, and this is

reflected in the noise maps, which are not uniform over the Mopra region, but rather vary

from field to field. In calculating the column density we only use pixels that are above the 1σ

noise level. Otherwise, pixels that are below the 1σ noise level are masked. The abundance

ratio [ H2

CO13
] is not tightly constrained. We choose the upper bound of the range (2.7 - 7.5)
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×105 provided in Pineda et al. (2008), in an attempt to assess the maximal impact on the

γ-ray data, although it is not excluded that larger values are possible.

2.3 Excess γ-ray emission from the H2 component

The CR propagation code GALPROP (v56) (Moskalenko & Strong 1998, 2000; Strong &

Moskalenko 1998; Strong et al. 2000; Ptuskin et al. 2006; Strong et al. 2007; Vladimirov

et al. 2011; Jóhannesson et al. 2016; Porter et al. 2017; Johannesson et al. 2018; Génolini

et al. 2018) is used to evaluate the γ-ray intensity maps for the H2-related emission traced

by CO and 13CO. GALPROP self-consistently calculates spectra and abundances of Galac-

tic CR species and associated diffuse emissions (γ-rays, but also radio, X-rays) in 2D and

3D. We adopt the same GALPROP input parameters as described in Karwin et al. (2019).

GALPROP returns radially dependent γ-ray intensity all-sky maps (in the 17 Galactocen-

tric annuli) which allow us to determine, for the region observed by Mopra, the additional

contribution in γ-rays from the H2 traced by 13CO, and assess its significance in simulated

Fermi–LAT data.

The difference between N(H2)CO13 and N(H2)CO gives an estimate of the H2 that is

missed in dense regions when only CO is used as a tracer. To calculate the corresponding

intensity in γ-rays, we define the “Modified Map”. This is calculated in the following way:

for pixels with N(H2)CO13 > N(H2)CO12, the value of N(H2)CO12 is replaced with the value

of N(H2)CO13. We define the “Modified Excess Template” as the difference between the

Modified Map and the baseline CO map, which accounts for the additional H2-related γ-ray

emission not included in current IE models, shown in Figure 2.2.

18



Chapter 2. Improved Modeling of the Interstellar Discrete H2 Component

F
ig
u
re

2.
2:

T
h
e
M
o
d
ifi
ed

E
x
ce
ss

T
em

p
la
te
,
ca
lc
u
la
te
d
as

th
e
d
iff
er
en
ce

b
et
w
ee
n
th
e
M
o
d
ifi
ed

M
ap

an
d
th
e
b
as
el
in
e

C
O

m
ap

.
T
h
e
co
lo
r
sc
al
e
sh
ow

s
th
e
γ
-r
ay

in
te
n
si
ty
.
T
h
e
so
li
d
cy
an

ci
rc
le
s
sh
ow

u
n
as
so
ci
at
ed

γ
-r
ay

p
oi
n
t
so
u
rc
es

in
ve
rs
io
n
4F

G
L
-D

R
2
of

th
e
fo
u
rt
h
F
er
m
i–
L
A
T

ca
ta
lo
g

(B
al
le
t
et

al
.
20
20
),

an
d
th
e
gr
ee
n
ci
rc
le
s
sh
ow

n
ew

so
u
rc
es

th
at

w
e
fi
n
d
in

th
is
w
or
k
(s
ee

te
x
t)
.
T
h
e
ra
d
iu
s
of

ea
ch

so
u
rc
e
co
rr
es
p
on

d
s
to

th
e
95
%

lo
ca
li
za
ti
on

u
n
ce
rt
ai
n
ty
.

19



Chapter 2. Improved Modeling of the Interstellar Discrete H2 Component

2.4 Likelihood of excess γ-ray emission

We evaluate the significance of the Modified Excess Template in the Fermi–LAT data by

simulating the data collected between 2008 August 04 to 2020 November 11 (∼12 years).

The simulated events have energies in the range 1 − 100 GeV and are binned in 8 energy

bins per decade, for event class P8R3 CLEAN (FRONT+BACK). The analysis is performed

using Fermipy (v0.19.0), which utilizes the Fermitools (v1.2.23). In these simulations, we

only focus on the H2-related γ-ray emission, and exclude all other components of the γ-

ray sky. The goal is to assess the significance of the Modified Excess Template, i.e. the

contribution of the newly modeled H2 fine structure, in the optimistic scenario where all

other components are satisfactorily modeled. The simulated events trace the H2-related

γ-ray emission modeled with the Modified Map. The simulated data are then fit based

on a binned maximum likelihood method to a model that includes two components, the

γ-rays traced by the baseline CO map and the Modified Excess Template. The latter is

assigned the spectrum determined by GALPROP (see Appendix C), and its normalization

is free to vary in the fit. The normalization of the CO map is also free to vary and its

spectrum constrained to that calculated by GALPROP. As mentioned above, the γ-ray flux

is calculate in 17 radial bins, since the predicted H2-related γ-ray emission depends on the CR

density, which is a function of Galactocentric radius. In the simulations, the total emission

is integrated along the line-of-sight. Moreover, the individual maps have a high level of

degeneracy. We therefore combine the maps into 4 radial bins. Specifically, we combine bins

1-6, 7-10, 11-13, and 14-17, which we refer to as A1, A2, A3, and A4.

We simulate 1000 realizations of Fermi–LAT data, and calculate the Test Statistics (TS)

for the nested models: −2log(L0/L), where L0 corresponds to value of the likelihood function

for the null hypothesis (CO baseline) and L to the alternative hypothesis (CO baseline and

Modified Excess Template). The statistical significance is approximated by σ ≈
√
TS. The
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Figure 2.3: Distribution of the statistical significance (σ ≈
√
TS) of the Modified Excess

Template for the 50◦×1◦ region covered by Mopra for 1000 realizations of ∼12 years of
Fermi–LAT data. A fit with a Gaussian function is overlaid.

distribution of the
√
TS for the 1000 simulations is shown in Figure 2.3. The mean of

the distribution is 48.30±1.02, for the 50 squared degree Mopra region, and therefore very

significant in a scenario where other components contributing to the Fermi–LAT data are

perfectly modeled, and if the γ-ray emission traced by 13CO is at the high end of the range

we have considered (with the caveats discussed above.)

The fractional residuals as a function of energy for the 1000 simulations are shown in

Figure 2.4. They are consistent with zero, as expected. Figure 2.5 shows the distributions of

the flux of each model component, including the Modified Excess Template. In the Mopra

region, the mean integrated flux for this component is (8.3± 0.2)× 10−8 ph cm−2 s−1.
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Figure 2.4: Fractional count residuals as a function of energy. The green and yellow bands
show the 68% and 95% confidence regions from 1000 simulations, respectively. As an exam-
ple, we also plot the results for a single simulation, shown with black data points.

2.5 Implications for the Galactic Center Excess

Overall, the Modified Excess Template accounts for a fair fraction (21%) of the total H2-

related γ-ray emission in the Mopra region. For comparison, the integrated GC excess flux

in a 15◦×15◦ region around the GC (the full region is considered), which is 4× larger than

the region observed by Mopra, is in the range 18.3 − 25.0 × 10−8 ph cm−2 s−1 (from Ajello

et al. 2016). In intensities, the GC excess corresponds to 2.67−3.65×10−6 ph cm−2 s−1 sr−1

compared to 5.43 × 10−6 ph cm−2 s−1 sr−1 for the Modified Excess Template. Because of

the different spatial morphology of the GC excess and H2-related γ-ray emission traced by

13CO, a direct comparison is unwarranted and we do not expect the latter to account for

the majority of the GC excess. However, the H2 emission extends beyond the latitudes

considered in this study and, albeit dimmer at higher latitudes, the estimates provided here

do not indicate its small scale component to be negligible. We estimate this contribution in
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Figure 2.5: The distributions of fluxes for each component of the best-fit model using the
Modified Excess Template over the full region for 1000 realizations of ∼ 12 years of Fermi–
LAT data. Note that one of the annuli (A4) has negligible contribution and the normalization
was fixed in the fitting process (corresponding to a flux of 4.98× 10−9 ph cm−2 s−1).

the GC region by considering, as above, a 15◦×15◦ region around the GC. In this region, the

contribution from H2-related emission (π0 decay only) traced by CO is ∼55×10−8 ph cm−2

(Ajello et al. 2016). If we adopt the same fraction of unmodeled pointlike emission for H2

as we find in the Mopra region, i.e. approximately 21%, this fraction translates into a very

rough estimate of this point-like contribution in the same region of the GC excess, i.e. about

11.5× 10−8 ph cm−2, or 46-63% of the GC excess for the same region. This estimate shows

that the point-like emission could correspond to a significant fraction of the GC excess.

This contribution could therefore confuse the GC excess morphology, depending on the

exact H2 emission outside of ±0.5◦ in latitude, because the techniques that track the point-

like fluctuations could erroneously ascribe unaccounted point-like emission (originating from

H2 gas in this case) to the GC excess (Leane & Slatyer 2019). Considerations based on the

spectrum of the unresolved source population could be powerful to settle this degeneracy,

however a robust determination is required.
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2.6 Implications for point source detection

We identify the structure traced by 13CO that is bright enough to be detected as a Fermi–

LAT point source and compare it to the unassociated sources in version 4FGL-DR2 of the

fourth Fermi–LAT catalog of γ-ray sources (Ballet et al. 2020). A significant overlap would

indicate that its brightest contribution has already been detected by Fermi–LAT and validate

the methodology to trace this component. To this end, we perform a likelihood fit where,

instead of including the Modified Excess Template in the model, we only consider the baseline

CO map and find additional point sources using the fermipy find srcs function. The method

calculates TS maps, and identifies point sources based on peaks in the TS. We use a test

point source modeled with a power law spectrum with spectral index=2, and a minimum

TS threshold of TS ≥ 16. An index of 2.7 is compatible with CRs interacting with gas,

and if used, it yields consistent results. In total we find 23 new point sources with TS≥16,

which are shown with green circles in Figure 2.2. For comparison, we also overlay 4FGL-DR2

unassociated sources. We find that 8/23 (35%) of the new sources are spatially consistent

with an unassociated 4FGL-DR2 source (based on an overlap of the 95% localization errors),

which accounts for 8/46 (17%) of the total unassociated sources in the region. To quantify

the probability that the associations happen by chance, we perform 1000 simulations, where

for each realization we randomly distribute 23 sources in the Mopra region. For each source

the Galactic coordinates are drawn from a uniform distribution and we assign an error radius

drawn from a Gaussian distribution, with the mean and standard deviation determined from

the 23 detected sources. From the 1000 simulations we find the average number of random

associations to be 3.16 ± 1.72, which corresponds to a p-value (i.e. N(≥ 8)/1000) of 0.012.

It is therefore likely that the brightest of the point-like emission traced by Mopra 13CO have

already been detected in the Fermi–LAT data.
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2.7 Discussion

The results presented here demonstrate that there likely exists significant structure in the

H2-related γ-ray emission detected by Fermi–LAT which is not currently included in the IE

models. Since its spatial morphology has point-like features, it directly affects the detection

of resolved and, potentially, unresolved point source populations in the γ-ray data. More

specifically, we have discussed the impact on the 4FGL-DR2 catalog and on the interpretation

of the GC excess. Although in this analysis we have focused on the region covered by

Mopra, similar conclusions would hold elsewhere because of the same limitations in tracing

H2. The methodology described here however can only be readily applied to limited regions

of the sky because of the paucity of observations of the rare H2 tracers. Unfortunately, we

cannot simply extrapolate the Modified Excess Template to other regions, even with a less

ambitious goal of providing only an estimate of this emission. This is because the Mopra

data on which it is based is tightly confined, especially in latitude. To address the limited

available observations, we have resorted to ML to develop a methodology that predicts the

distribution of the small scale H2-related γ-ray emission for other regions of the sky based on

the existing Mopra data. Because of its complexity, we describe the ML related work in §3,

where we show that we can train a convolutional neural network to predict 13CO based on

CO Mopra observations, and reproduce the H2-related small scale structure traced by 13CO

within the statistical uncertainty of the Fermi–LAT data in the Mopra region. We conclude

that our results justify applying this methodology to other regions of the sky by extending

it to employ the all-sky CO survey (Dame et al. 2001).
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2.8 Conclusions

In this paper, we assess whether there is point-like emission in the γ-ray data associated

with the interstellar gas and not currently included in models of the Galactic interstellar

γ-ray emission. We argue that this emission could significantly impact the detection of γ-ray

point sources along the Galactic plane, and hinder the characterization of extended γ-ray

sources, such as the GC excess. We employ the data from the Mopra Southern Galactic

Plane CO Survey, which includes tracers of the small scale structure of the H2-related γ-

rays, to improve models by more accurately describing the point-like features in the gas. We

find that significant point-like emission originates from H2 gas and the significance could be

as high as
√
TS ∼ 48 (depending on assumptions) in a 50◦×1◦ region covered by Mopra,

corresponding to ∼ 21% of the modeled H2-related γ-ray emission in the region. We also

show that this newly found point-like component may account for some fraction (≲17%)

of γ-ray point sources detected by Fermi–LAT in the Galactic plane whose origin is so far

unknown. That a significant number of unidentified 4FGL-DR2 sources along the Galactic

plane originate from unmodelled structure in the gas is not unexpected, but here we develop

a robust and reliable methodology to identify the contribution of both bright and dimmer

components of the H2 gas discrete emission. We emphasize that our results depend on the

assumptions we have adopted, e.g. a less conservative 13CO abundance ratio. Because of the

significance of this emission under plausible assumptions, we conclude that its contribution

in the GC region could introduce a significant systematic uncertainty in determining whether

the GC excess is smooth or point-like, and therefore more consistent with a dark matter or

pulsar interpretation, specifically when relying on statistical techniques such as the NPTF.

Identifying this component in the GC region could be a crucial step to settle the origin of

the GC excess.
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Improved Modeling of the Interstellar

Discrete H2 Component with Deep

Learning

A significant point-like component from the small-scale (or discrete) structure in the H2

interstellar gas might be present in the Fermi–LAT data, but modeling this emission relies

on observations of rare gas tracers only available in limited regions of the sky. Identifying

this contribution is important to discriminate γ-ray point sources from interstellar gas, and

to better characterize extended γ-ray sources. We design and train convolutional neural

networks to predict this emission where observations of these rare tracers do not exist, and

discuss the impact of this component on the analysis of the Fermi–LAT data. In particular,

we evaluate prospects to exploit this methodology in the characterization of the Fermi–LAT

Galactic Center GeV Excess (GCE) through accurate modeling of point-like structures in

the data to help distinguish between a point-like or smooth nature for the excess. We show

that deep learning may be effectively employed to model the γ-ray emission traced by these

rare H2 proxies within statistical significance in data-rich regions, supporting prospects to
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employ these methods in yet unobserved regions.

The Galactic γ-ray interstellar emission (IE) traces interactions of cosmic rays (CRs) with

the interstellar gas and radiation field. In §2, we showed that interstellar H2 gas is more

structured and point-like than current IE models assume, and the related γ-ray emission

might be a statistically significant component of the Fermi–LAT data. If this structure is

not adequately captured by the IE model, it can impact the identification of resolved point-

like sources as well as the characterization of extended components in the γ-ray sky. We

demonstrated that unidentified sources in the the fourth Fermi–LAT catalog (Ballet et al.

2020) could indeed be originating from it. In addition, we have argued that this component

could artificially inflate the unidentified and/or unresolved point source component in the

data and, depending on its morphology, contribute to confounding the interpretation of the

the Galactic Center (GC) excess observed by Fermi–LAT (Karwin et al. 2022; Goodenough

& Hooper 2009; Hooper & Goodenough 2011; Hooper & Linden 2011; Abazajian 2011;

Abazajian & Kaplinghat 2012; Abazajian et al. 2014; Gordon & Maćıas 2013; Daylan et al.

2016; Calore et al. 2015; Ajello et al. 2016) (see Murgia 2020c, for a thorough review).

Improved modeling of small-scale gas related emission in the Fermi–LAT data is therefore

necessary to robustly characterize γ-ray sources.

3.1 Tracers of H2 predicted with deep learning

Interstellar H2 gas is traced indirectly via the emission lines of other molecules that are

found concurrently in gas clouds. Carbon monoxide (12CO, or CO hereafter) is used as a

proxy, however, its line emission is typically optically thick in the denser cores of molecular

clouds, and therefore it underestimates the H2 column density there. The line emission of

rarer isotopologues of CO also present in the clouds, such as 13CO, remains optically thin to

larger column densities and are therefore more reliable to probe dense H2 cloud cores, and
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therefore the H2 small-scale structure. We briefly summarize the methodology we developed

in §2 to model this emission. We employ observations of the J = 1–0 transitions of CO and

13CO from the Mopra Southern Galactic Plane CO Survey (Braiding et al. 2018), which cover

a 50 square degree region, spanning Galactic longitudes l=300–350◦ and latitudes |b| ≤ 0.5◦.

As described in §2, the data reduction process by the Mopra team yields data cubes of the

brightness temperature for each spectral line, as a function of Galactic coordinates and local

standard of rest velocity. As described in detail in the rest of this chapter, we employ these

data to train machine learning (ML) models to predict 13CO in regions of the sky where

observations are not available. To ensure the highest quality data in the rare isotopologues,

only pixels for which the brightness temperature exceeds the 1σ noise provided by Mopra

are used. The performance of ML models may by biased by noise, and this conservative 1σ

noise threshold allows us to retain the majority of the data for training purposes while still

rejecting very low quality data.

We calculate H2 column densities corresponding to Mopra’s CO and 13CO, referred to

as N(H2)CO and N(H2)CO13 respectively. We integrate the column density to produce 17

velocity bins, corresponding to increasing radial distances from the Galactic Center. The

column density computation and integration procedure is described in §2. The final data is

stored as measurements in 1◦ × 1◦ × 17 tiles.

With this as input, we build a Modified Map by replacing N(H2)CO12 with N(H2)CO13

for pixels where N(H2)CO13 > N(H2)CO12. The “Modified Excess Template”, which corre-

sponds to the small-scale H2-related γ-ray emission traced by 13CO, is determined from the

difference between the Modified Map and the baseline CO map.

The central idea of this paper is to harness ML, in particular deep learning (Baldi 2021),

to predict the distribution of 13CO based on the CO observation, and therefore infer the

H2 small-scale structure in regions where 13CO observations do not exist. Since a straight-

forward and robust analytical mapping between the two distributions is not available, ML

29



Chapter 3. Improved Modeling of the Interstellar Discrete H2 Component
with Deep Learning

𝑪𝑪𝑪𝑪 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑫𝑫𝑫𝑫𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑻𝑻𝑫𝑫𝑪𝑪𝑫𝑫

𝟏𝟏𝟏𝟏𝟏𝟏 𝑷𝑷𝑫𝑫𝑷𝑷𝑫𝑫𝑪𝑪𝑫𝑫
𝟏𝟏𝟏𝟏
𝟏𝟏
𝑷𝑷
𝑫𝑫𝑷𝑷
𝑫𝑫𝑪𝑪
𝑫𝑫

𝑪𝑪𝑪𝑪 𝑷𝑷𝑷𝑷𝑫𝑫𝑷𝑷𝑷𝑷

𝑫𝑫𝟏𝟏 = 𝟕𝟕 𝑷𝑷𝑫𝑫𝑷𝑷𝑫𝑫𝑪𝑪𝑫𝑫

𝑷𝑷𝑷𝑷𝑫𝑫𝑷𝑷𝑫𝑫𝑷𝑷𝑫𝑫𝑫𝑫𝑷𝑷 𝟏𝟏𝟏𝟏𝑪𝑪𝑪𝑪
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑫𝑫𝑫𝑫𝑪𝑪𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑻𝑻𝑫𝑫𝑪𝑪𝑫𝑫

𝑫𝑫
𝟐𝟐

=
𝟕𝟕
𝑷𝑷
𝑫𝑫𝑷𝑷
𝑫𝑫𝑪𝑪
𝑫𝑫

Figure 3.1: A Graphical overview of our CO →13CO modeling process for a single velocity
bin. A CO column density tile of size 1◦ × 1◦ = 131 × 131 pixels (left) is split into into
overlapping smaller patches (center) of size 0.053◦ = 7 pixels. Patches are fed to a CNN
model to produce the corresponding predicted 13CO column density tile (right) by estimating
the 13CO column density at the center of each CO patch.

would estimate this mapping from data. We train a deep learning model to map between

CO and 13CO column densities in the Mopra region. To simplify this regression problem and

enlarge our effective data set, we subdivide the tiled Mopra data into small D1×D2 patches

of the sky to their respective center points (Figure 3.1). The validity of this simplification

requires the gas column density to be locally correlated. That is, we assume it is unlikely

that column densities outside of our chosen patch will significantly change the 13CO estimate.

This simplification greatly reduces the model size and provides us with an effective data set

of over 50 million patches when D1 = D2 = 0.0581, or 7 pixels at the Mopra resolution. We

find that larger patch sizes do not improve model accuracy, justifying this locality assump-

tion (see the supplemental material from C. Karwin, A. Broughton, S. Murgia, A. Shmakov,

M. Tavakoli, and P. Baldi 2022). We also apply smoothing techniques to eliminate noise

from the data (also C. Karwin, A. Broughton, S. Murgia, A. Shmakov, M. Tavakoli, and

P. Baldi 2022). The CO→13CO modeling problem may now be formally written as finding a

parameterized function fθ mapping a source patch S ∈ RD1×D2 to an estimate target column

density at the center of that same patch T ∈ R. The source Si corresponds to Mopra CO
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Figure 3.2: A diagram of the internal layers of the network. We maintain independent
weights for the 17 convolution layers, one for each velocity bin. However, the hidden and
output fully-connected layers share a single set of weights and the same layers are applied
to every velocity bin.

column densities and the targets Ti to the corresponding 13CO column densities at the center

of the patch (Figure 3.1).

We evaluate our estimates by splitting the Mopra region into independent sub-regions

which we designate for training and testing. We employ different splitting choices (see

C. Karwin, A. Broughton, S. Murgia, A. Shmakov, M. Tavakoli, and P. Baldi 2022)), but

we report on one, the Alternate Tiled split, throughout the remainder of this paper. This

split consists of alternating 1◦ × 1◦ tiles, training on longitudes {301 − 302, . . . , 349 − 350}

and testing on longitudes {300− 301, . . . , 348− 349}. This allows us to evaluate the model’s

performance on neighboring data, reducing the variance between training and testing data

distributions.

We employ convolutional neural networks (CNNs) to model and predict the 13CO col-
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umn density in a translation-invariant manner. CNNs use neurons with shared connection

parameters in order to implement convolution operations that provide the basis for building

translation invariant architectures (Baldi 2021). Each convolution operation is associated

with a kernel, or filter, corresponding to a set of connection weights that are shared by all the

neurons in the corresponding layer. For each of the 17 velocity bins, we apply K learnable

convolution filters of size D1 ×D2, operating on an entire patch and independently for each

velocity bin, producing 17 K-dimensional latent vectors for each patch. Afterwards, we ap-

ply parametric rectified linear units (PReLU Agostinelli et al. 2014; He et al. 2015; Tavakoli

et al. 2021) with a learnable slope, a batch normalization layer (Ioffe & Szegedy 2015), and

a random dropout layer (Srivastava et al. 2014; Baldi & Sadowski 2014). The latent vectors

are then processed by several fully-connected layers, each with their own PReLU , batch-

normalization, and dropout. Unlike the convolution layer, these hidden layers are shared

between velocity bins, learning identical weights for every bin. This design allows spatial

components (CNN) of the network to be specialized for each velocity bin while allowing

latent higher level components to be shared between bins. The resulting latent vectors are

fed through a final fully-connected layer which produces the 13CO concentration point esti-

mates for each patch and velocity bin. A diagram of the network architecture is presented

in Figure 3.2.

The Mopra dataset contains widely varying column densities from bright to very dim.

To effectively learn this high-spread distribution, we model the incidence of photons on

the Mopra detector as a Poisson process and use a Poisson log-likelihood loss. We further

re-weight this loss based on the 13CO density to elevate the importance of bright pixels,

prioritizing accuracy in hot-spots over a slight degradation in the background. This increases

the importance of accurate measurement in the bright regions, encouraging the network to

focus on the accuracy of these regions first. As the network trains, we anneal this weighting

back to uniform (with all target values having equal weighting) in order to minimize any bias
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introduced by this loss. The design of this loss is guided by the overall goal of finding small

angular scale features while limiting the amount of overestimation throughout the Mopra

region. A formal description of the loss function is available in C. Karwin, A. Broughton,

S. Murgia, A. Shmakov, M. Tavakoli, and P. Baldi (2022).

We tune the CNN’s hyperparameters using the Sherpa hyperparameter optimization li-

brary (Hertel et al. 2018, 2020), testing 2000 network variations, scoring each parameteriza-

tion with Poisson likelihood, and using Gaussian Process optimization to suggest parameters.

Our final parameterization is presented in C. Karwin, A. Broughton, S. Murgia, A. Shmakov,

M. Tavakoli, and P. Baldi (2022), which is evaluated after training the network for 200 it-

erations. We generate the predicted 13CO density by stitching the network output for every

patch in a source image. When performed on a single Nvidia Titan XP GPU, and batching

8192 patches at once, this inference process requires approximately 11 seconds to cover the

entire Mopra region.

3.2 Deriving H2 column densities

Following the same procedure as in §2, we employ the CR propagation code GALPROP

(v56)(Moskalenko & Strong 1998, 2000; Strong & Moskalenko 1998; Strong et al. 2000;

Ptuskin et al. 2006; Strong et al. 2007; Vladimirov et al. 2011; Jóhannesson et al. 2016;

Porter et al. 2017; Johannesson et al. 2018; Génolini et al. 2018) to calculate γ-ray sky maps

in 17 Galactocentric radial bins for the H2-related emission, where the latter is traced by

CO and 13CO. The CO and 13CO related H2 column densities, N(H2)CO13 and N(H2)CO

respectively, are used to determine the H2 that is missed in dense regions when only CO

is used as a tracer. We follow the procedure from §2 to determine the Modified Map and

“Modified Excess Template” (Figure 3.3, top panel) to construct their ML analogs. The

“Smart Map” is determined similarly to the Modified Map, but instead of using the true
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Figure 3.5: The fractional residuals between the nominal Smart Excess Template (Smart)
and Modified Excess Template (Modified) predicted counts per pixel as a function of Mod-
ified Excess Template pixel counts for training tiles (left), testing tiles (right), and all tiles
(bottom). The points and error bars represent the median and median absolute deviation
of the fractional difference for the pixels in 8 domain intervals (we note that the scatter of
the points within each interval is not simply characterized by these quantities and does not
always indicate a most probable outcome.) We also plot the boundaries of the ±1σ of the
Poisson noise fluctuations of the Modified Excess Template. We overlay the 25%, 50%, 95%
flux percentiles to indicate the flux fraction encompassed by pixels below that threshold.
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Mopra 13CO data, we use the 13CO estimates from the CNN. We use this to determine

the “Smart Excess Template”, defined as the difference between the Smart map and the

baseline CO map. The Smart Excess Template, also integrated over all annuli and energies,

is shown in Figure 3.3, bottom panel. The map covers the full Mopra region, which includes

alternating training and testing tiles for the CNN.

To assess how closely the CNN predicts the γ-ray emission inferred by Mopra observa-

tions, we compare the excess templates with three different metrics. We quantify the differ-

ences with the following three metrics which are determined by using the predicted photon

counts per pixel for each of the templates and scaled to ∼12 years of Fermi–LAT data (we as-

sume the same Fermi–LAT observation parameters and event selection as for the simulations

described in §2 and in this work): the absolute difference (Smart-Modified), the fractional

difference ((Smart-Modified)/Modified), and the difference in units of the standard devia-

tion, σ, of the Modified counts ((Smart-Modified)/
√
Modified). The latter metric allows us

to compare the magnitude of the differences due to the CNN performance in light of the

statistical power of the data. All results are shown in Figure 3.4 as a function of longitude

and latitude for the Mopra region (see C. Karwin, A. Broughton, S. Murgia, A. Shmakov,

M. Tavakoli, and P. Baldi 2022, for distributions of residuals integrated over the region). We

observe that for the vast majority of the region (83.6% of the pixels), the predicted counts

for the Smart Excess Template are within ±1σ of the Modified Excess Template counts, and

therefore the difference is generally within the statistical uncertainty of the data. This result

indicates that the CNN performance is adequate for modeling the small-scale structure in

H2-related γ-ray emission traced by Mopra, for the statistics achieved by Fermi–LAT.

The CNN performance varies with respect to longitude. Most tiles display either an

overall underprediction by the CNN across the entire tile or an overprediction, rather than a

comparable mixture of under/over predictions across the same tile. This may be explained

by the design of the loss function, placing increased importance towards brighter pixels while
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also biasing the network to prefer underprediction via Poisson regression. Prominent exam-

ples include the training tile 343◦ < l < 344◦ and testing tile 348◦ < l < 349◦, the brightest

in each dataset, where the CNN underpredicts the gas column density, as shown in Fig-

ure 3.4. The dependence of the residuals as a function of pixel brightness (in counts/pixel),

is shown in Figure 3.5 for the full Mopra region, and for the training and testing sub-regions

separately. Generally, better agreement between Mopra (Modified Excess Template) and the

CNN prediction (Smart Excess Template) is found for the brighter pixels. There is a broad

spread in the fractional residuals, but it is confined to be between ±50% for the vast majority

of the pixels. We overlay contours to indicate the ±1σ statistical fluctuations in the Modi-

fied Excess Template, which encompasses 83.6% of the pixels. We also overlay the median

and median absolute deviation of the fractional difference in bins of the Modified Excess

Template counts to guide the eye, but emphasize that the scatter of the points within each

interval cannot be simply characterized by these quantities and does not always indicate a

most probable outcome. As expected, we find that the CNN performs (somewhat) better in

the training tiles. Approximately 58% of pixels where the CNN prediction is beyond the ±1σ

level are in the testing sub-region. The CNN is more likely to overpredict the emission for

the dimmer pixels (60.8% of pixels across the full region are below the 25% flux percentile),

consistently with the design. The CNN overprediction in the dim pixels essentially spreads

out the brightness of hot-spots over a larger area. We also note that small statistics causes

the fractional difference to increase dramatically for the faintest pixels. Above the 90% flux

percentile, the distribution of the fractional residuals bifurcates into two separate distribu-

tion. The underpredicted pixels are in the 343◦ < l < 344◦ tile, and the overpredicted pixels

are in 333◦ < l < 334◦ tile, both in the training sub-region. This is likely caused by our

choice to combine independent convolution layers for each velocity bin with a shared hidden

layer. Since certain bins have higher overall brightness than others, the shared hidden layer

will attempt to average the error between the two extremes.
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3.3 Likelihood of excess γ-ray emission

We determine the significance of the Smart Excess Template in the Fermi–LAT data, simi-

larly to §2 for the Modified Excess Template. The simulations cover the same observations

and event selection (∼12 years, 1 − 100 GeV, P8R3 CLEAN FRONT+BACK). We only

simulate the H2-related γ-ray emission in the Mopra region, excluding all other components,

since our goal is to establish the performance of the Smart Excess Template in the optimistic

scenario where all other components are known. The simulated events trace the H2-related γ-

ray emission modeled with the Modified Map from Mopra. The simulated data are fit based

on a binned maximum likelihood method to a model that includes the baseline CO map

(as observed by Mopra) and the Smart Excess Template. The normalization of the Smart

Excess Template is free to vary in the fit. The energy spectrum, calculated by GALPROP,

is assumed, and held fixed during the likelihood fit. The normalization and spectral index

of the CO baseline contribution is also free to vary. The 17 radial bins from GALPROP

are combined into 4 radial annuli, which we refer to as A1, A2, A3, and A4, with the same

partitioning as in §2. Just as in §2, the normalization of the dim A4 bin is held constant to

a normalization of 1.0, contributing a partial flux of 4.98× 10−9 ph cm−2 s−1.

We simulate 1000 realizations and calculate the Test Statistics (TS) for the nested mod-

els: −2log(L0/L), where L0 is the null hypothesis (CO baseline) and L is the alternative

hypothesis (CO baseline and Smart Excess Template). The statistical significance is ap-

proximated by σ ≈
√
TS. The distribution of the

√
TS for the simulations is shown in

Figure 3.6 for the full Mopra region (solid line), and for the testing sub-region only (dashed

line). The Smart Excess Template corresponds to
√
TS = 27.5 ± 1.1 (mean and standard

deviation) in the full Mopra region and 12.9 ± 1.0 in the testing sub-region. The signifi-

cance in the testing sub-region is lower, not only because of the smaller statistics, but also

because the full region contains the training tiles where the CNN more closely matches the
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Figure 3.6: Statistical significance of the Smart Excess Template for the full Mopra region
(solid lines), and for the testing sub-region (dashed lines). Each contains 1000 realizations
of 12 years of Fermi–LAT data. A fit with a Gaussian distribution is overlaid to each distri-
bution. These distributions are compared to the results for the Modified Excess Template
from §2.

Figure 3.7: Distribution of fluxes for each component of the best-fit model using the Smart
Excess Template maps over the full region for 1000 simulations of Fermi–LAT data. The
results for the Modified Excess Template maps from §2 are overlaid. Note that one of the
annuli (A4), not shown, has negligible contribution and the normalization was fixed in the
fitting process.
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Figure 3.8: Fractional count residuals for the fit with the Smart Excess Template. The
green and yellow bands show the 68% and 95% confidence regions from 1000 simulations,
respectively. We also plot the results for a single simulation as an example in each case,
which is shown with black data points.

Mopra data. For comparison, the Modified Excess Template has a
√
TS = 48.3 ± 1.0 and

√
TS = 31.5± 1.0 for the full region and testing sub-region, respectively. In Figure 3.7, we

show the distributions for the best-fit flux of the Smart Excess Template overlaid with those

for the Modified Excess Template, as well as the flux for the CO baseline emission, separated

into annuli. The integrated flux for the Smart Excess Template is approximately 83.7% of

the flux of the Modified Excess Template, indicating an overall underprediction by the CNN.

The fractional count residuals ((Data-Model)/Model) as a function of energy for the best fit

model are shown in Figure 3.8 for the fits that include Smart Excess Template, in addition

to the other CO components. They are consistent with zero. The best fit spectra of the CO

components agree with the GALPROP prediction. Finally, Figure 3.9 shows the fractional

count residuals in latitude, longitude. The residuals, which incorporate differences between

the (best fit) Smart Excess Template and the (simulated) Modified Excess Template, are
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smaller than those shown in Figure 3.4, (middle panel) indicating the other CO model com-

ponents partially compensate for the discrepancies between the Excess Templates. We have

performed this analysis also using Gaussian Processes and find that the performance is worse

compared to the CNN (C. Karwin, A. Broughton, S. Murgia, A. Shmakov, M. Tavakoli, and

P. Baldi 2022).

3.4 Discussion

The ML methodology presented here must be refined to be extended to other regions of the

sky. The available all sky CO J=1–0 observations have significantly poorer spatial resolution

(8′ from Dame et al. (2001)) compared to Mopra (0.6′). The CNN model will therefore

require additional transfer learning to operate on lower resolution maps. The resolution

of the Fermi–LAT data is worse (for most energies and event types), suggesting that the

impact of the poorer CO resolution on the CNN predictions for the γ-rays might ultimately

be less pronounced. Another consideration is that the available 13CO training data for the

CNN from Mopra and other observations (Urquhart et al. 2018; Eden et al. 2020; Kalberla

et al. 2020; Blackwell et al. 2017; Di Teodoro et al. 2018), are confined to the Galactic plane.

The H2 scale height is low, but its small-scale structure contribution at higher latitudes

might not be negligible because of the contribution of more local H2. However, because of

the lack of adequate training data the CNN prediction for this component could be more

uncertain and this is relevant for the characterization of the GC excess, which extends to

high latitudes. Finally, this analysis inherits the limitations and uncertainties in modeling

the H2 component with traditional methods, including the loss of kinematic resolution for

the gas in the direction of the GC (Ackermann et al. 2012). And it adds another: the H2

column densities from CO and 13CO have been treated independently in this work. Their

estimates can be related analytically, but rely on a assumptions pertaining to the optical
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depth, beam filling factor, spatial variation, etc. (e.g. Burton et al. 2013; Cormier et al.

2018). More ambitiously, ML may be used to constrain some of these uncertainties by using

the γ-ray data. Finally, small-scale structure in the γ-ray data could also arise from other

components of the IE, e.g. related to Hi, and shall be included in a more comprehensive

study.

3.5 Conclusions

We have presented a methodology that harnesses ML to predict the small-scale component

of the interstellar H2 gas and its related γ-ray emission for the first time. Our work is

motivated by the the fact that while CO is widely employed as a tracer of H2, its emission

alone does not reliably capture the more highly structured component of H2. Incorporating

this small-scale component in γ-ray IE models is crucial for determining γ-ray point sources

and could affect the characterization of extended γ-ray sources, e.g. the Fermi–LAT GC

excess. Here, we have improved H2 modeling by employing observations from the Mopra

survey which includes isotopologues of CO such as 13CO that do not suffer from the same

limitations and can, therefore, more reliably trace the H2 small-scale structure (the survey

spans Galactic longitudes l=300–350◦ and latitudes |b| ≤ 0.5◦.) In particular, we designed

and trained a CNN to predict the concentration of 13CO in the Mopra region.

We have tested the performance of this methodology in predicting the contribution of

the H2 related γ-ray small-scale structure to the Fermi–LAT data. We find that the accu-

racy of the predicted γ-ray emission, which incorporates the CNN-predicted contribution,

is within the statistical uncertainty of the Fermi–LAT data for the vast majority of the re-

gion. Moreover, the predicted γ-ray contribution can have a large statistical significance,

∼
√
TS = 28 if we assume other components of the γ-ray IE are known. We designed a

dynamically-weighted loss function for the CNN’s training to prioritize emission accuracy
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from brighter spots in the Mopra data while avoiding over-predicting the 13CO concentration

in these regions. This is a conservative choice aimed at minimizing the injection of spurious

γ-ray sources in the IE model. As a consequence of this design, over-prediction is more

likely for the dimmer spots, which we show to be less important. Based on these results,

we conclude that deep learning can improve the modeling of γ-ray emissions in data-rich

regions, supporting prospects to extend this methodology to other regions of the sky. In this

work, we restrict our analysis to the Mopra observations of CO and 13CO which are confined

to the Galactic plane. Extending this methodology to other regions will require the CNN

model to describe 13CO from the poorer resolution CO maps available for the majority of

the sky, and will require extrapolating predictions to higher latitudes.
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The Legacy Survey of Space and Time
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Introduction

Consider the path of light, from the event it was created until the event it arrives at our

telescope at our single vantage point in spacetime. This light, generated by some physical

process, will propagate along a path defined by the geometry of the Universe and its inter-

actions along the way. It’s path may deviate from a straight line by the gravitational effects

of nearby bodies. It also may be attenuated, boosted, polarized, or absorbed and re-emitted

all by different materials it encounters along its worldline. When it arrives at Earth, we can

only measure it’s brightness, energy, directionality, and depending on one’s detector, it’s po-

larization. It’s properties encode the sub-processes, contents, and evolution of the Universe

since it was emitted. Because light travels at a large but finite velocity, the further away the

light begins its journey, the earlier into history it can record. Our best cosmological theory

has has developed from this idea by inferring from observational evidence obtained using

advanced instrumentation and analytical techniques.

Three key observations made in the past century led to our current understanding of

the Universe: (i) galaxies are all moving away from each other and accelerating despite

the gravitational forces between them (Hubble 1929; Perlmutter et al. 1999); (ii) the current

relative abundances of the lightest elements (e.g. [H/He]) cannot be explained by the nuclear
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processes within stars, but can be explained by also considering nuclear reactions in an early

hot universe; (iii) detection of emission from a nearly perfect blackbody spectrum at 2.7K

with only small fluctuations (δT < 10−5), which is predicted to be a colder relic from the

moment the universe became cold enough to form neutral atoms. These observations suggest

that the Universe was once very dense, very hot, and very homogeneous (same everywhere)

and isotropic (same in all directions). To explain the expansion of the Universe, we have

needed to propose the existence of a source of gravitational repulsion called dark energy. And

in order to counteract the expansion enough to form large structures within this accelerating

Universe, we have been forced to also propose the existence of an extra source of gravitational

pull called dark matter. However, the true nature of these components unknown. Different

versions of dark energy and dark matter fit into different inflationary models of the Universe.

And differences between the best-fit inflationary models from early- and late- universe probes

are already hinting at a potential paradigm shift in our understanding.

However, cosmological surveys have not yet achieved the necessary sub-1% level preci-

sion needed to distinguish between different inflationary models. One of reasons for this is

inadequate correction of instrument-induced distortions. The model constraining power of

future cosmological surveys will not greatly improve unless potential systematic errors in

the instrumentation can be adequately treated. This thesis details my efforts to meet these

targets in future cosmological surveys.

4.1 Modern Cosmology

Consider again the path of light as it travels through the Universe. Einstein’s theory of

general relativity describes how a distribution of matter and energy can distort the coordinate

system of the universe in which our photon travels. In a universe that is homogeneous and

isotropic, then the distance between any two events separated by space and time is governed
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by Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric:

ds2 = −dt2 + a2(t)dΣ2 (4.1)

where in spherical coordinates dΣ =
[

dr2

1−κr2
+ r2(dθ2 + sin2 θdϕ2)

]
describes the geometry of

the Universe, and we are following the convention of natural units (ℏ = c = kb = 1).

This equation is a solution of Einstein’s field equations and represents a generalized

topological framework that maps a small step in coordinates in space and time (the path

of our light) to a small step in a reference frame independent of the observer (us). The

parameter κ is derived from Einstein’s field equations, and describes the curvature of the

coordinate system by the distribution of matter and energy inside of it. For a universe that

contains energy distributed in a homogeneous and isotropic way, κ is allowed to be “flat”

(κ = 0, parallel lines will never meet), positively curved (κ = +1, parallel lines will converge),

or negatively curved (κ = −1, parallel lines will diverge).

The evolution of the geometry of the Universe is captured by the scale parameter a(t),

which is defined so that the size of the Universe today is 1. In the thermodynamic view of the

Universe, the Universe expands adiabatically (i.e. no energy enters or leaves the Universe),

so its evolution is just determined by the equation of state wX = PX/ρX (the ratio of the

partial pressure to the energy density) of each of the contents within it. This is given by the

Friedmann equation with the set of cosmological parameters Θ = {H0,ΩM ,ΩR,ΩDE, w}:

H(t) =
ȧ

a
= H0

(
ΩMa

−3 + ΩRa
−4 + ΩDEa

−3(1+w) + Ωka
2
)1/2

. (4.2)

The ratio of the expansion rate of the Universe to its current size is defined as the Hubble

parameter H (where H0 refers to the value of the constant today). This parameter depends

on the contents of the Universe, ΩX = ρX/ρc, which is the ratio of the density of component
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X relative to the critical density ρc = 3H2
0/8πG (the critical density of matter and energy

that would make a homogeneous and isotropic universe flat, ΩTOT =
∑

X ΩX = 1). Here we

consider just the contributions from:

1. Matter (ΩM): This includes contributions from all matter and could include cold (non-

relativistic) dark matter (e.g WIMP scenario) since both have the same equation of

state. It’s energy density scales inversely-proportional to the volume of the universe

(∝ a3).

2. Radiation (ΩR): This includes contributions from massless particles like light (Ωγ) as

well as light-like (relativistic) particles such as neutrinos (Ων), which have very low

mass, or potentially hot (relativistic) dark matter. It’s energy density scales inversely-

proportional to volume of the universe and its own wavelength (∝ a4).

3. Dark energy (ΩDE): This is a hypothetical component with a generic equation of state

w that would cause the universe to accelerate if w < −1/3.

4. The curvature of the universe (Ωk): This includes the contribution from the energy

density of the curvature of the universe itself. It is defined by the deviation from critical

density from the combination of all other components Ωk = 1− ΩTOT.

Although, numerous versions of this theory exist (see the review by Huterer 2023), and one

could easily remove components from the theory or extend it to include contributions from

any theoretically abstract form of matter and energy as long as an equation of state can be

defined.

The ΛCDM (“Lambda Cold Dark Matter”) universe is a special case of this theoretical

framework. This universe is described with contributions from matter and cold dark matter,

radiation, dark energy, and curvature. The dark energy in this special model has an equation

of state of w = −1, making dark energy a “cosmological constant” defined by Λ = 3H2
0ΩDE.
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Another special case, w0waCDM, is similar except dark energy is allowed to evolve over time

by allowing the dark energy equation of state to depend on the scale parameter so that

w = w0 + wa(1− a).

A consequence of the expansion of the Universe is that the light is stretched to longer

wavelengths (redshifted) with the expanding spatial coordinates. The ratio between the

wavelength of the light when it was emitted (λe) and the wavelength of the light when it

was observed (λo) is directly related to the ratio of the scales of the Universe at those times

such that z = λo/λe = a(to)/a(te) − 1. The amount by which light is spectroscopically

shifted depends on the distance it has traveled in a changing universe. Redshift is often

a useful proxy for the distance that the light has traveled since it is a directly observable

property of light. Certain processes within different elements and molecules emit light at

known wavelengths, and we can measure the redshift directly by comparing the observed

wavelengths to the known emitted wavelengths. It is therefore often useful to write out the

theory with this parameter in place of a distance parameter.

Note that when we refer to the distance that a photon travels, there are actually three

different ways to measure distances within this description of the Universe: the comoving

distance, the luminosity distance, and the angular-diameter distance. The comoving dis-

tance evolves with the expanding universe (the so-called “Hubble flow”) giving a distance

measurement that does not change with time. The comoving distance (r) at a given moment

in time is related to the physical distance we would measure if we could pause time and

measure the distance between two places with ruler (the proper distance dp) by the scale

factor of the universe:

r(t) = dp(t)/a(t) (4.3)

Given our formalism for an evolving universe, the comoving distance over which a photon

travels from the moment it was emitted until we observe it in the present epoch is related
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to the content of the universe:

r(z) =

∫
dt

a(t)
= −

∫ 0

z

dz′

H(z′)
=
H−1

0√
Ωk

sin

[√
Ωk

∫ z

0

dz′

E(z′)

]
(4.4)

where

E(z′) =
[
ΩM(1 + z′)3 + ΩR(1 + z′)4 + ΩDE(1 + z′)3(1+w) + Ωk(1 + z′)2

]1/2
. (4.5)

The comoving distance is invariant with a changing scale factor, which is why we never

directly measure this distance. Note that hereafter, we will specifically denote the comoving

distance for a flat universe with χ(z).

More realistically, we might infer the luminosity distance (dL) based on a comparison

of the apparent flux of light of an object with a known intrinsic luminosity. If we have two

objects of the same luminosity and one is further away from us, the one that is further away

will look dimmer. We know how the flux of light reaching us decreases with distance:

f =
L

4πd2L
(4.6)

where L is the known intrinsic luminosity of the object which gets spread out over a sphere

of area 4πd2L resulting in us observing a flux f . The radius of the sphere over which the

light is spread out is the comoving distance. The light will be spectroscopically shifted by

an expanding universe by a factor of (1+ z), and it will also be received by the observer at a

rate scaled by (1+z). Therefore, the luminosity distance is related to the comoving distance

by:

dL(z) = (1 + z)r(z) (4.7)

Another way to measure distance is by inferring the angular diameter distance based on
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a comparison of an object’s angular size on the sky (∆θ) with its known proper length (∆l).

The arc length is related to the proper length by ∆l = a(t)r∆θ. This ratio is related to the

comoving distance between the observer and the object:

dA(z) =
1

1 + z
r(z) (4.8)

In this theoretical framework, we have only made two assumptions: (i) Einstein’s theory

of general relativity and (ii) the homogeneity and isotropy of the Universe. From this we

have shown that the distribution and relative content of different constituent forms of matter

and energy on the scales of the Universe deterministically constrain the the evolution of the

Universe. It is apparent also that an evolving universe affects the brightness, directionality,

and color of light observed from distant objects. Perhaps by some lucky accident these

properties also happen to be observables we can measure from our own single vantage point

on Earth.

4.2 Measurements of the Late Universe

The theory described in the previous section describes how the Universe evolves based on the

distribution and relative content of matter and energy. Fundamental to the theory of general

relativity, from which this framework is developed, is the idea that “matter tells spacetime

how to curve, and curved spacetime tells matter how to move” as the eminent physicist John

Archibald Wheeler once said. If we map all the matter we can find in the Universe, we observe

that the Universe is generally homogeneous and isotropic on scales above 100 Mpc, but below

this level there are structures formed by this matter (e.g. stars, globular clusters, galaxies,

and galaxy clusters) which are inhomogeneities which formed from their interactions through

gravity and other short-range physical processes (LSST Science Collaboration et al. 2009;
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Planck Collaboration et al. 2020a; Huterer 2023). These structures form and move within

the evolving Universe and trace its evolution through time. In this thesis, we primarily focus

on just a couple of these cosmological probes that utilize this principle.

4.2.1 Type Ia supernovae

The most direct measurement of the evolution of the Universe through time would be to

relate the distance to galaxies with redshift as they sit within the Hubble flow. Galaxies will

of course be Doppler shifted by their kinematic motion under gravity, but they will also be

redshifted as they move apart by simply sitting within the expanding Universe. Observing

many galaxies will average out the dispersion of redshifts due to their gravitational kinematic

motion, and leave us with just the redshifts resulting from the expansion of the Universe.

And if we knew the exact distance to these galaxies, we would know exactly how long the

light has been traveling to get to us. If could know both the distance and redshift to distant

galaxies, we could construct a picture of the expansion of the Universe as a function of

lookback time.

One way to do this is with a standard candle. To illustrate this, we can imagine two

candles with the same luminosity. If we were to move one candle further away, we could easily

determine the relative distance between them by how much the apparent flux has changed.

If we had good knowledge of the distance to the first candle, we could confidently measure

the distance to the second candle. Classical Cepheid variable stars are known standard

candles; the periodicity of their brightness is correlated with their peak brightness, and they

are typically close enough that we can use parallax angles to independently measure their

distance from us (see the discovery of Cepheid variables in the Small Megellanic Cloud by

Leavitt & Pickering 1912).

Type Ia supernovae (SN Ia) are a homogeneous class of standard candles that can be seen
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over much greater distances (Branch & Tammann 1992). They are extremely bright explo-

sions that occur when a white dwarf star, accreting matter from an unfortunate companion

star, hits the Chandrasekhar mass limit. These explosions are very bright and short-lived.

The few examples we have found (approximately 7,000 to date Brout et al. 2022; Rubin

et al. 2023) are commonly bright enough to outshine their host galaxies and can be seen over

many gigaparsecs away. They typically fade after about a month, making them tricky to

catch not observing the right place at the right time. However, the SN Ia sub-class has a few

properties that make it very useful standard candle. For one, SN Ia have approximately the

same maximum total luminosity.1 Secondly, the SN Ia sub-class is characterized by an easily

recognized emission line from silicon (Si II) around 2eV. And thirdly, some SN Ia occur in

galaxies with observable Cepheid variable stars, which allows us to thoroughly calibrate and

test our empirical relations with other independent measurements of distance. Combining

observations of parallax, Cepheids, and SN Ia, we can construct a cosmic distance ladder to

map redshift as a function of distance.

The observed brightness is measured by the apparent magnitude m, which a logarithmic

measurement of flux compared to a well-calibrated reference source, and the the true bright-

ness is measured by the absolute magnitude M , which is a similarly reference-calibrated

logarithmic measurement of its intrinsic luminosity. The difference between these magni-

tudes is the distance modulus, which is simply related to the luminosity distance:

µ ≡ m−M = 2.5 log10(
dL
10pc

)−Kcorr, (4.9)

1In general SN Ia are not intrinsically standard candles; their peak fluxes can vary depending on extinction
from the environment (e.g. the interstellar medium or ISM) within their host galaxy, for example. However,
the peak flux of a SN Ia are correlated with other properties of their light curve and the properties of
their host galaxies (e.g. how long it takes to reach its peak or fall back down and its color) (Guy et al.
2007; Kenworthy et al. 2021). The diversity of different supernovae and the covariance of different SN Ia
properties has been intensely studied, and many treatments exist. Many studies will include additional
terms to distance modulus (Equation 4.9) that act as corrections to the absolute magnitude (also refer to
Kenworthy et al. 2021).
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whereKcorr is a correction to account for the fact that we measure the apparent magnitude in

a single physical filter while the supernova emits a broader spectral energy distribution (SED)

in its own rest frame. These observables are clearly sensitive to the underlying cosmological

model of the Universe. The distance to the supernova tells us how long the light from the

explosion has been traveling, and the redshift of the light measures the relative size of the

Universe from the exact moment of the supernova explosion.

In practice, we try to find the set of cosmological parameters that minimizes the difference

(called the “Hubble residual”), between the observed distance modulus with the distance

modulus predicted by our model of the Universe, which for a single galaxy (index i) is given

by:

HRi = µobs,i(zi) − µMODEL(zi,Θ). (4.10)

Compiling searches over the past couple of decades have confidently turned up thousands

of SN Ia in the late Universe, around z = 0.001− 2.26 (Brout et al. 2022; Rubin et al. 2023),

mainly split between low redshift samples (e.g. Riess et al. 1998; Kowalski et al. 2008)

and high redshift samples (Perlmutter et al. 1999; DES Collaboration et al. 2024, e.g.).

The largest and most recent self-consistent analysis of SN Ia comes from the Dark Energy

Survey (DES) Supernova Program (DES Collaboration et al. 2024). Their observations

were consistent with a ΛCDM Universe that is flat with Ωk = 0.16± 0.16 and dominated by

matter and dark energy (ΩM ,ΩΛ) = (0.291+0.063
−0.065, 0.55±0.17) with a Hubble constant of H0 =

73 km s−1 Mpc−1, although these data are also consistent, within statistical uncertainties,

with dynamical models (w0waCDM) that allow dark energy equation of state to change

with time. Even the most recent and complete SN Ia analyses continue to be dominated by

statistical uncertainties rather than systematic uncertainties (e.g. DES Collaboration et al.

2024), and more data will be needed in the future to increase our confidence to distinguish

in these models.
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4.2.2 Weak gravitational lensing

Another way to measure the the scale of the Universe through time is by tracing the size and

distribution of the different structures in the Universe at different redshifts. The expansion

of the Universe under the influence of dark energy directly opposes the growth of structure

under the influence of gravity. The statistical distribution of different structures can therefore

depend on the relative contents of the Universe and can constrain our cosmological models.

The simplest way to measure these properties (besides straightforward counting of galax-

ies/clusters of galaxies as a function of apparent magnitude per unit area, dN logN(m)/dm,

of course) is with the two-point correlation function (2PCF). If there is an object at position

x⃗, then the excess probability of finding another object at position x⃗′ = x⃗ + r⃗ is the corre-

lation function ξ(r). Note that in an isotropic Universe, we can simply replace r⃗ with the

scalar distance r. For any matter density fluctuation δ(θ⃗) = (ρ(x⃗)− ρ̄)/ρ̄, where ρ(x⃗) is the

density at x⃗ and ρ̄ is the mean density, the two-point correlation function is:

ξ(r) =
⟨[ρ(x⃗)− ρ̄][ρ(x⃗′)− ρ̄]⟩

ρ̄2
≡ ⟨δ(x⃗)δ(x⃗′)⟩ (4.11)

where ⟨..⟩ refers to an average over all positions x⃗. Perhaps more usefully, it is common to

use the Fourier transform of the two-point correlation function, which is called the matter

power spectrum (P ):

ξ̃(k) = ⟨δ̃(k⃗)δ̃∗(k⃗′)⟩ = (2π)3δ
(3)
D (k⃗ − k⃗′)P (k⃗) (4.12)

where δ̃m(k⃗) is the Fourier transform of the matter density fluctuations δm(θ⃗) and δ
(3)
D (k⃗− k⃗′)

is the 3D Dirac delta function. Note that in an isotropic Universe, we can simply replace k⃗

with the scalar wavenumber k.

The structure of the Universe was seeded by small primordial density fluctuations that
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grew under the influence of gravity as the Universe evolved. Structure formation requires

complicated multi-dimensional models of all the physical sub-processes involved (Krause &

Hirata 2010), however the problem can be simplified by only considering density fluctuations

within the cosmic horizon which can causally interact to form structures and late times (so

that the speed of sound in the medium is negligible), in which case the fluctuations grow

linearly under the influence of gravity in the expanding Universe:

δ̈ + 2Hδ̇ − 4πGρm(t)δ = 0. (4.13)

This equation is generally true for small density fluctuations (|δ| << 1) in the early Uni-

verse, which is largely consistent with observations of relic radiation from the surface of

last scattering (highly Gaussian fluctuations of rms ∼ 10−5 with a blackbody spectrum cold

enough form neutral hydrogen at redshift z ∼ 1100) (Planck Collaboration et al. 2020b).

These densities grow independently of wavenumber, so we only write the density fluctua-

tions as a function of time here. We call the large scales on which this equation accurately

approximates the growth of structure as the “linear” scales and correspondingly refer to the

“linear part” of the matter power spectrum. We also refer to small scales as the “non-linear

part” of the matter power spectrum, where other physical processes complicate structure

formation and evolution and require more specialized simulations/modeling to predict from

theory (Krause & Hirata 2010). The largest (sub-horizon) objects are galaxy clusters, and

they make up the so-called large-scale structure (LSS) of the Universe, although the form of

these structures are still affected by non-gravitational processes and are actually part of the

non-linear regime.

The over-densities of matter in the LSS distort the topology of spacetime around them,

and light follows along a path defined by the distorted space. Image distortions of galaxies are

therefore sensitive to the statistical properties of this structure through different cosmological
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lookback times, and can be used to measure the evolution of the Universe as a whole.

Gravitational lensing of galaxies by the LSS produce only a small distortion or “shear” to

the shape of a galaxy (typically 0.01–1%). We call this weak gravitational lensing (WL).

For sufficiently small distortions and where the size of the galaxy is much smaller than

the angular size of the lensing structure, we can approximate the effect of WL as a linear

mapping from an unlensed “source” plane to a lensed “observed” plane. We will then describe

the observed light from a galaxy as a distribution of light coming from a direction θ⃗, which

was distorted by a linear transformation from a true direction β⃗. We can write this formally

as:

f obs(θ⃗) = f s(Aθ⃗), (4.14)

where the approximate distortion can be described by a distortion matrix A, which is the

Jacobian of the transformation from the unlensed coordinate system to the lensed coordinate

system. In a simple Born approximation, the change in the observed direction of the light is

proportional to the integral of the 3D gravitational potential along the line-of-sight. We can

write down the 2D lensing potential in the lensed coordinate system as the integral of the

3D gravitational potential along the line-of-sight to the source at a comoving distance χs:

ψ(θ⃗) =
2

c2

∫ χs

0

dχ
χs − χ

χsχ
Φ(χθ⃗, χ). (4.15)

Where the gravitational potential is given by the Poisson equation around a small density

contrast, which we can write in comoving coordinates:

∇2Φ(χθ⃗, χ) =
3

2
ΩMH

2
0a

−1(χ)δm(χθ⃗, χ). (4.16)

Since there is a physical symmetry here, we can decompose the distortion matrix into a

diagonal term involving the convergence (κ) and a symmetric, traceless term involving the
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shear (γ):

Aij =
∂βi
∂θj

= (δij −
∂2ψ(θ⃗)

∂θi∂θj
) =

1− κ− γ1 −γ2
−γ2 1− κ− γ1.

 . (4.17)

The shear component distorts the shape of the galaxy and a combination of the shear and

convergence changes the size and brightness (“magnification”) of the galaxy. These compo-

nents are derived from the gravitational potential:

κ =
1

2
(∂1∂1 + ∂2∂2)ψ(θ⃗)

=
1

2
∇2ψ(θ⃗) =

1

c2

∫ χs

0

dχW (χ)δm(χθ⃗, χ)

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ(θ⃗)

γ2 = ∂1∂2ψ(θ⃗).

(4.18)

The function W (χ) is called the lensing efficiency function, and it defines the distribution

of lensing matter along the line-of-sight:

W (χ) =
3

2
ΩMH

2
0a

−1(χ)χ

∫ χlim

χ

dχ′ns(χ
′)
χ − χ

χ′ (4.19)

for a distribution of source objects ns(χ), which for a single galaxy is ns(χ) = δ(χ− χs).

When we measure the shape of a galaxy, we measure some flux distribution over an

image in pixels. One of the simplest ways to measure the shape using the radially weighted

quadrupole moments in the image coordinate system:

Mij =

∫
dθ1dθ2θiθjw(θ)I(θ)∫
dθ1dθ2w(θ)I(θ)

, (4.20)

where I(θ) is the value of the pixel in the image in direction θ, and w(θ) is a weight function

to minimize the contribution of the low signal-to-noise (S/N) regions. The corresponding
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size (T ) and complex-valued ellipticity of the galaxy is then given by:

T =M11 +M22

e1 =
M11 −M22

M11 +M22

e2 =
2M12

M11 +M22

.

(4.21)

A galaxy’s true ellipticity (eint) has a well-defined response to an applied shear. We can

approximate the observed ellipticity (eobs) as:

eobs ≈ eint +
2γ

1− κ
. (4.22)

We do not observe the shear and convergence individually, we only observe the reduced shear,

which is the combined effect of both types of distortions g = γ/(1− κ). In addition, we do

not know the true shape and size and orientation of a galaxy, so we can only ever estimate

the reduced shear, which we will denote ĝ (a detailed discussion of different shear estimators

is in §4.3.1).

The physical symmetry of the shear components means that if we rotate the system

by 180◦, the rotated shear would be identical to the unrotated shear. This means that we

can represent the shear as a spin-2 (“spinor”) pseudovector quantity and write shear as a

complex-valued number γ = γ1 + iγ2 = |γ|e2iϕ, where ϕ is a polar angle orientation of the

galaxy.

We have not yet defined a precise coordinate system to measure our shears. A convenient

coordinate system then might decompose the shears into a +/× basis, where the + part is

aligned parallel or perpendicular to the line connecting the pair of galaxies, and the × part

is defined along a 45◦ angle relative to that line. Therefore, we decompose our estimated
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reduced shear as:

ĝ+ = −ℜ[ĝe−2iϕ]

ĝ× = −ℑ[ĝe−2iϕ].

(4.23)

In the same way, it is common to decompose the correlation functions of spin-2 quantities

like shear into powers of divergence (E-mode) and curl (B-mode) components (LSST Science

Collaboration et al. 2009). The shear correlation caused by a scalar gravitational potential

would produce tangential shear and no curl shear, and therefore E-mode would be nonzero

and the B-mode would vanish. Non-zero B-modes could be a sign of non-Gaussian distribu-

tion of primordial density fluctuations sourced by early gravitational waves (Meerburg et al.

2016). The observed ratio of E/B amplitudes is less than 1/500 over a large range of angu-

lar scales (Hilbert et al. 2009; Krause & Hirata 2010), which is likely outside the realm of

measurement for current WL surveys. Therefore, non-zero B-modes are more likely a sign of

systematic errors like poor shear estimation, atmospheric effects, astigmatism in the optics,

or a non-flat focal plane, and they have been useful metric for finding systematic errors in

cosmic shear measurement and analysis (for examples of old and new analyses of B-modes

in cosmic shear surveys see Schneider et al. 2010; Becker 2013; Hamana et al. 2022).

In a realistic analysis, we have a catalog of eobs for many galaxies. The galaxies in

this ensemble have intrinsically varied shapes and orientations (“shape noise”). If galaxies

have a underlying random dispersion of shapes and intrinsic alignments, then these stochastic

variations will average out if we consider an ensemble of many galaxies (⟨eint⟩ = 0). However,

the shear caused by WL occurs coherently around features in the LSS of the Universe, and

this component will not average away. We would expected there to be some amount of

coherent shear (“called cosmic shear”) along the axis of the tidal gravitational field on

different angular scales. Under this assumption, we can infer the reduced shear from the
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observed ellipticities of an ensemble of many galaxies in a field (ginf = ⟨eobs⟩).

In practice, it is more useful to use the two-point correlation function of shears at different

angular scales. For a pair of galaxies, one at position θ⃗1 and the other at θ⃗2, the angular

distance between them is θ = |θ⃗1 − θ⃗2|. A 2PCF can be written for the shears of all pairs of

galaxies separated by an angular separation θ. Typically, we will weight the averages by the

inverse of statistical shape noise (based on the number of galaxies at a given separation) and

estimated systematic error. We will again denote this operation by the standard standard

angle brackets ⟨..⟩ notation. The correlation function is then given by ξ̂ĝĝ(θ) = ⟨ĝ · ĝ∗⟩ =

ξ̂+(θ) + ξ̂−(θ), where

ξ̂+(θ) = ⟨ĝ+ĝ+⟩(θ) + ⟨ĝ×ĝ×⟩(θ)

ξ̂−(θ) = ⟨ĝ+ĝ+⟩(θ)− ⟨ĝ×ĝ×⟩(θ).
(4.24)

Note that the cross-correlation terms conveniently vanish due to parity symmetry in the

Universe (⟨ĝ+ĝ×⟩ = ⟨ĝ×ĝ+⟩ = 0).

The utility of the shear-shear autocorrelation function is extended with galaxy samples

that span redshift bins, which allows us to take a tomographic view of the LSS through

lookback time. We can calculate the correlation functions between all pairs of galaxies

between redshift bin i and j that are separated by an angular separation θ. The Hankel

transform of this gives us the power of the coherence as a function of angular wavenumber,

and it turns out that this is also directly related to the matter power spectrum. We write

this out as:

ξij±(θ) =
1

2π

∫
dllCij

l J2∓2(lθ). (4.25)

where Jn are just n-th order Bessel functions of the first kind. The coefficients are given by:

Cij
l =

∫ ∞

0

dz
Wi(z)Wj(z)

χ(z)2H(z))
Pδ

(
l

χ(z)
, z

)
. (4.26)
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Notice that the shear-shear correlation function is related to the integral of the matter power

spectrum over the line-of-sight, where we have a wavenumber (l/χ), and Wi(z) is the lensing

efficiency function for tomographic redshift bin i with a known number density of galaxies

as a function of redshift (ni(χ′(z))). Our cosmological theories most directly predict matter

power spectrum, which can be derived analytically in the linear regime from Equation 4.13,

or predicted from simulations or modeling (Krause & Hirata 2010) in the non-linear regime,

which we can then compare to the matter power spectrum based on the observed shear power

spectrum.

Shear-shear correlations are typically less than 1% over a given region of the sky, and

the correlation drops off rapidly with distance (e.g. Miyatake et al. 2023). The precision

with which we can measure the anomalous correlations depends on the effective number of

galaxies we have in the sample. Some galaxies have very low signal-to-noise ratio, which

means they will not effectively contribute to averaging out shape noise in the galaxy sample

(Mandelbaum et al. 2018). In order to infer a correlation function with significance, one

needs to utilize samples of many galaxies, typically on the order of 106 − 1010 galaxies

(Almoubayyed et al. 2020).

The shear-shear power spectrum’s sensitivity to both the background geometry and the

large-scale structure of the Universe makes this a particularly powerful probe of cosmology.

The amplitude of the shear power spectrum at a given scale depends on the distance-redshift

relation, the value of the matter power spectrum at that scale, and to the curvature of the

Universe. In particular, the shear power spectrum is expected to scale proportionally with

Ω2
Mσ

2
8 in the linear regime, where σ8 is the amplitude of the mass fluctuations on the scale

of galaxy clusters (8h−1 Mpc) and is essentially the normalization of the matter power

spectrum. The shape of the power spectrum is therefore degenerate between these two

parameters. Occasionally, these parameters are combined into S8 = σ8(ΩM/0.3)
0.5, which

is orthogonal to this degeneracy, and this is an important parameter to compare between
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late-time cosmic shear and early-time Cosmic Microwave Background (CMB) probes (Planck

Collaboration et al. 2020a; Di Valentino et al. 2021).

Today, WL surveys have catalogs of O(106 − 108) shears across 102 − 103 sq. deg. of the

sky, and the strongest constraints on σ8 come from cosmic shear measurements (Asgari et al.

2021; de Jong et al. 2017; Abbott et al. 2022; Miyatake et al. 2023). In 2023, the Hyper-

Suprime Cam (HSC) survey released a shear power spectra analysis from a compilation

of 3 years of data (Miyatake et al. 2023), correlating O(106) shears across 416 deg2 and

reaching a point source 5σ r -band depth of 26 mag (approximately z ∼ 1.5). They found

ΩM = 0.256+0.056
−0.044, σ8 = 0.818+0.089

−0.091, and H0 = 67.9+6.60
−4.30, which is consistent with ΛCDM

theory from relic weak lensing probes and other model-independent late Universe probes

(e.g. local distance ladder measurements with SN Ia). However, these inferred parameters

are in disagreement with early Universe probes (e.g. 2σ disagreement on σ8 with predictions

from the cosmic microwave background measurements of the early Universe at z ∼ 1100 from

Planck Collaboration et al. 2020a). In general, there is a 2−3σ disagreement between early-

and late-time probes on S8, which could hint at potentially new physics (for an overview

of different tensions for different parameters and their breakdown into statstical/systematic

components, see Di Valentino et al. 2021).

4.3 Measurements of Uncertainty

A major issue in contemporary observational cosmology is to measure observables precisely

and accurately enough to confidently distinguish between different cosmological models and

reliably compare datasets between different experiments (Mandelbaum 2015). Driving this

issue is the exponentially increasing data volume from cosmological surveys (separated into

stages by Albrecht et al. 2006). For example, the earliest cosmic shear analyses Stage II

surveys in the early 2000s used only about 104−105 galaxies. In the 2010s, Stage III surveys
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used about 106 − 107 galaxies. Ongoing and future Stage IV surveys are expecting 108 −

1010 galaxies. In addition, we have only observed approximately 7,000 Type Ia supernovae

confidently to date (Brout et al. 2022). Future Stage IV surveys are expected to find over

200,000 new events (Ivezić et al. 2019). As the number of observed objects increases, the

statistical uncertainty of our measurements decreases roughly with 1/
√
N . Future surveys

will soon no longer be limited by statistical uncertainties from limited numbers of objects,

and the need to suppress the variety of different systematic uncertainties in analyses of future

survey experiments will become ever more important.

Following the convention in report of the Dark Energy Task Force (DETF, also see

Albrecht et al. 2006), surveys report the uncertainty on different cosmological parameters

based on the 95% confidence interval width of the posterior probability distribution after

marginalizing over a prior range of nuisance parameters corresponding to different sources of

systematic uncertainties in the data. Statistical uncertainties refer to the widths of posterior

probability density distributions with fixed systematic uncertainties. Systematic uncertain-

ties refer to the lack of knowledge that results from the presence–or imperfect treatment–of

systematic biases (or “errors”) in cosmological analyses. Surveys will define an overall error

budget (for either specific or combinations of cosmological probes) and then place a limit

on the systematic uncertainties as a fraction of the statistical uncertainties. Some system-

atic biases (esp. observational or measurement effects) are “calibratable” meaning they can

be explicitly estimated and marginalized in advance of cosmological inference using exter-

nal data or simulations. Other systematic biases (esp. astrophysical effects like intrinsic

alignments, selection effects, models of physical processes like baryonic feedback and galaxy

formation, etc. ) are only “self-calibratable” meaning they cannot be estimated in advance

of the cosmological inference analysis. Therefore, most surveys make sure the models of

self-calibrated systematics are sufficiently complex to capture all sources of errors and only

lay out requirements on uncertainties from calibratable systematics (e.g. The LSST Dark
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Energy Science Collaboration et al. 2021). This thesis will focus on sources of calibratable

systematics since they can be measured prior to any real survey data or phenomenological

inference analyses.

Systematic biases can occur during many stages in the pipeline from the sky to the data

catalogs of the relevant cosmological information (e.g. lists of galaxies and their positions,

fluxes, colors, redshifts, etc.) for a given cosmological probe. Figure 4.1 illustrates an

example of the different stages where systematic biases can develop in an image analysis of

a single a galaxy:

1. Observation: the optical system itself and the act of sampling the sky on a finite pixel

grid degrades the overall image quality. This includes atmospheric effects like turbu-

lence, atmospheric glow, sky background, differential chromatic refraction, etc. and

optical system effects like aberration, vignetting, pixelization, shot noise, etc. These

systematics are modeled per-image from on-sky calibration sources. More information

will be given in §4.3.1.

2. Detector response: the instrument can add noise and imprint signature artifacts on the

image. This includes electronic noise, and imperfect correction of quantum efficiency

variations, charge-transfer inefficiency, pixel size variations, sensor defects, brighter-

fatter effect, etc.). These systematics need to be characterized and calibrated individ-

ually and removed from raw data in a process called Instrument Signature Removal

(ISR). More information will be given in §4.4

3. Measurement: there are different methodologies for determining the shape and size of

different sources when generating source catalogs from images, and biased algorithms

can impart their own systematic uncertainties. This firstly includes methods for stack-

ing of exposures into coadded images. It also includes sky background subtraction,

object detection. For a shear analysis we need to be able to deconvolve the PSF from
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an image and estimate the shear from the observed shape. This depends on the choice

of shear estimation algorithm and how it handles PSF deconvolution, noise bias, model

bias, selection bias, etc.) It is also known that object detection is sensitive to the object

shape Sheldon et al. (2023). More information will be given in §4.3.1.

4. Analysis: limitations of models or methods that go into compiling catalog data to

constrain cosmological analyses. There are uncertainties associated with limitations of

models of astrophysical physical processes in the non-linear regime like baryonic feed-

back, extinction effects, etc. and uncertainties associated with treatments of intrinsic

unknowns like coherence of unlensed galaxy shapes or intrinsic alignments, etc. For

example, the scale of the power spectrum probed with weak lensing by galaxy clusters

is within the non-linear regime, and it requires the specialized simulations/modeling

to predict its morphology from theory (Krause & Hirata 2010). The accuracy of these

models are a source of systematic uncertainty, and while they are certainly complex,

they are well-studied and unlikely to seriously affect modern ambitious weak lensing

probes (Krause & Hirata 2010).

Understanding and mitigating systematic biases is essential to achieve the precision

necessary to distinguish between cosmological models and reliably compare measurements

between different experiments, particularly given the current tensions between early- and

late-universe observations. In this section, I will cover each of these stages and how different

sources of systematic uncertainty are parameterized, measured, and folded into cosmological

data analyses.

4.3.1 The Point Spread Function (PSF)

One metric of scientific quality in an astrophysical measurement, an image, and even a

survey is the quality of the seeing, which is #2 in the list of most important design drivers
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g = (0.01, 0.01)
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Figure 4.1: Illustration of the physical and observational distortions to objects for a general
ground-based observatory. First, the object is distorted by gravitational fields along the line-
of-sight (weak gravitational lensing), then it is distorted by the flux-normalized point spread
function (atmospheric turbulence, optical system distortions, pixelization, charge diffusion
in sensors, etc.), then the light profile is sampled by the imaging sensor which imparts it’s
own unique signature.

for Stage IV ground-based WL surveys (see Ivezić et al. 2019). All astrophysical analyses

are fundamentally reduced to measuring light intensities over some region in the sky. The

smallest unit of sky is defined by the size of the field-of-view of a single pixel on the detector

array. In a perfect scenario, we would ensure that a photon coming from a specific region of

sky gets recorded in the correct pixel, and that all photons that come from the same region of

the sky always get recorded in that same pixel in the same image. However, when a photon

makes it to Earth, it will first encounters the atmosphere and the wavefront of the light will

be refracted and diffracted through turbulent layers with different densities, temperature

gradients, and dusty/icy particulates. The amount this distorts the light of course depends

on the spectral energy distribution of the light and can vary rapidly in time over the duration

of an exposure. Once it finally makes it to the telescope, it then has to encounter the optical

system which may further blur the light due to optical aberration, telescope vibration, and
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telescope tracking errors, etc. Then it reaches the imaging sensor, the photon is converted

into electrical charge, and this the light is further blurred through thermal diffusion of the

charge before it is collected and confined in potential wells at the bottoms of pixels in the

detector. Therefore, when we record a photon in an image, we are not measuring the exact

point where that photon came from. Instead, we measure a sample from a probability

distribution of where that photon actually came from. The transfer function that maps a

single point on the image to a region of the sky is called the point spread function (PSF),

and it is effectively the impulse response of the imaging apparatus.

The measured image (Imeas(θx, θy)) can be thought of a convolution between a true image

(Itrue(θx, θy)) and the PSF:

Imeas(θx, θy) = Itrue(θx, θy)⊗ PSF (θx, θy) (4.27)

The PSF is analytically a continuous distribution function. It is typically described by a flux-

normalized 2D Gaussian, although other profiles with additional complexities and parameters

are also sometimes used to model it (e.g. Airy, Moffat, Kolmogorov, and von Karman profiles

are some common ones). The best case scenario is when there is no distortion at all, and

the PSF is just a Dirac delta function. In reality, this never happens, even in rare, so-called

fast “lucky” images, where we just happen to get a relatively clear shot into space (for an

interesting example of a real analysis like this, see Law et al. 2006). We also have to consider

that the PSF is sampled on a pixel grid. While PSFs with a large size make the image more

blurry and take away useful information, PSFs that are too small could be undersampled by

the pixel grid.2

2A space telescope is more likely to have an undersampled PSF than a ground telescope given the lack
of atmosphere (Lauer 1999). E.g. the median seeing in optical wavelengths at Rubin Observatory’s site on
Cerro Panchón is 0”.65 arcsec with a 0”.2/pixel platescale (Ivezić et al. 2019), and the median seeing for
Euclid (VIS instrument) is 0”.16 arcsec with a 0”.101/pixel platescale (Euclid Collaboration et al. 2024).
However, being on the ground enables larger entendue (effective field-of-view × mirror size) as well as more
complex optical systems, such as active or adaptive optical systems (Neill et al. 2014; Crenshaw et al. 2024).
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The PSF is something that we can only estimate from our data. Conveniently stars are

all effectively infinitely small point sources and can be used to calibrate the PSF. The profile

of a star in a single exposure is an estimate of the time-averaged PSF at that location on

the sensor and in the field-of-view. To estimate the local PSF, one can either measure the

unweighted, radial second moments from flux values in pixels or fit an analytical profile to

a cutout image around the centroid of the star (Equation 4.20). For an analytical Gaussian

for instance, the PSF size can be estimated by assuming T = 2σ2 = Ixx + Iyy.

The PSF can vary spatially across the sensor and the field-of-view. Several PSF esti-

mation algorithms have been used (see PSFEx and PIFF, Bertin 2011; Jarvis et al. 2021,

respectively), however the general process proceeds as follows:

1. Identify/select stars in an exposure.

2. Measure the PSF at the location of each star (the “observed PSF”).

3. Interpolate the local PSFs across the image (a common choice is to use 2D polynomials

or Gaussian Process interpolation).

4. Reconstruct the PSF at the location of each object in the image (the “model PSF”).

Different methods can vary in terms of their treatments of stellar identification, local PSF

estimation, and interpolation method. Perhaps not surprisingly, it is advantageous to use as

many stars as possible in an image to estimate the PSF. In particular, high S/N ratio stars

constrain their local PSF better than dim stars since the relative uncertainty for a Poisson-

noise dominated measurement goes with the photon count as
√
N/N (Paulin-Henriksson

et al. 2008). Note that the number of stars in an image can vary with the telescope’s pointing.

Obviously, images taken in the direction of the Galactic plane will typically contain more

stars than images taken above or below the Galactic plane.

71



Chapter 4. Introduction

12 14 16 18 20 22
mAB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
T

=
2

2  (
ar

cs
ec

2 )
Detected Objects
Candidate Stars
Masked
PSF Stars

Figure 4.2: An example size-magnitude diagram for all detected sources from a single 30s
exposure targeting a high stellar density field from a ground-based telescope that has a
6.7× 6.7 arcmin field-of-view and a primary mirror with an effective diameter of 1.2m. We
calculate the size T based on the best-fitting Gaussian to each source. The black points are
all the detected sources in an image (determined via S/N thresholding), which may not be
real objects (stars, galaxies, etc.). The magenta points are sources that are likely to be stars
based on their extendedness (difference between the de Vaucouleurs flux and the Gaussian
flux) and other parameters (ref. to Bertin 2011). The blue circles show which of these sources
were masked due to their positions on an edge of the sensor or a known sensor defect or were
blended with another source. The green points show which sources were ultimately selected
as stars used to estimate the PSF. For details about the exact source detection algorithm
and method of star selection, see Bertin (2011); Jurić et al. (2017); Bosch et al. (2019).

The average PSF of all stars across the focal plane is typically used to define image

quality. Since all stars are intrinsically point sources, all stars in the same exposure should

have the roughly the same PSF, regardless of their differences in brightness. In fact, this

property is often used to identify stars to use for PSF estimation. Figure 4.2 shows an

example of the size-magnitude relation of detected sources in a single exposure. The stars are
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found in the so-called “stellar locus” which roughly follows a flat size vs. magnitude relation.

The mean size of the stellar locus defines the average distortion during the exposure. The

average full width at half maximum, which for a Gaussian is FWHM = 2
√
2 ln 2σ, is referred

to the “seeing” and is the typical a metric of image quality.

4.3.2 PSF modeling error

The PSF has a significant effect on the apparent size and shape of objects. The measurements

of all celestial objects need to be calibrated against the inferred PSF at their location in an

image. For a systematic error in a PSF (∆TPSF = T
(true)
PSF − T

(model)
PSF ), this will result in a

systematic error on the shape of the imaged source.

For example, we use the “PSF flux” to measure the brightness of SN Ia. Since SN Ia

are relatively faint, their profiles are typically dominated by noise, making it difficult to

measure their flux over some circular footprint by straight-forward pixel-by-pixel integration

(“aperture flux”). However, SN Ia are effectively star-sized objects from our point of view,

so we know that they should be shaped like the PSF. We infer the flux of SN Ia by fitting

the PSF to the SN Ia image. The total flux is then just the normalization of the PSF that

results in the best fit to the image. However, if the model PSF is biased from the true PSF,

this results in a flux error.

Similarly, PSFs are required to estimate shear in weak lensing analyses. Shear estimation

essentially involves deconvolving the image with the PSF to get an accurate estimate of

the shear field at the location of a galaxy. We typically describe modeling biases in shear

estimation as either multiplicative or additive. For a given ensemble of galaxies, with some

true shear (gtrue), the estimated shear over an ensemble of galaxies (⟨ê⟩) is parameterized as:

⟨ê⟩ = (1 +m)gtrue + αePSF + c, (4.28)
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where m is the multiplicative bias and the combination of αePSF + c is the additive bias.

The additive bias is sometimes given as a single constant (Heymans et al. 2006), although in

this case we follow the formalism by Jarvis et al. (2016), which separates the additive bias

into PSF leakage, which is dependent on the PSF (α) and a separate additive offset (c).3 To

understand how errors in shear estimation propagate to errors in the shear-shear correlation

function, we can simply plug Equation 4.28 into the correlation function:

δξ±(θ) ≃ 2mξ±(θ) + α2ξPP
± (θ) + ξcc± (θ), (4.29)

where ξPP
± refers to the autocorrelation function of the PSF and ξcc± is the autocorrelation

function of the additive error offset. This also assumes that the different types of biases are

uncorrelated.

Previously, shear estimators took a moments-based approach (Kaiser et al. 1995; Rhodes

et al. 2000; Melchior et al. 2011), measuring the image moments of both the galaxy and the

PSF from the image, or a modeling approach (Massey & Refregier 2005; Refregier 2003; Re-

fregier & Bacon 2003; Nakajima & Bernstein 2007; Miller et al. 2013), which which performs

a maximum likelihood fit with a PSF-convolved galaxy profile to the image. Typically, these

shear estimators are biased for the low S/N galaxies (Bernstein & Jarvis 2002). Even the

best shear estimators will always introduce some “modeling bias” since there is always a limit

to how well we can model all of the realistic complexity of the structure of a galaxy; galaxies

do not usually have elliptical isophotes and are typically not well captured by second-order

image moments alone (cf. Equation 4.20, ref. Massey et al. 2007; Bernstein 2010; Zhang &

Komatsu 2011); even if the estimated PSF is perfectly known, the shear estimator can still

cause some of the PSF size and shape to “leak” into the galaxy size and shape. In a blind

3Note that the multiplicative and additive biases could theoretically have different values along each
direction of the decomposition, however Jarvis et al. (2016) measured these separately for DES Y1 and
found that this anisotropy m is negligible.
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challenge of different shear estimators on real galaxy shapes (GREAT3), Mandelbaum et al.

(2015) found that the model bias was found to be approximately 1% for bulge+disc model

across many shear estimators. Modern shear estimators have made large improvements to

these earlier approaches. One approach to calibrate the noise bias with image simulations of

representative ensembles of galaxies (Mandelbaum et al. 2018; MacCrann et al. 2022). Most

recently, cosmic shear surveys have proposed to use perturbative methods (Huff & Mandel-

baum 2017; Sheldon & Huff 2017; Sheldon et al. 2020, 2023; Li et al. 2018; Li et al. 2022;

Li et al. 2023), which approximate the responsivity of the shape of the galaxy to a shear,

and these methods produce sub-10−3 biases for isolated galaxies where the PSF is known

perfectly.

In the case where we have a perfect shear estimator, PSF modeling errors can affect the

shear-shear correlation function (from Paulin-Henriksson et al. 2008):

δesys = (e− ePSF)

(
TPSF
Tgal

)
δTPSF
TPSF

−
(
TPSF
Tgal

)
δePSF, (4.30)

where Tgal is the intrinsic size of the galaxy and TPSF is the size of the PSF. These errors

enter into the tangential shear correlation function (ξ+) as:

δξ+(θ) = 2

〈
TPSF
Tgal

δTPSF
TPSF

〉
ξ+(θ) +

〈
TPSF
Tgal

〉2

ρ1(θ)− α

〈
TPSF
Tgal

〉
ρ2(θ)

+

〈
TPSF
Tgal

〉2

ρ3(θ) +

〈
TPSF
Tgal

〉2

ρ4(θ)

− α

〈
TPSF
Tgal

〉
ρ5(θ),

(4.31)

where ρ1−5 are called the “ρ-statistics” and are given by:

ρ1(θ) ≡ ⟨δe∗PSF(x⃗)δePSF(x⃗+ θ⃗)⟩, (4.32)
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ρ2(θ) ≡ ⟨e∗PSF(x⃗)δePSF(x⃗+ θ⃗)⟩, (4.33)

ρ3(θ) ≡
〈(

e∗PSF
δTPSF
TPSF

)
(x⃗)

(
ePSF

δTPSF
TPSF

)
(x⃗+ θ⃗)

〉
, (4.34)

ρ4(θ) ≡
〈
δe∗PSF(x⃗)

(
ePSF

δTPSF
TPSF

)
(x⃗+ θ⃗)

〉
, (4.35)

ρ5(θ) ≡
〈
e∗PSF(x⃗)

(
ePSF

δTPSF
TPSF

)
(x⃗+ θ⃗)

〉
, (4.36)

The first term is a multiplicative bias term and all others are additive biases. We see that

errors in modeling the PSF can result in multiplicative biases, PSF leakage biases, and

additive offset biases to shear estimation, depending on the size of the PSF to the intrinsic

size of the galaxy. Note that the amplitude of the impact of a PSF modeling error on a

galaxy image depends on the relative size of the PSF and the galaxy. Note that if the size of

the PSF is zero, there are no biases to the shear-shear correlation function (again assuming

an already perfect shear estimator). Note that we can also write a similar set of equations

for the ξ× component.

PSF estimation is one of the primary sources of systematic uncertainty in cosmological

analyses (Paulin-Henriksson et al. 2008; Massey et al. 2007; Zhang et al. 2022; Zhang et al.

2023). The LSST Dark Energy Science Collaboration et al. (2021) defines several limitations

on these biases for its SN Ia and weak lensing science goals for the Legacy Survey of Space

and Time, an upcoming Stage IV WL survey. For SN Ia photometry, the calibrated flux must

be accurate to within 1% of the true flux. For weak lensing science, the document defines

the maximum PSF modeling bias as δTPSF/TPSF < 10−3. It also places requirements on the

residual PSF ellipticity via the correlation function of the biases on different components of

ellipticity. For E1(θ) = ⟨δe1δe∗1⟩, E2(θ) = ⟨δe2δe∗2⟩, and EX(θ) = ⟨δe1δe∗2⟩, averaged over all

stars in the full (10 year) survey, E1/2/X must be less that 3×10−5 on θ < 1 arcminute scales

(around the scale of galaxy clusters). In particular, biases on EX produce so-called B-mode
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shear, which is expected to be approximately zero in the absence of systematic errors in the

data catalog. It is common to fit these errors as nuisance parameters. In the past, cosmic

shear analyses have only accounted for these PSF systematics due to the second moments

of the PSF. However, Zhang et al. (2021) showed that the fourth moment terms were signif-

icant in the HSC Y3 PSF, which by itself could have lead to ∼ 0.3σ biases in cosmological

parameters when not accounted for in the PSF model. Although, no requirements have yet

been laid out for Stage IV surveys to constrain the higher-order statistics.

4.4 Measurements with CCDs

Our current cosmological model (ΛCDM) rose to prominence thanks to technological ad-

vancements in photon-detection technology since the 1970s that have enabled some of the

most rigorous constraints of cosmological parameters to date. The development of solid-

state devices for imaging such as the charge-coupled device (or “CCD”) by Willard S. Boyle

and George E. Smith at Bell Laboratories appeared to promise advantages in size, weight,

power, noise, sensitivity, linearity with signal, dynamic range, photometric accuracy and

repeatability, spectral response, durability, and importantly, scalability over the photoelec-

tric ancestors used in the early days of astronomy (namely photographic film plates and

tube-type detectors). These devices work by collecting charges produced by incoming light

in arrays of pixels defined by potential wells. This format alone was attractive to early

astronomers because the data could be digitized and transmitted, enabling telescopes to be

put in space, and the devices were responsive to light in the ultraviolet (UV) to near-infrared

(NIR) parts of the spectrum (4.1eV to 1.26eV), making them useful for a wide variety of

astrophysical experiments. The 61-inch telescope on Mt. Lemmon was the first instrument

to show the potential of CCDs for astrophysical experimentation (Smith 1976). And very

early on, the CCD was proposed for the Wide Field/Planetary camera on the Hubble Space
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Telescope, which was then called the Large Space Telescope (McLean 2004).

However, since the early days of the CCD development, they have presented few chal-

lenges. For example, data transfer efficiency in the earliest detectors was poor, which limited

the size of the sensors to only 100 pixels (Leach et al. 1980). In addition, these detectors

needed to be cooled below 200K to eliminate the production of infrared photons inside the

detector itself (so-called “dark currents” or “thermal noise”). Another concern was manufac-

turing yield, as the sensors were notoriously difficult to produce (Janesick 2001). Detectors

also experienced quantum efficiency variations that made it difficult to produce reliable rela-

tive flux measurements between sensors. Today, we also know that different physical effects

inside CCDs can imprint artifacts on the images (e.g. electronic noise, charge-transfer in-

efficiency, pixel size variations, tree rings, annealing patterns, sensor defects, brighter-fatter

effect, support structure, etc.). These can result in one or some combination of photometric,

astrometric, size, and shape errors in images of celestial objects, and in many ways mimic

the impact of new physics on these different astrophysical observables (Esteves et al. 2023).

Despite many recent advancements to the design of CCDs, recent analyses have found it dif-

ficult to achieve ground-based flux measurements with fractional uncertainties in accuracy

of less than 3% using them (Stubbs & Tonry 2006; Stubbs 2013). Improperly treating these

instrument systematics can impart additional uncertainty in downstream scientific pathways

os cosmological surveys.

Stage III cosmological surveys (defined by Albrecht et al. 2006) such as the Dark Energy

Survey (DES; Dark Energy Survey Collaboration et al. 2016), the Kilo-Degree Survey (KiDS;

de Jong et al. 2017), the Hyper Suprime-Cam survey (HSC; Aihara et al. 2018) utilized CCDs

to efficiently map large volumes of universe since they could be easily scaled to cover a large

field of view by multiplexing several sensors together. These surveys have constrained the

dark energy equation of state (ω0 ∼ −1) to around 3% precision using 100 million galaxies

and 5, 000 type Ia supernovae (SNe) (Abbott et al. 2022). However, these uncertainties are
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still dominated by statistical uncertainty from the limited quantity of data. Future Stage IV

cosmological surveys will also use CCDs, including the Nancy Grace Roman Space Telescope

(Spergel et al. 2015) and Euclid (Laureijs et al. 2011) and the Legacy Survey of Space and

Time (LSST) (LSST; Ivezić et al. 2019; LSST Science Collaboration et al. 2009). They

will drastically increase our view of the Universe and will be able to significantly tighten

the statistical uncertainties between cosmological models, but that will make them more

sensitive to systematic errors like those produced by the instruments themselves. These

surveys therefore place strict requirements on systematic uncertainties and have extremely

tight error budgets.
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Mitigation of the Brighter-Fatter

Effect (BFE) in LSSTCam

The largest of the Stage IV surveys is LSST, which will be conducted with the Simonyi Survey

Telescope at the Vera C. Rubin Observatory, which is under construction on the summit of

Cerro Pachón in Chile (see Figure 5.1). The instrument for this is a 3.2 gigapixel camera

(LSSTCam), which contains 201 individual CCDs, with 189 designated specifically for science

imaging. The sensors are fully depleted high-resistivity, bulk silicon CCDs developed by two

separate vendors. One type is made by Imaging Technology Laboratories (ITL), and the

other is made by Teledyne e2v (E2V) to similar general architectural specifications. These

sensors are arranged by type into 3 × 3 groups called raft-tower modules (RTMs) or rafts,

which can each operate as an independent camera. Each CCD sensor is 4 cm × 4 cm and

made up of sixteen, 1 megapixel channels each read out by its own amplifier and readout

electronics. Each pixel on the LSST Camera focal plane is 10µm× 10µm and has a depth

of 100µm (see Figure 5.2) (Lopez et al. 2018).

The combination of a large focal plane of CCDs and a large field of view will enable

LSST to generate the largest map of the Universe to date. The survey plans to image 18,000
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Figure 5.1: A view of the Vera C. Rubin Observatory on the Cerro Pachón ridge in northern
Chile, credit: Rubin Observatory/NOIRLab/NSF/AURA/B. Quint.

deg2 of the sky with O(1000), 30 second exposures over 10 years in six filters (ugrizy) in

the optical and near-infrared (NIR) parts of the spectrum, generating approximately 20

terabytes of data every night. By the end of the survey it is expected to catalog over 20

billion galaxies and 200,000 type Ia SNe, and it aims to measure cosmological parameters

to sub-1% precision (The LSST Dark Energy Science Collaboration et al. 2021; Ivezić et al.

2019).

Much of the design and current development of instrumentation for LSST focuses on

characterizing and reducing the impact of systematic sensor artifacts with the goal to pro-

duce sub-percent level precision measurements of cosmological parameters and test currently

prevailing thermodynamic models of the universe and theories of dark matter (Albrecht et al.

2006). It is also no surprise that all of LSST’s scientific analyses rely on the assumption that

observable measurements come from pixels in an image that are all the same size, that are

all independent from one another, and all have well-defined response functions. Detector

effects in the instrument can impart systematic errors that violate these assumptions, and

the only way to handle them is to individually isolate, diagnose, and treat each of these

potential sources of calibratable systematic uncertainties and test their corrections. To meet
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these requirements for LSST (The LSST Dark Energy Science Collaboration et al. 2021), we

need to understand the systematic effects in our sensors at the far limits of the capabilities

of our instrumentation (Ivezić et al. 2019).

Many of the problematic sensor behaviors are considered generally static and can be

simply calibrated from well-known sources or modeled as intrinsic constants on a sensor and

easily removed from raw images (Plazas Malagón et al. 2024). However this method would

not work with locally variable or otherwise signal-dependent effects, and such effects are

known to exist (Stubbs 2013; Antilogus et al. 2014; Astier et al. 2019).

One such dynamic effect is the brighter-fatter effect (BFE), which makes brighter sources

appear larger in a recorded image. This effect occurs during the integration of an exposure,

when captured photocharges produce transverse electric fields on incoming photocharges,

causing the incoming charges to deflect into neighboring pixels (Downing et al. 2006; Holland

et al. 2014; Lage et al. 2017). The effect can be modeled as a reaction to quasistatic changes

in effective pixel area as charges collect in the potential wells of the pixels. This results in

correlations between neighboring pixels that arise at high signal levels. The magnitude of

the BFE depends on the surface brightness profile of the source itself and thus cannot be

modeled solely by its location on a sensor. The consequence is that the BFE breaks the

critical assumption of all experimental image analysis that the pixels are independent light

collectors that perfectly obey Poisson statistics.

Reduction of Poisson noise by “smearing” due to the BFE in exposures with taken with

uniform illumination across all pixels (“flat field” images) has been observed in LSSTCam

sensors by Antilogus et al. (2014) and Lage et al. (2017), and in detectors used in other

astronomical cameras such as Hyper Suprime-Cam (HSC) by Coulton et al. (2018), the

Dark Energy Camera used by the Dark Energy Survey (DES) by Gruen et al. (2015), the

Wide Field Camera 3 H1RG detector of the Hubble Space Telescope by Plazas et al. (2017),

MegaCam by Guyonnet et al. (2015), the Mid-Infrared Instrument (MIRI) on board the
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James Webb Space Telescope (JWST) by Argyriou et al. (2023), and in the near-infrared

(NIR) detectors of the Wide Field Imager of NASA’s Nancy Grace Roman Space Telescope

(Plazas et al. 2018; Hirata & Choi 2020; Choi & Hirata 2020; Freudenburg et al. 2020;

Plazas Malagón et al. 2023). This effect was originally observed as a growth in the stellar

size-magnitude relation. Stars are particularly impacted by the BFE since they typically have

the highest signal-to-noise ratios of all detected sources in single exposures. This presents

a potentially major issue for downstream scientific efforts since stellar properties are used

calibrate the distortions by the atmosphere and optical system (the point spread function or

PSF), and the light from all celestial objects are calibrated against this PSF.

Several corrections have been proposed by Antilogus et al. (2014), Gruen et al. (2015),

Coulton et al. (2018), and Astier, Pierre & Regnault, Nicolas (2023). Specifically, the two

most recently proposed corrections (Coulton et al. 2018 and Astier, Pierre & Regnault,

Nicolas 2023) are currently implemented in the LSST science pipelines, and Coulton et al.

(2018) is currently used in the HSC data reduction pipeline and is currently planned to be

used in the LSST science pipelines (Jurić et al. 2017; Bosch et al. 2018, 2019). These methods

fall into two categories: scalar corrections and vector corrections. Scalar corrections model

the BFE at the pixel-level while vector corrections model it at the sub-pixel level. All of

the BFE corrections are derived from calibrations from measurements of flat field images,

however, the corrections will ultimately matter for measurements of more realistic science

images like star field images. However, the underlying electric fields in flat images might

not approximate the underlying electric fields in stars images. The effectiveness of each

correction depends on the correspondence between the assumptions they make and the true

underlying physics of the sensors.

In this part of the thesis, we will directly measure the BFE in the LSST Camera and

our ability to correct it and understand its impact on LSST science pathways. In §6, we will

introduce the theory behind the BFE and its correction by Coulton et al. (2018) and weigh
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its limitations in light of more recent findings by Astier et al. (2019). In §7, we will describe

our laboratory measurements and image processing framework. In §8, we will explore the

dynamic response of our sensors to charges in these data. In §9, we will construct an improved

application of the correction by Coulton et al. (2018) (§9.1) and apply it to flat fields (§9.2)

and artificial stars (§9.3). In §10, we will discuss the relative results between these two

cases and directly test the underlying assumptions of the correction made by Coulton et al.

(2018). Finally in §10.2, we discuss how residual BFEs could influence several of LSST’s

dark energy science goals and motivate future work on analysis structures to mitigate its

impact. Throughout the text, we adopt the abbreviations “px” and “el” to refer to pixel

and electron units, respectively.
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Figure 5.2: Map of the LSSTCam focal plane and coordinate system. The sensors are
arranged into 3× 3 groups called raft-tower modules (RTMs), labeled by the R/S numbers,
respectively, an each sensor is made up of 16 channels (1 MP/channel). The darker colored
sensors are E2V-type and the lighter colored sensors are ITL-type. The corner rafts (R00,
R04, R40, R44) are used for wavefront sensing and guiding, and all other rafts are used for
science.
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The Brighter-Fatter Effect

Several studies have shown that the pixel covariances in flat field images can be used to

measure the BFE in the sensors of other optical and near-IR survey cameras (Antilogus

et al. 2014; Gruen et al. 2015; Guyonnet et al. 2015; Coulton et al. 2018; Astier, Pierre &

Regnault, Nicolas 2023; Hirata & Choi 2020; Freudenburg et al. 2020; Plazas et al. 2017;

Plazas et al. 2018). The covariance can be numerically formalized between an arbitrary

central pixel, x = (0, 0), assumed to be far from the edge of the detector, and a neighboring

pixel x′ = (i, j) in the difference of two flat field exposures, F1 and F2, with the same nominal

signal level and µ = avg(F1, F2):

Cij =
1

2
Cov(F1(x)− F2(x), F1(x

′)− F2(x
′)). (6.1)

The directionality on each sensor is defined in regard to the CCDs’ frontside architecture,

where the vertical, û = (0, 1), direction is along the “parallel” readout direction defined by

orientation of the buried channel stops in the sensor, and the horizontal, û = (1, 0), direction

is along the “serial” readout direction defined by the orientation of the buried gate structure.

Figure 6.1 shows an example of a densely sampled measurement of the variance function
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Figure 6.1: The variance and integrated covariance matrix vs. flux for a series of flat field
images on an LSSTCam sensor, averaging the covariance matrix for all amplifiers. We assume
that the covariance matrix has parity symmetry about the central pixel, and we sum the
covariance matrix from |i, j| < 2 and |i, j| < 8, and we show that summing out to 8 pixels
fully reconstructs the Poissonian behavior. We used 342 total exposure pairs with ×1.025
log-spacing in signal space, which were corrected with the basic instrument signature removal
defined in Appendix D. We group the data into 100 bins from 0 to 1.75 × 105 el. This was
calculated for one sensor made by ITL on the LSST focal plane, which had an average gain
of 1.702 el / ADU across all amplifiers.

C00(µ) from a single sensor (ITL) on the LSST focal plane. If all the pixels are independent

from each other, one can expect a simple linear relationship from the Poisson statistics as:

CPoisson
ij (µ) = (δi0δj0)µ/g + nij/g

2, (6.2)

where δij is Kronecker’s delta, g (el/ADU) is the gain conversion between physical electrons

and recorded counts (analog-digital units or ADU) by the analog-to-digital signal converter

(ADC), and nij [el
2] is the electronic noise at a pixel (i, j). The measurement of C00 departs

from the linear relationship at high signal levels as excesses due to Poisson noise are sup-

pressed due to the BFE. Charges are deflected out of pixels with excess accumulated charge
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and into neighboring pixels with less accumulated charge, resulting in a correlation between

pixels at higher flat field signal levels. We measure a 30% loss in the expected variance func-

tion (photon transfer curve or PTC) near pixel saturation (Figure 6.1), which is consistent

with the size of the effect observed by Astier et al. (2019), Coulton et al. (2018), Antilogus

et al. (2014), Gruen et al. (2015), Guyonnet et al. (2015), Coulton et al. (2018), and Astier,

Pierre & Regnault, Nicolas (2023).

If charge is conserved, the sum of all the covariances away from this central pixel recovers

all the pixel-level Poissonian sensor behavior lost due to the BFE (first proposed by Downing

et al. 2006). The central pixel and the immediate neighbors should contribute the most to

recovering the noise budget and integrating further away from the central pixel should add

vanishingly smaller contributions. Figure 6.1 also shows that accounting for the covariances

8px away from (0, 0) in both directions on the focal plane allows us to reconstruct the

Poissonian behavior in flat field exposures within statistical fluctuations up to fluxes above

which the variance begins to drop off due to pixel saturation (around 1.35× 105 el) for most

of LSSTCam’s sensors), suggesting that freed charges are being transported into neighboring

pixels.

6.1 Modeling pixel-area changes from flat fields

We parameterize the evolution of pixel covariances with flux using the formalism proposed

by Astier et al. (2019). The presence of charges in pixels distorts the electric field boundaries

for incoming charges, which can be modeled as a change to the effective areas of the pixels

that changes an incoming current of charge. In the case of flat fields, where it is safe to

assume that the average charge current into each pixel (I) is constant, we model the effect

of some accumulated “source” charge Qij in pixel (i, j) on the charge current into a pixel

(0, 0), which is assumed to far from the edge of the sensor. The incoming charge current will
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affected by distortions of pixels areas from a rectilinear grid, and we consider alterations that

are linearly proportional to the source charge and alterations that not linearly proportional

to the source charge (such as would be the case if–but not only limited to–a hypothetical

evolution of the of the charge cloud in the pixel as more charge arrives). The first component

is parameterized using a matrix aij of area distortions to the pixel grid, and the second

component is parameterized using a matrix bij of area distortions:

Q̇00 = I[1 +
∑
kl

aklQkl(1 + bkl I t)]. (6.3)

This equation follows the convention that the variable t is the time since the start of a flat

field exposure at t = 0. The aij and bij matrices are scalars, meaning that each element

of the coefficients is a single number that represents the net fractional change in area per

unit charge, to pixel (i, j). In vector-based approaches, such as Antilogus et al. (2014), they

separate the area shifts for each boundary of a pixel (X ∈ [N, S, E, W]), and in this scalar-

based approach we use aij =
∑

X a
X
ij . Equation 6.3 assumes parity symmetry such that

aXi,j = a−X
−i,−j and translational invariance over the sensor, and of course similar assumptions

apply for the bij coefficient. A value of aij = 0 means that there are no distortions to the

pixel, and the charge current into pixel (0, 0) is just equal to the influx of light. If bij = 0,

then then the alteration of the current into pixel (0, 0) from pixel (i, j) is simply proportional

the source charge in pixel (i, j). Note that this does not assume that linear coefficient aij

itself does not also vary with time. Also note that–although this equation does not explicitly

require it–enforcing charge conservation naturally produces a sum rule (
∑

ij aijbij = 0 or∑
ij aij = 0 when bij = 0).

Using the definition of covariance, this will ultimately affect the measured pixel covari-
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ances as:

Ċij = δi0δj0I + Cov[Q̇00, Qij] + Cov[Q00, Q̇ij]

= δi0δj0I + 2I
∑
kl

akl(1 + bklIt)Ci−k,j−l

(6.4)

To find the measured covariances after a specific amount of exposure time with a constant

input flux and charge current (flat field), we integrate Ċij from t = 0 to t = t, where

µ =
∫ t

0
Idt = It for a constant average flux of illumination. This is then expanded out into

a Taylor series around µ = 0. For covariances at a given signal level µ, both expressed in

ADU:

Cij(µ) =
µ

g

[
δi0δj0 + aijµg +

2

3
[a⊗ a+ ab]ij(µg)

2

+
1

6
[2a⊗ a⊗ a+ 5a⊗ ab]ij(µg)

3 + · · ·
]
+ nij/g

2,

(6.5)

where aij (1/el) describes the fractional change in pixel area due to changes in the pixel

boundaries from accumulated source charges, bij (1/el) describes smaller time-dependent

processes that weaken or strengthen the BFE as we will explore in a later section, µ is a

given mean signal over the image region, g is the sensor gain (el/ADU), ab is an element-wise

matrix multiplication, and ⊗ refers to a discrete convolution operation. We have also added

nij, which is a constant term that represents the mean square electronic noise. Typically,

n00 ∼ 5.7el2, and the non-(0,0) terms of the noise matrix are typically zero, but they could

be contributed to by the readout electronics and overscan. We will refer to Equation 6.1 as

the covariance model in the rest of the text.

This expansion allows for different types of BFE mechanisms: first order effects, which

grow linearly with signal level (∝ µ1), and higher-order effects, which grow non-linearly with

signal level (∝ µ2+). We will refer to the contribution of these non-linear terms as “non-
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linear” effects, although there may yet be other physical effects–possibly related to BF–that

also arise non-linearly with signal level, which might not be included in this model, for which

we adopt the general term “higher-order” effects (we will discuss this further in §10).

In the following sections, we will parameterize the magnitudes of these different effects

by the deviation of the covariances from a perfect Poissonian relationship:

C̃ij ≡ Cij −
(
µ

g
δi0δj0 +

nij

g2

)
. (6.6)

The impact of the BFE on flat field covariances is the expected Poissonian behavior modified

by the change in pixel area so that C̃ij / µ
2 is a useful quantity that models the effective

fractional area displacement matrix. First order effects dominate at low signal levels, and in

the limit of zero signal C̃ij / µ
2 → aij. Tn practice, we infer the strength of these components

by fitting the covariance model with these coefficients to our measured covariances as a

function of flux.

6.2 Deriving a scalar correction with non-linear BFEs

We can derive the amplitude of the BFE from the measured pixel covariances in flat fields,

and we can use this measurement to know how to redistribute the charge in a measured

image to recover the true image. The deflection field from a collected charge changes the

pixel boundary and therefore the total area of a pixel. Coulton et al. (2018) assumes that

the deflection field caused by a charge can be described by the gradient of a unitless, 2D

scalar kernel K. In analogy with electrostatics, they assume the effect of the kernel on

the covariance matrix takes the form of Poisson’s equation with the Laplacian of the kernel
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(Equation 19 of Coulton et al. 2018):

C̃ij = −µ2∇2Kij (6.7)

Thus the covariance matrix is simply Poisson noise modified by the change in area. The true

image can therefore be recovered from the measured image using Equation 22 of Coulton

et al. (2018):

F̂ (x) = F (x) +
1

2
∇ · [F (x)∇ (K ⊗ F (x))] (6.8)

where F̂ is the true image and F is the measured image, and x runs over the pixel space

in two dimensions. The expression includes a factor of 1/2 to average the BFE over the

duration of the exposure as the first charge to enter the pixel experiences no BFE and the

last charge is assumed to experience twice the average effect.

As seen by the form of Equation 6.7, the kernel is derived from the covariance matrix at a

given signal level, therefore the correction explicitly assumes that the kernel does not evolve

as a function of flux. However, this is inconsistent with non-zero non-linear terms in the

covariance model. Astier et al. (2019) showed that an accurate fit to the PTC requires using

their functional form (Equation 6.1) up to O(µ4), citing χ2/Ndof = 1.23 (note the number of

observations is the number of flat pairs, and the parameters for just the variance element of

the fit are g, n00, and a00 so that Ndof = N(flat field pairs) − 3). This would suggests that

the PTC shape is contributed by other non-linear terms included in the covariance model,

which would cause the Coulton et al. (2018) algorithm to break down when applied to flat

images at signal levels that are not equal to the exact signal level the kernel was derived

from.

If the goal is to reconstruct the Poisson fluctuations in flat fields, the strength of the BFE

can be derived from the measured flat fields at a specific signal level and at least theoretically
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be nearly perfectly corrected from the data. Perhaps more realistically however, we need to

correct the effect out of images with much larger pixel contrasts, such as images of stars,

galaxies, and other scientifically interesting objects that we want to measure accurately.

This is difficult because knowing how to include the higher-order BFEs in a correction or

somehow weighting the correction toward higher signal levels (where the BFE correction

might be most important) becomes ambiguous, as there is no special signal level at which to

sample the pixel correlations and construct a correction. Furthermore, the maximum charge

capacity of CCDs are not well-defined in practice or in literature. Initially, one might think

to simply solve Poisson’s equation for each whole image to fully correct the effect, but this is

computationally expensive and impractical for the size of images that cosmological surveys

like LSST will produce. Typically, surveys might derive the amplitude of the effect at low

signal or at high signal or infer the effect from some average signal level (Jurić et al. 2017;

Bosch et al. 2019), however this is itself arbitrary and in the worst case can bias the correction

toward objects that are correspondingly dim, bright, or neither somewhere in-between.

In order to construct a correction from flat field statistics in an unbiased way, it is im-

portant to measure the signal range over which a given correction algorithm can reconstruct

the BFE. Correcting the BFE in flat field images allows us to directly test the impact of

higher-order effects at different signal levels. And correcting artificial star images will cru-

cially allow us to test how well a given correction algorithm can reconstruct realistic PSFs

at those signal levels. In addition, we expect the underlying sub-pixel electric fields and

higher-order physics is different in flat images and star images. Comparing the impact of a

given correction algorithm on both flat field images and star field images is therefore a direct

test of the validity of the underlying assumptions of a given correction methodology.
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Data

Our measurements of the BFE are derived from datasets taken during the fifth electro-optical

testing period for the LSST Camera (informally referred to as Run 5), which began on the

integrated camera focal plane at the SLAC National Accelerator Laboratory in December

2021. In this section we describe the laboratory setup, data acquisition, and analysis method-

ology used to characterize the BFE in the LSSTCam. This includes the configurations of

the instrument testbed, acquisitions of calibration datasets and artificial star data, image

processing pipeline, and photometry.

7.1 Laboratory setup

We used the Bench for Optical Testing (BOT) as described in Newbry et al. (2018). This

test bench envelops the LSST Camera cryostat in a dark box that suppresses ambient light

to a level less than 0.01 electrons per pixel per second and includes a rig to swap different

optical projectors for illuminating the focal plane with various light patterns. This includes

a spot grid projector, which projects a 49 × 49 grid of stars (approximately 3cm × 3cm on

the focal plane and approximately 65 pixels of rectilinear spacing between spots) to mimic
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a realistic star field of various brightnesses, shapes, sizes, and positions (see Figure 7.1).

The entire projector can be moved using remotely controlled motorized stages in all three

axes for dithering (XY) across the focal plane and focusing (Z). This projector consists of

a Nikon 105mm f/2.8 Al-s Micro-Nikkor lens, and an HTA Photomask photo-lithographic

mask etched with pinholes. The spot grid pattern is illuminated by an integrating sphere

with a 1” opening, which is fed by a 3mW fiber-coupled light emitting diode made by

QPhotonics with a narrow band output peaked at 680 nm.

7.2 Sensors tested

For this study of the BFE, we selected one top-performing sensor of each type, one ITL

(R03-S12) and one E2V (R24-S11), to independently test the BF correction. The R-number

refers to the raft row and column location on the focal plane and the S-number refers to the

sensor row and column location within the raft. We selected these sensors based on serial

Charge Transfer Inefficiency (sCTI) criterion (Snyder & Roodman 2020). Both sensors have

measured sCTI below 10−6 for all signal levels up to 105 el, which is within the requirements

for LSST set in O’Connor et al. (2016). We also selected two other sensors, R02-S00 (ITL)

and R22-S02 (E2V), which were used only as a secondary checks to compare broader per-

formances between sensor types which we will explain in a later section, and the results we

will show and discuss in this paper come from analyses of the two “primary” sensors. Kotov

et al. (2016) shows that all sensors pass the acceptance tests defined by Radeka et al. (2009).

7.3 Electro-optical (EO) datasets

The datasets we collected during Run 5 testing campaign included two types of images:

calibrations and artificial science images of star fields. The calibrations are used to find,
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characterize, and remove instrument signatures in images, which we test on the artificial

stars images. In this section we will describe both data types in detail.

7.3.1 Calibrations

Calibration images are used to remove other instrument artifacts and behaviors from images.

Among the different types of calibrations, there are: (i) bias frames: 0-sec exposure used to

measure fixed-pattern electronic noise; (ii) dark frames: longer exposure images taken with

the camera shutter closed used to capture the spatially coherent thermal currents fingerprint

of each sensor; and (iii) flat fields: longer exposure images with spatially uniform illumina-

tion across the sensor. Our calibration set includes 20 bias images to remove fixed-pattern

electronic noise, 20 dark images to eliminate thermal currents, and 342 densely sampled

pairs of flat images from low flux (50 el/px) to high flux (1.75× 105 el/px) with a log-scale

increment of ×1.025 in the SDSS i band regime (700–800 nm) to measure the pixel covari-

ances as a function of flux, deferred charge, and linearity. For the flat pair acquisitions,

we also have National Institute of Standards and Technology (NIST)-calibrated photodiode

measurements to provide an independent accurate measurement of the throughput of the

light from the illuminator in the flat field acquisition.

While some calibrations (deferred charge, non-linearity, bias structure, etc.) are inde-

pendent of different wavelengths and a single calibrated image of these types can be used to

correct images of any color, flat fields are known to vary with color. We note that the SDSS

i -band, which we use to calibrate flat fields, roughly corresponds to the range 700 nm–800 nm

which covers a region of the electromagnetic spectrum outside the wavelength of the artificial

star data at 680 nm. We will discuss the chromatic dependence of the BFE in §8.2.1, however

based on preliminary studies by Astier, Pierre & Regnault, Nicolas (2023) in HSC and our

own later studies, any potential differences of the BFE between light at these comparatively
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close wavelengths is negligible.

7.3.2 Artificial stars

We projected artificial stars onto four sensors using the spot grid projector. An example

exposure with artificial stars is shown in the top panel of Figure 7.1. A close-up example of a

single star is shown in the bottom panel of Figure 7.1. We project these stars onto the sensors

and fix the light level by adjusting the integration time. We took a sequence of images of

artificial stars at increasing intensities by varying the integration time in 15 steps from 5 s

to 200 s to cover the full range in flux of our flat field calibrations (the full dynamic range

of our CCDs), with 40 images at each exposure level. We split these image acquisitions into

four quadrants around each sensor, changing the projector position 4 times across the whole

imaging sequence. This allows us to measure many similarly sized and shaped artificial stars

at a variety of positions and signal levels. The projector tended to shake briefly after each

change in its position, so we ignore the first image after the projector changes position to

avoid images with distorted stars that could bias a consistent measurement of the size and

shape of the stars.
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Figure 7.1: Top: an example of a spot image (20 s exposure with 680 nm LED) that has been
processed by standard instrument signature removal discussed in §7.4.1. It shows the uneven
(circularly symmetric) illumination pattern from the projector on a single sensor (ITL R03-
S12). Bottom: an image subsection showing the Airy function due to the long wavelength
regime (solid red), and the corresponding 65 px × 65 px stamp (dashed-red) which sets the
bounds used to derive calculate each star’s shape.
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7.4 Image processing

Before any image analysis can take place, the images need to be cleaned of other instrument

artifacts that are not related to the BFE, and we need to be able to measure the sources

in the image and compile their useful properties into a catalog. In this section we give an

overview of the methods we used to process these images (§7.4.1) and measure their sources

(§7.4.2) in preparation for our analysis of the BFE.

Raw Image

Overscan
Correction

Linearity
Correction

Linearity Table

Gain Scaling
(ADU→ el)

Crosstalk
Correction

Crosstalk Matrix

Combined Bias
Bias

Subtraction

PTC (Gains)

CTI Table
Serial CTI
Correction

Amplifier Ass.
+ Trimming

PTC (read noise)
Variance

Plane Image

Dark
Subtraction

Combined Dark

BF Kernel BF Correction

Post-ISR Image

Camera

Defect Mask-
ing/Interp

Defect Map

Figure 7.2: Simplified overview of Instrument Signature Removal (ISR) steps and necessary
calibration products. The solid, square boxes are algorithmic steps (”tasks”) in the pipeline.
Dashed clouds are specific input/output data products. The steps in red are in the process
of being implemented/or not applied in this analysis framework. The final data product
here are the calibrated images (“Post-ISR Image”), and the other downstream steps (out-of-
scope, not shown) include the measurement and analysis steps (including object detection).
This flowchart is based on discussions at Rubin Calibration Workshop at SLAC, October
2023 (referenced here Plazas Malagón et al. 2024).

7.4.1 Instrument Signature Removal (ISR)

We processed each raw image using a complete sequence of the standard LSST Science

Pipelines (w.2023.29 releases) and our calibrated Run 5 testing data products (Jurić et al.
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2017; Bosch et al. 2019). Raw images are the unassembled images in analog-to-digital (ADU)

units, and the output of the image processing pipeline are assembled, calibrated images in

units of electrons. The full pipeline from raw data to a calibrated image is shown in Figure

7.2 alongside the necessary calibration products for each step. The standard Instrument

Signature Removal (ISR) removes spatially characteristic systematic effects in the sensors

using calibrated measurements and corrections. We do not apply all these steps to this

analysis. The selected steps applied in this analysis, as well as the detailed configurations

used in the software are given in Appendix D. The ISR steps correct different artifacts

generally as follows:

1. Serial/parallel overscan: the overscan is the recorded part of an image that is not

exposed to light (extra readouts along rows/columns of the sensor beyond the size of

each imaging region), and it directly records row-wise/column-wise variations due to

unstable bias levels across an image during readout. These variations can be measured

and optionally fit and removed from each row/column.

2. Non-linearity (NL): a characteristic of the signal chain that results in the total in-

cident signal on a sensor is no longer being proportional the recorded signal. We

correct analog-to-digital converter (ADC) non-linearity (Downing et al. 2006) using a

calibration correction informed by the densely sampled flat pairs compared with an

independent measure of flux by the illuminator’s photodiode measurements.

3. Crosstalk: electronic coupling between sensor channel readout electronics which creates

ghost copies of bright sources within the same sensor and between sensors. It is a

particular issue for LSST because it requires requires a fast synchronous readout of all

3024 video channels (the full focal plane needs reads out in under 2 seconds Roodman

et al. 2018). We remove the features using a matrix of coefficients that captures the

coupling between all combinations of source channels and target channels.
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4. Bias: 2D structure that imprints on an image even without any integration time, such

as spatially coherent electronic noise in the CCD and readout, can be removed by

subtracting clipped per-pixel mean of many bias frames.

5. Charge Transfer Inefficiency (CTI): also referred to as deferred charge, it is the effect

of the incomplete shifting of charge toward the readout amplifiers, resulting in charge

getting trapped in silicon and released at a later time. We corrected the charge transfer

inefficiency in the horizontal (serial) direction across the image using the same method

as described in Snyder & Roodman (2020) and Astier et al. (2019).

6. Defects: pixels with outlier values in darks or flats, reside in a particular location

on a sensor, or have a large value above a defined threshold can be flagged as BAD,

SUSPECT, or SATURATED and can be ignored or interpolated over in downstream

processing (e.g. hot columns, dark pixels, etc.).

7. Dark: 2D structure that imprints on an image even resulting from spatially coherent

thermal currents. It can be removed by subtracting clipped per-pixel mean of many

dark frames.

8. Brighter-Fatter Effect: discussed in this analysis.

During image processing, instrument artifacts are generally removed in the reverse order

in which they occur in the signal chain. The BFE is one of the first instrument signatures

to impact an exposure, and other instrument effects get mixed in with the image at later

points in the signal chain. In order to isolate the effects of the BFE, these other effects

need to be removed first, and the BFE correction will then applied near the end of the ISR

pipeline. Extreme care must therefore be taken to remove these other effects and validate

the quality of these other ISR steps before deriving calibrations for the BFE from flat fields

and applying the correction to an image.
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7.4.2 Photometry

We measured the light profile and shape statistics of each artificial star from each post-ISR

exposure, deriving the source centroid, flux, and shape using the Galsim (Rowe et al. 2014)

re-implementations of the Gaussian-weighted adaptive moments algorithm (HSM) defined

by Hirata & Seljak (2003) and tested independently by Mandelbaum et al. (2005). The HSM

photometrics were derived for a square stamp around each star’s centroid, with a side length

equal to the spot grid spacing, which should entirely capture the star and any diffraction

rings without presuming anything about the stars’ shapes (see the bottom of Figure 7.1).

The metrics include the diagonal elements of the quadrupole image moment tensor (here

we denote them Ixx, Iyy, and Ixy) where x is the serial direction along the orientation of

the gates and y is the parallel direction along the orientation of the channel stops. These

statistics are useful because they are directly related to metrics of cosmic shear distortions.

More information about the calculation of these metrics can be found in Appendix E.
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Measurements of BFEs in LSSTCam

Using these calibration datasets, we can infer the properties of teh BFE in our sensors by

fitting measured covariances to the covariance model. The terms of the covariance model

represent the underlying mechanisms that affect charge transport in pixels as charge accumu-

lates in those pixels. The full covariance model does not a priori assume the origins of these

physical mechanisms, however in this section we will fit Equation 6.1 to our measured covari-

ances and outline the possible underlying BF mechanisms that affect correlations between

pixels linearly and non-linearly with signal level.

8.1 Pixel saturation effects

Above a specific empirical signal level, the pixel is considered saturated and other mechanisms

besides transverse coulomb forces begin to dominate and produce large pixel correlations

that grow rapidly with each additional charge that is accumulated. Before we can infer

the magnitudes of the coefficients of our covariance model, we must first consider the signal

range over which we can fit the covariance model to measured PTC data. Previous literature

surrounding CCDs might refer to pixel saturation despite it being somewhat ambiguous, as
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(a) ITL Sensor (R03-S12) (b) E2V Sensor (R24-S11)

Figure 8.1: Measured parallel transfer CTI as functions of flux for the two sensors, with
the range of turnoffs among the 16 channels highlighted. The anomalous amplifier in sensor
R03-S12 (AMP06/C15) was ignored for all of our analyses due to abnormal pCTI behavior.

different mechanisms can influence pixels to varying degrees and at different signal levels.

We observe a correspondence between rapid changes of the covariance function with

different metrics of pixel saturation or “turnoffs” which we further correlate with physical

mechanisms of charge transport that result in correlations between pixels. Typically, the

pixel saturation level is defined as the level above which the flat images dramatically lose

variance (dC00/dµ < 0) and the PTC no longer monotonically increases (the “PTC turnoff”

as described by Janesick 2001). In practice, we might also measure the maximum capacity

more simply as the brightest recorded pixel (“maximum observed signal”). Another method

defined by Snyder & Roodman (2020) assigns the limit as the flux above which charge can no

longer be effectively transferred serially out of the sensor during readout. The serial charge

transfer efficiency (sCTE or rather sCTI in the case of charge transfer in-efficiency described

in Rhodes et al. 2010) is calculated using the extended pixel edge response (EPER) method:

CTI(µ) =
Foverscan(µ)

NTFlastpixel(µ)
(8.1)
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where Foverscan/Flastpixel is the ratio between the total charge left in the overscan region after

an image is transferred out to the last image column and NT is the number of pixel transfers

during that readout, which is calculated for a specific flat image at a given flux level. The

critical limit (“sCTI turnoff”) is defined as the signal level at which the sCTI crosses above

the 10−5 (unitless) threshold. In our investigation, we discovered another relevant limit,

which falls below all of these other limits. It can be identified as a turnoff in the parallel

transfer component of CTI (“pCTI turnoff”), as shown in Figure 8.1, which is calculated

analogously to the sCTI in Snyder & Roodman (2020). We define this point of pCTI turnoff

by fitting the pCTI(µ) to a flat line above the level of noise (2.5 × 104 el), and below any

other features (5.0× 104 el), and determine where the pCTI deviates by more than 3σ given

by the standard error of the fitted data points. We typically measure this limit to be between

0.8− 1.1× 105 e−, which is below any of our other metrics for CCD full-well capacity. Note

that we will refer to the parallel EPER as parallel CTI since it’s calculated analogously to

serial CTI, however the origin of the turnoff in parallel CTI is still unknown. It is possible

that this turnoff stems from the onset of a surface channel which persists from pixels in

previous exposures that are above this critical signal level.

Each of these turnoff levels represents a different source of pixel correlations that begins

to be relevant at different signal levels. And while we find the turnoff levels to vary from

sensor to sensor, we find that their order is consistent in all the sensors we tested. The lowest

is the pCTI turnoff (0.83 − 1.13 × 105 el), followed by the PTC turnoff, the sCTI turnoff

(1.40− 1.75× 105 el), and the maximum observed signal (> 1.50× 105 el).

8.2 Photon transfer mechanisms

We fit the covariance model up to O(µ3) (the “full covariance model”) with an 8 × 8px

covariance matrix (i, j = 0, 1, · · · 7) as a function of mean flat field signal. The different
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physical effects near pixel saturation that determine the full-well capacity of pixels would

bias the fit of our covariance model to the PTC, and our estimation of the strength of the

BFE. We therefore limit the ranges of our fits to only signal levels below the pCTI turnoff to

avoid including these other sources of pixel correlations that could be misattributed to the

BFE. A summary of the fitted values for each sensor is shown in Table 8.1. In the following

sections we will use this theoretical model with our lab data to compare the role of first order

(∝ µ1) and non-linear (∝ µ2+) effects within pixels.

Cij(µ) Fit Parameters

Parameter R03-S12 (ITL) R24-S11 (E2V) R02-S00 (ITL) R21-S02 (E2V)

a00 −1.80× 10−6 −3.11× 10−6 −1.80× 10−6 −3.10× 10−6

a10 1.18× 10−7 1.63× 10−7 1.32× 10−7 1.64× 10−7

a01 2.54× 10−7 3.83× 10−7 2.62× 10−7 3.78× 10−7

σ(a00) / |a00| 3.42% 3.44% 7.35% 3.94%

b00 −8.69× 10−7 −2.95× 10−7 −8.10× 10−7 −5.38× 10−7

b10 −5.36× 10−6 −3.65× 10−6 −5.97× 10−6 −3.01× 10−6

b01 4.71× 10−8 2.04× 10−6 5.42× 10−7 1.06× 10−6

σ(b00) / |b00| 50.8% 171% 163% 133%

ḡ 1.70 1.50 1.68 1.50

Table 8.1: Fitted parameters of the full covariance model (Equation 6.1) to calibrated data
(§7.3.1). We fit up to the pCTI turnoff, which was calibrated per amplifier, and then all
parameters are averaged over all amplifiers for each sensor. Sigma parameters are given as
the scatter over all amplifiers.

8.2.1 1st order effects

Pixel area distortions

To first order, the charge added to a pixel alters the effective area of the pixel by a constant

amount. By fitting the covariance model to the covariances as a function of flux, we can
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measure the aij matrix and infer how much the areas would be perturbed by a small amount

of charge as a function of distance from the central perturbing pixel. The first three pixels are

detailed in Table 8.1 and Figure 8.2 shows the observed aij matrix and profile of coefficients

averaged over all channels. The value of a00 is of order 10−6, and we observe it to be nearly

double the size in E2V sensors as it is in ITL sensors. The value of a00 varies by 3.42%

across amplifiers. Small variability in amplifier-dependent calibration levels (including non-

linearity, overscan correction, etc.) can result in small empirical variation in a00, which

should be amplifier-independent. Similar levels are reported for R24-S11 (E2V) in Table 8.1.

The aij matrix also shows a notable anisotropy between the cardinal directions of the pixel

Figure 8.2: The pixel fractional area change as a matrix derived from the full covariance
model (Equation 6.1). The top panel shows the asymmetry in direction (a01/a10 ∼ 2.16),
and the bottom panel shows the decay of the matrix into noise past 3 − 4 pixels. We also
show the serial and parallel pixels in red and blue to show the difference in the model in
both directions on the sensor. The central term is a00 = −1.80×10−6. Error bars are scatter
across all 16 amplifiers. This was calculated for an ITL sensor on the LSST focal plane
(R03-S12).
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coordinate system (a01/a10 ∼ 2.16), indicating the BFE is stronger in the parallel direction.

Wavelength dependence

One possible additional variable is the wavelength dependence of the BFE. The depth at

which a photon converts into an electron-hole pair in the sensor is determined by the wave-

length of the light, and the BFE has a larger action length for charges that convert near

the surface of the sensor. Figures 8.3 and 8.4 show that, for the typical wavelengths that

LSSTCam will observe, the bluer wavelengths convert higher in the sensor than redder wave-

lengths. In fact approximately 10% of the near-infrared wavelengths pass fully through the

sensor without getting absorbed. If the BFE has a wavelength dependence, one should expect

to measure larger covariances in redder wavelengths than in bluer wavelengths.

Using PTC datasets from later LSSTCam testing (Run 6) taken in a similar way as

the Run 5 flat pair datasets described in §7.3.1, we can compare the covariances and the

fitted 1st order model coefficients between different wavelengths. The measured covariances

for different wavelengths (measured in LSST filter bands and narrowband wavelengths) are

shown in Figure 8.5, which shows that there are higher covariances, and therefore lower pixel

correlations in the redder wavelengths. Slightly different operational settings, including bias

and clocking voltages, can contribute to the discrepancy between the measured a00 shown in

Figure 8.5 and that shown in 8.2, however we are able to compare the trend of the strength

of the BFE as the evolution of a00 with wavelength.

This observed λ-dependence corresponds to a larger BFE at bluer wavelengths, measured

by the first order components of the BFE (a00). Among the bluer wavelengths, the effect is

insignificant, however, at redder-wavelengths the band-to-band differences in the BF strength

are more significant. One potential interpretation is that most of the deflection in the drift

path of the electrons only occurs close to the charge cloud deep in the sensor, and this picture

is consistent with 3D electrostatic simulations in LSST-type sensors by Lage et al. (2017).
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Figure 8.3: The combined hardware throughput of the LSSTCam optical system (left) com-
pared to the absorption length in silicon (right). Silicon absorption length is taken from
empirical measurements in Green (2022).
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8.2.2 Higher-order (HO) effects

Non-linear effects

The main contributing non-linear term of the full covariance model has two components

(a⊗ a+ ab) with two parameters (a and b).

Figures 8.7 and 8.7 show that C̃ij(µ)/µ
2 deviates from the first order aij parameter for

electron signal levels greater than zero, which must be due to contributions from the non-

linear terms in Equation 6.1. In correspondence with Astier et al. (2019), we find that terms

higher-order than µ1 are a significant component of the covariance function, accounting for

as much as 15–30% of the loss in pixel variance at 105 el, depending on the sensor tested,

and are required for a good fit to the data. Excluding higher-order terms (µ4+) in the fit

contributes a negligible error, at least up to the pCTI turnoff level.

The other parameter in these higher-order terms, the bij matrix, was previously measured

to be sub-dominant by Astier et al. (2019), however we find that it is almost the same size

as the a00. Only the bij values for rij =
√
i2 + j2 < 3 are constrained by the fit to the

data. Figure 8.8 shows the fitted value of the b matrix for R03-S12 (ITL). We measure

b00 = (−8.69± 1.11)× 10−7, b10 = (−5.36± 0.224)× 10−6, and b01 = (−4.71± 14.5)× 10−8,

all in units of el−1. The element b00 is 48% of the magnitude of a00. The b matrix has the

effect of decreasing aij if negative and increasing aij if positive, corresponding to decreasing

or increasing effective pixel areas, and it has the same units as the aij matrix. It is not

immediately clear how to physically interpret the value of the central bij matrix elements or

other non-zero elements of bij other than as modifiers to the mathematical effect of aij that

enter in as higher-order terms of C̃ij(µ) at non-zero signal levels. That is to say bij represents

non-linear corrections to aij as charge accumulates.

The other non-(0,0) components of b are also negative except for the nearest parallel

component. These elements are also asymmetric, with the best-fit measurement of b10/b01 =
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(a) ITL Sensor (R03-S12)

Figure 8.7: Top: measurements of the higher-order covariances and the corresponding fitted
model. Bottom: the fractional residuals between the measured covariances and the corre-
sponding covariance model. Vertical lines mark the various measures of full-well conditions.
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(b) E2V Sensor (R24-S11)

Figure 8.7: Continued.
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Figure 8.8: The measured bij charge-displacement component derived from the full covariance
model (Equation 6.1). We also show the serial and parallel pixels in red and blue to show
the difference in the model in both directions on the sensor. It shows the relative increase
(positive) or decrease (negative) shift in the accumulated charges’ centroids. The error bars
represent the scatter over all amplifiers. This was calculated for an ITL sensor on the LSST
focal plane (R03-S12).

2.82, which could result from a growing asymmetry in pixel boundary shifts with charge

accumulation. As charge accumulates, if the stored charge cloud distorts anisotropically,

further charges would preferentially be deflected in a particular direction, producing a non-

linear charge feedback effect.

BF-induced diffusion effects

Diffusion of charge as it drifts into the collecting area of the potential well in pixels is known

to exist. In the typical picture of charge diffusion, it does not produce correlations between

pixels. However, several papers have hypothesized that collected charges could lower the
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drift field enough to affect the drift time of incoming electrons and increase the scale of

diffusion. BF-induced diffusion has been hypothesized by several works in current literature

and would be expected to produce pixel correlations similar to the BFE. Magnier et al.

(2018) investigated charge diffusion in Pan-STARRS 1 CCDs. The paper finds variations

in charge diffusion resulting from variations in space charge density from the silicon doping

structures, and they show the effect of this on observed stellar profiles, but they do this

for a separate artifact called tree rings, which arise from variations in dopant concentration

variations in the silicon bulk that look like rings due to how the silicon crystals are grown

during the manufacturing process. The distribution of space charges that produce the tree

ring effect are not the same distribution of charges that produce the BFE. And there is no

formal foundation is laid out for how increased diffusion induced by the BFE would alter

the variation in pixel correlations in flat fields with distance.

There have been other investigations on this topic by Holland et al. (2014). They use a

simplified physics-based model to measure the impact of accumulated charges on diffusion.

They measure the change in bias voltage and the diffusion scale as a function of accumulated

charge for simulations of the DES’s DECam sensors. They show that the effect on the

diffusion scale is of the order 1% in their sensor’s pixels at high signal levels. And show

that the impact of accumulated charge on diffusion is even smaller when the change in bias

voltage due to additional charge is much smaller than the bias voltage itself. However, their

model might be over-simplified as they treat the accumulated charge as a point source, but

a more realistic configuration is a more diffuse cloud of charge, which would likely result in

an even smaller disturbance to the bias voltage, and an even smaller impact on diffusion.

This is further supported by the fact that other works have actually described the measured

covariances well by only considering alterations in charge trajectories without considering

any impacts on diffusion (Lage 2019; Astier, Pierre & Regnault, Nicolas 2023).

There is a difference between the “typical” diffusion usually referred to in literature and
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the “BF-induced” diffusion which has suggested. The shot noise that produces the variances

in the PTC is produced by electrons independently falling into pixel bins, and typical diffu-

sion does not change the fact that the electrons are independently falling into pixel bins, and

therefore it does not produce a deviation from the Poisson variances in the PTC. However, if

some source charge lowers the drift field and produces an increased diffusion-like effect, then

the electrons no longer “diffuse” into neighboring pixels independently and could therefore

produce a deviation from Poisson variances in the PTC. A pixel with some excess charge due

to shot noise may have an increased diffusion scale, and a pixel with some smaller charge due

to shot noise would have a smaller increase in diffusion scale. BF-induced diffusion would

therefore affect the PTC in a way that typical diffusion does not. This BF-induced diffusion

(while likely negligible) would be indistinguishable from the BFE itself and be picked up by

the coefficients in the covariance model.

8.2.3 Model fit quality

A good metric of the quality of the fit is the “sum rule” of aij, which should be close to zero

if the total net pixel area displacement is zero and we are fully capturing the range of the

BFE with the chosen size of the aij matrix. Figure 8.9 shows the zero sum rule of the fitted

a parameter for different sizes of the matrix in sensor R03-S12 (ITL). We find that beyond

4 px the fractional pixel area change fluctuations are largely dominated by noise, and that

modeling out to 8 pixels gives
∑
aij < 1.04 × 10−7 el−1, which is 5.8% of |a00|. Without

including b in the fit, our sum rule is
∑
aij < 5.91×10−9 el−1, which is 0.345% of |a00|. The

sum rule can deviate from zero as the result of poorly constraining the noise parameter in

the fit to Equation 6.1. The excess sum then results from summing up a noise offset, which

dominates the covariance at large lags away from the (0, 0) pixel. In the next section (§9.2)

we describe how we overcome this issue and enforce the sum rule when ultimately deriving
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the correction kernel.

Astier et al. (2019) showed their functional form (Equation 6.1) up to O(µ4) fits the

observed PTC well over the flux range they considered, citing χ2/Ndof = 1.23. The number

of observations is the number of flat pairs, and the parameters for just the variance element

of the fit are g, n00, and a00, so they use Ndof = N(flat field pairs) − 3. Their good model

fit suggests that the PTC shape is contributed by other non-linear terms included in the

covariance model. Our fit to the model leaves an average χ2/Ndof of 13.7 in each amplifier,

which is larger (χ2/Ndof = 14.9) when b = 0. This is large since the model fit leaves 0.5%

fluctuation in the residual variance (C00) above 5× 104 ADU (bottom plots of the 00 terms

in Figure 8.7). The fluctuation is characteristic of a residual un-modeled non-linearity in

the Analog Signal Processing Integrated Circuit (ASPIC) (described in Astier et al. 2019;

Figure 8.9: The charge conservation condition of the aij model for the cases where bij is
allowed to vary or held fixed at 0. We calculate the sum over the a matrix. The error bars
are the standard deviations across all amplifiers. This was calculated for the ITL sensor
R03-S12.
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Juramy et al. 2014). The non-linearity takes on the form of a regular periodic function in

signal level above 7.5 × 104 el, and it might not have that much of an impact on our full

covariance model if the surplus and deficit residuals balance the fit around the true PTC.

However, by restricting the range of fluxes fit to those below the pCTI turnoff, we cut the

fit range short enough that it might cause the non-linearity to bias the fit and give us a poor

result. For this reason, the quality of the model fit is very sensitive to the flux range. We

found that adjusting the maximum signal by ±103 el (around the pCTI turnoff), we could

achieve arbitrarily better χ2, but not necessarily a more accurate fit which models the BFE.

On the other hand, the non-(0, 0) terms, which are also shown in Figures 8.7 and 8.7, exhibit

good fits with residuals smaller than the level of read noise and statistical fluctuations. In

the next section, when we use the PTC model to construct a BF correction, we will continue

to use these PTC fits, which at least generally follow the curves of the PTCs. Regardless,

we can still conclude that the higher-order terms are non-negligible and result in non-linear

alterations of C̃ij/µ
2 as charge distributions grow over time.

118



Chapter 9

Correction of BFEs in LSSTCam

In the following sections we will apply the scalar correction by Coulton et al. (2018) (§6.2)

with non-linear BFEs included.

9.1 Adding non-linear corrections

As we saw in the previous section, the amplitude of the BFE is different at different signal

levels due to the contribution of higher-order effects, and we know that any physically well-

motivated correction algorithm would need to take higher-order terms into account at high

signal levels. To include these higher-order components into K, we construct the kernel

(using Equation 6.7) by sampling C̃ij(µ) from our full covariance model at a non-zero signal

level, which would therefore include higher-order effects. We will do this in several steps:

1. Evaluate C̃ij(µ) from the full covariance model at several signal levels.

2. Use Equation 6.7, to calculate a kernel for each C̃ij.

3. Correct the flat pairs in the PTC using each kernel.
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4. Calculate χ2/Ndof between each corrected PTC and the expected linear behavior, de-

fined by the gain of the uncorrected PTC.

5. Determine the kernel that results in the minimum reduced χ2 statistic.

By finding the signal level at which the corresponding kernel minimizes the reduced χ2 be-

tween the resulting corrected PTC and the Poisson expectation, we define a characteristic

signal level that can best correct the PTC. We will refer to this signal level as the “charac-

teristic” signal level (µ∗) and the corresponding kernel as the “characteristic” kernel.

We search for µ∗ over a range of µ ∈ [ 104ADU, pCTI turnoff ). We derive corrected

PTCs from kernels at six signal levels in this range, in steps of 104 ADU.

We also take a few practical steps to ensure each kernel is accurate. We normalized the

kernel at a given signal level to enforce the zero sum rule (similar to charge conservation) by

adjusting the value of the central pixel C̃00 so that
∑

ij C̃ij/µ
2 = 0, for the measured corre-

lations and the correlation model, integrating distances out to infinity. We risk over-fitting

noise if we calculate the kernel boundaries beyond 4 pixels, so we model the correlations

beyond 4px away from the center of the kernel with an empirically measured power law,

C̃ij/µ
2 ∝ r−γ (typically γ ∼ 3.2). However, we observed that inclusion of the correlation

model makes only a negligible difference to the kernel and the final correction. The central

term of the kernel (K00) is typically decreased by approximately 10% as a result of enforc-

ing this zero-sum rule, and K00 fluctuates across amplifiers by approximately 10% due to

variations in calibrations between amplifiers. Enforcing this zero sum rule has a large im-

pact on the correction since the (0, 0) pixel dominates the correction amplitude as we will

show in the following sections. In order to avoid discontinuities at amplifier boundaries, we

average the kernels per sensor and use the average in the final correction, and these kernels

are shown in Figure 9.1. Ultimately, as described and recommended in the implementation

of the correction (Coulton et al. 2018), we recursively apply the kernel to each image until
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the total added charge in each step falls below a threshold of 10 electrons (the “convergence

condition”), which typically takes no more than 2–3 iterations.
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(a) Center serial slice
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(b) Center parallel slice

Figure 9.1: The average kernels calculated for ITL (R03-S12) at different signal levels. They
are shown in profile as central slices along the parallel and serial directions.

We measure the quality of the correction by comparing the corrected PTC to the expected

Poisson form. We calculate the reduced χ2 as:

χ2/Ndof =
1

Ndof

∑
µ

(CCorrected
00 − CPoisson

00 )2

CPoisson
00

(9.1)

The Poisson variance is determined using the gain derived from the covariance model fit of

the uncorrected PTC. We also use Ndof = N(flat pairs)− 2 because we have N(flat pairs)

observations and 2 parameters for gain and noise. We only calculate the residual χ2-statistic

from data below 5.0× 104 el for E2V sensors and below 7.5× 104 el for ITL sensors to avoid

residual NL at higher signals from interfering with our test.
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Figure 9.2 shows the residual reduced χ2 as a function of the corresponding signal level.

We perform a simple least-squares test by fitting a 3-parameter quadratic polynomial to the

points across the flux space, and the location of the minimum of this quadratic polynomial

determines the characteristic signal level µ∗ that that minimizes the reduced χ2 statistic for

each sensor and best reconstructs the Poisson form of the PTC. The characteristic signal

levels are not necessarily exactly half way between zero signal and pixel saturation at the

PTC turnoff. The location of the characteristic signal level could be a balance between

underestimating the role of higher-order BFEs at low signal and overestimating the role of

higher-order BFEs at low signal. We also find that like-sensor types have similar charac-

teristic signal levels within fitting errors between our 4 sensors, and while the reason is not

Figure 9.2: The measured reduced χ2 values between corrected PTCs and the Poisson expec-
tation using kernels at 6 different signal levels. We sum the reduced χ2 over all amplifiers.
A simple 3-parameter quadratic polynomial has been fit to the points across the parameter
space to determine the signal level (µ∗) that minimizes the χ2 statistic. This shows that
we have a characteristic signal level that reconstructs the PTC, and this level is similar in
sensors of the same type.

122



Chapter 9. Correction of BFEs in LSSTCam

entirely clear, it could be the result of sensor-specific operating conditions or design spec-

ifications (e.g. similar doping levels in the substrate material as considered in Rasmussen

et al. 2016).

9.2 Correction of flat fields

In this section, we attempt to linearize the PTCs of our sensors by correcting the BFE out of

the flat field images using the kernel K which includes higher-order BFE components. Figure

9.3 shows the ultimate result of applying the empirically determined best BF correction to

the flat field images in order to reconstruct the linear PTC. The correction breaks down above

the pCTI turnoff for each sensor. Since the kernels for each amplifier are averaged together,

the amplifier with the lowest pCTI turnoff determines the maximum signal level that can

be corrected. Above 7.5 × 104 el but below the pCTI turnoff, there is still some remaining

uncorrected NL from the flat field projector, which prevents us from fully correcting the

BFE above that signal level. This did not have an impact on our calculation of µ∗ since we

only used data points below this level in calculating our χ2 statistic specifically to avoid it

interfering with our analysis.

We fit the full covariance model (up to the pCTI turnoff) to the BF-corrected PTC

for both sensors. In the ITL sensor, the average a00 decreased by 94.9% and the residual

anisotropy was corrected closer to unity (a01/a10 = 0.735). For the E2V sensor, a00 decreased

by 97.1% and the residual anisotropy was also corrected closer to unity (a01/a10 = 0.942).

This shows that the BFE correction captures most of the strength and anisotropy of the

BFE in flat fields below the pCTI turnoff.

We rely on the Coulton et al. (2018) algorithm that assumes the kernel is constant with

respect to the flux. Our result finds this assumption is not true. Using a single kernel

to correct multiple signal levels is intrinsically flawed because a single scalar kernel cannot
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capture both the BFE at low signal and the BFE at high signal. However, we cannot

use multiple kernels to correct images of PSF stars with more complicated light profiles. All

previous literature that has investigated a correction of the BFE derived their correction from

flat fields measurements. It is easily calibrated from flat fields and is far less computationally

expensive than solving Poisson’s equation for each image. If we use flat images to derive

a correction for the BFE, it is important to find the kernel that can best reconstruct the

Poisson noise of flat images and understand how well the BFE measured in flat fields can

approximate the effect in star images.

(a) ITL Sensor (R03-S12) (b) E2V Sensor (R24-S11)

Figure 9.3: Photon transfer curves reconstructed from corrected flat field images using the
corresponding characteristic kernels for the ITL sensor (R03-S12) on the left and the E2V
sensor (R24-S11) on the right. On the bottom, we include the residuals from the expected
linear behavior. Although we use a detector averaged kernel, we compute this for each of
the 16 amplifiers. The average gain, included as a parameter in the post-correction full
covariance model fit, increased by 0.35% in the ITL sensor and 16% in the E2V sensor.
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9.3 Correction of stars

In this section, we apply the characteristic correction derived from flat fields to correct images

of artificial stars. The BFE in stars could be a stronger effect than in the earlier case of flat

fields since the contrasts (pixel-to-pixel differences) are larger and therefore the gradients of

the charge distribution and the divergence of the deflection fields are also larger. The BFE

in stars could be a stronger effect than in the earlier case of flat fields since the contrasts

(pixel-to-pixel differences) are larger and therefore the gradients of the charge distribution

and the divergence of the deflection fields are also larger.

To start, we found several problematic systematic effects in the images which needed

to be addressed. Firstly, there is non-uniform, disk-shaped background in the artificial star

images that peaks around 0.5 el/px/s, which is caused by illumination through the photo-

lithographic mask and evident by eye in the top image of Figure 7.1. The background light

level is much smaller than the Poisson noise of each star, and it is unlikely to significantly

affect our photometry of bright stars. However the shape-fitting algorithm is known to be

sensitive to background light levels, especially in the low signal-to-noise (SNR) regime (Hirata

& Seljak 2003; Refregier et al. 2012; Okura & Futamase 2018). We attempted to model and

subtract the background in each exposure using a 65px box size and 5px median filter while

masking out the footprints of the artificial stars. We attempted to remove the background

in order to accurately measure the shape of the BFE at low signals, but there appeared to

be a residual background that we failed to model by this procedure in the dimmest images,

resulting in the increase of the second moment of stars in the low S/N region. We performed

this background subtraction even though we ultimately ignored these low signal points in

measuring the slope of the BFE in stars. The analyses with and without the background

subtraction are not measurably different.

Secondly, we observe Airy diffraction rings on each of the stars due to the pinholes of
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Figure 9.4: Distributions of the intrinsic shapes of the artificial stars used in these analyses
(after selection cuts). Each distribution is centered on its mean and plotted with the same
bin size. We derived these values from a collection of low-brightness images at the same
exposure time (15 s), and these distributions contain about 3200 spots. The distributions
indicate a small average ellipticity (a/b < 0.07) and correlated orientation angle (θ̄ = −24.1
deg) due to the relative alignment of the spot projector with the mask and focal plane,
indicating that the major axes are almost parallel with the serial gate structure. Angles are
given by tan(2θ) = 2Ixy/(Ixx − Iyy) and measured relative to the serial transfer direction.
At the zero signal level, the average shapes are (Ixx, Iyy, Ixy) = (9.45, 10.45, 0.564) ([px2]).

the spot projector mask, which can be seen in the bottom image of Figure 7.1. However,

as we will discuss further, we will study the differences between spot sizes at any signal

level with respect to the same star’s intrinsic shape at low signal and the impact of the

detailed structure will be cancelled out even if the diffraction rings of different spots have

non-negligible overlap.

Thirdly, the focal-plane-to-projector orientation and optical aberration from the lens

caused minor distortions of the artificial stars, especially away from the center of the grid,

and they cannot be perfectly parameterized by isotropic 2D Gaussians. We observed that
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the central and brightest stars of the grid hardly vary in intrinsic shape between exposures

at the same or different projector positions. To avoid any other systematic effect related to

the intrinsic alignment of the spots themselves, we therefore select only the top 5% brightest

stars in total flux in each image. These stars happen to correspond to the same pinholes in

the spot projector between in each image. In order to avoid including stars that land on the

edges of the sensor, which skews their shapes, we also clipped stars beyond 3σ of the mean

at each exposure time. This cut only removed O(10) data points in a few of the exposures.

We ultimately selected approximately 80 spots in each exposure for our analysis. With 40

images at each exposure level, we use approximately 3200 spots/exposure level.

Figure 9.4 shows the approximate intrinsic shapes of the artificial stars used in this

analysis, which we derive from their shapes at 15s of exposure, which corresponds to a

relatively low peak signal level of 2.5× 104el. The distortions are correlated across the grid

with the major axes consistently 7% larger than the minor axes, and the major axes of all

the spots are aligned at a −24 deg angle relative to the serial readout direction (horizontal

and to the left in Figure 9.4). We do not believe this affects our result, as we will discuss

further in §10.1.

In Figure 9.5, we show the growth of all three independent components of the second-

moments matrix (Ixx, Iyy, Ixy) separately for each sensor type. We chose the mean star shapes

derived from the 20-second exposures as a fiducial point from which to show the growth of

the size that result from the BFE since the lowest flux stars suffers from low signal-to-noise

ratio due to the extended residual background light. We therefore measure the size-growth of

each star, corresponding to an individual hole in the projector mask, relative to its intrinsic

shape. We also use the peak signal of each spot instead of the integrated signal as a measure

of the signal level so that we can relate our spot photometry to different measurements of

the pixel full-well capacity.

To quantify the magnitude of the BFE, we determine the growth of the second moment
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(a) ITL (R03-S12)

Figure 9.5: The second moments of the artificial stars taken from images vs. their peak
pixel value for an ITL sensor (R03-S12). Left column is the uncorrected data and the right
column is corrected data. Each blue point is a single spot from a single exposure. Error bars
are standard errors of the distribution about the mean at each exposure time in moment and
flux, and a line has been fitted to the 20–50 s points, which corresponds to 2.5− 9.0× 104 el
(just below the pCTI turnoff). The vertical shaded regions represent the range of full-well
capacities of the 16 amplifiers on the sensor using the four different methods.
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(b) E2V (R24-S11)

Figure 9.5: Continued.
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with respect to this peak signal level. We fit the data points above the influence of our

background light (fmax > 2.5 × 104) and below the pCTI turnoff (which is our linear size-

growth regime) with the function:

Iµν − Iµν,20s = αµνfmax + cµν , (9.2)

where the indices run over the x and y, and αµν determines the relative strength of the BFE,

and cµν just captures the difference between our fiducial point at Iµν,s and the true intrinsic

shape of our spots in the limit of zero signal, which is important for fitting but unimportant

for deriving the strength of the BFE.

We will refer to the size of stars using the canonical metric T = Ixx + Iyy. In addition,

we will define the anisotropy of the BFE by the metric αyy − αxx. Note that this quantity

measures the anisotropy of the BFE, not the anisotropy of the stars, which is typically defined

using the pseudovector quantity of ellipticity (e1, e2), where the components are estimated

as e1 = (Ixx − Iyy)/(Ixx + Iyy) and e2 = 2Ixy/(Ixx + Iyy) in Hoekstra et al. (1998).

The results are shown in Figure 9.5. For the ITL sensor, the size of our artificial stars

grow by 1.75% from their intrinsic size near the pCTI turnoff, and they grow by 3.25% for

the E2V sensor. However, this size growth is asymmetric, just as we observed in the case of

flat fields. For the sensors we measured, the BFE (αµν) is consistently 16% stronger in the

parallel direction than in the serial direction for these stars.

Figure 9.5 also shows the result of applying the correction derived using the characteristic

kernel. We correct T = (Ixx + Iyy) by 89.2% in ITL and 94.8% in E2V, which is worse than

the correction on a00 in flat fields (95-97%), and we correct 31.4-37.8% of the anisotropy in

the BFE. We measure the Ixy component to be poorly corrected only because it is a small

component of the star shape and measurement of the BF strength along this component is

also small. Table 9.1 breaks down the detailed fit parameters between the two sensors.
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Summary of BF Correction on Artificial Stars

Sensor αxx αyy αxy

[px2/el] [px2/el] [px2/el]

R03-S12 (ITL) (1.84± 0.010)× 10−6 (2.15± 0.006)× 10−6 (5.74± 0.441)× 10−8

(1.18± 0.098)× 10−7 (3.11± 0.075)× 10−7 (2.73± 0.429)× 10−8

93.5% 85.5% 52.5%

R24-S11 (E2V) (3.30± 0.050)× 10−6 (3.86± 0.009)× 10−6 (7.83± 0.311)× 10−8

(−7.89± 0.385)× 10−9 (3.76± 0.090)× 10−7 (1.89± 0.297)× 10−8

100% 90.2% 76.0%

Table 9.1: Strength of the BFE before (top) and after (middle) correction, with the relative
correction level (bottom) on artificial stars in different sensor types. Strengths are given as
the fitted slope of the line from Equation 9.2 with 1-σ fitting errors. A value αµν > 0 means
the correction is under-correcting the BFE.

We also show the different turnoff points of pixel full-well discussed in §8.1 to show that

the BFE has impacts over the full dynamic ranges of our sensors. Interestingly, we observe

that the PTC turnoff has little effect on the shapes of the corrected spots in our study

compared to the physical effects at the sCTI turnoff and the pCTI turnoff, which results

in a small deviation from the linear relation as shape of the spots increases due to deferred

charge above this level.

9.4 Flux conservation

We should expect a well-motivated correction that correctly models the charge transport

in an image to fully conserve the flux from the measured image. While we confirm zero

sum rules on the inferred covariance model coefficients and enforce zero sum on the pixel

correlations, we observed that the Coulton et al. (2018) correction does not conserve the PSF

flux from the uncorrected image. Figure 9.6 shows the difference in the integrated flux of

stars after applying the correction. We use the 35px pixel aperture photometry on each star

on images before and after correction without estimating and removing the flat background.
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This aperture was chosen to be large enough compared to the PSF size (6px FWHM) to

capture the total footprint of each star without needing to assume a particular shape for

the profile. The brightest unsaturated stars (below the pCTI turnoff) have a small surplus

δ < 0.02% of total integrated charge compared to the same star in the uncorrected image.

When applying the kernel to an image, more flux is gained by the central pixels than is

taken from the neighboring pixels. The correction only appears to conserve charge in the

continuous limit (⟨δF ⟩ = 0 integrating over the full image area) in flat fields.

Charge non-conservation was more apparent in high-contrast images such as our arti-

ficial stars than in flat fields, which would suggest that the error is the result of a local

deviation of the correction from Gauss’s law on short distance scales. Most of the correction

Figure 9.6: The level of charge conservation after applying the BFE correction. The quantity
f =

∑
r<35px F̂ /

∑
r<35px F is the ratio of integrated flux within 35px of the centroid of each

spot, after/before the BFE correction is applied on each of the stars from the ITL sensor
(R03-S12) dataset. We only plot spots with peak signals below the pCTI turnoff. Error bars
are standard errors of the distribution at each exposure time.
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is dominated by the central value of the kernel, but realistically most of the BFE is con-

tributed by correlations more than 4px away. High-contrast images such as these images of

star-fields have larger deflection field divergences than those in low-contrast images such as

flat fields. Therefore it is more important to properly model the local physics when trying to

correct realistic images. This could be problematic for on-sky photometry, particularly for

exposures with good-seeing images or under-sampled PSFs, which are especially common to

space-based telescopes.

The issue potentially lies with a disagreement between the theoretical formalism of the

Coulton et al. (2018) correction and the application of the correction to real images. The

kernel itself is derived from discrete covariances between pixels, however the mathematical

framework from which Coulton et al. (2018) applies this kernel to an image assumes the

flux distribution in the image is continuous and the pixels are infinitely small. Pixelization

only occurs at the application of the kernel to the image, at which point we cannot be

certain that the flux correction can hold. The flux distribution in an image is a discrete and

discontinuous, as a result the gradient is also discontinuous. Around a local maximum in an

image, the differences between neighboring pixels do not approximate the divergence around

the peak. This is analogous to charge distributing around the area of the pixel and around

the boundaries, which is unphysical. The result is that the application of the correction

deviates from Gauss’s Law on small scales, resulting in loss of charge per pixel conservation

in stars. Since this determines how much charge is shifted in each iteration of a kernel, poor

modeling of local charge transport could ultimately result in a overall worse amplitude of

the correction.
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9.5 Adding flux-conserving corrections

In this section, we will attempt to re-apply the scalar Coulton et al. (2018) correction with

additional corrections to fully conserve charge at each iteration of applying the kernel. We

do this by directly enforcing Gauss’s Law in the application of the Coulton et al. (2018)

correction in order to fully conserve the flux of the uncorrected image. In the scalar model

defined by Coulton et al. (2018), we change the form of Equation 6.8 (F̂ = F + 1
2
∇·V , where

V = F∇(K ⊗ F )) to enforce Gauss’s law on small scales such that the charge lost over the

area of one pixel is exactly matched by the sum of the charges lost over each boundary (X)

of the pixel (such that
∫
∇ · V dx2 = ΣXVX).

The result of applying flux corrections on the EO datasets for our two sensors is shown

in Figures 9.7, the corresponding flux conservation is shown in Figure 9.8 and a detailed

list of the associated strength coefficients (ref. Equation 9.2) are given in Table 9.2. This

analysis conserves charge by construction, and the aperture flux containing the full footprint

of the stars is also consistently conserved. We found that it corrects 94.4% of the total PSF

size error in the ITL sensor and 97.4% of the total PSF size error in the E2V sensor, and

it corrects 36.6% of the anisotropy in the ITL sensor and by 29.1% of the anisotropy in the

ITL sensor in the E2V sensor.

The correction appears to re-distribute charge until it approximately converges along

one axis of the focal plane and then stops iterating. This may be improved by better

modeling of the BFE anisotropy. The residual anisotropy could stem from a conjunction of

residual artifacts aligned with the gate/channel architecture or BFEs that were potentially

misassociated with other coefficients in modeling the pixel correlations, or it could further

suggest yet unmodeled physics at small scales.

This flux-conserving correction should not be considered a physical solution, although

enforcing flux conservation in this way better approximates the correct charge re-distribution
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from BFEs. After all, a scalar correction can only consider pixel-scale variations. A more

robust physical solution might require a vector approach that models the sub-pixel-scale

physics on each pixel boundary. Additional modeling of the each of the four pixel boundary

shifts from electrostatics may have the advantage of a more physical solution and may confirm

other unmodeled sub-pixel physics.

Summary of Flux-Conserving BF Correction on Artificial Stars

Sensor αxx αyy αxy

[px2/el] [px2/el] [px2/el]

R03-S12 (ITL) (1.84± 0.010)× 10−6 (2.15± 0.006)× 10−6 (5.74± 0.441)× 10−8

(1.25± 0.098)× 10−8 (2.09± 0.075)× 10−7 (1.68± 0.429)× 10−8

99.3% 90.3% 70.7%

R24-S11 (E2V) (3.30± 0.050)× 10−6 (3.86± 0.009)× 10−6 (7.83± 0.311)× 10−8

(−1.04± 0.385)× 10−7 (2.93± 0.090)× 10−7 (1.68± 0.297)× 10−8

103% 92.4% 78.5%

Table 9.2: Strength of the BFE before (top) and after (middle) correction, with the relative
correction level (bottom) on artificial stars in different sensor types. Strengths are given as
the fitted slope of the line from Equation 9.2 with 1-σ fitting errors. A value αµν > 0 means
the correction is under-correcting the BFE.
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(a) ITL (R03-S12)

Figure 9.7: The second moments of the artificial stars taken from images vs. their peak pixel
value. Left column is the uncorrected data and the right column is corrected data using the
flux-conserving corrections. Each blue point is a single spot from a single exposure. Error
bars are standard errors of the distribution about the mean at each exposure time in moment
and flux, and a line has been fitted to the 20–50 s points, which corresponds to 2.5−9.0×104

el (just below the pCTI turnoff). The vertical shaded regions represent the range of full-well
capacities of the 16 amplifiers on the sensor using the four different methods.
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(b) E2V (R24-S11)

Figure 9.7: Continued.
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Figure 9.8: The level of charge conservation after applying the BFE with flux-conserving
corrections. The quantity f =

∑
r<35px F̂ /

∑
r<35px F is the ratio of integrated flux within

35px of the centroid of each spot, after/before the BFE correction is applied on each of the
stars from the ITL sensor (R03-S12) dataset. We only plot spots with peak signals below
the pCTI turnoff. Error bars are standard errors of the distribution at each exposure time.
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Discussion

10.1 Testing the assumptions of scalar BFE Theory

In this section, we examine the assumptions that allow C̃ij(µ) to take the form µ2∇2K. The

Coulton et al. (2018) approach assumes (i) that there are no higher-order terms that result

in non-linear BFEs, and (ii) the deflection field produced by accumulated charge in a pixel

is conservative (zero curl).

1. Non-Linear BFE Components

The implication of a fixed kernel K in the Coulton et al. (2018) model is that C̃ij / µ
2

does not change with signal level, and therefore the higher-order terms of the covariance

model are zero. The main contributing higher-order terms of the full covariance model

has two components (a ⊗ a + ab) with two parameters (a and b). Coulton et al.

(2018) do not distinguish between a and b or include their higher-order components.

Figure 8.7 shows the limited validity of the assumption that C̃ij / µ
2 is independent of

signal level. We show in the figure that C̃ij / µ
2 agrees with the aij matrix by Astier

et al. (2019) in Equation 6.1 only in the limit of zero signal, and that near the pCTI
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turnoff it deviates by 20–30%, depending on the sensor. The deviation in the PTC is

well-modeled by the non-linear terms of the full covariance model (Equation 6.1).

Figure 10.1 summarizes the correction of artificial stars in R03-S12 (ITL) for different

kernels evaluated from different signal levels of the full covariance model, which encode

the influence of varying amounts of the higher-order BFEs. The correction based on

using C̃ij(0) ∼ aij over-corrects the artificial star images, and the correction based

on C̃ij(µpCTI) under-corrects the images. Some kind of mechanism to alter the BFE

from the pixel boundary shift at non-zero signal level is needed. An adjustment of

the strength is needed by constructing a kernel from the measured covariance model at

some higher signal level. Scanning the whole covariance model to find the characteristic

signal level that reconstructs the expected flat field behavior (as we showed in §9.2)

allows us to balance the higher-order BF contributions.

The characteristic kernel however, still does not fully correct the BFE in flat fields or

artificial stars (Figures 9.3 and 9.5). The correction also leaves differing residuals in

different sensors (Table 9.1). Treatment of the zero-sum rule, unmodeled sources of

stray pixel-correlations (NL), or as-yet unmodeled physical complexities could all leave

a diversity of additional, sensor-dependent systematic uncertainties in the PSF.

2. Non-Zero Curl

The correction in Coulton et al. (2018) is entirely based on a scalar kernel. Therefore,

the calculation of displaced charge in a given pixel, in application of Equation 6.8,

only depends on the divergence of the kernel at discrete pixel centers. While the scalar

kernel can capture anisotropy in boundary displacements along the two directions, it

cannot fully capture the realistic complexity of distortions to all four boundaries on

a pixel. Flat fields only provide (N + 1)2 degrees of freedom for N pixels, but the

boundary shifts represent 4(N + 1)2 degrees of freedom, or 2(N + 1)2 if one accounts
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Figure 10.1: The strength of the BFE measured from artificial stars (fit to Equation 9.2)

before/after applying scalar corrections derived from different configurations of C̃ij for sensor
R03-S12 (ITL). We show the fitted slopes for the uncorrected artificial stars as well as for
the artificial stars corrected using the covariance model sampled at zero signal, sampled at
the pCTI turnoff (minimum value of all amplifiers), the derived characteristic signal level
from our full PTC scan, and for the last case, we also show the correction with the kernel
transposed (purposefully applied in the wrong orientation), which shows how sensitive the
correction is to the fixed-plane BF anisotropy. The shaded area represents the total allowed
residual BFE (αxx + αyy) to meet the LSST science requirements (The LSST Dark Energy
Science Collaboration et al. 2021) on TPSF = Ixx + Iyy to the pCTI saturation limit (105 el)
for stars of size ⟨TPSF⟩ = 20 px2, under the assumption that our artificially produced stars
are real, measured PSF stars.
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for shared boundaries. Flat fields alone cannot constrain enough degrees of freedom

to calculate all four boundary shifts without additional modeling. Astier, Pierre &

Regnault, Nicolas (2023) have investigated modeling all four boundary shifts in a pixel

from 3D electrostatic solutions in HSC sensors and measured a non-zero and non-

negligible, discrete curl-component of the displaced boundaries sourced by the intrinsic

anisotropy in the BFE (of order 10−7 el−1). The curl component was also measured

from simulations in Rasmussen et al. (2016). However, no vector-like curl-component

of the deflected pixel boundaries field is included or correctable in the Coulton et al.

(2018) model. In fact, they explicitly assume that this component is zero.

The validity of the zero-curl assumption in the LSSTCam can be partially constrained

by comparing the correction of flat field covariances and artificial stars. The large pixel-

to-pixel contrasts in star images requires accurate modeling of the small-scale physics

to converge to a good correction. On the other hand, the small pixel-to-pixel contrasts

in flat fields does not require the same accuracy at small scales to achieve a good

correction. In the application of the kernel to artificial stars, the correction reaches

the total convergence condition before it can properly redistribute charge in the most

adjacent pixels, whereas in flat fields, with small pixel contrasts, the correction in the

adjacent pixels makes up a larger total fraction of the charge redistribution at each

iteration of the kernel. The correction in flat fields therefore redistributes more charge

in nearby pixels, in the same number of iterations, before meeting the convergence

condition than it does in artificial star images.

The correction might be correcting the anisotropy of the BFE better in flat fields

than in stars because the kernel models the local physics better where unmodeled

components are small. The BFE in the parallel direction is consistently 215-234%

larger than it is in the serial direction when measured from the a01/a10 in flat fields.
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And the parallel direction is consistently 16% stronger when measured by αyy/αxx in

the size-growth of artificial stars. In Figure 10.1, only about 38% of the anisotropy

in stars gets corrected by the algorithm. On the other hand, the anisotropy in flat

field covariances is corrected by 60-65%. The Coulton et al. (2018) algorithm could

be correcting the anisotropy better in the case of flat fields in part because it better

models the local physics in flat fields, where the unmodeled curl component would

likely be smaller.

If we take an extreme case and purposefully apply the transposed kernel to the raw

images–that means purposefully applying the correction with the anisotropic compo-

nent of the kernel in the wrong direction (Figure 10.1)–the final anisotropy is roughly

unchanged with the uncorrected case. This suggests that in artificial star images, most

of the correction is dominated by the central pixels of the kernel, however we can see

from charge conservation in the a matrix (Figure 8.9) that most of the charge redistri-

bution that occurs is due to the pixels that are not immediately adjacent to the central

pixel. This could be further evidence that the kernel is not accurately capturing the

physics of the BFE at small distances. While enforcing flux conserving corrections ap-

pears to better approximate the true charge redistribution in an image on small scales,

the correction itself is also not exact. This result still leaves room for other potentially

unmodeled physics at small scales.

We cannot conclude for certain the presence of a non-zero or nonnegligible curl compo-

nent of the BFE distortions in LSSTCam from these data since there are not enough

degrees of freedom to derive all four boundary shifts on a pixel from flat field statistics

alone, even accounting for shared boundaries. It would require further modeling as

is done in Astier, Pierre & Regnault, Nicolas (2023), which includes modeling the 3D

electrostatics in a pixel with each boundary shift as a free parameter, in order to fully
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constrain the curl component as a potential systematic.

We would like to note here that these measurements of the anisotropy in the BFE in

the sensors could be affected by the intrinsic shape of the stars and their alignment on

the pixel grid if the BFE is sensitive to the gradient of light between pixels. The stars

are intrinsically shaped and oriented on the pixel grid as shown in Figure 9.4 (based

on their shapes at low signal level). Although there is little variation among the spots

shapes in our sample, we attempt to measure how the BFE changes with respect to

this intrinsic star shape in Figure 10.2. We measure the slope of the BFE individually

for each star rather than the ensemble, as a function of intrinsic star shape, and we

find that there is a small (but slightly beyond estimated error) decrease in the strength

of the BFE in more extended sources. Since our stars are intrinsically larger in the

y-direction than the x-direction, we would expect that αxx in our sensors is slightly

smaller than what we report and αyy in our sensors is slightly larger than we report,

therefore the overall anisotropy in our sensors is likely larger than what we report.

However, given that there is only a small variation in intrinsic spot shapes, the error

bars are on the same order of magnitude as our measurements in Figure 9.4, and it is

impractical to extrapolate our measurements for perfectly round sources.

10.2 Impact of BFEs on cosmological probes

It is of practical importance to LSST’s cosmological analyses to know how these residual

BFEs will impact observables of survey targets and forecast its impact on inferred cosmolog-

ical outcomes. BFEs can enter into cosmological analyses by contaminating PSF estimation

or by directly biasing survey targets (Liaudat et al. 2023).

The impact of BF will rely on the measurements of artificial stars in this study. It it

important to note that the artificial stars (1”.48, T ∼ 20 px2, 7.42px FWHM) were nearly 2×
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Figure 10.2: The decrease in the influence of the BFE in more extended sources, which would
have smaller flux gradients in any direction of the pixel plane. We show the slope of the
BFE by component, derived from the 81 individual spots used in our analysis, where each
point corresponds to a single hole in the spot mask, relative to their intrinsic shapes. We
derived these slopes from the same calculation in Equation 9.2. The errors shown are the
fitting errors of the slope. These were calculated for the ITL sensor (R03-S12).
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larger than the expected LSST PSF size (0”.7, T ∼ 3 px2, or 3.5px FWHM), and we would

expect the BFE and the residual BFE to be worse for smaller PSFs due to the stronger charge

gradients between pixels. We also anticipate that bluer bands will experience an augmented

BFE due to a shorter photon conversion depth within the sensor, thereby resulting in a

strengthened BFE from the increased drift length (observed by Astier, Pierre & Regnault,

Nicolas 2023, in HSC and ongoiong work to measure the effect in LSSTCam sensors).

In addition, the outcome of cosmological analyses depends on a myriad of survey, hard-

ware, and analysis choices throughout the development and lifetime operation of a survey,

and we cannot hope capture the full complexity of this in a single thesis section. We will

therefore employ simplified models to obtain only an order of magnitude estimate of how

BF systematic effects enter into these different analyses.

10.2.1 PSF constraining power

For a single star, the modeling bias induced by BFEs is a function of δe⃗PSF = f(e⃗PSF,S),

where S is the signal-to-noise ratio (S/N) based on the definition in Paulin-Henriksson et al.

(2008). The average PSF modeling bias over a star field in a single-visit is given by a function

⟨δe⃗PSF⟩ = f(⟨e⃗PSF⟩,Seff) where Seff is the effective signal-to-noise ratio and depends on the

number density function of the signal-to-noise ratio over the imaged area (dn/dS) as well as

the stellar selection function. The selection function should depend on the fact that dim stars

contain relatively little PSF constraining power and are often difficult to measure accurately

while bright stars carry more PSF constraining power, but they are particularly impacted

by BFEs (Paulin-Henriksson et al. 2008). Cosmic shear surveys typically employ a variety

of selection functions (see Paulin-Henriksson et al. 2008; Bertin 2011; Jarvis et al. 2016;

de Jong et al. 2017; Aihara et al. 2018), the simplest is to apply minimum and maximum

signal-to-noise ratio cut when selecting which stars to use for PSF estimation. The framework
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proposed by Paulin-Henriksson et al. (2008) uses:

S2
eff = N−1

TOT

∫ Smax

Smin

dn

dSS2dS, (10.1)

where NTOT is the total number of stars used to estimate the PSF between Smin and Smax.

They also write the effective number of stars as:

N∗ = S−2
eff

∑
i

S2
i (10.2)

where i runs over all the stars used for PSF calibration. A perfectly corrected BFE would

enable surveys to use stars all the way up to pixel saturation, enabling better PSF con-

straining power as σPSF
sys ∝ 1/

√
N∗S2

eff with each new effective star. Improvements to the

BF correction will allow for higher thresholds and the inclusion of more stars with higher

statistics and result more accurate and precise PSF estimation.

We will therefore need to apply the methods in this paper to all LSSTCam sensors to

determine sensor-specific the maximum signal thresholds that will inform PSF star selection

across the focal plane. The requirements laid out for LSST by The LSST Dark Energy

Science Collaboration et al. (2021) requires us to reconstruct the true PSF size to a level

of δTPSF/TPSF < 10−3 in the co-added PSF in Y10, which in our lab-simulated stars is only

satisfied for stars with peak signals below 4.6× 104 el in the ITL sensor and 5.5× 104 el in

the E2V sensor, which covers only about 50% and 70% of the dynamic range of these sensors

(up to pCTI turnoff). With the flux-conserving correction, the systematic requirement is

fully satisfied below 9.1× 104 el in the ITL sensor and 1.1× 105 el in the E2V sensor, which

covers only more than 90% of the dynamic range of the ITL sensor and all of the dynamic

range of the E2V sensor. Therefore, we conclude that the correction of these artificial stars

is good enough for LSST science requirements below a certain peak signal level, which is
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chosen to be chosen with regard to pre-defined accuracy requirements when selecting a PSF

star sample.

10.2.2 Type Ia supernovae

Observationally, SN Ia are resolved like PSFs, however the maximum S/N of SN Ia in

their brightest wavelength band is typically S/N < 100 in single visit-exposures, which is

dimmer than the stars we use to calibrate the PSF in the same image (typically S/N >

100). We employ forced-PSF photometry at the locations of SN Ia to avoid the risk of

noise/background divergences associated with aperture-integrated photometry. However, in

the presence of BFEs, we would expect the size of the SN Ia to be smaller than the model

PSF, which we would expect to result in an overestimation of the SN Ia’s flux.

The flux estimator we are using is the unweighted least-squares fit of the PSF image

(FPSF
ij ) to the cutout image of the SN Ia (Fij):

χ2 =
∑
ij

(Fij − ΦFPSF
ij )2. (10.3)

The best flux estimator (Φ̂) is just the value of Φ that minimizes the chi-squared, and is

simply the solution to dχ2/dΦ = 0:

Φ̂ =

∑
ij(FijF

PSF
ij )∑

ij(F
PSF
ij )2

. (10.4)

Using the GALSIM (Rowe et al. 2014) framework, we simulate a forced-PSF photometry

on arbitrary SN Ia images with BF-biased PSFs similar to the ones measured in LSSTCam

in §9.3. The PSF and the SN Ia are both modeled as 2D Gaussians centered on a 65× 65px

grid. They are both drawn on the pixel grid without noise and with no sky-background,

host-galaxies, or neighbors; the PSF is also normalized to a signal level of 1 and the SN Ia
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is given an arbitrarily large flux (Φ).

To inject BF systematics into the simulation, each image is given an ellipticity (e1, e2)

selected at a given signal level (fmax) from the measurements of artificial stars, using the

intrinsic ellipticities of the stars and the measured BF slopes in Equation 9.2:

σ(fmax) =
√
Ixx(fmax) + Iyy(fmax)

e1(fmax) =
Ixx(fmax)− Iyy(fmax)

Ixx(f) + Iyy(fmax)

e2(fmax) =
2Ixy(fmax)

Ixx(fmax) + Iyy(fmax)
,

(10.5)

Note that fmax, as in Equation 9.2, is the peak pixel value of the SN in the brightest image

taken of it and not a measurement of the total apparent brightness of the SN Ia at the

maximum of its light curve.

To test the worst case BF scenario, we fix the PSF to the same ellipticity as the artificial

stars at the maximum signal level before the pCTI turnoff, as if it were a real analysis

where all the stars used to estimate the PSF in an image were nearly saturated (⟨fPSF
max ⟩ =

pCTI turnoff).1 On the other hand, the SN Ia ellipticity is allowed to vary by selecting

signal levels somewhere between 0 and the brightness of the stars used to calibrate the PSF:

f ≡ fmax/⟨fPSF
max ⟩ ∈ [0.01, 1].

In the case where the SN is as bright as the stars used to calibrate the PSF (f = 1), we

would expect BF to affect them both equally, and they should have that same size/shape

and the flux estimator should be theoretically perfect (Φ̂/Φ = 1). In the case where the SN

is dimmer than the stars used to calibrate the PSF (0 < f < 1), we would expect the PSF

model to be larger than the SN, and therefore the flux will be overestimated. In the limit of

a very dim SN and a very bright set of PSF stars (f → 0), we would expect to observe the

largest photometric errors in that sample.

1We choose ⟨fPSF
max ⟩ = 9.0× 104el for the ITL sensor and ⟨fPSF

max ⟩ = 7.5× 104el for the E2V sensor.
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We perform this test using the slopes without any BF correction, with the BF correction,

and the slopes with the flux-conserving BF correction, whose fitted values are in Table 9.1

and Table 9.2. We also perform this test for both the ITL and E2V sensor values. The results

are shown in Figure 10.3. The LSST Dark Energy Science Collaboration et al. (2021) (see

also Ivezić et al. 2019) requires that SN Ia photometry to an accuracy better than 10−3. We

conclude that BF correction is necessary to achieve these levels using PSF forced photometry,

but that any of the corrections tested out in this analysis can meet these goals with this

sample of artificial PSFs. There are some important caveats, however: (i) this analysis does

not consider non-Gaussian profiles, (ii) the PSF size was nearly 2× the size of the expected

seeing for LSST, and it is possible that a sharper PSF will have an correspondingly larger

BFE slope, (iii) this analysis also did not consider the impact of sky background or host

galaxy light, and (iv) this analysis only considers flux errors associated with modeling errors

on the PSF and it does not take into account the additional loss of flux conservation due to

the application of the one BF correction (green in Figure 10.3).

10.2.3 Weak gravitational lensing

Most galaxies observed by LSST within will have an apparent magnitude m > 21 in r-

band in a single visit exposure (LSST Science Collaboration et al. 2009). For comparison, a

Gaussian source at that apparent magnitude with a size of 0”.9 will have a maximum peak

signal below 1000 el in a 30s exposure (Gee et al. 2007). On the other hand, stars at a

typical LSST PSF size of 0”.7 that would likely be used for PSF estimation (S/N > 100)

will have a minimum apparent magnitude around m = 21 and begin to saturate at the pCTI

turnoff around m = 16.5 in a single-visit image (LSST Science Collaboration et al. 2009).

Observationally, stars used for PSF estimation are typically much brighter than galaxies

used for WL analyses, and the primary effect of BF will be through misrepresentation of the
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Figure 10.3: Accuracy of the forced PSF flux estimation (Φ̂) compared with truth (Φ) as a
function of relative peak signal level between the SN (fmax) and the stars used to calibrate
the PSF (⟨fPSF

max ⟩). We show this for the ITL sensor (solid lines) and the E2V sensor (dashed
lines) for the BF slopes in the uncorrected case (black), the corrected case (green), and the
flux-conserving correction case (orange). The shaded region is plotted in linear scale and the
non-shaded above it is in log-scale; the shaded region is also within the 10−3 requirement for
SN Ia photometric accuracy for LSST (Ivezić et al. 2019; The LSST Dark Energy Science
Collaboration et al. 2021). For example, the photometric accuracy of a SN Ia whose peak
signal is 20% of the stellar peak signal cannot achieve the required photometric accuracy
without additional correction. However, a SN Ia whose peak signal is 95% of the stellar peak
signal can achieve an accurate forced PSF photometry without a BF correction.
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size and shapes of stars. BF distortion effects on the bright stars in our study are of O(1%),

which is larger than the O(0.1− 1%) distribution of shape distortions to galaxies caused by

weak gravitational lensing from galaxy clusters.

The impact of the imperfect PSF shape estimation on inferences of cosmological param-

eters is still a major challenge for Stage IV surveys (Paulin-Henriksson et al. 2008; Rowe

2010; Jarvis et al. 2016; Zhang et al. 2021, 2022). Any error in the PSF model can result

in an error in the PSF-corrected ellipticity of a galaxy. As described in §4.3.1, weak lensing

analyses typically use a linear model for describing biases to a single galaxy’s shear estimate

(γ̂) from its measured shear (γ):

γ̂ = (1 +m)γ + c, (10.6)

where biases can enter multiplicatively (m) as a fraction of the galaxy ellipticity or additively

(c) independently of the galaxy ellipticity. Understanding how a change in the PSF will

affect the shear estimate of course depends on the chosen shear estimator algorithm (e.g.

see Sheldon et al. 2020, 2023; Li et al. 2023). Here we will assume the shear estimator is

perfectly well-calibrated and unbiased for a perfectly modeled PSF (m = c = 0) so that we

only consider errors that enter into the shear estimation due to BF-induced PSF modeling

errors.

Cosmological theories most directly predict the matter power spectrum (two-point corre-

lation function in k-space), so to compare measurements to theoretical predictions, we need

to know how errors will alter the two-point correlation functions over an ensemble of many

galaxies. The shear auto-correlation function becomes:

⟨γ̂γ̂⟩ = (1 +m)2⟨γγ⟩+ 2(1 +m)⟨cγ⟩+ ⟨cc⟩ (10.7)
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We would expect that ⟨cγ⟩ = 0 since the additive error should not correlate with the shear

of the galaxy over a large region of the sky with images that have been rotated over a large

range of angles.

Biases in the estimated PSF size (trace of the second moment matrix) result in multi-

plicative biases in the weak lensing shear signal since the PSF size enters into shear estimation

via convolution and the bias is therefore proportional to the galaxy size. A multiplicative

bias will result in a shear correlation function error that is proportional to the true under-

lying shear correlation function by a factor of about 2m for small biases. Poorly correcting

the amplitude of the BF correction contaminates the size of the PSF. For example, an over-

estimated PSF size results in an underestimated galaxy size and an overestimated shear.

The framework in Mandelbaum et al. (2015); Paulin-Henriksson et al. (2008); Massey et al.

(2007) proposes a simplified model with a Gaussian PSF and a Gaussian galaxy, and the

error in the estimated shear (of a single galaxy) due to a change in PSF size is given by:

m ≡ δγ̂

γ̂
=
δê+
ê+

= (R−1
2 − 1)

δTPSF
TPSF

(10.8)

The resolution factor (R2), written in terms of second moments, defines the relative size of

the PSF (TPSF) and the size of the PSF-convolved image of a galaxy (TI).

R2 = 1− TPSF
TI

. (10.9)

The resolution factor approaches 1 for well-resolved galaxies and is 0 for poorly resolved

galaxies. Simulations by Almoubayyed et al. (2020), using the COSMOS catalog galaxies

(Mandelbaum et al. 2015) down to an i -band limiting magnitude of 25.2, find that the

arithmetic averaged ratio of TPSF/Tgal for LSST with a Gaussian PSF of FWHM 0”.6 (typical

of Cerro Pachón seeing measured from the Differential Image Motion Monitor or DIMM, The
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LSST Dark Energy Science Collaboration et al. 2021) is approximately 2.10. For comparison,

Jarvis et al. (2016) reported similar values (2.42) for the Dark Energy Survey (a Stage III

survey), although the value for LSST (a Stage IV survey) reflects that next generation surveys

be larger and deeper, and we expect to include more galaxies at higher redshifts, which are

more likely to be smaller and poorly resolved. If we approximate M
(I)
µν = M

(gal)
µν +M

(PSF)
µν ,

then then we should expect ⟨R2⟩ ≈ 0.32 for LSST’s 10 year survey.2 If we have a PSF like

the one determined by our artificial stars (TPSF ∼ 20 px2), then we should expect R2 ∼ 0.07,

which means galaxies would be very poorly resolved, and modeling errors in the PSF will

have a large impact on the observed shapes of galaxies.

Following Equation 10.8, if we used nearly saturated stars to determine the PSF (fPSF
max

= pCTI turnoff), then we should expect a PSF error of roughly δTPSF/TPSF = 10−3 with the

flux-conserving corrections and ultimately a multiplicative error of m = 0.0132. To achieve

a multiplicative error |m| < 10−3 using the flux-conserving correction, we would need to

know TPSF to an accuracy of better than 7.5 × 10−5, which is only true for stars less than

fmax < 340 el (which is impractically dim). Therefore, we conclude is that the artificial stars

in this study are far too large to make any realistic description of the propagation of real

multiplicative errors from BF in a weak lensing analysis.

Biases in the PSF shape (ellipticity) result in additive errors to the estimated galaxy

shapes, since the PSF shape bias is independent of the galaxy shape. Improperly correcting

the anisotropy of the BF effect in the focal plane coordinate system can result in PSF

ellipticity errors in the sky coordinate system. The additive systematics act as a spurious,

independent offset to the two-point correlation function. The LSST Dark Energy Science

Collaboration et al. (2021) does not place any requirements on the PSF ellipticity or PSF

ellipticity error (c) since additive biases are typically easy to identify from null tests (Heymans

2This is true for unweighted second moments (w(x⃗) = 1 in Equation 4.20), but it is a decent approximation
here.
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et al. 2012; Mandelbaum et al. 2018; Li et al. 2022; Giblin et al. 2021) because they create

an anomalous power of cross-correlation between galaxy shear and star shapes compared to

the same cross-correlation for a random lens catalog over the same region of the sky. The

shear auto-correlation function can then be corrected by forward modeling the additive bias

systematics (for examples, see Heymans et al. 2012; Zhang et al. 2023). In practice, weak

lensing analyses also use co-added images to reduce noise contamination in shear calibration

(Mandelbaum et al. 2023). The PSFs used at the location of a galaxy are the inverse-variance

weighted sum of all the PSFs in all exposures. In a typical survey, these co-added images will

combine exposures with multiple rotation angles of the camera focal plane to avoid imprints

of the focal plane coordinate system on the sky coordinate system. This means that coherent

additive errors in many exposures rotated over many angles can become multiplicative errors

in the co-added images (Almoubayyed et al. 2020; Ivezić et al. 2019; Almoubayyed et al.

2020).

Deviations from the assumed Gaussianity are quantified by changes to the standardized

weighted radial fourth moment (kurtosis or ρ(4)) in Zhang et al. (2021, 2022), and this

algorithm is implemented in GALSIM (Rowe et al. 2014). It is defined as follows:

ρ(4) =

∫
(r/σ)4I(x⃗)w(x⃗)dx⃗∫

I(x⃗)w(x⃗)dx⃗
(10.10)

where r = |x⃗| and σ =
√
(Ixx + Iyy)/2 =

√
T/2, and w(x, y) is the adaptive Gaussian

weight defined by Hirata & Seljak (2003). For a purely Gaussian profile, we would expect

this measurement of kurtosis to be ρ(4) = 2. Errors in kurtosis can affect errors in second

moment statistics through the weight function, leading to both multiplicative and additive

shear biases. A study by Zhang et al. (2021), using a combination of the HSC Y1 dataset

and image simulations in GALSIM, found that kurtosis modeling errors of the PSF produced

multiplicative bias in HSC Y1 cosmic shear on the order of 10−3 and additive errors of order
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10−2. A later–more comprehensive–study by Zhang et al. (2022) found that other higher

moments (higher powers of r, up to 6th order) can also induce multiplicative and additive

biases. Although, for a constant bias, even-numbered moments bias shear estimates 2− 3×

more than odd-numbered moments. The same study found that the total multiplicative

errors produced by these higher moments could produce a 0.1σ uncertainty in cosmological

parameters, and the total additive errors could produce a 1σ uncertainty, if not properly

taken into account. We did not measure any deviation in higher-order moments in the stars

in our study, however, we acknowledge that this could be a topic for further study. The

higher-order moments are determined by higher-powers on the distance coordinate, and as

such are very sensitive to the modeling of the tails of the PSF distribution; given the large

size of the artificial stars compared to real stars, as well as the presence of our background, it

is possible that any changes to the higher-order moments were overwhelmed by the variations

in these other systematic variables. It is also important to note that The LSST Dark Energy

Science Collaboration et al. (2021) do not yet place constraints on PSF higher-order moment

errors for LSST science.
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10.3 Proposed improvements

There are several steps that could be added and tested to the LSST Science Pipelines that

could improve the correction:

1. We will need to apply these methods individually to all LSSTCam science sensors

to determine sensor-specific calibrated thresholds that will inform PSF star selection

rather than constructing a correction in a monolithic way for the full focal plane as

was done in analyses by Aihara et al. (2018) and Miyatake et al. (2023) for HSC Y3

ISR.

2. The BFE is small, and the calibration of the BFE can be very sensitive to the cal-

ibration of other effects that can impact pixel correlations, such as charge transfer

inefficiency (CTI), non-linearity, overscan subtraction, as well as other sensor-specific

calibrations, such as gain estimation. Extreme care must therefore be taken to remove

these other effects and validate these other ISR steps before deriving calibrations for

the BFE from flat fields and applying the correction to an image. In particular, our

best-fit model parameters of the PTC are somewhat sensitive to the residual NL for

these sensors since we fit up to the pCTI turnoff, which is above the signal level we

start to observe significant signal NL. In addition, the PTC scanning method we de-

scribe is sensitive to the signal range on which we calculate the χ2 for the same reason.

While we mitigate this by limiting the signal range, the method we propose here does

require the adequate removal of NL and other sources of pixel correlations.

3. Include a curl component of the deflection field. It would not be possible to implement

further “curl” corrections into the Coulton et al. (2018) model. However, this could

be done by using an electrostatically derived vector-based model fit to the pixel-pixel

correlations in flat fields, with each pixel boundary shift being a free parameter. Such
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a method is proposed in Astier, Pierre & Regnault, Nicolas (2023) and tested for HSC,

but it should be considered and tested in LSSTCam in future work.
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Conclusion

In this chapter, we measured the BFE in two types of sensors in the LSSTCam focal plane

from flat field and artificial stars in the lab. We then quantified and qualified the scalar BF

correction proposed by Coulton et al. (2018) with improvements to account for sources of

higher-order pixel correlations and charge conservation:

1. We measured dense flat pair data to characterize the PTC, and we found that the

BFE gets stronger with signal due to higher-order, non-linear BFE components in a

model by Astier et al. (2019), which includes flux-dependent drift fields and feedback

mechanisms on accumulating charges. The BF correction proposed in Coulton et al.

(2018), which uses a scalar kernel derived from the pixel covariance matrix, relies on

the assumption of linearity. The merit of the correction therefore depends on the signal

level from which we calculate the covariance matrix and derive the kernel, which is a

priori ambiguous.

2. We introduced a new procedure to derive the kernel in a way that includes the con-

tribution of non-linear BFE terms in the correction. We determined the kernel that

best reconstructs the linear PTC. We then used this kernel to correct the BFE in both
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sensor types by 95-97%, but this was only able to correct up to a flux we identify as

the parallel deferred charge turnoff at 105 el, where we can no longer efficiently transfer

charge along an image column during readout. The flux range of pixels that can be

used for weak lensing science is severely limited by this cutoff.

3. We corrected the BFE in artificially produced stars by 94−100% in the serial direction

and by 86 − 90% in the parallel direction. The BFE was observed to be anisotropic

(16%) relative to the CCD coordinate system, and the correction preserved 32− 38%

of this anisotropy. We also observed that the correction violated charge conservation

by (0.02%) near saturation at the pCTI turnoff level.

4. We introduced another procedure to apply the kernel in a way that fully conserves

charge, and tested the correction again on the same artificial stars. We corrected the

BFE in artificially produced stars by 99−103% in the serial direction and by 90−93%

in the parallel direction. The BFE was observed to be anisotropic (16%) relative to

the CCD coordinate system, and the correction preserved 36− 38% of this anisotropy.

We observed that the new correction fully conserved flux across the dynamic range of

the sensors.

5. We eliminated other systematics that could have interfered with these results, including

non-circular artificial stars and charge-conservation, to identify the source of these

effects as intrinsic BFEs in the sensor itself and limitations of the assumptions of the

Coulton et al. (2018) correction. Our data suggests that the higher-order BFEs are

not negligible and that the correction is not properly modeling the physics of charge

transport at small distances. Part of this could be deviations in the correction model

from Gauss’s Law along local pixel boundaries or potentially non-zero curl components

in the deflected field boundaries, which are also not included in the Coulton et al. (2018)

model.
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6. Finally, we explored how residual errors from BFEs could ultimately impact cosmology

and other science goals within the system requirements defined by LSST’s primary

science drivers. While we found the stars in this study were too large to realistically

describe the impact of PSF modeling errors on galaxy shapes and shear estimation

for cosmic shear analyses, we did show how improvements to the BF correction could

improve the PSF constraining power by extending the available signal range for the

stellar selection function, and we found that the two correction schemes we showed

are both able to achieve photometric accuracy required to SN Ia cosmological probe is

fully satisfied with the artificial PSFs by

Our findings motivate a detailed study on more realistic PSF stars and how measurement

errors from BF could ultimately impact cosmology and other science goals. Ultimately,

it is important to characterize the sensitivity of cosmological parameters to observables

biased with BFEs. Even with state-of-the-art correction techniques, the residual effects

could represent a significant component of the systematics error budget for cosmological

analyses of LSST observations.

Astier et al. (2019) pointed out that all of the correction methods reported in literature

only correct 90% of the initial effect in the images (Guyonnet et al. 2015; Gruen et al. 2015)

and that all of the proposed correction techniques assume no contribution from higher-order

terms. Several different correction algorithms have been proposed by Antilogus et al. (2014),

Gruen et al. (2015), Coulton et al. (2018), and Astier, Pierre & Regnault, Nicolas (2023),

and they all require calibrated inputs of the amplitude of the BFE from flat field statistics,

and none allow for the BFE to evolve with signal level. The flux-scanning methodology

might be applicable to these other correction techniques as well, but we reserve this for a

more careful and detailed study in future work.
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Epilogue

The current state of our understanding about the Dark Universe relies heavily on our knowl-

edge of the physical sub-processes out there and the analytical methods employed to measure

those things. Observations confirm that the Universe is primarily made up of dark matter

and dark energy, however the true identity of these components remains elusive. In addition,

recent observations by several recent experiments using a variety of different methods appear

to disagree with some predictions of this model which suggests a potential paradigm shift in

this field (see DESI Collaboration et al. 2024; Amon et al. 2023; Planck Collaboration et al.

2020a; Asgari et al. 2021, and for an thorough discussional review, see McGaugh 2023). Our

confidence in our theories, tested with these types of analyses, depends on very accurate

measurements of positions (astrometry), fluxes (photometry), and shapes of large samples

of astronomical objects to find small adjustments to these observables against the noise of

their many possible intrinsic properties. In general, the quality of all science that will be

conducted with modern surveys is dependent on well-tuned survey properties, sensor oper-

ational configurations, and/or data-processing algorithms that mitigate systematic errors at

the pixel level.

I will leave on one final note. The fact that we can measure single photons from galaxies
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of O(109)ly away, and derive anything scientifically useful is impressive. I recall an audience

member once say “It’s a wonder precision cosmology is even possible at all.” And I think

this sentence captures the current state of the field perfectly. These achievements never

could have been made without the diligence, ingenuity, and curiosity of so many people.

Who knows what scientific analyses will look like to physicists in 10, 50, or 100 years,

but I do know that we are tantalizingly close to the sensitivity thresholds needed to begin

distinguishing fundamental models of the Dark Universe.
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111, doi: 10.3847/1538-4357/
ab042c

Janesick, J. R. 2001, Scientific charge-coupled devices (Bellingham: SPIE), 1 online resource
(xvi, 906 pages : illustrations), doi: 10.1117/3.374903

Jarvis, M., Meyers, J., Leget, P.-F., & Davis, C. 2021, Piff: PSFs In the Full FOV, Astro-
physics Source Code Library, record ascl:2102.024

Jarvis, M., Sheldon, E., Zuntz, J., et al. 2016, Monthly Notices of the Royal Astronomical
Society, 460, 2245, doi: 10.1093/mnras/stw990

Johannesson, G., Porter, T. A., & Moskalenko, I. V. 2018, Astrophys. J., 856, 45, doi: 10.
3847/1538-4357/aab26e

Jóhannesson, G., et al. 2016, Astrophys. J., 824, 16, doi: 10.3847/0004-637X/824/1/16

Juramy, C., Antilogus, P., Bailly, P., et al. 2014, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 9154, High Energy, Optical, and Infrared Detec-
tors for Astronomy VI, ed. A. D. Holland & J. Beletic, 91541P, doi: 10.1117/12.2055175
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Appendix A

Separating the Gas into

Galactocentric Annuli

The H2 gas is placed at Galactocentric radii based on its velocity, assuming uniform circular

motion around the Galactic center (GC), described with the rotation curve V (R). The

velocity with respect to the local standard of rest (VLSR) of a region with Galactocentric

distance R, viewed toward Galactic coordinates l, b, is given by Ackermann et al. (2012)

VLSR = (
R⊙

R
V (R)− V⊙)sin(l)cos(b). (A.1)

We use the parametrized rotation curve of Clemens (1985), with R⊙ = 8.5 kpc for the

distance from the GC to the Sun, and V⊙ = 220 km s−1 for the velocity of the Sun around

the GC (e.g. see Ackermann et al. (2012) and references therein). Since the Mopra data

is within 0.5◦ from the Galactic plane, we use the small angle approximation cos(b) ≈ 1.

Following the same procedure as Ackermann et al. (2012), we bin the gas in 17 discrete radial

bins, as summarized in Table A.1. Figure A.1 shows the local standard of rest velocity as a

function of Galactocentric radius, calculated for longitudes between 300◦ − 350◦. We have
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Appendix A. Separating the Gas into Galactocentric Annuli

Table A.1: Radial Bins

Bin Rmin Rmax XCO(×10−20)
[kpc] [kpc] [cm−2 (K km s−1)−1]

1 0 1.5 0.36
2 1.5 2.0 1.01
3 2.0 2.5 1.04
4 2.5 3.0 1.06
5 3.0 3.5 1.11
6 3.5 4.0 1.09
7 4.0 4.5 1.15
8 4.5 5.0 1.19
9 5.0 5.5 1.2
10 5.5 6.5 1.22
11 6.5 7.0 1.33
12 7.0 8.0 1.4
13 8.0 10.0 0.72
14 10.0 11.5 7.0
15 11.5 16.5 24.55
16 16.5 19.0 131.79
17 19.0 50.0 532.47

verified that the resulting gas distributions for the radial bins are in good agreement with

those from Ajello et al. (2016) and Karwin et al. (2019), which use the same radial binning

with the CO maps from Dame et al. (2001).

179



Appendix A. Separating the Gas into Galactocentric Annuli

Figure A.1: Local standard of rest velocity (VLSR) as a function of Galactocentric radius,
calculated for Galactic longitudes between 300◦− 350◦. The calculations are made assuming
uniform circular rotation described by the Galactic rotation curve of Clemens (1985), shown
in the inset. The Solar radius is assumed to be 8.5 kpc, indicated with the dashed grey
line. The purple curve is calculated at a longitude of 323.5◦, which is compared to the result
from Burton et al. (2013), shown with a dash dot orange curve (note, however, that they use
a different Galactic rotation curve, which leads to slight differences in VLSR). The 17 radial
bins used in the analysis are shown with the tan bins along the x-axis.

180



Appendix B

Calculating the H2 column density

We employ the Mopra data to calculate the corresponding H2 column density separately for

both CO and 13CO, which we label as N(H2)CO12 and N(H2)CO13, respectively. We note

that in both cases we correct for the beam efficiency using a value of 1/0.55 Braiding et al.

(2018). To calculate N(H2)CO12 we use

N(H2)CO12 = W (CO)×XCO, (B.1)

where we employ a radially-dependent conversion factor (XCO) for the 17 radial bins, as

determined in Ackermann et al. (2012), based on a maximum likelihood fit to the γ-ray

data. The values are given in the last column of Table A.1.

In general, N(H2)CO13 can be calculated from the 13CO column density, N(CO13), and

the abundance ratio, [ H2

CO13
]:

N(H2)CO13 = N(CO13)×
[ H2

CO13

]
. (B.2)

We follow the procedure from Wilson et al. (2009); Braiding et al. (2018), which we summa-

rize below. We derive N(CO13) assuming that the gas is in local thermodynamic equilibrium
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Appendix B. Calculating the H2 column density

at a fixed excitation temperature of 10 K:

N(CO13) =
3.0× 1014

1− e−5.3/T
× T

∫
τ 13(ν)dν, (B.3)

where τ 13 is the 13CO optical depth and 5.3 K is the energy level of the J = 1−0 transition.

T is the line excitation temperature (assumed to be the same as the kinetic temperature of

the gas) and here we use T = 10 K. The optical depth is calculated as:

τ 13 = − ln

1− T 13
B

5.3

{[
exp

(
5.3

T

)
− 1

]−1

− 0.16

}−1
 ,

where T 13
B is the line intensity measured by Mopra as a function of velocity.

To approximate a physically viable range for the abundance ratio we use the range of

values from Pineda et al. (2008), based on a study of the Perseus Molecular Cloud Complex.

Specifically, we estimate that

[ H2

CO13

]
∼ (2.7− 7.5)× 105. (B.4)

.
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Appendix C

Predicted γ-Ray Flux and Spectrum

for the H2 traced by Mopra

The CR propagation code GALPROP (v56) calculates the γ-ray sky maps for the H2-related

emission. Here, we employ the GALPROP input parameters described in Karwin et al.

(2019) to determine the γ-ray emission related to the H2 column density N(H2)CO12 traced

by Mopra in the 17 radial bins.

Figure C.1 shows the γ-ray spectra corresponding to the input column densityN(H2)CO12,

summed over the entire sky. As a consistency check, we compare it to the spectra from Kar-

win et al. (2019), based on the CO maps from Dame et al. (2001). The Mopra data was

found to be systematically higher than the CO observations in Dame et al. (2001) by a

factor of 1.36 (as discussed in Braiding et al. (2018)), so we include this scaling factor in

the comparison. As can be seen, the two spectra are in excellent agreement.
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Appendix C. Predicted γ-Ray Flux and Spectrum for the H2 traced by Mopra

Figure C.1: γ-ray spectra for the H2-related components summed over the Mopra region.
The gray curves are for the individual radial bins, and the black curve is the total model.
The dashed yellow curve is the total spectrum from Karwin et al. (2019), scaled by a factor
of 1.36, which is the systematic offset of the Mopra data compared to the CO maps in Dame
et al. (2001).
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Appendix D

Instrument Signature Removal

Configurations

In Table D.1 we present the configurations we used with the LSST Science Pipelines for

ISR of the spot images (Jurić et al. 2017; Bosch et al. 2019). For spot identification and

characterization, we use an LSST Science Pipeline wrapper called the Mixed Calibration

Optics Analysis Test Library (MixCOATL). Our data processing also utilized code (with

default configurations) for matching and labeling spots to specific holes in the lithographic

mask of the optical projector (GridFitTask). This code is described in Esteves et al. (2023)

and integrated into the LSST Science Pipelines. For each task, including the calibration and

ISR tasks, we used the default configuration parameters.

Our selected ISR configurations included subtraction with median-per-row overscan sub-

traction, dark current subtraction, non-linearity correction, bad-pixel masking, and serial

deferred charge correction. Additionally, we corrected the charge transfer inefficiency in the

horizontal (serial) direction across the image using the same method as described in Snyder

& Roodman (2020) and Astier et al. (2019). We also applied bad-pixel masks and interpo-

lated over the locations of bright and dark pixels and any cosmic ray artifacts, though these
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pixels were excluded from calculations of the flat field statistics. We intentionally turned off

the saturated pixel repair to avoid any non-physical distortions introduced by the repair.

After this sequence of ISR, we modeled and subtracted the background light produced by

the spot grid projector. We performed this background subtraction separately for both the

corrected and uncorrected images before calculating and cataloging the final shape statistics

even though we ultimately ignored these low signal points in measuring the slope of the

brighter-fatter because the background fit was poor in the dimmest exposures. We performed

this using a 65 × 65px median filter to match the artificial star spacing, masking over the

fitted footprints of the artificial stars.
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Configurations for Instrument Signature Removal

Parameter Value

config.doSaturation False

config.growSaturationFootprintSize 0

config.doSuspect False

config.edgeMaskLevel ’DETECTOR’

config.doOverscan True

config.overscan.fitType ’MEDIAN’

config.overscan.order 1

config.overscan.numSigmaClip 3.0

config.overscan.maskPlanes [’BAD’, ’SAT’]

config.overscan.overscanIsInt True

config.overscan.doParallelOverscan False

config.overscan.parallelOverscanMaskThreshold 100000

config.overscan.parallelOverscanMaskGrowSize 7

config.doBias True

config.doBiasBeforeOverscan False

config.doDeferredCharge True

config.deferredChargeCorrection.nPixelOffsetCorrection 15

config.deferredChargeCorrection.nPixelTrapCorrection 6

config.deferredChargeCorrection.useGains False

config.deferredChargeCorrection.zeroUnusedPixels False

config.doLinearize True

config.doCrosstalk False

config.doDefect True

config.doNanMasking True

config.doWidenSaturationTrails True

config.doBrighterFatter True

Table D.1: The configuration parameters for lsst.ip.isr.isrTask.IsrTask in the LSST
Science Pipelines (Jurić et al. 2017; Bosch et al. 2019).
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Configurations for Instrument Signature Removal

config.doFluxConservingBrighterFatterCorrection True

config.brighterFatterLevel ’DETECTOR’

config.brighterFatterMaxIter 10

config.brighterFatterThreshold 10.0

config.brighterFatterApplyGain True

config.brighterFatterMaskGrowSize 0

config.doDark True

Parameter Value

config.doStrayLight False

config.doFlat False

config.doApplyGains False

config.usePtcGains True

config.doFringe False

config.doAmpOffset False

config.doInterpolate False

config.doSaturationInterpolation False

config.doNanInterpolation True

config.doVignette False

Table D.1: Continued.
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Appendix E

Image Moments

For shape fitting of each artificial star, we utilized the re-Gaussianization adaptive image

moment technique defined by Hirata & Seljak (2003). This method “adaptively” estimates

the best-fit elliptical Gaussian to the object by recursively computing the moments using

a circular Gaussian weighting function. This elliptical Gaussian is computed recursively by

initially guessing a circular Gaussian and using that as a weight function to re-compute the

image moments, continuing this process until the image moments converge to the moments

of the weight function.

The procedure is performed individually on each object, over a square stamp centered on

each detected object’s centroid, with a side length equal to the average grid spacing between

each object (65px), as shown at the bottom of Figure 7.1.

w(x ) = exp

[
−1

2
(x − x 0)

T I−1(x − x 0)

]
(E.1)

x 0 =

∫
R2 xw(x )I(x ) d

2x∫
R2 w(x )I(x ) d

2x
(E.2)
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Appendix E. Image Moments

From these we can calculate the second moments of images for measuring PSF:

Iµν = 2×
∫
R2(x − x 0)µ(x − x 0)νw(x )I(x ) d

2x∫
R2 w(x )I(x ) d

2x
(E.3)

This algorithm is very sensitive to residual sky backgrounds, like those produced by the aber-

ration in the projector lens (Hirata & Seljak 2003; Refregier et al. 2012; Okura & Futamase

2018). For this reason, great care was taken for sky background estimation and removal.

The linear combinations of these components then define the unnormalized ellipticity:

e0 = Ixx + Iyy

e1 = Ixx − Iyy

e2 = 2Ixy

(E.4)
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