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Neurological Characteristics of
Pediatric Glycogen Storage Disease
Julio Henrique Muzetti 1,2,3, Daniel Almeida do Valle1,2,3, Mara L. S. Ferreira Santos3,
Bruno Augusto Telles4 and Mara L. Cordeiro1,2,5*

1 Faculdades Pequeno Prı́ncipe, Curitiba, Brazil, 2 Instituto de Pesquisa Pelé Pequeno Prı́ncipe, Curitiba, Brazil, 3 Department
of Child Neurology, Hospital Pequeno Prı́ncipe, Curitiba, Brazil, 4 Department of Radiology, Hospital Pequeno Prı́ncipe,
Curitiba, Brazil, 5 Department of Psychiatry and Biological Behavioral Sciences, University of California Los Angeles,
Los Angeles, CA, United States

Glycogen storage diseases (GSD) encompass a group of rare inherited diseases due
dysfunction of glycogen metabolism. Hypoglycemia is the most common primary
manifestation of GSD, and disturbances in glucose metabolism can cause neurological
damage. The aims of this study were to first investigate the metabolic, genetic, and
neurological profiles of children with GSD, and to test the hypothesis whether GSD type I
would have greater neurological impact than GSD type IX. A cross-sectional study was
conducted with 12 children diagnosed with GSD [Types: Ia (n=5); 1, Ib (n=1); 4, IXa (n=5);
and 1, IXb (n=1)]. Genetic testing was conducted for the following genes using multigene
panel analysis. The biochemical data and magnetic resonance imaging of the brain
presented by the patients were evaluated. The criteria of adequate metabolic control were
adopted based on the European Study on Glycogen Storage Disease type I consensus.
Pathogenic mutations were identified using multigene panel analyses. The mutations and
clinical chronology were related to the disease course and neuroimaging findings.
Adequate metabolic control was achieved in 67% of patients (GSD I, 43%; GSD IX,
100%). Fourteen different mutations were detected, and only two co-occurring mutations
were observed across families (G6PC c.247C>T and c.1039C>T). Six previously
unreported variants were identified (5 PHKA2; 1 PHKB). The proportion of GSD IX was
higher in our cohort compared to other studies. Brain imaging abnormalities were more
frequent among patients with GSD I, early-symptom onset, longer hospitalization, and
inadequate metabolic control. The frequency of mutations was similar to that observed
among the North American and European populations. None of the mutations observed in
PHKA2 have been described previously. Therefore, current study reports six GSD variants
previously unknown, and neurological consequences of GSD I. The principal neurological
impact of GSD appeared to be related to inadequate metabolic control,
especially hypoglycemia.

Keywords: glycogen storage disease, phosphorylase kinase deficiency, glucose-6-phosphatase deficiency, central
nervous system, hypoglycemia, brain injury, mutation
n.org May 2021 | Volume 12 | Article 6852721

https://www.frontiersin.org/articles/10.3389/fendo.2021.685272/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.685272/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mcordeiro@mednet.ucla.edu
https://orcid.org/0000-0002-0235-8001
https://doi.org/10.3389/fendo.2021.685272
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.685272
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.685272&domain=pdf&date_stamp=2021-05-21


Muzetti et al. Neurological Characteristics of Pediatric GSD
INTRODUCTION

Glucose is stored in the form of glycogen, primarily in the
cytoplasm of liver and muscle cells, and to a lesser degree, in
brain tissues (1, 2). Hepatic glycogen plays a critical role in
maintaining glucose homeostasis (1, 3). Inherited abnormalities
in enzymes and regulators involved in the glycogen synthesis and
degradation pathways cause a rare group of metabolic conditions
known as glycogen storage diseases (GSD) (1, 3).

Twelve types of GSD have been identified, which are classified
according to their associated enzyme deficiencies (4, 5). The
overall incidence of GSD is estimated to be 1:10,000 live births
(5). Subtypes I and III, are the most common type, whereas
subtype IX are considered to be rare and it prevalence remain to
be estimated (1). The clinical manifestations of GSDs vary
according to the defective enzyme and its relative expression in
different tissues, especially the liver and skeletal muscle (4, 6).
GSDs with liver involvement (hepatic GSDs) are a complex
group of disorders, the main symptoms of which include
hypoglycemia and hepatomegaly (1, 5).

GSD type I occurs due to a deficiency of the enzyme glucose-
6-phosphatase a (G6Pase a), which impairs the ability to
produce glucose via glycogenolysis and gluconeogenesis. This
enzyme is anchored onto the ER and catalyzes the conversion of
G6P to glucose and inorganic phosphate. Two main subtypes of
GSD I are recognized: GSD type Ia (GSDIa; OMIM #232200) and
GSD type Ib (GSDIb; MIM #232220). GSD Ia results from a
mutation in the G6PC gene (MIM *613742), which encodes the
catalytic subunit of G6Pase a. GSD Ib results from a biallelic
pathogenic variant in the SLC37A4 gene (MIM *602671), which
codes for a G6P translocase. A defect in this translocase’s activity
accounts for about 10% of the cases (7, 8).

GSD type IX results from a deficiency of hepatic phosphorylase
kinase (PhK), the enzyme responsible for the activation of
glycogen phosphorylase and a key controller in the mobilization
of glucose from glycogen. The PhK enzyme is comprised of four
copies of each of the four subunits (a, b, g, and d), encoded
respectively by the genes PHKA1, PHKA2, PHKB, and PHKG2.
GSD IXa (MIM #306000) is an X-linked recessive disorder caused
by a pathogenic mutation in the PHKA2 gene (MIM *300798);
GSD IXb (MIM #261750) is caused by a compound heterozygous
mutation in the PHKB gene (MIM *172490) (9, 10). The most
common clinical manifestations of GSD type IX include
hepatomegaly, elevated liver enzymes, and short stature (9, 11).

The dysregulation of glucose metabolism affects the entire
central nervous system and can cause serious damage, because
glucose is essential for normal neuronal function (4). Low brain
glycogen reserves hinder local glucose availability as a
conventional energy source, causing a continuous demand for
glucose from the circulation and ultimately using approximately
25% of the body’s glucose (2, 12). The tricarboxylic acid cycle
ceases to function during hypoglycemic episodes, leading to
increased levels of glutamate and aspartate, which affects the
sodium/water balance and can therefore cause cellular edema
(12). Studies using animal and neurofunctional models have
shown that moderate intermittent hypoglycemia has a direct
Frontiers in Endocrinology | www.frontiersin.org 2
effect on the function of the hippocampus, by reducing its
volume and altering neuronal synapses (13, 14).

Disorders of glycogen metabolism are associated with liver
and muscle disorders. Although the presence of glycogen in the
brain has been recognized for decades, its functional roles in
the brain have been discovered only recently (2, 7), including the
profound molecular contributions of glycogen metabolism to the
brain (7). Brain glycogen may act as an energy substrate during
periods of increased energy demand, such as learning and
memory processes (2). Therefore, we aimed to investigate the
biochemical and genetic aspects of GSD in Brazilian pediatric
patients and test the hypothesis that GSD I would have greater
impact on the brain than other types of GSD such as the X-linked
GSD type IX.
METHODS

Study Design and Participants
This cross-sectional, observational, descriptive study enrolled
children diagnosed with GSD who were being followed-up at
the rare diseases outpatient clinic of the Hospital Infantil
Pequeno Prıńcipe, Curitiba, PR, Brazil.

The study was conducted between January 2020 and January
2021. A convenience sampling strategy was used. All participants
were assessed by the same researcher, who conducted targeted
history taking and physical examination. The variables of interest
included sex, current age, age at diagnosis, duration of
hospitalization due to GSD (in days), and current laboratory
serum levels. All patients had their diet with energy needs
assessed individually and proportions of diet components
introduced once the diagnosis was established.

The inclusion criteria were as follows: patients aged 2–14 years
old, with a clinical diagnosis of GSD, requiring ≥12 months of
specialized care, who presented with the clinical manifestations of
GSD, including hypoglycemia, hyperlactatemia, hypertriglyceridemia,
hyperuricemia, hepatomegaly, and/or a growth deficit (short stature
for age) at the time of diagnosis or inclusion in the study. Patients
with associated neurodegenerative diseases were excluded.

Measures
Serum levels were recorded from each patient’s most recent medical
record. The biochemical blood parameters evaluated included blood
glucose, triglycerides, high-density lipoprotein, low-density
lipoprotein, cholesterol, uric acid, and lactate. Since, in their
totality, patients showed adequate adherence to the diet, based on
direct recall or use of food diaries, the evaluation of dietary control
was carried out through metabolic criteria. The following criteria of
adequate metabolic control were adopted based on the European
Study on Glycogen Storage Disease type I (ESGSD I) consensus:
glucose >63 mg/dL, triglycerides <530 mg/dL, uric acid <7 mg/dL,
lactate <2.5 mg/dL, and body mass index within 2 standard
deviations from the population mean (6, 13).

Genetic testing was conducted for the following genes using
multigene panel analysis: AGL, FBP1, G6PC, GAA, GBE1, GYS2,
PHKA2, PHKB, PYGL, SLC2A2, and SLC37A4. Buccal swab
May 2021 | Volume 12 | Article 685272
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samples were collected, and DNA was extracted for genetic
analyses of the target genomic regions. Next-generation
sequencing was performed using Illumina technology:
alignment and variant identification was performed based on
bioinformatics protocols using the GRCh38 human genome as a
reference. The potential pathogenic variants and regions with
inadequate sequencing depth were confirmed using automated
Sanger sequencing, which was conducted with a genetic analyzer.
The variants were described according to the nomenclature
recommended by the Human Genomic Variation Society.

Novel variants were classified according to the guidelines of
the American College of Medical Genetics and Genomics (15) on
the basis of very low allele frequency, compound heterozygosity
with a pathogenic variant, residue evolutionary conservation,
and biochemical results. New variants were deposited in the
Human Gene Variant Database (https://www.hgmd.cf.ac.uk/)
and ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar/).
Mutations were grouped according to type (missense or non‐
missense). Mutations resulting in a frameshift or splicing
modifications were considered to be potentially pathogenic.
The pathogenicity of novel missense mutations was predicted
using in-silico analyses.

Magnetic Resonance Imaging
Brain MRI datasets obtained within the 5 years prior to the study
were analyzed retrospectively. If the patient had more than one
neuroimaging scan, the images were compared to assess the
appearance of new lesions. MRI was requested for patients who
had not undergone neuroimaging during the past 5 years. Brain
MRI was performed with a 1.5-T magnetic resonance unit (Signa
Explorer, GE Medical Systems, Milwaukee, WI). T1-weighted
[echo time (TE)/repetition time (TR), 11 ms/550 ms], T2-
weighted (TE/TR, 93 ms/4000 ms), fluid-attenuated inversion
Frontiers in Endocrinology | www.frontiersin.org 3
recovery (TE/TR/inversion time, 110 ms/10000 ms/2250 ms),
and diffusion-weighted (TE/TR, 105 ms/5200 ms) imaging
was performed.

Statistical Analyses
Data were stored and analyzed using Microsoft Excel 2016 and
SPSS for Windows (v. 22.0, IBM, Armonk, NY). Descriptive
analyses were performed by calculating the summary measures.
Inferential analyses were performed using the Chi-squared,
Fisher’s exact (non-parametric variables), and Student’s t tests
(parametric variables), with a significance level of p < 0.05.
RESULTS

Demographic and Clinical Findings
Table 1 describes the participants’ clinical characteristics. This
study enrolled 12 patients (age range, 2–17 years) of both sexes
(9 boys and 3 girls) who were diagnosed with hepatic GSD,
including 5 patients with GSD Ia, 1 with GSD Ib, 5 with GSD
IXa, and 1 patient with GSD IXb. The chronology of each patient’s
diagnosis and treatment by GSD type (I or IX) are presented in
Table 2. The patients’ blood biochemistry test results classified by
GSD type are presented in Table 2. Adequate metabolic control
was achieved in 7/12 patients (58%) overall according to the
ESGSD I criteria, including 2/6 patients (33%) with GSD I and
5/6 patients (83%) with GSD IX.

Genetic Findings
Table 3 describes the mutations identified in this study cohort as
well as the biochemical consequences of these mutations.
Fourteen different mutations were detected in four genes,
including 5 in G6PC (17q21.31), 2 in SLC37A4 (11.q23.3), 5 in
TABLE 1 | Characteristics of glycogen storage disease (GSD) patients analyzed in this study.

Patient Sex GSD type Age at symptom onset
(months)

Age at diagnosis
(months)

Adequate metabolic
control*

Alleles Normal Brain MRI

1 M Ia 10 10 N c.508C>T
c.508C>T

N

2 M Ixb 8 Y c.352G>C
c.570_576delinsAC

Y

3 F Ia 28 40 N c.1039C>T
c.1039C>T

Not performed

4 M IXa 0 0 Y c.537+3_537+4insT Y
5 M IXa 19 45 Y c.2735T>C

c.2785G>C
Y

6 F IXa 39 46 Y c.277A>G Y
7 M IXa 35 48 N c.1499G>A Y
8 M IXa 37 45 Y c.537+3_537+4insT Y
9 F Ib 6 9 N c.703_705delGTG

c.1042_1043delCT
N

10 F Ia 0 5 N c.509G>A
c.247C>T

N

11 M Ia 17 17 Y c.1039C>T
c.3018+3C>G

Y

12 M Ia 0 12 Y c.247C>T
c.247C>T

N

May 2021 | Volume
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PHKA2 (Xp22.13), and 2 in PHKB (16q12.1). The majority of the
mutations were of the missense/nonsense type and located in the
exon regions. All mutations, except for two, were observed in a
single family; two G6P6mutations were identified in two families
each (c.247C>T and c.1039C>T). All five PHKA2 variants and
one of the two PHKB variants have not been reported previously.

Magnetic Resonance Imaging Findings
MRI alterations were observed in 4 of the 6 patients with GSD Ia.
None of the patients with the other types of GSD had MRI
manifestations. Subcortical white matter hyperintensities were
observed in the occipital lobes of 2 patients (Figures 1A, B). One
patient presented with T2 hyperintense oval foci located in the
central white matter that extended toward the peritrigonal
regions (Figure 1C). One patient had retracted lesions affecting
the cortex and subcortical white matter of the bilateral frontal
regions and left parieto-temporal transition (Figure 1D). The
lesion extent was highly variable for each individual.
Neuroimaging abnormalities were more frequent among
patients with early onset of symptoms (p = 0.010), longer
hospitalization (p = 0.002), and inadequate metabolic control,
and were significantly associated with uricemia (p = 0.043),
hyperlactatemia (p = 0.001), hypertriglyceridemia (p < 0.001),
and elevated low-density lipoprotein levels (p = 0.031) (Table 4).
Frontiers in Endocrinology | www.frontiersin.org 4
DISCUSSION

The present cross-sectional, observational, descriptive study
investigated the metabolic, genetic, and brain MRI profiles of
children with GSD. Our GSD cohort included thrice as many
boys as girls. This difference may be attributed to the high
incidence of GDS IXa among the participants, since GSD IXa
is attributed to mutations of PHKA2, which is located on the X
chromosome (1). GSD Ia was also highly prevalent in our
sample, which is consistent with the literature (1, 8). However,
although GSD III is generally considered to be the second most
frequent type, no patient in the present study was diagnosed with
GSD III. Conversely, although GSD IXa is considered to be a rare
form of GSD [prevalence < 1:100,000 and approximately 50 cases
described in the literature (1), one-third of the patients in our
sample (5/12) were diagnosed with GSD IXa. It is possible that
GSD IXa is underdiagnosed in general, perhaps due to its
oligosymptomatic and variable presentation, infrequent
hospitalization, and fewer alterations in the laboratory
profile (10).

Early diagnosis and timely treatment have been shown to
have a positive impact on patients’ quality of life and prognosis,
and are associated with a reduced risk of complications (16). The
patients with GSD I in our cohort tended to be younger at
symptom onset by one year or more compared to their
counterparts with GSD IX, and several patients experienced
symptoms before 1 year of age, similar to previous studies (17).

The frequency of G6PC mutations observed in this study
population was similar to that reported for Caucasians in the
USA (18), northwestern Europe (17, 19), and Rio Grande do Sul,
Brazil (20, 21), with the c.247C>T and c.1039C>T
polymorphisms being the most common mutations. The
c.508C>T mutation in G6PC was previously identified in
Japanese (22) and Dutch (17) populations, in which it
accounted for about 6% of the mutations identified, similar to
its proportion in our population. The c.509G>A mutation in
G6PC was previously identified in a Dutch population (17), but
with a low frequency. Although the Brazilian population has
considerable ancestral heterogeneity, which includes indigenous
TABLE 3 | Summary of glycogen storage disease-related variants identified.

Gene Type Allele Position ACMG Protein No. mutations (family)

G6PC Mis-/nonsense c.247C>T E2 Pathogenic p.Arg83Cys 3(2)
c.508C>T E3 Pathogenic p.Arg170* 2(1)
c.509G>A E3 Pathogenic p.Arg170Gln 1(1)
c.1039C>T E5 Pathogenic p.Gln347* 3(2)

Splicing c.3018+3C>G I4 Pathogenic 1(1)
SLC37A4 Deletion c.703_705delGTG E5 Probably pathogenic p.Val236del 1(1)

c.1042_1043delCT E5 Pathogenic p.Leu348Valfs*53 1(1)
PHKA2 Mis-/nonsense c.277A>G E3 Uncertain p.Met93Val 1(1)

c.1499G>A E15 Uncertain p.Arg500Gln 1(1)
c.2735T>C E25 Uncertain p.Met912Thr 1(1)
c.2785G>C E25 Uncertain p.Ala929Pro 1(1)

Splicing c.537+3_537+4insT I5 Probably pathogenic 2(1)
PHKB Mis-/nonsense c.352G>C E5 Pathogenic p.Ala118Pro 1(1)

Deletion c.570_576delinsAC E6 Pathogenic p.Gln191Hisfs*5 1(1)
May 2021 | Volu
*Mutations in red are not previously described.
TABLE 2 | Comparison of patients with glycogen storage disease types I and IX.

Patient characteristic Mean (standard deviation) P

GSD I GSD IX

Age of symptom onset, months 10.2 (11.1) 23.0 (16.4) 0.150
Age at diagnosis, months 15.5 (12.5) 37.0 (20.7) 0.086
Total hospitalization time, months 22.3 (16.5) 5.7 (4.8) 0.039*
Variable
Uric acid, mg/dL 7.5 (3.3) 3.9 (1.0) 0.068
Lactate, mg/dL 6.4 (3.6) 1.6 (0.3) 0.031*
Triglycerides, mg/dL 413.2 (323.6) 94.0 (38.9) 0.037*
High-density lipoprotein, mg/dL 36.2 (19.0) 49.4 (13.0) 0.236
Low-density lipoprotein, mg/dL 132.9 (30.2) 98.2 (14.3) 0.056
Blood glucose, mg/dL 74.0 (17.8) 71.8 (18.3) 0.839
*p < 0.05.
me 12 | Article 685272
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Amerindians and immigrants from different regions of Europe,
Africa, and Asia, the European ethnicity is the most (substantially)
prevalent ancestry in Brazil, especially in the southern states,
including Paraná, where this study was conducted.

Four (belonging to 3 families) of the 5 patients with GSD IX
in our sample had PHKA2 mutations, including one female
patient, despite the location of PHKA2 on the X chromosome
and the X-linked inheritance of GSD IXa. Some women may
present with symptoms of GSD IXa, depending on their X
chromosome inactivation pattern (10, 23). Missense mutations
(c.537+3_537+4insT, c.1499G>A, c.2735T>C, c.2324A>G, and
c.2785G>C) were found in 4 patients in our cohort. None of
Frontiers in Endocrinology | www.frontiersin.org 5
these missense mutations have been described previously in the
literature, indicating the paucity of knowledge on the etiology of
GSD IXa and possibility of underdiagnosis (10).

Several factors are related to neuronal death induced by
hypoglycemia, and not just related to energy failure. There is
an increase in glutamate induced by hypoglycemia, with a
reduction in astrocytic glutamate reuptake and increased
activation of aspartate receptors (24). In response to
excitotoxicity, reactive oxygen species levels increase due to
production of superoxide after oxidation of NADPH during
glucose reperfusion, provoking neuronal cell death (24, 25).
Zinc is a neuromodulator stored in pre-synaptic vesicles, and is
FIGURE 1 | Magnetic resonance imaging alterations in patients with GSD Ia. (A) (Patient #1). Extensive areas of gliosis and encephalomalacia are observed,
particularly in the cortical and subcortical areas of the left occipital and parietal lobes, as well as along the frontoparietal transition with high convexity and
compensatory ectasia of corresponding portions of the ipsilateral lateral ventricle. Moreover, lesion foci are observed, which are probably related to hemosiderin
deposits, extending to the posterior aspects of the nucleocapsular region with signs of chronic Wallerian degeneration of the corresponding cortico-spinal tract.
There is substantial left-sided cerebral atrophy. (B) (Patient #12) Retracted lesions affecting the cortex and subcortical white matter of the bilateral frontal regions and
the left parieto-temporal transition are evident. These changes are suggestive of encephalomalacia and vascular sequelae. (C) (Patient #9) Oval foci showing high-
intensity on T2-weighted sequences in the central white matter and projecting close to the peritrigonal regions. These nonspecific changes could represent gliosis
around the perivascular spaces (terminal myelination areas). (D) (Patient #10) Small retracted lesions affecting the posterior occipital poles with loss of volume,
especially on the right side, suggestive of lesions occuring secondary to hypoglycemia.
May 2021 | Volume 12 | Article 685272
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released into the extracellular space in the presence of
pathological events, such as hypoglycemia and hypoxia. Zinc
alters several receptors, including NMDA, GABA-A and ATP,
and is associated with neural death (24). Another mechanism
causing neuronal death occurs through activation of Poly-ADP-
Ribose Polymerase (PARP). While normal PARP activity
facilitates DNA repair and prevent the exchange of chromatids,
extensive damage from the sustained action of glutamate causes
extensive activation of PARP and increases mitochondrial
permeability and damage, culminating in cell death (24).

Despite the difficulty associated with identifying the exact
topography of lesions caused by hypoglycemia, lesions in the
frontal lobes, temporal lobes, and basal ganglia have often been
described in patients with diabetes type I (26). Possible
contributors to the location of damage include reduction in
regional use of cerebral glucose or deficit of local expression of
the glucose membrane-transporting proteins (24). Although
Melis et al. (27) found that all of their patients with GSD
exhibiting MRI abnormalities had occipital horn dilatation
and/or hyperintensity of the subcortical white matter in the
occipital lobes, only 50% (2/4) of the patients with MRI
abnormalities in the present study presented with these
findings. During the neonatal period, there is a high degree of
synaptogenesis and axonal migration to the occipital lobe
associated with high levels of aspartate stimulation of newly
developed receptors for excitatory amino acids. Hypoglycemia
can damage this process, causing selective death in the
postsynaptic neurons (28). The other 2 patients had
peritrigonal changes and lesions in the cortical and subcortical
regions of the fronto-temporal cortex, similar to the findings of
Aydemir et al. (4). The occasional damage to frontal areas in
some neonates with severe hypoglycemia involves infarctions of
the distal field, typical in ischemic conditions (29).These
neuroimaging findings are consistent with the hypothesis that
the principal neurological effect of glycogenosis is the result of
inadequate metabolic control, especially with respect to
hypoglycemia (4, 27). Interestingly, and not previously
investigated, our study allowed the comparison of neuronal
Frontiers in Endocrinology | www.frontiersin.org 6
damage from GSD type I with that of GSD IX. Although our
sample is small, we observed that the patients with GSD type Ia
presented more cerebral damage than those with GSD IX; this
could have been related to earlier onset of symptoms, longer
hospitalization, inadequate metabolic control, and elevated
lactate levels in the GSD I patients. Earlier investigations of
brain morphology and function of patients with GSD I found
that patients performed worse in neuropsychological tests than
normal controls and had abnormal EEG patterns (27); similarly,
the brain MRI in 57% of patients with GSD type I was altered.
Certainly, additional investigations are needed to validate our
findings, as well as to compare the impacts and evaluate the
underlying mechanisms of each GSD type on the brain.

The characterizations of the natural history of rare diseases
and their impact on patients and their families is always
hampered by small sample sizes, which is among the
noteworthy limitations of this study. Accordingly, the present
characterizations were limited by our small sample population of
12 patients, which included only 7 patients with GSD I and 5
patients with GSD IX. Nevertheless, we were able to identify
GSD-associated mutations even in this small cohort that have
not been described in the literature previously, and one-third of
the cases in our sample were diagnosed with GSD IXa, which is
generally considered to be very rare subtype of GSD (30),
suggesting the probability of its underdiagnosis.

In conclusion, GSD Ia was the most prevalent form of GSD,
affecting half of the patients in the present cross-sectional,
observational, descriptive study. Notwithstanding, we observed
a higher than typically reported prevalence of GSD IX, probably
because GSD IXa may be oligosymptomatic with infrequent
hospitalizations and few laboratory alterations, which would
result in underdiagnosis. The frequency of G6PC mutations
was similar to that reported previously for North American
and European Caucasian populations. Notably, we detected
two PHKB2 mutations that have not been described previously,
suggesting the probability of inadequate identification and
underdiagnosis of GSD IXa in Brazil. The observations of MRI
alterations in regions of high metabolism, such as the frontal
TABLE 4 | Magnetic resonance imaging (MRI) alterations relative to diagnosis, chronology variables, and metabolic variables.

Variable Normal RI Abnormal MRI p

Diagnosis, N
GSD I 2 4 0.061
GSD IX 5 0

Chronology, mean (standard deviation)
Age of symptom onset, months 22.98 (16.44) 5.24 (4.08) 0.010
Age at diagnosis, months 36.96 (20.71) 9.37 (0.85) 0.189
Total hospitalization time, days 6.86 (5.37) 26.25 (19.82) 0.002

Adequate metabolic controla, N 7 1 0.024
Metabolic index, mean (standard deviation)
Uric acid, mg/dL 4.08 (0.91) 8.73 (3.85) 0.043
Lactate, mg/dL 1.55 (0.34) 5.88 (3.85) 0.001
Triglycerides, mg/dL 89.71 (37.28) 439.00 (336.00) <0.001
High-density lipoprotein, mg/dL 49.4 (13.01) 37.75 (21.55) 0.499
Low-density lipoprotein, mg/dL 98.20 (14.25) 119.00 (33.94) 0.031
Blood glucose, mg/dL 71,86 (16,69) 79.00 (19.58) 0.525
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lobes, temporal lobes, and basal ganglia, are consistent with the
hypoglycemia-induced origin of the lesions. Thus, the main
neurological impact of glycogenosis is apparently related to
inadequate metabolic control, especially that of hypoglycemia.
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