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Feasibility of Formulating Ecosystem Biogeochemical
Models From Established Physical Rules
Jinyun Tang1 , William J. Riley1 , Stefano Manzoni2 , and Federico Maggi3

1Department of Climate Sciences, Earth and Environmental Sciences area, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA, 2Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University,
Stockholm, Sweden, 3Environmental Engineering, School of Civil Engineering, The University of Sydney, Sydney, NSW,
Australia

Abstract To improve the predictive capability of ecosystem biogeochemical models (EBMs), we discuss
the feasibility of formulating biogeochemical processes using physical rules that have underpinned the many
successes in computational physics and chemistry. We argue that the currently popular empirically based
approaches, such as multiplicative empirical response functions and the law of the minimum, will not lead to
EBM formulations that can be continuously refined to incorporate improved mechanistic understanding and
empirical observations of biogeochemical processes. Instead, we propose that EBM parameterizations, as a
lossy data compression problem, can be better formulated using established physical rules widely used in
computational physics and chemistry, and different biogeochemical processes can be more robustly integrated
within a reactive‐transport framework. Through several examples, we demonstrate how mathematical
representations derived from physical rules can improve understanding of relevant biogeochemical processes
and enable more effective communication between modelers, observationalists, and experimentalists regarding
essential questions, such as what measurements are needed to meaningfully inform models and how can models
generate new process‐level hypotheses to test in empirical studies. Finally, while empirical models with more
parameters are often less robust, physical rules‐based models can be more robust and show lower predictive
equifinality, stemming from their enhanced consistency in representations of processes, interactions and spatial
scaling.

Plain Language Summary Robust ecosystem biogeochemical models are needed to provide
humanity with predictions to understand and manage interactions between terrestrial ecosystems and the
climate. However, existing models do not fully achieve this target because of their wide use of statistical
relationships derived from empirical observations. We argue that wider adoption of physical rules can help
develop better ecosystem biogeochemical models to meet with society's needs. This can be achieved by deeper
interdisciplinary collaboration between scientists from fields in soils, biology, chemistry, physics, and
mathematics. Development of improved biogeochemical models will better position society to adapt to climate
change.

1. Introduction
Biogeochemistry plays important roles in modulating greenhouse gas and energy exchanges between ecosystems
and the Earth's atmosphere. Thus, it is imperative to develop ecosystem biogeochemical models (EBMs) that can
deliver high quality predictions to improve understanding and management of biogeochemistry‐climate feed-
backs. Indeed, taking land biogeochemical models as an example, after decades of research, their representations
in climate models (which are now called earth system models) have evolved from simple mathematical for-
mulations focusing on surface energy balance to considering interactions between energy, water, carbon, and
nutrient dynamics (Zhu et al., 2019), and even human management of land use and land cover (Blyth et al., 2021).
Meanwhile, to reduce prediction uncertainty, more observations are collected and model‐data fusion techniques
are employed to constrain the parameters and process representations in these models (Houska et al., 2017;
Keenan et al., 2012; Le Noë et al., 2023; Tang & Zhuang, 2008). Despite these many efforts, analyses still find
significant uncertainties when model predictions are confronted with field perturbation experiments, including
ecosystem responses to free air CO2 enrichment, nutrient addition, and warming (Bouskill et al., 2014; Davies‐
Barnard et al., 2020; De Kauwe et al., 2017; Keenan et al., 2023; Qiu et al., 2023; Todd‐Brown et al., 2013;
Varney et al., 2022; Zaehle et al., 2014).
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These large modeling uncertainties have been attributed to uncertain model parameters, missing or inaccurate
process representations, inaccurate initial and boundary conditions, and poor numerical implementations (Ahl-
ström et al., 2013; Bouskill et al., 2014; Huntzinger et al., 2017; Tang & Riley, 2018). We note that, in actual
model applications, these four types of uncertainties often are compounded and hard to disentangle. Nonetheless,
in this perspective, we infer that some fundamental fallacies in the currently popular approaches used to formulate
EBMs have made it difficult, and in some cases nearly impossible, to achieve high‐quality predictions. Without a
fundamental change in model formulation, this challenge will persist despite efforts to augment processes rep-
resentations, refine parameter calibration, integrate empirical observations, and employ more accurate numerical
schemes.

The fundamental fallacies addressed below may be considered a specific type of structural error, yet they possess
a unique and crucial character, deserving special attention. This assertion arises from our observation that
contemporary EBM formulations heavily rely on combinations of empirical response functions derived from field
observations and factorial empirical experiments. However, due to the close coupling between the involved
entities, it is expected that the effect of each of these targeted biogeochemical processes only emerges from the
interactions among several more basic processes, many of which cannot be orthogonally captured by factorial
empirical experiments, nor be discerned from field measurements. For example, soil microbial respiration is
dependent both on the microbial physiological status and substrate transport in soil, both of which are modulated
by soil moisture content and temperature (Suseela et al., 2012; Zhou et al., 2014). As the transport of heat and
moisture are closely coupled (Milly, 1982; Saito et al., 2006; Wu et al., 2021), changes in one of these two
conditions will inevitably change the other. Moreover, both temperature and moisture alter the rates of substrate
consumption, and affect substrate availability. Thus, the effects of temperature and moisture on microbial
respiration are impossible to separate from field data and from laboratory experiments where substrate availability
was not controlled. Consequently, using independently derived temperature and moisture response functions
together could result in double counting of temperature and moisture effects on soil microbial respiration.

Meanwhile, with the rapidly changing climate and recent resurgence of fossil fuel use (Tollefson, 2022), it is
becoming less likely that our society will be able to curb global warming within the 2°C limit set at the Paris
Agreement (Lenton et al., 2023). We therefore expect that climate adaptation and mitigation measures through
active ecosystemmanagement will be increasingly important (Guan et al., 2023; Obersteiner et al., 2010), and our
society urgently needs predictive models to provide more robust and detailed guidance on how and under what
conditions such ecosystem‐based measures can be properly executed.

Robust EBMs require the underlying mathematical formulations to be either simple (with fewer but well‐
constrained parameters) or well balanced (with less inconsistency among interacting entities), where processes
are described by a complete set of physical rules (see Table 1 for a list of example physical rules that we are
referring to in this perspective). Unfortunately, existing EBMs often represent biogeochemical processes without
considering the underlying mechanistic details, and thus can only provide limited insights into how ecosystem
management can effectively address climate adaptation and mitigation. For instance, existing models usually
represent soil organic matter (SOM) as a composite of abstract and unmeasurable pools with predefined turnover
times modified by edaphic conditions (Koven et al., 2013; Tao et al., 2023; Viskari et al., 2022). However, it is the
diverse chemical composition of SOM and dynamic physical associations and interactions between SOM, soil
particles, microbes, water, and plants that determine SOM storage and decomposition dynamics (Kleber &
Adam, 2022; Lehmann et al., 2020). Thus, effective management should modulate these interactions holistically
for SOM storage to be maintained or even enhanced. Models that account for many of these mechanisms are being
developed (Abramoff et al., 2022; Grant et al., 2017; Riley et al., 2022;Wang et al., 2022), yet implementing them
comprehensively in coupled EBMs is still a far‐off goal.

Additionally, in most existing EBMs, plant canopies are at best represented with only two big leaves, one sun‐lit
and the other shaded (i.e., the two‐big‐leaf approximation; (e.g., Dai et al., 2004), while fine roots are only
included implicitly via parameterizations (Wang et al., 2010; Weng et al., 2022; Zhu et al., 2019). As a result,
ecosystem performance associated with different canopy structures and root traits cannot be assessed with these
models. Plant models that are more explicit in their representation of plant functional traits and associated pro-
cesses exist (Abichou et al., 2013; Kang et al., 2012), but their high complexity and large number of parameters
make it hard to couple with ecosystem‐level models that account for soil and atmospheric processes simplisti-
cally. This imbalance between complex plant models and relatively simple ecosystem models then creates a
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coupling challenge that calls for special care. (Just imagine how much mess a jet engine bike could make in a
normal city.) Further, even if a biogeochemical or biophysical process is represented in EBMs, its mathematical
description may ignore essential physical constraints (as discussed below), resulting in poor long‐term predict-
ability and lowering stakeholders' confidence in conducting mitigations based on guidance generated from model
predictions (Luo et al., 2015). (In the ecological predictability framework discussed in Dietze (Dietze, 2017), such
a situation is equivalent to a poor representation of the model's stability.) For example, the emerging enthusiasm
in sustainable agriculture ecosystem management has stirred interest in applying ecosystem models for
measuring, reporting, and verifying soil carbon changes and greenhouse gas emissions due to changes in man-
agement practices. However, stakeholders have shown diverging confidence in the models' predictive capability
(Guan et al., 2023). This situation stands in stark contrast to the developments in industry, where computer‐aided
design software has facilitated the production of ships measuring hundreds of meters in length and chip circuits as
small as a few nanometers (e.g., Arrichiello & Gualeni, 2020; Seok et al., 2021), and in weather forecasting,
where reasonable weather predictions a week in advance are common (Bauer et al., 2008).

The successes of computer‐aided design software in industry and numerical models in weather forecasting are
founded on mathematical models formulated according to physical rules (see Table 1 for examples of these rules).
The performance of these models can be continuously improved by including new essential processes (Zhou
et al., 2022), adopting more robust and effective numerical solution strategies (Candel et al., 1999; Lin &
Rood, 1996; Liu et al., 2019), utilizing better constrained parameters (Kotsuki et al., 2018; Wöber et al., 2020),
implementing more accurate initial and boundary conditions (Saredi et al., 2021; Xiao et al., 2007), and increasing
spatiotemporal resolution with more computational resources (Caldwell et al., 2021). Such a trajectory allows for
the realization of “the unreasonable effectiveness of mathematics” wherein simple equations can accurately
describe complex real‐world phenomena (Wigner, 1960).

As ecosystem biogeochemistry is heavily influenced by living organisms (spanning micro‐to macro‐organisms
(Madigan et al., 2009; Taiz & Zeiger, 2006), EBM modelers have avoided physical rules‐based mathematical

Table 1
Example Physical Rules

Name Domain of application Reference

Primary rules

Mass balance Mass exchange Feynman et al. (2011c)

Energy balance Energy exchange Feynman et al. (2011c)

Charge balance Chemical reactions Atkins and de Paula (2006)

Volume balance Freeze‐thaw, SOM accumulation, transpiration‐induced transport,
incompressible flow

Simunek and Suarez (1993); Sollins and
Gregg (2017)

Momentum balance Pressure driven mass flow Batchelor (1967)

Entropy balance Chemical reaction and transport Atkins and de Paula (2006)

Derived rules

Newton's laws of motion Mechanic processes, for example, bacterial movement Purcell (1977)

Maxwell's theory of
electromagnetism

Radiation processes Baldocchi et al. (1985); Ross (1981)

Quantum Mechanics Chemical reactions Bao and Truhlar (2017); Eyring (1935)

Thermodynamic laws Equilibrium thermodynamic processes for chemical reactions and other
processes

Atkins and de Paula (2006)

Gradient driven transport Diffusion of mass and energy, energy dissipation Cussler (2009); Feynman et al. (2011c)

Advective transport Convection‐driven tracer transport Steefel et al. (2005)

Law of mass action Chemical reactions Kudryavtsev et al. (2001)

Note. There could be more primary rules if subatomic interactions are considered, but the six listed here are proposed to be sufficient to develop biogeochemical models.
Additionally, we assume that there is no mass‐energy conversion in the biochemical reactions, so that mass and energy balance rules are independent. There are many
more derived rules, for example, Navier‐Stokes equation and Darcy's law, each of which can be derived from these primary and secondary rules with proper mathe-
matical approximations.
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representations (thought to be unfeasible to describe complex living organisms) and have chosen instead
empirical representations. Yet, the research community now has access to an unprecedented amount of
increasingly detailed observations and inferences of traits (e.g., Kattge & Sandel, 2020), and micro‐climate data
(e.g., Kearney et al., 2014; Novick et al., 2018). Researchers are also able to design new biological traits by gene
editing (Lam et al., 2021; Saurabh, 2021), and predict intracellular biochemical rates using proteomic information
(De Falco et al., 2022; Sweetlove & Ratcliffe, 2011). All of these advances are providing us with unprecedented
opportunities to manage interactions with biological organisms. We thus contend that the time is ripe for
developing EBMs with mechanistic representations rooted in physical rules (see Box 1 for definitions of physical
rules and mechanistically based process representations). Such models will enable the assimilation of a broader
range of empirical data and provide more robust numerical predictions, thus guiding ecosystem management
more effectively.

The remainder of this perspective paper is organized as follows. First, we delineate the part of ecosystem
biogeochemistry that will be discussed in this perspective. Second, we analyze the intrinsic limitations of two
popular approaches currently used to formulate EBMs: the multiplier‐based empirical response function and the
law of the minimum. We highlight that these two approaches are unlikely to result in a model that can be
incrementally refined as new theories and observations are developed and integrated. Third, we discuss how
adopting physical rules‐based approaches can lead to significant progress. In particular, we demonstrate with
three examples how physical rules‐based models can improve understanding of biogeochemical processes and
provide opportunities for engineering biogeochemical responses. Finally, we discuss how the research com-
munity can work together to develop comprehensive and coherent EBMs based on physical rules to better realize
“the unreasonable effectiveness of mathematics” in ecosystem biogeochemical modeling. We note that the
mathematical symbols used in our discussion are defined in Nomenclature section.

Box 1. Definition of “Physical Rules” and “Mechanistically Based Process
Representations”

Physical rules refer to fundamental principles or laws that govern the behavior and interactions of physical
systems in the natural world. These rules are derived from scientific observations, experiments, theories, and
mathematical models that describe the fundamental properties of matter, energy, and forces. Here, we categorize
them as primary (e.g., conservation) and derived (e.g., Newton's Second Law) rules. Primary rules have also been
referred to as first, fundamental, and primary principles, among other terms, in the literature. Derived rules are
constructed from primary rules with known domain of applications, and are consistent with abundant observational
evidence. For example, the change of momentum of a particle is proportional to the force applied, and the rate of
heat conduction between two locations in space is proportional to the temperature gradient between these
locations.

Mechanistically based process representations are mathematical or computational descriptions of the target
process based on detailed knowledge about the underlying biological and physical mechanisms. As such, the
mathematical description of a given process explicitly considers the involved entities and logical understanding of
their interactions within the environment. By accounting for these interactions, they emphasize the emergent
nature of the response of a process or variable to environmental changes. In application, mechanistically based
representations of microbial substrate uptake could consider sub‐processes including substrate transport, capture,
and assimilation. The environmental dependence of each of these sub‐processes can be separately described for
example, by physical rules.

2. Biogeochemical Processes in Terrestrial Ecosystem Dynamics and Mathematical
Rules for Scaling‐Coherent Modeling
To aid our discussion of the difference between empirically based and physical rules‐based approaches for
formulating EBMs, we first delineate the major biogeochemical processes involved in terrestrial ecosystem dy-
namics and identify which of them will be within the scope of this perspective (Figure 1). We define biogeo-
chemical processes as those that lead to the production or consumption of chemical species and biomass. Animals
are excluded here, even though they likely play important roles in ecosystem nutrient dynamics (e.g., Atkinson
et al., 2018). Meanwhile, biogeophysical processes and disturbances (including ecosystemmanagement) are those
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that affect environmental conditions (e.g., soil and atmospheric temperature and water contents, soil physical and
chemical properties) where biogeochemical processes occur (Robinne et al., 2020; Rusu et al., 2013). With this
delineation, our discussion in this perspective focuses on how to mathematically represent biogeochemical rates
and changes in storage under the influence of environmental and biological factors (e.g., Table 2).

Biogeochemical processes are always dependent on the spatial and temporal scales at which they are observed or
modeled, but our discussion in this perspective leaves out the challenge of scaling across spatial heterogeneity at
the landscape scale. Instead, we discuss scaling issues at a fine scale relevant for process understanding (e.g., from

Figure 1. A general (but non‐exhaustive) delineation of processes involved in terrestrial ecosystem dynamics. To highlight
their importance, plant‐microbe‐soil interactions are separated from ecological interactions. The biogeochemical processes
are the focus of this perspective.

Table 2
Examples of Biogeochemical Processes Used to Analyze Limitations of the Empirically Based Approaches

Process Parameterization Example references

Soil organic carbon
decomposition

R = R0f1(T)f2(M)f3(O2), where R0: reference rate, f1(T): temperature
dependence, f2(M): moisture dependence, f3(O2): oxygen dependence

Azizi‐Rad et al. (2022); Bauer et al. (2008)

Methane production R = R0f1(T)f2(pH)f3(pE), where R0: reference rate, f1(T): temperature
dependence, f2(pH): pH dependence, f3(pE): redox dependence.

Riley et al. (2011); Zhuang et al. (2004)

Methane consumption R = R0f1(CH4)f2(O2)f3(T)f4(M), where R0: reference rate, f1(CH4): CH4
availability dependence, f2(O2): O2 availability dependence, f3(T):

temperature dependence, f4(M): moisture dependence.

Riley et al. (2011); Zhuang et al. (2004)

Nitrification R = R0 f1 (NH+4 ) f2(T) f3(M) f4( pH) , where R0: microbial biomass
dependent reference nitrification rate, f1(NH+4 ): NH

+
4 availability

dependence, f2(T): soil temperature dependence, f3(M): soil moisture
dependence, f4(pH): pH dependence.

Li et al. (2000)

Denitrification R= R0f1(T)f2(M)f3(pH)f4(clay), where R0: reference rate as a function NO−3 ,
NO−2 , and NO availability, f1(T): temperature dependence, f2(M): moisture
dependence, f3(pH): pH dependence, f4(clay): clay content dependence.

Li et al. (2000)

Photosynthesis R = min(Ac,Aj,Ap)‐Rd, where Ac: carbon‐limited rate, Aj: light‐limited rate,
Ap: triosephosphate‐limited rate, Rd: dark respiration.

von Caemmerer (2013)

Stomatal conductance R = R0(PAR)f1(VPD)f2(Ta)f3(Ca)f4(ψ), where R0(PAR): reference
conductance depending on photosynthetically active radiation, f1(VPD):
vapor pressure deficit dependence, f2(Ta): air temperature dependence,

f3(Ca): atmospheric CO2 dependence, f4(ψ): leaf water potential
dependence.

Jarvis (1976); Yu et al. (2017)

Soil hydraulic resistance R = R0F(θ1), where R0: reference resistance, F(θ1): regression equation of
topsoil moisture θ1.

Kondo and Saigusa (1994); van de Griend and Owe (1994)

Microbial growth R = Rmaxg1( pH) g2(T) g3(M)∏j fj (Sj) , or R = Rmaxg1(pH)g2(T)g3(M)min
{fj(Sj)}, where Rmax: maximum growth rate, g1(pH): pH dependence, g2(T):
temperature dependence, g3(M): moisture dependence, fj(Sj): dependence of

nutrient Sj.

Klausmeier et al. (2007); Leon and Tumpson (1975); Maggi
et al. (2008)
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soil pore to core scale; from leaf to canopy scale). At this scale, the legitimacy of a representative volume that
assumes local homogeneity and equilibrium is likely ensured, as it is essential to the development of non‐
equilibrium thermodynamics (which includes most derived rules in Table 1) that underpin current theoretical
modeling of transport, mechanics, and chemical reactions (de Groor & Mazur, 1984). We expect that improved
physical rules‐based modeling will facilitate better spatial heterogeneity upscaling when combined with the use
of, for example, remote sensing and machine learning approaches.

Evolutionary processes (de Vries & Archibald, 2018; Greenway & Munns, 1980; Koonin & Wolf, 2012; Tan
et al., 2022), and processes regulating community and ecosystem assembly (Higgins, 2017; Leibold et al., 2017)
are not discussed in this perspective. These processes are linked to the biogeochemical processes discussed here,
and, in a first order approximation, can be represented with similar physical rules that describe the movement and
transformation of energy and chemical molecules in biogeochemical processes, except that now the functional
traits of individual organisms (and their effect on biogeochemical processes) can change through time due to
evolution or community‐level traits change through time due to variations in community assembly (Levin, 1992;
Martiny et al., 2023).

2.1. Modeling Biogeochemical Processes Across Scales

One unique feature of natural processes is that their governing equations often change across spatiotemporal
scales (Figure 2). That is, there are qualitative differences between observations of emergent phenomena from
fine to coarse scales, a concept termed “more is different” by Anderson (1972). For instance, the electron and
charge exchange that give rise to chemical reactions at (the fine) angstrom (10− 10 m) and femtosecond (10− 15 s)
scale are well‐described by quantummechanics (Feynman et al., 2011b; Thakkar, 2021), while chemical reactions
facilitated by collisions between molecules at (the coarse) nanometer (10− 9 m) and millisecond (10− 3 s) scales are
well‐described by Newton's laws (Boltzmann, 1964; Pauli, 1973). At the micrometer (10− 3 m) and second (10° s)
scale, particle transport laws and the law of mass action are appropriate governing equations, which can be
derived from Newton's law and quantum mechanics (Berg & Purcell, 1977; Feynman et al., 2011b; Kudryavtsev
et al., 2001). As we further coarsen spatial and temporal scales, the higher levels of organization, nonlinearities,
and variability in environmental conditions in space and time become important to biogeochemical rates (due to
averaging of nonlinear processes; e.g., Chakrawal et al., 2022; Wilson & Gerber, 2021). Thus, to model
biogeochemical processes robustly at scales relevant to, for example, ecosystem carbon cycling and climate
adaptation, model formulations that properly account for these emergent dynamics are needed.

By recognizing that processes at a particular modeling scale emerge from processes that occur at finer scales, we
expect that there are fundamental relationships between the fine and coarse scales that need to be coherently
maintained when model equations are developed for the coarse scales. Suppose we are to build a model at a coarse

Figure 2. Space‐time relationships between basic biogeochemical building blocks and the emergent biogeochemical
processes constituting ecosystem and Earth system dynamics. Biogeochemical processes are represented in existing
empirically based models without accounting for underlying mechanisms, while in the proposed physical rules‐based
models, biogeochemical processes are represented through logical combinations of basic biogeochemical building blocks
that are formulated with physical rules.
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spatiotemporal scale designated by index l (Figure 3). The state variables (Ynl) and their contributing processes (Rkl)
(where nl and kl are indices for variables and processes, respectively) are constrained by physical rules
Φl (Ynl,Rkl) = 0, where Φl is a vector function. (The second law of thermodynamics is an exception, which may
requireΦl ≥ 0. However, in application, this can be approximated asΦl= 0with a proper use of phenomenological
rules (de Groor &Mazur, 1984)). Each process Rkl emerges from the interactions between state variables Yml− 1

that
occur at the fine scale designated by index l‐1 and state variables Ynl that occur at the coarse scale l. That is
Rkl = Hkl(Ynl,Yml− 1) . Meanwhile, the fine scale variables (Yml− 1

) are subject to physical constraints
Φl− 1 (Yml− 1

,Qjl− 1) = 0 that involve fine‐scale processes Qjl− 1. Therefore, for a coherent formulation of the
parameterization of Rkl at the coarse scale l, one needs to properly maintain the physical constraints
Φl− 1 (Yml− 1

,Qjl− 1) = 0 at the fine scale l‐1. Consequently, the extent to which those fine‐scale physical constraints
aremaintained during upscaling determines the quality of themodel parameterization at the chosen scale of interest
(i.e., the coarse scale l here). Such a coherent scaling approach has been adopted in the transitions between quantum
mechanics, Newton's law (Feynman et al., 2011b), Boltzmann's equation (Boltzmann, 1964), Chapman‐Enskog
kinetic gas theory (Chapman & Cowling, 1990), Lattice Boltzmann equation (Chen & Doolen, 1998), Navier‐
stokes equation (Chen & Doolen, 1998), Boussinesq equation of surface flow (Kim et al., 2009), and Richards'
equation of unsaturated flow (Bear, 1972), all of which have contributed to many scientific and engineering
successes. This idea is also essential to the development of nonequilibrium thermodynamics, where themacroscale
equilibrium required by classical thermodynamics is allowed to emerge from local equilibriums (de Groor &
Mazur, 1984).

Conceptually, deriving governing equations for the coarse scale from those of the fine scale can be seen as a lossy
data (or information) compression problem, where fine‐scale details are averaged out while key features are
maintained at the coarse scale. (This is well illustrated in the transition from quantum mechanics to Newtonian
mechanics, where the probabilistic interpretation becomes deterministic (Shankar, 1994).) Algorithms for such
problems have been developed for processing image, video, and audio data (Hussain et al., 2018; Pan, 1995;
Poyser et al., 2021). Methods such as multi‐scale perturbation analysis and renormalization group theory, which
adopt a similar spirit, have provided significant insights in the field of mathematical physics (Chen et al., 1994;
Muraki et al., 1999; Roberts, 2015; Zhou, 2010). Lossy information compression is closely related to machine
learning (note that renormalization group theory is closely related to deep learning (Mehta & Schwab, 2014)) and
can be formulated using Bayesian inference (Cheng et al., 2018; Theodoridis, 2015). Additionally, machine
learning has also been proposed for efficient upscaling (Santos et al., 2022), while Bayesian inference is
frequently used to conduct model‐data fusion and estimate model parameters based on observational constraints

Figure 3. The relationship between biogeochemical dynamics for an upscaled model (at the scale designated by l) and
subscale model (at the scale l − 1). Here the subscale model represents processes in a spatial subset of the upscaled model. To
indicate that models at scales l and l − 1 may have different number of state variables and processes (due to lossy information
compression from scale l − 1 to scale l), subscripts nl and kl are used to indicate variables and processes at scale l, while
subscripts ml‐1 and jl‐1 are used at scale l‐1. The parameterization scheme Hkl represents the net effect of process Rkl in the
upscaled model, which strives to represent the emergent biochemical effects from the dynamic interactions between state
variables Ynl and Yml− 1

at the finer scale. Process Qjl− 1 is determined by interactions between Yml− 1
. The potential problem with

many existing parameterizations at scale l is that the subscale physical constraints (Φl‐1) are ignored, so that Rkl does not include
interactions with Yml− 1

. For instance, examples in Table 2 suffer from this problem. Another example is law of the minimum as
discussed in Tang and Riley (2021).
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(Tang & Zhuang, 2009; Vrugt, 2016). Therefore, in the following, the Bayesian framework (Jaynes, 2003) is used
to explain the necessity and benefit of coherent scaling in formulating EBMs.

Given N upscaling scheme hypotheses Aj, j = 1,…,N, and a set of measurements B, the Bayesian theorem ranks
the merit of Aj by its posterior probability Pr(Aj|B), which is

Pr(Aj|B) = Pr(Aj,B)/Pr(B) = Pr(B|Aj)Pr(Aj)/Pr(B) (1)

where the correlation Pr(Aj,B) = Pr(B|Aj)Pr(Aj) is a product of likelihood probability Pr(B|Aj) and prior prob-
ability Pr(Aj), and Pr(B) is the probability of evidence.

As formulated in the Bayesian inference framework, identification of the best upscaling scheme becomes a model
selection problem, where Pr(Aj) represents the prior quality of jth upscaling scheme, whose posterior merit is Pr
(Aj|B) after considering its capability of matching the measurements B. For model‐data fusion that aims at
parameter estimation of a given model formulation, Aj is the jth sample of model parameters, whose plausibility is
Pr(Aj|B), and the globally optimal parameter set corresponds to the maximum of Pr(Aj|B). For machine learning
that uses some kind of numerical approximation, which could be neural networks, polynomials, or regression
trees, Aj becomes the coefficients of the approximation method, and Pr(Aj|B) ranks the goodness of model fitting
conditioned on the measurements B.

Since model selection, parameter estimation, machine learning based upscaling, and model‐data fusion all aim to
improve EBMs, and share mathematical equivalency, we can explain the necessity and benefit of incorporating
physical rules by examining the parameter estimation problem within a model‐data fusion framework. This
approach, in turn, reinforces the significance of physical rules in all four of these approaches. Specifically, we will
show that incorporating physical rules can alleviate the predictive equifinality, which refers to the phenomenon
where different model parameters, due to uncertainty in calibration, result in diverging model predictions. In a
sense, the predictive equifinality is one part of the ecological predictability discussed in Dietze (2017). It differs
from calibration equifinality (i.e., the conventional parametric equifinality) discussed by Beven and Freer (2001),
which indicates an equally good model‐data agreement obtained by different sets of model parameters during
calibration.

To simplify the explanation, we assume that the model‐data discrepancy follows the Gaussian distribution, as
often assumed in Bayesian inference‐based model‐data fusion for EBMs (Tang & Zhuang, 2009; Tar-
antola, 2005). Accordingly, the cost function (or loss function as termed in machine learning) of model‐data
discrepancy for a set of model parameter values (i.e., ln Pr(B|A) for parameter set A) can be written in the
following plain language form:

Cost function = Observational constraint + scaling coherency rules + prior constraint.

In a more formal definition, the cost function relates processes Rl to model parameters θm through the numerical
model, which is constructed based on mechanistic representations, empirical response functions, or neural net-
works in some machine learning framework (Tsai et al., 2021). θm and the modeled Rl then affect the model's
goodness of fit (i.e., observational constraint) and need to satisfy scaling coherency rules. The Bayesian inference
seeks the optimal θm value that produces the least model‐data discrepancy. That is, for a given model formulation,
by identifying the optimal θm, we can also obtain the best upscaled equations of EBMs.

In mathematical terms, the cost function can be written as

J =
1
2
Σj (Yj (Rl) − YjO)

TCj (Yj (Rl) − YjO) + Σk
λk
2
(Mk (Rl))

2 + J0, (2)

where vectors Yj(Rl) are model predicted snapshots of the observed vectors of response variables YjO, and the
corresponding covariance matrix of model‐data discrepancy has an inverse specified by Cj.

In Equation 2,Mk(Rl) represents the residual of the kth scaling coherency rule among the processes Rl, which are
related to model parameters θm. In this term, λk is the Lagrangian multiplier for the kth scaling rule. J0 is the
regularization term from the prior knowledge of θm. The scaling coherency rules could be empirical relationships,
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for example, the relationship between vapor pressure deficit and stomatal conductance (Yu et al., 2017), or the
relationship between methane production and pH (Cao et al., 1998), among others. The scaling coherency rules
could also be physical rules, such as the primary rule (Table 1) of mass conservation linking precipitation,
infiltration, evapotranspiration, surface runoff, and ponding (when doing data assimilation for hydrological
models (Tian et al., 2021)), or the derived rule (Table 1) of the gradient‐driven CO2 flux that controls photo-
synthesis, or the “common sense” (i.e., ecological and dynamical constraints) as formulated in Bloom and
Williams (2015). Depending on the specific situation, scaling coherency rules may appear as either equalities
(e.g., for a conservation relationship among fluxes) or inequalities (e.g., some physical variables like mass or
volume should never be negative). For conservation rules, for example, those of mass or momentum, tradeoff
Mk(Rl) should be satisfied exactly, so that considering such rules is equivalent to incorporating an equality
constraint, that is, error‐free observations encountered in Bayesian inference or data assimilation (Basir &
Senocak, 2022; Pan & Wood, 2006). When the above scaling rules are considered in the physics‐based or
knowledge‐guided machine learning approach (ElGhawi et al., 2023; Liu et al., 2022, 2024),Mk(Rl) represents the
physical knowledge to be incorporated.

The identification of optimal parameters based on Equation 2 is equivalent to minimizing the cost function J, a
process that is related to the first order variation δJ, which can be obtained by applying the chain rule of dif-
ferentiation to Equation 2, such that

δj = Σn[ΣjCj(Yj (Rl)‐YjO)
∂Yj

∂Rn
]
∂Rn

∂θm
δθm + Σn[ΣkλkMk (Rl)

∂MK

∂Rn
]
∂Rn

∂θm
δθm +

∂J0
∂θm

δθm. (3)

In Equation 3, δJ is related to the variation of parameters δθm through three types of constraints, with the first from

the observations (i.e., Σn [ΣjCj(Yj (Rl) − YjO)
∂Yj
∂Rn
]
∂Rn
∂θm

δθm), the second from physical rules (i.e.,

Σn [ΣkλkMk (Rl)
∂Mk
∂Rn
]
∂Rn
∂θm

δθm), and the third from the prior information of the parameters (i.e., ∂J0
∂θm

δθm).

Equation 3 allows us to make three assertions. First, for two models of the same number of parameters, a lower
magnitude of ∂Rn

∂θm
will lead to smaller contributions to the cost function by the first and second types of constraints,

so that the cost function is less sensitive to a given variability of the parameter δθm. In other words, making the
represented process Rn less sensitive to parameters θm leads to a model with lower parametric sensitivity. This is
the case where applying (scaling coherency rules in the form of) physical rules makes the model more immune to
uncertainty in individual parameters (Tang & Riley, 2013, 2021) (also see the example in Section 3.2). Second,
the scaling coherence rules designated by Mk(Rl) act like regularization to the parameter inference processes.
When these regularization terms are ignored, posterior models will be prone to overfitting because parameters are
less well‐constrained. The need for regularization is a phenomenon widely observed in machine learning, which is
the main driver for the recent surge of interest in physics‐guided machine learning (ElGhawi et al., 2023;
Goodfellow et al., 2016; Liu et al., 2022). This regularization also underlies the power of “common sense” in
Bloom andWilliams (2015). However, such “common sense” should emerge naturally in EBMs formulated based
on physical rules. Third, by applying Equation 2 to ensemble predictions and treating YjO as the mean of the
ensemble simulations, δJ quantifies the divergence of the simulations resulting from equally good parameters
derived from calibration. In this sense, it is one of the terms in the ecological predictability framework by
(Dietze, 2017). That is, for model parameterizations that lead to calibration equifinality, those with weaker inter
correlations among parameters will result in greater predictive equifinality for the same level of parametric
uncertainty (Tang & Riley, 2013). Therefore, if a model formulation results in low ∂J/∂θmwhen averaged over the
uncertain parameters, the predictive equifinality is reduced and the model's predictive power (after the calibration
period) is improved. Moreover, since explicitly accounting for process tradeoffs by Mk(Rl) often appears as
increased model complexity (by involving more equations), we contend that more complex models can poten-
tially have lower predictive equifinality due to stronger correlations among the processes as enforced by physical
rules. This lower predictive equifinality is at odds with the common criticism of increasing model complexity, that
is, higher model complexity leads to more model parameters, and thereby higher predictive uncertainty.

Empirically based approaches formulated within EBMs work in a top‐down manner, where regressions describe
response functions (encoded as scaling coherency rules Mk(Rl)) derived from observations of emergent
biogeochemical rates, and corresponding environmental factors, such as temperature, moisture, radiation, pH, and
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soil properties such as in some methane production models (Riley et al., 2011; Zhuang et al., 2004). Because the
empirically based approaches rely strongly on the amount and context of observations, the resulting response
functions can vary significantly from one study to another, so that there is substantial uncertainty in the derived
scaling coherency rules Mk(Rl). Furthermore, because it is rare and difficult to comprehensively control and
measure the variation of all relevant environmental factors and control variables of the biogeochemical rates, the
strong context‐dependence of the response functions is unlikely to be resolved by further observations. That is,
Mk(Rl) at one place or time cannot be transferred confidently to another place at another time. Such a situation is
quite different from measuring the gravitational constant using a pendulum, where the context dependence can be
reduced to be almost negligible (Parks & Faller, 2010). Moreover, Mk(Rl) derived by empirically based re-
gressions generally ignore physical constraints among the subscale processes (i.e., terms as Φl− 1 (Yml− 1

,Qjl− 1) = 0
in Figure 3, which are included by λk into Equation 3), and very likely place process interactions at wrong lo-
cations (e.g., by representing nonmultiplicative interactions with multiplicative functions (Tang & Riley, 2024)).
Consequently, the resulting parameterizations will unlikely be robust. Section 2.2 provides more analysis on the
shortcomings of empirically based approaches.

In contrast to the top‐down empirically based approaches, physical rules‐based approaches work in a bottom‐up
manner. They focus on representing relatively well‐understood basic processes and related interactions using
established mathematical constraints and logical inductions. Because these mathematical constraints and logical
inductions have been vetted by observations in diverse disciplines, the resultant model constraints are much
stronger than can be imposed by limited observed responses (e.g., the term related with YjO in Equation 3) in a
calibration study. In this sense, physical rules‐based approaches provide a meaningful way to alleviate the
problem of limited observational data in ecosystem biogeochemical modeling.

Conceptually, the idea adopted by physical rules‐based approaches is analogous to building a great variety of lego
structures, in which only a few well‐designed basic building blocks are used, even though some customized
blocks are occasionally needed to knit the pieces together. These customized lego blocks correspond to processes
that cannot currently be formulated using known physical rules or are too complex to be computed using known
physical rules, but the empirical rules are known to be good enough, thus intuitive or empirical approximations are
used instead. For instance, in applying the Richards' equation, the empirical soil water retention curve function is
often used to relate soil matric potential and soil water content with soil texture (Clapp & Hornberger, 1978; van
Genuchten, 1980). As another example, in modeling plant phenology, empirical rules are used to guide the plants'
temporal development in the model (Grant et al., 2020). Nevertheless, for EBM modeling, we argue that most
biogeochemical processes can be constructed with just a few well‐understood basic building blocks. Interestingly,
biology seems to work in such a hierarchical way. For example, protein folding can be described by first forming
secondary structures from amino acids, then those secondary structures fold into the native state that is able to
carry out various biological functions (and these processes can be represented with simple functions derived from
thermodynamics (Rollins &Dill, 2014)). In this sense, physical rules‐based approaches are explicitly constructing
the emergent biogeochemical processes, and potentially avoiding logical inconsistencies that may be introduced
by building EBMs mostly with empirical functions. Section 2.3 will further discuss this concept.

2.2. Limitations of the Empirical Response Function Approach

Currently, biogeochemical process rates (R) are typically formulated as multiplicative functions of a reference
rate (R0) and “rate modifiers” ( fj) capturing the effects of environmental conditions (θj),

R = R0 ∏
j=N

j=1
fj (θj). (4)

Alternatively, minimum functions are used under the assumption that the dominant factor constrains the overall
rate (i.e., the law of the minimum), such that

R = R0minj [fj (θj)]. (5)

These formulations are also used for conductance and resistance needed to compute rates of different processes.
Usually, fj(θj) is a regression‐derivedmultiplier representing the sensitivity of the rateR to environmental factor θj,
assuming negligible synergistic or antagonistic interactions among θj (Jarvis, 1976). Occasionally, fj(θj) has a
physical basis. For example, when fj(θj) represents the dependence of substrate availability in the form of

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007674

TANG ET AL. 10 of 37

 21698961, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007674, W
iley O

nline L
ibrary on [15/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Michaelis‐Menten kinetics, it may be argued to be mechanistically based by extrapolating insight obtained at
specific conditions.Moreover, formany controlling factors, such as for pHandmoisture, fj(θj) is normalized to vary
from 0 to 1. The temperature dependence is an exception, where an exponential function without an upper bound is
often used, for example, theQ10 function for chemical reactions. In contrast, temperature dependence has an upper
bound in biochemical reactions, with the controlling factor fj(θj) constrained by physical feasibility (Pasut
et al., 2023; Tang & Riley, 2024). We give some example biogeochemical processes that adopt the above for-
mulations in Table 2.

The multiplicative approach of Equation 4 assumes that the different factors θj influence the response variable
independently (Jarvis, 1976). As this assumption leads to zero covariance between the influence of any two
factors, the multiplicative approach is equivalent to the multiplicative model without correlation in probability
theory (Feller, 1967; Hoem, 1987; Wermuth, 1976). Meanwhile, the logic behind the law of the minimum
approach of Equation 5 is based on observations of crop yield that dates back to the 1820s (Liebig, 1840;
Sprengel, 1826). In some applications, the functional form f(θj) can be argued to be mechanistically based, for
example, the use of Michaelis‐Menten or Monod functions (Liu, 2007) for the carboxylation process by Rubisco
in photosynthesis, or for biological growth directly related to substrate availability. Despite a mechanistic basis in
limited cases, and their mathematical and conceptual simplicity, neither of these approaches provides robust
formulations of fluxes and conductance in biogeochemical models, for reasons explained below.

In contrast to the assumption of no synergistic or antagonistic interactions underlining themultiplicative approach,
it is uncommon that in real biogeochemical systems each modulating factor θj independently influences the
response variable of interest. Instead, interactions between themodulation factors aremore common. For example,
enzymatic biochemical reactions involve at least two steps: (a) binding of substrate to the enzyme, and (b) new
molecule production under enzyme catalysis (Briggs&Haldane, 1925).When one type of enzyme is acting on one
type of substrate, by the law of mass action, this process is often summarized with the Michaelis‐Menten kinetics,

R =
vmaxES
K + S

, (6)

where E and S are enzyme and substrate concentrations, K is the affinity parameter (or half saturation constant),
and vmax is the maximum catalysis rate (Michaelis & Menten, 1913). Since biochemical reactions mostly occur in
water, and if the unbinding rate is relatively insignificant compared to the forward binding rate (as is usually
assumed based on empirical observations),K is proportional to vmax/D, withD being the aqueous diffusivity of the
substrate with respect to the enzyme (Tang & Riley, 2019b; Zhou et al., 1983). Therefore, in soil, K can be
expected to be a function of temperature, moisture, and the type of substrate molecules. Further, in most cases,
vmax is only a function temperature, while effective concentrations of catalytically active enzyme E and substrate S
are functions of soil moisture. Consequently, the temperature and moisture effect on Rwill only emerge from their
combined influences on K, vmax, and substrate availability, suggesting that the temperature sensitivity of R is not
independent from its moisture sensitivity contrarily to as formulated by the multiplicative approach. Indeed,
nonmultiplicative relationships between the temperature and moisture sensitivity of soil organic matter decom-
position have been observed (Zhou et al., 2014). On the other hand, if a process is formulated using the law of
minimum, the model will predict that once the temperature effect is below a threshold, moisture will have no
effect on the reaction rate. These arguments thus invalidate both Equations 4 and 5 for acting as a logically
consistent formulation of the biogeochemical rates.

Similarly, considering stomatal conductance as an example, there are sufficient mechanistic reasons to invalidate
the approaches in Equation 4 or 5. Like many biochemical processes, stomatal conductance emerges from the
interactions between many aspects of plant functioning, so that its response to changes in one influencing factor is
dependent on other factors. Moreover, each plant grows by coordinating the traits of all its organs and adjusting to
the presence of its neighbors. Consequently, there must be a directional information flow (including causality)
among a plant's response to its influencing factors, which in turn regulates the behavior of stomatal conductance.
Therefore, the effects of different influencing factors on stomatal conductance are unlikely to be simply multi-
plicative, as this oversimplification neglects the complexity of the plant and its interactions with the environment.
A heuristic analogy is the process of putting on one's socks and shoes, in which socks must be put on first even
though the selection of socks and shoes may appear to be independent. However, the multiplicative model cannot
differentiate the logical order between putting on socks and shoes.
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In the example of stomatal conductance, mechanistically, the opening of stomata is controlled by the volume and
therefore turgor of the guard cells (Meidner & Mansfield, 1968) and epidermal cells (Buckley, 2019), but
including epidermal cells will not influence the conclusion of the following logical induction. The volume of
guard cells is an exponential function of their turgor pressure (Steudle et al., 1977), which is linearly related to
osmotic pressure inside the guard cells. According to von Hoff's equation (Atkins & de Paula, 2006), the osmotic
pressure is a linear function of solute concentration inside the guard cell, which depends on the photosynthesis
rate (of chloroplasts inside guard cells), and water flux into the guard cell (Meidner & Mansfield, 1968). By
applying the mechanical balance in the first order approximation (neglecting xylem cavitation), the osmotic
pressure, turgor pressure, and leaf water potential will be linearly related. Therefore, even if leaf water potential
would be linearly related to soil water potential, soil water potential is related to photosynthesis rate non‐
multiplicatively via photosynthetic controls on transpiration. These arguments may partially explain why the
empirical Ball‐Berry (Ball et al., 1987) and Leuning models (Leuning, 1990, 1995) are not numerically robust in
practice when the effect of soil water stress is applied as a multiplier (Tang et al., 2015).

Acknowledging that water vapor pressure does not influence stomatal conductance multiplicatively, the model by
Medlyn et al. (2011), based on optimality theory (Cowan & Farquhar, 1997), assumes that, within some time
period, stomatal conductance adjusts to minimize the marginal water cost for photosynthesis. This assumption
results in a deterministic relationship between stomatal conductance and water vapor pressure deficit. In contrast,
field data have shown hysteretic relationships between leaf surface vapor pressure deficit and stomatal
conductance (Wang et al., 2009). Coincidentally, when photosynthesis is represented using the model by (Far-
quhar et al., 1980), the resultant stomatal conductance is described by a combination of the multiplicative
approach and the law of the minimum approach. However, Walker et al. (2021) suggested that the law of the
minimum approach adopted by the Farquhar model caused significant numerical uncertainty. This evidence
indicates that new formulations are needed to capture the rich variability of the response of stomatal conductance
to changes in important environmental influencers such as vapor pressure deficit and soil moisture content.

Box 2. A Brief Description of Three Microbial Growth Models That Treat Resource
Allocation for Maintenance and Growth Differently

Pirt Model

Specific growth rate: 1
BV

dBV
dt = μP(s) = μmax,PhP(s),

Specific substrate uptake rate: 1
BV

ds
dt = qP(s) =

μP(s)
YG

+ mP.

In this model, specific biomass (and population) growth μP is non‐negative and increases with substrate (s)
availability, while cellular maintenance mP is only provided by substrate taken up. YG is growth yield of biomass
BV from the substrate assimilation.

Compromise model

Specific growth rate: 1
BV

dBV
dt = μC(s) = μmax,ChC(s) − mq (1 − hC(s)),

Specific substrate uptake rate: 1
BV

ds
dt = qC(s) = μmax,C

hC(s)
YG

+ mq
hC(s)
YG

.

In this model, specific biomass (and population) growth μC increases from negative values under low substrate

availability to positive values at high substrate availability, while the cost of maintenancemq (1 + ( 1
YG
− 1) hC(s) )

BV is paid by both biomass and substrate taken up. YG is growth yield from the substrate assimilation.

Dynamic energy budget (DEB) model

Specific reserve biomass growth: 1
BV

dBR
dt = jA,maxhD(s) − ( κ − μD(s) )

BR
BV
,

Specific structural biomass growth: 1
BV

dBV
dt = μD(s) =

κBR YRV− mDBV
BV+BR YRV

,

Specific substrate uptake rate: 1
BV

ds
dt = qD(s) = jA,max

hD(s)
YsR

.

In this model, substrate (s) first drives the increase of reserve biomass BR, whose turnover flux κBR drives the
growth of structural biomass μDBV after subtracting the cost of structural biomass maintenance (mD BV). When
reserve biomass turnover is lower than the cost of maintenance, deficit will lead to the decrease of structural
biomass or cell lysis (Tolla et al., 2007). YsR is the reserve biomass yield from substrate assimilation, while YRV is
the structural biomass yield from mobilizing the reserve biomass.
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Further, even if the influence from factors θj on R can be regarded as mutually independent, fj(θj) may still be
highly context dependent, particularly, when θj is dependent on soil conditions. For instance, for soil respiration
temperature sensitivity, the literature reports more than 10 different functional forms (Exbrayat, Pitman, Abra-
mowitz, & Wang, 2013; Sierra et al., 2015). Although each of them was able to fit the empirical data used to
derive its functional form, none of them could be able to extrapolate temperature sensitivity from one experiment
to another, and the difference between the diverse functional forms is far from being random and cannot be
regarded as noise. When similar procedures are applied to all relevant influencing factors, we should not be
surprised to find out that the resultant model cannot accurately capture spatiotemporal variability when con-
ducting large‐scale simulations (Carvalhais et al., 2014; Todd‐Brown et al., 2013).

Moreover, because interactions between different modulating factors are not considered with the multiplicative
approach of Equation 3, the resultant EBMs will be overly sensitive to the parameterization of those factorial
dependences (Exbrayat, Pitman, Abramowitz, &Wang, 2013; Exbrayat, Pitman, Zhang, et al., 2013). As ignoring
these interactions corresponds to omitting the scaling rules in Equation 2 (i.e., Mk(Rl)), less constrained re-
lationships will be modeled between state variables, and thus the EMBs will have higher predictive equifinality
(Luo et al., 2015; Tang & Zhuang, 2008). To help understand this last point, imagine we are putting together a bolt
and a nut. Without matching their shape and size, they can be duct‐taped together in various ways, but only to
form a very vulnerable pair. Alternatively, carefully matching them in shape and size ensures that the resulting
pair will last for a long time.

The law of the minimum approach has mostly been applied to biochemical reactions controlled by the supply of
multiple substrates. Such processes include photosynthesis (Farquhar et al., 1980) and multiple nutrients co‐
limited biological growth (Chakrawal et al., 2022; Tang & Riley, 2021; Wang et al., 2010). It has also been
generalized to process rates that are subjected to multiple influencing factors, for example, the Miami model used
it to estimate net primary productivity as a function of temperature and precipitation (Lieth, 1973), and Noe and
Giersch (2004) used it to estimate stomatal conductance as a function of light and vapor pressure deficit. Despite
its wide adoption in ecology, many empirical studies suggest deviations from the law of minimum for both plant
and microbial growth (Egli, 1991; Rubio et al., 2003). Alternatively, the “multiple limitation hypothesis,” which
assumes that plants optimize physiologically and morphologically to achieve no wasteful use of nutrients, is also
not well supported by empirical observations (Rubio et al., 2003). The “multiple limitation hypothesis” is also
unlikely correct for microbial growth due to the often‐observed luxury uptake of abundant nutrients while others
are in short supply (Powell et al., 2008).

Besides the inconclusive empirical support, the law of the minimum approach also introduces numerical difficulty
by creating jumps when the predicted limitation shifts between limiting factors. For modeling photosynthesis,
such a jump is usually smoothed out by quadratic functions, which involves two hyperparameters without
physical meaning (for three co‐limiting processes) that are obtained by trial and error (Collatz et al., 1990). The
(arbitrary) choice of these parameters and the quadratic functional form have large effects on simulated plant
gross primary productivity (Walker et al., 2021). In the context of model parameter inference, the law of the
minimum approach similarly mistreats the scaling coherency rules in Equation 2, and, as a result, can lead to
significant predictive equifinality, just as the multiplicative approach does.

Therefore, due to issues discussed above, the convenient empirically based response function approaches will not
facilitate improvement of climate‐biogeochemistry feedback predictions, no matter how many more observations
are applied as constraints (through model‐data fusion). Further, incorporating more biogeochemical processes
using the same approach will only increase predictive equifinality and degrade model performance, where the
latter has led to the incorrect impression held by the research community that increasing model complexity is
usually bad and should be avoided.

2.3. Feasibility of Physical Rules‐Based Approaches

Since the empirically based approaches are unlikely to result in EBMs with high spatiotemporal transferability,
we thus turn to physical rules‐based approaches. We argue that physical rules‐based approaches are feasible,
because biogeochemical processes (the focus of this perspective) can be broadly classified into two groups: (a)
transfer of mass and energy, and (b) chemical conversion of molecules. The transfer of mass and energy is
achieved through radiation, convection, advection, and diffusion, all of which are well‐studied in physics (de
Groor & Mazur, 1984; Plawsky, 2019). The chemical conversion of molecules involves chemical kinetics and
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thermodynamic control of chemical reaction rates, whose physical rules are also well‐studied (Horn & Jack-
son, 1972; Klotz & Rosenberg, 2008). These two groups together conceptualize biogeochemical processes as
reactive‐transport systems. Accordingly, different biogeochemical processes can be integrated by applying the
reactive‐transport concept at various spatiotemporal scales with proper mathematical approximations. (It is noted
that the first law of thermodynamics for nonequilibrium systems can be written in the reactive‐transport form,
highlighting the potential to use it as a framework of process integration (de Groor &Mazur, 1984).) For aqueous
chemistry, its modeling can be done using existing formulations of reactive‐transport models (Molins &
Knabner, 2019; Steefel & Lasaga, 1994). Such an approach would also in principle be sufficient to model the
dynamics of carbon, nutrients, gasses, and solids in soils and water bodies (Riley et al., 2014; Steefel et al., 2015).
However, the reaction and transport pathways are not all known, and heterogeneous chemical substrates and
complex, biologically mediated reaction networks make the direct application of reaction‐transport models
difficult in practice (Dudal & Gérard, 2004).

Apart from landscape upscaling issues (which are not considered here), the most difficult part of applying physical
rules‐based approaches is to properly deal with biological growth of micro‐ and macro‐organisms that drive or
modulate biogeochemical processes. Biological growth is a phenomenon that emerges from an enormous number
of chemical reactions at microscales, for many of which there are known functional relationships (Madigan
et al., 2009). However, we currently do not have a well‐established upscaling scheme to create a bottom‐up rep-
resentation of biological growth—that is, even though wemay know the kinetics of each reaction, we do not know
their relative importance and their interactions in a living organism. Rather, biological growth could and should
currently be modeled using a combination of physical rules and empirical phenomenological formulations. For
example, phenomenological rules can be applied to plant growth stages, which are fortunately well‐observed for
many species, particularly crops (Hanway, 1966; Miller, 1992), and have been successfully used to parameterize
many natural ecosystem plant types (Grant, 2013; Zhou et al., 2021). A combination of remote sensing data and in‐
situ measurements (Dronova & Taddeo, 2022; Harfenmeister et al., 2021; Xiao et al., 2009) will facilitate us to
obtain plant growth stage parameterizations that are sufficiently robust. Eco‐evolutionary approaches can also be
used instead of purely phenomenological rules to constrain processes with bounds of ecological and evolutionary
feasibility. Compared to phenomenological rules, eco‐evolutionary approaches offer flexibility to deal with
varying environmental conditions (Franklin et al., 2020; Harrison et al., 2021).

Physical rules can be used to formulate biomass accumulation and translocation in a similar way as for chemical
reactions, except that biomass growth is the net result of several related subprocesses. The modeling of biomass
growth can be done by dividing growth into several subprocesses, including substrate uptake, internal physiology,
and mortality. The substrate uptake process is amenable to relatively well‐established physical rules (e.g., law of
mass action, which will be discussed with an example in Section 3.3). Microbial internal physiology relates how
nutrients are used for biomass growth, cellular maintenance, and release of extracellular products (e.g., exo-
enzymes), and has been described using, for example, the Pirt model (Pirt, 1982), the compromise model
(Beeftink et al., 1990; Wang & Post, 2012), and the dynamic energy budget model (Kooijman, 2009; Tang &
Riley, 2015, 2023) (see Box 2 for a brief description).

Compared to empirically based models (e.g., the Pirt and the compromise models), DEB has a relatively good
mechanistic foundation that fully integrates mass and energy trade‐offs during metabolic allocation for microbial
growth. Importantly, the DEB formulation is structurally compatible with flux‐balance models that represent
biological growth by considering a large number of intra‐cellular chemical processes that include enzymes,
metabolites, and genomes (Antoniewicz, 2021). DEB models have also been successfully applied to animals and
plants by treating individuals as a population of cells (Russo et al., 2022; Zonneveld & Kooijman, 1989). In
particular, it is the only model structure that can reasonably predict the nonlinear relationship between carbon use
efficiency (i.e., the ratio of carbon used to grow structural biomass and carbon uptake) and structural growth rate
consistent with empirical observations and thermodynamics (Tang & Riley, 2023). That is, carbon use efficiency
will first increase, then plateau and finally decrease with growth rate, whereas the Pirt and compromise models
fail to predict the decrease of carbon use efficiency at high growth rate.

For plants, the modular nature of plant leaves, branches, stems, and roots, and the associated carbon and nutrient
translocation (including both transformation and transport) allows one to model a single plant as a reactive
transport system, where each modular part acts as an autonomous organ whose internal physiology follows a
DEB‐based formulation and the transport of carbon and nutrient between organs follows gradient driven flow
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with a close coupling with plant hydraulics (a simple example was shown in (Kooijman, 2009) and a more
comprehensive example is in Russo et al. (2022)). A conceptually similar approach has been advocated by
(Thornley, 1972) and has been successfully implemented in the ecosys model (Grant, 1998) to address the
balanced growth between plant shoots and roots. Analyses with ecosys showed that coupling plant physiological,
hydraulic, and morphological parameterizations allows accounting for many geometric and metabolic trade‐offs,
for example, the popular pipe‐model for plant xylem and canopy development by (Shinozaki et al., 1964) can
emerge naturally from such a treatment (Grant, 1998).

The ideas above are meant to be applied to individual microbes and plants (which can be representative of a
population), forming the foundation to model population and community dynamics (e.g., population demography,
community and ecosystem assembly). These individual‐based formulations, when combined in “ecosystem
demography” models (Koven et al., 2020; Ma et al., 2022; Medvigy et al., 2019), will contribute to better
modeling of biogeochemistry‐climate feedbacks regulated by plant and microbial physiology (a knowledge gap in
existing models).

2.4. A Simple Recipe for Physical Rules‐Based Approaches

While applying physical rules‐based approaches to parameterize ecosystem biogeochemistry will require sig-
nificant effort, we provide an algorithm‐like recipe in Box 3. By recognizing the hierarchical multi‐scale nature of
real‐world problems, the recipe involves recursive application of the approach at different hierarchical levels.
When formulating the interactions among entities, the essence is to break down any compound process into
simple steps that can be formulated by physical rules. Meanwhile, when mathematically linking the entities by
those interactions at each scale, it is essential to ensure the primary rules are satisfied (with known accuracy
determined by the solution method). The examples presented in Section 3 were by and large developed by
following this recipe. To readers interested in applying physical rules to real‐world problems (including
biogeochemistry), we recommend the three volumes of “The Feynman Lectures on Physics” (Feynman
et al., 2011a, 2011b, 2011c), Physical Biology of the Cell (Phillips et al., 2012), and Aquatic chemistry: chemical
equilibria and rates in natural waters (Stumm & Morgan, 1996), among others.

Box 3. An Algorithm‐Like Recipe for Developing Physical Rules‐Based Ecosystem
Biogeochemistry Parameterization. The Algorithm Is Also Motivated by the Solution
Strategy to the Very Large Scale Integration Layout Problem in Chip Design (Russell &
Norvig, 2010)

PROCEDURE Physical_Rules_based_Process_Formulation(process)

STEP 1: Identify the number of entities involved in the process, set it to N.

STEP 2: LOOP: entity L = 1 to N

STEP 3: Identify the spatiotemporal context of entity L.

STEP 4: IF (there is hierarchical structure within entity L) THEN

Define entity L as a new_process,

RETURN, Physical_Rules_based_Process_Formulation(new_process)

END IF

END LOOP

STEP 5: Determine how the entities interact.

(A) Is the interaction through transport, chemical reaction, or mechanics?

(B) What are the conservation laws for the entities?

Step 6: Form a verbal description of the problem that details each interaction.

Step 7: Mathematize the verbal description.

Step 8: RETURN the mathematical formulation.

END PROCEDURE
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3. Examples to Contrast the Predictive Power of Two Approaches
In the following, we give three examples to contrast the efficacy of the empirically based and the physical rules‐
based approaches. Particularly, we demonstrate how the concerns of worsening prediction equifinality associated
with more mechanistic models (which usually appear as being more complex) are not universally supported.
While the three examples are described mostly in the context of soil biogeochemistry, the second example can
also be used to model plant respiration upon multiple carbon substrates (Wendering & Nikoloski, 2023), and the
third example can help improve the temperature dependence of plant autotrophic respiration (Liang et al., 2018).
For more examples, such as for the thermodynamic regulation of biogeochemical processes, we refer readers to
(Jin & Bethke, 2003; Maggi et al., 2008), and for nutrient‐regulated microbial and plant growth to (Chakrawal
et al., 2022; Tang & Riley, 2021).

3.1. Soil Moisture Dependence of Substrate Affinity Parameter

This first example addresses the substrate affinity parameter involved in soil carbon and nutrient dynamics, based
on the analysis by Tang and Riley (2019b). In modeling soil biogeochemistry, we often encounter Michaelis‐
Menten or Monod‐type equations for decomposition rates or nutrient uptake (e.g., Equation 6, or variants
including microbial biomass instead of enzyme concentrations). The affinity parameter K requires a value to
compute the overall reaction rate R. Because K is important for almost every biogeochemical process using a
substrate (e.g., Table 2), it often represents a significant fraction of the model calibration effort. Moreover, as K is
defined for biogeochemistry in an aqueous environment, and soil moisture is a dynamic variable, the effective K
(denoted hereforth by Kw as compared to the intrinsic Kw,0 for a pure aqueous environment) should be a function
of soil moisture, and dimensionally consistent with solutes in the pore space, whose concentration varies with soil
moisture (Kw must have a dimension of mass per unit water volume).

In existing EBMs, the moisture effect on K is often represented using a multiplier function (Maggi et al., 2008;
Riley et al., 2011; Tang et al., 2010; Zhuang et al., 2004) but it is unclear which aspects of the biogeochemical
rate's moisture dependence are accounted for by this multiplier.

Tang and Riley (2019b) developed a parameterization of Kw by first delineating three levels of hierarchical
structures: (a) an individual microbe (representative of a bacterial cell), (b) a colony of microbes (which may
represent soil aggregates to some extent), and (c) the soil matrix (Figure 4). They further assumed that (a) a
microbial colony is covered by a water film (whose thickness is computed as a function of soil suction pressure);
(b) within a colony, microbial cells are evenly distributed, immersed in water, and compete for diffusion‐limited
substrates; and (c) microbial colonies are connected to each other by diffusion through the soil matrix. By
assuming that diffusion is the major physical process linking these scales, and modeling diffusion through von
Smoluchowski's diffusion theory of chemical reaction (von Smoluchowski, 1917) and the Berg‐Purcell formula
for substrate interception by a spherical bacterial cell (Berg & Purcell, 1977), the affinity parameter for an
aqueous substrate is found as

Kw =
Nk2,p
k1,w

(1 +
k1,wBm/νm

κm
), (7)

where

k1,w = 4πNADw,0rC
Nrp

Nrp + πrC fA
, (8)

fA = 1 ‒
N
4
(
rp
rC
)

2

, (9)

1
κm
=

νmδ
4πDw,0rm (rm + δ)

+
νm

4πD(rm + δ)
, (10)

D = Dw,0τwϕw + Dg,0τg
ϕg

α
, (11)
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and

δ = max(10‐8, exp(‐13.65–0.857 log(‐ψ))). (12)

From the above, we can see that Kw (mol m− 3 water) is influenced by the following four groups of input
parameters:

1. Soil: soil matric water potential ψ (MPa), tortuosity of aqueous tracer τw (m m− 1), tortuosity of gaseous tracer
τg (m m− 1), water‐filled porosity ϕw (m

3 m− 3), air‐filled porosity ϕg (m
3 m− 3), and water film thickness δ (m).

2. Tracers: aqueous tracer diffusivity Dw,0 (m
2 s− 1), gaseous tracer diffusivity Dg,0 (m

2 s− 1), and Bunsen sol-
ubility for gas tracer α (mol mol− 1). Note for solutes, Dg,0 = 0 removes the contribution of gaseous phase.

3. Microbes: radius of microbial microsite rm(m), whose volume is νm(= 4πr3m/3), mean microbial biomass
density of a microbial microsite Bm /νm, number of substrate uptake sites per microbial cell N (sites per cell),
mean microbial cell radius rC (m), mean radius of microbial substrate uptake site rp (m), the maximum
substrate processing rate per uptake site k2,p (s− 1), and the production rate of the given substrate in the
microsite pC (mol m− 3).

4. Universal constants: Avogadro number NA (mol− 1), and π.

The above formulation of Kw allows one to describe the moisture control of substrate uptake for a biogeochemical
process in a soil volume that is of the order of 1 cm3. It may also help represent microbial substrate uptake in 1‐D
vertically resolved reactive‐transport based models of soil biogeochemistry (Dwivedi et al., 2019; Pasut
et al., 2020; Riley et al., 2014).

With its diverse input parameters, Equation 7 provides insights into how Kw will be affected by soil physical
properties (e.g., soil texture, organic matter content), soil moisture content, solute characteristics, and microbial
traits (cf. Figures 2–4 in Tang and Riley (2019b)). For the results reproduced in Figure 5, Kw for oxygen increases
as soils become wetter, following a sigmoidal shape whose inflection point varies with soil texture (Figure 5, left
column). Kw for solutes decreases following a nearly exponential decay to a minimum value upon saturation
(Figure 5, center column). When combining these formulations for oxygen and solute affinities in a steady‐state
microbial respiration model (see Tang & Riley, 2019b for details), prediction of respiration responses to soil
moisture, and their dependence on soil properties, captures observed patterns (Figure 5, right column).

Almost all the parameters needed by the above model are either routinely measured (e.g., soil characteristics,
diffusivities of various molecules (Cussler, 2009), tortuosity effect on gas and solute diffusion (Moldrup
et al., 2003)), or have been estimated for specific case studies (e.g., microbial biomass density in a microsite
(Raynaud & Nunan, 2014)), enabling us to apply Equation 7 with very little calibration at least in some contexts.

Figure 4. The hierarchical conceptual model used to derive the moisture dependence of substrate affinity parameter K (i.e., Kw in Equation 7). Diffusion is the major
interaction that links the entities involved in the problem. For simplicity, pumps, channels, and carriers for substrate uptake are all called substrate transporters.
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Tang and Riley (2019b) demonstrated reasonable predictions of the moisture‐microbial respiration relationship
with typical parameters from the literature and, importantly, without parameter calibration.

With modest modifications, the above model can be adapted to substrate kinetics of clay particles, fine roots, and
fungal hyphae.When the resultant substrate kinetic parameterizations are implemented within a reactive‐transport
based framework of plant shoot‐root growth, like that in ecosys (Grant, 1998), we can obtain new insights on how
soil, plant, and microbial traits affect the dynamic nutrient coupling between plants and microbes in soil.

The approach above works well when microbial traits (e.g., k2,p and N) and microbial biomass (Bm /νm) are
relatively static. However, in dynamic soil moisture environments, microbial biomass and traits related to sub-
strate utilization also vary. The next logical step is to couple this framework with equations that describe mi-
crobial biomass and trait dynamics, aiming to achieve a mechanistic and ecologically sound soil carbon cycling
model. Microbial biomass dynamics are already routinely modeled using empirical kinetics laws (as discussed in
the review by Chandel et al. (2023)), but could also be modeled in a more mechanistic ways as discussed in
Section 3.2. Therefore, the challenge lies in how to couple these mechanistic formulations to various aspects of
microbial biomass growth (see Box 2), mortality, maintenance, dormancy, and other functions. We recognize that
a mechanistic understanding is not available for some of these functions, but phenomenological or eco‐
evolutionary approaches can serve as initial approximations to the missing mechanistic representation. During
the pursuit of this goal, it would be intriguing to assess to what extent biological (or even ecological) processes are
so strongly coupled (or coordinated) to transport processes that they do not need to be modeled independently
(i.e., they can be lumped through coarse graining).

3.2. A Network of Multiple Substrates and Consumers

The second example of physical rules‐based approaches is for competitive interactions in a network of substrates
and consumers, which are relevant in various contexts of biogeochemistry and ecology (Figure 6). These in-
teractions include soil organic carbon decomposition by microbes (Wieder et al., 2014), nutrient competition
between plants and microbes (Zhu et al., 2016), interactions between enzymes and substrates in the cytoplasm of a
microbial cell (Etienne et al., 2020), and trophic networks including producers, consumers, and predators in
population ecology (Barraquand, 2014; Buchkowski et al., 2022).

In the context of biogeochemistry, a network of substrates (S) and consumers (E) can be constructed using the law
of mass action, which, by aid of the quasi‐steady approximation, can be presented in the following form:

Si +∑
j=J

j=1
Xij = Si,T ,for i = 1, ⋅ ⋅ ⋅ ,I, (13)

Ej +∑
i=I

i=1
Xij = Ej,T ,for j = 1, ⋅ ⋅ ⋅ ,J, (14)

SiEj = KijXij, (15)

dPij

dt
= kij,2Xij, (16)

where subscripts i and j indicate different substrates (in total J substrates) and consumers (in total I consumers),
and subscript T designates the total concentration of substrate Si and consumer Ej in the spatial domain of analysis,
regardless of their form (free or bound in a complex). Equations 13 and 14 account for the mass balance re-
lationships of substrates and consumers in the system, Equation 15 describes the formation of substrate‐consumer
complex Xij, which is used in Equation 16 to compute the production of new materials, denoted by Pij. For a
predator‐prey network, Kij is related to the handling and attacking rates of a predator on a prey (Real, 1977), and
kij,2Xij is biomass growth of the predator Ej upon the successful handling of prey Si.

The above system as a whole lacks an analytical solution, but it does have a first‐order approximation (the
Equilibrium Chemistry Approximation, ECA (Tang & Riley, 2013)) as follows:
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Xij =
Si,TEj,T/Kij

1 + ∑
l=I

l=1
Sl,T/Kl,j + ∑

l=J

l=1
El,T/Ki,l

, (17)

Equation 17 can be shown to satisfy the partitioning principle (Tang & Riley, 2017), which is critical for
developing a theory to coherently scale up from a single chemical reaction to unicellular and multicellular or-
ganisms (Kooijman, 2009). Specifically, when Si are samples from the same substrate S (i.e., ΣiSi = S), and Ej are
samples from the same consumer E (i.e., ΣjEj = E), the sum of Xij will equal X obtained using substrate S, and
consumer E. That is, by summing over all substrates and consumers in Equation 16, we obtain

X = ΣijXij =
STET/K

1 + ST/K + ET/K
. (18)

Corresponding to Equation 18, the total production rate of new material (P = ΣijPij) is

dP
dt
= k2X, (19)

In the literature, however, Equations 13–16 have often been solved with an incomplete consideration of the mass
balance constraints imposed by Equations 13 and 14. For instance, (Williams, 1973) modeled a system of many
consumers competing for a single substrate, whose solution based on ECA is

V =∑
j=J

j=1

STvmax,jEj,T/Kj

1 + Σ j=J
j=1 ST/Kj + Ej,T/Kj,

, (20)

Figure 5. Example application of Equations 7–12 for affinity parameters of gaseous O2 (panels a1, a2, a3, and a4), and
dissolved organic carbon (DOC; panels b1, b2, b3, and b4) as a function of soil moisture for 32 soils in 4 classes. The four soil
classes are (1) medium to fine texture soils from (Doran et al., 1990); (2) coarse texture soil from (Doran et al., 1990); (3)
other soils from (Doran et al., 1990); and (4) soils from Franzluebbers (1999). The rightmost panels are correspondingly
predicted respiration‐moisture relationships using the synthesizing unit model. Same parameters are used from Tang and
Riley (2019b). Gray lines are for different soils, black lines are computed from mean soil texture of each soil class, blue
circles are measurements.
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where V represents the total consumption rate by predators, with vmax,j being the maximum substrate uptake rate
by consumer j.

However (Williams, 1973), applied a simple juxtaposition of the empirical Holling's type II predation functions
(Holling, 1959), and obtained

V =∑
j=J

j=1

Vmax,jS
S + Kj

, (21)

where the dependence of individual's predation rate on consumer Ej is not captured (note Ej,T is part of Vmax,j

through Vmax,j = vmax,jEj,T). Moreover, in models that do include consumer effects on predation rate, the predator
competition effect (ΣjEj in the denominator) is often neglected (Murdoch, 1973; Real, 1977). Without these
consumer effects, the model could result in incorrect parametric sensitivity when the total substrate is limited
(Tang, 2015).

Additionally, in predator‐prey modeling, there has been a long‐lasting debate regarding whether the specific
predation rate should be dependent on both the density of prey (ST) and consumers (ET in our nomenclature), and
various formulations have been hypothesized (Beddington, 1975; Berryman, 1992; DeAngelis et al., 1975;
Ginzburg & Akcakaya, 1992). Based on the application of physical rules, the simplest ECA formulation by
Equation 18 reproduces the Beddington‐DeAngelis formulation that is obtained through ad hoc assumptions,
while the more general ECA form (Equation 17) has many other applications (Cheng et al., 2019; Huang
et al., 2018; Zhu et al., 2016).

In soil biogeochemical modeling, the simple juxtaposition approach was also used to formulate the decomposition
of two pools of soil carbon by a single microbial population, such as in the MIMICS model (Wang et al., 2014),
where the growth of microbial biomass is formulated as

dCb

dt
= YG

Cbvmax,lCl

Cl + Kl
+ YG

Cbvmax,sCs

Cs + Ks
, (22)

Figure 6. Examples of substrate‐consumer networks that can be approximated by the Equilibrium Chemistry Approximation kinetics. Here substrate Si is consumed by
consumer Ej as specified with kinetic parameters Kij and vmax,ij. It is assumed that the units of Si and Ej have been properly converted for the equation shown in the figure
to hold for various problems.

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007674

TANG ET AL. 20 of 37

 21698961, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007674, W
iley O

nline L
ibrary on [15/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



where YG is the microbial growth efficiency, assumed the same for both substrates. Note that in Equation 22 the
mortality term is ignored to simplify the discussion. Similar to Equations 21, 22 predicts that the specific con-
sumption of carbon pool Cl is independent from that of carbon pool Cs.

Since there is only one microbial population degrading two soil carbon pools, the metabolic effort of the microbial
population is expected to be divided between the two pools. That is, working on carbon pool Cl has a direct
influence on the microbial effort allocated to carbon pool Cs, and vice versa. This subdivision means the
formulation of Equation 22 predicts the wrong parameter sensitivity, whereas the mechanistically consistent
formulation based on the ECA should be

dCb

dt
= YG

Cbvmax,lCl/Kl

1 + Cl/Kl + Cs/Ks + αCb/Kl
+ YG

Cbvmax,sCs/Ks

1 + Cl/Kl + Cs/Ks + αCb/Ks
, (23)

where α scales the available metabolic effort to the microbial biomass Cb, which is estimated to be of the order
10− 4 when substrates are expressed in carbon mass units (Tang & Riley, 2019a). Thus, terms multiplied with α
can be ignored mostly, but keeping them may prevent runaway microbial biomass growth when applying the
model.

Because 1+Cl /Kl+ Cs /Ks > max(1+Cl /Kl, 1+Cs /Ks), Equation 23 then predicts lower sensitivity of
dCb
dt to Kl and

Ks than Equation 22. Further, it can be shown that the parametric sensitivity of dCb
dt to Kl and Ks are correlated in

Equation 23, making the resultant model parametrically better constrained, and very likely have less severe
predictive equifinality compared to Equation 22. This last assertion is consistent with our inference at the
beginning of Section 2, and supported by the model‐data fusion experiment in (Tang & Riley, 2013), where the
ECA formulation was much more robust than the simple juxtaposition of Holling's type II uptake functions (see
comparison of Figures 11 and 12 there). We leave a comprehensive analysis of the new formulations (Equation 23
and the corresponding equations of Cl and Cs) on long term soil carbon dynamics for future work.

Besides obtaining a more consistent formulation of microbial growth over multiple soil carbon pools, the solution
to Equations 13–16 also leads to a natural incorporation of soil mineral influences on organic carbon decom-
position by approximating the organic carbon‐mineral interaction with the Langmuir isotherm, leading to a
modification of Equation 23 as

dCb

dt
= YG

Cbvmax,lCl/Kl

1 + Cl/Kl + Cs/Ks + αCb/Kl +M/Kl,M
+ YG

Cbvmax,SCs/Ks

1 + Cl/Kl + Cs/Ks + αCb/Ks +M/Ks,M,
, (24)

where M indicates the total concentration of mineral surfaces available for adsorption and Ks,M and Kl,M are
sorption parameters for substrates Cl and Cs.

From Equation 24, it is inferred that through competitive adsorption of (dissolved) soil organic matter (and
exoenzymes Tietjen and Wetzel (2003)), microbial decomposition and growth are suppressed by soil minerals
(Tang & Riley, 2015). However, if the turnover of exoenzymes is assumed to be positively linked with its
catalysis rate, interaction with clay particles could increase the exoenzymes' lifetime by reducing the catalysis
rate. Equation 24 then explains that, with increasing soil depth, along with the usual decrease of soil carbon, the
specific decomposition rate naturally decreases, lending mechanistic insight to corroborate the attenuation factor
in CENTURY‐like models, where an exponential attenuation factor is needed to suppress carbon decomposition
in order to correctly model the soil carbon profile (Koven et al., 2013). However, with proper characterization of
soil mineral surfaces M and the associated sorption parameters KS,M and Kl,M, one can characterize the observed
vertical heterogeneity more mechanistically than achieved with exponentially decreasing attenuation functions
(Dwivedi et al., 2017). In particular, the mechanistic model will enable us to evaluate many hypotheses regarding
how the interactions between SOM molecule composition, microbial abundance and diversity, soil conditions,
and plant input regulate the multiple facet responses of soil respiration and SOM storage to environmental
changes.

As an example to demonstrate the parametric sensitivity due to different model formulations, we define the
specific substrate uptake Fb =

1
YGCb

dCb
dt and compute the parametric sensitivity of Fb with respect to Vl and VS for

the Monod kinetics of Equation 22,
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∂Fb

∂vmax,l
=

Cl/Kl

1 + Cl/Kl
, (25)

∂Fb

∂vmax,s
=

Cs/Ks

1 + Cs/Ks
; (26)

and, similarly, for the ECA‐based Equation 24,

∂Fb

∂vmax,l
=

Cl/Kl

1 + Cl/Kl + Cs/Ks + αCb/Kl +M/Kl,M
, (27)

∂Fb

∂vmax,s
=

Cs/Ks

1 + Cl/Kl + Cs/Ks + αCb/Ks +M/Ks,M
. (28)

From Equations 25 and 26, we see that Monod kinetics predicts the parametric sensitivities ∂Fb
∂vmax,l and

∂Fb
∂vmax,s to be

independent from the interactions between Cl, Cs, and M, while such dependence is captured by ECA kinetics
(Equations 27 and 28). In particular, the Monod kinetics always predicts higher parametric sensitivity than the
ECA kinetics (Figure 7), implying that the same parametric uncertainty will lead to higher predictive equifinality
for models using the Monod kinetics.

3.3. Temperature Dependence of Enzyme‐Catalyzed One‐Substrate Reactions

In our third example, we discuss the temperature sensitivity of an enzyme‐catalyzed one‐substrate reaction (Tang
& Riley, 2024). In this problem, the two entities—enzymes and substrates—are linked with a diffusion limited
chemical reaction. The enzymes involve a sub‐scale problem where they are partitioned between active and
inactive conformation states as a function of temperature. Depending on the size contrast between substrate and
enzyme molecules, we have three limiting solutions derived from ECA kinetics (Tang, 2015; Tang &
Riley, 2019a):

1. When substrate molecules are much larger than enzymes, or the enzymes are in significant excess of substrate
binding surface area (e.g., cellulose during hydrolysis), Equations 18 and 19 can be approximated by reverse
Michaelis‐Menten (MM) kinetics:

R = vmax,E
ES

KE + E
. (29)

2. When substrate molecules are much smaller than enzymes (e.g., microbial uptake of glucose) or the system is
enzyme limited, we have the typical Michaelis‐Menten kinetics,

R = vmax,ES
ES

KES + S
. (30)

3. When substrate and enzyme molecules have similar size (e.g., when fructose is the substrate and invertase is
the enzyme), we have the reaction represented using the ECA kinetics

R = vmax,ES
ES

KES + S + E
. (31)

For all cases, temperature dependence of the maximum reaction rate can be approximated by the transition state
theory (Eyring, 1935):
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vmax(T) = vmax,0
T
T0

exp(−
ΔHr

RgT
(1 −

T
T0
)), (32)

where ΔHr is the enthalpy of activation (which is constant), Rg is the universal gas constant, T0 is the reference
temperature (K), vmax,0 is the rate at T0. By adopting the usual assumption that the unbinding rate is negligible
compared to forward binding rate and the relative movement between substrates and enzymes is dominated by
diffusion (Tang et al., 2021), the temperature sensitivity of the affinity parameter KES is determined by the ratio
between the temperature sensitivity of vmax and that of the aqueous diffusivity Dw (see Equation 7 in example 1).
According to the Stokes‐Einstein equation (Cussler, 2009), the aqueous diffusivity for a spherical object of radius
a isDw,a= kBT/(6πηa), where the dynamic viscosity η has an empirical temperature dependence as exp(B/T ) (with
B > 0; (Holmes et al., 2011)), thus a good approximation is:

K(T) = K0 exp(−
ΔHK

RgT
(1 −

T
T0
)), (33)

where ΔHK is the effective enthalpy of K, which is the difference between ΔHr and the activation enthalpy of the
self‐diffusion of water, so that ΔHK < ΔHr.

In addition to temperature effects on reaction kinetics, temperature also affects the capacity of enzymes to perform
the reaction (Murphy et al., 1990; Ratkowsky et al., 2005). In fact, enzymes are proteins, and proteins may lose or
regain their native structure (and thus functionality) spontaneously. Because this spontaneous transition is taking
advantage of the structural perturbations caused by thermal motions in the enzyme solution, the transition be-
tween native and unfolded states always occurs for an enzyme that is not irreversibly denatured (Finkelstein &
Ptitsyn, 2016). The fraction of active enzymes in native state at a given temperature can be described by the well‐
established temperature relationship (Ghosh & Dill, 2009; Murphy et al., 1990; Sawle & Ghosh, 2011)

fact(T) =
1

1 + exp(− ΔGE
RgT
)
, (34)

where the Gibbs free energy of unfolding ΔGE is defined as

Figure 7. Comparison of parametric sensitivity for ∂Fb
∂vmax,l and

∂Fb
∂vmax,s when computed using the Monod kinetics versus the ECA kinetics. For all calculations, it is assumed

Ks = 10Kl.
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ΔGE = ΔHE − TΔSE = nEΔCp[(T − TH) + T ln(
TS

T
)], (35)

where nE is the number of amino acid residues of the enzyme, heat capacity ΔCp (J K
− 1 (mol amino acid)− 1)

defines the energy required to reorganize the water molecules surrounding the protein, TH is the temperature at
which enthalpy ΔHE equals to zero, and TS is the temperature at which entropy ΔSE equals to zero.

Based on the survey by Silverstein (2020), ΔCp seems to be quite consistent among thermophobic, mesophilic,
and thermophilic proteins, centering around 60 J (mol amino acid)− 1, with an increasing variability from ther-
mophobic to thermophilic proteins. Meanwhile, TH increases from thermophobic to thermophilic proteins, with
an increasing difference between TS and TH (see Table 6 in Silverstein (2020)). A comprehensive analysis using
data from the Protein Data Bank will be very helpful to gain more insights on the parameterization of Equation 35.

When the above relationships are applied together in the reverse MM kinetics (Equation 29), we have

R = vmax,E(T)
fact(T)ES

KE(T) + fact(T)E
, (36)

and when applied to MM kinetics (Equation 30), we have

R = vmax,ES(T)
fact(T)ES
KES(T) + S

. (37)

Therefore, these results show that the overall temperature sensitivity of an enzyme catalyzed one‐substrate re-
action emerges from three types of temperature functions: (a) Arrhenius equation, (b) the Eyring's transition‐state
theory, and (c) the thermal stability of native proteins. The equation for ECA kinetics is not reported here because
it is just a combination of reverse and forward MM kinetics.

When the above results are adapted to the substrate affinity parameter of microbial substrate uptake, for example,
the bacterial cells discussed in the first example in Section 3.1, the temperature dependence of the affinity
parameter will be more complicated than represented by the Arrhenius‐like function, because it will also involve
fact(T ) through its interaction with the number of transporters distributed over the microbial cells (i.e., parameter
N in Equations 7–9).

To visualize the above relationships, we show some examples of hypothetical enzymes based on mean values of
ΔCp, TS, and TH from Table 6 in Silverstein (2020) and a typical enzyme length of 290 amino acids of prokaryotes
(Brocchieri & Karlin, 2005). In Figures 8a and 8b, we see that the range of temperatures in which enzymes stay
active expands as the Gibbs free energy curves shift from thermophobic to thermophilic enzymes. More inter-
estingly, for the reverse MM kinetics described by Equation 36, the normalized reaction rate R/(vmax(T0)S) in-
creases steadily (almost exponentially because fact is close to 1) across most of the biochemically relevant
temperatures, with sharp drop‐offs at the low and high temperature ends (Figure 8c, where curves are drawn for
the hypothetical mesophilic enzyme).

In contrast to the relationship by Equation 36 shown in Figure 8c, when the relationship by Equation 37 is
illustrated (Figures 8d–8f), all kinetics show the often observed asymmetric temperature response (Peterson
et al., 2004; Ratkowsky et al., 2005; Sharpe & Demichele, 1977). In addition to temperature, substrate con-
centration also plays a role: higher substrate availability increases the reaction rate for a given value of the affinity
constant. Therefore, our examples imply that it is problematic to assume that, under high substrate concentrations,
the temperature response curve only reflects the temperature‐dependence of enzyme catalysis rate. In reality, the
temperature response curve also depends on the temperature dependence of the affinity parameter, so that a high
substrate concentration cannot ensure Equation 37 to derive a temperature response curve that accurately ap-
proximates that of vmax. As this assumption is the foundation of the macromolecular rate theory by Hobbs
et al. (2013) that is built off the study by Peterson et al. (2004), a comprehensive analysis is presented elsewhere
(Tang & Riley, 2024).
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4. How to Make Physical Rules‐Based Approaches Easily Accessible?
With the three examples above, we showed that it is feasible and advantageous to formulate EBMs using physical
rules‐based approaches. These examples also clearly reveal that empirically based functions can result in
inconsistent influences of processes, for example, replacing the temperature‐dependent parameterization in the
third example with a single multiplier function will cause the temperature to improperly affect the relevant
subprocesses. In another example shown by Tang and Riley (2021), it was found that, to obtain reasonable model
fitting with observations, the law of the minimum model had to use incorrect parameter values. Nevertheless,
compared to the more intuitive empirically based approaches, significant efforts are needed to realize these
proposed advantages, at least partially because modeling equations are less intuitive to understand and may
contain more parameters to constrain, either by theory or calibration. We therefore recommend the following
steps to achieve this goal.

First, bring more expertise and knowledge of mathematical physics into the field of ecosystem biogeochemistry.
This is already done well in the research area of ecosystem biogeophysics, where physical rules like Ohm's law for
resistor networks, transport theories of diffusion and advection are used to formulate the exchange and temporal
evolution of mass and energy between soil, water, atmosphere, and other related components (Shuttleworth &
Wallace, 1985), and textbooks also explain those applications in detail (e.g., Bonan, 2019). For ecosystem
biogeochemistry, constructive effort can be applied through (a) building long‐term and stable collaborations
between biogeochemistry empiricists, applied mathematicians, chemists, and physicists who are keen to model
ecosystem biogeochemistry mechanistically, and (b) enhanced exposure of students in ecosystem biogeochem-
istry to concepts in mathematical physics including law of mass action, chemical reaction theories, and basic
reactive transport modeling. From a pedagogic perspective, students could be challenged to test the classic
Michaelis‐Menten equation, or a linear model, using data sets where the use of equilibrium chemistry approxi-
mation is necessary. Also, faculty with expertise in biochemistry can team with colleagues in mathematics and
physics to develop a course on mathematical biogeochemistry. This approach could motivate the next generation
of geoscientists to engage in developing physical rules‐based ecosystem biogeochemical modeling.

Second, EBMs formulated using physical rules‐based approaches will often be mathematically more complex,
which may be contrary to the heuristic belief that models should be simple (in appearance). We fully agree that
unnecessary complexity should be avoided. However, we contend that the research community should be more
open to endorsing the higher complexity resulting from constructions based on solid mathematical and physics‐
based logic, as compared to the simpler empirical equations typically derived by regression with context‐
dependent measurements. For instance, when the Lagrangian of the standard model of particle physics is writ-
ten explicitly term by term (Shivni, 2016), the resulting gargantuan equation may easily fill a whole regular page
of a journal paper. Nonetheless, the astonishing success of the standard model so far does not warrant any
omission of its terms, and when the model is explained term by term, the mechanisms are readily interpretable. As
we argued previously, given that ecosystem biogeochemistry encapsulates both living organisms and inanimate
matter, which exist in different phases, and interact from very small to very large spatial scales, the true governing
equations of an EBM may be as complex as, if not more complex than, the standard model of particle physics (in
terms of length when they are put down onto paper). Therefore, the complexity of EBMs should not be judged by
the number of mathematical terms involved, rather the complexity should be measured by the basic ideas of
physics and mathematics being incorporated. Notably, even for a very complex system, physical rules will
provide additional constraints to significantly reduce the actual degrees of freedom, so that the resultant EBM
may be de facto simpler. As such, mechanistically more interpretable, and logically more coherent EBMs could be
developed with improved model predictability.

Third, by being less intuitive than the empirically based approaches, physical rules‐based approaches may appear
too challenging to be integrated into the current training cycle of graduate students and postdoctoral researchers.
Additionally, funding agencies often favor short‐term grants over long‐term support. To address this resource
limitation, we contend that the research community should acknowledge the inadequacy of empirically based
EBMs in providing specific guidance for precision ecosystem managements, which are urgently needed for
mitigating climate change. Funding agencies and the research community can collaborate through workshops to
identify strategies for effectively allocating resources to develop physical rules‐based EBMs and collecting
relevant empirical data. On the other hand, we observe that the development of physical rules‐based parame-
terization can be modular for many processes (see Box 3). Consequently, a graduate student could in principle
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focus on an individual process or module and test it. In their Ph.D. thesis, the final chapter could be dedicated to
integrating the developed module into a larger, more complex soil or ecosystem model. Such educational
experience would be very valuable, allowing students to delve into specific aspects of broader problems, while
developing their module(s) and gaining an understanding of the overall context during integration. Such an
approach is scalable depending on student math/physics skills, interest, data availability etc. With more students
trained in this manner, more postdoctoral researchers will be prepared to tackle the challenging task of developing
physical rules‐based EBMs.

Fourth, we acknowledge that EBMs formulated using physical rules‐based approaches will usually be compu-
tationally more complex and demanding, and therefore may be more difficult to apply at large scales. This
scalability issue could be solved in two steps: (a) creating an open‐source numerical library that consists of
processes that are formulated using physical rules, but are provided with user friendly software interfaces to be
used in other models (Riley et al., 2022; Tang et al., 2022), and (b) improving the numerical efficiency of these
model formulations by leveraging new developments in machine learning and artificial intelligence. The first idea
has led to software like OpenFOAM (Jasak, 2009) and COMSOL (Pryor, 2012) that are able to solve compu-
tational fluid dynamics problems in various configurations. The second idea is currently used to develop more
advanced parameterization schemes, such as turbulence closure schemes (Kurz et al., 2023) and cloud processes
parameterization for atmospheric models (Beucler et al., 2023). In ecosystem biogeochemical modeling, a ma-
chine learning model, when pretrained with a physical rules‐based ecosystem biogeochemistry model, could

Figure 8. (a) Examples of unfolding Gibbs free energy ΔGE as a function of temperature based on Equation 35; (b) fraction of active enzymes under different
temperatures based on Equation 34; (c) normalized reaction rate as a function of temperature for a hypothetical mesophilic enzyme for different ratios of enzyme
concentration to affinity constant E/KE0, based on Equation 36; (d) normalized reaction rated as a function of temperature for a hypothetical mesophilic enzyme, based
on Equation 37; (e) and (f) are the same as (d) but for hypothetic mesophilic and thermophilic enzymes, respectively, and at different ratios of substrate concentration to

affinity constant S/KES0. For bothKE andKES, we useK(T) = K0 exp(− 37300
RgT

(1 − T
290)) computed from the activation energy of glucose uptake (58 kJ mol− 1) reported by

Reinhardt et al. (1997), and the activation energy of diffusion (20.7 kJ mol− 1) reported in Table 2.3 by Stein (2012). Accordingly, for both vmax,E and vmax,ES, we

use vmax(T) = T
290 exp(−

58000
RgT

(1 − T
290)).
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conduct spatiotemporal extrapolation more efficiently and even outperform the original EBM, successfully
resolving the challenge of upscaling (Liu et al., 2022, 2024).

Last but not least, as can be seen from our three examples, physical rules‐based approaches require substantial
comprehensive empirical data support for both forming the conceptual model and parameterization. Fortunately,
much relevant data is available from the literature, such as solubility and diffusivities of chemical tracers in water
and air (Cussler, 2009; Sander, 2023). New biological data that characterize the morphology and metabolic rates
of organisms, as well as intra‐ and inter‐specific interactions among organisms, however, are needed. These data
should be collected more frequently, together with macro‐chemical data such as carbon and nutrient concen-
trations and soil physical properties. Microbial elemental stoichiometry, morphology, number or mass density in
various soils, and their relative abundances and activity level under various conditions, will be very helpful for
formulating physical rules‐based models of soil microbial processes. However, for most of these quantities there
are no established measurement methods and novel tracer experiments are only now starting to provide detailed
microbial trait and rate data (e.g., Canarini et al., 2020; Warren & Manzoni, 2023). For plants, more in‐situ
phenological data and morphological data (such as leaf sizes, thickness, height, root architecture, and
morphology) will be essential to robustly formulate biogeochemistry using physical rules, which can also
improve the model representation of biogeophysics, such as water and heat exchange between soils, plants, and
atmosphere. On the one hand, existing databases (e.g., ESS‐DIVE (https://ess‐dive.lbl.gov), TRY plant trait
database (Kattge & Sandel, 2020)) can aid making data accessible. On the other hand, physical rules‐based
approaches can suggest more specific answers to the question from empiricists to modelers: “what do you
want us to measure?”

5. Summary
Lao Tzu said, “the Tao that can be told is not the eternal Tao,” which we interpret 2600 years later to mean that all
ecosystem biogeochemical models (EBMs) are inherently limited. Nevertheless, we argue that the currently
popular approach, which extensively uses empirically based functions to formulate biogeochemical processes,
limits EBM predictability and the community's attempts to incorporate needed improvements. Instead, by treating
EBM parameterization as a lossy data compression problem and solving it with physical rules‐based approaches
proposed here, more robust and accurate EBMs can be developed. Compared with empirical functions, the
primary physical rules are more consistent with current knowledge of the world, and the derived physical rules are
less context dependent and have more easily quantifiable uncertainty. Consequently, physical rules‐based EBMs
will be more robust and less plagued by predictive equifinality, even though they appear to be more complex than
empirical function‐based EBMs. Moreover, using physical rules to formulate biogeochemical processes will
reveal more detailed insights about the interactions between the entities involved, which will facilitate the design
of more targeted empirical experiments. To build EBMs that maximally use current knowledge of physical rules,
we advocate more and closer interdisciplinary collaborations in both research and education between scientists in
biogeochemistry, biophysics, soil physics, and mathematics.

Nomenclature. For Units, “Variable” Means the Unit Is Problem Formulation
Dependent

Symbol Unit Meaning and places of use
fj(θj) Effect multiplier from influencer θj; Equations 4 and 5.
fact(T ) Fraction of enzymes being active; Equations 34, 36 and 37.
hC(s) Substrate dependency for the compromise model.
hD(s) Substrate dependency for the DEB model.
hP(s) Substrate dependency for the Pirt model.
jA,max (s

− 1) Maximum substrate uptake rate for the DEB model.
k1,w (m mol− 1 s− 1) Microbe‐substrate forward binding rate; Equations 7 and 8.
k2,p (s

− 1) Maximum substrate uptake rate per site; Equation 7.
kij,2 (s

− 1) Maximum uptake rate of substrate Si by enzyme Ej; Equation 16.
mP (s− 1) Specific microbial maintenance rate.
nE Number of amino acid residues of the enzyme; Equation 35.
qC(s) (s

− 1) Specific substrate uptake rate for the compromise model.
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qD(s) (s
− 1) Specific substrate uptake rate for the DEB model.

qP(s) (s
− 1) Specific substrate uptake rate for the Pirt model.

rC (M) Bacteria cell radius; Equations 8 and 9.
rm (M) Microbial microsite radius; Equation 10.
vm (m3) Microbial microsite volume; Equation 10.
vmax(T ) (s

− 1) Maximum substrate processing rate at temperature T; Equation 32.
vmax,E (s− 1) Maximum substrate processing rate; Equation 29.
vmax,E(T ) (s

− 1) Maximum substrate processing rate at temperature T; Equation 36.
vmax,ES (s

− 1) Maximum substrate processing rate; Equation 30.
vmax,ES(T ) (s

− 1) Maximum substrate processing rate at temperature T; Equation 37.
vmax,l (s

− 1) Specific maximum uptake rate of Cl; Equations 22–25, 27.
vmax,S (s

− 1) Specific maximum uptake rate of CS; Equations 22–24, 26, 28.
Bm (mol cell m− 3) Mean microbial biomass in a microsite; Equation 7.
BR (mol C m− 3) Reverse microbial biomass in DEB model.
BV (mol C m− 3) Structural microbial biomass in DEB model.
Cb (mol C m− 3) Microbial biomass; Equations 23 and 24.
Cj Inverse of covariance matrix for variable Yj; Equations 2 and 3.
Cl (mol C m− 3) Fast decaying carbon pool; Equations 22–25, 27, 28.
Cs (mol C m− 3) mol C m− 3 Slow decaying carbon pool; Equations 22–24, 26–28.
∆Cp (J K

− 1 (mol amino acid)− 1) Heat capacity; Equation 35
Dg,0 (m

2 s− 1) Gaseous diffusivity; Equation 11.
Dw,0 (m

2 s− 1) Aqueous diffusivity; Equations 10 and 11.
E (mol m− 3) Enzyme concentration; Equation 6
Ej (Variable) Consumer concentration; Equations 14 and 15.
Ej,T (Variable) Total consumer concentration; Equations 14, 17, 18 and 20.
Fnl (Variable) Variable Total flux of variable Ynl; Figure 3.
∆GE (J mol− 1) Gibbs free energy of enzyme unfolding; Equations 34 and 35.
Hkl (Variable) Process function corresponding to Rkl; Figure 3.
∆HE (J mol− 1) Enthalpy of the enzyme unfolding; Equation 35.
∆HK (J mol− 1) Enthalpy of affinity parameter; Equation 33.
∆Hr (J mol− 1) Enthalpy of enzymatic chemical reaction; Equation 32.
J0 Cost function contributed by prior information; Equation 1.
K (mol m− 3) Substrate affinity parameter; Equation 6.
K0 (mol m− 3) Substrate affinity parameter at temperature T0; Equation 33.
KE (mol m− 3) Substrate affinity parameter; Equation 29.
KES (mol m− 3) Substrate affinity parameter; Equation 30.
KE(T ) (mol m− 3) Substrate affinity parameter at temperature T; Equation 36.
KES(T ) (mol m− 3) Substrate affinity parameter at temperature T; Equation 37
Kij (Variable) Affinity parameter between substrate Si and consumer Ej; Equation 15.
Kl (mol m− 3) Microbial affinity parameter to carbon pool Cl; Equations 22–25, 27, 28.
Ks (mol m− 3) Microbial affinity parameter to carbon pool Cs; Equations 22–24, 26–28.
Kl,M (mol m− 3) Affinity parameter between carbon pool Cl and mineral M. Equation 24.
Kw (mol m− 3) Effective substrate affinity parameter in soil; Equation 7.
Kw,0 (mol m− 3) Substrate affinity parameter in water; Figure 4.
Mk(Rl) (Variable) kth scaling rule between processes Rl; Equations 2 and 3.
N Number of transporters per microbial cell; Equations 8 and 9.
NA (mol− 1) Avogadro number; Equation 8
P (Variable) Product concentration from consumption of substrate; Equation 19.
Pij (Variable) Product concentration by Ej from consuming Si; Equation 16.
Qjl− 1 (Variable) Mechanistic interactions between Yml− 1

; Figure 3.
R (Variable) Rate, or conductance, or resistance; Equations 4–6, 29–31, 36, 37.
R0 (Variable) Reference value of R; Equations 4 and 5.
Rg (J mol− 1 K− 1) Universal gas constant; Equation 32.
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Rkl (Variable) Process rate; Figure 3.
S (mol m− 3) Substrate concentration; Equation 6.
∆SE (J mol− 1) Entropy of enzyme unfolding; Equation 35.
Si (Variable) Free concentration ith Substrate; Equations 13, 15 and 17.
Si,T (Variable) Total concentration of ith substrate; Equations 13 and 17.
T (K) Thermodynamic temperature; Equations 32–37.
T0 (K) Reference thermodynamic temperature; Equations 32 and 33.
TH (K) Thermodynamic temperature when ∆HE equals zero; Equation 35.
V (mol m− 3 s− 1) Total substrate uptake rate; Equations 20 and 21.
Vmax,j (mol m− 3 s− 1) Maximum uptake rate by consumer Ej; Equation 21.
Xij (Variable) Substrate‐consumer complex between Si and Ej; Equations 15–18.
X (Variable) Total substrate‐consumer complex; Equations 18 and 19.
YG Biomass yield coefficient; Equations 22–24; Box 2.
Yj(Rl) (Variable) Generic model variable; Equations 2 and 3.
YjO (Variable) Observations corresponding to Yj(Rl); Equations 2 and 3.
Yml− 1

(Variable) State variable at the fine scale; Figure 2.
Ynl (Variable) State variable at the coarse scale; Figure 2.
YsR Reserve biomass yield for the DEB model; Box 2.
α Scaling parameter from microbial biomass to substrate binding sites; Equa-

tions 23, 24, 27 and 28.
λk Lagrangian multiplier for kth scaling rule; Equations 2 and 3.
κ (s− 1) Specific reserve biomass mobilization rate; Box 2.
δ (m) Water film thickness; Equations 10 and 12.
κm (s− 1) Specific substrate transfer rate between soil matrix and microbial microsite;

Equations 7 and 10.
θm (Variable) Model parameters; Equations 2 and 3.
μmax,P (s− 1) Specific maximum biomass growth rate for the Pirt model; Box 2.
μmax,C (s− 1) Specific maximum biomass growth rate for the compromise model; Box 2.
μC(s) (s

− 1) Specific biomass growth rate for the compromise model; Box 2.
μD(s) (s

− 1) Specific biomass growth rate for the DEB model; Box 2.
μP(s) (s

− 1) Specific biomass growth rate for the Pirt model; Box 2.
ψ (MPa) Soil matric potential; Equation 12.
ϕg (m

3 m− 3) Air‐filled soil porosity; Equation 11.
ϕw (m3 m− 3) Water‐filled soil porosity; Equation 11.
τg Soil tortuosity for gas diffusion; Equation 11.
τw Soil tortuosity for solute diffusion; Equation 11.
Φl‐1 (Variable) Variable Fine‐scale physical constraints; Figure 3.
Φl (Variable) Coarse‐scale physical constraints; Figure 3.

Data Availability Statement
This study only uses published data. Specifically for Figure 5, data for the four soil classes are (a) medium to fine
texture soils from (Doran et al., 1990); (b) coarse texture soil from (Doran et al., 1990); (c) other soils from (Doran
et al., 1990); and (d) soils from Franzluebbers (1999), respectively. Parameters used for the calculation are from
Tang and Riley (2019b).
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